

File System Operations in Assembly Language

 for Alice / MC-10

FILSYS

= $0030

All file system operations are executed by a call to the FILSYS entry point ($0030). The operation to be
performed is specified by an opcode parameter passed in accumulator B. A pointer to a File Control
Block (FCB) is passed in the Index register (X). The Index register is always preserved across calls to
FILSYS, but the A and B accumulators are not.

The File Control Block is a 34 byte structure. The first 8 bytes of this structure are used to pass
parameters and return status information when making calls to FILSYS. The remaining bytes of the FCB
are used internally by the file system and should not be modified while a file is open.

FOpen

= $02

FOpenR

= $03

Open a file with Read / Write access (

FOpen

) or Read-Only access (

FOpenR

) and set the current

File
Position

 to the beginning of the file (0).

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
38 = Bad Drive Number
40 = File Not Found
42 = File or Disk is Write Protected
44 = Bad File Name
46 = File System Error
52 = Already Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 Name

---> Pointer to a null-terminated file name string

4 DefExt

---> Pointer to 3 character default extension (null = none)

6 Buffer

---> Pointer to a 512 byte buffer for exclusive use by this FCB.

The

Name

 field of the FCB must point a null-terminated string which identifies the file to be opened. A
file name string has the following format:

drive:name.extension

The drive number is optional and may be either 0 or 1. If no drive number appears in the file name string
then the current value of DEFDRV ($BDCF) will be used. The name must be from 1 to 8 characters in
length. The extension is optional and can be from 1 to 3 characters in length. If no extension appears in
the file name string and the

DefExt

 field of the FCB is not null, then the 3 characters pointed to by

DefExt

 will be used for the extension.

The

Buffer

 field of the FCB must point to a 512 byte buffer which will be used exclusively by the FCB
during the time that the file remains open. You must not modify this field while the file is open.

FCreate

= $82

The

FCreate

 operation is similar to the

FOpen

 operation, except that the file will be created if it does not
already exist.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
38 = Bad Drive Number
42 = File or Disk is Write Protected
44 = Bad File Name
46 = File System Error
52 = Already Open
60 = Disk is Full

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 Name

---> Pointer to a null-terminated file name string

4 DefExt

---> Pointer to 3 character default extension (null = none)

6 Buffer

---> Pointer to a 512 byte buffer for exclusive use by this FCB.

See the description of

FOpen

 for more information.

The example below opens a file named "

TESTFILE.DAT

" on drive 0, creating it if necessary:

ldx #FCB point X at the File Control Block
ldd #FName point D at the file name string
std 2,x store pointer to name in FCB
ldd #0 null pointer
std 4,x no default extension
ldd #FBuffr point D at the file buffer
std 6,x store buffer address in FCB
ldab #FCreate the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

doErr ldab 0,x return error code in B
rts

FName fcc ’0:TESTFILE.DAT’ File name string
fcb 0 Null terminator

FCB rmb 34 File Control Block
FBuffr rmb 512 File Buffer

FClose

= $00

The

FClose

 operation closes a file that was previously opened successfully using either the

FOpen

,

FOpenR

 or

FCreate

 operations.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
46 = File System Error
54 = File is Not Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

Closing a file causes any changes that are cached in memory to be written to the disk. This may involve
writing data to the file and/or updating the directory.

Once a file has been closed, it is safe to reuse the memory holding the FCB structure and the file buffer
for other purposes.

FRead

= $06

The

FRead

 operation reads data into memory from an open file.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
46 = File System Error
48 = Read past End of File
54 = File is Not Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 DatPtr

---> Pointer to location where data will be stored

4 Count

---> Number of bytes to read

Data is read from the file starting at the current

File Position

. You can use the

FSeek

 operation to
change the current file position before using

FRead

. If the number of bytes requested by

Count

 is
greater than the number remaining in the file, then all remaining bytes will be read and the status code
for

Read past End of File

 will be returned. The file position will be moved ahead by the number of
bytes that were read.

The

Count

 parameter is an unsigned 16 bit integer allowing you to read up to 65535 bytes per request
(although such large requests are not practical on the Alice and MC-10).

The example below loads 4K of data at $5000 from a previously opened file:

...
ldd #$5000 location to load the data
std 2,x store load address in FCB
ldd #4*1024 number of bytes to load (4K)
std 4,x store byte count in FCB
ldab #FRead the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

FWrite

= $0C

The

FWrite

 operation writes data from memory to a file opened with Read/Write access.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
36 = File has Read-Only access
42 = Disk is Write Protected
46 = File System Error
54 = File is Not Open
60 = Disk is Full

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 DatPtr

---> Pointer to the data to be written

4 Count

---> Number of bytes to write

Data is written to the file starting at the current

File Position

. You can use the

FSeek

 operation to change
the current file position before using

FWrite

. The file position will be moved ahead by the number of
bytes that were written. If necessary, the file size will be increased to accommodate the data.

The

Count

 parameter is an unsigned 16 bit integer allowing you to write up to 65535 bytes per request
(although such large requests are not practical on the Alice and MC-10).

The example below writes 32 bytes of data from $7800 to a previously opened file:

...
ldd #$7800 location of data to write
std 2,x store data pointer in FCB
ldd #32 number of bytes to write
std 4,x store byte count in FCB
ldab #FWrite the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

FSeek

= $08

Changes the current file position.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
48 = Seek past End of File
54 = File is Not Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2

---- Unused

3 NewPos

---> Absolute seek position (24 bits)

The

NewPos

 parameter is an unsigned 24 bit integer (3 bytes) which specifies the absolute position in
the file where the next Read or Write operation should occur. If the new position is greater than the
current file size then the position will be set to the end of the file and the status code for

Seek past End of
File

 will be returned.

The example below sets the current file position to 64:

...
ldd #64 seek position
std 4,x store low-order 16 bits in FCB
clr 3,x hi-order 8 bits = 0
ldab #FSeek the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

FSetEnd

= $0A

Change the file size to equal the current file position.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
36 = File has Read-Only access
54 = File is Not Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

The

FSetEnd

 operation can be used to reduce the size of a file, but not extend it. You may first use the

FSeek

 operation to move the current

File Position

 and then use

FSetEnd

 to make that position the new

End of File

. The file must be open with Read/Write access in order to change its size.

FFlush

= $04

Commit any cached file data to the disk and update the directory if necessary.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
42 = Disk is Write Protected
46 = File System Error
54 = File is Not Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

Changes made to a file by the

FWrite

 and

FSetEnd

 operations may be cached in memory. The

FFlush

operation forces those changes to be written out to the disk. You do not normally need to use this
operation since closing the file has the same effect.

FKill

= $10

Delete a file from the disk

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
38 = Bad Drive Number
40 = File Not Found
42 = File or Disk is Write Protected
44 = Bad File Name
46 = File System Error
52 = File is Already Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 Name

---> Pointer to a null-terminated file name string

The

Name

 field of the FCB must point a null-terminated string which identifies the file to be deleted. If
no drive number appears in the file name string then the current value of DEFDRV ($BDCF) will be
used. The file name string must include any extension associated with the file (there is no provision for
a default extension using this operation).

The example below deletes the file named "

TESTFILE.DAT

" in drive 0:

ldx #FCB point X at the File Control Block
ldd #FName point D at the file name string
std 2,x store pointer to name in FCB
ldab #FKill the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

FName fcc ’0:TESTFILE.DAT’ File name string
fcb 0 Null terminator

FCB rmb 34 File Control Block

FRename

= $0E

Changes the name of an existing file.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
38 = Bad Drive Number
40 = File Not Found
42 = File or Disk is Write Protected
44 = Bad File Name
46 = File System Error
52 = File is Already Open
58 = A File with the New Name Already Exists

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 Name

---> Pointer to a null-terminated string identifying the file

4 NewName

---> Pointer to a null-terminated string for the file’s new name

The

Name

 field of the FCB must point a null-terminated string which identifies the file to be renamed.
If no drive number appears in the file name string then the current value of DEFDRV ($BDCF) will be
used. The file name string must include any extension associated with the file (there is no provision for
a default extension using this operation).

The

NewName

 field must point a null-terminated string which represents the new name to be assigned
to the file. If a drive number appears in the new file name string then it must match the drive number of
the target file, otherwise the status code for

Bad Drive Number

 will be returned.

The example below renames the file "

NAMES.DAT

" to "

NAMES.BAK

":

ldx #FCB point X at the File Control Block
ldd #OldFNam point D at current name string
std 2,X store pointer to current name in FCB
ldd #NewFNam point D at new name string
std 4,X store pointer to new name in FCB
ldab #FRename the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

OldFNam fcc ’0:NAMES.DAT’ Original name string
fcb 0 null terminator

NewFNam fcc ’NAMES.BAK’ New name string
fcb 0 null terminator

FCB rmb 34 File Control Block

FAttrib

= $12

Set file attributes.

FCB usage:

0 Status

<--- Status code upon return:

0 = Success
34 = I/O Error
38 = Bad Drive Number
40 = File Not Found
42 = Disk is Write Protected
44 = Bad File Name
46 = File System Error
52 = File is Already Open

1 Opcode

---> Operation Code (set by value passed in accumulator B)

2 Name

---> Pointer to a null-terminated string identifying the file

4 Mask

---> Mask of attributes to be retained

5 Value

---> Value of attributes to be changed

The

Name

 field of the FCB must point a null-terminated string which identifies the file to be renamed.
If no drive number appears in the file name string then the current value of DEFDRV ($BDCF) will be
used. The file name string must include any extension associated with the file (there is no provision for
a default extension using this operation).

The

Mask

 field is a byte in which each bit that is set corresponds to an attribute that will remain
unchanged. The file system uses this mask to clear the attributes which will be changed (using an AND
operation) before ORing in the new attribute settings from the

Value

 field.

The supported file attributes are:

Read Only $01
Hidden $02
Archive $20

The example below removes the

Archive

 attribute from the file named "

TESTFILE.DAT

" in drive 0:

ldx #FCB point X at the File Control Block
ldd #FName point D at the file name string
std 2,X store pointer to name in FCB
ldaa #~$20 mask to retain all except ’Archive’
clrb do not set any attributes
std 4,x store mask and value in FCB
ldab #FAttrib the operation code
jsr FILSYS call File System
bcs doErr branch if an error occurred
...

FName fcc ’0:TESTFILE.DAT’ File name string
fcb 0 Null terminator

FCB rmb 34 File Control Block

The Low Level Disk Driver

DSKCON

= $0020

The low level floppy disk driver can be called by a JSR to the DSKCON entry point. Parameters are
passed in the disk driver parameter block at $BDC0-BDC5 and the status result is returned in DCSTA at
$BDC6. The carry flag is also set upon return if the status result is not zero.

The parameter values at $BDC0-BDC5 are not modified by the disk driver.

The index register (X) and both accumulators are preserved across calls to DSKCON.

$BDC0 DCOPC

---> Driver operation code:
0 = Restore head to track zero
1 = Get Write Protect status
2 = Read sector
3 = Write sector
4 = Step in
5 = Format the current track

$BDC1 DCDRV

---> Drive number (0 or 1)

$BDC2 DCCYL

---> Cylinder number in bits 0..6, Side in bit 7

$BDC3 DCSEC

---> Sector number

$BDC4-5 DCBUF

---> Buffer address

$BDC6 DCSTA

<--- Driver status result:

This example will read sector 3 on track 14, side 0 from the disk in drive 0. Data is loaded at $5000.

ldaa #2 opcode for Read Sector
clrb drive 0
std DCOPC set opcode and drive number
ldaa #14 track 14, side 0
ldab #3 sector 3
std DCCYL set cylinder and sector
ldx #$5000 address where sector will be loaded
stx DCBUF set the buffer address
jsr DSKCON call the disk driver
bcs doErr branch if error
rts return

doErr ldaa DCSTA get driver status flags
... handle error
rts return

7 6 5 4 3 2 1 0

$04 Lost Data

$08 CRC Error
$10 Record Not Found / Seek Error
$40 Write Protected
$80 Drive Not Ready

Logical Sector I/O

RDSEC

= $0023

Reads one sector, identified by

Logical Sector Number

, from disk. The drive number (0..1) is specified in
the DCDRV parameter ($BDC1). The logical sector number (0..1439) is passed in the D accumulator.
The buffer address for the sector data is passed in the index register (X).

The disk driver status flags are returned in DCSTA at $BDC6. The carry flag is also set upon return if the
status result is not zero.

The index register (X) and both accumulators are preserved.

This example reads logical sector 184 from the disk in drive 0. Data is loaded at $5000.

clr DCDRV drive 0
ldd #184 logical sector number
ldx #$5000 address where sector will be loaded
jsr RDSEC call the Read Sector subroutine
bcs doErr branch if error
...
...

WRSEC

= $0026

Writes one sector, identified by

Logical Sector Number

, to disk. The drive number (0..1) is specified in
the DCDRV parameter ($BDC1). The logical sector number (0..1439) is passed in the D accumulator.
The address of the data to be written is passed in the index register (X).

The disk driver status flags are returned in DCSTA at $BDC6. The carry flag is also set upon return if the
status result is not zero.

The index register (X) and both accumulators are preserved.

This example writes data from $7400 to logical sector 18 on the disk in drive 0.

clr DCDRV drive 0
ldd #18 logical sector number
ldx #$7400 data is at $7400
jsr WRSEC call the Write Sector subroutine
bcs doErr branch if error
...
...

