- o LB =

~ O8-9 Inmteractive Debugger o

R
I

139

Part III. Interactive Debugger.................... i3
" Chapter 1. Introduction e PO : 141
- ' S Calling DEBUG ... tve il nat

Basic Conceptscvevnnnnn. i, 141

Chapter 2. Expressions0 0700 0TS
L Constams....‘.......I.‘...'..‘..;..ﬂ;._.‘..;'.-.‘V."-,‘.i.-.>_.:.tl43>_ _
© o Special Names. ..o . lozulvvoiiviin o i 144 0
Register Names........ et ianians ERTTTPRPR S L~

©_ Forming EXpressions R 145 .
!ndxrect Addres:mm.'...v..'.._..'.._,'................‘. 146 .
.. . Chapter 3. DEBU(‘ C ommands...... RRRRPEORRCUTUU £ > S
RSO EE ‘ Ca!cu!ator Command U IEOE SOURN SR PL SRR !5 .
L R Dot and Memory Examine and Change Commands 148 ey
e : SR ©© Register Examine and Chunge Commuands st - o
R B BrcakpomtCommands.............._.....'.....'.L..ISZ o -

R . - S Program Setup and Run Commands e 155
o B R P UuhtyCommands..._..‘, eesaeenanas S 157

Sl . 77 Chapter 4. Usmg DEBUG.;.‘ e eeee 159
e) Coe , i R j' Samp?e Prooran; R o LT s

@‘ : ' Sooo T T A Session with DEBUG. .Ul SO ... 160

N Do ST Patching Programs e teeeeeceas PR SPRPIS LY

. * 7 Patching OS-9 Component Modulesonee. 162
- Appendix DEBUG Command Summary................... 165

S Error Codes...............c.oooooo .. el 166

vi
140

L -

Calling DEBUG

1 / Introduction

DEBUG is an interactive debugger that aids in diagnosing
systems and testing 6809 machine-language programs. You can
also use it to gain direct access to the computer’s memory.
DEBUG?’s calculator mode can simplify address computation,
radix conversion, and other mathematical problems. '

DEBUG is supplied on your OS-9 system disk. ther? the screen
. shows the OS-9 prompt, call DEBUG by typing:

DEBUG (ENTER

Basic Concepts

DEBUG responds to l-line commands cn‘tered from the
keyboard. The screen shows the DB prompt when DEBUG
expects a cornmand.

Terminate each line by typing (ENTER). Correct a typing error by
using the backspace (‘eft arrow) key, or delete the entire line by

e o _ typmg (XD while pressing -

Each commancf starts with a single character wthh may be
followed by rext or by one or two arithmetic expressions,
depending on the command. You may use upper- or lower-case
letters or a mixture. When you use the (SPACEBAR) to insert a
space before a specific expression, the screen shows the results
in hexadecimal and decimal notation. Example:

" In the calculator mode, obtain hexadecimal and decimal nota-
tion for the hexadecimal expression A+2:

You Type: SPACEBAR) (A
Screen Shows: DB: A+2
$O000C #02012

141

,-
' P
- R
ST
- EEANE

-
h
e,
_ .
-
s
-

142

Note: In the examples in this manual, general instructions are
followed by specific typing instructions and then by what the
screen shows. In some cases, examples will follow the explana-
tion of more than one command. Be sure to execute these

‘examples in the exact order in which they are given so that you

will obtain the specified display on your screen. =

R

. 2/ Expressions =~ -

DEBUG’s integral expression interpreter lets you type simple or
complex expressions wherever a command calls for an input
velue. DEBUG expressions are similar to those used with high-
level languages such as BASIC, except that some extra oper-

.- ators and operands are unique to DEBUG.

Numbers in expressions are 16-bit unsigned integers, which are
the 6809's “‘native’’ arithmetic representation. The allowable
range of numbers is 0 to 65535. Two's complement addition and
subtraction is performed correctly, but will print out as large
positive numbers in de¢imal form. .~ -+

—

Some commands require byte values, and the screen shows an

error message if the result of an expression is too large to be.

stored in a byte, that is, if the result is greater than 255. Some
operands, such as individual memory locations and some regis-

. . ters, are only one byte long, and they are automatically con-
_ verted to 16-bit “*'words™” without sign extension. . :

". Spaces, other than a space at the beginning of a command, do

not affect evaluation; use them as necessary between operators
and operands to improve readability.

. Constants can be in Bésc 2 (binary), base-10 (decimal), or base

16 (hexadecimal). Binary constants require the prefix %; deci-

" mal constants require the prefix #. All other numbers are

assumed to be hexadecimal and may have the prefix S. Exam-

~ ples:
Decimal Hexadecimal Binary
#100 2064 1100110
#255 FF Z11111111
#6000 1770 %1011101110000
#05535 .- FFFF i

143

C b mr————— - b

e e —— s+

PPRTRIPRPEAEY

[

You may also use character constants. Use a single quote (*) for
1-character constants and a double quote (7) for 2- character
constants. These produce the numencal! value of the ASCII

- codes for the character(s) that follow. Examples

AA o= S0041 oo {f_ '
0 =50030 I
"AB = $4142

99 =$3939

Dot (.} is DEBUG’s current working address in mc'mory. You
can examine it, change it, update it, use it in expressions, and

77 recall it. Dot ehmmatcs a tremcndous amount of memory - .
:+ " address typmg ’,_ e e B A,;_.._.V.‘.. ST

"Dot~ Dot (..) is the valuc of Dot bcfore the last nme it was

Registér Names

changed. Use Dot-Dot to restore Dot from an incorrect value or
use it as a second memory address. : :

: Spe\.lfy Remstcrs MPU with a co!on () followed by the mne-

S momc name of the register. Examplcs. L »

144

- =

A Accumu.ator A

: Accumulator B
: Accumulator D
: - X Register
:Y - Y Register
: U Register

Stack Pointer
Program Counter

B

D

X

Y

U

:DP Dircct Page Register
sp

PC

CC Condition Codes Reyister

W

Operators - .

The values returned are the test program’s registers, which are
**stacked” when DEBUG is activve. One-byte registers are
promoted to a word when used in expressions.

Note: When a breakpoint interrupts a program, the Register SP
"~ points at the bottom of the Register MPU stack.

——

o - **Operators’’ specify arithmetic or logical operations to be per-
Y-~ formed within an expressicn. DEBUG executes operaiors in the
. following order: (1) —, negative numbers; (2) & and !, logical

AND and OR; (3) * and /, multiplication and divisio_n; 4) +

* - and —, addition and subtraction. Operators in a single express-

jon having equal precedence, for example, + and -, are

“evaluated left to right. You can use parentheses, however, to

override precedence.

Fcrming Expressions

An expression is composed of any combination of constants,

valid expressions:

' U #1024+ #128
| X—-:Y-2
420
.:Y:(:X+:A)'
:UI&FFFE

145

register names, special names, and operators. The following are

Indirect Addressing

146

. <expression>

Indirect addressing returns the data at the memory address using
a value {expression, constant, special name, and so on) as the
memory address. The two DEBUG indirect addressing modes
are: . e ;

_ " returns the valué of a memory byte using_exprassion as an
-, address. U AN S ,

J[expression] S IR , S

" returns the value of a 15-bit word using expression as an
2. address. SR

kExamp.lés:"-‘j.'}';‘.-v S S

RN

B - <200>

returns the value of the byte at Address 200.

[:X] o

7 returns the value of the word pointed to by Regisier X.

returns thie value of the word at Address Dot plus 10.

re .

3/ Debug @@mmgﬁds

Calmia Lor Commands

L (SPACEBAR) <express.on> ENTER)

-omcb : ' © evaluates the expressxon and dxsplays the results in both hexa-
Rt : ' T _ decimal and decimal. Examples:

SSWT 0 0 .7 i Yo Type: GPACEBARS000+200 ENTED
o , a J Screen Shows: PB: S000+200 - , . .
| $5200 #20882 -~

- You Type- (SPACEBARIGB0 0 /2 (ENTER
Screen Shows. DB: BBODB/2
- $4400 #17408

e T You 'rype- (SPACEBAD = 100+ %12 m
e Screen Shows DB #100+%12 .

L These commands also convert values from one represemation to
! T : another. Examples:

Convert a binary expression to hexadecimal and decimal:
You Type: (SPACEBATDZ11110000
Screen Shows: DB: 2111109000

) $QOF0 w0240

Convert a 1-character constant to hexadécimal ASCII and dec-
imal ASCII: :
You Type: GPACESAR) ‘A (ENTER)
Screen Shows: DE: ‘A
: s $0041 #000865

Convert a decimal expression to hexadecimal and decimal:
You Type: (SPACEBAR)# 109
~ Screen Shows: DB: #1009
© $00C4 #0623100

You can also use indirect addressing to look at memory without
changing Dot. Example:
You Type: . (ENTER)
Screen Shows: DB: .
$004F #0079

147

7 see7e weer1z - -

In addition, you can use indirect addressing to simulate 6809 '
indexed or indexed indirect instructions. The following exam-
ple is the same as the assembly language syntax [D,Y].
You Type: (SPACEBARIL : D+:Y]
Screen Shows: DB: [:D+:Y] .
' 56116 . *¥090272

- Dot and Memory Examme and Change

oo Camma ds T R S sty
- . : S '.~5. d:sp!ays the current value of Dot (the current workmt7 mcmory
o R R - address) and its contents. Example
o IR " YouTyper | ERTER) - Sl
" - Screen Shows: DBs: o+ . R
o 2201 B0
‘ - S " The present vaiuc of Dot is 2701 and BO is Lhe contents of
’ R 'memory locanon 2201 R
: | : , increments Dot and dxsplays its new value and contents.
- -_Examplc -
" *Step through®’ sequential mcmoryblocvations:'
You Type: (ENTER
Screen Shows: DB ,
’ 2202 05
- You Type:
: Screen Shows: DB:
i ' 2263 €2
i You Type: (ENTER
g Screen Shows: DB:
) : 22¢4 82
. 148~
.. T .
|

A IR A R e g e
el sin i S T

—

backs up Dot oné ‘address and displays its value and contents.
Example: '

S T i - . Display the current value of Dot: :
o ; ~ You Type: « . -
- : ' Screen Shows: DB: .+ :
2204 82

~ Back up one address and display its value and contents:
You Type: - ENIER) . . ‘
Screen Shows: DB: - : =
2293 C2.

" Back up another address and display its value and contents:
You Type: -
- Screen Shows: DBz - .
e o 220205

. expression

changes the value of Dot. This command evaluates the specified
expression, which becomes the new value for Dot. Example:

) ' o . You Type: . 5¢¢ (ENTER)
' ' Screcn Shows: DB: ., 580
9500 12

restores the last value of Dot. Example: Do

Display the current value of Dot and its contents: .
You Type: « ENTER)
Screen Shows: DB:

' 1000 23

Change the value of Dot:
You Type: « 2000 .
Screen Shows: DB: .+ 2000
: 2090 9C

i _ : : - : 149

oo '

150

changes the contents of Dot. This command evalu~»

. This command also checks Dot after the new value -
- make sure it changed to the correct value. If itdid not . ===

. the same as when written to.

Restore the last value of Dot: -
- You Type: «+ «
~ Screen Shows: DB: .. (ENTER
o : 1000 23

= expfession

. seT T ex-
pression and stores the results at Dot. It then increme<#= —ezznd
displays the next address and contents. - [:
oo e |

z===n

shows an error message. This happens when you atte <7 & 27T
non-RAM memory. In particular, the registers of <> =570~
family interface devices (such as PIAs and ACIAs) ™ o ad

Examplc: T e

Display the current value of Dot and its contents:
You Type: « ENTER)
Screen Shows: DB: o .
C 22903 C2

Change the contents of Dot:
You Type: =FF
Screen Shows: DB: =FF

™. .. 220401

- - -

Show that the contents of Dot have changed:
You Type: - (ENTER

Screen Shows: DB: -
a 22¢3 FF

Warning: This command can change any memory f::z::m
You can destroy DEBUG, the program under test, A IS5 IE
you incorrectly change any of their memory areas.

Register Examine and Change Commands -

You can use any of several forms of the colon (:) register
command to examine one or all rtg:stcrs or to change a specific

v rcglstcr § contents.

The “mgistcrs" affected by these commands are actually **im-

. “ages”’ of the register values of the program under test, which are

stored on a stack when the program is not running. Although a
**dummy"” stack is established automatically when.you start

' DEBUG, use the E command to give the register images valid
data before using the G command to run the program. The

*‘registers’” are valid after breakpoints are encountered and are

- passed back to the program upon the next G command

‘< Note: e .,: - i Lo } .

1. . Ifyouchange the Register SP, you move your stack
- and the other register contents change. .
" 2. Bit7 of Register CC (the E flag) must always be set
for the G command to work. Ifitis not set, DEBUG
does not return to the program correctly.

s register

. displays the contents of a specific register. The contents arc in
hcxadccxmal Examp]cS'

You Type. : PC ERTER
Screen Shows: DB: :PC
€499

You Type: :B (ENTER)
Screen Shows: DB: :B
007E

. You Type: :SP

Screen Shows: DB: :SP
42FD

151

——

Ly el
oG T T

displays all registérs and their contents. Example:

R - .. You Type: :
. o Screen Shows. DB: :
PC=B265 A=01 B=08 CC 8@

DP=0C
© SP=0CF4 X=FFOD Y=0008
o U GSDAE
_> '<regzster> <expresszon> . e R

. assxgns a new valuc toa regzster 'DEBUG ’valuates the ex-

. pression and stores it in the specified register. When you name

. .. 8-bit registers, the value of the expression must fit in a single

e ..o ... byte. If it does not, the screen shows an error message, and the -
I ; T regxstcr does not change Examples: -

C o A) ' You Type: X 84698“
- , o Screen Shows: DB: :¥X #409¢

Breakpbint Commands

T oo - The breakpoint capabilities of DEBUG let you specify ad-
o ' © - dresses where you wish to suspend eaecution-of the program

under test and reenter DEBUG. When you encounter a break-

- point, the screen shows the values of the Rcoxsters MPU and the

DB: prompt.

After a breakpoint is reached, you can examine or change
registers, alter memory, and resume program execution. You
~ may inser: breakpoints at up to 12 addresses.

You can insert breakpoints by using the 6809 SW1 instruction,
which interrupts the program and saves its complete state on the
stack. DEBUG automatically inserts and removes SWI instruc-
tions at the right times; so you do not **see’” them in memory.

152

R e iegrrietotd 2o ot = S ———

Because the SWis operate by temporarily replacing an instruc-
tion OP code, there are three restrictions on their use:

1. You cannot use breakpoints in programs in ROM.

2. You must locate breakpoints in the first byte (OP
code) of the instruction. : '

O R) 3. You cannot utilize the SWI instruction in user pro-
R I : - grams for other purposes. (You can use SWI2 and
') SWI3.y

- -

When you encounter the breakpoint during execution of the
program under test, reenter DEBUG by typing <:><regisicr
name>. The screen shows the program'’s register contents.

7

o - o _ .display's ail breseﬁt br’eakpoir:n addrcsées.'

B <expression> .
inserts a breakpoint at a specified expression.
Examples:

_) Insert a breakpoint at the specified expression:
- %7 You Type: B.1C00 ENTED _
o 7. Screen Shows: DB: B 1C092 - e

' :) o Insert another breakpoint at the specified expression:
- - . S N . You Type: B 4FD3 (ENTER
. _ Screen Shows: DB: B 4FD3

Display the current value of Dot and its contents:
You Type: + (ENTER
Screen Shows: DB: "
1277 39

Insert the breakpoints at Dot:

You Type: B+ (ENITER
Screen Shows: DB: B

153

e e e .

e R

o

Display all present breakpoint addresses:
You Type: B
Screen Shows: DB: B
' $€00 4FD3 1277

K . N
kills (removes) ax; breakpoints. '- - "

K <expresszon> B f "
hlls a brcakpomt at thc SpeCIﬁCd e\przsszo,. Examples

Dlsplay all present bmakpomt addresses:

" . . You Type: B ENTER) . :

. Screen Shows: DB: B - S
W wlel 1000 AFD3 1777

Kl!l a breakpomt at the address specxﬁed b) the expressxonf
You Type: K 4FD3 (ENTER)
Screen Shows: DB: K 4FD3 -

" Display all present breakpoint’ addregses:‘
- You Type: B [ENTER .

* Screen Shows: DB: B
: ICWD 1277

Kt al bréax{;oims:
.- Yol Type: K
Screen Shows: DB: K -

stplay all present breakpoint addresscs
You Type: B ENTER) _
.. Screen Shows: DB: B -

154

.......

Program Setup and Run Commands

" E module name
prepares DEBUG for testing a specific program module.

" This command’s function is similar to that of the OS-9 Shell in
starting a program. It does not, however, redirect VO or over-
ride (#) memory size. The E command sets up a stack,
parameters, registers, and data memeory area in preparation for

. executing the program to be tesled The G command starts the o,

~ program.

D - -+ Note: This command al!ocates program and data area mcmory

) : -~ " _t:i -~ asappropriate. The new program uses DEBUG’s current stan-

- dard VO paths, but can open other paths as necessary. In effcct
DEBUG and the program becomc coroutmes-

. PR s -

This command is acknow!edoed by a register dump showmg the
program’s initial register values. The G command begins pro-
gram execution. The E command sets up the Registers MPU as
if you had just performed an]FSCHAIN service request as shown

below: , . . ' -
ppPU low
- i - direct page R
c¢aia area
X,S pararneter area high

D = Parameter area size
PC Module entry point absolute address
CcC (F=0), (1=0) Interrupts disabled

I

| o - ‘ - 155

L& s At . vt

-

o3t

- Lrmodule name

Exarnplef

Display the program’s initial register values:
You Type: E myprosram ENLER
Screen Shows: DB: E mypProdram ,
SP CC A B DP
X Y PC
" @CF3 CB8 ¢0 01 oC
OCFF_ oDoo 8214

¢

goes to (resumes) program execution after a breakpoint. If a
breakpoint exists at the present program counter address, that

. breakpoint is not inserted so that it is not immediately reexe-
.- cuted. A loop must contain at least two breakpoints if execution
-is to be sus;x-ndcd each time through the loo;) -

- | Note- The E command is usuaHy used beforc the frst G com- ~
- . mand to set up the program to be tested. DEBUG initially sets
- upadefaultstack; so G expression can be used to start a program

using the results of the e\presszon as a starting address
Examples: '

' DB: G4C00
- PB: G:PC+100

DB: GI{.]

links to the module. If succéssfu!, it sets Dot to the address 6f
- the first byte of the program and displays it. You can use L to

find the starting address of an OS-9 memory module.
Example: .

Link to the module FPMATH:
“ You Type: L FPMATH (ENTER)
Screen Shows: DB: LFPMATH
ECGD 87

'~j_RAMmcmory . .

Utility Commands

: .'C <expressxon1 > <expresswn2>

performs 2 walkmo bit’* memory test and clears all memory
between the two evaluated addresses. Expression] gives the
starting address, and -expression2 gives the ending address,
which must be higher. If any bytes fail the test, this command
displays their address. Of course, you can test and clear only

" -Warning: This command can be dangerous Be sure which

memory address you are c‘eannv

Examplcs _ _
- iClcar all memory between Addrcsscs 2000 and ISFF

You Type: € 15FF 2000 ENTER)
Screen Shows: DB: C 1S5FF 20090
- ' 174
177

The screen’s dxsplay of 17E4 and 17E7 indicates bad memory at
those addresses.

: Clear a]l mémury between the last value of Dot and Address FF.

You Type: C + - ++FF (ENTER
Screen Shows: DB: T « o+FF

The screen shows 2 blank line foﬂowing the command line,
which indicates good mcimory.

M <expressionl> <expression2>

produces a screen-sized tabular display of mcmory contents in

both hexadecimal and ASCIH form.

The starting address of each line is on the left, followed by the
contents of the subsequent memory locations. On the far right is
the ASCII representation of the sam: inemory locations.

Periods are substituted for nondisplayable characters. The high
order bit is ignored for the display of the ASCII character.

- 157

158

S <expressionl> <expression2> . - .

Cs@mm - o L
. . calls the 0S-9 chc:ll whxch rcsponds with prompts for one or
- more command lmcs -

quits (leaves) DEBUG and returns to the OS-9 Shell. Example:

searches an area of memory fora - or 2-byte paitem, beginning

" at the present Dot address. Eapression! is the ending address of
the search, and expression? is the data for which to search. If
‘expression2 is less than 256, a I-byte comparison is used; if it is’
. greater than 256, a 2-byte comparison is used. If a matching
* pattern is found, Dot is set to its address, which is displayed. If a
matching pattern is not found, the screen shows the DB: prompt. .

L & Shell Cammand _
:'.iexecutes the co'nmand and retums to DEBUG

A Also use Stocall the system uulxty progmms and the Interactive
-- Assembler from within DEBUG. Examples:

You Type: $DIR (ERTER
Screen Shows: DB: $DIR _
DIRECTORY OF .+ 00:00:21

‘0589 BOOT cMDS SYS

- DEFS . STARTUP OLDFILE:
NEWFILE . BUSINESS FILE1L

. . - -
. o e

You Type: O (ENTER
- Screen Shows: DB: Q
: 0S88:

s v s e e
\

r

4/ Using Debug

3 I - You use DEBUG primarily to test system memory and VO
: :) devices, to “‘patch’” the operating system or other programs,
. and to test hand-written or compiler-gencrated programs.

Sample Progrém |

. -
‘

1
i

The simple assembly-language program shown below illus-
trates the use of DEBUG commands. This program prints
**HELLO WORLD"’ and then waits for a line of input.

NANM
USE

Data Section

EXAMPLE

/DO/DEFS/QSSDEFS

0000 ORC @ 4 ,
0020 - LINLEN . - RMB 2 . LINE LENCTH
. geez INPBUF RMB 8@ L . LINE INPUT BUFFER
3052 S : RMB . 5@ :»‘ . HARDUWARE STACK
QRE7 STACK EQU -1 ’ R
i 90EB DATMEM EQU ., DATA AREA MEMORY SI1IZE
"% Prosram Section .

i ©0¢ -8B7CDOGA4A7 HMOD ENDPCM,.NAME 811,381 ,ENTRY .DATMEM
900D 4558414D NAME FCS /EXAMPLE/ MODULE NAME STRING
8014 ENTRY T EQU 0w MODULE ENTRY POINT
2014 308D0020 LEAX DUTSTR.PCR ODUTPUT STRING ADDRESS
9218 1e0BEeOOLC LDY _ _sSTRLEN GET STRING LENGTH
901C B601 LDAR eI L STANDARD CUTPUT PATH poms
©01E 103F8C 059 ISHRITLN HWRITE THE LINE~ -
99021 2512 BCS ERROR BRA IF ANY ERRORS
9023 3042 LEAX INPBUF U ADDR OF INPUT BUFFER
9025 -10BEQR050 L0Y =89 MAX OF B2 CHARACTERS
20239 8600 LDA =9 STANDARD INPUT PATH
992B 103FBB 0SS ISREADLN READ THE LINE
OD2E 2505 BCS ERROR BRA IF ANY 1/0 ERRORS
#0390 OSFo0 STY LINLEN SAVE THE LINE LENGTH
8833 €609 Lo8 =9 RETURN HITH NO ERRORS
9835 103F06 ERROR 0S9 FSEXIT TERMINATE THE PROCESS
#9038 4sasacac OUTSTR FCC /HELLD HWORLD/ OUTPUT STRING
eea3 oD FCO s0oD END OF LINE CHARACTER
000C STRLEN" EQU =#-0DUTSTR STRING LENCTH
0044 26BAQ6 EMOD END OF MODULE
047 ENDPGM EQU = END D_F PROGRANM

END

...‘-

A Session With DEBUG

T _ _The following example illustrates how to use DEBUG with the
' ’ ' program on the previous page. (The actual RAM address may

~ 0S9:DEBUG #2K -

" DB: L EXAMPLE
AS00 87
DB: - ‘
A900 87

. DB: M..+44

" Interactive Debugger A
DB: $i.OAD /DUVEXAMPLE . - - . _ i,

+ . vary depending on your computer’s installation of 0S-9.)

Te

(dump program on dnp!ay)

2T 7T AQ00 87CDO047000DHISY <G - e -
= Test - AQOB 6F00140084455841 O.. EXA

" A910 4D504CC5308D0020 MPL.O..
A918 103EQ0GC8601103F 7
A920 RC25123042108E00 .%.0B...
AS28 508600103F8B2505 P...7.%.
A930 109F00C600103F067.

A938 48454C4C4F20574F HELLO WO
A940 524C440DDB72DDFF RLD..R..

. DB: -EEXAMPLE

SP CCA
_ ODF3 C8 00
DB:

A900 87
"DB: B .+2E
DbB: G

HELLO WORLD
hello computer

_ BKPT:
~Sp CCA
ODF3 CO 00

DB: M0 :U+20

~ (prepare to fun program)
B DP X Y- U ©PC
01 OD ODFF OE00 0ODOO 5714

\set breakpomt at address A92E)
(run program)

(bvreakpoint encountered)
B DP X Y U PC
01 0D 0D02.0D00 0OD0O 922E

(display register area)

0A00 00010D020000000C
- 0A08 OCF400004C000000L...

160

' 3 oo The example that follows shows how the program on page 00 is
: **patched.”” In this case the LDY #801 xnstructxon is changcd to
: i LDY #32. .
G d 0S9: DEBUG Lo (eall DEBUG) *
- 5‘ Interactive Debugger , : T
S DB: SLOAD EXAMPLE . (call 059 to load program)
, _,,.,,,;_f'," o DB: L EXAMPLE) - (st dot to beg addr of program)
Lo) . . 2000 87 : * (actual address will vary)
RS T L - DB: . .+28 . {add offset ofbytclochangc‘)
:) T : T 2028 50 . - - (current value is 00)
‘DB =#32 - . (change to decimal 12)
. : T : N 2028 10 . (change confimed) B R
s - C.o 7w .0 . DB: SSAVETEMPEXAMPLE (save on file called “TEMP™) .
UL Lo T Ll " DB: SVERIFY U <TEMP> (update CRC and copy to “*NEWEX"") o
R DB: SATTR NEWEX EPE . _ (set execution status) .
o . B - R DB: SDEL TEMP S (delete temporary file) -)
: : ' T - : 3 T (cxu DEBLG) ° j
Patching OS-9 Component Moduies T
Patching modules that are part of 05-9 (modules contained in L
the 0S-9 Boot file) is a bit trickier than patching a regular
program because you must use the COBBLER and OS-9GEN
. programs to create a new OS-9 Boot file. The example below
L. T B .. shows how an OS-9 *‘device descriptor’” module is permanent-
I . 7. -7 . 1y pawhed, in this case to change the upper-case lock of the
. : .. 7 s - 7 device /TERM from on to off. This example assumes thata
@ i Co 7.0 T s blank freshly formatted diskette is in Drive 1 (/D). :
- - A o . Caution: Always use a copy of your OS-9 System Disk when o ;
: : B : patching, in case something goes wrong. :
) o S 0s9: DEBUG (HTER) (call DEBUG)
') Interactive Debugger
DB: L TERM (set dot to addr of TERM module)
CAB2 87 ~ (actual address will vary)
DB: .. +13 {add offset of byte to change®)
CA95 01 {current value is O1)
pB: =1 ‘ (change value to 01 for “OFF™) -
CA96 01 _ o -
DB: — (ENTER (move back one byte)
CA95 00 (change confinmed)
DB: Q - ' {exit DEBUG)
. 0OS% TOBBLER /DI (write new bootfile on /D1)
162

|
H
_—

g et it Baib A o oSl

s B 2§ rremaman s,

0S9: VERIFY </D1/OSSBOOT >/DOV/TEMP U ‘ .
{update CRC vahue) o
0S9: DEL /D1/0S9BOOT {delete old boot file)
0S9: COPY /DOV/TEMP/DI/OS9BOOT
. (install updated book file)

Then you can use the Dsave command to build a new systems. .
disk.

. : -
-
T
" -
) P
163
o

‘:

AR
H1n iy

o — -

s e o i U .

SRR L e g i s i o

Appendlx / Debug Command

Pot Commands

, . «expression

= expression

' Increment Dot, display address
- and contents.
© ... _:l. Register Commands - _ .=
2 Display all register contents.
iregister Display specific register
. ' contents. ‘
sregister Set register to result.
cxpression . '

AR © E module name

L= - . e ""'G . .
-~ 7 G expression

- L module name -

Breakpoint Commands

B

B expression .
K _
K expression

| . -~ Summary

expression ~ -

Evaluate; display in hexadecimal
and decimal.

Display Dot address and ‘

contents.

Restore last DOT, display

address and contents.
Set Dot to result, display addxtss
and contents.

*Set memory at Dot to result. .
Decrement Dot, dxsp!ay address

and contents.

‘ Program Setup and Run Commands

Prepare for exccution. - -

~ Go to program.
Go to program at result address.

Link to module named, display
address.

Display all breakpoints.
Set breakpoint at result address.
Kill all breakpoints.

Kill breakpoint at result address. .

165

.- - :>’ - e - - -
b '
T " . “f""‘h' - E
> . % IS H
: - : e -
- Y :
- Utility Commands .
B _ N : - M expressionl ~° Display memory dump in tabular
kS . Fo ' ’ _ : ‘ form. expression2
e --.. .- Cexpressionl - ' Clear and test memory
o expression2 :
s 7™ _S expressionl » Scarch memory for pattern
<o . expression2 o
S T o $ text o - . Call 0OS-9 Shcll
Q. ~ . Quit (exi)DEBUG *

K3

' Error Codes

; [DEBUG detects several types of errors and displays a corres- -
S © . - - 7= 7. - ponding emor message and code number in decimal notation.
: . The various codes and descriptions are listed below. Error codes
- other than those listed are standard OS-9 error codes returned by -
various system calls. .

~ 0 ILLEGAL CONSTANT: rhé expression included
a constant that had an iliegal character or that was. ..
greater than 65,535. :

- h) _- 1 DIVIDE BY ZERO: A division was attcmptcd us-

. T S : ing a divisor of zero. _
‘ 7 a - . . 2 " MULTIPLICATION ovx—:RFLow;rhépmducmr
- N ' L the multiplication was greater than 65 535.
R - ©* -1 - 3. OPERAND MISSING: An operator was not fol-
- : B ~ lowed by a legal operand. : '

‘4 RIGHT PARENTHESIS MISSING: Parentheses
" were misnested.

TS RIGHT BRACKET MISSING: Brackets were
: misnested.

6 RIGHT ANGLE BRACKET MISSING: A byte-
indirect was misnested.

7 INCORRECT REGISTER: A misspelled, missing,
or illegal register naine followed the colon.

166

10

11

12

l3b.

BYTE OVERFLOW: An attempt was made to
store a value greater than 255 in a byte-sized
destination.

COMMAND ERROR: A command was mis-
spelled, missing, or illegal. '

NO CHANGE: The memory Iocatic:n did not match
the value assigned to it.

BREAKPOINT TABLE FULL: The maximum
number of 12 breakpoints already exist..

BREAKPOINT NOT FOUND: No brcakpoint
exists at the address given. o

ILLEGAL SWI: An SWI instmction‘ was encoun-

. tered in the user program at an address other than a

,' - breakpoint.

167

- _ . Command Series Repetition 26
. . _ ~ Conditionals 26
IRRCAESE 4 Commands 4
e o Entering 4
AR B - Parameters 6
o Numeric 6 -
O o .
RS Deleting Lines 15 -)
Displaying Text 11
. EditMacros30 U -
. o T Headers 31 - -~
Parameter Passing 31
Edit Pointers 4
Moving 12
Editor Error Messages 66
i
- " Inserting Lines 15
5 i - Manipulating Multiple Butfers 21 o
A | Searching 17
Substituting 17
~ Syntax Notation 7
T
Text Buffers 3
Text File Operations 23
169

- ASSEMBLER INDEX ~ - “

170

. .. Error Messagés 121 .

A

Addressmg Modes 83 _
Accumulator Addressing 83
Accumulaior Offset Indexed 89
Auto-Decrement Indexed 90
Auto-Increment Indexed 90

. Constant Offset Indexed 87

- “Direct Addressing 85) R
Extended Addressing 84 e T
Extended Indirect Addressing 84 e
lmmediate Addressing 83 T
Indexed Addressing 87
Inherent Addressing 83 .)
Program Counter Relative Indexed 88 S
Register Addressing 86 = - S
Relative Addressing 84 - -~ -0 Al

Assemb!er Directive Statements 97 . - .7 - 2.
~ Assembler !nput Files73 .- .. -~ . -7

D .
Data Sections 1 15
DEFS Files 105

- E e

Evaluation of Expressions 79

- Expression Operands 79 -

o

Operating Modes 74
Operators 80 K

P

Position Independent Mode 116
Program Area 116
Program Sections 115
Programming Techniques 115
Psuedo Instructions 91

9

