0S9 - System Utilities
S-Screen Control
M-Menuing system

P-Point and Shoot File Selection

(c) 1987 r3 Systems
4072 E. 22nd St.
Suite 178
Tucson, Arizona 85711
1 (602) 745-2327

Mo Menuing system

Commands update. September 2. 1989

This file contains an update to the printed documentation.
M rev 11 1234 byvtes

New control line ‘\x disables the x exit key. When this line is
prasent 1n a menu file the menu cannot be exited.

Whern M 1s run from a startup file starting m the ex command
wilill reduce the memory overhead by 8k be sure to redirect both
input and output when runing m from a script file. i.e.

@y m<>>>/1 not ma/l this needs to be done because m modifies the
wilndow descriptor.

M edition history:
K S K 5 K oK K R K5 KK KK K K K K K KK K K KK K K K KOK TKK K KKK K KR 3K K KK 33K KK KK K K R OK K K K KK K K

august 24, 1989 version 1.0 (10 by ident) first commercial
relesase.

august 28, 1989 varsion 1.0 bug fixed in highly commented menus.
September 2, 1989 version 1.1 break bug in parameter passing fixed

W exit override control line added.
KA K KR KKK K F VOROK K K R KK 3Kk K K K K K K R CROROK KR OR K K 3K kK KK ROK oK Sk K KK KK S KRR K K R K KK oK

M - R-MENU SYSTEM
by Rick R. Roth

(c) 1989 13 Systems
4072 E. 22nd St.
Suite 178
Tucson, Arizona 85711
1 (602) 745-2327

PLEASE READ THIS

The author has taken due care in preparing this documentation,
programs and data on the electronic media accompanying this
documentation including research, development and testing to
ascertain their effectiveness.

The author makes no expressed or implied warranty of any kind
with regard to these programs nor the supplemental documentat-
ion. In no event shall the author be liable for incidental or conse-
quential damages in connection with or arising out of the furnish-
ing, performance or use of this program.

License Statement

13 Systems M - Menu System, in all machine readable formats,
and the documentation, both printed and on disk, accompanying
them are copyrighted. The purchase of 13 Systems M - Menu
System conveys to the purchaser a license to use 13 Systems M -
Menu System for his/her own use, and not for sale or free distribu-
tion to others. No other license, expressed or implied is granted.

M and R-Menu copyright (¢) 1989 by r3 Systems.
0S89 and Basic()9 are trademarks of Microware and Motorola.

Shell+ copyright (c) 1988 Ron Lammardo

XED by Eric Dokken copyright (c) 1984
Microtech Consultants inc.

M - R-MENU SYSTEM

INTRODUCTION

M is a small machine language version of R-Menu a menu system
written for Unix based systems in C. M is designed to merge in
with shell and become a memory resident menuing system. M was
purposely written in machine language rather than C to enable its
use on floppy based systems as well as systems equipped with hard
drives. (The Unix version written in C using the curses windowing
package compiles to a little over 50k this version written for OS9
Level 2 running on the color computer is 1218 bytes long!)

The actual menus used by M are ASCII files created by your
favorite word processor.

The format for the menu files are quite simple and the actual
syntax is identical to your standard command line. The command
line syntax requires that some lines end with a space followed by
carriage retumn. (You must be sure that your editor will allow you
to do this. Edit will, others will not.)

M
Syntax: M [menu filename]

Function: A quick and easy to use memory resident menu system,
M (or R-Menu) displays a menu centered on the screen in an
overlay window. Displaying the menu in an overlay window
means that the screen is preserved as it appeared when M was
called, this can be changed from within the menu to clear the
screen before the menu is displayed. The menu size is dependent
on the size of the menu file called and the number of items
displayed. There is no waste space nor are empty selections

displayed.

M defaults to a black border, a blue background, white foreground,
and the current menu selection highlighted in red. The current
selection is also pointed to by an arrow -=> on the left margin.
The copyright appears on the top border and an instruction line
Press S to call Shell, Press X to Exit” appears of the bottom border
in letters in the foreground color. These defaults can be changed
from within the menu.

The menu is centered horizontally and vertically on a 80 column
screen and centered vertically on a 40 column screen. M checks
the size of the screen before displaying the menu and adjusts the
size and position accordingly. This means that a program called
by M can change the screen size without harming the menu display
upon return to the menu.

M allows you to pass parameters to a menu command line, ie a
filename to an editor or a path to the directory command.

Items are selected from the menu by either moving the arrow to
the selection desired and pressing entered or if keyboard selection
is enabled by pressing the key corresponding to the selection.

Menu File Structure:

A M menu file consists of four types of lines, the required Menu
Title, Selection lines, Command lines, and optional Control lines.

The Menu Title line MUST be the FIRST non control line in a
file, the Title line consists of a maximum of 33 characters ended
with a carriage return. This is the line displayed at the top of your
menu. ie

Rick’s Main Menu<cr>

The next two types of lines MUST appear in pairs, first the Selec-
tion line again 33 characters followed by a <cr>, and then the
Command line that preforms the task described in the Selection
line. The command line can be ANY valid OS9 command line. If
the command line will work from a script file or from the com-
mand line prompt the line will work in R-Menu. The command
line is limited to a maximum of 254 characters ended with a space
and a carriage return <cr>.

ie:

1. Directory of Memory<cr>

mdir <cr>

COMMAND LINE OPTIONS

R-Menu provides 3 command line options to add to the versatility
of the system. The first is the pause command. If the first charac-
ter of a command line is a minus(-) the menu will run the com-
mand and then print the message

Press any key to continue:

at the bottom of the display and then wait for a keystroke before
restoring the menu display. The pause option MUST be the first
character on a command line. To display a directory and then
pause to give you time to read it the command line should be:

-dir <cr>

alternately if you have the public domain pause command the line
could be:

dir;pause Press any key to continue <cr>
etther would give the same result.

The second command line option is the Shell bypass command.
The shell bypass is activated by a plus(+) as the first or second
character in a command line. If the pause command is also used
the bypass command (+) MUST be the second character if the
pause is not used the bypass MUST be the first character.

The shell bypass causes M to fork to the program on the command
line directly, without calling a new version of the shell to interpret
the command line. The built in shell commands, <, >, >>, #, &, ;,
!, and () can not be used in a command line that uses the shell
bypass. For more information on the shell bypass see the HOW M
WORKS section at the end of the documentation.

The following command lines use the bypass in a correct manner.

+m /d1/asm/source/util.m <cr> - calls a new menu.
-+dir <cr> - displays a directory then pauses.
-+list m.doc <cr> - lists a file and then pauses.

The third command line option is the Parameter passing com-
mand. This option is activated by a dollar sign($) in the first,
second, or third character in a line. The parameter command must
come after the pause and bypass commands if they are used but
before the body of the command line. Command lines that take
advantage of the parameter passing abilities are slightly different
from a normal command line. The syntax for such a command
line is:

$ prompt string $command $ [$...}<cr>

The prompt string may be 33 characters long and is displayed in
the border of the parameter window that appears after the menu
disappears but before the command line is executed. This parame-
ter window is also an overlay window and will not effect the
screen below. As M parses the command line the cursor will
return to the parameter window and wait for input every time a $ is
encountered on the command line after the first command. The
information entered in the parameter window is then substituted
for the $ in the command line before it is executed.

The following command line will prompt you to enter two file-
names and then copy from the first file to the second.

$Enter source/destination $copy #40k $ $ <cr>

The parameter passed can be up to 40 characters and can be con-
catenated to allow entry of more then 40 characters ie.

$Enter note$date>+/dd/sys/log;echo $$$$ >+/dd/sys/log <cr>

Will allow you to add a note of up to 160 characters to a file called
log if the sys directory. (The “>+” is a shell+ command and
appends information to the end of a file and it is not available with
the vanilla shell.)

When parameters are passed to a command line the line is ex-
panded in a 500 byte buffer, this limits the number of parameters
passed and the size of the parameters, but since most versions of
shell only allow a 256 byte command line this limitation should
not impose a great hardship.

More than one command line option can be present. 1f more than
one is used the pause must come first followed by the shell bypass
and then the parameter passing option.

The fourth and last type of line in the menu file is the Control
line. There are four types of control lines, all control lines start
with a backslash as the first character of the line. Control lines may
appear anywhere within the file, but should not be below the
twelfth Selection/command line pair in a large menu. ALL control
lines are optional and do not need to be in the file for proper
operation.

The control lines are:

\ - Comment lines. Comment lines begin with a backslash fol-
lowed by a space and end with a carriage return. Comment lines

are ignored by M and are only there your to document your menus.
ie

\ This is a comment line it has no effect on the action of the menu.

\c¢ - Color control lines. The default menu colors can be changed
very easily between menus by use of the color control line. The
format of a color control line is backslash ¢ followed by four
numbers and ending with a carriage retumn. No spaces are allowed
in this line. The four numbers are the foreground, background,
border, and highlight color. The colors are determined by the
pallet selected and the default number/color assignment can be
found on page 3-6 of the OS9 Windowing System Section of the
OS9 Level I manual. The default palette is:

0 White 1 Blue 2 Black 3 Green
4 Red 5 Yellow 6 Magenta 7 Cyan

Using this information the line \c1047 will create a menu with a
blue foreground, a white background, a red border, and the current
menu selection highlighted in cyan letters. Remember the copy-
right message and the exit instructions appear on the top and
bottom borders in the foreground color, if the foreground and
border colors are the same the message will not appear.

\C - Clear Screen Control line. This control line causes the menu
to clear the screen before displaying the menu. The menu appears
in an overlay window in the screen save mode anything that was
on the screen when the menu was called will remain on the screen
and be visible when the menu exits. The \C overrides this.

\s - Keyboard select control line. This final control line enables
the keyboard select option the format for this line is backslash s
followed by the keyboard character used to select each line on the
menu there must be one character in the line for each selection. ie

\s1234 pressing 1 will select the first item, 2 the second, 3 the
third, and 4 the fourth.

\sabcd pressing a will select the first etc.

The only characters to be avoided in the keyboard select line are e
and s which are predefined to call a new shell or exit the menu.
All other keyboard characters can be used. The characters defined
in the keyboard select line, s and x, the up and down arrows, and
the carriage return are the only keys the program recognizes all
other keys including the break key and control ¢ sounds a beep,
and the highlighted selection blinks. The keyboard select line is
optional, if not included in the file the only way to select an item
on the menu is with the arrow keys.

INCLUDED ON THIS DISK IN A DIRECTORY NAMED
DEMOS ARE SEVERAL SAMPLE MENUS AND A WORKING
DEMONSTRATION. To view a demonstration of M place the
distribution disk in drive 1, c¢d /d1, and type start<cr>.

HOW M WORKS

When M is called the program checks the command line for a
filename, if no name is present M loads a file named MENU.m
from the current directory, if a name or path/name is present this
file is read and loaded. This file contains a Menu Title and several
Selection/Command line pairs. The pairs are loaded into a buffer
and indexed by pointers, when a command is selected the next
pointer points to the command line to be processed. Command
lines are normally processed by the OS9 command line processor,
named SHELL.

Shell normally resides in memory and is not thought of as a pro-
gram, but it is much as M is. During normal operation M calls
another incamation of shell and passes your command line to it to
interpret. This is the same thing that happens when you run a
procedure file. Running a command line in this way lets you
process a command line that contains multiple statements as well
as ifo redirection, concurrent execution (&), and memory alloca-
tion (#40k). This works well but the extra incamation of shell
requires another 8K of data space as well as needing to map shell
into the work space. This gives you an effective work area of 48k.

M has a VERY simple command line interpreter built into it that
will allow you to process a single program and its parameters
without the overhead of calling another incamation of shell. M
will not interpret any of the built in shell commands, these must be
avoided when using the shell bypass option.This will save you the
8k data area reserved for the extra shell, and avoid mapping shell
into your work area. This gives you a full 64k to run your pro-
gram! You can observe this using pmap from another window.
The shell bypass should make M a viable altemative even on a
128k machine.

M was written on a 512k Radio Shack computer with a Diskmaster
disk drive. The assembly code was written with the XED editor
from Microtech consultants, and compiled with the level 1 assem-
bler ASM. The level 2 debug utility from the developers toolkit
was used extensively.

