(

HID ’N RQH 11
(C) 1984 By Mark Rothstein
And Federal H111 Software
Distributed. By Federal Hill Software
825 William St.
. Baltimore, (Md. 21230

HID N RAM II is a programming utility for the 64K Color
Computer whxch enables you, for.the First time, to access the
entire 64K Df,RAM from a single BASIC program. Unlike some
utilities which "flip" from one page of RAM to another, HID °N
RAM II1 acually opens a window between the pages, allowing 'vou to
store your data in the 'hidden” 32K page of RAM and access it
directly from a BASIC program. This means you can write a 27K
tdata handling program and still have more than 30K left for the
names, addresses or numbers you’re crunching. Better yet, HID °N
RAM is the only 44K progamming ut111ty with a built-in machine
language sorting routine.

N

_ WHY DO YOU NEED HID °N RAM? .

% -

H A s
As you. probably know, the Microsoft BASIC in the Color
Computer was designed to access only 32K of RAM. This is a.)’
hangover from the computer®s early days, when memcry was very
expensive. To produce a 32K machiine, Radio Shack originally
piggybacked 16K chips. Later it bought' "half—goad" 64K chips
from Motorola and used only one 32K page of RAM. Many of those
chip¢ were, in fact, perfectly good, and hackers scon realized
that with a few hardware modifications, they could access the
entire 64K with a machine language program. Others upgraded from
16K or replaced their half-good 464K chips with good ones.<

By 1982, Radio Shack itself was using full guality chips
and in the summer of that year, it began advertising the Color
Computer as a "&4K™ machine. This was samething 1less than full
disclosure, however, because the Shack never changed the BASIC
interpreter to allow it to access the newly—available memory.

We developed HID °’N RAM because we felt gypped by having a
64K machine that was no better than the old 32K mocdel as far as
BASIC programming was concerned. After a lot of experimentation,
we came up with a 647-byte machine language driver that we
embedded in a BASIC demonstration program. The machine language
sits at the top of BASIC. When you edit, CSAVE or SAVE the
program, the machine language driver stays with it. When you see
how it works, you can delete our BASIC code and write your own,
using the techniques you’ve learned.

The machine language consists of six different subroutines,
each defined in a USR call. A USR call is a way of accessing a
machine language subroutine from BASIC. It consists of a

definition, which establishes the address of the subroutine, and
a statement that actually tells the computer to execute the
machine language it finds there. As an example, the statement
DEFUSR1=25%44 tells BASIC that machine lanquage subroutine No. 1
is found at memory locationn 25944. This type of statement is
usually found at the beginning of a program. To exeute it, you
use a statement that looks something like C$=USR1(B%$). This not
only tells the computer to execute the machine language; it also
passes a variable from BASIC, in this case Bs, for the machine
language to work on.

The machine language subroutines in HID ’N RAM work with
strings of data that you have defined in your BASIC program. The
only limitation is that your data must be in strings of equal
length., and the length must be a power of 2. That means they
must be exactly 4, 8B, 146, 32, 64 or 128 bytes long. We’ll show
vou how to do this.

Subroutine No. 1 stores the data in HID >N RAM, which we’ll
call HDR for short. Subroutine No. 2 retrieves the data.
Subroutine No. 3 will copy any portion of HDR to any location in
normal RAM (be careful with this one!). Subroutine No. 4 sorts
the data stored in HDR in ascending order by any substring,
while Subroutine No. 3 sorts in descending order. Subroutine No.
6 serves two purposes. It defines the sort substring and he
length of the strings you’re storing.

The HID N RAM PROGRAM

The HID "N RAM program really consists of two programs. The
first is an elementary demonstration of how HDR stores,
retrieves and sorits data. The second is a mailing list which
will store 450 names in HDPR, print one—across labels or a
formatted full-page listing, search by name, state or zipcode
and sort by name, state or zipcode. The program listing at the
back of these instructions is fully commented, and we’ll explain
it section by section as we go along. When you run HDR, you’ll
get a menu asking which program you want.

LOADING AND SAVING HID >N RAM

To load HID N RAM from tape, put your cassette in the
recorder., press the PLAY button, and ENTER a CLOAD "HDR"
command. When the program has loaded and you get the OK prompt,
enter a RUN command. There are two copies-on your cassette.

To load HDR from disk, just enter a RUN "HDR" command.
There-is a backup copy on your disk with the filename
"HDRBKUP/BAS".

We suggest that you immediately make a backup copy of your
HID >N RAM tape or disk and use it for your day-to-day
programming. Put the orriginal away for safekeeping. You can
save HID >N RAM with normal CSAVE and SAVE commands. Be sure you

$

P

make a normal binary save and not an ASCII save. Saving the
program in ASCII will wipe out the machine language. Likewise,
you can’t use the MERGE command on disk with an HDR program for
the same reason——the machine language will be overwritten. You
can, however, save the tape version on disk and he disk version
on tape. They are identical.

A Few (Hundred) Words About Strings

If you are familiar with Extended Basic’s powerful string
handling routines and how they can be used to store both text
and numbers, you can skip this section and go on to the program
itself. Otherwise, please take the time to read this short
course in string programming.

As you probably know, the Color Computer handles two types
of variables, numeric and string. In data handling programs,
these are generally in subscripted arrays defined in DIM
statements at the beginning of a program, such as A{10) or
B$(15). A numeric variable can only store numbers, while a
string variable can store numbers, text or a combination of the
two.

Because BASIC requires a minimum of five bytes just to
point to the location of every variable, it is much more
efficient to pack data into strings. As an example, suppose a
record in your data file consists of five numbers—-—-20, 33, 16,
12 and 14. Defining numeric variables for each of these, even
within an array, requires a minimum of 25 bytes. By way of
contrast, suppose we pack the numbers into a string that looks
like this: 2035161214, We’ll call that string A%, and as you can
see, it’s 10 bytes long. Add another five bytes for the painters
to it, and you have a total of 15 bytes-—a 40 percent saving
over storing separate numeric variables.

Obviously., we nesd some way to join the numbers in a string
and then separate it into its components. Extended Color BASIC
provides us with a number of powerful commands to help out. They
are LEFT$, RIGHT$, MID$, STR$, STRING% and INSTR. The Colaor
Computer is the only low-cost machine with a full implementation
of these commands. For a complete discussion of them, consult
the appropriate chapters in your Basic and Extended Basic
manuals. Three of them are of particular importance in using HID
>N RAM.

PACKING NUMBERS INTO STRINGS

To convert a number into a string, we use the STR$
statement. For example, if we say that A=20, then STR%(A) is a
string that looks like this: " 20*. You may have noticed the
space before the numeric characters. The STR$ command puts this
space in the string. To pack your data properly, you have to
remove the space. Do it with the MID3 statement. If you say that
A$=STR3(A), then to eliminate the space you should then say that

“
)

A3=MID$ (A%,2). This redefines A% as the portion of he string
which begins with the second character. Now here’s a little
program that uses this technique to pack five numbers into a
string:

10 DIM A(S)
20 FOR X=1 TO 5

TO INPUT AX)

40 A$=STR3 (A (X)) :AS=MIDS (AS, 2)
S0 B$=B$+A%

60 NEXT X

70 PRINT B$

At then end of the program, the computer will print a
string called B% which is composed of the five numbers you
entered, in the order you entered them. You could save yourself
some trouble by inputting the numbers as strings in the first
place, but in many cases you’ll want to perform some kind of
mathematical calculation on the number before finally storing it
in the string. For example, if A(X) is the cost of an item but
you want to include a $2 shipping charge in your final data, you
might add this line:

3T AMXI=AXI+2

Obviously, you must use numeric input here or your
mathematical calculation will be meaningless.

All of this i1s fine if ypur numbers are of equal length.
But what if your five numbers are 20, 4, 110 and 22407 Once
they’re packed into a string of 2061102240 you have no way of
knowing which number starts where. In this case, you’ll want to
define a fixed length substring for =ach number. There are a
couple of ways of doing this, but this one is the best all
around because it will allow most ASCII sorting routines to work
properly.

First, figure out how large your largest number will be.
For our example, we will assume that we are dealing with whole
numbers with a maximum value of 9999 (four digits). So we want
each number to occcupy four spaces. We®ll do it by adding enaough
zeros to the beginning of each number to pad out the string. The
following line added to the program above will suffices

45 IF LEN(AS)<4 THEN A$=5TRING3S (4-LEN(A%),"0") +A%

We can then separate the string into its component numbers
using the MID$ statement. The following lines will pick apart
the string and print cut the numbers it has stored:

100 As$(1)=MIDs (A%, 1,4):A(1)=VAL(AS (1))
110 AsS(2)=MID3(A%$,5,4):A(2)=VAL(A$(2))
120 A (D) =MIDS (A$,9,4):A(3)=VAL (A3 (3))
130 AS(4)=MID3(A%,13,4):A(4)=VAL (A% (1))

140 A3 (S)=MID$(AS(17,4):A(5)=VAL(AS (D))
150 FOR X=1 TO 5

160 PRINT (A(XD

170 NEXT X

You can undoubtedly figure out ways to cut down on the size
of this code. We do it the long way for the purpose of
illustration. In any case, this is one good technique for
storing numbers in strings, and it will be invaluable in HID °N
RAM.

PACKING STRING DATA

Text is somewhat easier to work with because it does not
always require fixed length strings. However, if you’re putting
data that requires sorting into your string, you will have to
have that part of the data that requires sorting in fixed places
within the string.

As an example, suppose you’'re putting together a mailing
list. You want to be able to sort by state and/or zipcode. You
know that the abbreviation for a state is always two characters
long, while a zip code has five characters. So it will make
sorting =asier by putting your state and zipcode at the
beginning of the string, followed by the name and address. Your
string might look like "PA1?1S51INAMEADDRESSCITYSTATEZIP." Your
search and sort routines will always look at the first two
characters for the state and the third through seventh
characters for the ZIP.

But what about the other data, like the Name, address and
city? How can we put that data in the string without having to
pad it it out into fixed fields that make the string longer than
necessary? One way 1s by using delimiter characters. These are
‘characters that we wouldn®t normally find in our string, such as
the "$" sign, "@" and “x".

Let’s say we want to use these characters to set off the
LAST NAME and FIRST NAME in our entry. We know that the first
seven characters make up the state and zip code. So the LAST
NAME will begin at the eighth character. Between the end of the
last name and the beginning of the first name we will insert an
asterisk (X). And we’ll separate the first name from the street
address with a "per” sign (8). So our substring so far, which
we’ll call A%, will loock like this:

A$=PA12151JONESXJOHNEBZS WILLIAM ST

To pick it apart, we will use a little known but very
pawerful statement known as INSTR. This finds an occurrence of a
substring within a larger string and returns the location of the
start of that substring. The syntax is A=INSTR{(A%$,B%) where A%
ics the larger string and B% is the substring you’re searching
for. Here’s how to use 1t: '

4]

100 LN=INSTR(A%,"%X"):F=INSTR (A%, "@")
110 LASTNAME$=MID% (A%, 8,LN-8)
- 120 FIRSTNAMES=MID$ (A%,LN+1, F—-(LN+1))

This may seem a little complicated, but you’ll get the hang
of it. And you’ll be amazed at how it lets you pack your data
into the smallest possible space. We use even more sophisticated
techniques in the HDR Mail List. You®ll be able to use them in
your own programs as well. .

Finally, we get down to the question of making all our
strings the same length. This is a requirement of HID >N RAM.
For the sake of illustration, we’ll say that our string length
is 64 characters. But our sample entry is only 33 characters
long. We have to figure out some way to pad out the string with
11 spaces. To do this. we use the STRINGS and LEFT$ statements.
Here’s how it works:

A$=LEFTS (A$+STRINGS (64, 32) , 64)

What this does is add a string of 464 spaces to As$. This
makes the new A% 117 characters long. We then use LEFT$ to
separate the first 64 characters of the string. The routine is
repeated several times in the demonstration program.

THE BASIC HID *N RAM PROGRAM

The simple demonstration program begins at LINE 200 and
ends at LINE 1030. If you have an earlier version of HDR without
the machine language sort, please read this description and look
over the listing carefully, as there are a number of critical
changes that were necessary to implement the sort routine.

LINES 200-280 are important because they initialize the
variables used by the machine language driver. You will need
these lines in your own programs. LINE 200 defines the length of
the string to be stored, which is 32 bytes long. This is the
variable CV and must always be CV in your program. The machine
language driver always expects this variable to be set at 32
bytes. If you want to use a different string length you must
change CV AND use the DEFINE FIELD routine, which we will
discuss later.

IF YOU HAVE RUN THE MAILING LIST, WHICH RESETS THE STRING
LENGTH TD &4 CHARACTERS, YOU WILL HAVE TO REDEFINE THE STRING
LENGTH THROUGH THE DEFINE FIELD ROUTINE TO GET THIS
DEMONSTRATION PROGRAM TO WORK PROPERLY.

LINE 210 identifies the memory location of the start of the
machine language driver. Remember that the Color Computer thinks
that the machine language is part of BASIC. The end of BASIC is
always found by multiplying the value of PEEK(27) by 256 and
adding to that the value of PEEK(ZB). The machine language

starts 647 bytes below that value, which changes with the length
of your program. Don’t worry, the machine language will always
be there.

LINES 220 to 270 define the USR calls that access different -

machine language subroutines. LINE 280 defines two string
variables, UP$%$ and DOWN$, whichh are used in the sequential
acecess of data you have stored in HDR. It also initializes A and
Z, which are used to keep track of how many entries you have
stored. Likewise, it initializes two string pointers, AD$ and
ZE$. Finally, it sends the program to a string address
subroutine at LINE 1030 which will be discussed later. All of
these lines must be included in your program for HDR to function
properly. .

LINES 320 to 350 set up the MAIN MENU for the program. The
choices are as ¥0110ws.

1. STORE DATA IN HDR

2. FETCH DATA FROM HDR

I. COPY FROM HDR TO RAM
4. ASCENDING SORT OF DATA
S. DESCENDING SORT OF DATA
6. DEFINE THE SORT FIELLD
7. RUN THE MAILING LIST

We will discuss the routines in the program in the order in
which they occur. Please read the description Carefully, as the -
technigues in these sections are critical.

1. STORE DATA IN HDR

The input and storage of data in HDR appear in LINES
3IP0-490Q. The routine consists of a FOR-NEXT loop that repeats
100 times. We chose 100 arbitrarily. You could repeat it 1000
times if you wanted and still have some room left over. Remember
that we have initialized Z, the current entry number, at zero.
This corresponds to the fact that the first string of data
stored in HDR will begin at memory location zero. This could be
a little confusing on the screen. 5o LINE 420 identifies the
entry as A+l, andd the screen display for the first entry will
read, "ENTRY NO. 1." The second entry will be displayed as ENTRY
NO. 2 and so on.

Line 410 is crucial to the storage function. It sends you
too subroutine 1030, which converts a numeric address (zero to
begin with) to a string value. This subroutine must be in all
Yyour programs.

Line 4Z0 asks you to input your data and assigns that data
to the variable A%. For the purposes of this program, type in
and enter anything you want, up to 32 characters. In practice,
you may want to use a number of different inputs here and
concatenate them into a single string (as we do in the mailing

list). When you are through entering your data (four or five
entries will suffice), hit the ENTER key at the entry prompt
with no other input.

Line 430 sends you back to the MAIN MENU when you strike
the ENTER key with no other input. It also resets the counter
variable Z to its correct number. This means that when you
return to data input from some other function, you will always
be in the right place. Thus, if you quit inputting data after
entry No. 4, you will pick up again with entry No. 5.

LINES 440 and 450 actually store the data in HDR. LINE 430
adds the pointer T$ to the string (the first pointer is null,
after that the pointer will be "+ ", which tells the machine
language to look for the next block of HDR memory. The line also
pads out the entry with the appropriate number of spaces, using
the technique discussed in the section on string packing. Line
440 shows your padded out string with the pointer attached at
the beginning. '

LINE 460 is the USR call which stores your string in HDR,
while LINE 470 resets the pointer string T$ to "+ * for the next
input.

REMEMBER, the critical lines in this function are
subroutine 1030, which tells the computer which block of HDR
will get this particular string, and LINES 440 to 470, which
store the data and set the pointers correctly. The only real
programming you have to do in your own program is to define your
input properly. The rest can be copied verbatin.

2. FETCH DATA FROM HDR

This routine, LINES 530-630, retrieves data from HDR. Line
S30 initializes the initial pointer byte as a null string. Line
540 sets up a FOR/NEXT loop to retrieve the data in ssquential
blocks. The string address subroutine is called again in LINE
S50, while a dummy string is set up in LINE 540. The string
consists of 32 spaces preceded by the pointer bytes. That
string., called B$, is passed to the machine language via the USR
call in line 570. The machine language returns the data from
that block of HDR in the form of the string C%. The pointer
bytes are stripped away from C3$ in LIME SBO. This is your data,
and in your own program, you will probably want some kind of
disassembly routine here to separate it into its components.
Line 610 resets the pointer string T$ to "+ ", while LINE 420
completes the FOR/NEXT loop. Once again, you will want to copy
this general structure in your own program.

3. COPY DATA FROM HDR TO RAM

This routine, from LINES 680 to 750, will copy any partion
of HID ’N RAM to normal RAM. This is for the very adventurous
only, as copying data to the wrong spot in normal RAM could

obliterate your program. Remember that you can determine the
top of BASIC with this formula: TB=2S46XPEEK(27) + PEEK(28),
where TB is the top of BASIC. You should not copy your HDR data
any lower in memory than TB, unless you decide to copy it to the
screen area, which consists of memory locations 1024 to 153S. ’
Copying your data to the screen that way will allow you to view
it as it is stored in memory and not through the eyes of BASIC’s
print routine. It will look quite different.

Lines 710 through 740 actually copy the data, using the
third USR call. You will be asked for the start and end
addresses of the are of HDR that you want to copy. Addresses
over I276B are in HID N RAM. You will also be asked for the
starting address in normal RAM where you want the data to be
copied. Your input should be in decimal form.

4 and S——S0RTING ROUTINES

This routine, from LINES 790 to B70, will sort the strings
in HDR. You will be asked for the number of the first and last
records you want sorted. I+ you want all the data sorted, enter
zero when asked for the first record. Enter the number of your
last record at the second prompt. If you have not defined a sort
field and record length, this routine will assume a record
length of 3I2 and a sort field consisting off the first four
characters of the string. IF YOU HAVE RUN THE MAILING LIST, YOU
MUST REDEFINE YOUR RECORD LLENGTH AND SORT STRING OR THIS
FUNCTION WILL NOT WORK PROFERLY AND Y0OU WILL GET AN ERROR
MESSAGE.

Ta make this routine work in your own program, you must
define your starting record number as the variable A and your
ending record number as B. Then use LINES 830 and 8B40 exactly as
they appear here. Remember that USR4 will sort the data in
ascending order, while USRS sorts in descending order.

The machine language sort routine built into the HDR
program is a variant of the bubble sort. It will work faster in
vour own program if you stop occasionally to sort your data as
you go along. Just how long it will take depends on the amount
of data you have and how mixed up it is. Our tests indicate
that on large files, it is roughly 200 times as fast as a BASIC
sort routine. Unfortunately there®s no real way to compare it
becauss no other program allows you to store as much data as
HDR. We believe the inclusion of this sort makes HID N RAM the
most sophisticated and useful 64K programming utility on the
market.

4. DEFINE THE SORT FIELD

This routine, from lines 920 to 990, is crucial for the
proper functioning of HID N RAM. It passes to the machine
language two important parameters: the length of your record
(stored in variable CV) and the location of the substring on

b

“

'?

which you want to sort. IF YOU WANT A RECORD LENGTH OF ANYTHING
OTHER THAN 32 BYTES, YOU MUST USE THIS ROUTINE AT THE BEGINNING
OF YDUR PRDGRAM.

LINE 930 prompts you for the he substring you want sorted.
You should enter a string of spaces and X’s. For example, if you
want to sort the first eight characters, enter "XXXXXXXX *. If
you want to sart the third through 8th characters. enter *
XXXXXX ". You must end the string with a space so that HDR knows
where to stop counting. Don’t enter the gquotation marks from the
keyboard, by the way, just the spaces and X’s. In your own
program, you will probably want to define the sort string., which
is called FL$, directly in the code with a statement like FL%=*
XXXXXX ™. ‘

If you are using the routine to initialize your record
length at the beginning of the program, you still must specify a
sort field. It doesn®t matter what the field looks like at that
point—you just need a value to send to the HDR machine
language. You can redefine it later when you actually do your
sorting. Of course, if you will only be sorting on one field,
it’s a good opportunity to get the whole process finished at
that point.

LINE 940 prompts you for the length of your record.
Remember, it must be a power of 2. In your own program, you will
probably want to define this directly in the code. We use
keyboard input for demonstration purposes only. Once again, both
a sort field and a record length must be defined in this routine
at the start of your program if the record length is to be
anything other than 32 characters.

LINES 950 throuwgh 980 take your record length and sort
field and pass them toc the HDR machine language through the USR
zall in LINE.980. These should be copied verbatim in your
program (leaving out the remarks, if you wish).

This concludes the demonstration HID N RAM program. You
will probably have to read over it several times before you get
the hang of it. Just remember that there are only three crucial
routines: storing data in HDR, retrieving it and sorting it. The
rest of your program can be carried out with normal BASIC
commands, as the mailing list will demonstrate.

THE HID "N RAM MAILING LIST

The HDR mailing list is designed to store 450 names and
addresses in HDR and store them to tape or disk. It will search,
sort, display and print out those records by name, state or zip
code. There are two different print routines. The first will
print one—up mailing labels (we tested ours on the labels Radio
Shack sells), while the other will print out a listing with one
name on a line across a full page of paper. It will
automatically page and put three header line at the top of each

10

sheet for a pleasing printout of your list.

Each record (that is, a name, street address, city state
and zipcode) is in a string of 64 bytes. Theoretically, you can
store 32768 bytes of data in HDR, which is the equivalent of 300
such records. But we’ve found in practice that the last 2000
bytes of HID >N RAM are somewhat erratic. We don’t know why;
it’s one of the many little mysteries of the Color Computer. So
we’ve played it conservatively and suggest you do the same in
vour programming. Remember that the number of records 'you can
store is equal to 32768 divided by your string length, minus
enough records to stay clear of that last 2000 bytes.

The mail list program begins at LINE 111Q. The .
initialization routine is almost identical to the routine in the
demonstration program. The. exception is line 1140, which
initializes the record length. This is necessary because opur
records are 464 characters long and not the 32 character default
built into the program.

You will see the following choices. Just tyﬁe the
number of the function you want:

1. ENTER DATA FROM KEYBOARD

2. LOAD DATA FROM TAPE OR DISK
J. SAVE FILE TO TAFE OR DISK
4. DISFLAY FILE

S. PRINT FILE

&. SEARCHES

7. SORTS

8. CORRECT AN ERROR

2. BASIC HDR FROGRAM

Look over the listing carefully and vyou will see that there are
a number of clearly defined routines. Most of them are variants
of the HDR routines in the demonstration program. Here are the
highlights:

1. ENTER DATA FROM THE KEYBOARD

This routine, which begins at LINE 1230, looks very much
like the data entry routine in the demonstration program.
Instead of entering a single string from the keyboard. however,
it calls a data entry subroutine at line 3550. This illustrates
the use of BASIC string commands and is worth looking at

closely.

R

11

The routine at LINE 3550 prompts you for seven entries:
last name, first name, address No. 1, address No. 2, city, state
and zipcode. We put in two address lines because addresses often
include apartment numbers or suites. If there is no second
address line, just hit ENTER at the second address prompt
prompt. Hitting ENTER with no other input at the LAST NAME
prompt will return vou to the MAIN MENU just as it did in the
demonstration program.

Because we want to sort by state, zipcode and name, we need
some way of locating these fields. The mail list program deoes it
by putting the two-letter state abbreviation first in our
string, followed by the five-character zip code. This takes care
of the first seven bytes of the string.

Alphabetizing the names posed a more difficult problem. We
could have put in a fixed field for the last and first names,
but that would have wasted space. Instead, we decided to put the
last name and first name back to back (last name first) and
figure out some way to separate them. Line 3700 does this by
finding the length of the last name and converting that number
into a single hexadecimal byte. We used hex because it can
handle a name of up to 16 characters in a single byte. We store
this hex byte right after the zip code. So when we disassemble
the string, we take the value of this byte (always the eighth
character of the string) and know that the last name starts at
the ninth character and extends for the number of characters
represented by the hex figure.

The first name is separated from the first street address
by the *"@" delimiter character in line 3710. Line 3720 checks to
see if there is a second address character (A2%). If there is,
it is attached to the string and separated from the first
address by the delimiter character "4". Line 3730 completes the
string by adding the city, set off by the delimiter characters
“x" and the up arrow. Thus a typical entry would look like this:

MDZ1230SJONESJOHN QEB2SWILLIAM STZAPT #2XBALTIMORE

This is the string that is padded out to 464 characters and
passed on to HID °N RAM. As you can see, it’s a pretty efficient
way to pack data.

2 % 3 -—— TAPE AND DISK I/0

The Tape/Disk input and output routines begin at lines 1370
and 1600, respectively. Once again, these are variants of the
plementary routine that retrieves data from HDR. Only instead of
printing the data to the screen, they print the data to tape or
disk. Note that in lines 144640 and 15BO we first print to or
input from tape or disk the number of records we are dealing
wiith. This gives us the upper limit in our FOR/NEXT loop. If
you are using a disk drive, you will have the option of getting
a directory in these routines. Also, the files created by this

12

program are stored to disk with an extension of "/HDR" so you
can pick them out easily. You can change this in your own 1/0
routines if¥ you wish.

4. DISPLAY FILE

This routine, beginning at line 1790, offers two types of
screen displays. The first will display each record as it would
appear on a mailing label. After each entry is displayed, you
have four choices -— "C M L P". If you type C you will continue
with the next entry. "M" will return you to the MAIN MENU. "L"
will print out a mailing label, while "P" will print out a
single line listing of that entry.

The other option will display =ach entry on a single line
of the screen. Because of the limited 3I2-character display of
the Color Computer, you’re the entry. is limited to the name,
state and zipcode. But it’s a good way to go through your list
gquickly. After the screen fills up, you have the choice of
continuing with the next screenfull of names or returning to the
MAIN MENU.

All of he displays and searches make use of the
disassembly subroutine at LINE -3800. This takes the string
fetched from HDR and separates it into its components. They are
given the same variable names they had in the data input
subroutine, so that you can follow both the assembly and
disassembly of the data string.

The only really tricky thing here is the method used to
determine whether there is a second address line. Notice that
line 3800 defines the variable AZ as INSTR(CS$,"Z"). You’ll
remember that we only use the "XL" delimiter if there is a second
address string. If there is no "4" in the string, A2 has a value
of zero. If there is a second address line, the “4L" will show up
somewhere in the string and A2 will have a positive value.

S. PRINT THE FILE

The printout routine starts at LINE 2060. It offers two
options. One prints out the entire list as labels. The cther
prints the list, one name and address per line, accross a
formattted page. If you choose the full page printout, you will
be prompted for three header lines. If you don’t want that many
lines, just hit the ENTER key with no other input at any or all
of the header line prompts. The header will automatically be
printed at the top of each page.

Once again, these routines use the normal HDR retrieval
technique, followed by the disassembly routine, followed by the
appropriate print routine. The mailing label printout subroutine
is at line 4010, while the single line printout is at line 4090,

6. SEARCHES

The search routines begin at LINE 2430. You have the
option of searching by state, zipcode or name. Each option will
ask. . you for a starting point and ending point for the search.
For example, if you want to search for all names from "Carson,
John" to "Feters, George", enter Carson and John at the prompts
for the last and first names of the beginning of the search and
Peters and George for the last and first names of the search

limit. If you want to search for just one particular name, enter
it when prompted for the start of the search and enter blank

lines when prompted for the last name of the search limit.

The same proceedures apply for the searches by state and
zipcode. In the state search you must enter the state’s two
letter abbreviation. In the zipcode search you must enter a
five-digit zip code. All three searches give you the choice of a
screen display or mailing label printout, so that vyou can, for
example, print out mailing labels for everyone in Pennsylvania,
or everyone living in zipcodes 00001 through 30000.

7. SORTS

This routine, beginning at LINE 2980, will sort by state,
zipcode or name in ascending or descending order. The sort by
state will avtomatically sort by zipcode within each state. The
operative lines here are I04640-3080 which define the sort fields
in the variable FL$. This is similar to the sort routine in he
demonstration program, except that we define the fields in the
code instead of entering them from the keyboard.

. Notice that the sort field for state in line 3040 is

defined as the first seven characters instead of the first two
characters. Because we’re doing an ASCII sort, this will
auntomatically cause the zipcode field to be sorted after the
state field. If you don’t want to sort the zipcodes toao, you can
redefine FL$ as "XX “. The zipcode sort in line 3070 defines the
third through seventh characters, while the alphabetic sort uses
the ninth through 26th characters. Remember that the last name
starts on the ninth character of the string. We’re making the
assumption that 18 characters will give us a pretty good
alphabetic sort.

The passing of the sort field variables to the HDR machine
language takes place in lines 3110 and 3120, while the sorting
itself occurs in lines 3150 through 3220.

B. CORRECT AN ERROR

This routine, beginning at line 4180, combines HDR storage
and retrieval techniques. You will be asked for the last name
and first name of the entry you want to correct. The program
searches through HDR until it finds and entry with a name that
matches your input. It will display the entire entry and ask
whether this is the one you want. If it is, type “Y* and you

14 B

will be asked to enter all the information in the entry again.
If you type "N” the computer will continue searching for another
match. This will allow you to find the proper entry if you ¥
should, for example, have more than one John Jones in your file.

Notice that the error correction routine also makes use of
the data entry routine at LINE 3350. This saves program space
and makes for more efficient code. Also note that error
correction makes use of both the HDR retrieval routine (for
locating the incorrect entry) and the storage routine for
storing the corrected data.

GENERAL NOTES

When you’ve familiarized yourself with HDR you will
undoubtedly want to begin writing your own program. You may want
to save portions of our code and incorporate it in your program
or delete the entire HDR demonstration and begin from scratch.
If you you choose the latter option, DO NOT DELETE THE ENTIRE
FPROGRAM. LEAVE THE LAST COUPLE OF LINES IN THE PROGRAM INTACT
using the command DEL 1-4%900. If you delete the entire program,
BASIC will have no pointers to the HDR machine language. You can
enter BASIC lines with numbers large than ours and then delete
our code, but in no case should you use the DEL NNN- command, as
this will wipe everything out. RAlways delete to a specific line
number that is lower than the last line number in the program.

You are authorized to make backup copies of this HID °N RAM
praogram for your own us2 only. Any other reproduction or resale
is prohibited by U.S5. and international copyright laws. If you
should want to use HDR to create your own commercial programs,
vou are licensed to do so under the condition that you include
this sentence in your program code and documentation: *THIS
FROGRAM USES HID °N RAM, A PROGRAMMING UTILITY AVAILABLE FROM
FEEDERAL HILL SOFTWARE, 825 WILLIAM ST., BALTIMORE, MD. 21230.
1f you should produce a program with commercial potential and
don’t know how to market it, please contact us as we are always
looking for marketable software.

This program is guaranteed to load and run as described in
this documentation. No other warranty is expressed or implied
and Federal Hill Software bears no responsibility for the
consequences of its use. Should your tape or disk fail to load
within 60 days of shipping, we will replace it free of charge.
After 60 days there is a $3 replacement fee for tape and a $7
fes for disk.

If vou’re interested an a useful HDR application, Federal
Hill Software now offers its popular CoCo-Accountant II program
in a 44K HDR version. This home and small business accounting
package will handle virtually all your financial record-keeping
and make income tax time a breeze. Spend a few minutes each
month with your canceled checks, credit card receipts and -
payroll stubs. Coco Accountant I1 will list and total expenses

by month, account or payee/income source. It will offset
expenses against income for net cash flow statements, sort your
entries by date and print out a spreadsheet showing your entire
year at a glance.

Special features flag tax deductible expenses and payments
subject to state sales tax. Coco Accountant II will even compute
the sales tax you paid! The program sorts entries by date and
lists most most functions to screen or printer. A separate
feature will balance your checkbook and print a monthly
reconciliation statement. The program normally sells for $27.95,
but HDR owners may purchase it for $21.95 on tape or disk, plus
$1.50 for postage and handling.

10 CLEAR 20007 HID ’N RAM II
20 ? (C) 1984 BY MARK ROTHESTEIN AND FEDERAL HILL SOFTWARE
30 ?

40 ?CHOOSE YOUR PROGGRAM

50 * :
60 CLS:zPRINT" . HID >N RAM II":PRINT:PRINT®(C) 1984 BY MARK ROTHST
EIN AND":FRINT" FEDERAL HILL SOFTWARE":PRINT:PRINT"1. RUN BASIC HD

R PROGRAM":FRINT"Z2. RUN HDR MAILING LIST"

70 HA@$=INKEY$:IF H@$="" THEN 70

80 IF HE$="1" THEN 110

90 IF H@s$="2" THEN 120

100 GOTQ 70

110 RUN 200

120 RUN 1110

130

140 °

150 *START OF BASIC HDR PROGRAM

160 7

170 °

180 ° THIS IS WHERE WE DEFINE OUR INITIAL VARIABLES
190

200 CV=32 ,

210 A=2S&XFEEK (27)+FEEK(28)-651 "START OF HDR MACHINE LANGUAGE
220 DEFUSR1=A °THIS STORES DATA IN HDR

230 DEFUSR2=A+3 °THIS FETCHES DATA FROM HID °N RAM
240 DEFUSR3=A+6 “COPIES DATA FROM HDR TO NORMAL RAM
250 DEFUSR4=A+% *ASCENDING SORT ROUTINE

260 DEFUSRS=A+1Z2 "DESCENDING SORT ROUTINE

270 DEFUSR&=A+15 ’DEFINE THE FIELD TO BE SORTED

280 UFs$="+ ":DOWN$="- ":A=0:00SUB 1030:7ZE$=AD%:T$=ZE$:Z=0

290 °

300 *MAIN MENU

310 7

320 CLS:FRINT® HID N RAM MENU":PRINT:FPRINT"1. STORE DATA IN HDR™,

»"Z. FETCH DATA FROM HDR","3. COPY FROM HDR TO RAM®,"4. ASCENDING SORT O

F DATA","S. DESCENDING SORT OF DATA","4. DEFINE THE SORT FIELD","7. RUN
THE MAILING LIST® ’ '

IT0 HWs$=INKEY$:IF HWs="" THEN 330

340 ON VAL (HWs) GOTO 390,330,680,790,770,920, 120

330 GOTO 330 :

KI-TO :

I70 7 THIS ROUTINE STORES DATA IN HDR

3Bo °

3?0 CLS

400 FOR A=Z TO 100

410 GOSUB 1030 G0 TO STRING ADDRESS SUBROUTINE
20 PRINT"ENTRY NO. "A+1:INPUT As

4Z0 IF A%="" THEN Z=A:G0TO 320

440 B3=T$+LEFT3$ (A$+STRINGS (CV,32),CV) ADD THE PDOINTER STRING AND FAD O
UT WITH SPACES

450 PRINT bBs$

460 Cs=USR1(Bs$) 7STORE THE STRING IN HDR

470 T$=UP$: DEFINE THE FPOINTER STRING FOR ASCENDING STORABE
480 NEXT A '

490 PRINT "ALL DATA ENTERED":INFUT "HIT enter FOR MENU";PE:GOTO 32
500 °

S10 ° RETRIEVE DATA FROM HDR

520 »

SIT0 CLS:T$=ZE$ " INITIALIZE POINTER STRING T$ AS A NULL STRING
540 FOR A=0 TO Z-1 °SET UP LOOP

S50 GOSUE 1030 *STRING ADDRESS SUBROUTINE

560 B$=T$+STRINGS (CV,32) *SET UP A DUMMY STRING

S70 C$=USRK2(B$) *RETRIEVE THE DATA FROM HDR

SBO Cs=MID$(C$,3I) “STRIF AWAY THE POINTER BYTES

590 FRINT "ENTRY NO. "A+1

600 PRINT C$:

610 T$=UP$ ’SET UFWARD POINTER STRING

620 NEXT A

630 INFUT “HIT enter FOR MENU";PE:GOTO 320

&40 ,

650 *COFY FROM HDR TO NORMAL RAM (BE CAREFUL!)

660 *ADDRESSES OVER 3I2768 ARE IN HDR

670 *?

680 CLS:PRINT" COFY FROM HDR TO RAM":PRINT:PRINT*ARE YOUR SURE ABOD
UT THIS? (Y/N)™ ’ .

&90 HC$=INKEY$:IF HC$=""THEN 690 ELSE IF HC$<>"Y" THEN 320

700 PRINT"ENTER NUMEERS IN DECIMAL":PRINT"NUMEERS ABOVE 32768 ARE IN HD
R":PRINT :

710 INFUT "COFY FROM :";A:GOSUB 1030:A$=AD$

720 INFUT "COPY THRU :";A:GOSUB 1030: A$=A%+AD$

730 INFUT "COFY TO :";A:GOSUB 1030:A$=A$+AD$+STRINGS (CV-4,32)
740 A$=USR3(A$) °COFY THE DATA

750 INPUT "HIT enter TO CONTINUE®;PE:GOTD 320

760 7

770 *SORTING RDUTINES

780 °

7?0 CLS: IF CH$="4" THEN PRINT"™ ASCENDING SORT":PRINT
800 IF CH$="3" THEN PRINT " DESCENDING SORT":PRINT

810 INFUT "STARTING RECORD NUMBER “3A

820 INFUT "ENDING RECORD NUMBER ":B

BI0 GOSUB 1030: A$=ADS

840 A=B:50SUB 1030:A3=A%$+ADS+STRINGS (CV-2,0)

850 IF HWs="4" THEN A%$=USR4 (A%) *ASCENDING SORT

B&6O IF HUWs="35" THEN A$=USRS (A%) *DESCENDING SORT

870 PRINT"SORT COMPLETED”:INPUT"HIT enter TO CONTINUE";PE:GOTO 320
880 °*

890 *DEFINE THE SORT FIELD AND THE STRING LENGTH

200 *YOU MUST USE THIS ONCE YOUHAVE RUN THE MAILING LIST

. 910 7

920 CLS:PRINT"DEFINE SORT FIELD/STRING LENGTH":PRINT

2Z0 LINE INFUT "SORT STRING: ";FL$

240 INPUT "RECORD LENGTH";CV

S0 V=INT(LOG(CV) /LOG(2)+.3): IF W2 OR V>7 THEN PRINT “STRING LENGTH "C
V" DUT OF RANGE":B0TO 940

260 *THESE TWO LINES DEFINE THE SORT STRING

P70 AFS=LEFT$(CHRS (0)+CHR$ (V) +FL$+5STRINGS (CV, " *) ,CV+2)

280 A%$=USR&6(AF):IF ASC(A$)<>0 THEN PRINT "ERROR":PRINTAS

990 PRINT “DEFINITION FINISHED":INPUT "HIT enter FOR MENU"3;PE:GOTD 320

1000 ? .
1010 > THIS SUBROUTINE CONVERTS A NUMERICAL ADDRESS TD A STRING VALUE
1020 *

1030 AD=INT (A/256) : AD$=CHR% (AD) +CHRS (A-ZS56XAD) 1 RETURN

1040

1050 *

1060 *BEGIN MAIL LIST PROGRAM

1070 °

1080 *

1090 *DEFINE INITIAL VARIABLES

1100

1110 CLEAR 2000:POKE 155, 80:CV=64: : V=56: A=256¥PEEK (27) +PEEK (28) —651 =
1120 DEFUSR1=A:DEFUSRZ=A+3: DEFUSR3I=A+&: DEFUSR4=A+%: DEFUSRS=A+12: DEFUSRé&
=A+15

1130 UP$="+ ":DOWNS$="— ":A=0:Z=0:GOSUB 3I910:ZE$=AD$: T$=ZE$

1140 GF=0:FL$="XX ":G0SUB 3100 °> SET STRING LENGTH TO &4

1150 °

1160 *MAIL LIST MENU

1170 CLS:FRINT" HID *N RAM MAIL LIST*:PRINT:PRINT"1. ENTER DATA FRO
M KEYBOARD","2. LDAD FILE FROM TAPE OR DISK","3. SAVE FILE TO TAFE OR D
ISK"."4. DISPLAY FILE":PRINT"S. PRINT OPTIONS"

1180 FRINT "&. SEARCHES":FRINT"7. SORTS":PRINT"S. CORRECT AN ERROR ", *9
. BASIC HDR PROGRAM":IF NF$<>"" THEN PRINT:PRINT"FILE: "+NF$%

1190 CH$=INKEY$: IF CH$="% THEN 1190

1200 ON VAL (CHs) GOTO 1250, 1370, 1400, 1790, 2040, 2430, 2980, 4180,10
1210 GOTO 1190

1220 °
1230 * INPUT FROM KEYBOARD
1240 °

1230 FOR A=Z TO 430 .

1260 EDSUB ISS0 “GOTO DATA ENTRY SUBROUTINE

1270 IF LNs$="" THEN A=A-1:Z=A+1:607T0 1170

1280 BOSUB 3210 “GOTO STRING ADDRESS SUBROUTINE

1290 B$=T$+LEFT$ (A$+STRING$(CV,32),CV) ?*>SET UP THE STRING
1300 C$=USR1 (Bs$) *STORE THE STRING IN HID N RAM

1310 T$=UFs$

1320 NEXT A

1330 PRINTYALL ENTRIES ASSIGNED": INFUT "HIT enter FOR MENU":;PE:GOTO 117
(»] .

1340

1350 *LOAD DATA FROM TAPE OR DISK

1260 ?

1370 CLS:PRINT"LOAD FROM TAPE DR DISK":PRINT

1380 BOSUB 3280

1320 GOSUB I400

1400 INFUT "FILENAME";NF$:IF LEN(NF$)>B THEN NF$=LEFT$ (NF$,8):PRINT"ABB
R. FILENAME :“3;NF$

1410 IF MD=1 THEN NF$=NF%$+"/HDR"

1420 PRINT"FREFPARE "KDs$: INPUT “AND HIT enter”;PE

1430 T$=IES$

1440 PRINT "“SEARCHING FOR "+NF$

1450 OPEN “I",#MD,NF$

1460 INPUT #MD.Z

1470 FOR A=0 TO Z-1

1480 INPUT #MD, A%

1490 GDSUB I?10

1500 Bs$=AD$+LEFT$ (AS+STRINGS (CV,32),CW)
1510 Cs$=USR1 (E$)

1520 PRINTE480, "ENTRY NO. “A+1;

1530 NEXT A

1540 CLOSE #MD

15250 Z=A

1560 GOTO 1170

1570 * . :

1380 *SAVE FILE TO TAPE OR DISK
1590

1600 CLS:PRINT"SAVE FILE TO TAFE DR DISK":PRINT

1610 GOSUB 3280 ° TAFE OR DISK SUBRDUTINE

1620 GOSUB 3400 ° ABORT CHOICE SUBROUTINE

1630 INPUT "FILENAME";NF$:IF LEN(NF3$)>8 THEN NF$=LEFT$ (NF$,8):PRINT"ABE
R. FILENAME: "+NF$

1640 IF MD=1 THEN NF3$=NF$+"/HDR"

1650 PRINT"FREPARE "KD$:INPUT"”AND HIT enter”;PE

1660 PRINT"SAVING"Z" ENTRIES"

1670 OPEN "O",#MD,NF3$

1680 PRINT#MD,Z °NO. OF ENTRIES IN FILE

1690 T$=ZE$ °SET FODINTER BYTE TD ZERO

1700 FOR A=0 TO Z-1

1710 GOSUB 3910 *GOTO ADDRESS CONVERSION SUBR

1720 B$=T$+STRINGS (CV,32) *CREATE DUMMY STRING

"1730 C3$=USR2(B%$) °RETRIEVE ENTERY FROM HDR

1740 C$=MID$(C$,3) >STRIP POINTER FROM STRING

1750 T$=UPF$ ° INCREMENT THE POINTER

1760 PRINT#MD, C$ °FRINT THE ENTRY TO DISK

1770 NEXT A

1780 CLOSE #MD:BOTO 1170

1790 DC=0:CLS:PRINT” SCREEN OPTIONS*:PRINT:PRINT"1. FULL LISTING"
:PRINT"2. SINGLE LINE LISTING","3. MAIN MENU"

1800 DO$=INKEY$:IF DO$="* THEN 1800

1810 IF DO$="3" THEN 1170 ELSE IF DOs$="2" THEN 1820 ELSE IF DO$="1" THE
N 1940 ELSE 1800

1820 DC=0:T$=ZES$:CLS

1830 FOR A=0 TO Z-1

1840 IF DC>12 THEN FRINT:GOSUB 3400:DC=0:CLS

1850 GOSUB 3910:GOSUB 3I930:60SUB 3800

1860 NB$=LEFT$(LN$+" "+F3+STRINGS (20,32),20)+" "+5T$+" "+ZP$
1870 PRINTNES

1880 DC=DC+1

1890 NEXT A

1900 GOTO 2020 *THAT®S ALL FDLKS

1910 *

1920 *SCREEN DISPLAY ROUTINE

1930 °

1940 CLS:T$=IES$

1950 FOR A=0 TO Z-1

19460 GOSUB 3910

1970 GOSUB 3930

1980 GOSUB 3800

1990 GOSUB 3960

2000 GOSUB 4120

2010 NEXT A

2020 PRINT"THAT>S ALL, FOLKS!":INPUT “"HIT enter FOR MENU®;PE:GOTD 1170

2030

2040 * PRINT ENTIRE LIST AS MAILING LABELS

2050 * " »

20460 CLS:FRINT® PRINTOUT OPTIONS":PRINT:PRINT“1. LABELS":PRINT"2. FU
LL PAGE PRINTOUT","3Z. MAN MENU®

2070 RP$=INKEY$:IF RP$="" THEN 2070

2080 IF RP$<>"1" AND RP${>"“2" AND RP%<{>"3" THEN 2070

20920 IF RPs$="3" THEN 1170

2100 IF RP3=*2" THEN 2220

2110 PRINT"PREPARE FRINTER": INPUT “AND HIT enter”;PE

2120 PRINT"FRINTING LABELS ...*»

2130 T$=ZES

2140 FOR A=0 TO ZI-1

2150 GOSUB 3210 *ADDRESS SUEBR

2160 GOSUB 3930 *FETCH FROM HDR

2170 GOSUB ZIBOO *DISASSEMBLE THE STRING
2180 BOSUB 4010 “MAIL LABEL PRINTOUT
21920 PRINT&480, "ENTRY NO. "A+1;

2200 NEXT A

2210 GOTO 1170

2220 FULL FPAGE PRINTOUT

2230 FOR U=1 TO 3:PFRINT *"HDR. NO."U":z ";:LINE INPUT HD$(U):IF HDFH(U)=nw
THEN HDs(U)="* *

2240 NEXT U

2250 FRINT"FOSITION TOP OF PAPER","AT THE PRINTER HEAD": INPUT "AND HIT

enter”;PE

2260 GOSURBR 2350 *HEADER ROUTINE

2270 Ts$=ZE$

2280 FOR A=0 TO ZI-1

2290 IF R>50 THEN GDOSUR 2350:R=0

2Z00 GOSUB 3210:608UB 3930:605UB Z800 -

2210 B0OSUB 4090:R=R+1

2320 NEXT A

23Z0 07O 1170)

2340 FUT HEADER AT TOP OF PAGE ’ -

2350 FOR Q=1 TO 10:FRINTH#-2:NEXT Q:FOR U=1 TO Z:LHW =LEN(HDS(U))=LH(U

=(80-LHW)) :LH(W=INT(LH(W) /2 +.35)

2340 FRINT#-2, TAB(LH () YHDS (D

2370 NEXT U

2380 FOR B=1 TO Z:PRINTH#-Z:NEXT Q

2290 RETURN

2400 *
2410 *SEARCH ROUTINES

2420

2430 CLS:PRINT® SEARCHES": PRINT

2440 PRINT"1. BY NAME":PRINT*Z. BY STATE":PRINT"3. BY ZIF":PRINT*4. MAI
N MENU® _

2450 SK$=INKEY$:IF SKs="" THEN 2450
24460 IF VAL (SK3$)<1 OR VAL (SK$) >4 THEN 2450
2470 IF SKs$="4" THEN 1170

2480 CLS:zFRINT* ouTrPUuT™
2490 PRINT:FPRINT "1. SCREEN":PRINT"Z2. PRINTER"
2500 OPs=INKEY3:IF OF$="" THEN 23500

2510 IF OP3<>"1" AND OP$<>"2Z" THEN 2500
2520 ON VAL (SKs$) BOTO 2540,2720,2830
2330 *SEARCH BY NAME

2540 CLS:FRINT"SEARCH BY NAME":FRINT

2550 PRINT"START WITH...."

2560 INFUT"LNAME*;LN$ (1) : INPUT "FNAME”;LN$(2)

2570 PRINT™END WITH..."

2580 INFUT “LNAME";EN$(1):IF EN$(1)="" THEN 2500

2590 INPUT “FNAME"3ENS(2)

2600 TN$(1)=UNs (1) +LN$(2)

2610 IF EN$(1)="" THEN TN$(2)=TN$(1) ELSE TN (2)=ENs$ (1)+EN$ (2)
2620 L{1)=LEN(TN$(1)):L2=LEN(TN$ (2))

24630 T$=ZE$ ‘

24640 FDR A=0 TO Z-1 A

2650 GOSUB 3910 >STRING ADDRESS SUER

2640 GOSUB I9I0 *FETCH FROM HDR

24670 GOSUB IBOO °DISSASEMBLE

2680 IF LEFT$(BN$, LEN(TN$(1))) => TN$(1) AND LEFT$(GN$, LEN(TNS$(2))) <
=TN$(2) THEN GOSUB 3480

2690 NEXT A ,

2700 GOTO 2020 *THAT®S ALL FOLKS

2710 * SEARCH BY STATE

2720 CLS:PRINT" SEARCH BY STATE":PRINT"

2730 INPUT "START WITH "3;ST$(1):IF LEN(ST$(1))<>2 THEN SOUND 200, 1:G0TO
2730 : »
2740 INPUT “END WITH “;ST$(2):IF ST$(2)="" THEN ST$(2)=ST$(1):G0TD 27

&0

2750 IF LEN(ST$(2)3<>2 OR ST$(2)<ST$(1) THEN SOUND 200, 1:G0TO 2740

. 2760 T$=ZE$ > INITIALIZE POINTER

2770 FOR A=0 TO Z-1 .

2780 GOSUE I910 ' '

2790 GOSUB 3930

2800 GOSUR 800 ,

2810 IF LEFT$(C$,2)=>5T$(1) AND LEFT$(C$,2)<=ST$(2) THEN GOSUB 3480

2820 NEXT A

2820 GOTO 2020 *THAT’S ALL FOLK

2840 *SEARCH BY ZIP

2850 CLS:PRINT™ SEARCH BY ZIP*":PRINT _

2860 INPUT “START WITH "3;ZP$(1):IF LEN(ZP$(1))<>5 THEN SOUND 200, 1:G0OTO
2860

2870 INFUT "END WITH "3;ZP$(2):IF ZP$(2)="" THEN ZP$(2)=ZF%(1):G0OTO 28

90

2880 IF LEN(ZF3(2))<>S OR VAL (ZP3$(2))<VAL(ZP${1)) THEN SOUND 200, 1:G0TO
2870

2890 T$=ZE$

2900 FOR A=0 TO Z-1

2910 GOSUB 3910:GOSUBI930:GOSUB 3800

2920 IF ZP3$=>ZP$(1) AND ZIP$ <=ZP$(2) THEN GOSUB 3480

2930 NEXT A

2940 GOTOD 2020 *THAT>S ALL FOLKS

2950 ?

2960 ?SORT ROUTINE

2970 *

2980 CLS:PRINT" SORT YOUR FILE®:PRINT

2990 PRINT"1. BY STATE":PRINT"2. BY ZIP CODE®":PRINT“3. BY LAST NAME":PR
INT*4. MAIN MENU*®

I000 SO$=INKEY$:IF SO$="*" THEN 3000

T010 IF VAL (S0$)<1 OR VAL (S0%) >4 THEN I000

3020 IF SO$="4" THEN 1170

3030 CLS:PRINT" DRDER OF SORT”:PRINT:PRINT™1. ASCENDING":PRINT"2. D
ESCENDING™ '
I040 OTS=INKEYS$:IF OT$s="" THEN 3040

3050 IF VAL{DT$)<1 OR VAL(OT$) >2 THEN 3040

I060 IF SO%="1" THEN FL$="XXXXXXX * *FIELD STRING FDOR STATE

I070 IF SO%="2" THEN FL%$=" XXXXX =™ ?ZIP FIELD

TO80 IF S0%="3%"* THEN FL$=" XUXXXXXXLXALXXKXAKLX " >NAME FIELD
INP0 *THIS DEFINES THE FIELD FOR THE SORT ROUTINE

3100 AS=LEFT$(CHR$ (0 +CHRS (VI +FLS+STRINGS(CV, * ™) ,CV+2)

T110 AS=USRO(AS) :IF ASC(A$I<>0 THEN PRINT “ERROR“ASC(A%) :STOP

2120 IF GF=0 THEN GF=1:RETURN

3130 A=0:B=Z *DEFINE RECORDS TD BE SORTED

140 *THIS IS THE ACTUAL SORT _

3150 GOSUB 3910 *STRING ADDRESS SUBRDUTINE

3160 AS=AD$

I170 A=B

I1B80 GOSUB 3?10

3190 A$=AS+ADS+STRINGS (CV-2,0)

I200 °

I210 LET’S DO THE ACTUAL SORTING

3220 °

3220 IF OT="1" THEN A%$=USR4(As) ELSE IF OT$="2" THEN A+=USRS(A3%)
3240 PRINT “SORT COMPLETED":INPUT "HIT enter FOR MENU“;PE:GDTO 1170
I2S0

I260 *TAPE OR DISK SELECTION

JI270 ?
I280 PRINT "(T)YAFE OR (D) ISK":FRINT
I290 TDs=INKEY$:IF TD&="" THEN I290

II0O0 IF TD$="T" THEN MD=-1 ELSE IF TD$="D" THEN MD=1 ELSE 3220
ZZT10 IF TD$="T" THEN KDs$s="RECORDER" ELSE IF TD%$="D" THEN KD3$="DISK DRIV
E": INPUT YDRIVE NO. (0-3):"3H:IF H>Z THEN 3310 ELSE DRIVEH
IZI20 IF TDx="T" THEN RETURN

ITIIO0 PRINT"WANT A DIRECTORY? (Y/N)"

IJIA0 YNS=INKEYS: IF YN$="" THEN 3240

3IZS0 IF YN="Y" THEN DIR:INPUT "HIT enter TO CONTINUE":FE
3350 RETURN

IZT70 7

IzZBO 7

3IZTP0 7 OPTION TO BACK OUT OF I/0

I300 FRINT® (COONTINUE (MIYENU"™

3410 BKs=INKEY$: IF BK$="" THEN 3410

Z420 IF BK$="C" THEN RETURN ELSE 1170

Z430 Bs=ADS+LEFTS (AS+STRING$(64,32) ,64) *SET UP THE STRING
3440 Cs$s=USR1 (B%) *STORE STRING IN HID >N RAM

34350 °

34460 *SEARCH OPTION TO SCREEN OR PRINTER

3470 7

2480 IF OPs="1" THEN GOSUB 3I960:G0SUB 4120:RETURN

490 IF DFs="2" THEN GOSUB 4010:RETURN

I500 CLS:FRINT™ FRINTOUT OPTIONS":PRINT:FRINT" (LYABELS (MYAIL
LIST" . '
ITS10 PPE=INKEY$: IF PP$="" THEN 3510

ITZO IF PR$="L" THEN 2060 ELSE IF PP$="M" THEN 2220 ELSE 3510
3530 7 '
3540 °

3530 CLS

3560 PRINT “ENTRY NO. “A+1:PRINT

I570 LINE INFUT "LNAME :";LN$

ISBO IF LN$="" THEN RETURN

I590 IF LEN(LNS$)>15 THEN SOUND 200,1:G0TO 3570

3600 LINE INPUT "FNAME :";F$

3610 LINE INFUT "ADDR1 :";Al%

T620 LINE INPUT "ADDRZ :“;AZ$

I63I0 LINE INPUT “CITY :";CT$

I640 LINE INFUT “STATE :";ST$

3650 IF LEN(ST$)<>2 THEN SOUND 200, 10:GOTO 3640

T660 LINE INPUT "ZIP :“;ZP$

670 IF LEN(ZF$)<>5 OR VAL(ZP$)<1 THEN SOUND 200,10:GO0TO 3660
T6B0 PRINT"IS THIS CORRECT? (Y/N)

T690 CR$=INKEY$:IF CR$="* THEN 3490 ELSE IF CR3$<>“Y" THEN 3550
3700 L=LEN(LN%$) :L$=HEX$ (L)

I710 AS=STS+IPS+LE+LNS+FS++"E"+A1%

I720 IF AZ$<>"" THEN AS=AS+"L"+AZS

I7I0 AS=AS+"X" +CT+"~"

I740 IF LEN(AS$)>64 THEN SOUND 200, 1:FRINT"ENTRY TOO LONG":GOTO 3550
3750 * FRINT B3 ‘

3760 RETURN

3770 7

3780 DISSASEMELE THE NAME AND ADDRESS STRING

3790 ° |

3800 A1=INSTR(CS%,"@"):AZ=INSTRI(CS, "%") :C=INSTR{CS, "%X*) :L$="2H"+MID3$ (C%,
8. 1) :L=VAL (L$) : EE=INSTR(CS, "~")

3810 ST$=LEFT$(C$,2):ZP$=MID$(C$,3,5) : LN$=MID$(C$,P,L) :F$=MID$ (CS$, F+L, A
1-{9+L))

ITB20 IF AZ>0 THEN A1$=MID%(C%,A1+1,A2-(A1+1)) ELSE A1$=MID$(C$,A1+1,C—(
A1+1)) |

3830 IF AZ>0 THEN A2$=MID$(C$,A2+1,C—(A2+1)) ELSE A2$=""

3840 CT$=MID%$(C$,C+1,EE~(C+1))

3850 GN$=LN$+F$:RETURN

3860 PRINT F$+" "+LN$:PRINTA1$:PRINTAZS$:PRINTCTS$+%, "+5T$+" "+IPs
3870 RETURN

3880 °

3890 °

3900 *CONVERT AN ADDRESS TO A STRING

I910 AD=INT (A/25&) : AD$=CHRS (AD) +CHR$ (A-256%AD) : RETURN

I920 *FETCH THE STRING FROM HID N RAM

3930 BE=T$+STRINGS (CV,32) :C$=USR2(B$) : IF ASC(C$)<>0 THEN FRINT “ERROR":
INFUT "HIT enter FOR MENU";PE:GOTO 1170 '

I940 C$=MID$ (C%,3) z T$=UP$:RETURN

3950 *SCREEN LISTING ROUTINE

3960 PRINT F$+* "+LN$:PRINTA1%:IF AZ$<>"" THEN PRINT AZ%

3970 PRINTCTS$+", "+ST$+" “+IPs

3980 PRINT

3990 RETURN

4000 * MAILING LABEL PRINT ROUTINE

4010 FRINT#-2,TAB(3)F$+* “+LN$

4020 PRINT#-2,TAB(3)A1S$

4030 IF AZ3<>"" THEN PRINT#-2,TAB(3)AZS

4040 PRINT#-2,TAB(3)CT$+", “+ST$+" "+IPS

4050 IF AZ$="" THEN PRINT#-2

4060 PRINT#-2:PRINT#-2

4070 RETURN

4080 * SINGLE LINE PRINTOUT ROUTINE - -
4090 FRINT#-2, TAE(S)LEFTS (LNS+* "+F$+" “"+A1$+" "+AZ%+" "+CT$,65) TAB(7
1)ST$+" “+ZFs

4100 RETURN

4110 *ROUTINE EETWEEN SCREEN LISTINGS

4120 PRINT "YDUR CHDICE: N M L P":PRINT

4130 YC$=INKEY$: IF YC$="" THEN 4130

4140 IF YC$="N" THEN RETURN ELSE IF YC$="M" THEN 1170

4150 IF YCs="L" THEN GOSUB 4010

4160 IF YC3="F" THEN GOSUB 4090

4170 FRINT"DONE":GOTO 4120

4180 °CORRECT AN ERROR HERE
4190 CLS:PRINT" CORRECT AN ERROR”:PRINT: INPUT “LAST NAME";KVs: INP
UT"FIRST NAME";FV$:VT$=KV$+FV$: VT=LEN (VT$)

200 PRINT"SEARCHING ...":T$=ZE$

4210 FOR A=0 TO Z-1

4220 GOSUB 3910:GOSUB 3I9I0:GOSUB 3800

4270 IF LEFT$(GNS$,VT)=VT$ THEN GOSUB 39460 ELSE 4270

240 PRINT"IS TH1S THE ENTRY? (Y/N)*"

4260 DUS=INKEY$:IF OU$="" THEN 4260 ELSE IF OUs="Y" THEN 4290

4270 T$=UF$:NEXT A

4280 PRINT"ENTRY NOT FOUND®”:INPUT "HIT enter FOR MENU";PE:GOTO 1170
4290 PRINT"CORRECTED ENTRY®:PRINT

4T00 GOSUE 3570

4310 GOSUB 3500

4320 B$=AD$+LEFTS (AS+STRINGS (CV, 3I2) ,CV)

4730 C$=USK1 (E$)

4340 PRINT"ENTRY CORRECTED":INPUT "HIT enter FOR MENU“;PE:GOTO 1170
10000 SAVEYHDR9": SAVE"HDRYB" : SAVE"HDR9/BAS: 1" : SAVE"HDRYB/BAS: 1

