SPORTSware’s SUPER DISK

=08 THE TANDY COLLOR COMPUTER 3 128 K DISK SYSTEM

|

|

|. SPORTSware
| 1251 South Reynolds Road
‘.\ Suite 414

‘ Toledo, Ohio 43615
|

(419) 389-1515

SPORTSware SUPER DISK
(c) 1989, SPORTSware, Toledo, Ohio All Rights Reserved

All portions of this software are copyrighted and are the
proprietary secret information of SPORTSware and/ar it’s
licenser. Use, reproduction or publication of any portion of
this material without prior written authorization by SPORTSware
1s strictly prohibited. No files created with this software may
be sold, bartered, traded, or exchanged with any person, company,
corporation, or entity without the prior written authorization of
SPORTSware.

SPORTSware SUPER DISK Manual
(c) 19838, SPORTSware Toledo, Ohio All Rights Reserved

Reproduction or use, without express written permission fronm
SPORTSware, of any portion of this manual :1s prohibited. Whiie
reasonable efforts have been taken in the presparaticn of “hese
materials to assure accuracy, SPORTSware assumes no lLiability
resulting from any errors or omissions in the material, or from
the use of the information contained herein.

SPORTSware MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THE SOFIWARE PROGRAMS RECORDED ON THE DISKETTE OR THE
PROGRAMS DESCRIBED IN THE BOOK, THEIR QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. THE
PROGRAMS ARE SOLD "AS IS". THE ENTIRE RISK AS TO THEIR QUALITY
AND PERFORMANCE IS WITH THE BUYER. IN NO EVENT WILL SPORTSware
oE LIABRLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT IN THE PROGRAMS EVEN IF
SPORTSware HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE. (SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU.)

JS B N A A A A B e EaAasSssSssEaEmEm

TAPLE OF CONTENTS

INTRODUCTIONcurivirnnnnnnann 1
COPY PROTECTION TECHNIQUES 2
THE ‘SUPER DISKv.vviuunnenn. 5
DISK BASED SYSTEMS 6
FLOPPY DISKETTESc.... 6
SECTOR MAPicuuiinrannnnanann. 6 .
FLOPPY DISK CONTROLLERS 10
FDC COMMANDSc..0.... 1
ACCESSING THE 1793 11
$FF40 CONTROL BITS 12
DISK OPERATING SYSTEM 1
DSKCON VARIABLES 12
BASIC SECTOR READ LISTING 13
THE SNOOPERvieenennnunnnans 14
PREAMBLES AND POSTAMBLES 16
GRANULE CONVERSION TABLE 17
READTRAK AND READRITE 18
NOCOPY . tvtie e tieeeaeeeeeaans 21
ANALYZEiiier e 23
BASIC PROTECTION 24
BASIC CHECKER ROUTINE LISTING 25
SECTOR NUMBER LISTING 27
FORMAT AND DSKIMODI 28
DOSVARIA . \iieniineaeannns 30
MAKETRAK ... vvvnnnrananaeonnnnns 31
COPYPLUSiceiuminnanenns 32
FASTFORM e 32
DISKCOPY .. .ioimunnnnaeneneanaann 33
DSKIMODI SOURCE CODE APPENDIX A
BASSAVE SOURCE CODE APPENDIX A
BASRUN SOURCE CODE APPENDIX A

SYSTEM REQUIREMENTS

"THE SUPER DISK is for the TANDY COLOR COMPUTER 3 with at
least 128K memory and one disk drive. A monitor rapable
of displaying 80 characters per line is needed for some of
the modules and two disk drives are required for the
READRITE ,COPYPLUS and DISKCOPY modules. All other mod-
ules require only one disk drive.

LB BN BN BN BN BN B BN BN BN BN By AY BN B By B I ¥

L3

AN INTRODUCTION TO COPY PROTECTION

Copy protection is one of the hottest issues in the computer
vorld today. On one side of the issue stand the software
developers and merchants who have invested enormous amounts of
time and money in the creation of computer applications. On the
other side are the users who must contend with assorted schemes
to prevent them from copying and distributing software to each
other at no cost. One unpleasant effect of protection schemes is
that not only can the original purchaser not give it away but in
some cases cannot even protect himself from damage to the
original disk by having working copies available for himself.

A small industry has heen born from this dilemma, again on both
sides of the fence. On one hand are the schemers who devise
these dastardly protection techniques and on the other the
devilish undoers who devise and sell applications to defeat
protection schemes. As in any conflict, it always ssems Lo bhe
the arms merchants who profit. Everyone else loses, ie. higher
development cost and higher price. .

In the beginning, way back when microcomputers first started to
take their place in the business world, copy protection made it’s
debut. Copy protection was rampant and understandably so. Those
applications usually cost hundreds of dollars. As time passed,
developers and distributors got so much flak about it that a
compronise was reached, at least in the world of corporate
giants. Copy protection would be dropped if companies whao
purchased the products adopted a written anti-piracy policy.

This all came to pass and today most commercial applications are
not copy protected. The personal computer world is different.

In the world of personal or home computers things are different.
How are you going to get a few million personal computer users to
sign an anti-piracy agreement? What can you do to them if they
violate it? Fire them? Now we’'re talking primarily about the
entertainment software market. Unfortunately, most computer
users seem to have the same attitude about copying software as
they do about cheating on taxes. What’s wrong with giving good
old Al a copy of this great game I just bought? Heck, I paid for
it. It‘s mine now. Besides, what would Al think of me if I told
him no? ’

Granted, most users don‘t go buy a program just so they can give
copies away. Most of us are honest aren‘t we? Next time your
friend shows you a new program, ask him to give you a copy. If
he tells you no, it's wrong to do that, go buy your own copy,
send me his name. I‘ve always wanted to meet an honest man.

Maybe that’s a little severe. But here’s the crux of the issue.
If you spend untold amounts of time and money developing a piece
of software, even more on promotion and distribution, not to
mention the associated risk involved in such ventures, do you or
don‘t you have the right to protect your investment and in fact
profit from it? One company did some research to Lry to
determine how many illegal copies of it‘s major product were in
circulation. They came up with a fiqure of five for every one
sold legally. This is the kind of damage that can even destroy a

N

2. -
~company. And what incentive does this give them to take the
risks involved in creating more new products?

As long as there is piracy, we will have software pricss that are
-higher than they might otherwise be and copy-protection.

COPY PROTECTION TECHNIQUES

Copy~protection schemes have varied widely over the years. But

- mogt use what is referred to as a signature-—-special marks or
oddly formatted sectors on the disk, and a checker routine that
looks for the signature. There are also non-disk type protection
schemes too. We’ll look at several of these techniques.

One of the first was PROlock, produced by the Vault Corp. In
this technique, one or several physical holes were burned into
the disk in precise locations. On booting the disk, the checker
routine would go look for a defect or defects in the disk in the
precise locations. On finding them, the program would be allowed
to proceed. I[f they were not found, the program would terminate
in one fashion or another. This method was eventually abandoned
by the big commercial applications in the U.S. but is still in
use in some countries and possibly in the entertainment market.

SUPFRIok has taken the place of PROlock as the current favorite.
It uses a signature, but not a physical one. SUPERlok places
data on a disk in a place the floppy disk controller doesn’t
normally expect to see data, in the gaps bhetween sectors. Other
SUPERlck techniques include overlapping sectors and sectors of
unusual size. If the checker routine does not find the required
signature, it knows the disk 1s a copy and terminates the
program. Since the standard floppy disk controller cannot write
to these locations or duplicate the format, the standard backup
or copy commands fail to create a working copy.

In fact, most copy-protection schemes rely on the limitations of
the floppy disk controller by placing strange data in the sector
gaps, altering normal track and sector IDs, stretching the gaps
between sectors, or changing the sync bytes, address marks or
clock bits. The disk controller may be able to recognize that
something unusual has been placed on the disk but it cannot
duplicate 1t.

You can see that with all these variables to work with, the
copy-protection author can create an almost endless number of
different schemes just with the diskette. There are other
non—-disk methods too.

Nocopi International Inc. of Toronto makes and sells Nocopi
paper. This is a dark purple paper that makes it virtually
impossible to copy information printed on it using standard copy
machines or fax machines. This technique is being used with
computer games. Some critical information is printed on the
sheet that must be referred to at various points in the game.
Without the correct information the game cannot be continued.
This method eliminates the need to use disk related methods but

g

3.

is restricted to strategy or adventure type games.

Even though the information cannot be photccopied or faxed,
what's to prevent the ardent pirate with mors time than money
from hand copying the information? Alsao, some feedback from the
end user suggests that information printed on Nocopi paper is
difficult to read even under ideal lighting conditicns, thus
something of an irritation.

Another non-disk method requires the user to have the program
manual in order to use the application. At various points in the
application, the user is asked to enter a word located in a
precise place in the manual. For example, when the application
boots up the user is asked to enter the fourth word in the third
paragraph on page thirty. Failure to enter the correct word will
terminate the program. This process can be repeated as the user
enters different phases of the application. This method too has
limitations. If the manual 1s brief, a few minutes at the local
copy center will defeat this method. Also, it seems limited to
non-action type games and productivity software. The most
determined pirate would probably be willing to pay the price to
copy even an exXtensive manual rather than pay for the program.

The wheel method is yet another non-disk protection scheme. In
this method, as the user progresses through the game, he is
occasionally asked to enter a code number which can only be
obtained from a wheel that came with the game. This wheel might
consist of three progressively smaller circular pieces of stiff
paper riveted together in the center. On the largest outer wheel
are several words printed around the outer edge. On the center
wheel are as many as several hundred code numbers printed in a
circular manner. On the inner wheel are several holes, or
windows, with names printed below each of them. At various
points in the program, the user is asked to enter the code number
in one of the windows when the wheel is aligned in a certain
manner. If the wrong code is entered, the program terminates.
This method is effective only if the user does not have a wheel.
Unfortunately for the software merchant, these wheels are not too
difficult to duplicate, again, a quick trip to the copy center,
removal of the rivet, and a little cutting with a utility knife
will do the trick. The only bad part is that the original
purchaser has to be willing to ruin his paid for wheel so old Al
can have a free copy.

As you can see, most non-disk copy-protection schemes end up
being more of a nuisance to the user than an effective nethod of

copy protection. Besides, they are highly visible to the user, a
constant reminder that he is not trusted. Worst of all, they are
not effective. Each can be overcome with no technical knowledge
required, usually just a little time and a copy machine will do
the trick. :

Disk based copy-protection methods have much more to offer the
software merchants. They usually operate unseen and unheard in
the background and require a great deal of disk savvy to defeat.
They can be very simple to extremely complex and only take up
disk space that wasn’'t being used anyway. They are effective

4.

tco. Usually specific applications are required to defeat them
or create exact copies of them which end up being protected too.

Many software companies have gone the one-two punch route today.
They use disk based protection and non-disk based disguised as
part of the game. For example the game disk is protected perhaps
allowing a copy to be made that will not function byt can be used
to restore a damaged original disk. Then, in the manual, there
is certain information critical to completing the game.

Hardware based protection is yet another optiomn. All of us are
familiar with Rom Packs, sometimes referred to as program packs.
This method is used primarily for game machines. One
disadvantage for users with disk based systems i1s that the disk
controller must be unplugged and the rom pack plugged in each
time the application is used. Before disk drives became readily
affordable, even serious applications like word processors and
spreadsheets came in rom packs. Data files were saved to and
retrieved from cassette tapes. Many rom packs hold as much as
32K of data today. Even these can be copied however. 3y
covering the pin which causes the computer to recognize and
execute the rom program, one can save the data to tape then load
and save it to disk.

Another hardware based protection scheme 1s also used. Somw
applications come with a special hardware device such as a
joystick adapter or serial device that must be plugged in. This
device comes with the original software. Without 1t plugged in
the software will not function properly so there 1s no rn-=2d to
add a protection scheme to the disk itself. This method 1s a
classic case of protection that forces the cost of software up
higher than it could be. Most companies do not use this method
for that reason.

THE SUPER DISK

The SUPER DISK (SD) contains many separate applications designed
to allow you, the programmer, to create your own unique copy
protection system. Besides these applications you will find
several disk utilities. These will allow you to do many things
that would have cost you well over a hundred dollars had you
purchased these utilities separately. It is assumed that you
have a good understanding of the BASIC programing language and
are familiar to some extent with ASSEMBLY language. In the
appendix at the end of the manual are several program listings.
Some of these are in assembly language and for you to use them
effectively will require simple modification on your part. Full
instructions are included in the appropriate section on each of
these listings. None of these listed programs are copy-protected
to make it as easy as possible for you to modify and use them.

There are other programs on the disk which require no programing
knowledge to use. These will allow you to add some protsction to
diskettes very easily and to learn more about copy-protection by
examining methods used by others. We think you will find THE
SNOOPER extremely powerful and useful not only for protection but
for general disk management and repair.

The next section of this manual is dedicated to familiarizing you
with the disk operating system and diskette format. Without a
good understanding of the operating system and it’s limitations
you cannot devise effective copy-protection technigques. The same
applies to disk formats.)

After that we’ll take a detailed look at each of the applications
on the disk and go through some examples of how to use each one
and get the most from it.

Finally, we’ll look at some different copy-protection techniques
and make some copy-protected disks using these methods and the
applications on the SUPER DISK.

You will find, after becoming familiar with the applications on
the SUPER DISK, that copy-protection is a fascinating subject
where your imagination is the only limitation. Examining and
trying to defeat protection schemes may be one of the bhest
puzzles ever created by man (as long as you are doing it for the
sport of it). We’ve certainly enjoyed putting this package
together and spent many hours studying the subject. There’s
nothing like that "AH HA!" when you find the secret code or
hidden track unseen by the regular operating system. After all,
we are dealing prinarily with games aren’'t we.

Then, there is the serious side of it. As a programmer you want
to protect your baby. Make it as difficult as possible for the
pirates to steal even one copy, right? When you get to the point
that you can say to yourself "There, i1f they can beat this, they
deserve a free copy!” you probably are right.

But remember, énything that can be done can be undone.

/

6.
DISK BASED SYSTEMS

In order to have a good understanding of copy-protection
techniques, you must have a thorough understanding of floppy disk
computer systems. The three key elements involved are floppy
diskettes, disk drives including the contrcoller and DOS which is
short for Disk Operating System. We’ll look at each of these in
turn. Additional reference material you may want to read is
available from Tandy Corp., Western Digital and Microsoft.

FLOPPY DISKETTES

The Color Computer Disk System Programming Manual that came with
your disk drive is an excellent source of basic knowledge about
your disk system and diskettes. We suggest you blow the dust off
of it and spend a little time browsing through it.

The Coco operating system uses diskettes formatted with 35 tracks
each consisting of 18 sectors each of which hold 256 bytes of
data. THIS 1S THE KEY LIMITATION OF THE OPERATING SYSTEM.

The truth of the matter 1s that the drives supplied by Tandy for
use with the Coco will actually format 40 tracks. The number of
sectors per track can be varied. And the manner in which the
diskette is formatted can also be varied (the information on the
disk between the sectors and tracks and sector length),.

When a diskette is formatted normally (using the DSKINI command),
each track looks like this;

Bytes 0000-0031 $4E this is the leading gap (32 bytes)

A e —— —————— T —te . — " T — — ——— A T ——— T S T " ——— . — i T o o

E 0000-0007 $00 this is a sync field (8 bytes)
a 0008-0010 SFS sets CRC bytes to 1ls (3 bytes)
c 0011 SFE the address ID mark (points to info below)
h 0012 (} ‘track number is i1nserted here
0013 (} side number (always zero w/RSDOS)
s 0014 ¢) sector number 1s inserted here
e 001s $01 sector size 0=128 1=256 2=512 3=1024 bytes
c 0016-0017 SF7 CRC request (Cyclic redundancy check)
t 0018-0039 S4E this is the post ID gap (22 bytes)
o 0040-0051 s00 second sync field (12 bytes)
r 0052-0054 S$FS reset CRC bytes (3 bytes)

Q055 SFB this byte marks the start of data field
0056-0311 SFF data field is filled w/SFF (256 bytes)
0312-0313 SF7 another CRC request

0314-0337 S$4E thigs is the post data gap (24 bytes)

$4E end of track gap (200 bytes)

When you format a diskette with the DSKINI command, above is
exactly what information will be placed between each track and
sector. <{(You can see this for yourself by formatting a disk and
then booting up the utility called READTRAK, try it®)

The heart of most copy-protection schemes is to CHANGE some of

| S W N W W N U E YT W e W e " Y e =

L N N N B EFEE B EEBEEBEEAEAEREE A RS

7.

the above information and then have the checker routine look to
see if the disk in the drive has the correct (changed)
information on it. If any of it is not correct, the checker
decides that the disk is a phony and terminates the program.

Let’s look at each field and see how it can be used for copy
protection purposes.

THE LEADING GAP which normally consists of 32 bytes can be
changed to a different length. This can be done from BASIC by
poking the length into location $D695. The checker could then
load an entire track into memory as the program first executes
and count the number of bytes it sees before it encounters the
sync field. (There are better ways)

THE SYNC FIELD is there to allow the disk controller to keep on
track, not get too far ahead or behind. We do not recommend
changing the length of these fields. They must be zeros also.

The three $F5s that follow the sync fields reset the CRC counter
to all ones. These should not be changed either.

The code $FE is the address ID mark. This mark tells the
controller that the next four bytes are the track, side, sector
and sector size numbers. This byte should not be changed.

Here is where the fun begins. The track number, side, sector
number and sector size can be and usually are changed for copy
protection purposes. Track numbers can legally be from 0-2855,.
The side number can be any value from 0-255. Sector numbers can
be any number from 1-255. Sector size (the length of the data
field can be 128, 256, 512 or 1024 bytes long. As the size of the
data field increases, the number of tracks on a disk must be
decreased correspondingly. Let’s look at each of these 1D marks
individually to see what can be done with them.

TRACK NUMBER: This byte identifies the track. WNormally, this
number ranges from 0-34 giving us 35 tracks. Actually, the _
number inserted here can be anything from 0-255. Let’s say we
have a program we want to protect. We format tracks 0-34
normally. But when we get to track 35 we change the number to
200. ©On this track we place one sector of information or program
code we’'ll have the checker routine look for,.

Suppose an enterprising would be pirate suspects that there are
more than 35 tracks. He formats a disk with 40 tracks and uses
the BACKUP command to copy our disk. What happens? It doesn’t
work for him because as far as DOS can see, there is no track
35-39. His copy fails to work.

SIDE NUMBER: Tandy DOS only recognizes side zero. We can use
this byte as a code number for our checker to look for.

SECTOR NUMBER: This number can be from 1-255. In fact you could
actually build a track that really has 255 sectors. You would end
up with an un-copyable disk. Let’s look at our example agailn.

)y

8.

Suppose besides numbering track 35 as track 200 we also play some
games with the sector numbers. Let’s number all of the sectors as
36 except the one we actually have data we want to use. Let’s
number that one 20. Again the normal BACKUP and COPY commands
will fail to detect our secret track and sectors.

SECTOR SIZE: The four legal sector sizes are 128, 256, 512 and
1024 bytes. These are set during the format process by the value
sent to the controller in this byte. 0=128, 1=2%56, 2=512 and
3=1024 bytes per sector. If this number is not 1, the normally
formatted (256 bytes per sector) disk will fail to copy the data.
S0 besides changing the track number, side number and sector
number, we can even change the size of the sectors on our secret
track.

You can see already the countless number of variations available. !
These schemes are not easy to duplicate either without
specialized software. The average would be pirate without ‘
special software and/or a lot of technical savvy will soon give
up trying to copy our disk.
The $F7 byte tells the controller to calculate the CRC value.
This value is calculated with the following formula.
Gix)=x16+x12+x6+1. The CRC includes all information from the
address mark up to the CRC characters. The CRC is used by the ’
system to verify data integrity. We can use it to verify that
none of our program has been changed since any change to the data
will change the CRCs.
After the CRC is a gap called the post ID gap which is 22 bytes
long. This gap can be varied in length and checked as a copy
protection scheme also. The $4E can be changed to another value
but data in the gaps is often misread by the controller because
I.I
1

of getting out of sync. The actual data value does not present
us with a totally reliable method.

Another sync field follows this gap. It‘s length is 12 bytes and
the controller will begin looking for the $FB (which marks the
beginning of the data field) after encountering these zeros.

Again the CRC bytes are reset by the 3 $FSs.

The SFB should not be changed as it marks the beginning of the
data field.

The next series of bytes are the actual data saved in the sector
just identified. This of course can be anything, data, program
code or a secret code we’ve placed here for our checker to look
for. On a newly formatted disk with 256 bytes per sector (as DOS
would give us) each of these bytes is $FF (255 decimal). They
don‘t have to be $FF though. You can change it to almost
anything to fill the data field when formatting.

After the data field a new CRC is calculated. If we know the CRC
values, we can check them to see if any changes have been made to
the program. Here is an example. Suppose a talented pirate

' M B M N N N N B N B B N B B B B B A

9.

decodes our checker routine. Let’s say that routine read track
35 sector 20 and checked for a code word we put in the sector.
Failing to find track 35, sector 20 or the right code there our
checker would cause the program to erase itself and make the
computer start randomly executing commands forcing the user to do
a cold start to regain control.

Our pirate friend changes the program to bypass the checker
completely so any copy will execute like the original. Fine.

But we have another checker routine a little later in our code
that reads the CRCs for the sector that contained our first
checker that he changed. Bingo, the CRCs are wrong and we send
the computer on a trip to outer space. His attempt to bypass the
checker fails and now he has to start looking for the next one.
We can do this as many times as we want to.

After the CRCs is another gap, the post data gap. This gap is 24
bytes long and again can be longer or shorter. Here again we can
check the length of the gap between the end of the data field and
the start of the next sync field as an example.

At the end of each track there is another gap of 200 bytes. This
gap can also be varied in length.

To become really comfortable with the disk format we suggest you
use the READTRAK and MAKETRAK programs on the SUPER DISK to
“play"” with different formats and examine what we’ve done to the
tracks beyond track 34 on the SUPER DISK. Note that some of the
programs on the SUPER DISK are not copy protected for your ease
of use. Others are.

10.
FLOPPY DISK CONTROLLERS

Although there are several floppy disk controilers available for
the Tandy Color Computer 3, we’ll restrict our discussion to the
FDC 1793 manufactured by Western Digital and sold by Tandy. Most
of the information in this section applies to all COCO compatible
controllers though. We highly recommend that you contact Western
Digital and obtain a copy of the manual for the 1793. This manual
is free for the asking as of the date of this writing.
The address is; WESTERN DIGITAL CORPORATION

2445 McCABE WAY

IRVINE, CALIFORNIA 92714

Ask for a copy of FD179X-02 Floppy Disk Formatter/Controller
Family.

This manual fully explains the hardware and software aspects of
our trusty cantroller. To gain a full understanding of it s
operations you need this manual. We will look only at the
software aspects here.

FDC COMMANDS

There are 11 commands that can be sent to the 1793. These are;
1. $03 RESTORE restores read/write head to track zero
2. $17 SEEK seek a specified track
3. $23 STEP . step in the direction of the last step
4. $43 STEP 0OUT move out 1 track, decrement track count
5. $53 STEP IN move in 1 track, increment track count
§. $80 READ SECTOR read 1 sector
7. $3A0 WRITE SECTOR write 1 sector :
8. $SCD READ ADDRESS read next encountered address marks -
9. $SE4 READ TRACK read 1 entire track

10. sF4 WRITE TRACK write 1 entire track

11, $D0 FORCE INTERRUPT cease current operation

RESTORE: This command will cause the read/write head (RWH) of the
disk drive to go from it’'s current location to track zero. Upon
arrival there an interrupt is generated and control is returned
to the computer. No read or write operations are conducted.

SEEK: The seek command can be used to place the RWH at the
beginning of any track without contacting the diskette. No read
or write operation is performed.

STEP: This command will cause the RWH to step (move) one track in
the same direction as the last step command. That is IN (toward
the center of the disk, the higher numbered tracks) or OUT
{toward the outside of the disk, the lower numbered tracks}.

STEP IN: The controller will cause the RWH to move in one track
from it’s current location upon receipt of this command.

STEP OQUT: This command moves the RWH out or down one track from
it‘s current location.

i N N N N N B B E R A EBEEEER]

L

i1.

READ SECTOR: Upon receipt of this command the controller will
read the sector specified in the sector register and transfer the
data to the ram location specified.

WRITE SECTOR: This command will! cause the transfer of data
pointed to in ram to be written to the specified sector on the
disk.

READ ADDRESS: This command will look for the next encountered SFE
and transfer the six bytes following it to ram. Those six bytes
should be the track number, side number, sector number, sector
size and two CRC bytes.

READ TRACK: When this command is executed, the desired track is
transferred to the pointed to ram address. This inciudes the
leading gap, all data between the sectors, the data in the
sectors, and the end of track gap.

WRITE TRACK: This command will write an entire track to disk.
All of the required data {(gaps,sync bytes,address data,etc.}
RSDOS uses this command when formatting diskettes. It can also
be used to copy entire tracks from one disk to another.

FORCE INTERRUPT: This command will force the controller to stop
executing its current operation and give control back to the
computer. '

If you examine copy protection schemes, you‘ll find that many of
them do not rely on the standard DOS commands but access the disk
via routine written by the author. One reason for this is that
many of the operations conducted in copy protection have no DOS
equivalent. As an example, how would you read an entire track or
locad the CRCs for the data for track 16 sector 10G from DOS?

If you are a BASIC programmer, you might think you can’t take
advantage of some of the more sophisticated copy protection
techniques. Not true. Several of the BASIC uytilities on the
SUPER DISK will let you do these things. See the section on
BASIC PROTECTION.

ACCESSING THE 1793

The registers used to access the 1793 Floppy Disk Controller from
the COCQO are $FF48, $FF49, 3FF4A, 3FF4B, SFF40 AND $0986.

SFF48: All commands are sent to the controller by placing the
command byte in $FF48. For example, to read a track, $FF48 is
loaded with SE4. The status of all read operations is returned in
$FFA8 upon completion of the operation.

$FF49: This is the track register. The desired track is read
from location $EC and placed in $FF49. Most DOS commands load
SEC with the track to access. $097E-$098! contain the current
location of the RWH for drives 0-3 respectively. If we want to
access track 16, we load SEC with #16. Execute the desired
command. The 1793 then gets the current track location of the

12.

RWH from $097E (if drive zero) and compares it with SEC. If they
match, the head is on the right track now. If not, the SEEK
command is executed and the head moved to the right track.

$FF4A: This is the sector register. $ED (the DOS sector variable)
is loaded into SFF4A after the RWH is on the correct track.

$FF4B: This is the data register. All data passed between the
computer and the FDC (read cor write) goes via S$FF4B.

SFF40: This register controls the following functions.

Byte 7 if set halt enabled, if 0 halt disabled
8 selects drive 3 if set
5 if set double density, if 0 single densilty
4 write precompensation, if 0 no, if set yes
3 if set motors on, if 0 motors off
2 selects drive 2 if set
1 selects drive 1 if set *
0 selects drive 0 if set

$0986: is the ram image of 3$FF40 since $FF40 is a write only
location. To determine the contents of SFFA0, read $0986.

DOSsS

The disk operating system resides in memory from $C000 to SDFFF.
Covering the operating system requires a book in itself. Just
such a book is available, written by Spectral Associates. This

book covers both Disk Basic 1.0 and 1.1. Their address is;

Spectral Associates
3320 South S90th Streest
Tacoma, WA 98409

Some of the more important memory locations you should be
familiar with for copy protection purposes are listed and
explained below.

SO00EA Disk command variable. 00 = RESTORE

01 = NO OPERATION

02 = READ SECTOR

03 = WRITE SECTOR -
$00EB Drive number 0-3
$00EC Track number 0-39
$00ED Sector number 1-255 G
SOO0EE - Most significant byte of data buffer
SO0EF Least significant byte of data buffer
$00F0D Status register, = 0 if no error in operation
$D75F DSKCON conducts DOS commands

With just the variables listed above you can access many disk
operations from basic. For example, the program below will read
any sector on a disk and display it’s contents on the 32 column
text screen and print the status of the read operation.

i
?
E

N . e R N N B B R E AR BE SR

*

001¢
0020
0030
0040
0050
o060
0070
0080
0090
gi00
0110

To change the track number change the 17 in line 40 to the
To change the sector number change the 2
For BASIC 1.0 change the

desired track number.
in line 50 to the desired sector number.

WIDTH 32 : CLS

POKE &HEA, 2

POKE &HEB,D

POKE &HEC,17
POKE 2HED, 3

POKE &HEE, 4

POKE &HEF,0

EXEC &HD75F

X=PEEK(&HFJ)
PRINT @288,X
END

Wr Wl Wwe We My Nr Wi W we N W

13.

SELECT LORES SCREEN / CLEAR IT
READ OP CODE

SELECT DRIVE ZERO

SELECT TRACK 17

FIRST PAGE OF DIRECTORY

MSB OF $0400, TEXT SCREEN TOP
LsSB

JUMP TO DSKCON (BASIC 1.1)
GET STATUS OF OPERATION
PRINT STATUS VALUE ON SCREEN
FINISHED

&HD7SF in line 80 to &HDE&C.

Many other locations in ram are used by DOS.
DOSVARIA on the SUPER DISK will help vou become familiar with

them if you are not already.

The program ralled

14.

THE SNOOPER

The SNOOPER is a powerful collection of disk utilities. With it
you can examine individual sectors, look for specific data,
change data, fill all or part of a sector with a specified byte
pattern, do screen prints, recover lost files and perform several
copy protection functions. Each function of the SNOOPER is
explained below.

STARTING the SNCOPER ‘ | .

Place your SUPER DISK in drive zero and type <LOADM “SNOOPER"
ENTER>. The SNOOPER will load and execute. On the opening
screen you will be informed that the program is ready to read a
sector. At the prompts, enter the drive the disk is in that you
wish to read a sector from, the track number and sector number.
The values you enter are not restricted to tracks 0-34 or sectors
1-18 to give you the maximum freedom while creating or examining
copy protection. 1If the track or sector entered is not found,
you will be informed that a read error has occurred and returned
to the opening screen. [To see the first® sector of the directory
of the SUPER DISK, enter drive zero, track 17, sector 3.1

After you have successfully loaded a sector, you will see the
currently accessed drive, track and sector number displayed at
the top of the screen. All 256 bytes are displayed in hex
numbers in 16 lines of 16 bytes each. $00 and $FF are
highlighted to make data fields easily identifiable. To the left
of these bytes are the byte numbers of the first byte in that
row. To the right of the hex display, each byte is displayed in
ASCII] format. [If you are looking at a directory sector or ASCII
file, you will be able to read the entries.]

Below this display are listed options you may exercise in the
SNOOPER.

1. (F1) Select drive. After you press F1, you may enter the
number of the drive you wish to access on the next command.
Drives 0-3 are supported. Ram drives cannot be accessed with the
SNOOPER. This function allows you to switch hetween drives
easlly without restarting the program.

2. (T) Press T to change the track number you wish Lo access
next. You will also be asked to enter the sector number of the
track. After you press ENTER, the track and sector selected will
be displayed. If the track or sector selected cannot be found,
you will be notified and returned to the startup screen. In some
copy protection schemes, the track numbers beyond track 34 are
changed to numbers larger than 39 (track 40). The operating
system cannot access these tracks. You will have to use the
READTRAK module to access them.

3. (S) Press S to select a sector in the same track to be
displayed. If the desired track has been found, you can access
any sector numbered 1-255 in the track. In some copy protection
schemes, several sectors may have been given the same sector

L N 8 S U B Y U R W U S " W E R "

- .- E s S SsSsTESsEEsEEEEFTEEREEEREER

~

15.

number. [For example, suppose 16 of the sectors on track 35 all
have the sector number of 55 but each of the sectors have
different data in them (such as different code numbers for the
checker routine to look for}. If you select sector 55 with the
SNOQPER, one of these sectors will be found and displayed.
Selecting sector 55 again may display the same sector again or a
different one. The best way to read these sectors is with the
READTRAK module.] :

4. (D) Press D to convert a hexadecimal number to a decimal
number. All hex numbers less than $8000 will display their
decimal equivalent. The routine in this program does not convert
numbers equal to or larger than $8000. This function will come
in handy for converting directory information and file allocation
information to decimals so you can find the starting track and
gsector of different files. You will seldom need to convert a
number larger than SFF (255 decimal).
5. (W) Press W to write a sector to disk. After you press W,
you will be asked which drive, track and secter Lo write to. If
you press W by mistake or change your mind, press A to abort the
write. While exploring the wonders of copy protection, you may
want to try to delete certain steps in a file. You could do this :
by making a regular backup of a disk, using the backup, fill ‘
certain areas of code with NOPs (no operation op codes) then
write the sector back to disk. Also this function combined with
the (C)hange byte function makes it easy to enter code sequences
in hidden sectors of your own for your unique copy protection
schemes. You can also make a reserve copy of the directory track
on an empty or extra track, one sector at a time.

6. (X)) Press X to do a screen dump to your printer. This
function will print all of the information currently on the
screen to the printer if it is on line. If the printer 1s not
online, after a short delay, control will return to you. This
function is set to operate at 600 baud to be COCO compatible.

7. (P) Press P to look for preambles and postambles.
Preambles are the headers which tell the computer what type of
file is being loaded, where in memory to load it and how many
bytes to load. Preambles and pastambles are discussed in detail
at the end of this section.

8. (ENTER) Press the enter key to load the next sequentially
numbered sector. If the current sector is the last sector on the
current track, the first sector of the next track will be loaded.

9. (Q) Press Q to leave the SNOOPER and return to disk basic.
Once you leave the SNOOPER you will have to reload it from disk
to reenter it.

10. (L) Press L to look for a specific hex byte. Every

occurrence of that hex number in the sector will be highlighted.
This function is very useful for finding specific references to
disk variables, etc. without having to manually read every byte.

16.

11. (F) Press F to fill any portion of the sector with a
specified byte. [For example, to remove all data from a sector
and make it like a newly formatted sector, select $FF as the fill
character. Start at byte zero. End at byte 255. Press Y to
confirm that you want to go ahead. All of the bytes will be
changed to $FF. NOTE: No data on the disk is changed unless you
then perform a WRITE to disk.l

12. (C) Press C to change a single byte value in a file. You
will be prompted to enter the number of the byte to change and
the value to change it to. This function can be used in many
ways. Some uses are to change a file name or extension, make a
disk appear to be full of data by filling all of the unused
granules with numbers that will make# the computer think that
there is no free space left on the disk and is useful when trying
to recover a file that was deleted or repair accidentally damaged
data in a file. This function is not listed on the on screen
menu.

-

PREAMBIES & POSTAMBLES

When a file is written to disk using DOS, the first S bytes
written to the first sector are called the preamble. The first
byte will be a $00 if the file is binary or S$FF if the file is a
basic program. Bytes 2 and 3 identify the length of the data
file. Bytes 4 and 5 contain the load address. This information
is required by the DOS so it knows what it is loading, how long
it is and where to put it.

There can be 1 or several preambles in a file. Ih most machine
language protected files this is the case for several reasons.
First, the program may alter parts of the operating system at
several locations in ram. Loading changes to interrupt vectors
directly into their vector locations saves a lot of code as
opposed to writing a routine to put them there. Second, the
program may be intentionally segmented, broken up into several
pieces so it cannot be easily saved to a different disk. DOS
does not provide for saving segmented files. Third, it’s another
way to confuse pirates. :

At the end of every file saved to disk using DOS is a postamble.
Again, this is made up of 5 bytes. The first byte is $FF, the
postamble flag. Bytes 2 and 3 are always $00,$00. Bytes 4 and 5
tell the computer the EXEC address, where the actual start of the
program is.

When using this function, always start on sector 1 or 10 of any
track other than 17. Track 17 is reserve for the directory
(sectors 3-11) and file allocation table (sector 2). Sector 1
and sectors 12-18 of track 17 are not used by the system.

FINDING THE START OF A FILE

All directory listings contain 32 bytes. Bytes 0 thru 15 contain
information. Bytes 16 thru 31 are unused and contain zeros.

I S U 9 B N N T W WY W W e § -

' N N R EEEEREEREEN RN BB]

17.
Bytes 00-07 contain the filename
08-10 the extension
11 File type; 00 = Basic program
01 = Basic data
02 = Binary
A 03 = text editor source
12 the ASCII flag; 00 = Binary or Basic
FF = ASCII file
13 First granule of the file
14-15 numnber of bytes in the last sector
16-31 not used, all 00s

To find the track and sector where a file starts then we need to
see byte 13. This gives us the first granule of the file. This
number must be converted to a track and sector numher. There are
68 granules on a 3% track disk. Track 17 is skipped, so that
leaves 34 tracks. That means 2 granules per track. One granule
is sectors 1-9. The other is sectors 10-18. Even the shortest
BASIC program (say 200 bytes, less then 1 sector) will use up 9
sectors on the disk. Use the table below to easily convert
granules to tracks and sectors.

GRANULE k =TRACK NUMBER / STARTING SECTOR NUMBER

00=00/01 01=00/10 02=01/01 03=01/10
04=02/01 05=02/10 06=03/01 07=03/10
06=04/01 09=04/10 10=05/01 -11=05/10
12=06/01 13=06/10 14=07/01 15=07/10
16=08/01 17=08/10 18=09/01 19=09/10
20=10/01 21=10/10 22=11/01 23=11/10
24=12/01 25=12/10 26=13/01 27=13/18
28=14/01 29=14/10 30=15/0t1 31=15/10
32=16/01 33=16/10 34=18/01 35=18/10
36=19/01 37=19/10 38=20/01 39=20/10
40=21/01 41=21/10 42=22/01 43=22/10
44=23/01 45=23/10 46=24/01 47=24/10
48=25/01 49=25/10 50=26/01 51=26/10
52=271/01 53=27/10 54=28/01 55=28/10
56=29/01 57=29/10 £§8=30/01 59=30/10
60=31/01 61=31/10 62=32/01 63=32/10
64=33/01 65=33/10 66=34/01 67=34/10

————— i i i

program begins you can use the preamble search module to find out
where in memory the program resides and executes. You won’'t need
this module for creating copy protected software but it is
extremely useful for playing detective and examining other

programs. Don't be surprised if you see lots of preambles.
[NOTE; The preamble search extends only to the end of the sector
in memory. If the number of bytes in the segment takes you past

the end of the sector you must load the next sector and begin the
search at the last byte indicated by the last preamble. If you
don‘t, you will get false information. Alsc, the preamble search
is not designed to recognize BASIC programs. Remember that BASIC
programs preambles start with $FF not 300. BASIC programs are
not segmented either, so are easy to follow.

18.
READTRAK and READRITE

The READTRAK (RT) module allows you to load any track that exists
on a disk and scroll through the entire track. This includes
everything from and including the leading gap to the end gap.
All gaps, sync bytes, CRCs, address marXs, ID fields and data
fields can be seen and examined. This applies to both protected
and unprotected disks.

LOADING INSTRUCTIONS

To execute this module, put the SUPER DISK in drive zero and type
[LOADM "READTRAK"” ENTER 1. The module will load and execute.
You should see the title screen and be prompted to enter a drive
number. You can remove the SUPER DISK at this time if you like
and place a disk to examine in drive zero. All drives 0-3 can be
used. Ram disk drives cannot be accessed by this module. Select
a drive number and press enter. .
Next you will be asked what track to read. Enter the number of
the track you want to see and press enter. The module will fill
it’s ram buffer with zeros before it attempts to read the track.
After the track is read you will be prompted to press any key to
view the track. Press any key. 1If the track dose not exist or
cannot be read for some reason, you will see a buffer filled with
zeros instead of data.

The screen will begin to fill with data from the ram buffer. You
will first see the leading gap followed by the sync bytes. Next
you should see a $FE. This is the first address mark. The next
four bytes after the SFE are the track number, side number
(should be a zero), the sector number, and the sector size
{should be a one). The next two bytes are the CRC calculated for
the address field. This is followed by another gap, another sync
field and a $FB. This $FB marks the beginning of the data field
(the next 256 bytes). So far all this has bheen in white
letters on a blue background. The data field appears in white on
a red background to make the data fields easy to see. At the end
of the data field the colors switch back to whits on blue. Right
after the data field are it‘s CRC bytes. Then the whole sequence
repeats again for the next sector. This continues until all 18
sectors are displayed and the track end gap.

To PAUSE the display, press shift and @ at the same time. To
continue scrolling through the track, press any Key.

To TERMINATE the scroll, press the F1 key. This will end the
scrolling and present you with three options.

1. READ TRACK Select this option if you want toc read in a
different track. The buffer will be refilled with zeros
and you can select another track to read in.

2. VIEW SAME TRACK Select this option to see the same track
from the beginning again.

' B W Y B 9T Y T EY VU N B § & =

L B B A A I N N N EEEREEESES NN B N

19,

3. QUIT Select this option to exit READTRAK and go back to
DISK BASIC. To restart READTRAK you must reinsert the
SUPER DISK and LOADM "READTRAK" again.

It is a good idea to do a cold start after running any of the
SUPER DISK modules because most of them modify some of disk
basics routines.

Pressing the BREAK Kkey at any time except during disk access will
terminate the program. Do not press the break key unless you
want to exit the program.

READTRAK is extremely useful for examining information on
protected disks that you were not meant to see. You can learn a
lot about copy protection by looking at how the author set up the
different tracks, the track numbers used, side numbers, sector
numbers, data fields, length of gap etc.
As far as using it for creating your own copy protection is
concerned, here is how to use it. After you have designed your
own unique track format (using FORMAT and DSKIMODI) you can
load the entire track and verify that it is as you expsct it to
be. You can also select by exact byte count where the data you
want your checker to find is located. Then you can have the
checker routine load the entire track, certain accessible sectors
only or even just the address field or data field CRCs. The point
is, the data your checker is to look for must be where it is
expected to be. This module will help you make sure it is.

SOME PECULIARITIES

Reading entire tracks of data is not a standard part of the DOS.
No where in DOS is 1t called for. Writing entire tracks 1is
called for in DOS only in the DSKINI routine to format a disk.
Two major problems occur when reading and writing entire tracks
(except while formatting).

First, the drive seems to loose sync. You will notice that somse
of the bytes in the gaps between Lhe sectors that are supposed to
be $4E (the bytes sent when the disk was formatted) are not.

They are $12 or some other value. This is because the drive gets
out of sync and misreads the byte. It gets back in sync just
before the address id field and the data field. But it can soon
loose sync again very quickly. This alone presents little
probiem because the address field comes out correctly, The start
of the data field usually is correct but you may notice that some
of the bytes in the data field are not correct. Try this test to
see what I mean. Use the SNOOPER to load a sector that contains
data, say sector 3 of track 17, the directory. Print it out if
you have a printer. Exit the SNOOPER and read in track 17 with
READTRAK. Find sector 3. Compare them. Especially note that
the $FFs may have been changed to $00. This problem gets worse
when a data field contains program code. See why in the next
paragraph.

&

20.

The second problem occurs mostly in the write track command.
This command was designed to be used to format diskettes only.
It works perfectly for that purpose. Suppose you want to copy a
disk by first reading each track in it‘s entirety from one drive
and then writing it to another drive. You can do i1t! SEE BELOW.

READRITE

First, do a cold start and take a new disk and format it using
the regular DSKINI command. Have a new unformatted disk ready
but do not format it.

Now, place ithe SUPER DISK in drive zero and type [LOADM
"READRITE" ENTER 1. READRITE will load but not execute. Place
the FORMATTED disk in drive zero and the UNFORMATTED disk in
drive 1. { This module requires 2 drives Y. Type [EXEC 1I.
READRITE will copy track by track from drive zero to drive 1.
When it is finished, the disk in drive 1 will be an exact gopy of
the disk in drive zero and it can be used just like any other
newly formatted disk.

Next, do a cold start and reload READRITE. Place any disk that
contains programs and data on it in drive zero and a new
unformatted disk in drive 1. Type [EXEC 1. Again, the module
will copy track by track the disk in drive zero to the disk in
drive 1. Do a cold start and type [DIRT 1. The directory may
or may not come up correctiy. If it does, try to load and run
one of the programs on the disk. Did it work? Rarely it will.
Sometimes, if you then do a sector by sector copy, the disk will
function perfectly. Sometimes not.

Here’'s the problem. Even if the data was read from the disk in
drive zero without error the write will not be correct. Whenever
the write track function of the floppy disk controller encounters
certain codes in the data it tries to perform certain functions.
For example, if the FDC reads a $FE {(address ID mark) from it’s
data register while writing a track, it wants to create an
address field. If it sees an $FB, it thinks it’s supposed to
create a data field. If it sees a SF7, it writes two CRC bytes.
$FE is the code for it to reset the CRC counter.

These codes $FS-$FE cannot appear in the data field, gaps or ID
fields. They raise havoc with the contreller. Just use the
SNOOPER and look through some program code sectors. Use the LOOK
function to quickly see how often these codes, SF5-$FE, occur.
See the problem?

READRITE knows this problem and looks for the offending codes and
replaces them with $FF. The disk usually ends up being formatted
correctly, but the data fields are not identical if they
contained any $F5s through S$FE. The only solution is to do a
sector by sector copy after using READRITE.

Copy protection authors know these things and often make sure
that tracks used for protection contain lots of these codes.
After all, you aren’t suppossed to be able to copy 1t!

!
a

21.

READRITE will copy disks with any number of tracks from 1 to 40.
The module checks after each read to see if it received data. If
not, the execution ends.

You can reexecute READRITE by typing [EXEC 1 again.
NOCOFPFPY

Put this one in the dirty tricks file. NOCOPY is a module that
will make a disk not copyable with the DOS BACKUP command. This
routine 1s especially effective under some circumstances. First,
if the program on the disk can be copied using the DOS COPY
command, NOCOPY is useless unless the program also has a checker
routine. That way, even 1f it is copied, 1t wont work because
the data the checker looks for is on a track that the BACKUP
command does not look for. Second, NOCOPY makes it impossiblse
for the user to make a copy that can be used to restore a damaged
original. Many companies now instruct you to make a backudp to
save in case something happen to the original. If the original
fails to work, you use the copy to restore the coriginal.

Before you use NOCOPY you must decide that you don’'t want the
user to be able to make a copy for any purpase. If you do decide
that, you had better have a good replacement policy or you are
going to have some unhappy customers out there.

NCCOPY works most effectively this way. Your disk contains only
one directory entry. That is a loader program that points to a

track and sector number where the actual program begins. The
loader then loads consecutive sectors into memory until the
program 1s loaded at which time it executes itself. You must do

a little work to accomplish this.

First you take a formatted disk and save your program on it. If
you use the SNOOPER to lock at track 17, sector 3 you will see
the file listed and the granule number where it starts. Let’s
pretend it says granule number 30. That converts to track 15,
sector 1. Let’s also say that the file fills 12 sectors. That
means it resides on track 15, sectors 1 through 12. That’'s 2
granules then, number 30 and 31. Now you write a short loader
program that will load sectors 1 through 12 of track 15 into ram
at the address you specify. You save it on the disk and find
that it resides on track 16, sectors 10-17. That’s one granule,
number 33. You run the loader and it works.

Now, use the SNOOPER again and change all 32 of the bytes of the
directory that show your main program’s name etc. to 3FF. In
other words, erase all trace of 1t from the directory. Write the
new directory, which contains only the loader program’s name back
Lo disk.

Again, with the SNOOPER, load sector 2 of track 17, the file
allocation table. The first 68 bytes are the file allocation
table. Each byte’s value tells the computer if the granule it
represents 1s unused or used. If 1t is unused it contains a SFF.
If it 1s part of a file it points to the next granule of the file

22.

or tells the computer how many sectors in the granule contain
data. Our example would show all $FFs except for granules 30,31
and 33. We know 33 is the loader so we don‘t want to change that
one, we need it.

We can hide our real program and make the disk appear full at the
same time. Why make the disk appear full? That way no one can
write to it and possibly overwrite our hidden file. Also, the
whereabouts of our file become a mystery.

So we do this. Using the SNOOPER’s FILL function, we fill the
first 29 bytes with $20 and the bytes from 34 to 68 with $20.
Using CHANGE, we change byte 32 from $FF to %20 also.

The only one that‘s different is 33, which is data about the
loader program. Our real program has disappeared from the
directory and file allocaticon table, but it’s still there on
track 15. If you type DIR, you see only the name of the loader
program. If you type PRINT FREE (0), you get a no free space
response. Neat, isn’'t it,.

If someone tries to copy the program with the DOS COPY cohmand,
all they get is the loader, no program! The backup command would
copy all of it though. This is where NOCOPY comes in.

Now we load NOCOPY by putting the SUPER DISK in drive zero and
typing [LOADM "NOCOPY" 1. NOCOPY will load and execute. The
screen prompts you to place a formatted disk in drive zero and
press enter. We put our disk in drive zero, press enter, and in
a flash it’s done ready to do another.

{ WARNING: DO NOT USE NOCOPY ON DISKS THAT CONTAIN DATA OR
PROGRAMS ON TRACK ZERO. TRACK ZERO IS DESTROYED BY NOCOPY.)

Now we have a disk that can‘t he copied by the normal BACKUP
command. It will generate an I/0 ERROR message. COPY will only
copy the loader program, not the real program. And, if we were
smart, there is data on a hidden track that a checker routine in
the real program looks for just in case. That’'s four levels of
protection.

For the users sake, such a program should be delivered on a
"flippy"” diskette (one with 2 sides) and the program should be
on both sides. That way, he has two working copies. But they
are on the same diskette. A performance guarantee is in order
also. Something like, free replacement for one year if both sides
fail to work properly and replacement for a small fee after one
year sounds more than reasonable to me.

Press BREAK to exit NOCOPY.

BTN R E NN E IR EAREEEREFETEEERER

23.
ANAIL Y ZE,

Here’s one for your Disk Detective’s Toolkit. While you are
studying copy protection you’ll find this module handy. ANALYZE
will very quickly try to find tracks 0-39 on any disk placed in
drive zero by loocking for sector 1 of each track. What we are
really looking for are tracks formatted in a non-standard way.

In the world of copy protection, it‘s what you can’'t see not what
you can.

To run this module, place the SUPER DISK in drive zero and type [
LOADM "ANALYZE" ENTER 1. ANALYZE will load and sxecute. You
will be prompted to place the disk to analyze in drive zero and
press enter.

After you press enter, the module will attempt to read sector 1
of each track from 0 to 39. If the sector is found, the message
TRACK x FOUND appears. If it cannot be found, the message
TRACK x NOT FOUND appears.

This 1s a simple wodule that produces very basic information.
But what it does is produce it very fast. Imagine how long it
would take you to do the same thing 40 times,.

What can you do with this information? Tracks that are found in
the range of 0 to 34 are probably adhering to the standard DOS
format. Tracks in that range that are not found are very
suspect. Tracks in the 35-39 range that are found need to be

examined. Likewise, tracks in that range that are not found need
to be looked for with READTRAK. Very few copy protected programs
have only 35 tracks. You can be assured that there is at least

one extra track there.

What ANALYZE does is tell you where to look for secret data by
pointing out what is accessible by the normal operating system.
You should use it before you use READTRAK or the SNOOPER. It
will save you a lot of time.

After you run ANALYZE the first time and get it’s report, you can
analyze another disk or quit, To analyze another disk, press the
{A) key at the prompt. To quit and return to disk basic, press
the (Q) key at the prompt. You can also exit the module by
pressing the (BREAK) key.

24.

PASIC PROTECTION

If you write most of your software in BASIC you might think that
copy protection cannot be used. Not so. All of the techniques
used by ML programmers can be used with BASIC. All you need to
do i5 make you program secure and generally inaccessible.

Before any copy protection is added though, the BASIC program
must be error free. Any error that causes the computer to stop
executing program instructions and display an error message will
make the code accessible. Your code must be error free.

Here are the steps necessary to create a well protected BASIC
program on disk;

1. Confirm that the program is error free.

2. Use FORMAT and DSKIMODI (see separate instructions) to
create a specially formatted disk. For our example ilet’s say we
make a disk with 386 tracks. On track 35, in a sector we’'ve
numbered 30, all 256 bytes in the data field contain the number
1.

3. Add the checker routine to the basic program. Below is a
checker routine in BASIC that will look for track 35 {(tracks are
numbered 0-39, so track 3% is actually the 36th track). 1If there
is no track 35 (a disk formatted with the DSKINI command will NOT
have track 35) the checker will not run the program. If track 35
is found, the checker will attempt to load sector 30 (DSKINI
formatted disks will only have sector numbers 1-18). If sector
30 is not found, the checker will not run the program. Finally,
if sector 30 is loaded, the checker will add the values of all of
the bytes in the sector and compare the result to the number 256.
({ on a disk formatted by DSKINI, the total would be 65280)} The
correct number should be 256, since we formatted the disk sector
with all 1s. 2586 x 1=256. 1If the total is anything other than
256, the checker will again refuse to run the program.

This gives us 3 levels of protectior. The checker must find track
35, sector 30, and the total of the »yte values in that sector
must equal 256. iIf the disk in the drive fails any one of these
tests here’s what will happen. The checker will display a
message that says "THIS 1S A BACKUP. OSE IT TO RESTORE THE
ORIGINAL IF NECESSARY. PRESS ANY KEY." When the user presses a
key, the system will do a cold start.

4. Before the checker routine 1s added to the program though, a
coulpe of other safegquards need to be inserted. The BREAK Key
must not be allowed to stop execution of the program.
Fortunately, in the COCO 3 this 1s easy. Just include at Lhe
beginning of the program an ON BREAK GOTO statement. (See your
BASIC programming manual 1f you are not familiar with this
command. You could have the destination of this command do a
cold start.

B N E T TR URR I .

NN BN BN NN ENERENENENFNFEEREERER

25,

The RESET button must not do a warm start. If the user presses
the reset button during execution, normally a warm start is
executed and the user ends up in direct mode with the program
still in memory and intact. [f you POKE $71,0 in the beginning
of the program, pressing the reset button will forge a cold start
and the program cannat be listed.

These are not the only methods you can use. The BREAK key can be
made not to function at all. The RESET button can also be
disabled. Commands like LIST can be made not to function too.
Do whatever you like. The point is, you don’'t want the user to
be able to BREAK out of the program and list the code and remove
the checker routine.

THE CHECKER ROUTINE

0100 POKE &HEA,02 : this is the read sector op code

0110 POKE &HEB, 00 : select drive zero .
disk to check must be in drive 0
0120 POKE &HEC, 3% : select track #35
0130 POKE &HED, 30 : select sector #30
0140 POKE &HEE, 8HDF : sector will be loaded into memory
0150 POKE &HEF, &HOOD : in the area occcupied by the DOS cmd
0160 EXEC &HD7SF : go read in the sector (DOS 1.1»
:+ DOS 1.0 is EXEC &HDG6C
0170 X=PEEK(&HFO0) : get the DSKCON status flag
0180 IF X<>0 THEN 500 : track or sector not found if $FO0O is
: not equal to zero
0190 Y=0 . : clear Y
0200 FOR L=0 TO 255 : loop 256 times
0210 X=PEEK(SHDFOO+L) : get value at SDF00 + counter
0220 Y=Y+X : add 1t to Y
0230 NEXT L : get the next byte

0240 IF Y<>256 THEN 500: if total i1isn’'t 256 go to message
((¢ 1line 250 is the beginning of the regular program. }))

0500 WIDTH 32:CLS : goto text screen & clear 1t
510 PRINT "THIS IS A BACKUP"

0520 PRINT "USE IT TO RESTORE ORIGINAL"

0530 PRINT "IF NECESSARY."

0540 PRINT "PRESS ANY KEY."

0560 KS=INKEYS$:IF Ks$="" THEN 5€0 : wait for key press
0570 PCKE &H71,0 : set flag for cold start
0580 EXEC &HBCI1B : do a reset (cold start)

You may want to type this program in and save it on a disk
formatted by DSKINI. Then run it. You should get the messag®
after the checker can’t find track 35 because 3F0 will contain an
error code, not zero. Then, just to be sure it really works,
format a disk with FORMAT and DSKIMOD! and save this program on
1t. Run it again and verify that it works.

Once you become proficient with these tools you can design your
own format and modify the checker to suit it. Protect your work.

26.

5. Now we’'re ready to use BASSAVE/BIN. Load your BASIC program,
compiete with all protection in place. That includes the checker
routine, break key and reset routines. Now put the SUPER DISK in
drive zero and type [LOADM "BASSAVE" 1. The routine will be
ioaded at $DF00, well out of the way of the memory where your
basic program resides.

Remove the SUPER DISK and put your specially formatted disk in
drive zero. Type [EXEC 1. BASSAVE will save the basic program
to the disk in drive zero and name it BASXXOOIX/BIN.

You must now determine the start and end addresses of the basic
program. To find the start address, type;

[PRINT HEXS (PEEK(3H19)) ;HEX$ (PEEX(&H1A))]

Write down the 4 characters returned by this peek. This is the
start address in hexadecimal. .

To get the end address, type;
{ PRINT HEXS$(PEEK(3H1B)) ;HEXS$ (PEEK(&H1C>) 1

Write these 4 hex characters down too. This is the end address
of the basic program +1.

6. Now decide on a name to call this binary file. This file is

the basic program saved as a binary file. Whatever you decide to
call it just be sure the name has eight characters (some of them
can be spaces. The extension must be BIN. For our example,

let’s call it MYPROGRA/BIN.
Type [RENAME "BASXXXXX/BIN" TO “MYPROGRA/BIN" 1 and press ENTER.

7. Clear memory and put the SUPER DISK back in drive zero. Type
L LOADM "BASRUN" 1 and press ENTER. BASRUN will load. We can
now modify it te load and run our basic program that we just
saved as a ML file. Put the protected disk with MYPROGRA/BIN on
it back i1n drive zero.

To get BASRUN ready to use we need to tell it the name of the

program to load and where to put it. First lets put the name in
place. To do this we need to poke the 8 characters of the name
into the proper location in BASRUN. The BIN extension is there.

We must poke the value of each letter of the name into memory
starting at $DF29. MYPROGRA translates to;

77,89,560,82,79,71,82,65
You can use the utility called ASCCODE/BAS on the SUPER DISK to
get these values if you like. Just load ASCCODE/BAS and change
the letters in line 60 to the name you selected for your program

and make a note of them on paper.

To poke these values in place type in and run this short progranm.

RS FE S EEEAEEEEEEEEREERER

27.
0010 FOR L=8HDF29 TO &HDF33 : locations to poke
0020 READ A : get a value
0030 POKE L,A) : put it in BASRUN
0040 NEXT L . : get the next value

0050 END : all done
0060 DATA 77,89,80,82,79,71,82,65 : values to poke in

Next, get the start and end addresses you wrote down sarlier.
These must be poked in also.

Poke the start address in at $DF1D and 3DF1E. For example, if the
numbers we have are &H2601,

type [POKE &HDF1D,38HZ26:POKE EZHDF1E,8HOG1] and press ENTER

The end address we got goes at $DF22 and $DF23. 1If the end
address was 8H29E7;

type [POKE 8HDF22,8H29:POKE &HDF23,8HE7 1 and press ENTER

Now we’'re ready to save the loader to our game disk. With the
disk containing the game program in drive zero, decide on a name
for the loader (let’s use GO/BIN) and type;

SAVEM "“GO/BIN", &HDFOO0,&8HDF23,&HDF00

This puts the loader on the disk with the program it is to load
and RUN.

To verify that all is done correctly, clear memory. Type DIR.
You should see MYPROGRA/BIN and GO/BIN listed.

Type LOADM "GO" and press ENTER. Type EXEC after the drive
stops. The loader (GO/BIN) should load the program called
MYPROGRA/BIN and run it.

Check to see if what you wanted to happen happens when you press
the BREAK key and RESET button, If it does, you should have a
well protected BASIC program. If not, go back and check your
work. If the loader fails to load the program, recheck your work
on BASRUN/BIN. 1f the loader loads and runs the game program but
you get the protection message, check your work on the checker
routine and the format of the disk.

If vou did each step carefully and verified that it functioned

properly after you did it, you should have no problems.

The source code for BASSAVE/BIN and BASLOAD/BIN are listed in
APPENDIX A at the end of this manual.

28.
FORMAT AND DSKIMODIX

These two programs are the heart of the copy protection system of
the SUPER DISK. With them, you can create unlimited disk
formats. As you experiment with them you will be able to devise
your own unique protection schemes.

FORMAT

FORMAT is a basic program that modifies the disk formatting
routine in RSDOS. You can format any number of tracks with 18
sectors each. To run this program, put the SUPER DISK in drive
zero and type [RUN "FORMAT” 1 and press enter. The title screen
will appear and you will be asked how many tracks you want to
format. To simplify your getting acquainted with this module,
we’'ll format a disk for use with the BASSAVE and BASRUN modules
example. That 1s, we’'ll make a diskette that has 36 tracks. One
of the sectors on track 36 will be numbered 30 and the data field
will contain all ones. That way it will work with the checker
routine 1n that example too.

The easiest way to have multiple formats on one disk is to format
the same disk twice. We'll format it once with 36 tracks and
then again with 35 tracks. The second format will be a standard
RSDOS format and will not overwrite track 36 from the first
format. Here we go.

Press the BREAK key so we can change the fill character for the
data field from $FF (which RSDOS uses) to $01 which we want. The
byte which contains the fill character is located at 3$DSE7 in DOS
1.1 or at $D5FA in DOS 1.0. Enter the appropriate poke for your
DOS. We‘re using 1.1 below;

POKE &HDGE7 ,8HO01 and press ENTER

Now type RUN and press ENTER. At the number of tracks prompt,
type 36 and press ENTER. The program will end. Read the on
screen message.

DSKIMODI

Put the SUPER DISK back in drive zero if you removed 1t and type
LOADM "“DSKIMODI" and press ENTER

DSKIMODI will load but not execute. The assembly source code

listing for this module can be found in APPENDIX A. We need to

change one of the sector numbers to 30. Type the following line.

POKE 3HD921,30 and press ENTER

That will change the sector numbered 20 ($14) to 30. Now type [
EXEC 1 and press ENTER. That will make all the changes to the
format routine.

Remove the SUPER DISK and place a new unformatted disk in drive

M B EEREEEEIRE E R E A T T YT N TNy ss

o I N BN B E R B BBR B BB B J I8 N

29,

zero and type DSKINIO and press ENTER. The diskK will be
formatted with 36 tracks and the sector numbers shown in the
DSKIMODI except for the one we just changed.

After the disk is formatted, do a cold start and type DSKINIO and
press ENTER. This will format the tracks numbered 0-34 in the
normal fashion. Track 35 will still be as we formatted it the
first time. if you want to confirm this, you can use READTRAK
and/or THE SNOOPER to examine the disk.

This disk is now ready to use with the example in BASSAVE and
BASLOAD.

If you use your imagination, you will be able to come up with
some pretty strange formats. Assembly language programmers can
easily modify DSKIMODI to suit their needs.

Once you decide on a format you are comfortable with, we <uggest
you modify DSKIMODI and save it under another name so you don’t
have to repeat all the steps above every time you want to format
a disk. Also you might consider modifying FORMAT to suiit your
needs and have it load and execute your modified version of
DSKIMODI and then execute a DSKINIO command. This will make mass
producing protected diskettes very simple and painless.

[t may take you some time to get comfortable with this process.
But once you do, you’ll feel a lot more secure about how many
pirated copies of your software are being passed around.

30.

DOSVARIA
DOSVARIA is included on the SUPER DISK as an educational tool.
With it you can examine most of the wvariables used by the system
that are related to disk input/output.
To run this module, just type [LOADM "DOSVARIA" 1 and press
ENTER. .
On the main screen is the menu. Press the number for the menu
item you want. Each is explained briefly below. :
|

1. 1/0 BUFFER #0 This 1s the primary buffer used in all disk
1/0. As the data is read from or written to the disk it
passes through this buffer for commands such as DIR. It is
256 bytes in size. If you choose it you will see the
current contents of the buffer displayed.

2. 1/0 BUFFER #1 This buffer, which begins at $700 :s also 256
bytes and is used by the system for such operations as
comparing data when the VERIFY flag is set. Also, the first
18 bytes of this buffer contain the logical sector numbers
to be used when a disk is formatted. Take a look at the
DSKIMODI source listing in appendix A. Note how the sector
numbers are placed in this buffer.

3. FILE ALLOCATION TABLES Items 3 through 6 will allow you to
examine the 4 FAT tables stored in RAM. These are first
read in when a drive 1s accessed and allow for faster disk
1/0. The first table shows the FAT table for drive 0. Note
that it shows exactly the same data in the table stored in
sector 2 of the disk in drive 0. The same applies to drives
1-3.

7. DISK VARIABLES This selection will show you many of the ram
variables used by the disk system, it’s location in ram and
a brief explanation as well as it’s current value. ;

8. DFLBUF This area of ram is another 256 byte buffer that’
contains data for disk I/0 operations. For example, when a
track i1s formatted in ram ready to write to disk by the
DSKINI routine in DOS, the track is written here byte by
byte. It is then copied to the disk.

Q. I1/0 AREA All of the variables shown here are used whenever
any disk I1/0 operations are conducted DOS.

00. QUIT Enter 00 and press enter to return to DISK BASIC.

If you are not very familiar with disk I1/0 operations, we hope
this module will be useful for you. by studying the information
presented in it, you will become familiar with the variables used
in I1/0 and the buffers. This 1s not meant to be a complete
tutorial on disk operations. As suggested earlier, several
publications are available from other sources that will be
especially valuable to the novice.

I A AR I A m I ' B A OB m E -

Y AN N

31.

MAKETRAK

MAKETRAK is a basic program that allows you to easily experiment
with designing disk track formats. This module asks you to enter
values for ALL of the variables used to construct a track Lo be
used to format a disk using DOS’s DSKINI command. ALL except the
track numbers, side and sector numbers. These will remain tracks
0-34, side 0 and sectors 1-18. (Use FORMAT and DSKIMODI to
experiment with these wvariables.) The main idea here is to allow
you to see just what can and can’t be changed.

Use this module to format disks any way you want. Then see if
the system will recognize the format. Always do a cold start
after you use this module because it modifies the system.

Why do this? If you are trying to design a disk format for copy
protection purposes, you'll want to have two features for sure.

First you want your format to be accepted by the normal operating
system. It must be able to read the disk and at least retrieve
data from it if not write to it, It has to be able to find and
get information from the disk.

Second, you need a format that the normal DOS cannot duplicate.
You need to have something there for the checker routine you
write to look for that isn‘t found on disks formatted by DSKINI.

After you enter the requested information, the program will end.
Then, place a disk to format (don‘t use a disk with any programs
on it you don‘'t want to loose) in drive 0. Type [DSKINIO] and
press ENTER. The modified DSKINI routine will try to format the
disk as you have suggested. Sometimes it will. Sometimes you
will get an error message. An error message means that something
you changed was not acceptable.

If you’ve never modified a format before we suggest that you. make
only one change at a time. That way, if you get an error you’'ll
know exactly what caused it. It is also a good idea to review
the section on floppy disk formats in this manual.

As stated before, not all copy protection routines rely on the
addition of extra tracks. Sometimes the protection consists
entirely of a small modification to the data between the sectors
of what appears Lo be an ordinary 35 track diskette. This module
will make it easy for you to design a similar system. Have fun.

i

i pm pm-

bt
pr 2 Al

32.
COPYPLUS

COPYPLUS is a combination format and copy utility. This module
requires 2 drives to use. With it you can format and backup a
disk in one step. This module will copy disks with up to 40
tracks and 18 sectors per track automatically. You do not need
to know how many tracks the disk has on it.

To use this module, put the SUPER DISK in drive 0 and type [
LOADM “"COPYPLUS"” 1 and press ENTER. The module will load and
execute., Remove the SUPER DISK and place the disk you want to
copy in drive 0 and a new unformatted disk in drive 1. When
ready press ENTER.

The module will format the disk in drive 1 and then alternately
read and write all of the sectors of each track. If an error is
encountered either reading or writing the process will end.

This module 1s not designed %o duplicate copy protected disks.
If a track number larger than 39 or a sector number larger than
18 1is encountered, the copy process is ended. It s purpose is to
make creating copies a lot easier than the normal format and
backup routine supplied with RSDOS.

FASTFORM

FASTFORM is another utility to make your life a little easier.
This module will format diskettes with 35 tracks and 18 sectors
per track at the press of a key. Insert the SUPER DISK in

drive 0 and type [LOADM "FASTFORM" 1 and press ENTER. After

the module loads, remove the SUPER DISK and place the disk you
want to format in a drive. Type [EXEC 1 and press ENTER. Press
the number of the drive you wish to format. The message * #%%x%x
FORMATTING *#x%%" will! appear and the disk will be formatted. On
completion of the formatting process, the formatting message will
disappear and a tone will sound. You can then format another
dusk in either drive. You can format as many disks as you like
with just a single key press.

To exit the module, press the BREAK key. You will be returned to
DISK BASIC.

DISKCOPTY

This module is to be used along with FASTFORM. It will BACKUP a
disk 1n one drive to a FORMATTED disk in another drive. 1f you
have to make several copies of a disk, use FASTFORM to quickly
format the new diskettes. Then, use DISKCOPY Yo <asily backup as
many copies as5 you like with just a few kKey presses.

To use DISKCOPY, place the SUPER DISK in drive zero and type [
LOADM "DISKCOPY” 1 and press ENTER. The module will load and
execute. Answer the prompts for the drives Lo copy from and to
AFTER you have the disks in the draives.

To exit the module, just answer NO to the copy again juery.

L I W N OB W uE N N %

APPENDI>X A

. _
B e B 3N 23S EEE R EEEEEEEEEE N

——— PAGE 201 BASSAVE/PIN

E

20013 NAM BASSAVE/RIN
2022 #* purppse! save a RPASIC program as a
QPR30 * ML file sa it can be RUN
BRB4G * by executing BASRUN,
00506 R LT R . = LR S R T
Q@60 DFOL ORG +DFRO
Q273 *¥%%%¥ put name in buffer #%¥ExEx
20080 DFA@ =1 80 AA1E START LEAY PRONAM,PCR name buffer
2B290 DFR4 BE @94cC LDXx #E@QF4C file name buffer start
22180 DFR@7 SF CLRPR clear counter
A1 DFO8 as AR LoopP LD4 s Y+ get a character
QA1ZB DFBA A7 80 STA y X+ put it in hbuffer
BR138 DFAC =C : INCE add | to counter
@14 DFRD C1 aB CMPE #4$BB is it 117
AR1IS@ DFQF =27 Bz PEQ MEXT uegy gota NEXT
ARLLED TF11 Z0 =5 ' R4 _o0p no, keen going
aa1Lva #*%xx% =Z=t start/eng addr *E#xx
Q18 °DF13Z DC 19 NEXT LDD 0012 start addr location
AR178 DF1S 24 o} PSHS D save 1t on the stack
Q@ DFL7 DC 1B ..DD +2@12 get the end addr
AR21@ DF19 34 raf.} PSHS D save 1t tnoo
PpRzz®@ DF13 DC 19 LDD 30019 trans addr (start)
PR30 DFLD 34 Qas PSHS D save 1t on the stack
BAZ4Q REREF QO SAVE Fillo FEFEEEEREEENE
PBz5d DFIF TE CF7E JMP $CF7E da a savem
v gy *REE® NAMS DUF TSR FXEFXNEFREFXRN
QAZTA DFZD 42 PRONAM FCC /BASXXXXXBEIN/

DFZ3 41

DFZ4 53

DFZ5 3

DFz4 53

DFZT7 58

DFZ8 =3

DFZe =8

DFE2A 42

DFZD 49

DFZC 4E
aooen L T T R T T XYy I YY)
tadrs oy DFQ@Q END START

TOTAL ERRORS 200008

GEr-EE WE JER T SN BN &5 AR E T T A NN TS TR TR e

22012
ralra] Fa i
200830
@43
2ees50
@oasd
2R070
nlntulain]
zaleiedr
201020
o110
QB120
20121
2@148
1517 bRt
20158
20170
201882
2173
ralvapealra
a0z10
202:0
2R:22@
ARz4@
BRZ5@
POzHA
20272
A2
rajr et
203220

2R31iQ
203°Q2

PAGE

DF 2@

DF OO
DFQ4
DFD7
DFO3
DFOA
TFRC
DF@D
DFRF
DF11

DFL3
DF1és

DF19

DF1IC
DFE1F
DFZ1
DFZ4

DF 264

DFze
BFZA
DFZE
DFZC
DFZzY
DFZE
DFzF
DF3@
DF31
DF3Z
DF33

@1 BASRUN/EIN

31
8E
SF
AL

-y
£

5C
Gl

T
aa

CC
FD

PD

cc
DD
CC
oD

oL e e -4
WOWLE~=ty M

S
r

Ti
-4 U0

4g
4z

OFo@

gDh 0@:5
A?4C

AD
=1%]

ar
az
F3

aacs
n937
CFCS

2601
1%
29E7
1B

AETS

TOTAaL ZRRIRS 22000

% purpose:

*
*

L2 2
START

LOOP

E L & E %
DONE

bt Sk 3 3

R &%

I W A A

~

NAM

PASRUN/EIN

load and run a BASIC program

that was saved to appear to
be a ML program.
L YT T R S E T L L R

ORG

sDF 20

put name in buffer ¥%%xxrs
FPRONAMy PCR name huffer
file mname buffer start

clear counter
get a character
put it in buffer
add 1 to counter
15 it 117

yes, goto DONE
nos =E@ep gaing

file tupe +~ *%XX*X

file type =ml

90 load file *¥%EEEEAXE‘ENE

do & loadm

set start/end addr *¥%%xxx

insert start addr
textab
program end +1

1 h 96 2 3 3 3 3K X %

—EAY

LDX #$94C
CLRE

LDA y Y+
STA ,X+
INCE

CHMFE H%@P
PELC DONE
RRA LOOP
define

LDD #Oz22@
STD 3957
JER SCFCS
L.DD 72T
STD 33017
LDD #1Q727
STD $Q01B
g3 run

JHMP $AETS

run command

EREX®E Name huffopr HEEREELFEXXE¥

PRONAM FCC

/BABXXAXXRBIN/

e LSS LS S LS R L LS B a bR L L L 2 L

END

START

here

a1
2B0:a
2230
aea4@
Bad59
aasl
oea7e
faeasi
22270
0120
20110
221:2
21320
Qa1 48
22150
2149
BR170
BB180
20197
20:09
2a:z21a
afri v
=30
PRz40
PAZ5G
Qozs@d

o7

P@ze
nlnh

TOaTAL

PAGE

1202
1eea
1082
1005
1ees
126E
186t
1911
1014

beaa
D7er
0?04
DS
D09
DY@k
D@D
DPRE
D?10@

D711
oLz
DF13
D914
DFLs
DF14
DP17
DF13
D917
DF1A
DZLP
bDY1C
091D
DF1E
DF1F
DRI
nez1
nezz

201 DSKIMODI/RBIN

=13
B7
cC
FD
G
FD
FD
39

31
-]
B8E
Ab
AT
S5A
26
3%

5@
=17
8
B0
86
8@
=1
=10)
20
80
80
86
20
80
=)
8@
14
21
19063

2D

DSCE
D720
DSCF
1212
D5D1
D5D3

8D @a@eb
12

2780

AD

8@

Fo

ZRRORS 220D

NAM DSKIMODI/EBIN
¥ purpose! change the logical sector #'°g

* used by RSDOS DSKINI routine
* from 1—-18 to user’s choice
Y Y LR e L L LT T R R R UREIE TS
ORGQ 31000
START LDA #%ED Jsr aop code
STh $D5CE insert in DSKI routine
LDD #$D700@ address to branch to
STD $D5CF insert it
LDD BEl1Z1= * two nops
STD $DSD1 * insert 2
STD $D5D3 ¥ and = morse
RTS go back tao BASIC
#%%%% routine to insert sector #'= *xxx
ORG £DPAG
LEAY SECZ,PCR
LLDE #18

LDX #4700@
LOOP LDA + Y+

STA y K+
DECE
BNE LOoP
RTS

*x%%#% data used for sector #7355 *EEE¥Fex

SECS FCR $80, $80, :80. 580, 380, 80, :80, $80

FCE 80, $80, $8@, 3838, $80, $80, 80, 50

FCP $14,381

END ZTART

