OmegaSoft 6809
Relocatable Assembler
And
Linking Loader

1y

OMEGASOFT 6809
RELOCATABLE ASSEMBLER
AND LINKING LOADER

ORDER No. MRALL1
RELEASED FOR SOFTWARE VERSION 1.3

Second printing, January 1983

CONRTENTS

ASSEMBLER

OmegaSoft Relocatable Assembler and Linking Loader

Source statement syntax

Label field

Operation field

Operand field

Addressing modes

Expressions
Symbols

Constants

Special opcodes

Assembler directives

ASCT

BSZ

END

ENDC

EQU

FCB

FCC

FDB

IFxx

INCL

WOLOLWWOOODOWOETANMNANB & WWWW

NAM

OPT

ORG

PAGE

PSCT

RMB

TTL

XDEF

XREF

Instruction summary

Error messages
Warning messages

Object module format

DO NI NI B R B bt b bt s o et et b bt Bt
NHEHRHOOANFHHHFOOOOO

LINKER
Commands
CURP
DEF
ENDP
EXIT 22
LIB 22
LOAD 22
MAP 23
MO 23
OBJA 23
STRP 23
EXAMPLE 24
COMMAND LINE (OS DEPENDENT) __ 25

'

OmegaSoft Relocatable Assembler and Linking Loader

ASSEMBLER

The OmegaSoft 6809 Relocatable Assembler is a two pass assenmbler
whose output is compatible with the OmegaSoft linking loader.
This document serves as a reference for the OmegaSoft assembler,
not as an introduction to assembly language programming.

SOURCE STATEMENT SYNTAX

Source statements consist of up to 80 characters in the following
form :

LABEL OPERATION OPERAND COMMENTS
where each field is separated by one or more spaces.
LABEL FIELD

The label field must always start in column 1. If no label is
present, there must be at least one space preceding the operation
field. An asterisk "*" in the first column marks the line as a
comment and no further processing is reguired on that line,
otherwise, the label field defines a symbol. A valid symbol can
contain at most six characters. The first character of a symbol
must be one of the following: "A" thru "2Z", or "." . The rest of
the symbol can consist of the characters "A" thru "z", "0" thru
"gn, ".", "$", or "_". The following symbols are reserved by the
assembler : "aA", "B", "D", "CC", "pDP", "PC", "s", "U", "X", and
"y", A symbol can only be defined once in the label field. A
symbol defined in this manner is assigned the value of the
location counter (exceptions are the EQU directive and the RMB
directive when in absolute section). Each unique label or
external reference symbol requires 13 bytes in the symbol table.
The maximum number of symbols is determined by the amount of
memory available to the assembler and this number is reported at
the end of the assembly.

OPERATION FIELD

The operation field can either be an opcode or an assembler
directive. Opcodes correspond directly to the machine
instructions whereas directives control the assembly process.
Refer to the instruction summary for a list of opcodes.

OmegaSoft Relocatable Assembler and Linking Loader
SOURCE STATEMENT SYNTAX

CPERAND FIELD

The operand field must be one of the following addressing modes :

Addressing modes

13

2)

3)

Immediate addressing := #expression

Inmediate addressing uses information that immediately follows
the operation in memory. If the operation references a two
byte register (D, S, U, X, ¥Y) then a two byte immediate value
is generated, otherwise a one byte value is generated. The
immediate value is interpreted either as a two's complement
signed value (one byte in the range -128 to 127 or two byte in
the range -32768 to 32767) or as an unsigned value ({(one byte
in the range 0 to 255 ($FF) or two byte in the range 0 to
65536 (SFFFF)).

Immediate addressing is also used to represent the
specification of two registers, or a register list. The two
register mode is used by the TFR and EXG instructions. The two
registers are separated by a comma and must either be both one
byte registers or both two byte registers. The register list
mode is used by the PSH and PUL instructions. They consist of
a list of registers separated by commas.

Relative addressing := expression

Relative addressing is used by branch instructions. The offset
is a one byte value for short branches with a range of -128 to
+127 bytes from the start of the next instruction. The offset
is a two byte value for long branches with a range of -32768
to +32767 bytes from the start of the next instruction.

Extended addressing := expression

Extended addressing uses two bytes to contain the address of
the operand. This allows addressing of the full memory range
of $0000 to SFFFF.

Direct addressing := <expression

Direct addressing uses one byte to contain the lower part of
the address of the operand, the upper part being contained in
the direct page register. The lower address must be in the
range of 0 to 255 ($FF). Notice that in this assembler you
must use the "<" character to force direct addressing where
extended addressing is possible.

Inherent addressing

Inherent addressing has no operands, all information required
is contained in the operation code.

e

j
OmegaSoft Relocatable Assembler and Linking Loader
SOURCE STATEMENT SYNTAX
Indexed addressing := expression,R or [expression,Rl or
[expressionl

Indexed addressing is relative to one of the index registers
(except extended indirect). In all indexed addressing forms
the value 0 can be omitted (except extended indirect).

(A) The first type of indexed addressing is constant offset
from R (where R = X, Y, U, or 8). Valid forms are :

expression,R and [expression,R]

where the number of extension bytes depends on the size of
the expression. The "[1"'s indicate the indirect
addressing option.

(B) Accumulator offset from R is of the following form :
acc,R or lacc,R]

where acc is A, B, or D.

(C) Auto increment/decrement R is of the following form :

0,R+ or O0,R++ or 0,~R or 0,~~R or [0,R++] or [0,--R]

Notice that indirect mode can only be used with increment
or decrement by two.

(D) Constant offset from program counter is of the form :
expression,PCR or [expression,PCRI]

where expression can be an 8 or 16 bit offset.

(E) Extended indirect is of the form :

fexpressionl

where expression is a 16 bit address.

OmegaSoft Relocatable Assembler and Linking Loader

Expressions

An expression is a combination of symbols, constants, and
algebraic operations. The expression is used to specify a value
which is to be used as an operand. The expression is evaluated
left to right and there may be no spaces in the expression.
Expressions may contain absolute, relocatable, or externally
defined symbols. Absolute symbols used in an expression must be
defined before use. An externally defined symbol cannot be
subtracted in an expression (i.e. on right side of minus sign).
The result of a relocatable minus a relocatable is absolute.
External and relocatable symbols can only be used with the plus
and minus operations. The following operations are available :

addition

subtraction

logical and

logical or

logical exclusive or
shift left

shift right

v b b b | o

VAN 4

Symbols

Every symbol is assigned a 16 bit value which is used in place of
the symbol during expression evaluation. The reserved symbol "*”"
represents the value of the location counter at the start of the

line of source code. Symbols have one of the following
attributes:

1) Absolute (see EQU, ASCT, and RMB directives)
2) Relocatable (in label field)
3) External reference (see XREF directive)

Constants

Four types of constants are provided in this assembler : hex,
integer, binary, and character. Hex values are preceded by a "$"
and can be in the range of $0 thru SFFFF. Integer values have no
base specifier (prefix) and can be in the range of ~-32767 thru
+32767. Binary values are preceded by a "%" and can be in the
range of %0 thru $1111111111111111. A fourth type of non-numeric
data, character, is also provided. Character data is represented
by a single character preceded by a "'". The result is a value
which is the ASCII value of the character.

i

Omegasoft Relocatable Assembler and Linking Loa..r
SOURCE STATEMENT SYNTAX
SPECIAL OPCODES

The following opcode mnemonics are automatically translated into
their corresponding 6809 equivalent.

Mnemonic 6809 Eguivalent Meaning
CLC ANDCC #SFE clear carry flag
SEC ORCC #8501 set carry flag
SCALL expr SWIIx]
FCB expr system call, example :
0589 only : SCALL $4D =
SWIi2
FCB $4D
others : SCALL $4D =
SWI
FCB $4D

OmegaSoft Relocatable Assembler and Linking Loader

ASSEMBLER DIRECTIVES

ASCT - absolute section

syntax : ASCT [comment]

The ASCT directive will instruct the assembler that any further
RMB d;rectlves are to be in absolute section - non relocatable.
This is useful for assigning addresses to 1/0 devices or

variables. The ORG directive can only be used when in absolute
section.

B5Z ~ block storage of zeroes

syntax : [label] BSZ expression [comment]

The BSZ directive causes the assembler to allocate a block of
bytes, gach with an initial value of zero. The value of the
expression must be absolute and the expression value must be
defined before the BSZ directive statement.

END - end of source program
syntax : END [labell

The END directive ‘indicates the logical end of the source program
has been encountered. If the operand is specified the relative
address of the label is used as the begin execution address of
this program (on 0S9 this label is ignored).

ENDC - end of conditional assembly

syntax : ENDC [comment]

This directive marks the end of conditional assembly, the
assembly 1is now enabled.

EQU - equate symbol to a value

syntax : label EQU [{comment]

expression
The EQU directive assigns the value of the expression in the
operand field to the label. The expression cannot contain any
external references, or forward references. The symbol will be
absolute (non relocatable).

FCB ~ form constant byte
syntax : [labell FCB expression{,expression} [comment]
The value of each expression is truncated to one byte and stored

in successive locations in the object program. The expression(s)
must be absolute.

|
OmegaSoft Relocatable Assembler and Linking Loauer
ASSEMBLER DIRECTIVES

FCC - form constant characters
syntax : [labell FCC

or
flabell FCC

number,string
<delimiter>string<delimiter>

The FCC directive stores ASCII characters into consecutive bytes
of memory. In the first format the number defines the number of
characters after "," to be output. There are never more
characters output than there are characters on a line regardless

of the count specified.

The second format of the FCC directive specifies the characters
to be output between 2 identical delimiters. The delimiter is the
first non-blank character after the "FCC".

FDB -~ from double byte

syntax : [labell FDB expression{,expression} [comment]
The value of each expression fills 2 bytes and are stored in
successive locations in the output. The expression(s) may be of
type absolute, relocatable, or external.

IFxx — conditional assembly

syntax : IFxx expression [comment]

This set of directives is used to determine if the code that
follows is to be assembled. This is effective until a "ENDC"
directive is encountered. These directives cannot be nested.
There are six variations of the IFxx directive :

IFEQ - assemble code if expression is equal to O

IFGE - assemble code if expressior is greater than or equal to 0
IFGT - assemble code if expression is greater than 0

IFLE ~ assemble code if expression is less than or equal to 0
IFLT - assemble code if expression is less than 0

IFNE - assemble code if expression is not equal to 0

INCL - include source from file

syntax : INCL <path name>

The path name given is opened and source is read from the path
until end of file. At that point the path is closed and source
continues from the main file. Include directives may not be
nested.

OmegaSoft Relocatable Assembler and Linking Loader
ASSEMBLER DIRECTIVES

NAM - assign program name
syntax : NAM string [comment]
The NAM directive specifies the name of the relocatable program
module. Only the first 6 characters of the specified string are
used. If no directive is specified, a default blank name is
output.
OPT — assembler options
syntax oPT options{,option}
The oPT directive is used to control the format of the assembler
listing output. Options not recognized by this assembler are

ignored. The following is a list of options recognized :

L print the listing from this point on (default). This only
has an effect if the "L" command line option is used.

NOL do not print the listing from this point on.

W Do issue warning messages (default). This only has an
effect if the "W" command line option is used.

NOW Do not 1issue warning messages.

ORG —- set location counter

syntax ORG expression [comment]

This directive is only valid when in absolute section (ASCT). The
absolutg section location counter will be set to the value of the
expression. The expression must be absolute.

PAGE - move listing to next page

syntax PAGE

This directive causes the listing to move to the top of the next
page if the listing is enabled and page size is non-zero.

PSCT -~ program section
syntax PSCT
This directive will change the section to program section

(relocatable). The default at the start of the assembly is
program section.

10

Omegaouft Relocatable Assembler and Linking Load..
ASSEMBLER DIRECTIVES

RMB - reserve memory bytes
syntax : [labell RMB expression [comment]
The operation of this directive depends on which section the
assembler is in. If the assembler is in program section (PSCT)
then this directive is identical in operation to BSZ. If the
assembler is in absolute section (ASCT) then the absolute section
location counter will be used as the absolute value of the symbol
and the value of the expression will be added to the absolute
section location counter.
TTL -~ set page title
syntax : TTL string

The TTL directive causes the page title to be set to the string
in the operand field.

XDEF -~ external definition

syntax : XDEF symbol{,symbol} [comment]

The XDEF directive is used to specify that the list of symbols is
defined within the current program and the definition is passed
through the linker.

XREF - external reference

syntax : XREF symbol{,symbol}l [comment]

The XREF directive is used to specify that the list of symbols is

referenced within the current program but is defined in another
program (via XDEF).

11

OmegaSoft Relocatable Assembler and Linking Loader OmegaSoft Relocatable Assembler and Linking Loader
INSTRUCTION SUMMARY

INSTRUCTION SUMMARY
INSTR ~~~~~~ DESCRIPTION =~~~ IMM DIR EXT IDX INH REL

INSIR DESCRIPTION IMM _DIR EXT _IDX _INH REL CLC 0 -> ¢ X
CLRA 0 ~> A X
ABX B (UNSIGN) + X -> X X CLRB 0 ->B X
CLR 0 ->H X X X
ADCA A+ M+ c ~->A X X X X
ADCB B+M+c¢c ~->B X X X X CMPA A - M sets CC X X X X
CMPB B - M sets CC X X X X
ADDA A+ M ->A X X X X CMPD D - M:M+1 sets CC X X X X
ADDB B+ M ~>B):4 X X X CMPS S - M:M+l sets CC X X X X
ADDD D + M:M+1 ~-> D X X X X CMPU U - M:M+1l sets CC X X X X
CMPX X - M:M+1 sets CC X X X X
ANDA A and M -> A X X X X CMPY Y - M:M+l sets CC X X X X
ANDB Band M -> B X X X X
ANDCC CC and M ~-> CC X COMA not A -> A X
COMB not B -> B X
ASLA A} (== X COM not M ~> M X X X
ASLB B} [1 <~ [1 (] [1 <~0 X
ASL M1}l c b7 b0 X X X CWAT CC and M then wait X
ASRA A} — X DAA Decimal adjust A X
ASRB B}y [1 [} [-> 1] X
ASR M} b7 b0 c X X X DECA A-1->A X
DECB B-1->8B X
BCC branch if carry clear X DEC M-1->HM X X X
BCS branch if carry set X
BEQ branch if equal to zero X EORA A eor M -> A X X X X
BGE branch if >= zero (signed) X EORB B eor M -> B X X X X
BGT branch if > zero (signed) X
BHI branch if > zero (unsigned) X EXG regl <--> reg?2 X
BHS branch if >= zero (unsigned) X
INCA A+1 ~->1 X
BITA M and A sets CC X X X X INCB B+1->B X
BITR M and B sets CC X X X X INC M+1-=->HM X X X
BLE branch if < zero (signed) X JMP addr -> PC X X X
BLO branch if <= zero (unsigned) X JSR JUMP to subroutine X X X
BLS branch if <= zero (signed) X
BLT branch if < zero (signed) X LBCC branch if carry clear X
BMI branch if minus (b7 set) X LBCs branch if carry set X
BNE branch if not equal to zero X LBEQ branch if equal to zero X
BPL branch if plus (b7 clear) X LBGE branch if >= zero (signed) X
BRA branch always X LBGT branch if > zero (signed) X
BRN branch never X LBHI branch if > zero (unsigned) X
RSR branch to subroutine X LBHS branch if >= zero (unsigned) ¥
BYC branch if overflow clear X LBLE branch if < zero (signed) X
RVS branch if overflow set X LBLO branch if <= zero (unsigned) X

12 13

Omegasoft Relocatable Assembler and Linking Loader OmegaSoft Relocagablﬁuégsgmbégf agg Linking Loader
INSTRUCTION SUMMARY NST ION SUMMA

INSTR RESCRIPTION IMM __DIR EXT IDX INH REL
INSTR DESCRIPTION IMM _DIR EXT IDX INH REL
ROLA A} -- - X
LBLS branch if <= zero (unsigned) X ROLB B} -[1 <~ [1 11 [} <=~ X
LBLT branch if < zero (signed) X ROL Hi c b7 b0 X X X
LBMI branch if minus (b7 set) X
LBNE branch if not equal to zero ¥ RORA N B it X
LBPL branch if plus (b7 clear) X RCRB B} =--> 1 -> 11 (1 11~ X
LBRA branch always X ROR M} c b7 b0
LBRN branch never X .
LBSR branch to subroutine X RTI return from interrupt X
LBVC branch if overflow clear X RTS return from subroutine X
LBVS branch if overflow set X
SBCA A-M-¢c=>A X X X X
LDA M ->a X X X X SBCB B~-M~-cC=->B X X X X
LDB M->B X X X X
LDD M:M+]l ~> D X X X X SCALL system call M X
LDS M:M+l ~> 8 X X X X
LDU M:M+l -> U X X X X SEC 1 ->c %
LDX M:M+l -> X X X X X .
LDY MM+l -> ¥ X X X X SEX sign extend B into A X
LEAS addr -> § X STA A->M X X X
LEAU addr -=> U X STB B->HM X X X
LEAX addr -> X X STD D -> M:M+1 X X X
LEAY addr -> Y X STS S => M:M+1 X X X
STU U =-> M:M+1 X X X
LSLA A} Qo X STX X => MiM+l X X X
LSLB B} [] <= (1 1] [] <=0 X STY Y ~-> M:M+1 X X X
LSL nmi} c b7 b0 X X X
SUBA A-M-=->A4 X X X X
LSRA A —— X SUBB B~-M->B X X X X
LSRB B Y0 ~> [1 [1 (1 -> (1] X SUBD D - M:M+1 -> D X X X X
LSR M} b7 b0 c X X X
SWI software interrupt 1 X
MUL A * B ~->D X] SWIZ2 software interrupt 2 X
: SWI3 software interrupt 3 X
NEGA not A + 1 -> A X
NEGB not B + 1 ~->B b4 SYNC synchronize to interrupt X
NEG not M + 1 -> M X X X
TFR regl -> reg2 X
NOP no operation X
TSTA test A sets CC X
ORA A or M ->2RA X X X X TSTB test B sets CC X
ORB BormM->B X X X X TsT test M sets CC X X X
ORCC CC or M -> CC X
DEFINITIORS :
PSHS push reg. list on S stack X
PSHU push reg. list on U stack X A, B, D, X, Y, U, S, CC,;, PC contents of 6809 registers
PULS pull reg. list off § stack X c carry bit in CC
PULU pull reg. list off U stack X M 8 bit contents of memory
M:M+1 16 bit contents of memory

14 15

174

175

176

177

178

179

202

203

204

205

OmegaSoft Relocatable Assembler and Linking Loader
ERROR MESSAGES

Invalid auto increment/decrement format.
Single auto increment or decrement was specified in the
indirect mode (e.g., LDB [Y+]).

Invalid index register format.
One of the accumulators was specified as the offset in the
index mode but was not followed by one of the index
registers.

Invalid expression for PSH/PUL.
The register list following one of the instructions PSHS,
PULS, PSHU, or PULU contained symbols that were not
registers.

Incompatible register for PSH/PUL instruction.
The register list for the PSHS/PULS instructions contained
the register "S" or the register list for the PSHU/PULU
instructions contained the register "U".

Invalid register operand specification.
Undefined register name encountered in indexed addressing
mode.

Incompatible register pair.
The register pair of an EXG or TFR instruction was not the
same size. The pair must be two 16 bit registers or two 8
bit registers.

Label or opcode error.
A label or opcode symbol does not begin with an alphabetic
character or period.

Error in operand expression.
Incompatible symbol types in expression.

Operand needed.
An operand was not found when expected.

Label error.
Invalid character in label.

Undefined opcode.

The symbol in the opcode field is not a valid opcode or
directive.

16

s

208

209

210

212

214

215

216

2198

222

223

224

OmegaSoft Relocatable Assembler and Linking Loader
ERROR MESSAGES

Branch out of range.
The operand resulted in an offset greater than 129 bytes
forward or 126 bytes backward from the first byte of the
branch instruction.

Illegal addressing mode.
The specified addressing mode in the operand field is not
valid with this instruction type.

Byte overflow.
The operand's value exceeded one byte. The most significant
8 bits of the 16 bit expression must all be zeroces or all
ones for a one byte two's complement field.

Directive operand error.
A syntax error was detected in the operand field of a
directive.

FCB directive syntax error.
The structure of the FCB directive is syntactically
incorrect.

FDB directive error.
The structure of the FDB directive is syntactically
incorrect.

Directive operand error.
The directive's operand field is missing, terminated by an
invalid terminator, or an expression in the operand field
contains an invalid operator.

No END statement.
The END directive was not found at the end of the source
file. The END directive is automatically supplied.

Symbol table overflow.
The symbol table has overflowed. This is a fatal error and
terminates the assembler during pass one,

The directive must or must not have a label
Depending on the directive used, the label field must be
blank or must contain a valid symbol.

Multiply defined symbol.

An attempt was made to define a symbol that was already
defined. .

17

Omega3oft Relocatable Assembler and Linking Loader
ERROR MESSAGES

241 Illegal symbol used in an expression.
An undefined, forward referenced, external reference, or
relocatable symbol was used illegally in an expression that
does not allow them.

243 XREF or XDEF directive operand error.

An invalid symbol or no operand was detected in the operand
field of the XDEF or XREF directive.

WARNING HMESSAGES

1 Long branch not required.
The destination could have been reached with a short branch.

This warning can also be issued when using PCR relative -

addressing.

7 Extended addressing.
This could result in non position independent code.

8 Non absolute immediate addressing.
This could result in non position independent code.

18

Omegu..0ft Relocatable Assembler and Linking Loa._r
OBJECT HODULE FORMAT

The following is a description of the relocatable object module
format used by this assembler and the companion linking loader.
The file is recorded in a binary record format where a record
consists of :

DPLX XX .00 XX XCCR

where :
D is the ASCII character "D" and signifies start of record.
L is a byte that is the length (data plus checksum).
X is the data of the record.
C is the 2's complement checksum (starting with L).
CR is a carriage return ($D).

Record types
2) Header
'2' : $00 : NAME : "0OB"

This record is the first record of the object module. The six
character module name (NAME) is the name that was specified in
the NAM directive.

3) External symbol definition (ESD)
"3' ¢ SYMTYPE/SECT : DEF

where SYMTYPE is the upper nibble and has the following
format:

$0 - load section definition

$2 - label definition

$3 - external reference

SECT is the lower nibble and has the following format :
$0 - ASCT or any (for XREF)

$1 - BSCT - not implemented -~ size set to 0

$2 - CSCT - not implemented - size set to 0

$3 -~ DSCT « not implemented - size set to O

$4 - PSCT

19

4)

5)

6)

]

OmegaSoft Relocatable Assembler and Linking Loader
OBJECT MODULE FORMAT

This record marks definitions of XREFs, XDEFs, and the size of
the code. If SYMTYPE = 0§ and SECT = 0 then DEF is a 2 byte
ASCT section length (always zero) and a 2 byte ASCT start
location (always zero). If SYMTYPE = 0 and SECT = 1 then DEF
is a 2 byte BSCT sectiun length (always zero). If SYMTYPE = 0
and SECT = 2 then DEF is a 2 byte CSCT section length (always
zero), If SYMTYPE = 0 and SECT = 3 then DEF is a 2 byte DSCT
section length (always zero). If SYMTYPE = 0 and SECT = 4 then
DEF is a 2 byte value of the total PSCT size. If SYMTYPE = 2
(XDEF) then DEF is a 6 byte name followed by the 2 byte
relative address (if SECT = 4 PSCT) or its absolute address
(if SECT = 0 ASCT). If SYMTYPE = 3 (XREF) then DEF is a 6 byte
name and SECT = 0 {any section will match). SYMTYPE/SECT : DEF
can be repeated 0 or more times.

Program
'4' : ESD INDEX : $00 : RELADDR : BYTES

This record contains program code. ESD INDEX will always be
$0004 which indicates the code is in PSCT. RELADDR is the 2
byte address where the data starts to load relative to the

start of the module. BYTES are up to 122 bytes of code to
load.

Relocation and Linking record
‘5" : FLG : RELADDR : ESD INDEX

This record marks addresses which must be relocated by the
linker and marks addresses which have external references to
resolve. This record corresponds to program bytes which were
included in the last type '4' record. FLG is a 1l byte flag
that is $00 if the relocation is to be added, or $08 if the
relocation is to be subtracted. RELADDR is the relative
address of the module word that is to be relocated. ESD INDEX
indicates which external symbol definition (ESD) corresponds
with this relocation. 0 means the lst ESD physically in the
module, 1 the 2nd ESD, etc.. FLG : RELADDR : ESD INDEX can be
repeated zero or more tines.

Terminator
'6' : SECT : RELADR
This record marks the end of the object module. RELADR is the

start execution offset referenced to the start of section
SECT.

20

Omegasoft Relocatable Assembler and Linking Loader
LINEKER

The OmegaSoft Linking Loader is a two pass loader which can
accept relocatable object modules from the OmegaSoft Relocatable
Assembler. On the first pass all external symbol wvalues are
defined (and relocated if necessary), all object modules which
are to be loaded from libraries are determined, and the size of
the load module is determined. On pass two the load module is
produced using the information from pass 1, satisfying external
references, and relocating specified addresses. Up to 200 modules
may be handled by this linker. The number of global symbols that
can be handled is determined by the amount of memory available to
the linker.

COMMANDS

Each command cannot exceed 80 characters. Pass one terminates
when the OBJA command is entered at which point all commands
entered during pass one will be repeated and echoed by the linker
until the OBJA command is encountered the second time. At this
point entry resumes from the input path for acceptance of the map
command (if used) and the exit command. No more than 20 commands
may be used between the first command and the OBJA command,
inclusive.

CORP - set current location
syntax : CURP=I[\]$<hex number>

This command modifies the current loader location counter. If the
'\' is not specified then the location counter will be set to
<hex number> + start load address. If the '\' is specified then
future modules will be loaded at an even power of two relative to
the start of the section. For example : CURP=\$100 will cause
future modules to load at addresses xx00 and CURP=\$10 will cause
future modules to load at addresses xxx0. This option remains in
effect until another CURP command is encountered.

DEF -~ loader symbol definition
syntax : DEF:<name>=$<hex number>

This command defines a global symbol and inserts it into the
global symbol table. The symbol is defined as absolute (ASCT).

21

OmegaSoft Relocatable Assembler and Linking Loader
COMMANDS

ENDP - ending PSCT address

syntax : ENDP=$<hex number>

This command sets the end load address of the load module. If the
actual module would be smaller, then the load module is padded
with zeroes (memory image operating systems only). The default
for ENDP is SFFFF.

ERRORS : If the module exceeds the ENDP address, then a ‘ENDP
ADDRESS EXCEEDED' error message will result.

EXIT ~ exit linker

syntax : EXIT

This command terminates the linker.

LIB - library search

syntax : LIB=<file namel>{,<file nameN>}

This.cpmmaqd directs the loader to load object modules in the
specified files only if the object module satisfies an unresolved
external reference from an object module previously loaded. The
file names may be separated by spaces or commas.

ERRORS : A 'MULTIPLY DEFINED SYMBOL' error can result if the same
name is defined in more than one loaded module. An ‘UNDEFINED
SYMBOL' error can result if there is no name definition to
satisfy a reference.

LOAD ~ load file

syntax : LOAD=<file namel>{,<file nameN>}

This command directs the linker to load the specified files.
There can be one or more object modules in a file.

ERRORS : A 'MULTIPLY DEFINED SYMBOL' error can result if the same
name is defined in more than one loaded module. An ‘UNDEFINED
SYMBOL'" error can result if there is no name definition to
satisfy a reference.

22

‘ i
Omegu.s0ft Relocatable Assembler and Linking Loa.er
COMMANDS

MAP - print load map

syntax : MAP[U1l(s]IMII[D]
MAPC
MAPF

This command displays the current state of the modules loaded.
The U option will list any undefined symbols. The S option will
list the memory size of the modules loaded plus symbol table
usage. The M option will list the starting load address of all
modules loaded. The D option will list each loaded module along
with the external definitions contained in that module. MAPC is
equivalent to MAPS. MAPF is equivalent to MAPUSMD.

MO - map output

syntax : MO=<path>

This command overrides the load map specification in the command
line. Any path valid in the command line redirection is valid
with this command.

OBJA - produce load module

syntax : OBJA=<file name>

This command specifies the output load module produced by the
linker. The OBJA command terminates pass one of the linker, and
consequently the start of pass two. The output file is filled
during pass two and is closed upon executing the OBJA command
during pass two of the linker.

STRP -~ starting PSCT address

syntax : STRP=$<hex number>

This command sets the starting load address of the load module.
The default is $0.

23

OmegaSoft Relocatable Assembler and Linking Loader
EXAMPLE

In the OmegaSoft Pascal system there are normally three main
components in the resultant pascal program : stack setup, main
program, and runtime library. This example will use the
hypothetical program 'test'.

In the setup code is some code like this :

XDEF START
XREF TEST
|
]
LBSR TEST

In the main program :

XDEF TEST
TEST EQU *
|
|
LBSR RUN1
|
LBSR RUN2
}
XREF RUN1,RURNZ2

where RUN1 and RUN2 are routines in the runtime library.
In the runtime library :

XDEF RUN1
RUN1 EQU =*
I
|
XDEF RUN2
RUN2 EQU *
I
|

By assembling the stack setup code (.PS), the output of the
compiler for the main program (.CA), and merging the assembled
output of all the runtime libraries together (RL), these can be
used as input to the linker as in :

LOAD=TEST.PS TEST.CA
LIB=RL
OBJA=TEST

The linker will build a loadable version of the pascal program
with only the necessary runtime routines and with all of the LBSR
XXXX instructions replaced with the correct relative offset into
the definitions in the other modules.

24

