
Prolog Utility Module

PROLOG UTILITY MODULE

1



Prolog Utility Module

The Prolog utility module is a set of useful Prolog predicates contained in the file "util" on the root 
directory of the Prolog diskette. To use the utility module, it must be loaded into memory. If the Prolog 
diskette is in drive /d0, the goal:

P>IN("/d0/util");

will load the utility module into memory. As well as providing several useful predicates, the utility 
module maybe helpful as an example to Prolog programmers. The source code in the utility module 
may be modified and combined with your own programs without restriction.

Brief summary
=============

NOT(<goal>) succeeds only if there exists no solution to <goal>.

AND(<goal1>,<goal2>) succeeds only if <goal1> and <goal2> have solutions.

OR(<goal1>,<goal2>) succeeds if <goal1> or <goal2> have a solution.

FORALL(<goal1>,<goal2>) succeeds only if for every solution of <goal1> there 
exists a solution to <goal2>.

ISALL(<var>,<term>,<goal>) succeeds by binding <var> to a list of every instance
of <term> for which there is a solution to <goal>.

APPEND(<list1>,<list2>,<list3>) succeeds if the concatenation of <list1> and 
<list2> is <list3>.

LIST(<predicate name>) displays the clauses for <predicate name>.

REVERSE(<list1>,<list2>) succeeds if <list2> is a list of the elements of 
<list1> in reverse order.

LISTALL() lists all the clauses for all the predicates in the database.

SAVE(<filename>) saves the current database to <filename>.

ISIN(<term>,<list>) succeeds if <term> is an element of <list>.

KILLALL() deletes the entire database.

2



Prolog Utility Module

NOT(<goal>)

If <goal> has a solution, NOT() fails, otherwise it succeeds. To understand how NOT() works, it is 
necessary to study its implementation:

NOT(?p.?argp):-
?p.?argp,
/,
FAIL();

NOT(?p.?argp):-;

First the goal argument is evaluated. Should it fail, control passes to the second clause, which 
immediately succeeds. Should it succeed, a cut is immediately used to suppress unwanted backtracking.
The predefined rule FAIL() is then used to fail the whole predicate without alternatives. As a simple 
example:

P>red(my-car):-;

P>NOT(red(my-car));

P>NOT(red(your-car));
<>

P>NOT(red(?x));

Note that NOT() assumes that if it cannot prove something then it must be false. This is called the 
closed world assumption, and leads to a useful and workable definition of negation, however there are 
some problems, eg NOT(NOT(<goal>)) is definitely not the same as <goal>.

AND(<goal1>,<goal2>)

If <goal1> has a solution, and <goal2> has a solution, then AND() succeeds. The implementation of 
AND() is as follows:

AND(?p.?argp,?q.?argq):-
?p.?argp,
?q.?argq;

The implementation is simple enough, but AND() is useful in metaprogramming for combining 
multiple goals into one metaquery, for example:

NOT(AND(make(my-car,Ford),colour(my-car,blue)))

OR(<goal1>,<goal2>)

The operation of OR() is most easily seen from its definition:

OR(?p.?argp,?q.?argq):-
?p.?argp;

3



Prolog Utility Module

OR(?p.?argp,?q.?argq):-
?q.?argq;

First, <goal1> is evaluated (first clause). If <goal1> succeeds, OR() succeeds (but the second clause 
remains available for backtracking). If <goal1> fails, control passes to the second clause and <goal2> is
evaluated. If <goal2> succeeds, OR() succeeds, otherwise OR() fails. Like AND(), OR() is useful for 
defining combination metaqueries.

FORALL(<goal1>,<goal2>)

FORALL() is a high-level metaprogram which checks that for every solution to <goal1> there is a 
solution to <goal2>. FORALL() can often be used to avoid explicit looping. For example:

P>small(rat):-;
P>small(cat):-;
P>small(mouse):-;
P>furry(rat):-;
P>furry(cat):-;
P>furry(mouse):-;
P>FORALL(small(?x),furry(?x));
<>

ISALL(<variable>,<term>,<goal>)

ISALL() is another high-level metaprogram. ISALL() constructs a list of all the terms <term> for 
which <goal> has a solution, then binds <variable> to this list. The list is terminated by nil, and the 
elements of the list occur in the reverse order to the order in which they were found. For example:

P>p(a,b,c):-;
P>p(a,c,d):-;
P>p(c,e,a):-;
P>p(e,d,d):-;
P>ISALL(?x,?y.?z,p(?y,?t,?z));
<?t=?t,?z=?z,?y=?y,?x=("e"."d").("c"."a").("a"."d").("a"."c").nil>

Note that ISALL() leaves ?y, ?z, ?t all unbound after the query.

APPEND(<list1>,<list2>,<list3>)

APPEND() succeeds if, when <list2> is appended to <list1>, the result is <list3>. Because of its 
implementation, APPEND() can be used in many ways. For example:

P>APPEND(the.cat.sat.nil,on.the.mat.nil,?z);
<?z="the"."cat"."sat"."on"."the"."mat".nil>

P>APPEND(?x,the.?y,the.cat.sat.on.the.mat.nil);
<?y="cat"."sat"."on"."the"."mat".nil,?x=nil>

4



Prolog Utility Module

<?y="mat".nil,?x="the"."cat"."sat"."on"."the".nil>

LIST(<predicate name>>)

LIST() retrieves all the clauses for <predicate name> and formats them to the output stream. The 
format is such that if the output stream has been directed to a disk file, Prolog can read the predicate 
back in again.

REVERSE(<list1>,<list2>)

REVERSE() takes the elements of <list2> and reverses their order to form <list2>. For example:

P>REVERSE(jack.and.jill.nil,?x);
<?x="jill"."and"."jack".nil>

LISTALL()

LISTALL() lists all the predicates in the database in alphabetical order. The output format is the same 
as that used by LIST(). LISTALL() excludes from the list all those predicates defined by the utility 
module itself.

SAVE(<file>)

SAVE() writes all the predicates in the database to <file>. <file> would normally be a disk file, but a 
device could equally well be specified, for example, the query:

P>SAVE("/p");

could be used to list the database to the printer /p. Files saved using SAVE() can be loaded back again 
using IN(). As with, LISTALL(), predicates defined by the utility module itself are not saved in the file.
If the file already exists, SAVE() deletes it before writing the new file.

KILLALL()

KILLALL() deletes the entire relational database (except the predicates defined by the utility module 
itself - otherwise KILLALL() would delete itself!). Naturally some care should be exercised when 
using this predicate.

5


