CoCo 111
Utilities

Copyright (C) 1987 Spectrum Projects, Inc.

CoCo III Utilities

.Copyright (c) 1987 Spectrum Projects, Inc.

CoCo 1II UTILITIES is a set of sample programs that
provides a practical application of the new features of the
Color Computer III and serves as a tool to demonstrate and
explain these new functions. To fully utilize these routines and
maximize their benefits, the user should first obtain a listing of
each program (specific lines of code are referenced to
demonstrate new techniques in the text) and then review in
sequence the following material (some examples or programs
build on previously developed conecpts.)

Your disk contains the following programs:

MEMTEST 128k/512k memory test program.
LOADSAVE Load & save CoCo 3 hi-res screens.
VERSCROL Vertical Scrolling Demo.

HORSCROL Horizontal Scrolling Demo.
CHARPOKE Change Screen and Character attributes,
CC3WORD A Simple Word Processor.

CC2TOCC3 Convert graphics & text to CoCo 3.
CIRCLES Palette registers demo. '
SPINBALL Palette registers demo continued.

MEMTEST 128k/512k memory test program.

Along with the blessing of more memory comes the
greater possibility that part of it may be bad. It’s simply the
law of averages and somewhere down the line, the law will
catch someone. The MEMTEST routine is a simple 128k/512k

MemOry test program, written partially in BASIC with a small
machine-language routine that will check the 8K block of
memory located at $6000 of the CPU’s workspace. The BASIC
program will be used to print messages, sequentially swap 8K
blocks of memory into the slot at $6000 and execute the
machine-language routine to check the block.

LOADSAVE Load & save CoCo 3 hi-res screens.

_ The new high-resolution screens are fantastic! Very
dc?tallcd pictures, graphs and charts can be drawn and painted
with a variety of different colors. The 320 X 192 screen uses
32K bytes of memory, fortunately this memory is not taken
from the BASIC program area. What this means is that your
program size doesn’t have to suffer anymore when using the
new high-resolution screens. It also means however, that you
can’t directly save the screen to tape or disk. A BASIC
program must now be used to save the screen a block at a
time. The number of blocks to save is determined by the size
of the screen. Remember, each block is 8K in length, so a 32K
screen will use 4 memory blocks. BASIC always puts it’s
graphics screen starting at block $30. So, to save a 32K screen
blocks $30, $31, $32 and $33 would all need to be saved. The,
LOADSAVE routine will illustrate how this is done,

Notice the OPEN statement in line 200, it opens a file
to the screen. This may seem like a strange thing to do, but it
15 necessary in this case because the routine that handles the
ONBRK control does not reset the device number to the
screen. Most of the time this will not effect anything, but here
the error could occur while accessing the disk which would
cause the message in line 200 to be printed to the disk buffer
instead of to the screen. Other commands that will reset the
device number are CLS and POKE &HG6F,0.

VERSCROL Vertical Scrolling Demo.

The most interesting new feature of the Color Computer
11T is its ability to smooth scroll in both the Vertical and
Horizontal directions. Scrolling is not supported by BASIC
except through the use of the POKE command.

Vertical scrolling is contolled by three registers of the
GIME chip, $FF9C, $FF9D and $FF9IE. These registers work
together to display addresses within the 512K system. In
register $FF9C, only 3 bits (5 - 7) are used. Each time these
registers are incremented, the display moves by 8 bytes. In
order to scroll an entire row, the registers need to be
incremented by a value which is equal to the NUMBER OF
BYTES PER HORIZONTAL ROW divided by 8. The
VERSCROL example will start at BASIC’s graphics page
($6000) and scroll the screen according to the position of the
joystick. The particular screen being viewed has 160 bytes per
horizontal row.

Line 130 is where the registers get incremented, ’S’ will
equal -1, 0 or 1 depending upon the position of the joystick.
This will be multiplied by the number of bytes per horizontal
row (160) divided by 8. This value is then converted by the
subroutine starting at line 150, into the 3 bytes necessary for
storage into registers $FF9C, $FFID and $FFIE. To make the
scroll faster, add the DOUBLE SPEED poke (POKE

&HFF9D,0) to line 10.

HORSCROL Horizontal Scrolling Demo.

The horizontal scroll register is located at address
$FFIF. Only 7 bits (0 - 6) are used to control the scroll. The
eight bit (bit 7) is used to activate the HORIZONTAL
VIRTUAL ENABLE (HVEN) mode. Horizontal Virtual
Enable uses 48K of memory and is not accessable though

BASIC except with pokes and is required anytime horizontal
scrolling needs to do a complete wrap-around. HVEN works
by forcing the bytes per horizontal row to 256; the graphics
mode selected has no effect on this except to define how much
of the 256 horizontal bytes to display. In other words, if a 320
X 192 (160 bytes across) graphics mode is selected while
HVEN is turned on, the screen will show the normal 160 X
192 bytes and an area of 96 X 192 bytes will be hidden off the
edge of the screen. The following diagram will help clarify this.

0 320 312
0

a1 30 - &'\ 1 J U

== 2= =~ == 160 BYTES v« == == == vn e a4 «c -~ 96 BYTES - o --
This ie the area This area is
that ie displayed hidden from
on the pcreen. view.

192

The HORSCROL program will set up a horizontal
virtual enable screen, clear it with a small machine language
routine (BASIC will only clear a 32000 byte screen), LPOKE
a colored block onto the screen and allow it to scroll according
to the position of the joystick.

Line 50 POKEs in a small machine language routine
that will zero the 8K block of memory located at address
$6000 of the CPU’s workspace. Line 60 then swaps each 8k
block of memory required for the graphics screen into the slot
at $6000 and executes the routine to clear it. Notice that at
line 160, the Horizontal Offset (HO) is OR’d with $80. This
will insure that HVEN will remain set. If for some reason it
was desirable to not be in HVEN mode, HO would need to be
ANDed with $7F to insure that the HVEN bit was forced off.

CHARPOKE Change Screen and Character attributes.

Changing the attributes of individual text characters
(blink, underline, character color and background) plus the
number of screen columns are available solutions to older
CoCo limitations. The 40 and 80 column screens are located
in memory at address $6C000 and is only moved into the
CPU’s workspace when a character needs to be printed. This
is nice because it means that the high resolution text screens
do not use any of BASIC’s program space. The CHARPOKE
routine will LPOKE all of the available characters onto the
text screen.

The second portion of line 40 POKEs in the attribute
byte for the character preceding it. You can easily play around
with this by changing the value of AT which is set in line 20.

It should be noted that the blink rate of a character
that has the blink attribute bit set is controlled by the
programmable timer interrupt ($FF94 and $FF95). If both of
these bytes are zero’d, the characters will not blink.

CC3WORD A Simple Word Processor.

The program called CC3WORD will give you an
example of how the 40 and 80 column text mode commands
may be used to create some very powerful programs with
almost no effort. CC3WORD is a simple single screen word
processor. It allows you to fill the screen with text, save it and
print it (press [BREAK] to get access to the EXIT, SAVE,
LOAD and PRINT options). There are no fancy insert or
delete functions, but there is full screen cursor control and
typeover.

There are a few interesting things to note about this
program. The first is the use of the ONBRK command at
various lines to change the function of the [BREAK] key.
Second, is the error trap routine near the end of the program.
Third, the SAVE/LOAD routine was designed to work with
disk, and can be made to work with cassette by changing the
SAVEM in line 590 to a CSAVEM and the LOADM in line 600
to CLOADM. Finally, notice the color of the cursor (HINT: it
is not the normal underline!).

CC2TOCC3 Convert graphics & text to CoCo 3.

Modufying old programs to work with the new grpahics
and text features of the Color Computer III is NOT a very
difficult job. In the case of most graphics commands, it is just
a matter of adding an 'H’ to the beginning of the old
command. PAINT becomes HPAINT, DRAW becomes
HDRAW, CIRCLE becomes HCIRCLE and so on. In some
cases, other changes must also be made. For example,
PRINT@ will not work on the 40 or 80 column screens,
LOCATE must be used instead. Another example would be
when using HGET and HPUT, instead of dimensioning an
array to hold the graphics information, HBUFF must now be
used to reserve this space.

The CC2TOCC3 program will aid in converting your old
programs. It won’t do everything, but it will handle the
majority of the work and will flag most of the problem areas.
The routine works with DISK ONLY. It reads in a normally
save BASIC file and writes out a converted ASCII file. Notice
that the command LPEEK was included twice in the area for
the new secondary functions, this is not a mistake. Due to a
bug in BASIC, the new secondary functions skip token 168 and
start with 169. The first LPEEK is simply a dummy to take this
€rror into account.

CIRCLES Palette registers demo.

One of the dazzling new features of the CoCo III is the
ability to display your choice of 64 different colors, 16 at a
time on a high resolution screen. the older Color Computers
used a technique that fixed specific color definitions to the
different screen modes. On the CoCo III, instead of codes
defining a color, they point to a location in the input/output
space called a palette register that can be individually
programmed.

Any palette register may contain any color at anytime.
If desired, all palette registers may be set to the same thing.
Changing a palette register to a new color will cause all pixels
pointing to that palette to instantly change to that color. The
BASIC program called CIRCLES will draw 4 circles on the
screen in different palettes and set them all to the same color.
It will then wait for the keys ’1’, ’2’, 3" or '4’ ot be pressed.
Each key will turn on a different circle when pressed and turn
it off when released. Notice in line 110 that the last statement
is CMP. This is the same as the command: PALETTE CMP.
Also take a peek at lines 2 and 3 for some useful POKEs.

SPINBALL Palette registers demo continued.

The SPINBALL program is a little more elaborate and
involves a fairly long routine. It will build a large ball onto the
graphics screen and make it appear to rotate by changing the
palette registers through a series of colors, To save space and
time, the DATA statements from lines 310 to 720 only contain
the top left of the ball. The program will take this data and
mirror it into a complete ball. The DATA statements from
lines 240 to 290 contain the ball pattern information and may
be changed to create different patterns on the ball. Notice that
the last value of each line is an 'F’, this determines the palette
used for the background area of the ball and should not
change. Each of these values is the number of the palette
register to use for that area of the ball.

	Cover
	CoCo III Utilities
	MEMTEST
	LOADSAVE
	VERSCROL
	HORSCROL
	CHARPOKE
	CC3WORD
	CC2TOCC3
	CIRCLES
	SPINBALL

