28

6809

FLEX™

Parscal
Urerr
- Manual

* technical systemys
= consultanty, INC.

L 2o

FLEX™
Pascal
Urerr
Manual

COPYRIGHT © 1981 by
Technical Systems Consultants, Inc.
P.C. Box 2570
West Lafayette, Indiana 47906
All Rights Reserved

- FLEX is a trademark of Technical Systems Consultants, Inc.

MANUAL REVISION HISTORY

Revision Date Change
A 2/81 Original Release, Pascal System Version 1.0

C 6/81 Effective: 6809 Pascal System Version 2.0
Change page numbering.
p. 4 Add description of PASCDEF.TXT file.
p. 5 Add mention of temporary files and ASN.
p. 7 Add mention of uppercase in PREFIX.
p. 10 Add varient record exceptions and

EOF/EOLN syntax.

p. 11 Add syntax for comments.

) We would like to thank the Springer—-Verlag Publishers for
granting us permission to cite examples from their book, Pascal
User Manual and Report, by Kathleen Jensen and Niklaus Wirth.

COPYRIGHT INFORMATION
¢
This entire manual is provided for the personal use and enjoyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,
for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual, Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
pussible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

LAl

Pascal User's Manual
Table of Contents

INTRODUCTION

HOW TO COMPILE AND RUN PASCAL PROGRAMS

A. Your Pascal System _
B. How to compile and run Pascal programs

STANDARD FEATURES NOT SUPPORTED BY OUR PASCAL SYSTEM

NON-STANDARD FEATURES
A. Non-standard features
B. Non-standard procedures and functions
C. Running another Pascal program

ADAPTING YOUR SYSTEM

APPENDIX
A. Additional references for Pascal
B. Listing of the standard PREFIX file
C. Diagram of stack after a program is called
D. Example proygrams on Pascal System disk

-iii-

E= N OV

11
14
16

19

21
23
27
29

rascal User's Manual

_INTRODUCTION

This user's manual 1is written to explain the particular
implementation-dependent details of our Pascal compiler. This
manual is in no way a tutorial for the Pascal programming
language. If the user needs to first learn Pascal, we direct
your attention to Appendix A where we have listed a few reference
texts for the Pascal language.

The primary goal in our implementation was to produce fast
and efficient object code. This was one of our major reasons for
producing 6809 native code as opposed to interpretive "P-code."
We have tried to implement as many of the features in the Jensen
and Wirth User's Manual [1] as possible while keeping the
objective of fast and. efficient code in mind. At the time of
initial release of this Pascal system, a Pascal standard has not
yet been adopted. = For purposes of our Pascal system, we have
adopted the Jensen and Wirth User Manual specification as a
"standard." This 1is the reason that we include a copy of the
Jenson and Wirth User Manual with our Pascal system. Please
refer to this manual when you have questions about standard
" Pascal syntax or semantics. Sample programs included on our
Pascal system disk are used with permission of the
Springer-Veriag Publishers in New York.

This manual will describe to the user how to compile and run
a Pascal program. We will also describe the features that differ
between standard Pascal and our Pascal system; these differences
will include features. not implemented and additional,
non-standard features. -

- . e W G5 e o e G D e S S WL R R e G D G @D S W W e

[1] Kathleen Jensen and Niklaus Wirth, Pascal User
Manual and Report, Second Edition (New York:
Springer-Verlag, 19/74)

L T A

N

rvascal User's Manual

HOW TO COMPILE AND RUN PASCAL PROGRAMS

A. Your Pascal System

The disk containing the Pascal system for the FLEX™ (FLEX is
a trademark of Technical Systems Consultants, Inc.) Operating
System contains the Pascal compiler, the Pascal run-time package
and several example programs. The Pascal compiler programs found
on your disk should include:

PASCAL.CMD
PRUN.CMD
NPASCAL.BIN
NPASS1.BIN
NPASS2.BIN
NPASS3.BIN
NPASS4.BIN
NPASS5.BIN
NP680S.BIN
PREFIX.TXT
PASCDEF.TXT

The purpese of - each of these system files will be explained
below.

PASCAL.CMD - This is the program that invokes the compiler.
The compiler is compesed of a runtime package and several Pascal
programs which are the various passes. This program simply
starts execution of the main routine of the compiler,
NPASCAL.BIN.

NPASCAL.BIN - This is the binary code for the main routine of
the Pascal compiler. It controls the compilation by handling the
scanning of the command line parameters and checking options.
This file then calls the various compiler passes in order. These
various passes are found in the files NPASS1.BIN, NPASS2.BIN,
..., NP68BOS.BIN.

PRUN.CMD - This file contains the program to initiate
execution of an arbitrary Pascal program (other than the compiler
itself). This is the command one uses to "run" a compiled Pascal

‘program. It contains all of the code necessary for running a

Pascal program on the FLEX Operating System. The runtime package
may be trimmed down in size by eliminating some of the routines
that a particular user program does not need. The trimming of
the runtime package will be discussed in detail in the "ADAPTING .
YOUR SYSTEM" section.

PREFIX.TXT - This file contains the Pascal declarations of
the "standard environment." These are the runtime procedures
which are predeclared for you. These procedures include routines
to manipulate the dynamic storage heap, text file handlers,
floating-point math packages, etc. Please see Appendix B for a

-3-

Pascal User's Manual

complete listing of this file for further information. This text
file is automatically prepended to all Pascal programs as they
are compiled; this provides the definition for ‘“standard"
routines.

PASCDEF.TXT = This is an assembler LIB file that is needed
when the native-code from the compiler is assembled. This file
contains various definitions necessary for the interface between
the user's program and the runtime system. Please note, this
file must reside on the disk that contains the native-code output
from the Pascal compiler, usually the working drive; this is the
only way that the 6809 Assembler can include these definitions at

assembly time.

B. How to compile and run Pascal programs

This- Pascal compiler requires a 56K system in order to
compile programs; at least 48K of user RAM 1is necessary. In
order to execute a Pascal program, it must first be compiled into
an assembly language program. This assembly language program
must then be assembled using the standard FLEX assembler. The
binary- file that 1is produced can then be executed. The
description of this process is detailed below.

The general form of the command to compile a Pascal source
program is:

+++PASCAL source-file [assembly-file] [+options]

The square brackets ([]) enclose optional parameters on the
command line; these parameters may or may not be included.
Source-file and assembly-file are standard FLEX file names. If
no name is given for the assembly-file, the name will default to
the source-file name and the default extension of .ASM for
ASseMbly-file. The options are any combination of the letters

"BLYCNSQ." Each letter has an individual meaning, as below:

- Suppress code generation of the compiler.

- Generate a source code listing to the terminal.

- Automatically delete the old assembly-file if it exists.
- Suppress the automatic runtime value checks.

- Keep track of the exact execution line number.

- Print additional summary information at end of
compilation.

- Quit compilation after the first pass in which an error
is detected.

O nZ2q0 <o
L

Some of the above options require some additional
explanation. The "C" option will disable some of the runtime
value checks. This means range checking of scalars or pointers
not NIL will not be checked at runtime. However, array subscript
bounds and case statement bounds will always be checked at

w1

rascal User's Manual

runtime. The "N" option instructs the compiler to generate the
code necessary so0 at runtime each line number is kept track of.
1f an error does occur at runtime, then the exact line number may
be reported; otherwise, only an approximate 1line number 1is
reported. The approximate line number is the line number of the
procedure declaration that the statement which produced the
runtime error resides within. Finally, the "S" option will
produce some additional jnformation at the end of compilation.
The most valuable of this information may be the number of
conditionals that it was able to optimize. The compiler is
designed to optimize all conditionals, such as those appearing in
IF-THEN-ELSE, WHILE Toops,.and REPEAT-UNTIL statements.

During the compilation process, two temporary files are
created and deleted. These two files will reside on the FLEX
working-drive; therefore, it is necessary.that free disk space
equal to approximately twice the size of the source program exist
on the working-drive disk. Realize that if the source program is
on the working-drive, and the output of the compiler is directed
to the working-drive, then more space on the disk will be needed
to accommodate the temporary files and output of the compiler.
As the compiler uses the FLEX system and working-drive numbers,
these both must be set to a specific number and not to "ALL".

After the compiler has produced an assembly-file, this file
must be run on the assembler.

' +++ASMB assembly-file [binary-file] [+options]

Please refer to.the 6809 Assembler User's Manual for details on
the syntax and options available. Remember, the default
assembly-file name from the Pascal compiler has a .ASM extension.
Therefore, the assembly-file name used in the ASMB. command 1line
should reflect this extension. Also, recall that the definition
LIB file, PASCDEF.TXT, must reside on the same disk as the
assembly-file.

Finally, the user should be ready to run the error-free,
compiled and assembled Pascal program. The command to do this

is:

+++PRUN binary-file [parameters] [<input-file] [>output-file]

The binary-file is the result of the assembly described above.>

The optional parameters 1in the command line are character
strings, separated by the delimiters blank or comma, which are
passed to the user's Pascal program. The details of these
parameters will be discussed in the "NON-STANDARD FEATURES"
section under "Running another Pascal program." The "<input-file"
is a way of making an external file serve as the default Pascel
file INPUT. By using the “<" in front of a FLEX file name, such
as <DATA.TXT, all characters read from the default Pascal file
INPUT will come from that FLEX file, DATA.TXT in this example.
Normally, the default Pascal files INPUT and OUTPUT will be

Pascal User's Manual

associated with the terminal. Finally, the "doutput-file” works
the same way that the "<input-file" above works. This time the
Pascal file OQUTPUT 1is now ‘“output-file". Any WRITEs to the
default OUTPUT will go to "output-file" instead of the terminal.

AN

rascal User's Manual

STANDARD FEATURES NOT SUPPORTED IN QUR PASCAL SYSTEM

In order to point out the major differences between our
Pascal system and standard Pascal, we will first examine the
features not supported in our Pascal system that can be found 1in
the Pascal User Manual and Report. We shall meke direct
references to specific pages out of the "User Manual"; so, please
make note of these differences in your copy of the "User Manual.":
While our Pascal compiler will accept either upper or lower case
tetters 1in reserved words, in this manual we will use upper case
letters 1in order to make the reserved words, procedures,
functions, and special features stand out. However, all
functions, procedures, constants and types found 1in the PREFIX
must be spelled exactiy as they appear in the PREFIX. That is,
uppercase letters must be uppercase and Towercase letters must be
lowercase. '

, On page 9 of the "User Manual" a discussion of identifiers
takes place. Our Pascal system will allow the user to have up to
160 characters significant in an identifier name. We also allow
both upper and lower case characters and the use of the
underscore character (_) as any character except the first.

Page 14 of the "User Manual” states that as long as at least
one .of the operands is of type real (the other possibly being of
type integer) the following operators yield a real value:

* multiply

/ divide (both operands may be integers, but the
result is always real) -

add

- subtract [2]

+

In this version of our Pascal System, we do not support implicit
widening of 1integers to real numbers. This means that in
mixed-mode expressions, when an integer x 1is used as a real
number, the function CONV(x) must be used to convert the integer
X to a real number. The function CONV(x) is a standard function
in our Pascal system. For example, the following program section
would be incorrect. '

VAR x,y: integer;

Z: real;
BEGIN
Z2:=x/Yy
END;

However, if the assignment statement were changed to:

- G G S - . T = A WA G e R R S S PR A SR G GD R W

(2] Ibid., p. 14.

7=

Pascal User's Manual

z := CONV (x) / CONV (y) -
then, the program section would be correct.

Individual programs do not require the Program heading
statement discussed on page 16 of the "User Manual." The PROGRAM
statement 1is included in the PREFIX file and is automatically
prepended to every user Pascal program; please look at the
complete listing of PREFIX in APPENDIX B for further details. It
will be an error if the user includes a PROGRAM statement. In
order to communicate with external files other than INPUT and
QUTPUT, the user will have access to these external file names as
parameters on the command line. The runtime package supports an
array of records containing a character string; this array is
called PARAM with the character string called ID. The first
parameter on the command line can be found in PARAM [1].1D, the
second in PARAM [2].1D, etc. The user may use up to five
parameters, each consisting of up to 16 characters 1in length.
For example, if one would want to pass the file name "1.DATA.TXT"
to the Pascal program, the following command line would be used:

+++PRUN binary-file 1.DATA.TXT

The user's program would then need to access this command line
parameter by referencing the PARAM record array.

VAR file name: array [1 .. 16] of char;
file ok: boolean;
BEGIN)

. . L]

IF PARAM [1].1D = file_name THEN file_ok := true;

END; .

The details of the structure of the PARAM record array may be
found in the listing of the PREFIX file and discussed further in
the "Running another Pascal program” 1in the "NON-STANDARD

FEATURES" section.

On page 16 and page 31 of the "User Manual," the use of
labels and GOTO statements is dicussed. The current version of
our . Pascal system does not implement labels, label declarations
or GOTO statements. It was felt that labels were detrimental to
structured programming practices; in most cases, the repetitive
statements such as WHILE loops can replace the function of labels
and GOTO statements. If a user used labels and GOTO's for error
exiting purposes, we have provided an ABORT statement to replace
them; the ABORT statement halts execution. The ABORT statement
is dicussed further in "NON-STANDARD FEATURES."

Page 50 of the "User Manual" discusses sets and set
vperations. Our Pascal system is able to accommodate up to 128
elements 1in a set; however, the ordinal values of those elements
must be within the range 0 to 127. This means that a set of

t

"pee

rascal User's Manual

integers must not contain numbers less than 0 or greater than
127. It is impossible to have a set of real numbers because of
this limitation. Note that a set will easily accommodate a list
of ASCII characters. '

Standard Pascal allows the user to nest procedure and
function declarations. Our implementation of Pascal does not
allow the nesting of procedure or function bodies. This means
that you cannot declare procedures within other procedures. This
also applies to functions. This feature of nesting, although
quite nice, is not really necessary. By 1leaving it out, the
Pascal system can be implemented much more efficiently; the code
produced is more efficient.

~ You may not pass procedures or functions as formal parameters
to procedures or functions. .

Arrays of characters must contain an even number of elements.
Again, this is for efficiency reasons.

A current implementation restriction does not allow an
element of an array of characters to be passed as an actual
parameter which corresponds to a variable formal parameter of
type char. For example,

VAR ch: char;
. carray: array [1 .. 10] of char;
PROCEDURE test (VAR c: char);
BEGIN
test (carray [2]);

is incorrect; however, carray[2] may be first assigned to ch, and
then ch may be passed to test. Furthermore, if the formal
parameter of test, c, was a value type parameter, ie. no VAR,
then there would be no problem.

The standard procedure, DISPOSE(p), 1is not implemented.
Instead, we use two procedures to manipulate the runtime heap
called MARK and RELEASE with an argument of type integer. The
runtime heap is like a stack; the MARK(i) procedure instructs the
system to remember the current value of the top of heap pointer.
After the user makes several calls to NEW the top of heap pointer
is moved to accommodate the new, dynamically allocated variables.
However, -if a RELEASE(i) is called, the top of heap pointer is
moved to the old "marked" location of the top of heap. This, 1in
effect, frees up the heap of unnecessary, dynamically allocated
variables. MARK and RELEASE are further discussed in
"Non-standard procedures and functions" in the next section.

‘The standard procedures PACK and UNPACK are not supported;
however, PACKED arrays and records are allowed.

rascal User's Manual

Empty field lists for variant records (page 46 of the User
Manual) must be Teft out; using a pair of matching parentheses,
"()", will cause an error. The compiler will not check for all
‘cases of a variant record; therefore, leaving the empty case out
of the declaration will not cause an error. Finally, variant
records must contain a tag field; you cannot leave this out.

The standard procedures EOF ahd EOLN both require the
explicit file name even 1if the file is INPUT. For example,
EQF (INPUT) or EOLN(DATA).

-10-

R V18

rascal User's Manual

NON-STANDARD FEATURES

ﬁ. Non-standard feature§

There are several features in our Pascal system that will
differ from the standard specification of Jensen and Wirth. This
includes the internal representation of string constants,
parameter passing, hexadecimal constants, etc. We will discuss
each of these non-standard features in detail below.

Comments in Pascal source programs may be enclosed in the
standard "{}" pair, the "(* *)" pair or by a pair of double
quotes. For example,

{ this is a comment} .
(* this is also a comment *)
" finally, this is the third way of commenting '

3Comments may not be nested by using the same start-of-comment

character. That 1is, (* commentl (* comment2 *) *) is illegal;
however, (* commentl " comment2 " *) is allowed.

Character strings which are written explicitly in Pascal
programs contain a null character at the end of each string.
This means that the expression 'abc' is an array of 4 characters;
the' last character is the null character. This can have added
significance; comparing an array of characters to an explicitly
written string must take this 1last null character into
consideration. For example:

" BEGIN
IF PARAM [131.1D = '1.PASCALPG.TXT ' THEN . . .

Recall that PARAM [x].ID 1is an array of 16 characters (see
APPENDIX B). The explicitly written string, '1.PASCALPG.TXT ‘',
is 15 characters 1long plus the one last null character;
therefore, making a total of 16 characters for the string. If
the user did not wuse 15 characters for the explicitly written
string, the compiler would issue an error message; the two

~expressions must match in type. For example:

'1.TEST.TXT '
123456789012345

must be padded with blanks so that the string is a total of 15
characters in length. If we were comparing an explicitly written
string to an array of only ten characters long, then the
explicitly written string must contain nine characters. For

example:

VAR 1list: array [1 .. 10] of char;
BEGIN

-11-

rascal User's Manual

IF 1ist = '12345678G' THEN . . .

Non-scalar data values are always passed by reference when
they appear as actual parameters. Formal parameters that are
declared as ‘value' parameters may not be modified; this is
checked at compile time.

The RESET and REWRITE statements have been extended to allow
a 'file-name' to be associated with internal Pascal files. The
‘file-name' 1is normally a disk file, in the standard FLEX
notation. For example:

VAR f: file of integer;
BEGIN
REWRITE (f, PARAM [2].1ID);
or
RESET (f, 'INDATA.TXT'):

For text files, the file name may be 'ME'. This implies that all
1/0 to that file should be directed to the user's terminal. In
this case, the programmer should perform a RESET before doing any
1/0 on the terminal. For exanmple:

VAR text_file: TEXT;
BEGIN
RESET (text_file, 'ME');

- » 3

This will associate the text file with <the terminal. The
procedure REWRITE should not be used on any file associated with
the terminal.

A1l files should be declared in the g1obaT block; files that
are local to procedures or functions are not supported.

The range of integers is -32768 to- +32767, wusing 16 bits.
The range of real numbers is 1.0E-38 to 1.0E+38 and -1.0E-38 to
-1.0E+38. Real numbers in our Pascal system also have 16.8
digits of accuracy. All of the ASCII characters from 0 to 127
may be used in our Pascal system.

Hexadecimal constants may appear in Pascal programs by typing
them with a "$" preceding. For example, $100 1is the decimal
value 256. These values are restricted to an integer (16 bits)

value; $FFFF is the largest hex value allowed.

A non-printable or printable character may be placed within
character strings by enclosing 1its decimal value (x) within
(: :), such as (:x:). For example, the string 'Hi there(:33:)'
is the same string as 'Hi there!'.

-12-

LR IR M

rascal User's Manual

Both. PACKED arrays and PACKED records are implemented;
however, because of the word size, PACKED does not change the
internal representation. The standard procedures PACK and UNPACK
are not implemented.

Pascal type ALFA has been included as a standard type. Its
description is an array of ten character elements. That is:

TYPE ALFA = array [1 .. 10] of char;

The procedure WRITE and WRITELN cannct have the functions ABS
or SQR as arguments, such as:

WRITE (ABS (x)); WRITELN (SQR (value));

Procedures WRITE and WRITELN must know the type of the result
(real or integer) in advance. The results of ABS and SQR depend
upen the type of the argument. That is, a real number argument
will return & real number result; an integer argument returns an

integer result.

-13-

rascal User's Manual

B. Non-standard procedures and functions

We have included several additional, non-standard procedures
and functions to interact with our FLEX Operating System. The
Pascal descriptions of most of these subroutines may be found in
the PREFIX listing in APPENDIX B. Again, note the exact spelling
of the items in the PREFIX.

The heap is handled in a very simple fashion in this Pascal
system. When variables are created with the NEW procedure, a .
pointer to the variable is returned. This pointer is kept in the
runtime package and 1is updated to be the next available memory
location for new dynamically allocated variables at any time. If
the programmer wishes to return some of these variables to the
system, he may do so, but only in a very rudimentary fashion.
The current value of the top of the heap may be obtained by using
vhe routine MARK. This will set the integer parameter provided
to the current top of the heap. If the user then later calls the
routine RELEASE with this same integer value, any memory that was
allocated during the time between the MARK(i) and RELEASE(i) will
be restored to the system. This means that all variables that
were created during this time will be lost. This simple
mechanism functions much like a stack for the variables created

by NEW.

The routines SYSTEM DRIVE and WORK _DRIVE simply return the
FLEX system or working drive number as & character to the
program. This character value may be wused for creating file
names.

The routine ABORT provides a means for a Pascal program to
abnormally terminate. The 1last 1line executed as well as the
“program aborted” status will be returned to the caller (see
"Runniny another Pascal program”), or printed at the user's
terminal if this is the main routine.

The procedures PEEK, POKE, PEEKW and POKEW provide a means
1or the programmer to access absolute memory locations. PEEK
will return the contents of the addressed byte as an integer
value (0 to 255). POKE will place the integer value (0 to 255)
into the addressed byte. The routines PEEKW and POKEW access

words.(two bytes) rather than bytes.

Routines _ GET through _SREWRITE (see PREFIX 1listing in
APPENDIX B) are used by the system to implement file 1/0. Any
routine in the PREFIX starting with a " " or " _" cannot be
called by a user's Pascal program.

The procedures BUFFER and UNBUFFER are used with terminal
I/0. UNBUFFER will turn the normal buffering mechanism off for a
given file which is associated with a terminal. If the file is
not attached to a terminal, this routine has no effect. This is
used when the user does not want to have to enter an entire line
(including the carriage return), as in the case of reading a

-14-

P TR

rascal User's Manual

single character response from the terminal. BUFFER restores the
normal buffering.

The SETBIN procedure sets the FLEX space compression flag for
FLEX binary files. This is useful for processing files that yau
need to read 1in byte by byte (actually character by character)
without treating them like FLEX text files. The Pascal file name
1S the argument to this procedure.

The function RND has been included as a random number
generator. This function returns a random number that has a
value between zero and one. The programmer can use " this to
generate random numbers between any desired limits using the
formula: .

Random_Number := (ML - MS) * RND (0.0) + MS;

Where ML is the upper limit and MS 1is the Tlower 1limit. The
resulting number that is generated will range from MS to ML. The
argument X has an effect on the number that is generated
according to the following rules. X must be a real number; the
result of RND will also be a real number.

X<0.0 A new series of random numbers 1is started. For
different negative values of X, a different sequence is
started each time, but if the argument retains the same
value, the function will keep starting the same random
sequence so0 the value returned will be the same each
time the function is called. ’

0.0 Causes the function to generate a new random number
when it is called. This 1is the argument that will
normally be used with the RND function.

X

X>0.0 This returns the last random number that was generated.

-15-

Pascal User's Manual

C. Running another Pascal program

Qur Pascal runtime system supports the calling of other
Pascal programs or assembly language programs as subroutines.
The routine RUN provides a means whereby a Pascal program may run
another Pascal program as if calling a subroutine. This routine
loads the called Pascal program and then executes it. The user
may pass a set of parameters (the PARAM record array) to the
called Pascal program. For example, when a Pascal program is
executed by the PRUN command, it 1is executed by the RUN
procedure. When the called program terminates, its termination
status and last 1line executed are returned to the calling
program. In this fashion, the calling program can be made aware
of how things went with the program it called, even if it aborts.
For example: :

VAR prgm, data_file: IDENTIFIER;
parms: ARGLIST; (* types IDENTIFIER and ARGLIST defined
_ in the PREFIX *) _ _
1ine no: integer;
reason: PROGRESULT; (* defined in PREFIX *)

BEGIN
prgm := 'QSORT '; (* call program 'QSORT' *)
data file := 'l.DATA.TXT ";(* name of a data file *)

parms [1].ID := data_file; (* parameter list *)
RUN (prgm, parms, line_no, reason);

(* check for any errors *)

IF reason = TERMINATED THEN(* normal termination: okay *)

These statements will cause the runtime package to locad the
program "QSORT.BIN" from the working disk and start its
execution. A program is always loaded from a disk file with the
default extension of .BEIN from the working disk. A1l files
opened by the calling program remain open and may be accessed by
the called program. This includes the files [INPUT and OUTPUT.
Furthermore, all files opened by a called program will be closed
when it exits. A called program may call other programs. A
progran inay pass to another program parameters of type
IDENTIFILR, integer, or boolean. IDENTIFIER is an array of 16
characters. Obviously, the ability to call other programs allows
the users to build up a library of frequently used routines and
call them when needed; this allows users to "l1ink" to other
Pascal or assembly language programs. Calling other Pascal
programs from Pascal programs 1is not difficult, but the user
should have a very good understanding of Pascal and this system
before attempting it.

Calling an assembly 1language routine is very similar to
calling another Pascal program; however, the user should have a
very yood understanding of the system before attempting this.

-16-

—
N

R L TR A

rascal User's Manual

The user's assembly language program nmust meet four requirements.
The program must be position-independent; therefore, variables
should be referenced off of a stack pointer. The program must
return the original values of registers U and VY back to the
calling program; it 1is a good idea to first push these two
registers onto the stack. The program should have its first two
bytes contain the total number of bytes, including the first two,
that this program will contain. In other words, the length in
bytes of the total program must precede the first executable
statement; the third byte of the program is assumed to be the
first executable opcode. And, finally, the program must clean up
the stack at its conclusion. This would include pulling off the
U and Y register if they were pushed and pulling off other system
information that Pascal expects pulled off as explained in the
following paragraph.

The first two requirements are simple. The third requirement
means that an FDB psuedo-op with the total byte count should be
placed as the first and second byte of the program. The fourth
requirement is accomplished by making a call to routines included
in the runtime package. A skeletal example of an assembly
language program follows. :

FDB SIZE size in bytes of the program
START EQU $0003 address of the start routine in runtime
TERM EQU $0009 ‘-address of termination routine in runtime
BEGIN JSR START set up stack

FDB 0,0,0,0 necessary for the start routine

PSHS u,y save U and Y registers ’
*
* Now the the address of the INPUT FCB, OUTPUT FCB and
* the parameter* l1ist may be referenced off of the Y register.

%
* 16,Y -- address of the INPUT FILE FCB
* 14,Y -- address of the OUTPUT FILE FCB
* 12,Y -- address of the start of the parameter list
*
. « . program .
PULS u,y restore registers U and Y
' JSR TERM terminate the program
SIZE EQU * size of the program
END

A diagram of the stack after a Pascal or assembly language
program is called can be found in APPENDIX C. Notice that the
addresses of the FCB for both INPUT and OUTPUT are on the stack.
Also note the address of the start of the parameters is also on
the stack. All1 of these addresses may be accessed from register

Y as noted above.

-17-

Pascal User's Manua)

ADAPTING YQOUR SYSTEM

This section includes the means to trim the runtime package
in order for some Pascal programs to run that, due to their size
or flow of control, would not run under the normal runtime
environment. For example, some programs may not use any real
number math but require a great deal of memory to run; we can
trim the runtime package down so that this program may be able to
run.

The runtime package is organized so that unwanted routines
may be overlayed with user program space very simply. There are
two types of routines that occur in the runtime package: routines
that are called implicitly by Pascal programs, and those that are
called explicitly by the. user's program. The first type of
runtime routine must always be present for any Pascal program to
function properly. The second type of routine, explicitly
.called, may 1include many routines that are not used by a given
Pascal applications environment, such as real number math. In
this case, those routines that are not needed may be removed from
the runtime package by making some simple patches. This will
also make more memory space available to the Pascal program.

The total runtime package is organized into sections. Each
section is less 1important 1in function than the ones loaded in
memory lower than itself. In this fashion, the sections that are
most 1likely to not be needed may be removed and their memory
space reused by making this area available to the Pascal program.

Memory "in a running Pascal program is set up in two separaté
areas, the stack and the heap. All normal variables and programs
are placed on the stack, which grows downward from the top of
available memory. The stack is able to grow downward to the top
of the heap, just as the heap is able to grow upward to the top
of the stack. Dynamic variables, those variables that are
created by calls to the procedure NEW, are piaced in the heap
which grows up toward the top of memory. The runtime package
itself is placed in the lowest memory, starting at location zero.
If the start-of-the~-heap pointer is set up so that unused runtime
routines are overwritten by the heap or possibly the stack in
- some programs, then that memory will have been reused

effectively.

In order to make the necessary modifications to decrease the
size of the runtime package, the applications environment must be
examined. Those routines that are provided in the runtime
package but are not used, may be considered candidates for
deletion. To make the process simpler, the routines are
organized in memory in the same fashion that their declarations
appear in the standard PREFIX. These declarations map directly
onto an address table found in the runtime package at location
$100 (hex- 100). 'Each routine has a one word (two byte) entry in

-1G-

Tomw

Pascal User's Manual

the address table. Therefore, the address of the sixth routine
in the PREFIX declarations is at $10A ($100 + (6 - 1) * 2). If
routines six and up were found to be unnecessary, all that would
be needed to reuse their memory space is to set the
start-of-the-heap pointer (locations $180 and $181) to the
address found in locations $10A and $10B. 1t should be noted
that the runtime package may only be trimmed back to the first
used routine; that is, the user cannot eliminate some of the real
number math routines and a few of the file I/0 routines. The
memory space that is reused must be contiguous. Setting the
start-of-the-heap pointer back reclaims all memory from that
address through the end of the runtime package for wuse by the
application program.

For example, let's trim off the floating point trigonometric,
exponential, square root and random number generator routines
from the runtime packaye. These are routines numbered 39 to 45
(see APPENDIX B). Therefore, the address of the first trig
function can be found in addresses $014C and $014D ($100 + (39 . -
1) * 2). Next, we would set the start-of-the-heap pointer
(addresses $0180 and $0181) to point to the address found 7in
tocations $014C and $014D. For this example only, let's say that
$0400 was the contents of locations $014C and $014D. This means
that we should put $0400 in locations $0180 and $0181, the
start-of-the-heap pointer. We have now reused the memory from
the old start-of-the-heap down to location $0400.

It is a good idea to set all of the entries 1in the address
table to =zero for the routines that have been removed. In the
example above, locations $014C through $0159 inclusive should be
set to zero. This is an illegal value and will cause a program
abort if a routine that has been removed in this fashion is
inadvertently called. It is not advised to remove the
declarations from the PREFIX.

-20-

Pascal User's Manual
APPENDIX A.

Additional references for Pascal

If the user feels that additional information is needed to
help supplement this manual and the "User Manual", we have listed
a few reference texts to the Pascal programming language. This
Tist is in no way an exhaustive list of references; furthermore,
we do not discredit any references not found in this list.

Conway, R., Gries, D. and Zimmerman, E.C. [1976] A Primer
On Pascal, Winthrop, 1976. -

Findlay, W. and Watt, D.A. [1978] Pascal, An Introduction
%8 Methodical Programming, Computer Science Press, Inc.,
78.

Grogono, Peter [1978] Programming in Pascal, Addison Wesley,
1978.

Webster, C.A.G. [1976] Introduction to Pascal, Heyden and
Son, 1976.

Wilson, I.R. and Addyman, A.M. [1978] A Practical
Introduction to Pascal, Springer-Verilag, 1978.

Wirth, N. [1973] Systematic Programming - An Introduction,
Prentice-Hall, 1973. : ;

Wirth, N. [1976] Algorithms + Data Sturctures = Programs,
Prentice-Hall, 1976. . ‘

In order to receive more information about the new
developments in the Pascal programming language, you may want to
subscribe to Pascal News. This is the official publication of
the Pascal User's Group (PUG). It contains letters, articles and
implementation notes. The address to write to and receive more

information is:

Pascal User's Group

University Computer Center: 227 EX
208 SE Union Street

University of Minnesota
Minneapolis, MN 55455

-USA

-21-

Taser e

Pascal User's Manual

APPENDIX B.

(***********************t**t*******tt******t***tt*****t************f***)

(* STANDARD PREFIX -

(HEXIKITRARFARX KT XTI kI kb rrkkrkhkhkdhhkkdhkhkhkdkhkhkdrrkdrrhkhkrrrrrrrtdtdriornd **)

CONST LINELENGTH = 132; { maximum line length)
TYPE LINE = ARRAY [1..LINELENGTH] OF CHAR;

- CONST IDLENGTH = 16; { maximum length of an identifier parameter)
TYPE IDENTIFIER = ARRAY [1..IDLENGTH] OF CHAR;

TYPE
TEXT = FILE OF CHAR;
text = TEXT;
CONST MAXSTR = 10; { LENGTH OF ALFA STRING }
TYPE
ALFA = ARRAY [1 .. MAXSTR] OF CHAR;
alfa = ALFA;

TYPE PROGRESULT =
(TERMINATED, OVERFLOW, POINTERERROR, RANGEERROCR, VARIANTERROR,

HEAPLIMIT, STACKLIMIT, ABORTED);

TYPE ARGTAG =
(NILTYPE, BOOLTYPE, INTTYPE, IDTYPE);

RECORD
CASE TAG: ARGTAG OF
NILTYPE, BOOLTYPE: (BOOL: BOOLEAN);
INTTYPE: (INT: INTEGER);
IDTYPE: (ID: IDENTIFIER)
END;

TYPE ARGTYPE

5; { maximum number of arguments passed to a program }

CONST MAXARG
ARRAY [1..MAXARG] OF ARGTYPE;

TYPE ARGLIST

{ Heap manipulation routines }

1 PROCEDURE MARK(VAR TOP: INTEGER);
2 PROCEDURE RELEASE(TOP: INTEGER);

{ To call another Pascal or assembly language program }

3 PROCEDURE RUN(ID: IDENTIFIER; VAR PARAM: ARGLIST;
VAR LINE: INTEGER; VAR RESULT: PROGRESULT);

4 PROCEDURE SYSTEM DRIVE(VAR C: CHAR); { return '0' or 'Ll')
5 PROCEDURE WORK_DRIVE(VAR C: CHAR); { return '0' or '1'

6 PROCEDURE ABORT; "TERMINATE PROGRAM IMMEDIATELY"

-23-

Pascal User's Manual

7
8

S
10

11
12

¢ PROCEDURES USED TO MANIPULATE ABSOLUTE ‘MEMORY LOCATIONS.)}

FUNCTION PEEK(LOC: INTEGER): INTEGER; (* READ BYTE *)
FUNCTION PEEKW(LOC: INTEGER): INTEGER; (* READ WORD *)

PROCEDURE POKE (LOC, VAL: INTEGER); (* WRITE BYTE *)
PROCEDURE POKEW(LOC, VAL: INTEGER); (* WRITE WORD *)

{ Standard functions }

FUNCTION ODD(X: INTEGER): BOOLEAN;
FUNCTION ROUND(X: REAL): INTEGER;

(ghkhEhkrr AT LA T Ldk AT hdddtrhrhltRhrdrrrtrrridirrrrrhdtrirrrkttrrrdrit)

*

FILE I/0 DEFINITIONS

*)

(**‘*************************)

13
14

15
16

17
18

19
20

21
22
23
24
25
26

27
28

30

31
32

33
34

35

{ ROUTINES STARTING WITH '_' OR '__' ARE NOT DIRECTLY
ACCESSABLE TO USERS!

PROCEDURE __ GET(VAR F: TEXT);
PROCEDURE __ PUT(VAR F: TEXT);

PROCEDURE __ RDX(VAR C: CHAR);
PROCEDURE __ WRX(C: CHAR);

FUNCTION EOLN(VAR F: TEXT): BOOLEAN;
FUNCTION EOF (VAR F: TEXT): BOOLEAN;

PROCEDURE __ RLN;
PROCEDURE —_WLN;

PROCEDURE __ RWF(VAR F: TEXT; DUMMYl, DUMMY2: INTEGER);
PROCEDURE __RWFS(VAR F: TEXT); <{ SHORT FORM OF RWF)
PROCEDURE —_EI0;

PROCEDURE _ RDI(VAR I: INTEGER; WIDTH, DIGITS: INTEGER);
PROCEDURE —RDC(VAR C: CHAR; WIDTH, DIGITS: INTEGER);
PROCEDURE __RDR (VAR R: REAL; WIDTH, DIGITS: INTEGER);

PROCEDURE __ WRI(I: INTEGER; WIDTH, DUMMY: INTEGER);
PROCEDURE __ WRC(C: CHAR; WIDTH, DUMMY: INTEGER);
PROCEDURE ~ WRS(S: LINE; WIDTH, DUMMY: INTEGER);
PROCEDURE __WRR(R: REAL; WIDTH, DIGITS: INTEGER);

PROCEDURE _FRESET(SIZE: INTEGER; NAME: LINE);-
PROCEDURE _FREWRITE(SIZE: INTEGER; NAME: LINE);

PROCEDURE _SRESET;
PROCEDURE _SREWRITE;

PROCEDURE BUFFER(VAR F: TEXT); ({* TURN BUFFERING ON *)
PROCEDURE UNBUFFER(VAR F: TEXT); { SINGLE CHARACTER TERMINAL

-24-

INPUT 2

LAV

Pascal User's Manual

37 PROCEDURE PAGE(VAR F: TEXT); (* OUTPUT FORM FEED *)
38 PROCEDURE SETBIN(VAR F: TEXT); { SET BINARY FILE MODE }°

Tk RkkhkIkhkTkkdrkdhhkkkkkkkxkkkkertkrtrkrrtrihkhbrtthrhkitbtrtrtiik

{ .)
(* STANDARD FUNCTIONS (TRIG, ETC) *)
)

(E2 s et s ssdsd et s sttt st el et at s el LYot s

39 FUNCTION SIN(X: REAL): REAL;
40 FUNCTION COS(X: REAL): REAL;
41 FUNCTION ARCTAN(X: REAL): REAL;

42 FUNCTION EXP(X: REAL): REAL;
43 FUNCTION LN(X: REAL): REAL;

44 FUNCTION SQRT(X: REAL): REAL;
45 FUNCTION RND(X: REAL): REAL;

PROGRAM P(VAR INPUT, OUTPUT: TEXT; VAR PARAM: ARGLIST);

-25-

T

Pascal User's Manual
APPENDIX D.

Example programs on Pascal System disk

Several programs from the Pascal User Manual were included on
the Pascal System disk. Please examine these sample programs and
use them as a template for your own development of programs under
this Pascal system. We have also included another Pascal program
called XREF.TXT that produces a cross-reference listing of Pascal
programs. This program was modified from Algorithms + Data
Structures = Programs, by Niklaus Wirth published by Prentice

Hall 1in New Jersey. Please examine it to see how the command
line is accessed to get the input file name and option. The user
may use this program by typing:

+++PRUN XREF Pasca]-ff]e-name [+L]

The Pascal-file-name is the FLEX file-name for the source program
written in Pascal; the option +L is for suppressing the 1listing
of the source program. Try running a cross-reference on the
cross-reference program, itself. Please note that all of the
programs _are 1in source form; the user must first compile these
programs before running them. The programs included on the disk

are:

COSINE.TXT
GRAPH2.TXT
COMPLEX.TXT
SETOP.TXT

. PRIMES.TXT
MINMAX3.TXT
TRAVERSL. TXT
EXPON2. TXT
RECURGCD. TXT
XREF.TXT

-29-

