DRAFT

MLBASIC

REVISION 2.0

EXTENDED
BASIC
COMPILER

' i s ST \ ,z ‘ \\ N/ X N
2 \5“‘1{;: -v/:b_\\/’::i\ '/17/__ ‘ \’?'\\ i\ e — e 7 '- el

MLBASIC

Revision 2.0

EXTENDED
BAS IC

COMFILER

COPYRIGHT (C) 1987

by WASATCHWARE

NOTICE

WASATCHWARE has prepared this manual for use by
customers of the basic compiler "MLBASIC". The
information herein is the property of
WASATCHWARE and shall not be reproduced in the
whole or in part without WASATCHWARE's prior
written approval.

WASATCHWARE reserves the right to make changes
without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including
consequential) caused by reliance on the
material presented, including but not limited
to typographical, arithmetic, or listing
errors. '

MLBASIC 2.0 User's manual

Revision History:
Original Release -July 1987

Royalty Information

The policy for distributing compiled programs using
MLBASIC runtime subroutines is as follows:

- You can distribute and sell any
application program that you generate by
compiling with MLBASIC without payment of
royalties. A copyright notice reading
"PORTIONS COPYRIGHTED BY WASATCHWARE, 1987"
must appear on the medium.

- You cannot duplicate any other software
in the MLBASIC compiler package except to
backup your software. Other duplication of any
of the software in the MLBASIC compiler package
is illegal.

PREFACE

This manual provides a step-by-step
introduction to WASATCHWARE's MLBASIC compiler.
It is intended for users who are unfamiliar
with the BASIC compiler. Users who are
familiar with MLBASIC can use this manual as a
reference for procedures and technical
information.

This manual assumes that you know how to
program in BASIC. Examples of how MLBASIC
syntax differs from interpreter BASIC syntax
are given.

Chapter 1 introduces you to WASATCHWARE's
MLBASIC Basic compiler. Chapter 2 provides a
description of the entire compilation process.
Chapter 3 explains the many commands that
MLBASIC has to offer. Chapter 4 explains all
about MLBASIC variables, constants and
expressions. Chapter 5 is devoted to the
advanced programmer who needs to know technical
information about MLBASIC. Chapter 6 goes
through compiling several programs that provide
uses for many of MLBASIC's commands. Chapter 7
contains explanations of the error messages
produced while compiling programs and when
running programs. Chapter 8 explains conversion
techniques for compiling programs written for
the Interpreter.

CONTENTS

CHAPTER 1 INTRODUCTION

Overview of MLBASIC.iteeeerooeosse
System requirementsS..ccceciesssses
Diskett contentsS..ceeesssnsssnssas
Compilation Vs. Interpretation...
Program Developement...ceceoeeesos
Memory use by MLBASIC..cceeveeses

[N W WS G (-
.

U WN =

CHAPTER 2 HOW TO COMPILE A PROGRAM

LI I

. ® o ®
L]
-
.

2.1 Explanation of MLBASIC options...
2.2 Compiling a program using default values.
2.3 Storage OptionS.eceeeseasssocssnscs
2.4 Maping OptiONS..eeesesssssssosasone
2,5 Listing optionS..ieeceeceecsscsnnss
2.6 Number Base OptioN.eseeesesecoceecs
2.7 Default String Length..... sTeia w W e
2.8 Compilemode OptionS.seeescesssaas

CHAPTER 3 MLBASIC COMMANDS

3.1 I/0 Commands

(ORI T e T L
CLOADM. v s 5 & simsaiamns & & s
CSAVEM., . wis & cwrisaaes s & o'
DIR. . o5 ¢ ssnpeswes & & e
DRIVE. oo oo siuisiaaias % s 6
DSKIS. oo eiioratais s
DSKOS .5 3 & igraseiaias 3 5 & 6.5
FIELD. o ¢ « 5 5 scipamess = & ae
N S 00000000007 0o
GET. . ¢ o0 o 5 smimmibiniss 5 6 «s
INPUT .6 5 0 v siscdinie o o 5 & 66
KILL. oiu s & & arauciisies & & &9
LINEINPUT ¢4t evseeeesnss
LSET... 32 splGaamessii
OPENeecesossosecoiniaianaai
PRINT . ¢ eceeeecesasssss
PUT. . csivm 5 » cmpssaanes » & o
RSET. ¢ o ¢ 5 5 & siwmnmiite o § & §

OB OB KHRWKRE DR HODOD QLAO TP

.
_— e e e e e e) e e)) e e) e e
.

WWWLWWLWWWWWWLWWWLWWWWWW

3.2 Program Control Commands
3.2.a CALL.v.eeeecoesns
DEFUSReeeeeanss
END. ¢ o oo 3 % shdiasi
EXEC.veeesooesns
FOR- (STEP)-NEXT..
GOSUB:eeeesooaoons
GOTO4 e 000 s00seesiwivisis
IF-THEN-(ELSE) e e s see e
OFF ERROR:veeeecesonsns
ON ERROR::eeseessoosces
ON-GO(TO,SUB) e v susasns
RETURN. ais » # & siamsimiaos 5 5 »
STOP. s o0 6 066 acmmzoinzecs s o s
SUBROUTINE. cvssvsseens
USRe o000 s 00 giimanssiss

.
e = = o

.

-

-

.

.

.

WWWWWWWLWWWWWWWwWw
NNNNNNNNNNNNNDN
OB 8 HFWKrR DR HOAODT

LI B)
... .
LT T R O}

PAGE

DWN = a2

© o,

10
11
11

13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
31
32

33
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3.3 Math Functions

3.3.a

WWWWWWWWWLWWWWWWWWWWWWWLWWLWWWWWW

WWWWWWWWWWWWWwWWwWwWwW WWwWwWwWwwWww
N M=

a

<CdU)*‘$.Q’dO!35D—‘gW‘—'-P'D'UQH>(D Q0T

ABS.ieeneeneannns
ASC.veennnnononns
ATN. . eveeenonnnnn
o0) J -
CVN. o oo i d ¥ B565
EOF e vvneenennns
EXPoeveeeoononnns
FIXeeeeoonooonnos
HPOINT v veuvnnnn
INSTRe vevvennnns
INT eeeenennsannns
JOYSTK e e vvenanans
LEN. ¢ cvuneeesami
LOG . g™ & § & »
LOC.....
LOF.....

LPEEK.....

. s e
e & & o o =

o0 000 0
e o0 0 00

PEEK...

POINT.ees .
PPOINT. .
RNDeveousne
SGNeeooooos
SIN....

LRI O B

.

e & = ®

SQReceeeosoeossccssnns
TAN. e eeenenvensscesss
TIMEReeeeoeooocecsssa
VAL. oo s oanson awiosioess
VARPTR. et veenasssaas

3.4 String Functions

3.4.a

CHRS. LN)
INKEYS. .
LEFTS...

MIDS$... v
MEKNG e eeoeoeooencnonnse
RIGHT S o imioos s 50000000
STRS 4 ¢ ¢ o o s & & sasrsiese & &
STRINGSeeesssscoccses

3.5 Graphics and Sound commands

3.5.a

WWWWWWWWWLWWW

(OGN NGNS NGNS NS NS NS Né)

H XGOSR HO0 Q0T

ATTReeeeeoesscscocnns
AUDIO:ceesessvesonnss
COLOReceososossnccnsss
CLS:ecesoesconssssnanns
CIRCLE¢¢cseccoccccasns
DRAW.:¢eeeoonsnvescsnses
HCOLOR:¢esosoeoeoooennns
2 (0 7
HCIRCLE:cesoeooossnses

HLINE.'..II_I...IQ‘IC!l...l.III.A....lGII_

* ® o e o ® o @

= = s =

.

LU A)

® & 5 3 % 8 B B R OO 0B s

e 00 0 0 0 0
o o s & s & &
" s s s
A

.

® % 0 8 08 a0

L

LI

...

.

e 00 & & &

" s s 8000

L IC TR N I O

.
LU B O
- .
o o
.
® s " 8 88 00 00
.
.
.

oo
LI B I
-w

-

. 8 8 0 88
L e
LI B B
e 0o 0 0 0 0
e o 0 0 0 0o
o o 0 0 0 &

® 8 8 8 8 8 8 BB B E B EEes

" % 8 06 0000 F B 2 B0 00 0

.

.

HDRA‘\T._...I.I....Ql‘tll......l'..ll...

s ® ® & & ® ® s s © o = & = =

" & = = 2 o

e & ® ® 8 8 ® =

HPAINT..O.._l.C._.C_.‘IOt.&'.‘...'......lll

« = & = &8 o . & 8 @» = & 8 * =8 e e = & .

*« o & = » @

PAGE

49
50
51
52
53
54
55
56
57
58
59
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83

84
85
86
87
88
89
91
92
93
94
95
96

3.5 Graphic and Sound commands

3.5.m

DQAOUTPONYMKR TSI HNRNOT OB

OQ00OoT

WWWWWLWWWWWWLWWWWwWwWwWwww
(S 6 N N NS N NG NG NS NS NG N N6 NG NS NG N N6y

HPRINT . eoovowons
HRESET...
HSCREEN.

HSET...
LINE...
LOCATE.

PALETTE.

PAINT..
PCLEAR.
PCLS...
PLAY...
PMODE. .
PRESET.
DSET...
RESET. .
SCREEN.
SET....
SOUND. .
WIDTH. .

3.6 Other Commands (Handled by Interpreter)

WWWWWwWWWWwwwwww
ONONONONONONONONONO N NN e
S8 HXOPREIDMQHODQAO TR

DATA...
DIM....
LLIST..
LPOKE..
MOTOR. .

POKE....

READ...
REM....
RESTORE
RUN....
TAB....
TROFF..
TRON. ..
VERIFY.

3.7 Special Commands

3.7.a
3.7.b

WWWwwwww w
QNN
NGO k50 H 0 QA0

3.8 Compiler Directives

3.8.a
3.8.b
3.8.c

DLD....
DST....
IBSHFT.
INT....
LREG...
PCOPY..
PTV....
REAL...
SREG...
VECTD. .
VECTI..

%I NT o o 0 0 0
C;OREAL. e o 0
%STRING. .

-

® & &8 ® s 8 8 8 8 e

IR I I T S R TR

PAGE

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140

141
142
143

CHAPTER 4 VARIABLES, CONSTANTS, OPERATORS and
4.1 Constants
4.7.a Integer ConstantS.ceeeecoscses
4.1.b String ConstantSeeeceececececceses
4.1.c Real ConstantS.e.,ceeesccccess
4,2 Variables
4.2.a Scalar Variable NameS.:eeeeesse
4.2.b Integer VariableS.eeeeceeeecese
4.2.c String VariableS.:eeceeesececees
4.2.d Real VariableS.eeeeesosocoscs
4,2.e Variable Type Conversions....
4,3 Variable Arrays
4,3.a Array NameS...eeeeococscscsscs
4.3.b SUbSCriptSeeeceecccceocsosscoscs
4.3.c Memory requirementS...ceeeeee

4.4 Operators and Expressions

PAGE

EXPRESSIONS

® o0 0000 0 0 144
e e 000 0 0 0 0 144
e o 0 00 00 0 0 145

ceesesese 143
ceeessees 145
cessesess 146
ceesscses 146
cseessess 146

e o 0 0 00 0 0 0 147
e e 00 0 00 0 0 147
e o 00 00 00 0 148

4.4.a Arithmetic Operators and Expressions... 149
4.4.b Integer ArithmetiC.cececececcocesesssss 150
4.4.c Logical OperatorS.ececcecssssoscscssssss 150
4.4.d Relational OperatorS.eccesecscsccesscsss 101
4.4.e String Operators and ExpressionS....... 131
CHAPTER 5 TECHNICAL INFORMATION
5.1 Machine Language InterfacCing...ceceesecscscosscccccscse 152
5.2 Interfacing with Interpreter BASIC..:eeeeeeoeeeeess 153
5.3 Interpreter CallS.:ceeeeeessccscsssssscssscsssonsssnss 104
5.4 Subroutine Call descriptiON.e.cccececcesecsceccssseses 155
5.5 MLBASIC 2.0 Memory Map--.o.-o.cooocoooc- eecee oo e 157
CHAPTER 6 SAMPLE PROGRAMS

601program ;1..l......'l'll....ll....l...l.
6.2 Program F2..ceeeceessescssssosssscscssccsscs

CHAPTER 7 ERROR MESSAGES

7.1 Compiler Error MesSSageS.sesescsccsoncscs
7.2 Runtime Error MeSSageS.ceiceeseccsccscscscs

CHAPTER 8 PROGRAM CONVERSION TIPS

8.1 Example COnversSioOnS.ccecscscsccsscscscosse
8.2 Conversion of ASCII fileS.eeeeececoocsosns

e o0 0000 0 0 159
cesssesss 160

e e 00000 0 0 166
e 0o 0 0 0 0 0 00 168

® o 00000 00 171
e e 0 0000 0 0 172

1
MLBASIC 2.0 USER'S MANUAL

CHAPTER 1 INTRODUCTION

1.1 Overview of MLBASIC

MLBASIC (Revision 2.0) is an enhanced Basic Compiler designed to
allow as much compatibility with existing Interpreter Basic programs as
would allow. MLBASIC is a full compiler that features most of the
commands that are available with Extended Disk BASIC. Furthermore,
additional commands offered by MLBASIC make it possible to interface
programs with assembly language and other Basic programs. The ability
to call subroutines and pass arguments between the subprograms and the
calling program makes it possible to write structured programs, only
available with languages like FORTRAN and PASCAL.

MLBASIC allows users who are unfamiliar with machine language
programs to create a machine language program from a Basic program with
little or no effort. Default options that make compilation easy for the
new users, can be replaced by specified values which allow the advanced
user the freedom of how the program is to be compiled.

1.2 System Requirements

The following hardware is needed for MLBASIC to run:

1. 128 K Color Computer 3
2. Radio Shack DOS

1.3 Disk Contents

File Name Description

1 #.BAS MLBASIC loader program

2 COCO3LB2.BIN MLBASIC loader subroutines
3 MLBASIC2.MAI MLBASIC main program

4 COCO3LB3.BIN MLBASIC runtime subroutines
S PROGRAM1.BAS Sample program 1 source

6 PROGRAM2.BAS Sample program <2 source

7 PROGRAM1.BIN Sample program #1 object

8 PROGRAM2.BIN Sample program #2 object

9 R.BAS Second 64k program loader
10 LOAD512.BAS 512k program loader

2
MLBASIC 2.0 USER'S MANUAL
1.4 Compilation vs. Interpretation

A microprocessor can execute only its own machine instructions; it
cannot execute Basic statements directly. Therefore, before the
microprocessor can execute a program, the statements contained in the
Basic program must be translated to the machine language of the
microprocessor. Compilers and Interpreters are both programs that
perform this translation. This section explains the difference between
these two types of translation programs, and explains why and when you
want to use the compiler.

Interpretation

An interpreter translates your BASIC program into machine language
instructions line-by-line at runtime. To execute a Basic statement,
the interpreter must analyze the statement, check for errors, translate
the BASIC statement into machine language, and then execute those
instructions. If the interpreter must execute a statement repeatedly
(inside a FOR/NEXT loop, for example), it must repeat this translation
process each time it executes the statement.

Basic programs are stored as a list of numbered lines, so each
Basic program line is not available as an absolute memory address during
interpretation. The interpreter must examine all the line numbers in
the list, starting with the first, until it finds the line in a branch
such as a GOTO or GOSUB statement.

Variables in a Basic program do not have absolute memory addresses
either. When a Basic statement refers to a variable, the interpreter
must search through a list of variables from the beginning until it
finds the referenced variable.

Compilation

A compiler translates a source program and creates a new file,
called an object file. The object file contains machine code that can
be relocated or executed where it is. All translation takes place
before runtime, which means no translation of your Basic source file
occurs during the execution of your program. In addition, absolute
memory addresses are associated with variables and with the lines
referenced in GOTO and GOSUB statements, so that the computer does not
have to search through a list of variables or line numbers during
execution of your program.

The compiler also "optimizes" the program. This means that when
the compiler executes a program, it does so in the fewest possible
steps. This increases execution speed and decreases program size.

These factors combine to increase the execution speed of your
program measurably. In most cases, execution of compiled Basic programs
is 10 to 20 times faster than execution of the same program with the
interpreter. If the program makes maximum use of integer variables,
execution can be up to 100 times faster.

3

MLBASIC 2.0 USER'S MANUAL

1.5 Program Development

MLBASIC is designed to recognize a BASIC program as it exists in
memory. In other words, MLBASIC reads the compressed commands, called
tokens, as they exist in memory. Programs on disk are read in their
standard format (SAVE,A not needed). This allows the user to develop
programs using existing software that was designed for development of
Interpreter BASIC programs (ie. Extended BASIC editor, fullscreen
editors, etc).

The BASIC source, once written, should be saved to disk. In most
cases, the source program can be run using the Interpreter in order to
debug the program for syntax or logic errors.

The final step in the program development process is to compile the
source code using MLBASIC. The final product after compilation is an
executable machine language program that is run by using the EXEC
command.

Programs that cannot run within the lower 32k of RAM are executed
using the loader program called "R.BAS". This program loads the
executable program into the second bank of 64k RAM. To prepare a
program to be run in this mode, copies of the loader file "R.BAS" and
the two subroutine files "COCO3LB2.BIN" and "COCO3LB3.BIN" must be made
on the disk that is to contain the compiled program. To execute this
routine, enter the command RUN "R and answer the question of the
filename you want to load and run.

4
MLBASIC 2.0 USER'S MANUAL
1.6 Memory use by MLBASIC

MLBASIC allows use of 64k of memory for program and variables, the
80 column high-resolution text screen, and the ROM routines all within
the same program. If a machine language program exceeds the lower 32k
of memory space, then the program is executed in a separate bank of 64k
memory. 128k computers can use the second bank of 64k for programs to
run, but the program that is running cannot have high-resolution
graphics, since the high-resolution graphics area is also in this second
bank of 64k.

Computers that have 512k of RAM can execute a compiled program so
that banks other than those needed for high-resolution graphics are
used. The loader program called "LOADS512" should be run instead of the
loader program "R". Normally memory segments &H30 thru &H37 are used
for storage for programs that can't fit in the lower 32k of the first
bank of 64k RAM. The loader program "LOAD512" on the other hand uses
segments &HOO thru &HO6 to make up the second bank of memory (often
called the TASK #1 bank). This frees up segments &H30 thru &H36 for use
by the high-resolution graphics. The user may change the segments used
by "LOADS12" by modifying lines 440 thru 500 to poke the segments that
are desired.

)
MLBASIC 2.0 USER'S MANUAL

CHAPTER 2 HOW TO COMPILE A PROGRAM

In the following chapter, procedures on how to compile programs
using the many features offered by MLBASIC are given. :

If you are new at using MLBASIC, try the following procedure to
compile a simple program that shows how fast the compiler works:

1) Follow step 3 on page 6

2) Type in the short program:
17 FORI=1T065000
2 NEXT:END

3) Enter EXEC to start the compiler

4) Hit CTRL to begin compilation

5) Wait 10 seconds

6) Enter EXEC to execute the machine program

Section 2.2 is the general procedure used to compile any program
using MLBASIC.

2.1 Explanation of MLBASIC Options

MLBASIC is a highly versatile BASIC compiler which allows the user
to select many of the parameters that control the compilation process.
All the parameter options are set to default values initially so that
users may easily compile a code and not have to worry about all the
different options. These options allow the user to control compiler
operations such as where the program is to be located in memory, what
the storage medium for the source and object code is, how the computer
is to accept and display numbers and how the compiler listings are
handled.

The main categories of options available are the storage options,
mapping options, listing option, compilemode option, number base option,
and the default string length option. Sections 2.3 through 2.8 will
cover each of these categories in detail.

SPEED TEST PROGRAM:

10 WIDTH 32 : CLS

20 FOR X = &H400 TO &HS5FP
30 FOR Y = 0 to &HFF

40 POKE X,Y

50 NEXT Y,X

ML BASIC MICROSOFT BASIC

9 Seconds 12 Minutes, 49 Seconds
= 769 Seconds

6
MLBASIC 2.0 USER'S MANUAL
2.2 Compiling a Program Using Default Values

For ease of use, MLBASIC uses default values for all of the
compilation options available. These default values cause the compiler
to compile a program that is in memory and store the compiled code in
the lowest address above the source code in memory. The only required
input from the user is the CTRL key. This simply tells MLBASIC to
start compiling the program.

How to Compile a Program

1. Develop the program to be compiled.

- Using the available syntax, as described in Chapter 3, develop
the BASIC source program that is to be compiled. If existing BASIC
software is to be compiled, make the needed syntax changes that are
identified in CHAPTER 8 (or those commands that give compiler
errors when compiling a program the first time).

2. Save the BASIC program.

- SAVE the BASIC program to disk so that the program is safe if any
compile errors occur.

3. Load MLBASIC into memory.

- (A) Turn off the computer, and then turn it on (or enter
POKE113,0 then hit the reset button).

(B) Insert MLBASIC diskette into Drive #O.
(C) Enter the command RUN "=", and hit the ENTER Kkey.

4, Decide on the storage option desired.

-If you want to compile a program "In Memory" (using the Mem
option), LOAD from Disk the BASIC program.

7

MLBASIC 2.0 USER'S MANUAL

5. Execute the compiler.

-To run the compiler, type in the command EXEC. The compiler will
come back with a screen that lists all of the options and what the
current default values are. The last line on the screen display
will indicate to the user information on the required inputs or
options being chosen.

6. Start compilation process.

-Enter any of the desired options. You may skip fields by hitting
the Enter key or the default option listed.

(A) If you want to compile the program in memory, simply enter
CTRL, and compilation will begin.

(B) If you want to read the BASIC source from disk, position the
cursor to the "BASIC SOURCE INPUT" option line, hit D for disk,
and enter the input filename. Hit CTRL to start compiling. Note
that the cursor is initially located next to this option when the
compiler is first executed.

(C) 1If you want to compile the object code to disk, position the
cursor on the "MACHINE LANGUAGE OUTPUT" option line, hit D for
disk and enter the output filename. Hit CTRL to begin
compilation.

- MLBASIC compilation may be stopped by the user by pressing down,
and keeping down, the Break key. Once the compiler has

recognized the interrupt, it will wait for the user to hit another
key before it continues. If the user hits the T key, the

compiler will exit and display the message "ABORT COMPILATION". If
the user hits any other key, compilation will resume. This feature
is useful for pausing the compiler for examination of screen
listings.

The above instructions include the general procedure for
compilation. Variation from the outlined instructions are needed if
such options like Manual compilemode or specified mapping addresses
are used. The mapping options, as described in section 2.4, describe the
capabilities of MLBASIC for experienced programmers who may want to
interface compiled programs with other machine language routines.

8
MLBASIC 2.0 USER'S MANUAL
2.3 Storage Options

There are six different combinations of how the compiler is to
handle program source and object (compiled version) code. By default,
both input and output by the compiler are performed "In Memory". The
two main options for storage are:

(1) BASIC SOURCE INPUT - This is where the compiler is to
obtain the BASIC program that is to be compiled. The two available
choices are to read the program from "M"-memory or '"D"-disk. The
letters in quotes are the characters that are used to tell the compiler
which option to use. By default, the "M"-memory option is used where
the program has previously been entered or loaded into memory. The disk
option, if selected, will be followed by a query from the computer
asking for the input filename. This filename is the name of the program
that is on disk.

(2) MACHINE LANGUAGE OUTPUT -~ This is where the compiler is to
put the final compiled program and necessary text and subroutine areas.
The two available choices for outputting the compiled code are; "M"
-memory or "D" -disk.

As in the BASIC INPUT option, the character in quotes is used to
identify each choice. By default, the "M" -memory option is used,
meaning that all compiled output is to be written to memory. This is
the fastest way to compile a program, and therefore should be used,
unless the compiled program is too large to fit in memory, or is to be
saved on disk. In the case where the object code is too large to be
compiled in memory (as indicated by the error message 'ERROR, M.L.
OUTPUT EXCEEDS S7EFF'), the "D" -disk option must be used.

The disk option allows for storage of the compiled program on a
non-volatile medium. Once an error free program has been compiled and
saved to disk, the executable program may be loaded into memory, and
EXECuted with little effort. The disk option allows for unlimited size
programs to be written.

If the Disk option is used for either the input or output
options, the disk in drive zero must not be write protected.

In summary, the various storage options allow flexibility in where
the program is to be compiled. For large programs, the "D" Output and
"D" Input option should be used. This allows for compilation of any
size program (final program size may be up to 60k long!)

9

MLBASIC 2.0 USER'S MANUAL
2.4 Mapping Options

MLBASIC automatically figures out where to locate the compiled
program when using the default Automatic compilemode. If the Manual
compilemode is selected, MLBASIC will allow the user to select the
locations of all four program segments that are produced when a BASIC
program is compiled. The locations are entered after the following four
group headings:

(1) MAIN PROGRAM AREA - The number displayed is the starting
location for the main machine language program. The address in the EXEC
command used to run the compiled program is called the Entry Point. By
default, the Entry Point is the first location in the entire program.

(2) CHARACTER DATA AREA - The number entered is the starting
address of the area where all of the numeric string constants are stored,
including text contained in PRINT and INPUT statements, is called the
Text Table. The default value used for the Text Table beginning is the
address immediately following the main program area.

(3) SUBROUTINE LIBRARY AREA - The number entered here is the
starting address where the runtime machine language routines that contain
all the necessary interfacing between the main program and the computer
are located. This package of routines must accompany the final
program for successful execution. By default, the Subroutines follow the
Text Table in memory. '

(4) VARIABLE STORAGE AREA - The value that needs entering is the
starting address of the area where scalar and dimensioned variables are
contained. This is an absolute address, and is only used during
execution of the compiled program. During compilation, this area may be
anywhere, but by default is located following the Subroutine library.

If one selects the Disk output option, the Entry point of the
program can be entered by the user. If no value is given, MLBASIC will
compile the program such that the end of the program (not variable table)
is in the last available memory location.

MLBASIC will compile programs in the lower 32k of the first bank of
64k (TASK #0) if the program can fit in it. The area above the lower 32k
in this mode cannot be used because it contains the BASIC and Disk
operating system. Programs that cannot fit within the lower 32k will be
mapped to run in the second bank of 64k RAM (TASK #1). Large programs
like these must be executed using the special loader program called
"R.BAS",

In summary, the mapping options allow the user to specify where the
final compiled program is to be stored "In Memory". The first three
areas in the compiled program are written to memory or the storage medium
at compile time, whereas the fourth is not.

10
MLBASIC 2.0 USER'S MANUAL
2.5 Listing Options

MLBASIC allows three choices for listing the final compiled
program. They are:

1. "S" - Screen option
2. "N" - No output option
3. "B" - Both screen and printer output option

The Screen option allows for users to view the compilation
process line by line. Each line, as well as its location in the M.L.
program, is displayed as it is compiled. This option allows the user to
identify errors in the source code.

The No output option allows the user to see only the locations of
the four program segments as the compiler works. The original screen
that appears during initial execution of MLBASIC is kept for the
duration of compilation. This option is most useful for identifying
where the program is being written, and how long it is. By default, the
No output option is used during compilation.

The Both option gives a screen listing identical to the "S"
option, and in addition, produces a comprehensive printer listing of the
compiled program. Included in the listing to the printer is:

A. All of the beginning and ending locations of all four program
sections.

B. Locations of each BASIC line in the final compiled program.
C. Listings of all BASIC source lines that are compiled.

D. Variable tables for scalar and dimensioned variables showing
variable locations in memory, type of variable, and its name.

E. Listing of compiler errors encountered during the first pass.

2.6 Number Base Option

MLBASIC allows for the user to select the default number base to be
used in Integer Variable inputs and printing. This number base is
used only for integer variable I/0, and has nothing to do with how
real variables are input or printed.

The default number base used by MLBASIC is base 10, decimal. If
the user wants the compiled program to understand hexidecimal numbers
for example, the user must specify 16 as the number base before
compiling that program. In this case, any integer INPUT or PRINT
statements within the compiled program will only understand base 16
numbers. It is important to realize that only the selected base is
valid for integer 1/0.

The allowable number bases to choose from are bases from 2 to 16.
Base 2 for example gives binary output when an Integer is printed and
only accepts binary when an integer is INPUT from the keyboard.

11
MLBASIC 2.0 USER'S MANUAL
2.7 Default String Length

MLBASIC allocates a predefined number of characters for each string
or string array element. The default string length used 4is 256
characters.

The user may change this value to any number from 1 to 32767.
Strings that have a length greater than 256 characters cannot be
manipulated using string functions because the string manipulation
buffer is only 256 characters long.

The default string length is used by the compiler unless the
%STRING compiler directive is used within the program code. The %STRING
directive will override the default string length with the length
supplied in the directive (see section 3.8.c for more information on
%STRING) .

2.8 Compilemode Options

MLBASIC allows the user to choose whether or not to let the
compiler perform all of the compilation processing. If the user doesn't
care about where the program is to reside in memory, then the
Automatic compilemode should be chosen. Often the user may want to
select all of the mapping options for compilation; in this case the
Manual compilemode should be used. These two options for how the
compiler is operated allows flexibility in the program development
process. By default, the Automatic mode is used by MLBASIC.

The Automatic compilemode allows the user to quickly compile a
source code into an EXECutable machine language program. In this mode,
the most efficient mapping options are figured out. The automatic mode
causes MLBASIC to perform a two pass compilation of the BASIC source
code.

During the first pass, each program line is scanned for syntax
errors. If any errors occur, the compiler will display the errors. 1If
there were any errors during the first pass, compilation will stop. If
there were no errors, compilation continues to the second pass.

During the second pass, all of the mapping parameters are figured
out and compilation of the entire program proceeds. At this time, the
source listing, if any, is output. At the end of the second pass, the
Subroutine library is relocated to its proper location, whether it be in
memory or disk. In addition, all of the GOTO and GOSUB vectors are
stored in the machine language program at this time.

The Manual compilation mode is not usually used. It only performs
one pass over the source code during compilation. This pass, similar to
the second pass of the Automatic compilemode, checks for errors,
outputs listings of compiled source and relocates the subroutines all at
once. The Manual compilemode is useful if the programmer is
interested in compiling two or more program that share the same
subroutine library, or use some of the same variable area. If the
manual mode is selected, the user is required to input the starting
addresses for the Entry Point, Text Table, Subroutine Library, and
Variable Table (see Section 2.4 for more information on these four
locations).

12
MLBASIC 2.0 USER'S MANUAL
CHAPTER 3 MLBASIC COMMANDS

In this chapter, each command allowed by MLBASIC will be fully
described. An entire page is devoted to each command, thereby making it
easy for the user to find a particular command in question.

Throughout this chapter, a general format accompanies the
description of each command. When more than one specific arrangement is
permitted, separate formats are shown. Within a general format,
keywords, connectives, and special characters are shown in proper
sequence. Unless otherwise stated, only the shown sequence can be used.

The general formats use the following convention:

- Each capitalized word or letter represents a required part of the
instruction line. You must type in all the CAPITALIZED items that
appear in the format line as CAPITALIZED words.

- Wherever an element is underlined, you must supply a legal BASIC
representative of that element.

- Elements that are enclosed in slashes (/) are optional items.

- A colon (:) indicates a choice. When a colon appears in an
instruction line, you can choose a parameter from either side of the
colon,

- Items followed by ellipsis (...) may be repeated any number of
times.

- You must use all punctuation marks in an instruction in the
position they are shown in the format line. However, you should
never include in an instruction any of the symbols including
underlines, slashes and colons (although colons are used to
separate individual commands that on on the same program line).

- Blank spaces are ignored by the compiler, but are necessary for
separating variable names and commands.

The format item descriptions contain the allowable data parameter
types as shown in parenthesis that follow the general description of that
item. The following abbreviations are used to describe the allowable
parameter types for each item:

IVv -Integer Variable

IC -Integer Constant

SIV -Scalar Integer Variable (no arrays)
RV -Real Variable

RC -Real Constant

SRV -Scalar Real Variable (no arrays)

SV -String Variable

SC -String Constant

IE -Integer Expression

RE -Real Expression

SE -String Expression

13

MLBASIC 2.0 USER'S MANUAL

I/0 Commands

Function

To close one or more files that were opened for I/0.

Format CLOSE /#channel/,...

channel -device number to be closed (IV,IC)

Examples
1. CLOSE
-This closes all open channels
2, CLOSEF1,72,=-1
-This closes channels 1,2,-1

Comments

1. The CLOSE command should be used before program termination
whenever any disk or cassette files are open. It is especially
important to close files opened for output, since a close will
output any remaining data left in the file buffer.

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

14

MLBASIC 2.0 USER'S MANUAL

3.7.b CLOADM

Function
To load a machine language program from cassette.

Format CLOADM /filename//,offset/

filename -Name of file (SC)
offset -Offset load value (IC)

Examples
1. CLOADM "MLTEST"
-Loads machine language file "MLTEST"
2., CLOADM "TEST1", 1000
-Loads file "TEST1" with an offset of 1000 bytes

Comments

1. The filename may be omitted, in which case the next file

found on the cassette will be loaded.

Differences from Interpreter
1. Only Constants are allowed as arguments.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

15

MLBASIC 2.0 USER'S MANUAL

3.1.c CSAVEM

Function
To save machine language programs or binary data to cassette

Format CSAVEM filename,start,end,exec

filename -Name of output file (SE)

start -Starting address in memory to save (IV,IC)

end -Address of last byte to save (IC,IV)

exec -Entry location for M.L. program (IC,IV)
Examples

1. CSAVEM "MLTEST", 10000, 12000, 10500
-Save the machine language program "MLTEST" to tape
starting at 10000, thru 12000 and an exec address of 10500

Comments
1. Extended Basic is not required.

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

16

MLBASIC 2.0 USER'S MANUAL

3.1.d
3.1.d DIR

Function

To display a directory of the disk in the drive number you
specify.
Format DIR /drivenumber/

drivenumber -Number of drive 0-3 (IC)
Examples

1. DIR

-Display directory of drive O

2. DIR1

-Display directory of drive 1
Comments

1.I1f no drive number is given, the default drive directory is
displayed.

Differences from Interpreter

1.0nly Integer constants are allowed for drive number.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB, DB

DRIVE
Function
Changes the
3.
Format DRIVE
drivenumber
Examples
1. DRIVES3
-This makes
Comments

17

MLBASIC 2.0 USER'S MANUAL

drive default to a specified number between O and

/drivenumber/

-Number of drive to select (IC)

DRIVE3 the default drive

1.If DRIVE is not used, drive O is the default drive.

Differences from

Interpreter

1.0nly Integer Constants are allowed.

Roms Needed (ECB=

B, ECB,DB

Extended,DB=Disk,B=Standard)

18

MLBASIC 2.0 USER'S MANUAL

3.1.f DSKIS
Function

Directly input a sector from a given track and drive into a
string array that is dimensioned for at least 256 characters.

Format DSKI$ drivenumber, track,sector,string

drivenumber -Number of drive (IE)

track -Track number (IE)

sector -Sector number (IE)

string -Name of string (SV)
Examples

1. DSKI$1,17,3,A%
-Reads the directory track, sector 3 and stores it in array AS
2. 100 %STRING=1:DIM A$(256):REM' I/0 BUFFER =256 CHARACTERS

200 INT DR,TR,SE
300 DSKIS DR,TR,SE,AS
400 FORI=0TO0255:INT J:J=AS(I)
500 PRINT "BYTE ";I;"=";J:NEXT
-This is an alternative way read data into a buffer. 1In this
example, each byte of data can be examined more easily.
3. DIMBS(18):FORI=1TO18:DSKIS0,17,I+1,BS(I):NEXT
-This reads the entire directory track into a buffer called L&.

Comments
1. The track numbers may be a number from O to 34, the sector
may be a number from 1 to 18.

Differences from Interpreter
1. The array that is to hold the input sector can hold all 256
bytes, whereas the Interpreter uses two arrays of 128 bytes each.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB, DB

19

MLBASIC 2.0 USER'S MANUAL

3.1.¢g
3.17.g DSKOS

Function |

Outputs a string buffer to a sector on a given track and
drive.
Format DSKO$ drivenumber, track,sector,string

drivenumber -Output drive (IE)

track -Track number (IE)

sector -Sector number (IE)

string -String array (SV)
Examples

1. 10 DSKO$0,0,1,ARRAYS
2. 10 DIM BUFFERS$(18)

20 FORI=1TO18:DSK0S$0,34,I+1,BUFFERS(I):NEXT
-This outputs buffer B$ to the last track on drive O.

Comments
1. As with DSKIS$, the allowable track numbers are 0-34 and the
allowable sectors are 1-18.

Differences from Interpreter
1. Only one string is required to hold the 256 byte data that
is to be written to disk with MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB, DB

20

MLBASIC 2.0 USER'S MANUAL

3.7.h FIELD

Function

Organizes the space within a direct access buffer into fields.
By assigning a name to each field, data can be written to the fields
using the LSET and RSET commands, and later used as a string
variable in PRINT statements, string expressions, etc.

Format FIELD #buffer,fieldsize /:AS fieldname ,...

buffer -Buffer to divide into fields (IC)
fieldsize -Size of field (IC)
fieldname -Name of field (up to 2 characters+ "$")

Examples

1. FIELD=1, 100/A1$,200 AS A2$%,50/ A3S

-This forms 3 new fields in buffer 1 of length 100,200 and 50
bytes each.

2. LSET Al13="data="+AS

-This example writes a string expression to the field, A1S.

3. AS=A1S

-This example assigns the data stored in field, A13, to the
string variable, AS. '

Comments

1. The name of the field may be used as a string variable is
normally used (eg. PRINT,string exressions).

2, Data may only be written to a field using the LSET and
RSET commands. In other words, field names may not appear on the
left side of a string equation, or with the command INPUT.

3. If more than one FIELD command that use the same buffer
numbers are in a program, make sure no FIELD commands having
different buffer numbers appear in the middle of the FIELD
commands.

4., The maximum size of any field must be less than 256 bytes
(1-255 allowed).

Differences from Interpreter
1. The Interpreter only allows "AS" to be used to separate
field parameters. MLBASIC offers "/'" as another allowable delimiter.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

21

MLBASIC 2.0 USER'S MANUAL

3.1.i FILES

Function
0 tell the computer how many buffers to reserve in lower

memory, and the total number of bytes to reserve for the buffers.

Format FILES buffers,buffersize
buffers -Total number of buffers to reserve (IE)

buffersize -Total number of bytes to reserve (IE)

Examples

1. FILES4,1300

-This reserves four buffers and a total space of 1300 bytes for
all disk buffers.

Comments

1. On startup of the computer, there are 2 buffers and a total
of 256 bytes for the buffers assigned before any FILES command is
given.

2. Care must be taken when using this command. Memory
available for buffers must be large enough to accommodate the
buffersize.

3. If a buffer is currently open when the FILES statement is
executed, the data in the buffer is lost as all buffer tables are
re-initialized.

4, The graphic pages conflict with the disk buffers, so make
sure that the first graphic page used is above the disk buffers.

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB, DB

22

MLBASIC 2.0 USER'S MANUAL

3.1.j GET

Function _
Gets the record number specified and stores it in the

specified buffer.

Format GET #buffer,recordnumber
buffer -Buffer number (IE)
recordnumber -Record to read (IE)

Examples

7. GET#1,I-1
- This reads in record number (I-1) into buffer #1.

Comments
1. This command does not support the graphics option for GET.
2. Non-Disk users may use this command for random access

cassette Inputting of individual cassette blocks.

Differences from Interpfeter
1. Graphics mode not supported in MLBASIC.
2. Cassette option not allowed with Interpreter.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

23

MLBASIC 2.0 USER'S MANUAL

3.1.k INPUT

Function
This command inputs data from the specified channel number and

stores the data in the variable specified in the argument list.

Format INPUT /string;//#buffer,/arg /,:; arg .../;//
string -Message to appear before keyboard input (SC)
buffer -Device number (IE)

-1 =cassette
0 =keyboard (not needed)
1-15 =Disk files
arg -Name of variable or array where
input data is stored. (IV,RV,SV)
H -Supress linefeed after input
j -Linefeed after input

Examples

1. INPUT "ENTER A NUMBER ";A

-This prints "ENTER A NUMBER" to the screen and awaits an input
from the keyboard. When you enter the number and hit RETURN, the number
is stored in the variable named A.

2. INPUT=-1,A,AS:%STRING=1:DIM BS(1000):INPUT=-1,$BS(100)

-This inputs data from the cassette in the following order: a
number is first input into the variable A, then an entire string is read
(characters terminated by a zero byte) into the array AS, finally one
character is input into the array element BS(100).

3. INPUT "ENTER A";A;
-This is the same as example #1, except a CR 1is not output to the
screen after inputting variable, A.

Comments

1. The format that is accepted as input from cassette and disk
files is binary format by default. This is the most efficient way to
store data, and since this is how it is stored in memory, no conversion
of data types is necessary. This means that CVN and MKNS are not not
needed for efficient I/0.

2. Data that has been written to the file previously using an
ASCII format must be read in as a string and converted to a real or
integer number using VAL.

24
MLBASIC 2.0 USER'S MANUAL

3. String variables may be input element by element by
specifying a string element in the argument list. By placing the
special character "$" in front of the string variable name, single
charaters can be input from a device.

Differences from Interpreter
1. When data is input from the keyboard, the "ENTER" key must
be hit after every entry.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.1.1

25

MLBASIC 2.0 USER'S MANUAL

3.1.1
KILL

Function

To delete a file from the disk permanently.
Format KILL filename

filename -Name of file to kill (SE)
Examples

1. KILL "FILE1"+":1"

- Delete FILE1 from drive 1's directory
Comments

1. The kill command closes all open files before deleting a
file.

Differences from Interpreter

1.NONE

Roms Needed (ECB=Extended,DB=Disk,B=Standard)

B, ECB, DB

26

MLBASIC 2.0 USER'S MANUAL

3.17.m LINEINPUT

Function
To input a record of bytes from a specified channel number.

Format LINEINPUT /string;//#buffer,/arg ,...
string -Message to appear before keyboard input (SC)
buffer -Device number (IE)

-1 =cassette
0 =keyboard (not needed)
1-15 =Disk files
arg -Name of variable or array where
input data is stored. (SV)

Examples
1. LINEINPUT "ENTER STRING '";AS$

2. LINEINPUT#1,A$,BS,CS
-This example gets three records of data and stores the in
AS,B$ and CS respectively.

Comments

1. LINEINPUT will input bytes of data from a device and store
them into the specified string variable until an end of line byte
(ASCII 13) is input. When this byte is input, a zero byte is stored
at the end of the string variable to terminate the string data.

Differences from Interpreter

1. None.
Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

27

MLBASIC 2.0 USER'S MANUAL

LSET

" Function
To left justify a string into a previously specified field
within a random access buffer.

Format LSET fieldname=string
fieldname -Name of field in buffer (2 characters+ "$")
string -String to be stored into field (SE)
Examples

1. LSET A1$="The number is "+STR$(A)
-This stores a string expression into field A1S$

Comments

1. If the string expression is larger than the field, the
string is truncated to fit the field, and where the last byte in the
field is a zero.

2. If the string is shorter than the field, blanks (ASCII 32)
are filled in to the right of the string with a zero byte in the
last position in the field.

3. In all cases, a zero is used to terminate the field that is
being written to. This means that a zero should be accounted for in
the allocation of the buffer. Each field in that buffer will have a
zero as its last character.

4, Data that is written to fields can be used as a string in
string expressions. The zero byte that terminates the field is
needed to terminate the field string when used in an expression.

Differences from Interpreter
1. The format for terminating the field with a zero is
different than the Interpreter.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

28

MLBASIC 2.0 USER'S MANUAL

3.17.0 OPEN

Function
To open a file for input,output or direct access. The device can
be either cassette or disk.

Format OPEN "mode" ,#buff,fname /,#ftype//,reclen/
buff -Buffer number (IC,IV)
mode -I=input,O=output,D=direct (random) access
fname -Name of file to open (SE)
ftype -Type of file as follows:

$000 Basic program

$OFF Basic program in ASCII

$100 Binary data

$S1FF ASCII data

$200 Machine language program

$300 Text stored in binary

$3FF Text stored in ASCII
reclen -Length of direct access file (IE)

Examples

1. OPEN"I",#1,"TESTFILE: 1"

- This opens buffer =1 for input from file "TESTFILE" on drive#1.

2. OPEN"D",%5,AS$+".DAT",58200, 100

-This opens buffer =5 to file A$ plus the extension ".DAT" for
random access I/0. The file type is specified as text stored in binary.
The record length is 100 bytes.

3. OPEN"O",#1,"FILE",#&H200

- This opens channel #1 to an output file named "FILE". The type of
the file is a machine language program.

Comments

1.The default record length for random (Direct) access files is
256 bytes.

2. The random access option can be used for cassette I/0 provided
the proper steps are made to make sure that the recqorder is on record
when you PUT a record, and that the recorder is on play when you GET a
record.

3. Although the OPEN#-1,"D" option is not allowed, the cassette
file may be opened for direct access using the following mode:

"I" -Open for input if file exists

"O" -Open for output if file is to be created

4. The maximum length of a cassette record is 255 bytes, as opposed
to an unlimited size with disk files.

Differences from Interpreter
1. Interpreter does not support direct access cassette I/0.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

29

MLBASIC 2.0 USER'S MANUAL

3.1.p
3.17.p PRINT
Function)
To output data to a buffer, the printer or the screen.
Format PRINT /#%buffer,//USINGformat;//TAB(pos)/ arg d..
buffer -Buffer to print data to (IV,IC)
If @number is used instead of #buffer
screen output is started at number
(IV or IC between O and 511)
format -PRINTUSING format allowed (SE)
pos -column position to print next argument (IE)
arg -Data to print (IE,RE,SE)
d -separation character for arguments:

","=skip to next line (except with USING)
";"=do not skip a line or space
(with USING, use only at end of arg. list)

Examgles
1. PRINT"This is text"

-This prints a string constant to the screen.
2. PRINT#-1,USING"=%.7#-";-123.9,A,B,C;
- This prints a real constant and two variables to the cassette
file using a specified format in the form of ASCII characters.
3. PRINT#2,TAB(5-1);"DATA=";TAN(A/SIN(1+1.9*COS(A)))
-This prints to disk a string and real expression starting at
column position 5-1I.
0 A=1.999:B=50000:C=1.9E+10
10 OPEN"O",=1,"TEST. 1"
20 PRINT#1,A;B;C; :CLOSE
30 OPEN"I",#1,"TEST.1"
40 INPUT=1,A,B,C:CLOSE
50 PRINTA,B,C:END
- This simple program writes and then reads back three variables to
disk.
4. PRINT#2,STRS(A);",";
- This example prints to device #2 the character equivalent of the
variable, A with a delimitor, as the interpretor would in the command
PRINTF2,A;.

Comments

1. MLBASIC prints all real numbers to cassette and disk in their
binary format, unless the USING format is used in the command. Likewise,
the INPUT command will read in the data in the binary format, thereby
making PRINT and INPUT compatible ways of storing and later recalling
numeric data.

2. Strings that are written to disk or cassette are terminated with
a zero byte as a means of separating the items in the file.

3. The semicolon is usually used after all arguments that are
written to a file so they can easily be read back using INPUT.

4, If the character "$" is placed in front of the string variable
name, only the first byte of that string will be output to the device.

30
MLBASIC 2.0 USER'S MANUAL

5. The following characters may be used as field specifiers in
the PRINTUSING format string:

7 The position of digits as they are to be printed. The number
of #/s establishes the numeric field. Unused digits are left as
blanks (ASCII 32) to the left and zeros (ASCII 48) to the right of
the decimal point.

. The position of the decimal point is marked by a "." in the
numeric field.
r The comma, when placed anywhere between the first digit and

the decimal point in the field, will display a comma to the left of
every third digit that lies to the left of the decimal point.

% Two asterisks at the beginning of the numeric field

indicates that all unused positions to the left of the decimal point
will be filled with asterisks "*'",

§ By placing a dollar sign in front of the format, a dollar
sign will appear in front of the output number.

$3 Two dollar signs placed at the beginning of the format will
make the dollar sign appear one space to the left of the largest
digit.

**g If these characters are used at the beginning of the format

string, then the vacant positions to the left of the number will be
filled with asterisks and a dollar sign one space to the left of the
largest digit.

* The plus sign will appear before positive numbers and a
negative sign before all negative numbers if the "+" appears in
front of the format string.

e If the minus sign appears at the end of the format string,

a negative sign will appear after all negative numbers and a space
after all positive numbers.

111t If four "Up arrows'" appear at the end cf the format string,
the number will be printed out in standard exponential form.

! An exclamation mark alone in the format string will cause
the first string character to be printed by itself.

% % To specify a string field of more than one character,

where the number of spaces that lie between the %s is equal to the
length of the field.

Differences from Interpreter
1. The Interpreter uses the "," delimitor as a tab, where

MLBASIC uses "," as a new line indicator.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

31

MLBASIC 2.0 USER'S MANUAL

3.1.9
3.17.q PUT
Function

To assign the data in the desired buffer a record number and
store information on disk or cassette.

Format PUT #buffer,recordnum
buffer -Output device number (IE)

recordnum -Number of record on file
(or record length of cassette) (IE)

Examples

1. PUT#1,1

-assigns current data in buffer #1, the record number 1.

2. PUT#-1,100

-writes the first 100 bytes in buffer #-1 to a cassette record
(or block in this case).

Comments

1. The PUT command has been allowed to use the cassette for
direct access input/output. The record number in this case must be
accounted for in the applications program that uses the PUT command.
The recorder must be positioned to the next block to be written (or
overwritten), and the recorder must be on RECORD. A way of
positioning the cassette to the proper block in a cassette file that
is being written is to (1) make sure the cassette is in the PLAY
mode by using prompts in the program, (2) to use GET=-1,R-1 ,where R
is the record that is to be written. The internal software for the
GET command will prompt the user to rewind the cassette tape to the
beginning of the file, and then the correct block number will be
searched for in the file.

2, The cassette option, PUT#-1, must include the length of the
record, or errors will occur when writing to tape. Maximum cassette
record lengths are 255 bytes. If graphics commands are used while
data is still in a cassette buffer, the data in that buffer will be
lost (because graphic commands use the cassette buffer area for
temporary variable storage).

Differences from Interpreter

1. The graphics options for the PUT command are not supported
with MLBASIC. T

2, The cassette option for PUT is not supported by the
Interpreter.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

32

MLBASIC 2.0 USER'S MANUAL

3.1.r
3.7.r RSET

Function

To right justify a data string within a given field and
buffer.
Format RSET fieldname=string

fieldname -Field Identifier name (2 characters+ "$")

string -Data string to be put in field (SE)
Examples

1. RSET A1$=VARIABLES$(0)+STRING$(10,"*")+STRS$(A-100)
-This example right justifies a complex string expression
within the previously declared field named A1$

Comments

1. If the string expression is larger than the field, the
string is truncated to fit the field, and the last byte in the field
is a zero.

2. If the string is shorter than the field, blanks (ASCII 32)
are filled in to the left of the string with a zero byte in the last
position in the field.

3. In all cases, a zero is used to terminate the field that is
being written to. This means that a zero should be accounted for in
the allocation of the buffer. Each field in that buffer will have a
zero as its last character.

4, Data that is written to fields can be used as a string in
string expressions. The zero byte that terminates the field is
needed to terminate the field string when used in an expression.

Differences from Interpreter
1. The format for terminating the field with a zero is
different than the Interpreter.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

33
MLBASIC 2.0 USER'S MANUAL

3.2 Program Control Commands

3.2.a CALL

Function

- The CALL statement is used to execute a subroutine by
referencing its name and a list of parameters. These parameters are
shared between the subroutine (subprogram) and the calling program.

Format CALL subroutine(arg,...)

subroutine -Name of subroutine (7 characters max.)
arg -Parameter to be passed to subprogram
Value is shared with subroutine
(Iv,I1C,RV,RC,SC,SV)

Examples
1. 10 CALL EXAMPLE(A,9.9,B(1,10))
20 REM' PROGRAM
30 REM' CONTINUES

1000 SUBROUTINE EXAMPLE(I,J,K(0,0))

1001 REAL J:DIMK(20,20)

1002 I=INT(J/SIN(K(0,0)))

1003 RETURN

-This example shows the way one may call a subroutine. In this

example, the subroutine EXAMPLE is called with the three parameters
A,9.9 and B(1,10) being passed in the argument list. The subroutine
identifies the data that is in the caller's variable, A, as the
variable I, J as the number 9.9 and K(0,0) as B(1,10). The result of
the subroutine call puts the value of INT(9.9/SIN(B(1,10))) in the
main program's variable A. Note that the variable I and J in the
calling program is unaffected by the call.

34
MLBASIC 2.0 USER'S MANUAL

Comments

1. The arguments that are passed in the argument list of the
CALL statement are pointers that are referenced by the subroutine
program. The value or array of values that is pointed to in the
argument list is contained in the calling program's storage area.
This means that the calling program can share its variables with the
subprogram that is being called.

2. The subroutines, also called subprograms, return values to
the calling program unit only through actual-dummy argument
correspondence. In other words, the first variable in the SUBROUTINE
statement's list is set equal to the constant or variable that is
first on the list in the CALL statement, and so on for all the
arguments in the list.

3. If an array is an argument on the list in a CALL statement,
the first element that is referenced by the subroutine is the
element that appears on the CALL statement list.

4, If the SUBROUTINE is to return a value to the calling
program, the argument in the list of the CALL statement must be a
variable.

Differences from Interpreter
1. Interpreter does not support CALL.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

35

MLBASIC 2.0 USER'S MANUAL

3.2.b DEFUSR
Function

To define the entry location for a user machine language
subroutine.

Format DEFUSR£=start

n -User function number (0-9)
start -Entry location of machine language routine (IE)

Exanples
1. DEFUSR1=M+N

Comments
1. DEFUSR must be called before calling the function, USR.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

. C

36

MLBASIC 2.0 USER'S MANUAL

END

Function

The END command is used to indicate where compilation is to
terminate. When the program is run, and an END is encountered,
program termination will occur.

Format END

Examples
1. 17000 PRINT"Exit" :END

-When the program gets to line 1000, the message "Exit" will
appear on the screen and the program will terminate.

Comments

1. The END is compiled the same as the STOP statement. Normal
termination within the program should be done using STOP.

2. The END is the last statement of the program to be compiled.
In other words, the END statement is used to tell the compiler that
it has reached the end of the source to be compiled.

Differences from Interpreter
1. Interpreter allows the END to be anywhere in the source,
while MLBASIC only permits the command at the end of the source.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

37

MLBASIC 2.0 USER'S MANUAL

3.2.d EXEC

Function
To execute a machine language program.

Format EXEC address

address -Entry location of machine
language program (IE)

Examples

1. EXEC10000

-Execute the machine language program beginning at address
10000

2. POKE65502,1:EXECSA1C1:POKE65503, 1

-In this example, the 64k RAM mode is first turned off, then
the address to poll the keyboard in ROM is called (starting at
hexidecimal $A1C1). When the machine language program finishes (with
an RTS for those M.L. programmers), the map type is returned from
the 32k ROM enabled to the 64k RAM enabled map type.

Comments

1. The EXEC command is used to execute an absolute address in
memory. This means that a machine language program must exist at the
address that is to be executed, or else unpredictable results will
occur.

2. As many levels of calls using EXEC may be performed, as long
as the memory permits.

3. The EXEC command, when compiled, is a useful way to execute
a machine language program, located in the upper 32k of RAM, while
running under Interpreter BASIC.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

38

MLBASIC 2.0 USER'S MANUAL

3.2.e FOR..NEXT (STEP)

Function
To allow a series of instructions to be performed in a loop for a
given number of times.

Format FOR counter=start TO finish /STEPstep/
NEXT/counter/
counter -Index variable used to count thru
a given loop (IV)
start -Initial value counter assumes
when entering loop (IV, C)
finish -Final value counter assumes in loop (IV,IC)
step -Increment to be added to counter (IV,IC)
Examples

1. 10 FORX=1 TO 10:NEXT

-In this example, the counter variable, X, is incremented by 1 from
1 to 10.

2. 10 FORA(I)=J TO B(10,10)STEP-C(I,J)

-In this example, the counter variable, A(I), is decremented by the
amount contained in the .integer array element C(I,J). Furthermore, the
initial value is the integer variable J and the final value, (which in
this case is less than the initial value) is B(10,10).

Comments

1. The counter variable must be of type INTEGER. If it is not,
MLBASIC will convert that variable over to type INTEGER automatically.

2. The commands following the FOR statement are executed until the
NEXT command is encountered.

3. The counter is incremented by a specified amount when the NEXT
command is executed. At this point, after incrementing, the counter
variable is compared to the final value. If the counter is now out of
the range of the initial and final values, program control will continue
to the command following the NEXT command.

4, If the STEP is not specified, the increment is assumed to be 1.
If the step is negative, the final value must be less than the
initial wvalue.

5. FOR..NEXT loops may be nested, that is, you can place a
FOR. .NEXT loop inside another FOR..NEXT loop. Nested loops must have a
unique counter for each loop. The NEXT command for the inside loop must
appear before the NEXT command for the outer loop. Up to 20 nested loops
are allowed.

Differences from Interpreter
1. Interpreter allows for expressions for the counter, initial and
final values.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

39

MLBASIC 2.0 USER'S MANUAL

3.2.f GOSUB

Function ,
To branch to and return from a subroutine beginning at a
specified line number.

Format GOSUBlinenumber
linenumber -The first line in the

subroutine. (0-65535)

Examples
1. 1 GOSUB1000:STOP

1000 PRINT"Entering Subroutine 1000":RETURN
-In the above example, line 1000 is called from line 1 and then
execution is termintated by the STOP.
2. 10 ON 1+J/100+I GOSUB1000,2000,3000,4000
-In this example, the line number used in the GOSUB is computed
in the expression 1+J/100+1I.

Comments

1. You can call a subroutine any number of times in a program.
Subroutines may be nested within another subroutine.

2. A RETURN statement in a subroutine causes a branch to the
command following the most recent GOSUB statement.

3. A subroutine may contain as many RETURNs as logical flow
requires.

4, If linenumber contains a nonexecutable command (eg.
REM,DIM,REAL),then execution proceeds at the first executable
statement encountered after '"'linenumber".

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

40

MLBASIC 2.0 USER'S MANUAL

3.2.g GOTO

Function
To perform an unconditional branch from the current position
in the program to a designated line number.

Format GOTOlinenumber

linenumber -Line number in BASIC source
(integer between O and 65535)

Examples

1. 10 GOTO1000

-In the above example, program control is transferred to the
statements on line 1000.

Comments

1. If linenumber contains a nonexecutable command (eg.
REM,DIM,REAL), then execution proceeds at the first executable
statement encountered after "linenumber".

Differences from Interpreter
1. NONE

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

41

MLBASIC 2.0 USER'S MANUAL

3.2.h IF..THEN (ELSE)

Function
To make a decision regarding program flow based on the result
returned by an expression.

Format IF relation THEN st /ELSE st/
relation -A comparison, using any relational
operator, between two expressions (IE,SE,RE)
st -Commands or statements (except IF..THEN)
Examples

1. 10 IF A=100 THENGOTO30
20 REM' skipped if A=100
30 REM' continue program
-This example shows a simple IF THEN statement. A shortcut for
THENGOTO is just THEN, therefore line 10 may read- IF A=100 THEN3O0.
2. 10 IF A$=BS THENPRINT AS;"="; BS ELSEPRINT AS;"{)>"; BS$
-In this example, two string variables are compared, and the
result is to print the relation of the two strings on the screeen.
3. 10 IF A+10.9/SIN(9*R){P+R/TAN(U) THENGOSUB1000:GOTO10
ELSEGOTO1000
-In this example, two real expressions are compared.

Comments

1. If the relation is true (its value is not zero), the THEN
clause is executed. Execution continues until an ELSE is reached or
the end of the BASIC compiled line is reached, in which case the
program continues on the next BASIC compiled line.

2, If the relation is false, the THEN clause is ignored and the
ELSE clause (if present) is executed. Execution continues until the
end of the compiled BASIC line is reached.

3. The combination of commands THENGOTOlinenumber may be
abbreviated as THENlinenumer for simplicity, as long as an ELSE
does not follow.

Differences from Interpreter
1. The Interpreter allows nested IF..THEN statements.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

42

MLBASIC 2.0 USER'S MANUAL

3.2.i OFF ERROR

Function
To disable any previously defined error handling routine.

Format OFF ERROR

Examples
1. 10 ON ERROR GOTO100

20 INPUT"Enter a number'";A
30 OFF ERROR:REM' disable error vector

100 PRINT"INPUT ERROR, TRY AGAIN"
101 GOTO20:REM' RETRY IF ERROR OCCURS
-In the above program, OFF ERROR is used to turn off the ON

ERROR that was defined on line 10.

Comments
1. OFF ERROR causes control to bypass any error called during

execution of the statements that follow this command, until another

ON ERROR statement is executed.
2. If the program does not contain any ON ERROR commands, the

OFF ERROR is assumed and therefore does not have to be included in
the program.

Differences from Interpreter
1. The Interpreter does not handle OFF ERROR.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

43

MLBASIC 2.0 USER'S MANUAL

3.2.J
3.2.j ON ERROR

Function

To enable control to pass to a line or a subroutine when an
error condition occurs during execution of the compiled program.

Format ON ERROR GOTO:GOSUB linenumber

linenumber -Line number where control is passed
(Integer value 0-65535)

Examples
1. 10 ON ERROR GOTO1000
20 INPUT "Enter input filename '";$AS
30 OPEN "I",#3,AS$
40 OFF ERROR

1000 PRINT"FILE NOT FOUND'":GOTO20
In this example, if the file that is to be opened for input is
not found on the disk, an error occurs, in which case the computer
asks for the filename again.

Comments

1. ON ERROR GOSUB calls must call a routine that contains a
RETURN, otherwise program execution may be altered if an error
occurs.

2, If the program does not contain any ON ERROR commands, the
OFF ERROR is assumed and therefore does not have to be included in
the program.

Differences from Interpreter
1. The Interpreter does not handle ON ERROR.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

44

MLBASIC 2.0 USER'S MANUAL

3.2.k ON GO(TO,SUB)

Function
To branch to one of several specified line numbers, depending
on the value returned when an expression is evaluated.

Format ON expression GOTO:GOSUBlinenumber,...

expression -Value which determines what
the destination line is (positive IE)
linenumber -Line number in BASIC source
(integer between 0 and 65535)

Examples
1. 10 ON TT-INT(SIN(U-1)) GOSUB100,200,300
20 .
30 .

In this example, subroutines 100,200 and 300 are called if the
expression has the respective values of 1,2 or 3.

Comments

1. In the ON...GOSUB statement, each line number in the list
must be the first line number of the subroutine.

2. If the expression has a value of zero or a value greater
than the number of linenumbers in the list, execution will continue
to the next statement.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

45

MLBASIC 2.0 USER'S MANUAL

RETURN

Function
To return program control to the calling routine.

Format RETURN
Examples
10 GOSUB1000
20 L]

1000 REM' subroutine entry
1000 .
1002 RETURN
In the above example, the subroutine 1000 was called, and when
a RETURN in line 1002 is executed, program control goes to line 20.

Comments :

1. The RETURN command must be used at the end of a subroutine
that is called using GOSUB.

2. The RETURN command must be used to return control to the
calling program when used with CALL and SUBROUTINE.

Differences from Interpreter
1. None

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

46

MLBASIC 2.0 USER'S MANUAL

3.2.m STOP

Function
To terminate program execution, and to resume control to the
command level.

Format STOP

Examples
1. 10 STOP

Comments

1. The STOP should be used for program termination within the
main body of the program.

2. Execution of the STOP command is the same as the END
command.

3. When the STOP is executed, the 64k RAM mode is changed back
to the 32k RAM-32k ROM mode, and control is returned to the
interpreter.

Differences from Interpreter
1. The STOP does not allow re-entry into the machine language
program using CONT, whereas the Interpreter allows this.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

47

MLBASIC 2.0 USER'S MANUAL

3.2.n SUBROUTINE

Function
0 allow reference to a set of statements or commands by a
single name and a list of parameters.

Format SUBROUTINE name(arg,...)
name -Name of Subprogram (up to 7 characters)
arg -Variable to be passed to calling program

or used as constant in subprogram
(IV,RV,SV)

Examples
1. 10 REM' test of how to call a subroutine
20 INPUT"enter a number ";A:PRINT
30 CALL TESTONE(A)
40 STOP
100 SUBROUTINE TESTONE(B)
17071 PRINT"NUMBER=";B
102 RETURN
200 END
In this example, the subroutine TESTONE is called and the
number that was input on line 20 is printed.

Comments

1. The subroutines, also called subprograms, return values to
the calling program unit only through actual-dummy argument
correspondence. In other words, the first variable in the SUBROUTINL
statements list is set equal to the constant or variable that is
first on the list in the CALL statement, and so on for all of the
arguments on the list.

2. If the SUBROUTINE is to return a value to the calling
program, the argument in the list of the CALL statement must be a
variable.

' 3. Within the subroutine, name may only appear in the
SUBROUTINE statement immediately following the word SUBROUTINE.
Subroutine names are uniquely distinquished by their first seven
characters.

4., The subroutine list must contain the same number of
arguments as is contained in the CALL statement's 1list.

5. The arguments that are passed in the argument list of the
CALL statement are pointers that are referenced by the subroutine
program. '

6. If an array is an argument on the list in a CALL statement,
the first element that is referenced by the subroutine is the
element that appears on the CALL statement list.

Differences from Interpreter
1. The Interpreter does not handle the SUBROUTINE statement.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

48

MLBASIC 2.0 USER'S MANUAL

3.2.0 USR

Function

To call a user defined machine language subroutine within an
integer expression.

Format m=USRn(arg)
m -Variable that excepts the INTEGER value
passed by the user function (IV)
n -User function number (0-9)
arg -Argument of user function (IE)
Examples

1. 100 FORI=1 TO 1000
200 B(I)=USR1(A(I)):NEXT
-In this example, the user function is filling the array, B
with values that are a function of the array A.

Comments

1. Subroutines that are called by USR must end with a RTS or
equivalent PULS PC.

2. The USR function first loads the [D] register with the
integer argument. The machine language routine is then called via
the JSR instruction. After returning from the routine, the integer
value in the [D] register is transferred back as the result of the
function.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)

B

49

'MLBASIC 2.0 USER'S MANUAL

3.3 Math Functions

3.3.a
3.3.a ABS

Function

To return the absolute value of the expression given as the
argument.
Format ABS(expression)

expression -The value that gets passed to

the function. (RE)

Examples

1. 10 A=ABS(100-SIN(10-1I)*2)

Comments
1. Negative expressions are made positive and the magnitude is
unchanged. Positive numbers are unchanged.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

50

MLBASIC 2.0 USER'S MANUAL

3.3.b ASC
Function

To return the ASCII value of the string expression given as
the argument.

Format ASC(expression)

expression -The value that gets passed to
the function. (one letter SE)

Examples
1. 10 A=ASC(AS)
In this example, the value of byte A$(0) is returned to A.

Comments

1. This command is not necessary in MLBASIC, but is used only
for compatibility with the interpreter. Example 1 could just as well
be written as 10 A=AS and the result would be the same.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

51
MLBASIC 2.0 USER'S MANUAL

3.3.c ATN
Function
To return the arc tangent of the expression given as the
argument.

Format ATN(expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples
1. 10 DEGREES=ATN(Y/X)

Comments
1.The result is in the range of -pi/2 to pi/2.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

52

MLBASIC 2.0 USER'S MANUAL

3.3.d COS

Function
To return the cosine of the expression given as the argument.

Format COS(expression)

expression -The value that gets passed to
the function. (IE,RE in Radians)

Examples

1. 10 X=R*COS(THETA)

This is the conversion from polar coordinates to the
rectangular coordinate -X.

Comments
1. The value returned is a real value from -1 to 1.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

53

MLBASIC 2.0 USER'S MANUAL

3.3.e CVN

Function
Converts a binary coded string into a real number.

Format CVN(expression)
expression -The string containing the 5 byte

binary representation of a real number
(SE at least 5 bytes long)

Examples
1. 10 X=CVN(AS)

Comments
1. The string that gets passed to the CVN routine usually has
been previously encoded using the MKN$ string function.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB, DB

54

MLBASIC 2.0 USER'S MANUAL

3.3.f EOF

Function
To return the end of file status of the expression given as
the argument.

Format EOF(expression)

expression -The buffer that is being
checked for the end of file
(IE values -2,0,1,2,...15)

Examples

1. 10 IF EOF(-1)=-1 THENCLOSE:STOP

In this example, if the end of file is reached on the cassette
file, all files are closed and program execution stops.

Comments

1. The EOF function must have as its argument a buffer number,
whose buffer was previously opened for input (OPEN"I" type).

2, If the end of file has been reached after an INPUT, the EOF
call will return a -1, otherwise it returns a zero.

Differences from Interpreter

1. MLBASIC treats the values returned from an EOF call as an
integer value.

2. The Interpreter allows the EOF call to be a true or false
(LOGICAL) value.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

55
MLBASIC 2.0 USER'S MANUAL

3.3.g EXP
Function

To return the natural exponent of the expreséion given as the
argument.

Format EXP(expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples
1. 10 A=EXP(4.988+I)

Comments
1. If the expresion is too large, an overflow error will occur
when called.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

56

MLBASIC 2.0 USER'S MANUAL

3.3.h FIX
Function

To return the truncated (integer) value of the expression
given as the argument.

Format FIX(expression)

expression -The value that gets passed to
the function. (RE)

Examples
1. 10 WHOLENUMBER=FIX(A)

Comments
1. The difference between FIX and INT is that FIX does not
return the next lower number for a negative expression.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

57
MLBASIC 2.0 USER'S MANUAL

3.3.1i HPOINT

Function
To return information on point x,y from the high-resolution

graphics screen.

Format HPOINT(x,y)
X -X coordinate of point (IE)
y -Y coordinate of point (IE)
Examples

1. A=HPOINT(R,J+3)

Comments
1. HPOINT returns a non-zero integer value if the point is set.

Differences from Interpretor
e

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

58

MLBASIC 2.0 USER'S MANUAL

INSTR

Function
To return the location in a string of another string.

Format INSTR(start,search, target)
start -Beginning character to start search (IE)
search -String in which the search is made (SV)
target -The string that is being searched for (SV)
Examples

7. 10 POSITION=INSTR(1,A$,"Target")

Comments

1. If the start is greater than the length of the search
string, a zero is returned.

2. If the string to be searched for is not found, INSTR will
return a zero.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

59
MLBASIC 2.0 USER'S MANUAL

3.3.k INT

Function
0 return the next highest integer value of the expression
given as the argument.

Format INT(expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples
B 1. 10 IF INT(I1/4.)=1/4. THENPRINT

In this example, a new line is printed to the screen when
I=0,4,8 and so on. A real expression is formed when the variable, I,
is divided by the real constant, "4." (otherwise, the expression
I/4 will be integer if I is integer).

Comments
1. The INT function will truncate the decimal part of a number.
2. To round a number to the nearest whole integer, one must,
add 0.5 to the real expression. For example, the statement
AB=INT(I+.5) rounds the variable, I, to the nearest whole number.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.3.bb
3.3.bb JOYSTK

Function
To return the horizontal or verticle coordinate of the
joysticks.

FORMAT JOYSTK(j)
J -Joystick number (IE value O to 3)

Differences from Interpreter
1. None.

60

MLBASIC 2.0 USER'S MANUAL

3.3.1
3.3.1 LEN
Function
To return the length of a string.
Format LEN(expression)

expression -The string value that gets passed to
the function. (SE)

Examples
1. 10 A$=A$+STRING$(20-LEN(AS$)," ")

In this example, the string variable, A$, is made to be 20
characters long with the help of the LEN function.

Comments
1. If the string is of zero length, (the first element in the
string is a zero), LEN returns a O.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

61

MLBASIC 2.0 USER'S MANUAL

3.3.m
3.3.m LOG

Function

To return the natural logarithm of the expression given as the
argument.
Format LOG(expression)

expression -The value that gets passed to

the function. (IE,RE)

Examples

1. 10A=LOG(1.987)

Comments
1. The LOG is the power to which the number e, 2.718271828,
must be raised to result in the given argument.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

62

MLBASIC 2.0 USER'S MANUAL

3.3.n
3.3.n LOC
Function
To return the next record number of the specified buffer.
Format LOC(expression)
expression -The buffer number (IE)
Examples

1. 10 A=LOC(BUFFER)

Comments

1. The LOC function may only be used with files that have been
opened for direct access ('"D" option in OPEN).

2, The location of the next record is set to 1 if no records
have been read (using GET).

3. The current record that exists in the buffer is equal to the
LOF of that buffer minus one.

Differences from Interpreter
1. MLBASIC allows LOC(-1), while the Interpreter does not.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB, DB

63

MLBASIC 2.0 USER'S MANUAL

3.3.0
3.3.0 LOF
Function
To return the last record of a specified buffer.
Format LOF(expression)

expression -The buffer number (IE)

Examples

1. 10 IF LOC(1)-1=LOF(1) THENCLOSE:RETURN

In this example, if the location of the current record is the
last record, execution terminates.

Comments
1. The buffer must have been opened using the direct access
("D") mode.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB, DB

64
MLBASIC 2.0 USER'S MANUAL

3.3.p

3.3.p LPEEK

Function
To return the one byte value of the specified virtual memory
location.

Format LPEEK(expression)

expression -The memory location that gets passed to
the function. (RE)

Examples
1. 10 A=LPEEK(65536.%*6)

In this example, the expression is equivalent to &H60000, but
since MLBASIC sees the &H as an integer number, numbers greater than
&HFFFF are truncated to 16 bits.

Comments ;

1. The argument passed to LPEEK is a virtual memory location.
Since the ROM and lower 32k of RAM area for BASIC start at &H70000,
the virtual address for regular memory location &HS500 is virtual
location &H70500.

2. LPEEK is the compliment to the LPOKE statement.

Differences from Interpreter
1. MLBASIC does not allow the &H type numbers as arguments for
the function.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

65
MLBASIC 2.0 USER'S MANUAL

3.3.q

3.3.q PEEK
Function :
To return the one byte value of the specified memory location.
Format PEEK(expression)

expression -The memory location that gets passed to
the function. (IE)

Examples
1. 10 A=PEEK(25)*256+PEEK(26) -

Comments
1. The argument must be an allowable memory location (0-65535).
2. PEEK is the compliment to the POKE statement.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

66

MLBASIC 2.0 USER'S MANUAL

3.3.r POINT

Function
To return the value of the specified graphics cell.

Format POINT(x coord,y coord)

x coord -X coordinate in current graphics page (IE)
y coord -Y coordinate in current graphics page (IE)

Examples
1. 10 IF POINT(10,5)=0 THENPRINT"OFF'" ELSEPRINT"ON"

Comments
1. The value returned is equal to -1 if the character mode is
on.

2, If the graphics mode is on, the value returned is the
current color which is any allowable non negative integer.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

67

MLBASIC 2.0 USER'S MANUAL

3.3.s PPOINT

Function ,
To return the color of the specified graphics cell.

Format PPOINT(x coord,y coord)
x coord -X coordinate in current graphics page (IE)
y coord -Y coordinate in current graphics page (IE)
Examples

1. 10 C=PPOINT(X,Y)

Comments

1. The X and Y coordinates must be within the allowable range
of the current graphics mode, otherwise misleading values will be
returned.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

3.3.t

68

MLBASIC 2.0 USER'S MANUAL

RND

Function

To return a pseudo-random number between one and the
expression given as the argument.

Format RND(expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples

1. 10 A=RND(100)

Comments

1. The argument in RND must be greater than one.

Differences from Interpreter

1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

69

MLBASIC 2.0 USER'S MANUAL

3.3.u SGN

Function
To return the sign of the expression given as the argument.

Format SGN(expression)
expression -The value that gets passed to

the function. (IE,RE)

Examples
1. 10 IF SGN(A)<O THENPRINT"NEGATIVE" ELSEPRINT"NON-NEGATIVE"

Comments
1. The value returned is as follows:
1 if expression>0
0O if expression=0
-1 if expression<O

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

70

MLBASIC 2.0 USER'S MANUAL

3.3.v SIN
Function
To return the sine of the expression given as the argument.
Format SIN(expression)

expression -The value that gets passed to
the function. (IE,RE)

Examples
1. 10 A=SIN(THETA-3.14159)

Comments
1. The argument must be in radians.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

71

MLBASIC 2.0 USER'S MANUAL

3.3.w
3.3.w SQR

Function

To return the square root of the expression given as the
argument.
Format SQR(expression)

expression -The value that gets passed to

the function. (IE,RE)

Examples

1. 10 DISTANCE=SQR(X*X+Y*Y)
The square root function is used to find the distance between
two points.

Comments
1. The argument must be greater than or equal to zero. Negative
arguments result in a function call error.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

3.3.%

72

MLBASIC 2.0 USER'S MANUAL

3.3.X
TAN

Function

To return the tangent of the expression given as the argument.
Format TAN(expression)

expression -The value that gets passed to

the function. (IE,RE)

Examples

1. 10 OPPOSITE=ADJACENT*TAN(THETA)
The tangent function can be used to find the length of an
unknown side, given one side and the angle between the two sides.

Comments

1. The argument must be in radians

2. The tangent function is undefined at pi/2 and -pi/2. An
overflow error will occur if the argument is sufficiently close to
these points.

Differences from Interpreter

1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

73
MLBASIC 2.0 USER'S MANUAL

3.3.
3.3.y TIMER SLLE £

Function
To return a timer value from the microprocessor clock.

Format TIMER
Alternate Format TIMER=initvalue
initvalue -Value that the clock is
initialized to (IE)
Examples

1. 10 A=TIMER
2. 10 TIMER=0

Comments
1. The cassette and printing operations stop the counter.
2. The counter is incremented about every 1/60th of a second.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

74

MLBASIC 2.0 USER'S MANUAL

VAL

Function
To return the numeric representation of a string.

Format VAL(string)
string -The numeric string (SV)
Examples

1. 100 NUMBER=VAL('1234.999")

-In this example, the variable, NU, is loaded with the number
1234.999. If NU was an integer (ie. it was not declared with REAL),
the variable will be loaded with the number 1234.

/

Comments

1. The value returned is a real number.

2. The string expression must be a legal numeric string,
otherwise an error will occur.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

75
MLBASIC 2.0 USER'S MANUAL

3.3.aa
3.3.aa VARPTR

Function
To return the starting address in memory of a specified

variable.

Format VARPTR (arg)
arg -Variable or variable array name (SV,IV,RV)
Examples

1. A=USR1(VARPTR(AS))

The VARPTR function is used to pass the location of variable AS$
to a USR function.

Comments)
1. VARPTR returns an integer number between O and &HFFFF.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

76

MLBASIC 2.0 USER'S MANUAL

3.4 String Functions

3.4.a CHRS$

Function
To return the character for the given argument.

Format CHR$ (expression)

expression -Any integer number
between 0 and 255 (IE)

Examples

1. 100 PRINT#-2,CHRS(18);

The CHR$ function is being used to select the graphics mode for
the line printer.

2. 100 PRINT#-2,CHR$(27)+CHRS(20);

The CHRS function can be used to send escape codes to a printer
as in this example.

Comments
1. The CHRS function returns a single byte that contains the

quantity specified in the argument.

Differences from Interpreter
1. None. o

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

77

MLBASIC 2.0 USER'S MANUAL

3.4.b INKEY$

Function .
To return the character code for one scan of the keyboard.

Format INKEY$

Examples

1. 100 AS=INKEYS$S:IFA$=""THEN100

101 PRINTAS; :RETURN

In this example, the keyboard is scanned using the INKEYS
function. The routine continues to scan the keyboard until a key is
typed in. When the key is typed, the character is output to the
screen and program control returns with the ASCII character code in
element #0 of the string array, AS.

Comments

1. If no key is typed when the INKEY$ routine scans the
keyboard, the routine will return a zero.

2. No characters are echoed with the INKEYS routine.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

78

MLBASIC 2.0 USER'S MANUAL

3.4.c
3.4.c LEFT$
Function
To return a specified amount of the left side of a specified
string.
Format LEFT$(string,length)
string -The string from which the final string
is formed (SV)
length -The length of returned string (IE)
Examples

1. 100 AS=LEFT$(A$,LEN(AS$)-1)
In this example, all but the last character in the string
variable, AS is returned.

Comments

1. The maximum length of the string expression is 255 bytes.

2, If the length of the final string is greater than the string
argument, the resulting string will only be as long as the initial
string argument.

Differences from Interpreter

1. Only a string variable is allowed as the string argument in
MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

79

MLBASIC 2.0 USER'S MANUAL

Function
To return a specified amount of the middle of a specified

string.

Format MID$(string,position,length)/=midchars/
string -The string from which the final string
is formed (SV)
position -The location in original string
where new string starts (IE)
length -The length of returned string (IE)
midchars -String to insert into final string (SE)
Example

1. 100 Z3=MIDS(AS,10,LEN(AS$)-5)

2. 200 MIDS(AS,5,2)="XX"
This example sets the fifth and sixth characters of string AS,
to the string "XX".

Comments

1. The maximum length of the string expression is 255 bytes.

2., If the length of the final string is greater than the string
argument, the resulting string will only be as long as the initial
string argument.

Differences from Interpreter

1. Only a string variable is allowed as the string argument in
MLBASIC.
2. The length must be included with MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.4.e

80

MLBASIC 2.0 USER'S MANUAL

MKN$

Function
To return a S5-byte coded string that represents a real number
in binary form.

Format MKN$ (number)

number -The real value that gets coded
into the 5 byte string (RE)

Examples
1. 100 A3=MKN$(99.99999+1)

2. 100 LSET A1$=MKNS(A)+MKN$(12345.)
The MKN$ function is most useful in forming data within a
direct access buffer field.

Comments

1. The MKNS$ function may form real numbers on mass storage
devices such that the INPUT command may read the data back into a
real variable without having to call the CVN function.

Differences from Interpreter
1. MLBASIC allows more general use of the MKN$ function. The
Interpreter only allows the use with fielded strings.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB, DB

81

MLBASIC 2.0 USER'S MANUAL

3.4.°F
3.4.f RIGHTS$

Function

To return a specified amount of the right side of a specified
string.
Format RIGHT$(string,length)

string -The string from which the final string

is formed (SV)

length -The length of returned string (IE)

Examples

1. 100 AS=RIGHT$(BS$,100)

Comments

1. The maximum length of the string expression is 255 bytes.

2. If the length of the final string is greater than the string
argument, the resulting string will only be as long as the initial
string argument.

Differences from Interpreter
1. Only a string variable is allowed as the string argument in
MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

82

MLBASIC 2.0 USER'S MANUAL

3.4.¢g
3.4.g STRS

Function

To return the ASCII string of a given real number.
Format STR$ (number)

number -The number that gets converted to

an ASCII string (IE,RE)

Examples

1. 100 AS=STRS$(100+A)
Comments

1. The first character in the string returned is the sign
character. If the number is negative, this character is a "-",

otherwise it is a space.,.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

83
MLBASIC 2.0 USER'S MANUAL

3.4.h STRINGS

Function
To return a string containing a specified number of a
specified character.

Format STRING$(length,character)
length -The number of times the character is

to be repeated in the string (IE)
character -The one byte character code (IC,IV,SC)

Examples

1. 10 AS=AS$+STRINGS$(20-LEN(AS$)," ")

In the above example, the string variable, AS, is padded with
spaces on the end such that the string is always 20 bytes 1long.

Comments .
1. The maximum length of the string is 255 bytes.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

84

MLBASIC 2.0 USER'S MANUAL

3.5 Graphic and sound commands

3.

5

.a ATTR

Function

To set the display attributes of the high-resolution text
screen.

Format ATTRforeground, background/,B//,U/
foreground -Foreground color number (IE)
background -Backgound color number (IE)
B -Character blink ON
U -Underline text

Examples

1. 100 ATTRO,O

2. PALETTEO,O:PALETTE8,63:ATTRO,0:WIDTH80:CLS1
This will give white letters on black background.

Comments
1. The PALETTE slot numbers for ATTR are as follows:
Color Foreground slot Background slot
0 8 0
1 9 1
2 10 2
5] 11 S
4 12 4
5 13 5
6 14 6
7 15 7

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

85
MLBASIC 2.0 USER'S MANUAL

3.5.b AUDIO

Function
To turn on the sound from the cassette.

Format AUDIO ON:OFF

Examples
1. 100 AUDIO ON

Comments
1. The audio is normally turned off, so AUDIO OFF is not
needed.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

86

MLBASIC 2.0 USER'S MANUAL

3.5.c COLOR

Function :
To specify the background and foreground colors of the
graphics screen.

Format COLORforeground,background

foreground -Color of foreground

(IE as allowed in current PMODE)
background -Color of background

(IE as allowed in current PMODE)

Examgles
1. 100 COLOR 5,7

Comments

1. If COLOR is not used, the computer sets the foreground to
the highest color code allowed and the background to the lowest
allowable color code.

2. The following numbers represent the allowable color codes:

- Black

- Green

- Yellow
- Blue
Red

- Buff

- Cyan

- Magenta
- Orange

XN U WN=2O
|

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

87
MLBASIC 2.0 USER'S MANUAL

3.5.d CLS

Function
To clear the text screen to a desired color.

Format CLS /color/

color -Color of foreground screen (IE)

Examples
1. 100 CLS
2. 100 CLS6

Coments
1. If the color is omitted, the screen is cleared to the color
green.
2, In the high resolution text mode, CLS clears the screen,
changes the background color and displays the selected color.
3. The following numbers represent the allowable color codes:
= - Color Palette slot
- Black
- Green
- Yellow
- Blue
Red
- Buff
- Cyan
- Magenta
- Orange

OO N WN = Ol
|
N WN=2 O ®

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

88

MLBASIC 2.0 USER'S MANUAL

3.9.e
3.5.e CIRCLE
Function
To draw a circle to the graphics screen.
Format CIRCLE(x,y),radius,color/,hw/,start,end/
X -X coordinate of circle's center (IE)
y -Y coordinate of circle's center (IE)
radius -The circle's radius. One unit of
radius is equal to one point on the screen (IE)
color -The color code of the circle
hw -The height/width ratio (RE from O to 256)
start -The starting point on circle where
circle is made (RE from O to 1)
end -The point in the arc where the circle

is terminated (IE from O to 1)

Examgles
1. 100 CIRCLE(50,50),10,1

This example draws a circle 10 units in radius, centered at
(50,50) :
2. 100 CIRCLE(50,50),10,1,1,.1,.2

This example draws an arc centered at (50,50), with a radius of
ten units, from .1 to .2 in the color green.

Comments

1. Items that appear in the list before an optional item that
is selected must be included. For example, if start and end are
used, hw must be included.

2. If the ending point is less than or equal to the starting
point, a complete circle is draw.

3. The default values for the optional items are as follows:

EE -The value 1
start -The value O
end -The value 1

Differences from Interpreter
1. The color is required with MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

89
MLBASIC 2.0 USER'S MANUAL

3.5.f DRAW

Function
0 draw in the graphics mode according to a given sequence of
pre-established commands.

Format DRAWcommand string

command string -The string that contains the
shape to draw (SE)

Examples
1. 100 DRAW"BM100,50,U10,R10,D10,L10"
In this example, a box, 10 units per side, is drawn.

Comments
1. The following commands are allowable:

Motion Commands
M - Draw to X,Y coordinate equal to
the origin plus a specified X,Y offset.

U - Move up a specified number of units
D - Move down a specified number of units
L - Move left a specified number of units
R - Move right a specified number of units
E - Move up then right a specified number of units
F - Move up then left a specified number of units
G - Move down and left a specified number of units
H - Move down and right a specified number of units
X - Execute a BASIC defined substring
Modes
C - Color code to use

0 - Black

1 - Green

2 - Yellow

3 - Blue

4 - Red

5 - Buff

6 - Cyan

7 - Magenta

8 - Orange

A - Angle (0=0 degrees, 1=90,2=180,3=270)
S - Scale factor in 1/4 increments
(1=1/4 scale,2=1/2,3=3/4,4=full,5=5/4,..)

90

MLBASIC 2.0 USER'S MANUAL

Options

N - Do not update cursor origin
B - Do not draw, just move

Differences from Interpreter
' 1. The substring execute command must execute a string defined
in the Interpreter mode. The "[" special character is used in the
following example:

100 [A$="D10;R10;U10;L10;"

101 DRAW"BM100,50;XAS$"

In this example, the substring defined has no effect on the
string variable A$, if used elsewhere in the program.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

91
MLBASIC 2.0 USER'S MANUAL

3.5.g

3.5.g HCOLOR

Function
To specify the background and foreground colors of the
high-resolution graphics screen.

Format HCOLORforeground,background

foreground -Color of foreground
(IE value 0-15)

background -Color of background
(IE value 0-15)

Examples
1. 100 HCOLOR 5,7

Comments

1. By default, the foreground color is slot 1, and the
background color is slot =0. The slot that gives the needed color
depends on the current HSCREEN mode. In the 16 color mode, colors 1
thru 15 correspond with slots 1 thru 15 (ie. slot=1=color=1,
slot=2=colorz2, etc.)

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

92

MLBASIC 2.0 USER'S MANUAL

3.5.h HCLS

Function
To clear the high-resolution graphics screen to a desired
color.

Format HCLS /color/

color -Color of background screen (IE)

Examples
1. 100 HCLS
2. 100 HCLS 11

Coments
1. If the color is omitted, the screen is cleared to the
current background color.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

93

MLBASIC 2.0 USER'S MANUAL

3.5.1i HCIRCLE

Function
To draw a circle to the high-resolution graphics screen.

Format HCIRCLE(x,y),radius,color/,hw/,start,end/
X -X coordinate of circle's center (IE)
y -Y coordinate of circle's center (IE)
radius -The circle's radius. One unit of
radius is equal to one point on the screen (IE)
color -The color code of the circle
hw -The height/width ratio (RE from O to 256)
start -The starting point on circle where
circle is made (RE from O to 1)
end -The point in the arc where the circle

is terminated (IE from O to 1)

Examples

1. 100 HCIRCLE(90,90),10,1

This example draws a circle 10 units in radius, centered at
(90,90) :

Comments

7. Items that appear in the list before an optional item that
is selected must be included. For example, if start and end are
used, hw must be included.

2., If the ending point is less than or equal to the starting
point, a complete circle is drawn.

3. The default values for the optional items are as follows:

hw -The value 1
start -The value O
end -The value 1

Differences from Interpreter
1. The color is required with MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

3.5

- J

94

MLBASIC 2.0 USER'S MANUAL

; 3.5.j
HDRAW
Function ;

To draw in the high-resolution graphics mode according to a
given sequence of pre-established commands.

Format HDRAWcommand string

command string -The string that contains the
shape to draw (SE)

Examples

7. 100 HDRAW"BM500,50,U90,R50,D30,L20"

Comments

1. See section 3.5.f comments on the allowable commands for
HDRAW.

Differences from Interpreter

1. The substring execute command must execute a string defined
in the Interpreter mode. The "[" special character is used in the
following example:

100 [AS="D10;R10;U10;L10;"

101 HDRAW"BM100,50;XAS"

In this example, the substring defined has no effect on the
string variable A$, if used elsewhere in the program.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)

B, ECB

95

MLBASIC 2.0 USER'S MANUAL

3.5.k HLINE

Function
To draw a line between two points.

Format HLINE(x1,y1)-(x2,y2),action/,option/
x1 -X coordinate of starting point (IE)
y1 -Y coordinate of starting point (IE)
x2 -X coordinate of ending point (IE)
y2 -Y coordinate of ending point (IE)
action -How to draw the line. Allowable are:
PSET - Sets line to foreground color
PRESET - Sets line to background color
option -Box option:
B - Draw a box using points as the

corners of the box
BF - Draw a box, and fill it in

Examples
1. 100 HLINE(1,1)-(11,11),PSET
In this example, a line is drawn from (1,1) to (11,11).
2. 100 HLINE(1,1)-(11,11),PSET,BF
In this example, a box is filled in between (1,1) and (11,11).

Comments

1. The allowable limits on the X and Y coordinates are from O
to 639 in the X-direction and from O to 191 in the Y-direction when
in the highest resolution mode (HSCREEN4).

Differences from Interpreter
] 1. MLBASIC requires that the starting point be defined.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

96

MLBASIC 2.0 USER'S MANUAL

3.5.1 HPAINT

Function
To paint the screen between a pre-established border, in a
specified color.

Format HPAINT(x coord,y coord),color,border

x coord -X coordinate where painting begins (IE)
y coord -Y coordinate where painting begins (IE)
color -Color code to paint with (IE)
border -Color code of border where

painting is to stop (IE)

Examples
1. 100 HPAINT(90,60),4,4

Comments
1. The color used in the HPAINT command must be allowable under
the current high-resolution HSCREEN mode.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

97

MLBASIC 2.0 USER'S MANUAL

3.5.m HPRINT

Function
To print a character string on the high-resolution screen.

Format HPRINT (x,y),message
X -X coordinate of first character to print (IE)
y -Y coordinate of first character to print (IE)

message -String to print (SE)

Examples
1. HPRINT(20,20),"Your score is"+STR$(SC)
2. HPRINT(15,10),"The Answer is :"+A$

Comments -
1. The character size that is printed to the screen depends on
the current HSCREEN mode. HSCREEN 3 or 4 modes allow 80 columns and

24 rows of characters. HSCREEN 1 or 2 modes allow 40 columns and 24
rows of text.

Differences from Interpretor

1. MLBASIC only allows the message to be printed in the form of
a single string. STRS and other functions can be used to convert
numbers to strings for printing.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

98

MLBASIC 2.0 USER'S MANUAL

HRESET
Function
To reset a point to the background color on the
high-resolution graphics screen.

Format HRESET(x coord,y coord)

x coord =X coordinate of point (IE)
y coord =Y coordinate of point (IE)

Examgles
1. 100 HRESET(10,10)

Comments
1. The HRESET command does not need a color for the argument
since the color used is always the current background color.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

99

MLBASIC 2.0 USER'S MANUAL

3.5.0
3.5.0 HSCREEN
Function
To define a high-resolution graphics screen mode.
Format HSCREEN mode
mode -High resolution screen mode (IE value 0-4)
Examples
1. 100 HSCREEN 4
Comments
1. The HSCREEN modes O thru 4 have the following settings:
mode X grid points Y grid points Colors
0 low res. low res.
1 320 192 4
2 320 192 16
3 640 192 2
4 - 640 192 4

2. HSCREEN also clears the screen of the requested high—resolution
mode.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

100

MLBASIC 2.0 USER'S MANUAL

3.5.
3.5.p HSET ERRERE

Function
To set a point to a specified color on the high-resolution
graphics screen.

Format HSET(x coord,y coord/,color/)

x coord -X coordinate of point (IE)
y coord -Y coordinate of point (IE)
color -Color code of point to set (IE)

Examples
1. 100 HSET(20,20,2)

Comments
1. If the color code is omitted, the current foreground color
is used.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

3.5.q LINE

Function

101

MLBASIC 2.0 USER'S MANUAL

0 draw a line between two points.

Format

x1

y1
x2

y2
action

option

Examples

LINE(x1,y1)-(x2,y2),action/,option/

-X coordinate
-Y coordinate
-X coordinate
-Y coordinate

of
of
of
of

-How to draw the
PSET - Sets line to foreground color
PRESET - Sets line to background color

-Box option:

starting point (IE)
starting point (IE)
ending point (IE)
ending point (IE)
line. Allowable are:

B - Draw a box using points as the
corners of the box

BF - Draw a box,

and fill it in

7. 100 LINE(1,1)-(11,11),PSET

s example, a line is drawn from (1,1) to (11,11).
2. 100 LINE(1,1)-(11,11),PSET,BF

s example, a box is filled in between (1,1) and (11,11).

In thi

In thi

Comments

1. The allowable limits on the X and Y coordinates are from
to 255 in the X-direction and from O to 191 in the Y-direction.

Differences from Interpreter

1. MLBASIC requires that the starting point be defined.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)

B, ECB

0

102

MLBASIC 2.0 USER'S MANUAL

3.5.r LOCATE

Function
To locate the cursor on the high-resolution text screen.

Format LOCATE x,y
X -Column number starting with O (IE)
y -Row number starting with O (IE)
Examples

1. 100 LOCATE 0,22:PRINT"ERROR":LOCATEO,O

Comments

1. The column number may be between O and 39 for WIDTH40 mode,
and between 0 and 79 for WIDTH80 mode. The row can be between O and
23 for both widths. '

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

103
MLBASIC 2.0 USER'S MANUAL

3.5.s PALETTE

Function
To set the palette slots used to display colors.

Format PALETTE slot,color:RGB:CMP
slot -Palette register (IE value 0-63)
color -Color Code (IE value 0-15)
RGB -For RGB color monitors
CMP -For composit monitors
Examples

7. 100 PALETTE 0,0:PALETTES, 63
2. 100 PALETTE RGB

Comments
1. If RGB or CMP are used, the slot and color must not be used.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

104

MLBASIC 2.0 USER'S MANUAL

3.5.t PAINT

Function

To paint the screen between a pre-established border, in a
specified color.

Format PAINT(x coord,y coord),color,border

x coord -X coordinate where painting begins (IE)
y coord -Y coordinate where painting begins (IE)
color -Color code to paint with (IE)
border -Color code of border where

painting is to stop (IE)

Examples
1. 100 PAINT(10,10),4,4

Comments

1. The color used in the PAINT command must be allowable under
the current PMODE and color set.

2. When the color specified is higher than the allowable color,
the color has the color set number subtracted from it. For example,
if there were four available colors and the color code 5 was used,
the actual color painted will be the code 1 (=5-4).

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

105
MLBASIC 2.0 USER'S MANUAL

3.5.u PCLEAR

Function
To reserve space in memory for a graphic page.

Format PCLEARpage
page -Total number of 1.5K graphics pages (IE)
Examples

1. 10 PCLEAR16

In this example, 16 graphics pages are being reserved in
memory. This allows 4 high resolution screens to exist in memory at
the same time.

Comments

1. The PCLEAR command clears memory in order to make room for
the graphic pages. :

2. The PCLEAR command, if used improperly, will crash the
program, Or give runtime error warnings.

3. The maximum allowable number of pages that can be cleared
depend on the amount of memory available in the lower 32k of memory.

4., Graphic pages are not allowed to exist in the upper 32k or
RAM (32768-65535)

Differences from Interpreter
1. MLBASIC allows more than 8 graphic pages to be cleared.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

106

MLBASIC 2.0 USER'S MANUAL

3.5.v PCLS

Function
To clear the graphics screen.

Format PCLS/color/
color -Color code to clear screen in (IE)
Examples

1. 100 PCLS3

Comments
1. If the color is omitted, the current background color is
used.
2, The PCLS command is used to clear the graphics screen in the
same way as CLS is used to clear the text screen.
3. The following numbers represent the allowable color codes:
- Black
- Green
- Yellow
- Blue
Red
- Buff
- Cyan
- Magenta
- Orange

OO LD WN-2O
|

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

107
MLBASIC 2.0 USER'S MANUAL

3.5.w
3.5.w PLAY
Function
0 play music according to a pre-established sequence of
commands.
Format PLAYstring
string -Sequence of commands that define
the musical '"score'". (SE)
Examples
1. 100 PLAY AS$+B$+'"CDEFG;03;ABAO2;FEDCBA"
Comments
1. The following commands are allowed in the PLAY statement
string:
Command Function
Note - The Note to be played consisting of:
A number from 1 to 12 or
The letters A to G (plus #=sharp, -=flat)
¢) - Allows selection of other octaves (1-5)
L - Allows choosing of the note length
where the number that follows has
the length in 1/L time. For example:
L1=whole,L2=half,L4=quarter,L16=one sixteenth
(allowable lengths are 1 to 255)
T - The tempo to be selected (1 to 255)
The tempo T2 is used by default
V - The volume may be selected (1 to 31)
The volume V15 is used by default
p - The pause-length (1 to 255)
where the duration is 1/P. For example:
P1=full,P4=quarter,P8=eighth,P2P4=3/2,etc
X - Execute a substring defined in BASIC

Differences from Interpreter

1. The substring execute command must execute a string defined
in the Interpreter mode. The '"[" special character is used in the
following example:

100 [A$="CDEFG;03;ABAO2;FEDCBA"

101 PLAY'"T4;V5;XAS"

In this example, the substring defined has no affect on the
string variable AS, if used elsewhere in the program.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

108

MLBASIC 2.0 USER'S MANUAL

3.5.x PMODE

Function
To select the desired low-resolution graphics mode and page.

Format PMODEmode , page
mode -Graphics mode to select (IE value O to 4)
page -Starting graphics page (IE value 1 to 8)
Examples

7. 100 PMODE4, 1

Comments
1. If the PMODE is not used in a graphics program, the default
is PMODEZ2, 1.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

109
MLBASIC 2.0 USER'S MANUAL

3.5.y PRESET

Function
To reset a point to the background color.

Format PRESET(x coord,y coord)

x coord -X coordinate of point (IE)
y coord -Y coordinate of point (IE)

Examples
1. 100 PRESET(10,10)

Comments

1. The PRESET command does not need a color for the argument
since the color used is always the current background color.

2. The RESET command differs from the PRESET command in that
the first is for low-resolution graphics, and the latter is for
all-resolution graphics.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

110

MLBASIC 2.0 USER'S MANUAL

.z PSET

Function
To set a point to a specified color.

Format PSET(x coord,y coord/,color/)

x coord -X coordinate of point (IE)
y coord -Y coordinate of point (IE)
color -Color code of point to set (IE)

Examples
1. 100 PSET(20,20,2)

Comments
1. If the color code is omitted, the current foreground color
is used.

N
=
oy
o

following numbers represent the allowable color codes:
- Black

- Green

- Yellow

- Blue

Red

- Buff

- Cyan

- Magenta

- Orange

DN WN = O
1

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

111

MLBASIC 2.0 USER'S MANUAL

3.5.aa
3.5.aa RESET

Function
To reset a point to the background color.

Format RESET(x coord,y coord)

x coord =-X coordinate of point (IE)
y coord -Y coordinate of point (IE)

Examples
1. 100 RESET(10,10)

Comments

1. The RESET command does not need a color for the argument
since the color used is always the current background color.

2. The RESET command differs from the PRESET command in that
the first is for low-resolution graphics, and the latter is for
all-resolution graphics.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

112

MLBASIC 2.0 USER'S MANUAL

3.5.bb
3.5.bb SCREEN

Function
To define the low-resolution screen display and color set.

Format SCREENtype,set
type -Type of screen O=text, l1=graphics (IE)
set -Color set to use
0=Green, Yellow,Blue,Red -4 Color Mode
O=Black,Green -2 Color Mode
1=Buff,Cyan,Orange,Magenta -4 Color Mode
1=Black,Buff -2 Color Mode

Examples
T. 100 SCREENT, 1

Comments
1. If the color set is greater than one, the value one is used.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB

113
MLBASIC 2.0 USER'S MANUAL

3.5.cc
3.5.cc SET
Function
To set a point to a specified color.
Format SET(x coord,y coord/,color/)
x coord -X coordinate of point (IE)
y coord =Y coordinate of point (IE)
color -Color code of point to set (IE)
1. 100 SET(20,20,2)
Comments
1. If the color code is omitted, the current foreground color
is used.
2., The following numbers represent the allowable color codes:
0 - Black
1 - Green
2 - Yellow
3 - Blue
4 - Red
5 - Buff
6 - Cyan
7 - Magenta
8 - Orange
3. SET only allows low-resolution graphic mode.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

114
MLBASIC 2.0 USER'S MANUAL

3.5.dd
3.5.dd SOUND

Function
To sound a specific tone for a specific duration.

Format SOUNDtone,duration

tone -Tone of sound (IE from 1 to 255)
duration -Length of note (IE from 1 to 255)

Examples
1. 100 SOUND100, 100

Comments

1. The duration of one unit is about 6/100ths of a second. This
means that the range of durations is from 6/100ths of a second to
15.3 seconds.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

115
MLBASIC 2.0 USER'S MANUAL

3.5.ee
3.5.ee WIDTH = ==

Function
To set the number of columns in the text screen and to select
low- or high-resolution graphic modes.

Format WIDTH mode
mode -Column width (32,40 or 80)
Examples

1. WIDTH32
2. WIDTH 80

Comments

1. WIDTH changes the screen display to the specified mode and
clears the screen in that mode.

2. Be careful not to call WIDTH40 or WIDTH80 while in WIDTH32
mode and after issuing CLEAR commands that set the top of BASIC
between &H2000 and &H3FFF. This is because, BASIC needs to occupy
this region with the high-resolution text screen.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

116
MLBASIC 2.0 USER'S MANUAL

3.6 Other Commands

3.6.a DATA

Function
To store string and numeric constants for use with the READ
statement.

Format DATA/mode,/data,...
mode -Mode of storing data constants
$ - Store data in a character format
% - Store number as one byte integer
(two byte integers are default)
data -String or numeric data (SC,IC,RC)
Examples

1. 100 DATA "THIS IS A STRING"
In this example, a string constant is stored,which can later be
read using a command like READ AS.
2. 100 DATA%160,99,56,200,109,107,23,123,88
101 DATA%190,193,198,99,87,57
1702 GOSUB100:REM' Execute a M.L. ROUTINE
In this example, the data lines 100-101 contain machine
language instructions. Each item in the data list occupies only one
byte in memory. It is possible to store machine language routines in
data statements, and execute them using GOSUB or GOTO.

Comments

1. If the "S" mode is used with strings, a terminating zero is
not stored. In this case, a READ$VARS(I) type command might be used
to read the string data one character at a time.

2. All DATA statements must be grouped together. 1In other
words, the DATA statements must not have any other commands like
PRINT,INPUT,etc, between them. The location of the group of DATA
statements can be anywhere in the program.

3. A RESTORE must be used to initialize the data pointer to the
beginning of the data 1list.

Differences from Interpreter

1. A RESTORE must be used to initialize the data pointer to the
beginning of the data list in MLBASIC.

2. Data statements must be grouped.

)
Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

117

MLBASIC 2.0 USER'S MANUAL

3.6.b DIM

Function
To reserve space in memory for a variable array.

Format DIM arrayname,...

arrayname -Name of array followed by number
of elements to reserve for each dimension

Examples

1. 100 DIM A(100,10),BS(10,10),CS(100)

In this example, a 100 by 10 integer array is defined. Also, a
10 by 10 and a 100 element string array are declared.

Comments

1. Only single character variable names are recognized,
although any length name is acceptable.

2. The command REAL is used to dimension real arrays when using
the %INT directive.

3. If the %INT directive is used in a program, all non string
arrays declared using DIM will be of type INTEGER, otherwise the
array will be of type REAL.

Differences from Interpreter
1. Only single letter array names are recognized in MLBASIC.
2. A maximum of 2 dimensions are allowed by MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

118

MLBASIC 2.0 USER'S MANUAL

3.6.c LLIST

Function
To list a sequence of BASIC lines to the printer.

Format LLISTrange
range -Value or range of values (1C)
Examples

1. 100 LLIST0-65000
In this example, all possible lines will be listed to printer
if line 100 is executed (in the compiled program).

Comments
1. Only BASIC program lines are printed. Compiled programs are
not listed.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

119

MLBASIC 2.0 USER'S MANUAL

3.6.d LPOKE

Function
To store one byte of data to virtual memory.

Format LPOKE virtual,data
virtual -Virtual memory location (RE)
data -Byte to store (IE)

Examples

1. LPOKE 460000.,123

Comments
1. The LPOKE command is the compliment to the LPEEK function.
2. See LPEEK for more information on virtual addresses.

‘Differences from Interpretor

1. MLBASIC does not allow numbers beginning with &H to exceed
&HFFFF, therefore numbers like &H10000 must be converted to a real
constant (like 65536.).

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B, ECB

120
MLBASIC 2.0 USER'S MANUAL

MOTOR

Function
To control the cassette motor.

Format MOTOR ON:OFF

Examples
1. 100 MOTOR ON

Comments
1. The cassette motor is OFF by default.

Differences from Interpreter
7. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

121

MLBASIC 2.0 USER'S MANUAL

POKE

Function
To store a byte in memory.

Format POKE memory,byte
memory -Location in memory to store byte (IE)
byte -Value from O to 255 (IE)

Examples

1. POKE25,6:POKE26, 1

The POKE command is often used to control Interpreter
functions. In this example, the start of the BASIC program in memory
is POKEd into memory.

Comments
1. The POKE is complemented by the command PEEK.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

122
MLBASIC 2.0 USER'S MANUAL

3.6.g READ

Function
To read a numeric or string value from a DATA list and to

assign it to a variable.

Format READ/mode/name, ...

mode -Type of data to be read.
S$=read one character into array
%=one byte binary data
name -Name of variable to read data into (RV,IV,SV)

Examples
1. 100 RESTORE
1701 READSAS
102 READ%B
103 READAS

Comments
1. If the "S" mode is used with a string variable, the READ

will return one byte to the specified string element.

Differences from Interpreter
1. The Interpreter does not support the "S'" and "%'" options.
2. With MLBASIC, a RESTORE must be used before the first READ
statement, so that the DATA list is initialized to the first item.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

123

MLBASIC 2.0 USER'S MANUAL

3.6.h REM

Function
To display a message within a program.

Format REMremarks
remarks -Any nonzero byte.
Examples

1. 1000 GOSUB20000:REM' CALL ROUTINE TO SORT
The REM is often used to indicate to the programmer what is
going on in the program itself.

Comments

1. The REM statement must be the last statement in a BASIC
line.

2. The REM statement does not occupy any space in the final
compiled program. MLBASIC simply skips over these commands, and does
not have to translate them.

3. If the line containing a REM has no executable instructions
(ie. PRINT,INPUT,etc), then program control passes to the first
executable command after the REM statement.

4, REM statements can be branched into from a GOSUB or GOTO
call. Execution will begin with the first executable command that
follows the REM statement.

Differences from Interpreter
1. MLBASIC only allows REM to appear at the end of a line.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.6.i

124

MLBASIC 2.0 USER'S MANUAL

3.6.1
RESTORE
Function
To initialize the data pointer to the first item in DATA list.
Format RESTORE
Examples
1. 100 DATA1,2,3,4
1017 RESTORE:REM' initialize data
102 FORI=1TO4:READA(I) :NEXT
Comments

1. The RESTORE must be used before any READ statement is
executed.

2, After a RESTORE is executed, the next READ statement will
begin reading data from the first item in the first DATA statement
that appears in the program.

Differences from Interpreter

1. MLBASIC requires the RESTORE to be used before any READ
command is executed.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)

B

125
MLBASIC 2.0 USER'S MANUAL

3.6.7
RUN
Function
0 execute a BASIC program.
Format RUN/linenumber/

linenumber -Number of entry into BASIC program (IC)

Examples
1. 100 RUN1000

Comments
1. This command is used to run a BASIC program from within a
compiled machine language progam.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

126

MLBASIC 2.0 USER'S MANUAL

3.6.k TAB

Function
To position output in a PRINT statement to a specified column.

Format TAB(position)

position -Position of tab (IE)

Examples
1. 100 PRINT#-2,"TOTAL=";TAB(30)TOTAL

Comments

1. If the current column position is less than the tab
position, spaces (ASCII #32) are output to the device, until the tab
position is reached.

2. If the current column position is greater than the tab
position, backspaces are output until the tab position equals the
current column position. Note that printers that do not support
backspacing (ASCII =8), cannot have a TAB less than the current
print location.

Differences from Interpreter
1. With MLBASIC, the TAB will output backspaces if the current
column position is greater than the tab.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.6.1

127

MLBASIC 2.0 USER'S MANUAL

TROFF
Function
To turn off the line tracing routine.
Format TROFF
Examples
1. 100 TRON
1000 TROFF:REM' END DEBUGGING HERE
Comments

1. The TROFF is the default value used by MLBASIC.

Differences from Interpretor

1. None.,

Roms Needed (ECB=Extended,DB=Disk,B=Standard)

B

128

MLBASIC 2.0 USER'S MANUAL

3.6.m
3.6.m TRON

Function

To turn on the line execution tracing routine.
Format TRON

1. 100 TRON

17000 TROFF:REM' END DEBUGGING HERE

Comments

1. The TRON command will cause the display of the current line
number just before execution of that line. It is therefore useful
in pin-pointing errors in a program after it has been compiled.

2. TRON does not display commands that follow the ":" command
separator.

Differences from Interpretor
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

129

"MLBASIC 2.0 USER'S MANUAL

3.6.n VERIFY

Function
To select the verification option for disk output.

Format VERIFY ON:OFF

Examples
1. 100 VERIFY ON

Comments

1. If the VERIFY ON command is used, all disk output will be
verified with memory contents.

2., By default, the VERIFY option is not "ON'", therefore a
VERIFY OFF is not necessary in a program.

Differences from Interpreter
1. None.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B,ECB,DB

130
MLBASIC 2.0 USER'S MANUAL

3.7 Special Commands

3.7.a DLD

Function
To load a 16 bit integer value from memory into a variable.

Format DLD(memory,name)
memory -Location in memory of first byte
of the two byte integer (IV,IC from O to 65535)
name -Name of variable which stores the

16 bit integer (IV)

Examples
1. DLD(25,BSTART)
The DLD command is used to find the starting location of the

BASIC program in memory and store the result in an integer variable
called BS.

Comments
1. The DLD command is the 16 bit equivalent to the PEEK
command.
2, DLD is not allowed inside an expression as PEEK is allowed.
3. DLD is the complement to the command DST.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

131
MLBASIC 2.0 USER'S MANUAL

3.7.b
3.7.b DST
Function
To store a 16 bit integer into two bytes of memory.

Format DST(memory,value)

memory -Location in memory of first byte

of the two byte integer (IV,IC from O to 65535)

value -16 bit integer that is stored (IC,IV)

Examples

1. 100 DST(40000,1000)

Comments
1. The DST command is the 16 bit equivalent to the POKE command
(which only stores an 8 bit value).

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

132

MLBASIC 2.0 USER'S MANUAL

3.7.c IBSHFT

Function
To shift a 16 bit integer by a specified number of bits either
to the right or to the 1left.

Format IBSHFT(name,shift,direction)
name -Variable that is to be shifted (IV)
shift -This is the number of bits the

integer is shifted by (IC,IV from 1 to 16)
direction -This determines whether to shift
left or right. (IC,IV)
If the direction is:
O => shift to the left
greater than 0 =D shift to the right

Examples
1. 100 IBSHFT(A1,5,1)

In this example, the integer variable, A1, is shifted to the
right 5 bits. This is equivalent to the command A1=A1/32, but is
much faster.

2. 100 IBSHFT(A,8,0)

In this example, the integer variable, A, is shifted to the
left by 8 bits. This is equivalent to the command A=A*256, but is
much faster.

Comments
1. The IBSHFT command is very useful for graphics routines that
perform alot of bit manipulation.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

133
MLBASIC 2.0 USER'S MANUAL

3.7.d INT

Function
To declare INTEGER type variables and variable arrays.

Format INTname, ..
name -Name of variable
Examples

1. 100 INT A,A1,A(10,10),B(1000)

In this example, the scalar variables A and A1 are declared as
INTEGER variables. In addition, the array A is declared as INTEGER
and is dimensioned for a 10x10 array. The array B is declared
INTEGER also, and is dimensioned as having 1000 elements.

2. 100 INT A1,A(10,10),B(1000)

This example produces the same result as in the first example.
The scalar variable, A, is not included because the array A was
declared INTEGER.

Comments

1. The INT command is required to declare a variable if that
variable is used for an index to an array.

2, If an array is declared using INT, the corresponding scalar
variable with the same name is forced to be type INTEGER.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

134

MLBASIC 2.0 USER'S MANUAL

3.7.e LREG

Function
To load a specified hardware register with'an integer value.

Format LREG(register,value)

register -Name of hardware register. Allowable names are:
"X" -Index Register, X
"Y" -Index Register, Y
"U" -User Stack pointer
"S" -Hardware stack pointer
"D" -Data register
"PC"-Program counter
"CC"-Control register
"DP"-Direct page Register

value -Integer to be stored in register (IC,IV)

Lxamples

1. 100 LREG("S",INITVALUE)

In this example, the stack is being reset to a value contained
in the integer variable, IN.

Comments
1. The LREG command is most useful for setting up calls to

machine language routines that require initial values for the
hardware registers.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

135
MLBASIC 2.0 USER'S MANUAL

3.7.1
3.7.f PCOPY
Function
To copy a specified amount of memory to another location in
memory.
Format PCOPYstart,destination, end
start -Beginning location of data to move (IC,IV)

destination -First location in memory where data
is moved to (IC,IV)
end -Ending location of data to move (IC,IV)

Examples
1. 100 PCOPYA,1537,B

Comments

1. This command is the fastest way to transfer a section of
memory from one location to another.

Differences from Interpreter

1. The Interpreter does not allow use of this command.

2. The PCOPY command used in the Interpreter allows for only a
specified '"page" of memory to be copied from one location to

another. The way to convert an Interpreter PCOPY into the MLBASIC
form is as follows:

To convert PCOPY A TO B

(A) Let A1=A*1536

(B) Let A2=A1+1535

(C) Let B1=B*1536

(D) The command is ready to form
PCOPY A1,B1,A2

Example-

Interpreter form
100 PCOPY A TO B

MLBASIC form
100 A1=A*1536:B1=B*1536:A2=A1+1535
101 PCOPYA1,B1,A2

The alternative way to do an Interpreter BASIC PCOPY would be to use

the interpreter call symbol "[" before the command. For example, 100
[PCOPY1 to 5.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

136

MLBASIC 2.0 USER'S MANUAL

3.7.g PTV

Function

To load a specified integer variable with the pointer to a
specified variable.

Format PTV(variable,pointer)
variable -Variable or array element name (IV,RV,SV)
pointer -Variable where pointer is stored (IV)
Examples

1. PTV(AS,START)

In this example the integer variable, ST, is loaded with the
pointer to string array element, A$(0).

2. PTV(A(10,10),A)

In this example the integer variable, A, is loaded with the
pointer to A(10,10).

Comments
1. The PTV may not be used in an expression like A=PTV(A,A).
2. The PTV command is equivalent to the VARPTR command.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

137
MLBASIC 2.0 USER'S MANUAL

3.7.h REAL

Function
To declare real type variables and variable arrays.

Format REALname, ..
name -Name of variable or
array
Examples

1. 100 %INT
101 REAL A1,A(10,10),B(1000)

In this example, the scalar variable A1 is declared as a real
variable. In addition, the array A is declared as real and is
dimensioned for a 10x10 array (note that the scalar variable, A,
will be of type INTEGER). The array B is declared real also, and is
dimensioned as having 1000 elements.

Comments

1. The REAL command is used to declare a variable as a real
variable if the %INT directive is used to globally declare all
variables as type INTEGER.

2, After a variable has been declared as a real, that variable
will be compiled in the following lines as a real variable. If the
variable was used in lines that came before the line containing the
REAL declaration, the variable is treated as an INTEGER.

3. Compiler printouts will indicate whether a variable has been
declared a real or not.

4, If the %INT directive is used, scalar variables that have
the same one letter name as the array, when declared using REAL,
will be of type INTEGER and cannot be type real.

Differences from Interpreter
1. The Interpreter does not allow use of this command.
2. A maximum of two dimensions are allowed by MLBASIC.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.7.1

138

MLBASIC 2.0 USER'S MANUAL

SREG

Function _
To load a specified variable with the contents of a specified
hardware register.

Format SREG(register,name)

register -Name of hardware register. Allowable names are:
"X" -Index Register, X
"Y" -Index Register, Y
"U" -User Stack pointer
"S" -Hardware stack pointer
"D" -Data register
"PC"-Program counter
"CC"-Control register
"DP"-Direct page Register

name -Variable where register is stored (IV)

Examgles
1. 100 SREG("PC",START)

In this example, the current location of the machine language
program counter is stored in variable, ST.

Comments

1. The SREG command is most useful for program debugging.
Other uses for the SREG command would be to recover data from the
"D" register after a ROM call using the VECTI and VECTD commands.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

3.7¢]

139

MLBASIC 2.0 USER'S MANUAL

3.7.3
VECTD

Function .
To execute a machine language routine address located in ROM.

Format VECTD(address)

address -Address in ROM to be executed (IC,IV)

Examples
1. 100 VECTD(41175)

In this example, the location that prints the Interpreter
revision number is executed.

Comments

1. This command is designed to switch from the all RAM map type
(which enables you to use all 64k of memory), to the 32k-RAM/32k-ROM
map type. After execution of the ROM routine, the map is switched
back to re-enable all 64k of RAM.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

140

MLBASIC 2.0 USER'S MANUAL

3.7.k VECTI

Function
To execute a machine language routine contained in ROM using
indirect addressing.

Format VECTI(address)

address -Location in ROM that contains the 16 bit
address that is to be executed (IC,IV)

Examples
1. 100 VECTI(SA004):VECTI(S$A006)

In this example, the routines that turns the cassette on and
reads a block from the cassette are executed.
2. 100 VECTI(SAOOA):REM' SAMPLE ALL FOUR JOYSTICKS
101 A1=PEEK($15A) : A2=PEEK($15B)
102 B1=PEEK($15C) :B2=PEEK(S15D)
This example is how the JOYSTK function can be duplicated. It
is equivalent to the commands:
A1=JOYSTK(0) : A2=JOYSTK(1)
B1=JOYSTK(2) : B2=JOYSTK(3)

Comments

1. The Indirect addressing allows the user to execute a machine
language routine in ROM that is pointed to in a table contained in
ROM.

Differences from Interpreter
1. The Interpreter does not allow use of this command.

Roms Needed (ECB=Extended,DB=Disk,B=Standard)
B

141

MLBASIC 2.0 USER'S MANUAL

3.8 Compiler Directives

3.8.a %INT

Function
To change the default variable type within a program to
INTEGER.

Format %INT

Examples
1. 100 %INT
1701 DIM A(1OQ):REAL B(1000),C

Comments

1. %INT is a compiler directive that is used to change the way
a program is compiled.

2. The %INT directive causes all single letter scalar variables
to be type INTEGER.

3. %INT should be used in the beginning of a program so as to
avoid conflicts with any previously dimensioned arrays.

4, When the %INT directive is used, variables may be declared
type real by using the REAL command.

142

MLBASIC 2.0 USER'S MANUAL

3.8.b %REAL

Function

To change the default variable type within a program back to
REAL.

Format %REAL

1. 10 %INT
100 CALL TEST(A)

9000 SUBROUTINE TEST(B)

9001 %REAL:REM' Need alot of real variables
9002 INT B

This example shows that the %REAL directive is needed to force
variables within SUBROUTINE sub-programs back to type real, since
the %INT directive was used in the calling program.

Comments

1. %REAL is a compiler directive that is used to change the way
a program is compiled.

2. The %REAL directive is the default used by MLBASIC, so it is
not needed unless %INT is used.

3. %REAL will re-map the single letter scalar variables (A-Z),
to the next available locations in the variable table area.

143
MLBASIC 2.0 USER'S MANUAL

3.8.c %STRING

Function
To change the default string length within a program.

Format %STRING=1length
length -Maximum length of all strings (IE)
Examples

1. 10 %STRING=5
20 INPUT AS
30 PRINT AS
40 %STRING=10
50 INPUT B$
60 PRINT BS
70 GOTO10
This example shows ways to use %STRING. Try inputting a string
for A$ that is larger than 5 characters, when you print A$, only the
first five characters are saved, the rest of the characters have
been over-written by the B$ string.

Comments

1. The %STRING directive must be used with caution; be sure
that any string that is to be used is used with the same default
string length throughout the program.

2. If %STRING is not used, the default string length is used.

3. Strings can have lengths greater than 256 characters, but
cannot be manipulated using string functions or the "+'" operator
because the string manipulation buffer is limited to 255 characters.

144
MLBASIC 2.0 USER'S MANUAL
CHAPTER 4 VARIABLES, CONSTANTS, OPERATORS and EXPRESSIONS
4.1 Constants

MLBASIC allows for 3 different types of constants; INTEGER,
STRING and REAL. All constants are fixed values that are stored in
the text area of the machine language program during compilation.
Constants therefore cannot be changed when the program is run.

4.1.a Integer Constants

An integer constant contains an optional sign (+ or -) followed
by decimal or hexadecimal digits. If hexadecimal digits follow, the
"$" or "&H" letters must precede the digits. No decimal points or
commas are allowed. The Value an unsigned integer may have ranges
from 0 to 65535. Numbers larger than 32,767 are treated as negative
"two's complement" values when used with Real variables or constants
in an expression. Arithmetic statements that do not contain real
values use integers as positive numbers only (see Section 4.2.e for
more info on conversions). Certain commands allow for Integer
Constants to be expressed as one or two characters in quotes.

Examples of Integer Constants

Valid Invalid

12345 12,345

-100 -100000

65000 -65000

SFFO1 FFO1

&HA10B A10B

"Ap" Ap

HAH A
4.1.b String Constants

A string constant is a sequence of up to 255 characters enclosed

in quotation marks. String constants may contain any character except
a zero (ie. any value between 1 and 255). Strings are terminated by a

logical zero byte when stored in memory by the compiler.

Examples of String Constants

1. "This is a string"
2. "$25,000.01"
3. "$,& and any character can be in strings"

145
MLBASIC 2.0 USER'S MANUAL

4.7.c. Real Constants

A real constant contains an optional sign (+ or -) followed by
decimal digits which must contain, be preceded by, or followed by a
decimal point. A real constant may be in exponential format, where
the number is followed by an "E", followed by a + or - and decimal
digits that describe the exponent.

In all cases, the decimal point is mandatory. If the decimal
point is omitted, integer conversion will occur, resulting in possible
overflow or underflow errors. Real constants are stored in the text
area in their actual 5 byte binary format.

Examples of Real Constants

vValid Invalid
-100.10 -100
1.99 E+10 199E+12
1.0 E-110 1 E-10
-99.6E+10 -99

4,2 Variables

Variables are names that represent values used in BASIC programs.
Variables can represent either a numeric value or a string expression.
Allowable names of variables are unlimited, except for reserved Basic
words that are used to identify BASIC commands and statements (ie.
PRINT,GET,etc). There are two main groups of variables; scalar
variables (variables that have not been dimensioned) and variable
arrays (variables that have been dimensioned). There are also three
types of variables; Real, Integer, and String.

4.2.a Scalar Variable Names

MLBASIC allows a unique variable using the first 2 characters in
the variable name. In other words, any letters that follow the first
two letters in a variable name are ignored by the compiler. For
example, the 3 variables; "A123", "A1VAR", and "A12" are all
equivalent to "A1".

String variable names, as with all array names, can only be one
character long (ie. A$,B$,C$,...Z%). Any character that follows the
first character in a string name is ignored.

4.2.b Integer Variables

Integer variables follow the same guidelines as constants; values
may be between zero and 65535 (&HFFFF).

The default type for variables is real. The INT command or %INT
directive is used to define INTEGER type variables.

146
MLBASIC 2.0 USER'S MANUAL

4.2.c String Variables

String variables are variables that can store a sequence of
characters. Like other variable types, the string variable can be
changed any number of times throughout the execution of a program.

String variable names can only be one character long. This means
that there are 26 possible string variables that can be used in a
program unit.

String variables occupy a predefined amount of storage, as
defined when the program is compiled. The maximum allowable length of
a string, as with the Interpreter, is 255 characters. This is the
default space allocated by MLBASIC, but can be changed by using the
%STRING compiler directive or by entering a value in the start-up menu
of MLBASIC.

4,.2.d Real Variables

Real variables are variables that contain floating point numbers.
Allowable values are in the range of +/- 1.0E+38. The Binary Format
is the same as the Interpreter, (ie. 5 Bytes with a one byte
exponent). This means that computation using the Interpreter should
give the same results as MLBASIC compiled REAL expression
computation.

4,.2.¢e Variable Conversions

Whenever necessary, MLBASIC converts a numeric constant or
variable from one type to another.

The following rules apply to conversion of variable types in an
arithmetic expression:

(1) Expressions that involve both Real and Integer type
variables, constants or functions, will be considered of type
Real.

(2) Expressions that involve only Real variables, constants or
functions, will be of type Real.

(3) Expressions that only contain Integer type variables,
constants or functions, will be of type Integer.

(4) Functions or commands that require a specific type
expression will convert that expression to the required type, if
it is not so already.

(5) Integer expressions are converted to real expressions as
"Two's Complement" integers. This means that an integer whose
value. is greater than 32767 will be converted into a negative
real number.

(6) Real expressions that are outside the range of +/-32767
cannot be converted to type integer. If conversion is performed,
a runtime error 5 will occur.

147

MLBASIC 2.0 USER'S MANUAL

4,3 Variable Arrays

MLBASIC allows up to two dimensions for any variable array. In
all cases, arrays must be declared using the DIM or REAL commands,
before that array is used in an expression.

4.3.a Array Names

The allowable names for arrays are the same as with scalars,
except only the first letter is used to identify the name. This
means that there are only 26 unique variable array names to choose
from. All in all, there are 52 arrays available for use, since
MLBASIC does allow for 26 String arrays and 26 Real/Integer arrays.

When real arrays are declared the first letter of that name must
not appear in any other Integer variable array name.

Examgle
DIM A(100),A$(255) :REAL A10(10)

Real variable array, A10(100), would have the effect of
overriding the first dimensioned variable A() with the REAL array
A10(). The string array AS is defined to have 256 (0 thru 255)
elements.

4.3.b Array Subscripts

MLBASIC does not support expressions as the subscript. The
only allowable parameters are Integer Variables and Integer Constants.
For example, the command A(10+IV)=B is not allowed, but instead should
be set up like: A=10+IV:A(A)=B. Furthermore, the index variable must
only be one character in length, and of type INTEGER. If the index
is not a counter variable of a FOR-NEXT loop, then the variable must
be declared as INTEGER in the beginning of the program using the INT
command (see section 3.7.d).

148
MLBASIC 2.0 USER'S MANUAL
4.3.cC Memory Requirements

Arrays are allocated space in RAM at compilation time, as opposed
to allocation when a program is "run" under the Interpreter. This
makes array addressing very fast, since the program knows exactly
where the array is when it is "accessed" by the program.

String arrays are allocated at compilation time, just as the
Integer and Real arrays are. This speeds up the time needed to
manipulate and access strings greatly, as opposed to the Interpreter
which may spend large amounts of time just allocating strings and
collecting the ''garbage'" that builds up rather quickly. The slow
speed of string manipulations under Interpretive Basic is because the
strings have to be allocated dynamically at run time.

Two dimensional arrays are arranged in the order of 1st
dimension elements next to each other, repeated for each of the 2nd
dimension elements.

For example, the array A(1,2) is arranged like:

Address Element Relative Location W.R.T. 1st Element
LOW MEM A(0,0) 0
. A(C1,0) 1
. AC0,1) 2
. AC1,1) 3
3 A(0,2) 4
HIGH MEM AC1,2) 5

Note that A(0,0) is the first element, not A(1,1).

149

MLBASIC 2.0 USER'S MANUAL

4.4 Operators and Expressions

Expressions can be arithmetic, and/or logical. They consist of
a combination of constants, variables, array elements and operators.

4.4.a. Arithmetic Expressions and Operators

Arithmetic expressions can be comprised of both logical and
arithmetic operators. This allows for extremely flexible manipulation
of variables, constants, and other expressions. Arithmetic
expressions can have two types of data; Integer and Real. The type of
computation involved in the expression depends on the function,
variable and constant types used in the expression.

When the operators appear in an arithmetic/logical expression,
computation is performed from left to right in the following order:

(1) Multiplication, Division, Exponentiation, NOT, OR, AND

(2) Addition, Subtraction

The differences from Interpreter Basic is that exponentiation is
at the same priority level as multiplication and division. To
change the order of priority, use parenthesis. Expressions within the
innermost parenthesis are calculated first. Inside the parenthesis,

the usual order of computation is used.

Operators allowed

Operator Operation Sample Expression
T Exponentiation Xty
* Multiplication X*10.1
/ Division X/Y
AND Logical AND X ANDSFOO0O
OR Logical OR X OR128
NOT Exclusive OR X NOT Y
- Subtraction X-10
+ Addition X+10

The following are some sample algebraic expressions and the
MLBASIC counterpart:

Algebraic Form MLBASIC Form
X+2Y(S-12.9/Y) X+2*Y*(S-12.9/Y)
X-Y/Z X-Y/2

12A+13B-CLOGI 12*A+13*B-C*LOG(1I)

150
MLBASIC 2.0 USER'S MANUAL
4.4.b Integer Arithmetic

MLBASIC will compile an expression using integer arithmetic if
all constants, functions, and variables in the expression are of the
Integer type. Integer operators are; +,-,/,*,AND,OR and NOT. Integer
arithmetic allows for extremely fast calculations where the final
result is an integer value. Where fractions or large numbers are not
a concern, Integer arithmetic should be used.

4.4.c Logical Operators

MLBASIC allows arithmetic expressions to contain logical
operators along with the normal arithmetic operators. Logical
operators perform a full 16Bit operation on the operands. The
allowable operators are: AND, OR, and NOT. The following examples
illustrate the effect of logical operators between two 16Bit Integers.

1. Example AND

0100101101100001
AND 1110000011111000

0100000001100000
-Final result has bits set only if both bits above are set

2. Example OR

0101010101111100
OR 1111000011110000

11711070111111100
-Final result has bits set if one of the bits above are set

3. Example NOT

0101010101010101
NOT 0101101010011000

0000111111001101

-Final result has bits set if only one of the above bits are
set

151
MLBASIC 2.0 USER'S MANUAL

4,4.d Relational Operators

Relational operators are used to compare two values. Relational
operators are only allowed in IF..THEN..ELSE commands and are not
allowed in arithmetic expressions. Available operators are:
>,<,<>,=<,=>,and =.

4.4.e String Operators and Expressions

A string expression is an expression made up of string constants,
string variables, and string functions. The plus sign "+" is used to
concatinate the elements within an expression into one final string.
Maximum lengths of the final concatinated string is limited to about
255 bytes.

You can compare strings using the same relational operators that
are used with numbers. String comparisons, performed with the
IF-THEN-ELSE command, are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the codes differ, the lower code
number precedes the higher. Comparisons between unequal length
strings will always make the shorter string less than the larger one.

152
MLBASIC 2.0 USER'S MANUAL
CHAPTER 5 TECHNICAL INFORMATION
5.1 Machine Language Interfacing

MLBASIC allows programmers to interface their own assembly language
programs with the compiled program. This enables more flexibility in how
the program is to operate.

The special commands LREG and SREG allow for exchange of data
between the 6809 registers and variables used in the program compiled
with MLBASIC.

The method that an externally assembled machine language program can
be interfaced is as follows:

(1) Store the assembled program in DATA statements using the "%"
mode.

(2) Load the hardware registers with any initial values using LREG
(if required with the assembly program).

(3) Call the assembly program that is contained in the DATA
statements using GOSUB linenumber, where linenumber is the first
line containing the machine language program data.

(4) After the call to the machine language program, any data that
is to be obtained from the hardware registers may be stored in an
integer variable using the SREG command.

The following example uses the previously described method to call a
machine language routine that will poll the Kkeyboard until the keyboard
is pressed and then store the value in the integer variable, A.

100 REM' Test of DATA calls

101 REM

102 DATA%1:REM 1st item to be skipped

103 DATA%183,255,222,28,175,173, 159, 160

104 DATA%0,39,250,26,80,183,255,223,57

120 GOSUB103:REM' Call Keyboard Poll Routine

121 SREG("D",A):REM' Load variable A with [D] register
122 A=A/256:REM' A now has ascii value of key

123 PRINT"Number =";A

124 END

153
MLBASIC 2.0 USER'S MANUAL

5.2 Interfacing MLBASIC with the Interpreter

MLBASIC allows programmers to use machine language routines
contained in the ROM of their machine. These routines may be executed
from within a compiled program with the use of the VECTD and VECTI
commands.

The VECTD and VECTI commands allow for calls to routines contained
in ROM by performing a map switch between the all RAM and the half RAM -
half ROM map types. In addition, the X,Y, and U register are saved on
the stack and are returned unchanged after completion of the ROM routine.

The following example illustrates the use of the tokenization
routine found in the ROM of the computer.

100 REM' Tokenize a string

101 REM' Final Token is stored in A

102 %STRING=1:DIM AS(20):REM' Word to Tokenize

103 INPUT"Enter BASIC Word ";AS$

104 A=LEN(AS):REM' Number of Bytes to Poke

105 FORI=0TOA:POKEI+500,AS$(I):NEXT:REM'Store String
106 DST(166,500) :REM'Point to string

107 VECTD(47137):REM' Call ROM Tokenization Routine
108 DLD(732,A):REM'Load A with 2 byte token

109 PRINT" ","Token=";A

110 END

154
MLBASIC 2.0 USER'S MANUAL
5.3 Interpreter Calls

MLBASIC allows a compiled program to execute a BASIC command via the
special character "[" (or shift down arrow key).

By placing the "[" character in front of a command, the compiler
will use the Interpreter call routine to execute the command, at run
time, under the Interpreter. With the exception of the INPUT, GOTO,
GOSUB, and FOR-NEXT commands, all of the BASIC commands normally used in
an Interpreter BASIC program can be executed using the Interpreter
Call.

The Interpreter usually is not needed because most of the available
BASIC commands may be compiled using MLBASIC. One example of why an
Interpreter call might be needed is to define a string for use in the
DRAW and PLAY commands.

The DRAW and PLAY commands have a sub-command, called "X'", that
executes a substring of commands. This substring of commands must be
contained in an Interpreter defined string variable. To accomplish
this, the string that is executed must be defined with the aid of an
Interpreter Call.

The following example shows how a DRAW command, using the "X"
sub-command, uses the Interpreter Call method to define a string
variable.

100 REM' Example DRAW using BASIC SUB-Command string
102 PCLEAR4:PMODE3, 1:SCREEN1,0:PCLS
103 [A$="BL16;R16;D16;L16;U16"

104 [B$="BL4;BU4;R24;D24;L24;U24"

105 FORS=1T020:C$="S"+STRS$(S)

106 DRAW "C3;BM128,85;"+C$+"XA$;XBS;"
107 DRAW "C1;BM128,85;"+CS$+"XA$;XBS;"
108 NEXT

109 FORS=20TO1STEP-1:CS="S"+STRS(S)
110 DRAW "C3;BM128,85;"+CS+"XAS;XBS;"
111 DRAW "C1;BM128,85;"+CS+"XAS;XBS;"
112 NEXT

120 GOTO104

130 END

The following example shows how to use HGET and HPUT (low-resolution
graphics GET/PUT can be performed in the same way), using the Interpreter
Call method.

100 [HBUFF 1,2000

200 HSCREEN4

300 HLINE (10,0)-(20,10),PSET,B

400 [HGET (10,0)-(20,10),1

500 HCLS

600 FORI=1 TO 150 STEPS

700 POKE 1000,I

800 [I=PEEK(1000):REM' PASS MLBASIC I TO INTERPRETER I

900 [HPUT(50+I,10+I)-(60+I1,20+I),1,PSET

1000 NEXT

1010 GOTO 1010

155
MLBASIC 2.0 USER'S MANUAL

5.4 Subroutine Call Description

In this section a description of how the CALL and SUBROUTINE
statements operate internally is given. The way a CALL statement passes
parameters and program control to the SUBROUTINE is discussed for
information purposes.

The following sequence describes what happens when a CALL statement
is executed.

(1) The pointers to each variable or constant in the CALL statement
argument list are pushed onto the "S" stack. Each pointer occupies
2 bytes of memory on the stack. The first argument in the list is
the first pointer on the stack, the second argument is the second
pointer and so on.

(2) The variable table pointer ("U" register) is saved on the
stack.

(3) The jump is made to the SUBROUTINE with the return address
being the last item saved on the stack.

(4) The SUBROUTINE is executed. Program control returns to the
calling routine when a RETURN is executed in the subprogram.

(5) The variable table pointer is loaded with its original value
(obtained from the stack).

(6) The stack is reset to its original position before the CALL
statement was executed. This in affect moves the stack beyond the
argument list variable/constant pointers which were saved in the
first step of the process.

(7) Program control resumes with the next executable statement
after the CALL statement.

156
MLBASIC 2.0 USER'S MANUAL
The following diagram illustrates how the "S" stack looks after Step

3 of the process (this is how it looks immediately before the SUBROUTINE
is executed).

T_,,___a____-——T HIGH MEMORY

P

?———_E;;éqi--"_? Pointer to 1st argument in list
?----E;;;Ei---—? Pointer to 2nd argument in list
?-__HE;;QEE—H__? Pointer to 3rd argument in list
.

T

?--__E;;é§3--__? Pointer to Last argument in list
?____-fﬁi_-___-? Calling program variable table pointer
?-_--EETETE____? Return address to calling progran
;_—“E;;;gggi—--? Next available location on stack

________________ LOW MEMORY

157
MLBASIC 2.0 USER'S MANUAL

5.5 MLBASIC 2.0 Memory map

Address (Hex) Segment Contents

10000 -ﬂ\ - I/0 Vectors, ROM interrupts, Etc.
---- $FFO0O0
3F Enhanced BASIC
EOO0O —-———
Disk
\ Operating system
3E RAM
C000 ————
Color BASIC RAM
‘ 3D
A00O0 <i —_———
Extended BASIC RAM
3C
8000 <f —_———
MLBASIC runtime subroutines &MMU slot table
-—--- $7F0O0
/) 3B
6000 .
RAM area used for storage of Machine
language and BASIC source programs
3A
4000 —-———
This page gets swapped out with
segment $36 for the 80-column screen
39
2000 // ———
\\ Disk buffers, Low-resolution graphics screens,
\ --== $1D1
// 38 MLBASIC ROM call and task switching routine
0000 --—- S$1AE

Task #0 Set of MMU slots (RAM mode)

158

MLBASIC 2.0 USER'S MANUAL

Address (Hex) Segment Contents

10000 - I1/0 Vectors, ROM interrupts, Etc.
——-- $FFO0O

37
EOOO

35
C000 MLBASIC

program

34
AO0O0O RAM

33
8000

32
6000

31
4000

30
2000 e

Disk buffers, Low-resolution graphics screens,
---- $1D1

38 MLBASIC ROM call and task switching routine

0000 ---- S$T1AE

Task #1 Set of MMU slots (RAM mode)

159
MLBASIC 2.0 USER'S MANUAL
CHAPTER 6 SAMPLE PROGRAMS

Program #1

This program is used to delete remarks in a program. It can be
useful for programs that exceed memory in BASIC.

A 24926 INTESER b 24938 INTESEP ¢ 25000 INTE3EW
5 5

MLBASIC Revision 2.8 - COPYRISHT (C) 1987 b, WASATCHEARE ° g302 uIEDER A R L

INPUT =MEMORY TSI T J 23214 INTEGER K 235016 INTEGER L 25918 INTEGER

DUTPUT=HEMORY M 23020 IMTEGER N 23022 INTEGER O 2%824 INTEGER

P 25e25 INTEGER Q 25028 INTEGER R 23030 INTEGER

. 5 2%032 IMTESER T 25034 INTESER U 23036 INTEGER

Sl bbb b v 25030 INTEGER W 25040 INTESER X 23042 INTEGER
: Y 25044 IMTEGER 2 25046 INTEGER

30 REM'S BASIC PROGRAM X

40 REM " ¥ STORED IN MEMODRY

I R 2. DIMEMSIONED VARIABLES

60 REM'# 1987 M

70 REM' XSRS X A8 XA R0RAXERARRN KK NAME LOCATION TYPE fst DIMENSION

80 XINT

90 XSTRING={ A$ 25052 STRING 301

100 REM’
: MAIN PROGRAM AREA -19000 TO 19609

116 CLSIPRINT® THIS PROGRAM DELETES REMARKS®,* FROM THE PROGRAM EXISTING IN'. QmacTES Cara-apen - C13213 10 1322

120 DIMAS(300) 1REM’LINE BUFFER -

132 DLD(23,A)10LD(27,811B*B-21DLO(A,C) VARIRELERSIORSCEIARES 24384 70 23330

140 D=A:REM’ SET START OF NEW LINE 10 OLD R

150 E=A+4:F=C-11J=0

160 FORI=E TO F:REM' LOOP ON CHARACTERS IN LINE

170 G=PEEX(I):1FG=13@0THEN19Q

180 A(J)=GiJ=J4+11GOTO210:REM’ FILL OUTPUT BUFFER,NEXT CHARACTER
190 IFIYE THEN220

200 A(0)=G:J=1:G0T0230

210 NEXTI1:GOT0240

220 J=J-1:REM’' GET RID DF COLON

230 G=01A(J)=G:J=J+11REM" END OF LINE MARKER

240 REM’ STORE NEW LINE OVER OLD,J=LENGTH,D=ETART

230 L=A+2:0LO(L,L):REM’ L CONTAINS LINE #

260 E=D4+41F=E+J1F=F-11H=Q:FORI=E TO F:G=AS$(H) :H=H$1:POKEI,GINEXT
270 F=F+1:DST(0,F)REM’ STORE NEXT LINE LOCATION

280 H=D#2:DST(H,L)1REM’ STORE CURRENT LINE NUMBER

290 0=F:REM’' SET NEW LINE LOCATION

300 A=CiDLO(A,C)1REM’ A=START OF NEXT OLD LINE,C=NEXT4{

310 IFA<B THEN{30

320 REM’ STORE FINALE POINTERS

330 DOST(D,0):0=D+2:0ST(27,0)

340 JECTI(114):REM’ PERFORM A WARM START TO INITIALIZE VARIABLE POINTERS

34 PROGRAM LINES
3 GOT0/GOSUBS

¥kkk LINE NUMBER LOCATION MAP ¥¥kkx
LINE LOCN LINE LOCN LINE LOCN LINE LOCN LINE LOCN

10 19008 20 19008 30 19008 4@ 19008 3@ 19008
60 13008 70 19008 B0 19008 90 19008 100 19013
110 19013 120 19039 130 19039 140 19079 130 19086
160 19128 170 19134 190 19133 190 19197 200 19208
210 19227 220 19250 230 19268 240 19312 230 19312
260 19336 270 19466 280 19496 290 19323 300 19331
310 19343 320 19332 330 19332

AXkXK VARTABLE TABLE ¥kwkx
1. SCALAR VARTABLES

NAME LOCATION TYPE NAME LOCATION TYPE NAME LOCATION TYPE

160
MLBASIC 2.0 USER'S MANUAL

Program #2

This program is a basic text editor with wordprocessing
capabilities. The program can be used to become familiar with the part
of MLBASIC that is not available with regular Interpreter BASIC.

To compile the program:

Load in MLBASIC

Enter CLEAR 200, 19301

LOAD "PROGRAM2"

Enter EXEC

Hit CTRL , and wait for it to be compiled

Save program to disk: SAVEM"TEXT",19500,32375,19500

NN ANANANA

DR WN =
e

To load the program and execute it, you must use the 64k task #1
loader program called "R.BAS". To run the program, the menus will help
you thru most of the functions. In edit mode, the "H" key lists the
options. Some of the more complicated functions are:

"U" -Bank a section of text (up to 2500 bytes in this version)
You first position the cursor to where you want in the text
and then hit "U" to start banking. Move cursor along
to the end of the text you want to bank, then hit "U" again.

"Y' _Insert the banked buffer (using "U"). It may be inserted more
than once.

Other things to know about the editor section are that the following

keys perform the function of moving the cursor position around the text
as:

. -Go to top of Text.
. -Same as ","
ENTER -Go to next page

Hopefully this will get one started into a better understanding of
the optins available with MLBASIC.

161
MLBASIC 2.0 USER'S MANUAL

362 GO5URS400Q
2964 PRINTN-2,° ";1QeQ41:50T03500

r . =] I c w T A 3066 PRINTH#-2:R=R+!1:Q=11GNSUB5320: Q=Q+K:GNTO3RK2
MLBASIC Revislon 8.0 - COPYRIGHT C) 1387 by ¥ASATCHWARE = .. gggg :vamrma, ‘3~;éq=quxgomaseo
IMNPUT =MEMORY FKC>QTHENIQ?
uUerT.uguggv 3072 PRINTW-2:RaR+1:Qe1:A(2)=@:505UB3300:50T03500

; 3074 Q=Q4K:1FQLE THEN3076

10 FEM’ $RRARet K RARs AR ERRAKRARE 2073 G03URS5400:G0T0N3972
1 REM’ #% WORDPRO 2.0 -DISK P 3076 PRINTH-2:1R=R41:Q=11G0SUBS300:Q=Q+K1GOTN3O7S
12 REM’ &% 06701797 - 3080 A(2)=Q1FORJ=P TO LIPRINT#-2:NEXT1P=P4{:R={
13 REM’ RERRARAARRARERtARRRTRRARENKENK 2032 Q=1:605UR200: 1F2=3THEN1QQ
14 REM 3083 GOTO3Se0
13 XINT 3030 IFK=@THEN3A92
16 XSTRING={ 3091 Q=Q+K:GNSUB3400
31 DATA9999 3092 PRINTH-2,* " 11Q@=Q+3160T03300
%@ DATAS$" ANYNAMEHERE * 3100 A!2)={:REM’SET FLAG TO INDENT TO 2ND MARGIN
sy DATAS* 1234 Road Lane * 3101 GOSUB3LAR:50T03300
2 DATAS$* Whoknowswhere, U,S, 3200 2=23:G0OT03030
53 DATAS* 98763 - 3500 MEXT
s DATAS*Thank You, * 1000 A=0:CLS:PRINT‘E)*")
53 DATA$ “John Doe * 4e01 GOsUB30Q1
56 DATA$°Manager, ANYNAMEHERE® 4002 1F2=94THENA4DS0
70 DIM F$(20),08(20) tREM’ FILENAMES 4003 1F2=1QTHENJQER -
86 DIM A(10),E¥(B0),08(2500),B$(62),CH(18),A$(20000) 4004 1FZ=3THEM100
87 A(2)=0:5=01B=01A(3)=VARPTR(A$) :REM'SET BUFFER START 4003 1FZ~9THEN4@BS
88 A(4)=Q:REM'INITIALIZE BANKING BUFFER 4006 IF2=BTHEN4280
100 CLS:PRINT* WORDPRO (VERSION 1.9)°,* (C) 1987 WASATCHWARE*, "ENTER O 4007 1F2="1"THENA29IQ
PTION #°,°1,- INPUT®,*2,- DIR®,*3,- PRINT®,"4,~ EDIT* 4008 IFZ="D"THENA4100
101 PRINT*S,- TEXT SAVE/LOAD",“6.- EXIT* 4009 1F2="C"THLNA200
12¢ PRINT: INPUT2 4010 1F2="B"THEMN4250
121 IF2=1THEN100@ 4011 1F2=13THEN4300
122 [1F2=2THEN200Q 4012 1FZ="A"THEN431Q
123 1F2=3THEN3Q0Q 4013 1F2="G"THEN43SO
124 1F2=4THEN400Q 4014 [F2="S"THEN438Q
123 1F2=STHEN7Q00 4013 1F2="R"THENA4400
126 1F2¢)6THEN109 4016 1F2="H"THEN4420
127 STOP 4017 1F2="U*THEN450Q
1000 A=B1GOTORAAA1REM SELECT INPUT MENU 4018 IFZ="V"THEN4520
1001 GOSUB!11001GOTO100 4019 1F2=*, *THEN40QQ
2000 DIR:G0TD100 4020 1F2=", "THEN4QQR
3000 GOSUB1210@1CLS:PRINT*READY PRINTER $ ENTER:*, “LEFT,RIGHT MARGIN *j1INPUTD) 4021 IF Z=® ° THEN4@83
tPRINT*, *; t INPUTEIPRINT® -, “TOP,BOTTOM OF PAGE °| 4022 IF 2=103 THEN4119Q
3001 INPUTF:PRINT®, *; INPUTGIPRINT T={ 4023 IF 2=4 THENd120
3002 FPRINT"ENTER 2ND MARGIN *;:INPUTA({) 4024 1F 2=")" THENFORX={ TO 101G0SUB4@63:1NEXT:GOT04001
3003 PRINT* ", *EMNTER FORM LENGTH “j1INPUTL 4040 GNT04001
3004 1FS=1THEN30{0 1030 IFAC1QQTHEN4QQQ
3003 PRINT* *,°IS IT A LETTER (1=YES)?*)1INPUTS 4031 CLS:PRIMT"*";;A=A-1001FORI=1T0100
3009 PRINT® *,“ENTER STARTING PAGE "j1INPUTP 4052 GOSI)BA@6S:NEXTA=A-1001GOTN40Q1
3040 PRINT® *,“ENTER THE TITLE® 4060 2=A$(A)11F2=13THENAQE3
3011 INPUT BS:T=LEN(BS) 4061 GOSUB426S11FAd=B THEN4QO1
3020 Q={1Re{:F=F~11K=@ T=T-{ 40652 GNTO406Q
3021 GOSUBS200: IFZ=3THEN100 4063 PRINT:A=A+1:G0T04001
3022 REM'BEGIN LOOP TO PRINTOUT TEXT 1063 2=A$(A) : GOSUB10000
3023 FORI=A TO B:2=A$(1) 4079 A=zAH|:RETURN
3024 GOSUB1100Q:REM‘SCAN FOR INTERRUPT 4030 PPINTSC$(1);:A=A-11G0T04001
3028 1FQ>=D THEN3032 4093 GO3UB4063:150T04001
3030 0OSUBS100 4030 G0O3UB11900
3032 1F2=13THEN3070 4033 GOSUB1170@16G0T04001
3034 1F2=64THEN30BQ 4100 INPUT2
3036 1F2=32THEN306@ 41@1 G0OSUB11600:GNT04001
3038 1F2=9THEN3090 4110 REM" F{ JUMP TO LOCATION IN BUFFER
3039 1F2=19THEN3100Q 4111 PRINT* *, "POINTER=";A: INPUT "ENTER ADDRESS ;A
3040 1F2=12THENI20Q 4112 6070 4Q0|
3030 K=K+11E (K)=2160T03300 4120 REM' F2 SET BUFFER LEMGTH
3060 1FK=@THEN3PEB 4121 CL3:PRINT"BUFFER="1B: INPUT “ENTER BUFFER SIZE (@-> LEAVE AS 15)*32
3061 Q=Q+K1 1FQXE THEN3IDKE 4122 1F 2>9 THEN B=2

4422
R
4424

162

MLBASIC 2.0 USER'S MANUAL

GOTN42e1
GOSUBS520@: $AS(A) =2 AzA41:1GNTNAROY
PRINT® “,“BUFFER= “;E;"BYTES":G0T04001
2xA$(A) : IF2=64THENA3@3

GOSUB49631 IFAY=B THEN4QO1

GOT04300

GOSUB4263: GOTO4001 .
PRINT® *,"LINE POINTER=";A; "BYTES":1GOT04001
REM’GRAPHICS ROUTINE

PRINT® *,"G>"j:2=A%(A)
PRINT$AS (A); “(*:2; ") "1t INPUTZ
1F2=QTHEN4333

A(A)=2:1GOT04001

PRINT“,... NO CHANGE MADE ":GOT04001
GOsuB1 1800

GOsUB1 1300

A=A~C:PRINT® “, “FOUND 1T°:GOT04001
CLS:PRINT*INPUT STRING TO BE REPLACED*
GOsSuB1 1800

PRINT* °, “4 THE REPLACEMENT STRING?*
X=C:GOSUB1190@:0=C:C=X
GOSUB113@01A=A-C: IFAYB THEN4QQQ
GOSUE309111F2=3THEN4QQQ

1F2=83THEMN440B

A=A+C:50T04404

2=C:GOSUB1 160012=81G0SUB100001REM'DELETE STRING, PRINT BACKSPACE
X=C:C=0:G0SUB117@@:C=X:G0T04404

CLS!PRINT",,... EDIT COMMAND INDEX ...,.,","A -DISPLAY CURSOR LOCATION", "B

-DISPLAY BUFFER SI2E“, “C -CHANGE CURRENT CHARACTER®

PRINT“0 -DELETE N CHARACTERS®,“l1 -INSERT TEXT*, G -DISPLAY/ENTER NEW VALUE
-REPLACE STRING-, "S -SEARCH FOR STRING*
MggévT'U -BANK A SECTION OF TEXT*®,"V -UNBANK (INSERT BUFFER) *, “BREAK -EXIT
PRINT®, -GO TO START OF BUFFER*,*F1 ~JUMP TO A LOCATION IN BUFFER","F2 -CH
BUFFER SI2E"150T04001

REM’ INSERT DATA INTO D$ BUFFER

IFA(4) ()BRTHEN4310

CLS:PRINT"BEGIN BANKING TEXT. MOVE CURSOR*,"TO ENO OF AREA, THEN HIT 'U’*
Al4)=A1GOTO4310

2=A-A(4)1C=0Q1 1F2>2499THENASIB

FORX=A(4) TO A1C=C+1:1Y=A$(X) 1809 (C)=YINEXT

A=A-2:5G05UB11600

AlS)=21A(4)=@:PRINT® “,A(3))"BYTES ARE NOW BANKED®:1G0T04001

PRINT® °, "BUFFER OVERFLOW*:12=2499:G0T04312
C=A(3):PRINT* *,C; “BYTES INSERTEC“1G0T04093
GOSUB3001 : PRINTSCS (1) j 1RETURN
C$(1)=INKEVS12=C$(1)11F2=0THENSRQI

RETURN

PRINT® *, "HIT ANY KEY TO CONTINUE*1GOT0S@Q1
FORJ={TO D:PRINTW-2,” *;;Q=Q+1:NEXT
1FA(2)=QTHENS104

GOS!B3600

RETURN

1FR>=F THENS203

1FS¢>1 THENS2@3

PRINT® *, "READY NEXT PAGE*1G0SUB30001G0T0%203
PRINTH-2, -

GOSUB33@@: FORJ=R TO F1PRINTH-21R=R+11NEXT

RETURN

IFR(=G THENS30Q2

FORJ=R TQ L1PRINT#-2:NEXTiR=11P=P4{1G0SUBS200:Q=1
GOSUB31@a:RETURN

FORJ={TO K1PRINTH-2,E(J); 1NEXT:K=@:RETURN
GOSUB310@:PRINTH-2,B$

Q=1:R=R+{ 1IRETURN

FORJ=1TO A(1)tPRINTR-2," *;:NEXT1QeQ+A (1) :RETURN

“3P," ":R=R{2

-APPEND TEXT FROM DISK”, "4,

7003
7006
7008

CL5:PRINT“ENTER [HPUT OPTION:*,*1,- LETTER", "2, TEXT":INPUTZ:PRINT
1F2={ THEHE20E

REM‘ IM1PUT LETTEP HEADING IMTO TEXT BUFFER, As
CL3:PRINT"1>";:1GOTO1021

RESTORE

READI: IF1<>9293THENGQRR

6=

=1
FORA=QTOIN:READSAS (A) {NEXT
Wel3:eas131) =W
FORA=32T0NA61READSAS (A) 1 NEXT
$AS IR =

FORA263TN10Q7:READAS (A) INEXT
$/.8(103) =W
FORA=1Q9T0143:READSAS (A) 1NEXT
A=144:505811400: GOSUB! 1 4001 GOSUB1 1400
5051811100
V=35:GNSUB11290:Y=10:G0SUB11300: GOSUB1 1400
GN5UR11402:G0S'B11400:GOSUB1 1400
Y=33:60S5'81120@:Y=10:G05UB11300:GOSUB11400
¥=35:G05181129@:Y=20:G0SUB113@@:GO5UB11400:B=A1GOTO100

REM’ 1/0 SECTION
CL5:PRINT* STORAGE SECTION",* “,“ENTER OPTION #°
PRINT“@, ~-EXIT MEMU",“{., -LOAD TEXT FROM DISKk*,°2, -SAVE TEXT TO DISK", “3.

-SAVE SEGMENT OF TEXT TO DISK*
PRINT“S. -VIEW OISK DIRECTORY"

IMPUTZ 1 U=t
1F2=1THEN710Q
1FZ=2THEN7290
1F2=3THEN7300
1F2=4THEN7600
IF2=3THEN7700
IF 2=0 THEN10®
50707002

REM °LDAD TEXT
50SUB7400:1REM’
B=0:A=0

REM
IHPUTHY, $AS(A) 12=A8(A) 1 IF 2¢>13THENA=A}{:GOTO7114
A=A+1: IF EOF (U)=QTHEN7114

B=A:CLNSE:50T0100

REM’ SAVE FILE

GO5UB7500

A=C:REM’ INIT TO START OF BUFFER
Y=B-1:REM’ END OF TEXT TO OUTPUT
REM

FORX=A TO Y:PRINTHU, A(X) j 1NEXT:REM’ OUTPUT BUFFER
ﬁ=é§é:2-Al(X)xlF 24¢>13 THENPRINTWU,* *1REM’ EOL IS REQUIRED
CL

GOTO100

REM’ APPEND

505UB7400:A=B:G0T07112

IHPUT “ENTER TNPUT FILENAME “;F$

OPEM"1", WU, F$

RETURN

INPUT "ENTER OUTPUT FILEMAME *iG$

OPEN"0",WU,G$

RETURN

REM" OUTPUT A SEGMEMNT

GOSUB7300:PRINT "ENTER START,END OF TEXT*:INPUTA, Y:GOT07208
DIR:PRINT *NUMBER OF FREE GRANULES=";: [PRINT FREE(Q)
GOTO 7ees

GO3SUBL 1020: IF2<>9THEN| @@C2

PRINT" *; tRETURN

1F2¢SRATHEM| GRS

CLS5:PETURN

1FZ<>13THENIQRRR

INIT FILE

163
MLBASIC USER'S MANUAL

LINE LOCMN LINE LO7N LINE LOCN LINE LOCH LINE LOCH
13003 v=144:4607010222

10036 1F2¢>12THEN10028 10 13529 11 fasea 12 19508 13 19508 14 19308
12007 v=140:50T010009 15 13528, 16 19%09 31 13515 se 19520 31 19551
10008 Y=2 52 13585~ 33 19626 54 12661 8% 19671 96 19691
10029 $CS(1)=v:PRINTSCS (1)) 7 13721 BE 19701 @7 19791 B9 19736 100 19744
11320 REM'BREAK RO'.TINE 121 19768 1Z20 19793 121 19823 {22 19916 123 19827
11001 £$(2)=INKEYS$1W=C$(2) 124 13938 1293 19249 126 19860 127 19871 1000 19873
11002 IF¥={9THEN11004 1081 19624 2000 19990 30e@ 19900 3001 19967 3002 20020
11003 RETURN . 3003 20243 3004 20070 2003 20031 3002 20195 3010 20131
11004 REM'POLL FOR ANY KEY TO CONTIMUE 3011 22148 3020 20176 3021 20236 3022 20250 3023 20230
11005 WeZ:505URSQR1:12=4; RETURN 3024 20270 3023 20272 3030 20294 3032 20287 3034 20298
11100 GOSUBS@@1:REM’GET INPUT CHAR 3036 20209 3038 7320 3039 20331 3049 0342 3030 20333
11101 TF2C)8THENI1103 3060 27393 3061 20406 3062 20432 3064 20433 3066 20470
11102 PRINTS$CS (1)) 1A=A-11GOTO11100 3058 20529 3072 20%64 3072 20573 3074 20624 3073 20630
11103 1F2ZO3THENT110S 3076 20656 3080. 20715 3082 20784 3083 20806 3030 20909
11104 B=A:RETURN 3031 20929 3092 20841 2100 20876 3101 20884 3200 20930
11103 1F2=BTHENI110Q 3500 20701 4000 20720 401 20946 4002 20949 4003 20950
11106 1F2=94THEN11100 4004 20971 4003 20792 4206 20993 4007 21094 4008 21019
11107 1F2=1QTHEN11100 4003 21025 4010 21037 4011 21048 4Q12 21059 4013 21070
11110 $AS (A)=21GOSL'84063:GOTO11100@ 4014 21931 401S 21092 4916 21103 4017 21114 4018 21123
11200 W=32:FORT={TO Y:A(A)=¥:AzA+]:NEXTIRETURN 4019 21136 4220 - 21147 4021 21158 4e22 21169 4023 21180
11300 FORI=1TO Yi1READ$AS (A) 1 A=A+ 1 NEXTIRETURN 4024 21131 4040 21240 4030 21243 4051 21253 4032 21294
11400 W=13:A (A) =W:A=A$ 11 RETURN 4050 21336 4261 21361 4062 21273 4063 21376 4067 21402
11300 V=E$(1)12=A$(A):GOSUB100@Q: IFA>=B THEN!1903 4979 21422 4280 21439 4083 21472 4090 21479 4093 2148f
115e1 A=A+131F2¢>V THEN11300 4100 21487 4101 2130¢ 4110 21306 4111 21306 4112 213%2
11502 IF C>1 THEN FOR1=270 C 1ELSERETURN 4120 21533 a121 21%3% 4122 21609 4124 21633 4200 21636
1133 2=A$ (A 1Y=E$(]) 42590 21679 4300 21713 4301 21740 4302 21732 4303 21733
11504 TFY¢>2 THEN11507 4310 21761 4339 21798 4331 21798 4332 21827 4333 21899
11323 A=A+{:NEXT1RETURN 4334 21990 435S 21923 4390 21943 4283 21946 4390 21949
11506 507011300 4400 21994 4401 22009 4402 22011 4403 22028 4404 22032
11507 A=A-1:A=A42:GOTO113@01REM'RESET & TRY AGAIN 4403 27077 4405 22091 4407 22102 4408 22120 4409 22141
11600 FORI=A TO BiY=1421X=A8 (V) 44z 22168 4422 22192 4424 22209 4423 22226 4300 22246
11601 A(1)=X1NEXT:B=8-2:RETURN 4302 22246 4504 22257 4506 22281 4310 22291 4312 22326
11700 FORI=B TO A STEP-1:2=14CiV=AS$(]) 4514 27402 4316 22421 4518 22430 4320 22308 3090 22337
11701 A(2)=YINEXT 3001 22573 302 22607 S010 22608 3100 22628 5102 22696
11702 FOR1=170 C:2=D$(1)1$A8 (A)»Z1A=A+]: NEXT 3103 22637 3104 22700 5200 2271 S201 22712 3202 22723
11703 B=B4C:RETURN 3203 22745 3224 22205 5203 22962 3300 22863 3301 22974
11900 C=@:PEM" INPUT E$ BUFFER 9392 22946 5400 22750 5320 23009 3501 23030 3600 23037
11801 GO3.83000: IF2=3THEN11903 6020 23116 6002 23160 6003 23171 6004 23171 6006 23193
11822 IFZCIBTHENT 1304 6008 23202 6012 23236 6014 23286 6016 22300
11303 C€=C-1:507011801 6019 232750 6022 22403 6024 23414 6026 23464
11324 C=C+1:3E$/C)=2:G0T011801 6028 2342 6031 23328 6@32 23317 6034 23542
11300 C=@:1REM’ INPUT O$ BUFFER 7000 23576 7004 23600 7093 23617 7006 22634
11201 505UB5@0@1:G05'J8100001 1F2=3THENT 1903 7008 23559 7012 2377 7014 23688 7818 23699
11302 1F2<>BTHENT1904 79016 23710 7100 23724 7102 23724 7110 237C7
11903 C=C-1:507011301 712 23741 7113 23819 7116 23960 7200 23876
11304 C=C+1:0(C)=2:60TO11901 7202 23876 7206 23836 7208 23%3 7210 23903
1193 PETURN 7211 23953 7218 24027 7300 24930 7301 24030
12000 PRINT* *, “READY CASSETTE?®;GOSUB30@11RETURN 7400 24042 7408 24036 7500 24087 7302 24110
12100 CLS:PRINT*ENTER BAUG RATE®,*| -600 BAUD", "2 -120@ BAUD" 7506 24171 TEQL 24132 7700 24178 7701 24204
12102 INFUT211F2=2THEN12106 10000 z4207 10002 24234 10003 274243 10004 24253
12104 POKE150,87:RETURN 10005 24264 10007 242686 10008 24297 10009 24303
12106 POKE13@,411RETURN 11009 24328 11002 24352 11003 24363 {1004 23364
12200 2=PEEK (129):1FZ=QTHEN12204 t1ees 24364 11101 24397 11102 24339 11103 24431
12202 PRINT1/0 ERROR #°32 11104 24442 11106 24460 11107 24471 11110 24482
12204 RETURN 11200 24508 11400 24549 {150@ 24691 11501 24730
12300 GOSUB12200: [F2=@THEN12304 11502 24757 11504 24818 11505 24E29 11306 24853
12302 PRINT“SIZE=";1;°LOC="3J:J=J-11]J=J4233 11507 24859 11601 24936 1170@ 24993 {1701 23030
12304 RETURN 11702 2507@ 11800 25139 (18e1 23166 11802 23180
30000 END 11903 25171 1130@ 25249 11921 235356 11902 25273

11903 25284 11705 25342 12000 23343 12100 23364
310 PROGRAM LINES 12102 25339 12106 25425 12700 25423 12202 25439
133 GOT0/GOSUBS 12204 25424 12302 2%429 12391 25579

Fikak LTHE MUMBER LOCATION MAP ¥t ki

164

MLBASIC 2.0 USER'S MANUAL

At%ek VARTABLE TABLE #¥¥k
1. SCALAR VARIABLES

NAME LOCATION TYPE NAME LOCATION TYPE NAME LOCATION TYPE

h 32368 INTEGER B 22390 INTEGER C 32332 INTEGER
0 32394 INTEGER E 32396 INTEGER F 22333 INTEGER
G 32400 INTESER H 32402 INTEGER 1 32494 INTEGER
J 32406 INTEGER K 32408 INTEGER L 32410 INTEGER
M 32412 INTEGER N 32414 INTEGER O 32416 INTEGER
P 52418 INTEGER Q 32420 INTEGER R 32422 INTEGER
S 32424 INTEGER T 32426 INTEGER U 32428 INTEGER
v 32430 INTEGER W 32432 INTEGER X 32434 INTEGER
Y 32436 INTEGER 2 32430 INTEGER

2. DIMENSIONED VARIABLES

NAME LOCATION TYPE 1st DIMENSION

A 32404 INTEGER 11

AS 33129 STRINSG 20001
-} 35e88 STRING 1]

Cs 35169 STRING 11

D$ 32387 STRING 2301
ES 32306 STRING a1

F$ 32442 STRING 21
G$ 32463 STRING 21
MATH PROGRAM AREA -19300 TO 23379
CHARACTER DATA AREA -23383 710 27074
SUBROUTINE L1BRARY AREA -27073 70 32373
VARIABLE STORAGE AREA -32376 710 33180

@ ERRORS

165

MLBASIC 2.0 USER'S MANUAL

CHAPTER 7 ERROR MESSAGES

The error handling portion of MLBASIC allows for easy detection of
program errors. There are two types of errors that can occur, they are:
(1) errors that occur during compilation of the program and (2) errors
that occur during execution of the compiled program.

During compilation, COMPILER ERRORS are the result of syntax errors
in the BASIC program that is being compiled. The BASIC program that does
not conform to required specifications of MLBASIC will not be compiled
correctly. The compiler will make a note of any compiler error and
continue to the next command. This means that all errors may be
detected by the compiler at one time. Too many errors may cause MLBASIC
to misread the final END statement, resulting in compilation of non
existing lines (If this occurs, abort compilation by pressing down the
BREAK key for about 5 seconds, then enter T).

The RUNTIME ERRORS are errors that occur because a command is
executed improperly. One example of this might be division by zero.
Runtime errors occur only during execution of a compiled BASIC program.
Diagnostic messages will be output indicating what the error was and what
the values of certain hardware registers were when the error occurred.

166
MLBASIC 2.0 USER'S MANUAL
7.1 Compiler Error Messages
In the following section, all of the COMPILER ERROR numbers will be
described so that one can determine what the possible causes for the
error are. In some cases the compiler error number will not indicate the
actual problem in the command that was being compiled.

The compiler error message consists of the following three values:

(1) Compiler error number -This is a number that identifies what
type of error occurred.

(2) Line number -This indicates the line number of the BASIC
program that contains the error.

(3) Character number -This indicates what character in the
command being compiled caused the error. If an error occurred in a
line that has more than one command, make sure to start

counting the characters from the start of the command and not from
the start of the line.

Sample error message to screen

ERROR# (1) LINE (2) CHR (3)

Sample error message to printer

«esss..BASIC COMPILER ERROR = (1) AT LINE # (2) - CHARACTER = (3)

**Note- Remember, when an error occurs during compilation, you can
abort further compilation of the source by pressing down the BREAK
key for a few seconds and then hitting the T key. The message
"ABORT COMPILATION" will indicate that the compiler was properly
aborted.

Number

N0 Ok W N

10

11
12
13

14

15

16
17

18
19
20
21
22
23

167
MLBASIC 2.0 USER'S MANUAL

Compiler Error Messages
Meaning

Improper command terminator.

Either a ":" or an end of line (zero byte) is expected.
Syntax error in the previous command.

Error in GOTO or GOSUB statement.

The word "SUB" or "TO" is missing.

Error in IF..THEN routine. Illegal logical operator.
Error in FOR..NEXT command. Missing '"=",.

Error if FOR..NEXT command. Missing "TO".

Error in DATA statement. Illegal data type.

Error in equation evaluation routine. Missing '"='",
Possible error in spelling of command.

Command may need Extended or Disk BASIC ROM(s).

Error in numeric expression. Missing ")".

The numeric expression may be too complex to compile.
Must break expression up into compilable parts.
Illegal integer operator.

Allo‘vable are |l+||’|l_||’"/||’H*"’"ORH’ HANDH and "NOT"
Illegal real operator.
Allo‘vable are l|+|""_||’H/|l"l*H and T 1"

Unknown command error.

Unknown function. Function not supported by compiler.
Illegal integer constant.

Allowed are decimal and HEX

"§" or "&H" must precede hex number.

Unknown string function.

String function not supported by MLBASIC.

Undimensioned REAL or INTEGER variable array.
Must use DIM or REAL to declare variable arrays.
Undimensioned STRING variable array.

Undefined FIELD.

The FIELD must be defined before RSET or LSET use that
Missing DATA statements.

RESERVED

Illegal compiler directive

FOR with no NEXT

NEXT without FOR

Multiple IF..THEN statement on same 1line.

Break up line into single IF..THEN statements

field.

168
MLBASIC 2.0 USER'S MANUAL

7.2 Runtime Error Messages

Runtime errors occur during execution of the compiled program. These
errors occur because of many reasons. The most common errors are
arithmetic and Input/Output (I/O) errors.

Runtime errors are printed on the screen if it is currently open. If
the printer was being used last, the output will go to the printer
instead of the screen.

All runtime errors can be handled by software to resolve certain
problems that may arise when operating a program. The ON ERROR command is

used to perform error trapping when any runtime error occurs (see section
3.2.1).

The following message is output when a runtime error occurs:

RUNTIME ERROR # (1)
(D) (X) (Y) (U) (cc) (DP)

Index to items in parenthesis

(1) -This is the runtime error number

(D) -The contents of hardware register "D" (in HEX)

(X) -The contents of "X'" hardware index register (in HEX)
(Y) -The contents of "Y" hardware index register (in HEX)
(U) -The user stack register (in HEX)

(CC) -The control code register (in HEX)

(DP) -The direct page register (in HEX)

Number
1

2

3

10

11

12

13

14

15

16

17

18

19

169
MLBASIC 2.0 USER'S MANUAL

Runtime Error Messages

Meaning
"NF" -There is a NEXT without a FOR.

"SN" -There was an error in compilation.

"RG" -Return without a GOSUB call. Interpreter only.
"OD" -No more data in data list. Interpreter only.
"FC'" -There was an illegal value passed to a function.

"OV" -Real number overflow,.
Value outside of the allowable range of +/- 1.7E+38.

"OM" -There is not enough memory to execute current command.
Interpreter only.

"UL" -Undefined line referenced by a GOTO or GOSUB command.
Interpreter only.

"BS" -The subscript of the variable array is out of range.
Interpreter only.

"DD" -The array has already been dimensioned.
Interpreter only.

"/0" -The calculation involved a division by zero.

"ID" -INPUT from keyboard used in an Interpreter call
(See 5.4). Interpreter only.

"TM" -Type of argument conflict with function.
Interpreter only.

"OS" -Not enough string space to perform Interpreter call.
Interpreter only.

"LS" -The string exceeds the maximum length of 255 bytes.
Interpreter only.

"ST" -The string formula is too complex to evaluate.
Break the string into shorter parts.

Interpreter only.

"CN" -CONT command not allowed in compiled program.

"FD" -Wrong file mode. Interpreter only.

"AO" -The buffer is already open.
CLOSE buffer before trying to open this channel.

170
MLBASIC 2.0 USER'S MANUAL
Number Meaning

20 "DN" -Device number not allowed.
Use only allowable device numbers.

21 "IO" -Input error in reading data from device.
22 "FM" -Bad mode for input/output of data.
Use mode selected in the OPEN statement for buffer.
23 "NO" -The buffer has not been opened.
Use OPEN to open a file.
24 "IE" -Input of data past the last item in the file.
25 "DS" -There is a direct statement in the file (ie. [INPUT).
Interpreter only.
26 NOT USED
27 "NE" -The file opened for input was not found.
28 "BR" -The record is not within the allowable range.
29 "DF" -The disk is full. Use another diskette.
30 "OB" -There is not endugh buffer space.

Reserve more space using FILES.

31 "WP" -The disk is write-protected.
32 "FN" -The filename is unacceptable. Interpreter only.
33 "FS" -The disk directory has been incorrecly written to.

Try to recover as many files from disk as possible.
Disk needs to be re-formattted.

34 "AE" -The file already exists.
KILL file, or RENAME it to another name.

35 "FO" -Field overflow error. Interpreter only.

36 "SE" -The string used in LSET or RSET has not been fielded.
Interpreter only.

37 "VF" ~Error in verification of data written to disk.

38 "ER" -Too much data in I/0 on Direct access file.

39 "HR" -High-resolution graphics error.

40 "HP" -High-resolution print error.

171
MLBASIC 2.0 USER'S MANUAL

CHAPTER 8 PROGRAM CONVERSION TIPS

8.1 Example Conversions

There are certain differences between programs written for ordinary
Interpreter BASIC and a similar program written for MLBASIC. In this section,
there are examples showing the changes needed so that a command written for
Interpreter BASIC will perform the same when compiled by MLBASIC.

Interpreter Form

MLBASIC Form

1. LOADM Command

LOADM"FILENAME"

2., IF-THEN Command
IF A=B OR B=C THEN1
IF A=B THEN100OELSE200
IF A=B AND B=C THEN1
IF A{>B AND B<>C THEN1

IF EOF(1) THEN1
IF A=BTHEN IFC=BTHEN100

3. PCOPY Command

PCOPYA TO B

4, FOR Loops
FORI=100TO-100STEP-1

5. Array Indexes
ACIC)=A(I+1)

6. REAL Constants
A=&H65000

7. Graphics GET/PUT
DIM V(20,20)

GET(I,J)-(K,L),V

PCLS
PUT(I+M,J+M)-(K+M,L+M),V

OPEN"I",#1,"FILENAME"
INT A,B
INPUT#1,AS,A,B:B=B-A+3
FORI=0 TO B:INPUT#1,SAS
POKEI+A,AS:NEXT
INPUT#1,A:DST(157,A) : CLOSE# 1

IF A=B THEN1
IF B=C THENT

IFA=B THENGOTO100ELSEGOTO0200
IF (A-B)OR(B-C)=0 THEN1

IF (A-B)OR(B-C)<»0 THENT1

IF EOF(1)<>OTHEN1

52 IFA<>B THEN54

53 IF C=BTHEN100

54

A1=A*1536:A2=41+1535
A3=B*1536:PCOPY A1,A3,A2

FORJ=200TOOSTEP-1:I=J-100.

INT Y,Z2:Y=IC:2=I+1:A(Y)=A(2Z)

A=6.*%65536.+&H5000

[DIM V(20,20)

POKE1000,I:POKE1001,J:POKE1002,K:POKE1003,L

[I=PEEK(1000) : [J=PEEK(1001)

[K=PEEK(1002):[L=PEEK(1003):[GET(I,J)-(K,L),V

PCLS
POKE 1000, M: [M=PEEK (1000)
[PUT(I+M,J+M)-(K+M,L+M),V

172

MLBASIC 2.0 USER'S MANUAL

8.2 Conversion of ASCII files

Disk or cassette files that have been created from programs written by
the Interpreter can be read using MLBASIC in most cases. MLBASIC and normal
Basic use different item separators. MLBASIC uses a zero byte to separate
strings, while the Interpreter uses commas or the CHR$(13) character to
separate items in the file., If a number was written to a file with the
Interpreter (for example PRINT#1,123.4), the number is stored as a string. In
order to read that number back using a MLBASIC compiled program, the number
must be read as a string, and then converted into a real number (ie.
INPUT#1,A$:A=CVN(AS$)).

The following program can be used to convert an ASCII disk file, that has
been created with an Interpreted Basic program, into the proper format so it
can be read back by a MLBASIC compiled program.

OPEN"I",#1,"FILENAME"
OPEN"O'", #2,"FILENAME"+" ,ML"
%STRING=1:DIM AS$S(2):INT A
INPUT=1,8A8: A=AS

IF A=","THENSAS$=0

IF A=13 THENSAS$=0

IF EOF(1)<>0 THEN CLOSE:STOP
PRINT=2,8$AS; :GOTO4

END

OCOTOONBDWN =2

	MLBASIC2_Page_001
	MLBASIC2_Page_002
	MLBASIC2_Page_003
	MLBASIC2_Page_004
	MLBASIC2_Page_005
	MLBASIC2_Page_006
	MLBASIC2_Page_007
	MLBASIC2_Page_008
	MLBASIC2_Page_009
	MLBASIC2_Page_010
	MLBASIC2_Page_011
	MLBASIC2_Page_012
	MLBASIC2_Page_013
	MLBASIC2_Page_014
	MLBASIC2_Page_015
	MLBASIC2_Page_016
	MLBASIC2_Page_017
	MLBASIC2_Page_018
	MLBASIC2_Page_019
	MLBASIC2_Page_020
	MLBASIC2_Page_021
	MLBASIC2_Page_022
	MLBASIC2_Page_023
	MLBASIC2_Page_024
	MLBASIC2_Page_025
	MLBASIC2_Page_026
	MLBASIC2_Page_027
	MLBASIC2_Page_028
	MLBASIC2_Page_029
	MLBASIC2_Page_030
	MLBASIC2_Page_031
	MLBASIC2_Page_032
	MLBASIC2_Page_033
	MLBASIC2_Page_034
	MLBASIC2_Page_035
	MLBASIC2_Page_036
	MLBASIC2_Page_037
	MLBASIC2_Page_038
	MLBASIC2_Page_039
	MLBASIC2_Page_040
	MLBASIC2_Page_041
	MLBASIC2_Page_042
	MLBASIC2_Page_043
	MLBASIC2_Page_044
	MLBASIC2_Page_045
	MLBASIC2_Page_046
	MLBASIC2_Page_047
	MLBASIC2_Page_048
	MLBASIC2_Page_049
	MLBASIC2_Page_050
	MLBASIC2_Page_051
	MLBASIC2_Page_052
	MLBASIC2_Page_053
	MLBASIC2_Page_054
	MLBASIC2_Page_055
	MLBASIC2_Page_056
	MLBASIC2_Page_057
	MLBASIC2_Page_058
	MLBASIC2_Page_059
	MLBASIC2_Page_060
	MLBASIC2_Page_061
	MLBASIC2_Page_062
	MLBASIC2_Page_063
	MLBASIC2_Page_064
	MLBASIC2_Page_065
	MLBASIC2_Page_066
	MLBASIC2_Page_067
	MLBASIC2_Page_068
	MLBASIC2_Page_069
	MLBASIC2_Page_070
	MLBASIC2_Page_071
	MLBASIC2_Page_072
	MLBASIC2_Page_073
	MLBASIC2_Page_074
	MLBASIC2_Page_075
	MLBASIC2_Page_076
	MLBASIC2_Page_077
	MLBASIC2_Page_078
	MLBASIC2_Page_079
	MLBASIC2_Page_080
	MLBASIC2_Page_081
	MLBASIC2_Page_082
	MLBASIC2_Page_083
	MLBASIC2_Page_084
	MLBASIC2_Page_085
	MLBASIC2_Page_086
	MLBASIC2_Page_087
	MLBASIC2_Page_088
	MLBASIC2_Page_089
	MLBASIC2_Page_090
	MLBASIC2_Page_091
	MLBASIC2_Page_092
	MLBASIC2_Page_093
	MLBASIC2_Page_094
	MLBASIC2_Page_095
	MLBASIC2_Page_096
	MLBASIC2_Page_097
	MLBASIC2_Page_098
	MLBASIC2_Page_099
	MLBASIC2_Page_100
	MLBASIC2_Page_101
	MLBASIC2_Page_102
	MLBASIC2_Page_103
	MLBASIC2_Page_104
	MLBASIC2_Page_105
	MLBASIC2_Page_106
	MLBASIC2_Page_107
	MLBASIC2_Page_108
	MLBASIC2_Page_109
	MLBASIC2_Page_110
	MLBASIC2_Page_111
	MLBASIC2_Page_112
	MLBASIC2_Page_113
	MLBASIC2_Page_114
	MLBASIC2_Page_115
	MLBASIC2_Page_116
	MLBASIC2_Page_117
	MLBASIC2_Page_118
	MLBASIC2_Page_119
	MLBASIC2_Page_120
	MLBASIC2_Page_121
	MLBASIC2_Page_122
	MLBASIC2_Page_123
	MLBASIC2_Page_124
	MLBASIC2_Page_125
	MLBASIC2_Page_126
	MLBASIC2_Page_127
	MLBASIC2_Page_128
	MLBASIC2_Page_129
	MLBASIC2_Page_130
	MLBASIC2_Page_131
	MLBASIC2_Page_132
	MLBASIC2_Page_133
	MLBASIC2_Page_134
	MLBASIC2_Page_135
	MLBASIC2_Page_136
	MLBASIC2_Page_137
	MLBASIC2_Page_138
	MLBASIC2_Page_139
	MLBASIC2_Page_140
	MLBASIC2_Page_141
	MLBASIC2_Page_142
	MLBASIC2_Page_143
	MLBASIC2_Page_144
	MLBASIC2_Page_145
	MLBASIC2_Page_146
	MLBASIC2_Page_147
	MLBASIC2_Page_148
	MLBASIC2_Page_149
	MLBASIC2_Page_150
	MLBASIC2_Page_151
	MLBASIC2_Page_152
	MLBASIC2_Page_153
	MLBASIC2_Page_154
	MLBASIC2_Page_155
	MLBASIC2_Page_156
	MLBASIC2_Page_157
	MLBASIC2_Page_158
	MLBASIC2_Page_159
	MLBASIC2_Page_160
	MLBASIC2_Page_161
	MLBASIC2_Page_162
	MLBASIC2_Page_163
	MLBASIC2_Page_164
	MLBASIC2_Page_165
	MLBASIC2_Page_166
	MLBASIC2_Page_167
	MLBASIC2_Page_168
	MLBASIC2_Page_169
	MLBASIC2_Page_170
	MLBASIC2_Page_171
	MLBASIC2_Page_172
	MLBASIC2_Page_173
	MLBASIC2_Page_174
	MLBASIC2_Page_175
	MLBASIC2_Page_176
	MLBASIC2_Page_177
	MLBASIC2_Page_178
	MLBASIC2_Page_179
	MLBASIC2_Page_180
	MLBASIC2_Page_181

