
Prolog General Information

PROLOG GENERAL INFORMATION

1

Prolog General Information

Prolog Command Line
===================

The Prolog interpreter is held in the file cmds/prolog on the Prolog diskette. The Prolog command line
is:

OS9: prolog [-m<mgthresh>]

The optional "-m<mgthresh> parameter may be used to specify the threshold for garbage collection.
When Prolog passes this threshold, it will begin garbage collection, retaining only terms and variables
that are referred to in parts of the program not yet executed. If the first garbage collection does not
bring the total amount of memory used by Prolog below the threshold, Prolog will continue to include a
garbage collection in each interpreter cycle until the amount of memory is brought below the threshold.
If the threshold is set too low, garbage collection will be started more frequently than necessary, which
may substantially slow down program execution. On the other hand, the threshold should not be set so
high that Prolog actually cannot acquire enough memory to reach it. In this case, execution can be
aborted through lack of memory even though much of the memory used could be released on garbage
collection. The threshold may be specified as a number (of pages) or, if followed by the letter 'k', as a n
umber of kilobytes. For example:

OS9:prolog -m5k
OS9:prolog -m20

Both these lines set the garbage collection threshold to 5 kilobytes. Command line I/O redirection may
be used to run a Prolog program stored in a disk file and to direct the output to a disk file or character
device. For example:

OS9:prolog -m5k <report >/p

which runs the Prolog program in the file "report" in the current data directory, and sends the output to
the parallel printer (/p).

Prolog Dialogues
================

If the standard input is redirected (either at the command line or during the execution of a Prolog
program), the input prompt is suppressed. Prolog's normal prompt is "P>" which it issues when
expecting a rule or query. If the rule or query is not syntactically complete when ENTER is pressed,
Prolog waits for another line of input (and will wait for as many lines as necessary to complete the
syntax, or to trigger an error condition), but does not issue another prompt after the first one. If a rule is
entered, it is added to the rule base as the last clause for the predicate it names, and Prolog returns with
the "P>" prompt. If a goal is entered, Prolog attempts to find all solutions by backtracking. The results
for all variables appearing in the query are printed within angle brackets (<>). If the query contains no
variables, a set of empty angle brackets is still printed for each solution found. After all solutions have
been printed, the next "P>" prompt appears. If no angle brackets appear between the query and the next
prompt, then no solutions have been found.

2

Prolog General Information

Structure Sharing
=================

Metasoft Prolog uses a method known as "structure sharing" to save memory. This means that
whenever a variable is bound to a term, the term is not copied into the environment, but a pointer is set
linking the variable to the term.

Optimisation
============

Metasoft Prolog includes two important optimisations. The first is optimisation of deterministic calls. A
deterministic call is one which creates no alternatives. When such a call terminates, it is possible to
recover all the stack space normally associated with choice points. Some predicates are implicitly
deterministic, ie the clause that was selected, although not the last available, is the last that can b
matched. If the programmer knows this to be the case, he can us the cut (/) to tell the interpreter that the
call is deterministic so that on termination the stack space can b recovered. The second form of
optimisation is called tail-recursion optimisation. This means that the Prolog interpreter can recognise a
recursive call which can be replaced, in effect, by a goto. Consider the 'C' function tailr():

tailr() {
do_something();
tailr();

}

Compare this to the Prolog program:

tailr():-
do-something(),
tailr();

The 'C' program will run out of stack space, but could be rewritten as the equivalent 'C' program:

tailr() {
A:

do_something();
goto A;

}

which will run indefinitely. The process of replacing the recursion at the end of the function with a goto
is known as tail-recursion optimisation. In the case of the Prolog program, provided that do-
something() was deterministic, the tail-recursion optimisation is performed automatically by the
interpreter. Consider the dialogue:

P>go(?n):-W(?n),W("@13"),ADD(?n,1,?m),go(?m);
P>go(1);
1
2
...

3

Prolog General Information

Execution will continue indefinitely (provided that the garbage collection threshold has been set
sensibly) without any kind of memory limitation. It is important to note that tail-recursion optimisation
only applies where the call is deterministic. As in the optimisation of deterministic predicates, this can
be enforced by the programmer by use of the cut (/) predicate.

The Dictionary
==============

Prolog maintains a dictionary of all the constants in use at a given time. When a new constant comes
along, it is added to the dictionary. When a constant comes along that already appears in the dictionary,
instead of creating a new copy of it, a pointer is set to refer to the existing dictionary entry. Thus the
use of long constants such as descriptive predicate names is encouraged as the memory overhead is
very small. The same dictionary is used for variable names, so descriptive variable names can also be
used freely.

The Relational Database
=======================

The relational database is held as a binary tree indexed by predicate name. To speed up processing,
when the last clause for a predicate is deleted, the index entry is not deleted. If new clauses are later
added for a predicate that has been deleted, the old index entry is reused. The moral is, don't create too
many new predicate names during the execution of a program.

Undefined Predicates
====================

If a goal calls for the matching of a predicate which does not appear in the relational database, the goal
automatically fails. This is in contrast to some implementations of Prolog which raise an error on the
same condition.

4

