
/ ~

Announcing Pixel Blaster - a high speed, versatile
graphics and animation library for 05-9. Written in
100% efficient assembly-language, Pixel Blaster
delivers lightning-fast action through incredible func
tions, designed for fast graphics manipulation. And,
with the included BASIC09 and C interfaces, you can
now incorporate soph isticated animation techniques
into your own programs easily!

' /

Licensed & distributed exclusively by CoCoPRO!,
a division of DNM Enterprises, Inc.

Contents
Pixel Blaster : An Introduction ... 4
Precautions and Setup .. 5
Program Operations .. 6
Blaster Library .. 8
NOP-No OPeration .. 8
GET-GET buffer .. 8
PUT-PUT buffer .. 8
MIX-MIX buffer ... 8
HIDE-HIDE buffer .. 9
HIX-Hide and miX buffer ... 9
ANIP-ANimate by Putting buffers 9
ANIM-ANimate by Mixing buffer 10
ANIH-ANlmate by Hiding buffer 10
ANIX-ANimate by hiXing buffer : 10
CBAR-Clear BAR .. 10
HFLIP-Horizontal FLIP ... 10
VFLIP-Vertical FLIP ... 11
SDW-SiDeWays Flip .. 11
BLOW-BLOW up ... 11
SHRINK-SHRINK down ... 11
C Compiler Interface Module ... 12
Basic09 Interface Module .. 14
A Look Behind the Scenes ... 15
The Future of PixBlast ... 17
Appendix A : Installation and Startup Procedures 18
Appendix B : Utilities and Sample Programs 20
Appendix C : Related Commands, Errors & Conversion .. 22

PIXEL BLASTER For OS-9 Level II Version 1.0
© 1992 Indy Heckenbach

Indy Heckenbach, Rt 4 Box 2122, Abbeville, La 70510

Licensed & distributed by CoCoPRO!, a division of
DNM Enterprises, Inc. All rights reserved.
Documentation layout & design by Dave Myers.

2

Pixel Blaster: An Introduction

Have you ever dreamed of programming your own game?
Maybe an arcade game? How about a 30 adventure? Or do you
just dream of faster graphics? Do you need more graphics
power? It's no secret: to program decent Coco animation, you
must use Disk Basic Assembly-Language. Until Today!

Announcing Pixel Blaster - a high speed, versatile graph
ics library for OS-9. Written in 100% efficient assembly-lan
guage, Pixel Blaster delivers lightning-fast action through in
credible functions, designed for fast graphics manipulation.

Animation is a fundamental property of any game today.
Without animation, a man can't walk, a ball can't bounce, and
a sun can't set. Therefore, without efficient animation tools,
there can be no game(notice how few animated games are
written under OS-9).

The Get/Put functions are the heart of Pixel Blaster. The
new GET /PUT functions are FAST! Under the typical windowing
system, 100 sequential PUT's takes well over a minute. Pixel
Blaster does the equivelant in about 4 seconds!!! This is a speed
increase by nearly 1200% (at least 12 times faster)!

The special HIDE function really makes Pixel Blaster
shine! This unprecedented ability opens the door to 30 anima
tion. Under certain circumstances, HIDE will cause part of an
object to disappear. By using simple slot techniques, this func
tion will cause an object to appear to move behind its scenery.
Imagine a man walking behind a table, a ball bouncing behind
a tree, or a ship orbiting a planet. HIDE must be seen to fully
appreciate it.

How do you do true animation? Easy - Pixel Blaster can
easily flip through a series of buffers on the screen. About all you
do is specify speed! This technique is similar to the way genuine
cartoons are created. Other sophisticated functions such as
flips, rotates, zoom, shrink, and animate can really bring your
game to life. Sounds great, but is it hard to use? NO! Using Pixel
Blaster is as easy as using other OS-9 graphics function! It's like
programming with Gfx2, or the C graphics library. Since it is a
system module, simply pass a control code to it, and away it
goes! What's more, anybody can use it - whether they program
in Basic:09, C, or Assembly! In fact, a short C library and a Gfx4
module is induded to make interfacing easier.

4

Precautions and Setup

The programs which you have purchased are contained
on a 5-1/4" diskette in standard OS-9 format (single-sided, 35
track). I strongly suggest that you make a backup copy of the
program disk.

Although I don't mind backups, I strongly discourage
pirating and program exchange. This program was developed
to help others program graphics animation. It took a great deal
of effort and time to complete. I request that you respect my
work and rights. Support me and I will fully support you.

Remember that all new programs may contain bugs.
Pixel Blaster has been thoroughly tested to eliminate all
problems. However, I do suggest that you be careful. Always
take precautions, such as saving important work.

The simplest way to upload/copy the program is by using the
COPY utility. Copy 'Pix' from the /dd/CMDS directory. The other
files such as demos and interfacing modules may also be copied.

Pix contains the entire Pixel Blaster program. Pix acts as an
extension to the windowing system. A patch must be installed into
Windint or Grfint before using Pixel Blaster. This patch links Pix to
the windowing system. MODPATCH the appropriate module.
Afteiwards, you should COBBLER your boot disk. Otherwise, you
must repatch every time at startup. In order to avoid the hassle of
using OS9GEN to install a new bootfile, the patch replaces
previous code. A data section of the windowing interface was
removed. Hence, the computer boots with the wrong colors. This
can be corrected by a SS. DFPal. The program Color does this. I
suggest merging Color with the Shell and running it from the
startup file. This way, the problem is virtually unnoticed. If the
colors are reset after another window is initialized, the other
window remains with incorrect color - so run color as early as
possible. Do NOT put Pixin the bootfile! Even though it is a system
module, Pix must be loaded off of disk due to technical reasons,
similar to Grfdrv. I also suggest doing this in the startup file. Error
221 will indicate that Pix has not been loaded. Examine the
sample startup files and installation procedure in Appendix A. If
Pix constantly crashes on a boot disk, you may have encountered
Pix's requirement: in order to efficiently access a graphic screen,
the bootfile must be over 24k. If it is not, you must lengthen the
bootfile or load and activate more system modules.

5

Program Operations

The best way to start programming is to experiment a
little. Ex.amine the demos and read this manual thoroughly.
You might find that certain things about the program are
unusual. Remember though, Pixel Blaster was designed for
optimum efficiency in speed. This section tells specifics on Pix.

Pixel Blaster commands are invoked by sending appro
priate codes via 1$Write system call. Basic09 Gfx4 and C Library
pix.l does this for you. Refer to appendix B for examples in
assembly, C, and Basic09.

Pixel Blaster operates on a 32k window - either on a
640*192 type 7 or 320*192 type8window. Most of the functions
were designed for the 16 color window because it is the practical
choice for any graphics programming. Using commands on the
type 7 window may render interesting, yet unsupported results.

Pixel Blaster operates on a grid of 160*200. Note that
standard modes give only 192 pixels vertical. The horizontal
range is 0-159. On a 320*192 screen, you can manipulate two
pixels minimum. On a 640*192 screen, four pixels is your
minim um. This lower grid should cause no problems. Standard
commands use a relative grid of 640. Translate horizontal
coordinated by dividing by four.

Pix Blast uses a type of virtual screen, one with no horizon
tal limit. Coordinates are plotted the same as before. However,
if your coordinate goes beyond 160, the buffer will physically
wrap around to the other side of the screen. This can be
extremely useful in games. If a buffer is plotted below the visible
192 row, part of the buffer will be scrolled off the screen. A
resolution of 200 vertical is allowed for compatibility with
existing patches.

The buffers used by Pixel Blaster are not exactly identical
to OS-9 buffers; you can NOT interchange them. Buffers can be
defined as they are under OS-9. Groups may be in the range of
1-255, buffers between 1-255. Pixel Blaster can use buffers of
any size, yet it can only get/put data under 8k. Commands may
be redirected to anotherwindoworthe standard outputpath(l).

For a quick test of Blaster functions, OISPLA Y command
may be used. Although Pixel Blaster operations are extremely
fast, there may be times when every cyde counts. The first and
foremost rule is to keep the buffer size as small as possible.

6

Pixblast can transfer horizontal bytes faster because they
are consecutive. Also, the horizontal transfer is the routines'
nested loop. Hence, it is better for the buffer to have a larger
width than height. When you are trying to choose an operation
based on speed, remember the speed precedence:

NOP-> CBAR-> PUT -> GET-> MIX-> HID-> HIX ~> others

Obviously, NOP is quickest. Although CBAR is slightly
faster, GET and PUT are the most useful and operate almost as
quickly. The rest are much more complex and therefore take a
longer time.

7

Blaster Library

The following is a complete listing of the commands
offered by Pixel Blaster. This library is arranged in order of the
control codes. This arrangement also happens to be from
simple-complex. I suggest experimenting with each function
thoroughly. Parameters passed are GRouP, Buffer Number,
Speed, X coordinate, Y coordinate, Width, Height, and null.

NOP-No OPeration

FUNCTION:

CODE:
PARAMETERS :
NOTES:

GET-GET buffer

FUNCTION:

CODE:
PARAMETERS :

PUT -PUT buffer

FUNCTION:
CODE:
PARAMETERS :

MIX-MIX buffer

FUNCTION:

CODE:
PARAMETERS :
NOTES:

Enters Pix and exits without performing
an operation
18 70
LL LL LL LL LL LL
This can be used to determine whether
or not Pix is in memory

Get specified area of the screen into a
buffer
18 71
GRPBFNX YWH

Put specified buffer on to the screen
18 72
GRPBFN X Y

Put buffer and mix it with the back
ground
18 73
GRPBFN X Y
Mix is accomplished by putting only
non-zero pixels. Pixels of zero(slot 0 -
generally white) are ignored

8

HIDE-HIDE buffer

FUNCTION:

CODE:
PARAMETERS :
NOTES: -

Put a specific buffer onto the screen but
hide part of it under background
18 74
GRPBFNXY
Hide is accomplished by skipping back
ground pixels with a slot of 12, 13, 14, or
15 - For example: a table could be drawn
with slots 12-15. The rest of the scenery
would be of other slots. A man figure is
placed in a buffer. When a hide is acti
voted over the table, the man would
seem to partially disappear. As the co
ordinates are changed, the man will
appear to be moving behind the table
from a 3D perspective

HIX-Hide and miX buffer

FUNCTION:

CODE:
PARAMETERS :
NOTES:

Put a specific buffer onto the screen with
the qualities of MIX and HID
18 75
GRP8FN X Y
See Hide and Mix for details

ANIP-ANlmate by Putting buffers

FUNCTION:
CODE:
PARAMETERS :
NOTES: -

Animate by rapidly putting a series of buffers
18 76
GRPS X Y
This function is similar to a genuine cartoon
animator. Genuine animation is done by
rapidly swapping a series of pictures, each
slightly different. Thiscan give an illusion of
movement -Animation flips between every
buffer in this group sequentially. Any num
ber of buffers may be used. Any buffer may
be missing. If buffer 255 is not found, it will
return an error upon completion -The speed
specified is multiplied and used for a timing
delay loop. A speed of zero causes no delay
and may be too fast. Large numbers allows
one to easily view the animation at slower
speeds

9

ANIM-ANlmate by Mixing buffer

FUNCTION:

CODE:
PARAMETERS :
NOTF.S:

Animate by rapidly mixing a series of
buffers
18 77
GRPS X Y
See also AMP and Mix for a complete
description

ANIH-ANlmate by Hiding buffer

FUNCTION:
CODE:
PARAMETERS :
NOTES:

Animate by rapidly hiding a series ofbuffers
18 78
GRPS X Y
See also AMP and HID

ANIX-ANlmate by hiXing buffer

FUNCTION :
CODE:
PARAMETERS :
NOTES:

CBAR-Clear BAR

FUNCTION:
CODE:
PARAMETERS :
NOTES: -

Animate by rapidly hixing a seriesofbuffers
18 79
GRPS X Y
See also AMP, MIX, HID, and HIX

Draw a blank bar at specified coordinates
18 7A
XYWH
C8ar is always drawn with slot 0 - This is
designed for a quick screen clear or buffer
erase

HFLIP-Horizontal FLIP

FUNCTION:
CODE:
PARAMETERS :
NOTES:

Flip specified area horizontally
18 78
XYWH
HFLIP does not work through buffers for
faster on-screen operations and larger flips
(the entire screen may be easily flipped)

10

VFLIP-Vertical FLIP

FUNCTION:
CODE:
PARAMETERS :
NOTF.S:

SDW-SiDeWays Flip

FUNCTION:
CODE:
PARAMETERS :
NOTES: -

BLOW-BLOW up

FUNCTION:
CODE:
PARAMETERS :
NOTES: -

Flip specified area vertically
18 7C
XYWH
see HFUP

Rotate a buffer on its side and put
1870
GRPBFN X Y
SDW will tum a buffer on its side. Horizontal
pixels are converted to vertical pixels. For
this reason a buffer may appear slightly
awkward when rotated - SOW also differs
from VFP and HFP in that it goes through a
buffer. This is necessary due to technical
reasons. - objects can be rotated again by
reGETting the on-screen product and SOW

Magnify a buffer
18 7E
GRPBFN X Y
BLOW doubles each pixel in the buffer both
horizontally and vertically to the screen -
The screen is used so a buffer may be blown
up beyond the buffer's limit - BLOW is de
signed specifically to magnify an image for
use in a 3Dscenario.Afiguremaybeblown
or shrunken to simulate spacial difference

SHRINK-SHRINK down

FUNCTION:
CODE:
PARAMETER:
NOTES: -

Shrinks a buffer
18 7F
GRPBFN X Y
SHRINK is to be used in conjunction with
BLOW- Shrunken figures will be distorted -
The screen is used for quick response and to
provide consistency with BLW

11

C Compiler Interface Module

In order to increase Pixel Blaster's efficiency, a small
library has been written for C users. The library is naturally
written in C. It contains a short name for each function. Call the
function by simply using the function name and passing the
appropriate parameters. Parameters should be defined as CHARs
in your program. In order to use the functions, you must link
this C library, Pix.I, as follows:

CCI prog.c -1=/dd/lib/pix.l

Here are the names of the functions and the appropriate
parameters to pass:

nop(path,null,null,null,null,null,null);
get(path,grp,bfn,x,y,w,h);
put(path,grp,bfn,x,y);
mix(path,grp,bfn,x,y);
hide(path,grp, bfn,x, y);
hix(path,grp, bfn,x, y);
anip(path,grp,speed,x, y);
anim(path,grp,speed,x, y);
anih(path,grp,speed,x, y);
anix(path,grp,speed,x, y);
cbar(path,x,y, w,h);
hflip(path,x,y, w,h);
vflip(path,x, y, w,h);
sdw(path,grp,bfn,x,y);
blow(path,grp,bfn,x,y);
shrink(path,grp,bfn,x,y);

12

For those without the C graphics standard library, a few
extra functions are included in Pix.I. These extra functions that
relate heavily to the use of Pix. Define parameters as CHARs,
with the exception of size - define it as INTEGER.

detbuf(path,grp,bfn,size);

kilbuf(path,grp,bfn);

defcol(path);

fcolor(path,pm);

bcolor(path,pm);

border(path,pm);

palette(path,pm,col);

13

Basic09 Interface Module

Basic09 is such an excellent language, it would be unwise
not to write an interfacing module for it. Hence, Gfx4 calls Pixel
Blaster for a Basic09 user. Gfx3 is often used to call upon point
and click windowing commands, so the name Gfx4 is used.
Simply do a RUN to call Gfx4 and pass necessary parameters.
Define all parameters as INTEGER, not BYTE or REAL. Unlike the
C library, each function must be invoked by its control code, not
its name. Following is a list of functions in order of control code.

RUN Gfx4(pth,fun,grp,bfn,x,y,w,h)
$70 NOP $71 GET

RUN Gfx4(pth,fun,grp,bfn,x,y)
$72 PUT $73 MIX $74 HIDE $75
HIX

RUN Gfx4(pth,fun,grp,spd,x, y)
$76 ANIP $77 ANIM $78 ANIH $79
ANIX

RUN Gfx4(pth,fun,x, y, w,h)
$7A CBAR $78 HFLIP $7C VF LIP

RUN Gfx4(pth,fun,grp,bfn,x,y)
$70 SOW $7E BLOW $7F SHRINK

14

A Look Behind the Scenes

This section is about technical matters of Pixel Blaster
and its environment. Although you do not need to read this
section, it provides important details which may help you
understand the program.

Here is a summary of the graphics windows. A graphics
window is simply a large area of memory(nearly 32k) that is
used to hold graphics data. The graphics window is bit-mapped
(raster graphics), meaning that each bit or group of bits are the
actual pixels the monitor screen displays. The beginning of the
bit-mapped graphics memory is the upper, left comer of the
screen. The graphics memory increases as you move across
horizontally. When you get to the right hand side of the screen,
the next row is the following memory. This progresses until you
get to the end of the screen, the lower, right comer. I mentioned
before that each bit or group of bits are the actual pixels the
screen displays. The size used by pixels varies according to the
resolution and mode. The more information a pixel keeps track
of, the larger it is. A single bit can contain a zero or a one. When
a pixel only uses one bit, it can contain two values. These values
represent the first two slots. When a pixel con be any of sixteen
colors, it requires four bits. The number each nibble(four bits or
half of a byte) contains represents the sixteen slots. These slots
are not actual colors; they are just slots. To set a color you simply
place a shade number(any of the 64) into a GIME chip slot
registers. I advise against this; OS-9 will do it for you, easier. See
the Appendix C for a quick reference to these commands.
Although any slots may be used for background/foreground
colors, the first slot is commonly used for background, the
second or third for foreground. Pixel Blaster MIX uses 0 for
standard background. Pixel Blaster HIDE uses slots 12 through
15, so as to conflict with as few pictures as possible.

One of the reasons Pixel Blaster is so fast and powerful is
that it does not do coordinate bit-banging. Bit-banging is a
phrase generally used to describe bit rotation in order to obtain
certain bits. This is most often used in serial communication.
However, the phrase can fit graphics also. Bit-banging is used
to manipulate each specific pixel on the screen. Doing so is
extremely slow. PixBlast overcomes this dilemma by operating
on entire bytes. This is why you can only access 0-159 horizontal

15

coordinates. The other reason behind Pixel Blaster's power and
speed is that it is very low-level. Low-level software is the fastest
possible. Pixel Blaster directly manipulates the screen and
directly accesses the window/screen tables. Pixel Blaster does
not contain a single OS-9 system call. Everything is done as
directly as possible. My program masks IRQ and FIRQ(ORCC
#$50) to temporarily stop multitasking. This is done to map in
the screen directly, suppress any form of interruptions, and
generally improve program speed. The multitasking is resumed
an instant later. The delay is so short, you won't even notice it.
Setting up its workspace is much faster than telling the kemal
to set one up for it. Also, Pix must temporarily handle the
controller NMI, the only interrupt that can not be masked.
NMI's are intercepted and appropriate actions taken.

The patch that must be installed to the window/graphics
interface does the following:

•move WRITE ptr up a few bytes to compensate for altered code
•change the control code test to allow calling of Pix graphics
•optimize short part of interface so link patch may be inserted
•replace standard colors with ~ix link:

Here is the actual source code for the patch. Grfint is
slightly different from Windint. The source code is the same for
both though, the assembled offsets are just different.

LEAX
STU
LBSR
BCS
JSR
LBRA
FCC

name, PC Get name of program
$FE Store dev mem ptr for future
link Run local link routine
error Exit if error(avoid crash)
,y IF OK, jump to module
unlink Run local unlink routine name
'PIX'

The linkage is fairly simple. The U register points to the
device (current) window's memory. This memory area contains
an indirect pointer to window table entry, which is vital to Pix.
Although this patch uses a system constant, multiprogram
ming need not be concerned. Again, Pix masks interrupts, so
anything stored is very temporary. Hence, it can not affect
another user. After linkage, Pix requests more parameters(the
system has only passed two atthis time). Control is returned and

16

CC310 fetches more parameters. CC3IO then recalls Pix, which
proceeds with mapping in the screen, buffer(s), etc.

The Future of PixBlast

I plan to use my program for various games. I have many
exciting ideas which I am working on right now. I originally
created the program for my personal use. The Blaster tools are
the answer to my animation prayers. Finally, I can have fun
programming good animation!

Whether or notl do offerany games in the future, itis quite
obvious that the Blaster tools are fully capable of incredible
animation. I developed this program to be used, not stored
away in a closet with other protected programs. I would like to
see my program aid other people. Therefore, if you have used
Pixel Blaster in your own game or program and would like to
market them, please contact the author directly. CoCoPRO!
would like to market your program. They will take care of sales,
distribution, and cost of licencing my program. Otherwise, it
has been agreed that an additional fee of $25 will cover a licence
for use in your own program. That, and $1 per-game-sold
royalty will compensate full rights to market your program and
offer Pix as a run time module.

If at any time you experience a crash, program bug, or
problem of any sort, simply contact me at the address below.
Also, I would enjoy hearing from anyone, whether it be ques
tions, comments, or anything else. I strongly believe in user
support. My address is listed below:

Indy Heckenbach Rt 4 Box 2122 Abbeville, La 70510

17

Appendix B : Utilities and
Sample Programs

The disk contains two utilities(merged togetheras pix_util)
in the commands directory. The first is Show. Show is a very
simple graphics display program. It can handle only VEF
uncompressed file. It was written simply for the purpose of
demonstrations. It requires over 64k to run. Pos is the other
utility. Posis quite useful - it can ease the tedious task oflocating
coordinates of an object. Enter Pos and a graphics pointer will
appear, controlled by the mouse. Position the cursor in the
upper left comer of an item that you would like to GET. Click on
it and a little overlay window pops up with the X, Y coordinates
in hexadecimal. Now, find the lower right coordinates of the
image and dick again. Subtract the first pair of coordinates
from the second to obtain width and height. The first starting
coordinates and the width, height can then be passed to Pix.

Now for the most awaited part - demos. What would be
more effective - to give a few short ones or give long, complex
ones? I think most would prefer the former. Once someone
grasps how to send simple control codes to Pix, they should be
able to go as deep as they like. However, more complex demos
are induded in original source code on disk.First in assembly, a
quick get followed by a sideways routine. The buffer should of
been previously defined and the window should be of type 8.

code

entry

error

Psect
fdb
fdb
fdb
fdb
fdb
fdb
fdb
leax
ldy
Ida
os9
bes
chb
os9
endsect

Demo,$11,$81, l, 100,entry
Slb71 GET control
$0501 GRP=5 BFN=l
$0000 X=O Y =0
$3030 W=S30 H=S30
S lb7d SOW control
$0501 GRP=S BFN=l
SOOOO X=O Y=O
code, pc Get codes start
#14 Send 14 bytes
1 To standard output(current window)
ISWrite Write it
error if problem, gen err

IS Exit

20

Secondly, a very short example in Basic09. A horizontal
screen flip followed by a vertical flip renders interesting results.
This procedure also shows how to pass parameters direct.

Procedure : Demo
dim fun:integer
fun=$78
run gfx4(1,fun,0,0, 159, 191)
fun=S7C
run gfx4(1,fun,0,0,159,191)
end

To condude with, a quick loop in C. This program scrolls
a buffer across the screen and erases its remains from behind.
The buffer is defined by the program.

mainO
{

charpath=l,grp=5,bfn=l,x=0,y=0,w=30,h=30; intsize=4000;

defbuf(path,grp,bfn,size);
get(path,grp, bfn,x,y, w,h);
for (x=O; x != 100; x++)

{
mix(path,grp,bfn,x,y);
cbar(path,x-2, y, w+2,h);

}
kilbuf(path,grp,bfn);

21

Appendix C : Related
Commands, Errors and

Conversion

The OS-9 windowing system features many commands
that can be used in conjunction to Pix commands. The most
important ones are listed below for quick lookup from a single
reference.

Function Control Parameters Description

DfnGPBuf lB 29 GRP BFN HBL LBL Define buffer
KllBuf 1B2A GRPBFN Kill buffer
DefColr lB 30 Selects standard colors
Palette lB 31 PRNCTN Select color for slot
FColor lB 32 PRN Select Foreground Slot
BColor lB 33 PRN Select Background slot
Border lB 34 PRN Select Border slot

The OS-9 error codes are used to describe an error that has
occurred during Pix's operation. The following table lists the
relevant codes and how the error relates to Pix.

Error Definition Relation to Pix

183 ILLEGAL WINDOW TYPE Pix requires 32k windows
189 ILLEGAL COORDINATES Vertical coordinate error

or buffer SOW/BLOW will
go off screen bottom

191 BUFFER SIZE Requires a larger buffer
194 UNDEFINED BUFFER Pix can not find a buffer
207 MEMORY FULL Pix can not operate from

where it is located
221 MODULE NOT FOUND Patch can not link to Pix

22

	Pixel Blaster0001
	Pixel Blaster0002
	Pixel Blaster0003
	Pixel Blaster0004
	Pixel Blaster0005
	Pixel Blaster0006
	Pixel Blaster0007
	Pixel Blaster0008
	Pixel Blaster0009
	Pixel Blaster0010
	Pixel Blaster0011
	Pixel Blaster0012
	Pixel Blaster0013
	Pixel Blaster0014
	Pixel Blaster0015
	Pixel Blaster0016
	Pixel Blaster0017
	Pixel Blaster0018
	Pixel Blaster0019
	Pixel Blaster0020
	Pixel Blaster0021
	Pixel Blaster0022

