
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FC6809 INTROL-C 
 

STANDARD LIBRARY 
REFERENCE MANUAL 

 
(FLEX) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
The  contents  of  this  manual have been carefully reviewed and are 
believed to be entirely correct.  However, Introl Corp.  assumes  no 
liability for inaccuracies. 
 
 
The  software  described  in  this  manual  is  proprietary  and  is 
furnished under a license agreement from Introl Corp.  The  software 
and  supporting  documentation  may  be  used  and/or copied only in 
accordance with said license agreement. 
 
INTROL-C is a registered trademark of Introl Corp. 
FLEX and UniFlex are trademarks of Technical Systems Consultants, Inc. 
OS9 is a trademark of Microware Systems Corp. 
UNIX is a trademark of Bell Laboratories 
 
 
 
 
 

Introl Corp. 
647 W. Virginia St. 

Milwaukee, WI 53204 USA 
 

tel. (414) 276-2937 
 
 

Copyright 1983 Introl Corp. 
All Rights Reserved 



                        FC6809 STANDARD LIBRARY 
 
 
This  manual  describes  each  of  the  standard  library   routines 
supported  by  the  FC6809  Introl-C  Standard  Library.  The FC6809 
Standard  Library  is  usable  with  the  Introl  "fld'  Loader  for 
producing  programs  that are compatible with, and executable under, 
the Flex operating system. Note that Introl-C uses system call names 
which may differ from those used by  your  operating  system.  Those 
system  calls  which  perform  a  function  which  is analogous to a 
recognized UNIX system call have been given the  corresponding  UNIX 
name  rather  than the name used by the particular operating system. 
The library functions appear in alphabetical order in this-manual. 
 
   IMPORTANT NOTE:  The  majority  of  functions  contained  in  the 
   Standard  Library  have been pre-assigned a module "class number" 
   of zero (0). Several "non-zero" class  Standard  Library  modules 
   are   also  included  for  user  convenience,  however,  and  are 
   identified in the Appendix at the end of  this  Standard  Library 
   Manual.  In  general,  these non-zero class modules are alternate 
   forms of identically named class zero modules that exist  in  the 
   library, modified to fit specific programming applications. 
 
The following is a list of the functions included in this manual. 
 
 
FUNCTION DESCRIPTION                                            PAGE 
 
abs        - integer absolute value                              1.1 
alloc      - allocate memory                                     2.1 
atof       - convert string to float                             3.1 
atoi       - convert string to integer                           4.1 
atol       - convert string to long                              5.1 
cprep      - prepare environment for C program                   6.1 
cstart     - runtime preparation routine                         7.1 
ecvt       - float to string conversion                          8.1 
execl      - execute a program                                   9.1 
exit       - exit a program with file cleanup                    10.1 
_exit      - exit a program without file cleanup                 11.1 
_extend    - extend float                                        12.1 
fclose     - close file                                          13.1 
fcvt       - float to string conversion                          14.1 
fgets      - read file into string                               15.1 
_filespec  - Build file specification                            16.1 
_fms       - Call to FLEX FMS entry point                        17.1 
fopen      - open a file                                         18.1 
fprintf    - formatted output conversion                         19.1 
fputs      - write a string to a file                            20.1 
free       - free memory                                         21.1 
fscanf     - formatted input conversion                          22.1 
getc       - get the next character from a file                  23.1 
getchar    - get a character from the standard input             24.1 
_getchr    - Call FLEX GETCHR entry point.                       25.1 
gets       - read input into string                              26.1 
 
 
 
 

0.1 



index     - find first occurrence of character                  27.1 
isalpha   - test for alpha character                            28.1 
isdigit   - test for digit                                      29.1 
islower   - test for lower case                                 30.1 
isspace   - test for white space                                31.1 
isupper   - test for upper case                                 32.1 
itoa      - convert integer to ascii string                     33.1 
longjmp   - non-local goto                                      34.1 
malloc    - allocate memory                                     35.1 
max       - return the maximum of two values                    36.1 
min       - return the minimum of two values                    37.1 
modf      - return fractional part of float                     38.1 
movmem    - copy a block of memory from one-location to another 39.1 
printf    - formatted output conversion                         40.1 
putc      - write a character to a file                         41.1 
putchar   - write a character to the standard output            42.1 
_putchr   - Call FLEX PUTCHR entry point.                       43.1 
puterr    - write a char to the standard error output (STDERR)  44.1 
puts      - write a string to standard output                   45.1 
reverse   - reverse a string in place                           46.1 
rewind    - reset specified file to beginning                   47.1 
rindex    - find last occurrence of character                   48.1 
sbrk      - allocate memory                                     49.1 
scanf     - formatted input conversion                          50.1 
_setext   - Call FLEX SETEXT entry point                        51.1 
setjmp    - non-local goto                                      52.1 
sprintf   - formatted output conversion                         53.1 
sscanf    - formatted string conversion                         54.1 
strcat    - copy string                                         55.1 
strcmp    - compare strings lexicographically                   56.1 
strcpy    - copy string                                         57.1 
strlen    - return string length                                58.1 
strncat   - copy string                                         59.1 
strncmp   - compare strings lexicographically                   60.1 
strncpy   - copy string                                         61.1 
strsave   - save string in memory                               62.1 
tolower   - convert to lower case                               63.1 
toupper   - convert to upper case                               64.1 
uldiv     - unsigned long integer divide                        65.1 
ulmcd     - unsigned long modulo operation                      66.1 
ulmul     - unsigned long multiply                              67.1 
_unext    - unextend float                                      68.1 
ungetc    - push character back on input stream                 69.1 
ungetchar - push character back on standard input stream        70.1 
unlink    - delete file                                         71.1 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.2 



NAME 
     abs - integer absolute value 
 
SYNOPSIS 
     int     abs(i) 
     int     i; 
 
DESCRIPTION 
     abs returns the absolute value of its integer operand. 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.1 



NAME 
     alloc - allocate memory 
 
SYNOPSIS 
     char    *alloc(size) 
     int     size; 
 
DESCRIPTION 
     alloc  will attempt to allocate a block of memory whose size is 
     given by the argument. If it is successful it returns a pointer 
     to that memory otherwise it returns NULL. 
 
DIAGNOSTICS 
     Returns NULL if the memory could not be allocated. 
 
SEE ALSO 
     free(), sbrk() 
 
NOTES 
     Alloc is  an  obsolete  name  for  malloc().  It  simply  calls 
     malloc() and returns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 



NAME 
     atof - convert string to float 
 
SYNOPSIS 
     float   atof(cptr) 
     char    *cptr; 
 
DESCRIPTION 
     The  atof function converts a string into a float which is then 
     used as the return value of the function.  The string should be 
     null terminated although  atof  will stop reading the string as 
     soon  as  an  illegal  character  is  reached.  After  ignoring 
     preceding blanks  the atof routine  will convert as much of the 
     string as conforms to normal floating point  constant format to 
     a floating  point number.  It will stop at  the first character 
     which is  inconsistent with that format.  If no  floating point 
     constant is found a 0 is returned. 
 
     A  floating  point constant  consists  of  an  integer part,  a 
     decimal point, a fractional part, and an exponential part.  The 
     integer and  fractional  parts  may each consist of a string of 
     one or more digits.  The exponential part consists of an 'e' or 
     'E', followed by an optionally signed integer exponent.  Either 
     the  integer or the  fractional  part (but  not  both)  may  be 
     missing; either  the decimal point or the exponential part (but 
     not both) may be missing. 
 
DIAGNOSTICS 
 
SEE ALSO 
     atoi(), atol() 
 
NOTES 
     Presently it is permitted to have spaces between the 'e' or 'E' 
     and  the  first  character  of  the  integer  representing  the 
     exponent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1 



NAME 
     atoi - convert string to integer 
 
SYNOPSIS 
     int     atoi(ptr) 
     char    *ptr; 
 
DESCRIPTION 
     Atoi's  argument is a pointer to char which is assumed to point 
     to  a  null  terminated  string  which   contains   the   ASCII 
     representation  of  some  integer  number.  The  atoi  function 
     converts a string into an int which is the  return  value.  The 
     string  should  be  null  terminated  although  atoi  will stop 
     reading the string as soon as an illegal character is  reached. 
     After  ignoring  preceding blanks the atoi routine will convert 
     as much of the string as conforms to  normal  integer  constant 
     format  to  an  integer  number.  It  will  stop  at  the first 
     character which is inconsistent with that format. If no integer 
     constant is found a 0 is returned. 
 
     The integer constant  format  consists  of  an  optional  sign, 
     followed  by  one  or  more  digits.  There should be no spaces 
     interspersed within the number. 
 
DIAGNOSTICS 
 
SEE ALSO 
     atof(), atol() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 



NAME 
     atol - convert string to long, 
 
SYNOPSIS 
     long    atol(cptr) 
     char    *cptr; 
 
DESCRIPTION 
     The atol function converts a string into a long  which  is  the 
     return  value.  The string  should  be null terminated although 
     atol will stop  reading  the  string  as  soon  as  an  illegal 
     character  is reached. After ignoring preceding blanks the atol 
     routine will convert as much  of  the  string  as  conforms  to 
     normal long integer constant format to a long integer.  It will 
     stop at the first character which  is  inconsistent  with  that 
     format.  If no long integer constant is found a 0 is returned. 
 
     The  long integer constant format consists of an optional sign, 
     followed by one or more  digits.  There  should  be  no  spaces 
     interspersed within the number. 
 
DIAGNOSTICS 
 
SEE ALSO 
     atof(), atoi() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1 



NAME 
     cprep - prepare environment for C program 
 
SYNOPSIS 
     int     cprep(argc,argv,eext) 
     int     argc; 
     char    **argv; 
     char     *eext; 
 
DESCRIPTION 
     Cprep first prepares the environment for the user C program and 
     then  call s "main",  the  usual entry-point to a user program. 
     Cprep is  usually  referenced  only  from  "cstart".  The  user 
     program  is not expected to make any explicit reference to this 
     routine. 
 
DIAGNOSTICS 
 
SEE ALSO 
     cstart 
 
NOTES 
     The result of an explicit reference to cprep is undefined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1 



NAME 
     cstart - runtime preparation routine 
 
SYNOPSIS 
 
DESCRIPTION 
     Cstart is a runtime preparation routine which is  normally  the 
     first  routine  executed  by  an  Introl-C  program.  Its  only 
     function is to set up  the  environment  enough  to  allow  the  
     function  "cprep"  to  be  called.  Cprep  is  a function which 
     produces the runtime environment which is-expected by the  user 
     program.  Cstart is included automatically by the linker. It is 
     NOT  expected  that  a  user  program  will  reference   cstart 
     explicitly via a function call. 
 
DIAGNOSTICS 
 
SEE ALSO 
     cprep() 
 
NOTES 
     The result of an explicit reference to cstart is undefined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.1 



NAME 
     ecvt - float to string conversion 
 
SYNOPSIS 
     char    *ecvt(arg,ndigits,decpt,sign) 
     float   arg; 
     int     ndigits; 
     int     *decpt,*sign; 
 
DESCRIPTION 
     This  is  a  formatting  routine  used by printf for formatting 
     floating point numbers in the e format. 
 
     Ecvt returns  a  pointer  to  a  string  which  contains  ascii 
     characters  representing  a  floating  point  number. The first 
     argument is converted to a string whose length is indicated  by 
     the second argument. The third argument points to a variable in 
     which  the routine will write the location of the decimal point 
     relative to the start of the string (negative numbers  indicate 
     that the decimal point is to the left of the first character of 
     the  string). The variable pointed to by the fourth argument is 
     set nonzero if the float is negative otherwise  it  is  set  to 
     zero. 
 
     The  string  is written in a static data area local to ecvt and 
     is overwritten with the next call. 
 
     If the argument passed to ecvt is a legal floating point number 
     the string will consist of a series of ascii digits  terminated 
     by a null. If the argument is out of the legal range for floats 
     (as per the IEEE standard) the string will contain "NaN" (Not a 
     Number).  If the argument is either greater than the maximum or 
     less than the minimum allowed for a float the characters  "inf" 
     (infinity) will be placed in the string (the fourth argument is 
     set  to  indicate  positive  or  negative infinity). The string 
     itself contains neither a minus sign nor a decimal point nor  a 
     base ten exponent. 
 
DIAGNOSTICS 
 
SEE ALSO 
     fcvt(), itoa() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.1 



NAME 
     execl - execute a program 
 
SYNOPSIS 
     int     execl(cmd,arg0,arg1,...,0) 
     char    cmd,*arg0,*arg1,.....; 
 
DESCRIPTION 
     Execl causes  the present program  to cease execution and a new 
     program to execute. The name of the file to be executed must be  
     contained  in a string  pointed to by  the first argument.  The 
     additional  arguments  are  assumed  to  be  pointers  to  null 
     terminated  strings.   These  pointers  will  be passed  to the 
     program  to  be  executed  if  they appeared as parameters on a 
     command  call line.  The last argument MUST be a zero.  The new 
     process is  given the arguments which follow the first argument 
     in the execl call. The second argument of the execl call is the 
     FIRST  argument  passed  to  the  program to  be  executed  (by 
     convention  referred to as argv(0).  The last  argument  in the 
     execl call must always be a zero. 
 
DIAGNOSTICS 
     This function NEVER returns. 
 
SEE ALSO 
 
NOTES 
     The sum total of lengths of the argument strings  (including a 
     space to be placed between each argument)  must not exceed the 
     length of a FLEX line buffer, which is 128 bytes long. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.1 



NAME 
     exit - exit a program with file cleanup 
 
SYNOPSIS 
     int     exit(stat) 
     int     stat; 
 
DESCRIPTION 
     Exit aborts a C program and returns to  the  operating  system. 
     The status value is returned to the operating system. Exit also 
     flushes  any open file buffers and closes all open files before 
     exiting. 
 
DIAGNOSTICS 
 
SEE ALSO 
     _exit() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.1 



NAME 
     _exit - exit a program without file cleanup 
 
SYNOPSIS 
     int     _exit(stat) 
     int     stat; 
 
DESCRIPTION 
     _exit aborts a C program and returns to the  operating  system. 
     The status value is returned to the operating system. The _exit 
     routine does not explicitly flush the file buffers. 
 
DIAGNOSTICS 
 
SEE ALSO 
     exit() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

11.1 



NAME 
     _extend - extend float 
 
SYNOPSIS 
     int     _extend(f,ef) 
     float   f; 
     struct  extflt 
             { 
             char    sign; 
             int     exp; 
             long    mantissa 
             }  *ef; 
 
DESCRIPTION 
     _extend  extends a  floating point  number (its first argument) 
     and stores the result in the structure pointed to by the second       
argument.  The first element of the structure contains the sign 
     bit of the  number,  the second element  contains  the unbiased 
     exponent, and the thirs element contains the mantissa. 
 
DIAGNOSTICS 
 
SEE ALSO 
     _unext() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

12.1 



NAME 
      fclose - close file 
 
SYNOPSIS 
     #include  "stdio.h" 
     int    fclose(fp) 
     FILE   *fp; 
 
DESCRIPTION 
     Fclose  will close  the file indicated  by  its  argument.  The 
     argument  must be a file  pointer which was previously returned 
     from  an fopen  unless it is STDIN,  STDOUT, or STDERR.  If the 
     file  has  been  opened for writing,  fclose will automatically 
     flush the remaining contents of the buffer. 
 
DIAGNOSTICS 
     fclose will return ERROR if  the file could not be closed.  The 
     external variable "errno" will contain the error code which was 
     returned by the operating system.. 
 
SEE ALSO 
     fgets(), fopen(), fprintf(), fputs(), fscanf(), getc() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13.1 



NAME 
     fcvt - float  to string conversion 
 
SYNOPSIS 
     char   *fcvt(arg,ndigits,decpt,sign) 
     float  arg; 
     int    ndigits; 
     int    *decpt,*sign; 
 
DESCRIPTION 
     This  is a  formatting routine  used by  printf  for formatting 
     floating point numbers  in the f format.  It is similar  to the 
     "ecvt" routine except that the correct digit will be rounded as 
     demanded by Fortran F-format for the number of digits indicated 
     by the second argument 
 
     Fcvt   returns  a  pointer  to a  string  which  contains ascii 
     characters  representing  a  floating point number.   The first 
     argument is converted to  a string whose length is indicated by 
     the second argument. The third argument points to a variable in 
     which  the routine will write the location of the decimal point 
     relative to the start of  the string (negative numbers indicate 
     that the decimal point is to the left of the first character of 
     the string).  The variable pointed to by the fourth argument is  
     set  nonzero if the  float is  negative; otherwise it is set to 
     zero. 
 
     The  string is written in a  static data area local to fcvt and 
     is overwritten with the next call. 
 
     If the argument passed to fcvt is a legal floating point number 
     the string will consist of a series  of ascii digits terminated 
     by a null. If the argument is out of the legal range for floats 
     (as per the IEEE standard) the string will contain "NaN' (Not a 
     Number).  If the argument is either greater than the maximum or 
     less than  the minimum allowed for a float the characters "inf" 
     (infinity) will be placed in the string (the fourth argument is 
     set  to  indicate positive  or negative infinity).   The string 
     itself  contains neither a minus sign nor a decimal point nor a 
     base ten exponent. 
 
DIAGNOSTICS 
 
SEE ALSO 
     ecvt(), itoa() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 

14.1 



NAME 
     fgets - read file into string 
 
SYNOPSIS 
     #include "stdio.h" 
     int     fgets (s,n,fp) 
     char   *S; 
     int    n; 
     FILE   *fp; 
 
DESCRIPTION 
     Fgets  will read  a line  of up to  n characters  from the file 
     pointed  to by its  third argument into the  area pointed to by 
     its  first argument.  Its third argument must be a file pointer 
     previously  returned by an fopen call.  Fgets returns a pointer 
     to  the start of  the line read  or NULL if  for some reason no 
     line could be read. The function reads the number of characters 
     indicated  by its  second argument or  until an end  of line is 
     encountered,  whichever comes  first.  The  trailing newline IS 
     included in the line read. 
 
DIAGNOSTICS 
     fgets will return NULL if the file could not be read from; this 
     is usually interpreted as an End Of File. 
 
SEE ALSO 
     fclose(),  fflush(),  fopen(),  fprintf(),  fputs(),  fscanf(), 
     getc(), gets() 
 
NOTES 
     If  there is  a trailing newline  character read  from the file 
     fgets will include it in the string whereas gets will not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15.1 



NAME 
       _filespec - Build file specification 
 
SYNOPSIS 
     *include "stdio.h" 
     int     _filespec(n,fp,ext) 
     char    *n; 
     FILE    *fp; 
     char    ext; 
 
DESCRIPTION 
 
     The   _filespec function builds a file specification in the fcp 
     pointed to by the second argument. The first argument points to 
     a  file name string  that may contain a  drive specifier and an 
     extension. If no drive is given in the name, the system working 
     disk  is assumed.   If no extension  is given in  the name, the 
     value  of the  third argument  is used  in a  call to  the FLEX 
     routine  SETEXT to  set the  default extension.  (see "The FLEX 
     Advanced  Programmers  Guide"  for  more  details  on  the  ext 
     parameter.) 
 
DIAGNOSTICS 
     Returns ERROR if a valid file specification could not be made. 
 
SEE ALSO 
 
NOTES 
     This  routine is used  internally by some  of the file routines 
     and is not guaranteed to be supported in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

16.1 



NAME 
      _fms -  Call to FLEX FMS entry point 
 
SYNOPSIS 
     #include "stdio.h" 
     int     _fms(fp,c) 
     FILE    *fp; 
     char    C; 
 
DESCRIPTION 
     This  is  a short  assembly language  routine  that allows  a C 
     program  to call the FLEX FMS entry point. The desired function 
     should  be  placed  in fp->f.function  (see  the  flex.h header 
     file).   The value of  the second parameter is  placed in the A 
     accumulator before the call to the FMS entry point.  On return, 
     fms  returns  an  integer  representing  the  value  of  the  A 
     Accumulator or ERROR. 
 
DIAGNOSTICS 
     Returns ERROR if FLEX detected an error in the FMS call. 
 
SEE ALSO 
 
NOTES 
     This  routine is used  internally by some  of the file routines 
     and is not guaranteed to be supported in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17.1 



NAME 
     fopen - open a file 
 
SYNOPSIS 
     #include        "stdio.h" 
     FILE    *fopen(name,mode) 
     char    *name,*mode 
 
DESCRIPTION 
     Fopen  will open the file whose name is pointed to by its first 
     argument with the attributes indicated in the string pointed to 
     by  its second argument.  It returns a value of type pointer to 
     FILE which must be used as an argument on subsequent references 
     to the file. 
 
     The  options with which the file  is to be opened are specified 
     as ASCII characters in the mode string (whose pointer is passed 
     as the second parameter).  One of the characters in this string 
     indicates  the mode  for which  the file  will be  opened.  The 
     appropriate modes are: 
 
         r - read: File is opened for read access 
 
         w - write: File is opened for write access 
 
     If  neither of these characters appears  in the string the file 
     is opened for read access.  The result of placing more than one 
     of these characters in the string is undefined. 
 
     In  addition to one of the  preceding characters a b may appear 
     in  the string.   The 'b' option  indicates that the  file is a 
     binary  file while the absence of a 'b' indicates that the file 
     should be opened as a text file. 
 
DIAGNOSTICS 
     Fopen will return ERROR if the file could not be opened and the 
     external  variable "errno" will contain any error code returned 
     by the system. 
 
SEE ALSO 
     fclose(),   fgets(),   fprintf(),  fputs(),   fscanf(),  getc() 
 
NOTES 
     The  current version  of fopen returns  ERROR when  it fails to 
     open a file rather than the more common return value of NULL. 
 
 
 
 
 
 
 
 
 
 
 
 
 

18.1 



NAME 
     fprintf - formatted output conversion 
 
SYNOPSIS 
     #include      "stdio.h" 
     int      fprintf(stream,control [,arg]) 
     FILE   *stream; 
     char   *control; 
 
 DESCRIPTION 
     Fprintf  is  nearly identical  to printf  except that  here the 
     output  file  specification is  explicitly  given as  the first 
     argument.   All output  is sent to  the file pointed  to by the 
     first  argument. The  parameters to fprintf  consist of pointer 
     to  FILE, followed  by a pointer  to a  null terminated string, 
     followed  by zero or more arguments. fprintf formats and writes 
     the  arguments following  the control string  using the control 
     string to direct formatting and conversion.  The control string 
     may  contain normal characters (which  are simply copied to the 
     output  file) and  conversion specifications  which control the 
     writing of the arguments.  Each conversion provides information 
     used to format its corresponding argument following the control 
     string.   Conversion  specifications   begin  with   a  percent 
     character  (%), perhaps followed by some options and terminated 
     by  a conversion  character.  All  the options  are, of course, 
     optional  but  those  that  are  included  must  appear  in the 
     specified  order.   The legal options  (in the  order they must 
     appear) are as follows: 
 
     Dash (-): indicates that if the number to be written is shorter 
          than  the specified  field  length that it  should be left 
          justified.   If this option is  omitted the number will be 
          right justified. 
 
     Zero (0): indicates that if the number to be written is shorter 
          than  the specified  field length that it should be padded 
          with  zeros  to fill  the field length.  If this option is 
          omitted the field will be padded with blanks. 
 
     Digit string:  indicates the minimum  field width. The argument 
          will be written in a field at least this wide.  This field 
          may be replaced with a star (*) which will cause the field 
          width to be taken from the next corresponding argument (of 
          type integer) in the argument list. 
 
     Period  (.):  separates the  field  width from  the  next digit 
          string. 
 
     Digit  string:  indicates  the  precision.   For  a  float  the 
          precision   is the number of  digits  to be written to the 
          right of the decimal point.  For a string the precision is 
          the maximum  number of  characters which  will be written. 
          This  field may  be replaced with  a star  (*)  which will 
          cause   the  field  width  to  be  taken  from   the  next 
 
 
 
 

19.1 



         corresponding  argument (assumed  to be an  integer) in the 
         argument list 
 
     Long    (l):  (letter  ell)  indicates  that  the corresponding 
         argument is to be written as a long rather than an int. 
 
     The  valid  conversion  characters and  their  meanings  are as 
     follows: 
 
     d   The argument  is assumed to be of  type int and is written 
         in decimal notation. 
 
     o   The argument is written in octal (without leading 0). 
 
     x   Argument is written in hexadecimal (without leading Ox). 
 
     u   The argument  is assumed  to be  unsigned and  written in 
         decimal notation. 
 
     c   The argument is written as a character. 
 
     s   The  argument  is  assumed  to  be  a  pointer  to  a  null 
         terminated  string.  Characters are copied from the control 
         string  to  the output  string  until a  null  character is 
         reached  or  until the  number of  characters given  by the 
         precision are copied.  The  terminating null is not copied. 
 
     e   The argument is assumed to  be a float and written out in a 
         decimal     notation      of     the     following    form: 
         [-d.dddddde[+|-]dd  That is  a negative sign  if the number 
         is  negative, a single digit,  followed by a decimal point, 
         followed  by several  digits, followed by  an 'e', followed 
         by a sign, followed by two digits. 
 
     f   The argument is assumed to be a  float and written out in a 
         decimal  notation of the  following form: [-]ddd.dddd where 
         the  length of the  string of digits  following the decimal 
         point is given by the precision. 
 
     g   Prints in either e or f format; whichever is shorter. 
 
     If   a character which  is   neither an option nor a conversion 
     character  is found  while scanning  a conversion specification 
     the character following  the percent sign (%) is simoly written 
     and  no conversion specification  is assumed.   Thus to write a 
     percent sign one writes it twice(%%). 
 
DIAGNOSTICS 
     Fprintf returns ERROR if it fails. 
 
SEE ALSO 
     printf(),sprintf() 
 

 
 
 
 
 

19.2 



NAME 
     fputs - write a string to a file 
 
SYNOPSIS 
     #include  "stdio.h" 
     int      fputs(s,fp) 
     char     *S; 
     FILE     *fp; 
 
DESCRIPTION 
     Fputs copies the string pointed to by the first argument to the 
     file  indicated  by the second   argument.  The second argument 
     of type pointer to FILE and should have been returned by a call 
     to fopen unless it is STDOUT or STDERR. 
 
DIAGNOSTICS 
     Returns  ERROR  if an error occurred  while attempting to write 
     the string. 
 
SEE also 
       puts() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20.1 



NAME 
     free - free memory 
 
SYNOPSIS 
     char    *free(block) 
     char    *block; 
 
DESCRIPTION 
     Free  will attempt to  free a block of  memory indicated by its 
     argument.    The  only valid  argument  for free  is  a pointer 
     previously  returned by an alloc call. This routine should only 
     be used to free a block that has been allocated via alloc.  The 
     result  of freeing the  same block of memory  more than once or 
     attempting  to use,  as an  argument, a  pointer which  was not 
     returned by an alloc call is undefined (bad things happen). 
 
DIAGNOSTICS 
 
SEE ALSO 
     alloc(), sbrk() 
 
NOTES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

21.1 



NAME 
     fscanf - formatted input conversion 
 
SYNOPSIS 
     #include      "stdio.h" 
     int     fscanf(file,control [,pointer1]...) 
     FILE    *file; 
     char    *control; 
 
DESCRIPTION 
     Fscanf is nearly identical to scanf  except that the input file 
     specification is explicitly stated; the input is taken from the 
     file pointed to by the first argument. The parameters to fscanf 
     consist  of a pointer to file, followed  by a pointer to a null 
     terminated  string (the  control string),  followed by  zero or 
     more   arguments  of  type  pointer.  Fscanf  reads  groups  of 
     characters  from  the  input  file  pointed  to  by  the  first 
     argument,  interprets them according to the control string, and 
     writes  the  results into  the  arguments pointed  to  by their 
     corresponding argument pointers. The control string may contain 
     blanks,  tabs, and newlines which match optional white space in 
     the  input; it may contain ordinary characters which must match 
     the  input string exactly  character per character;  and it may 
     contain     conversion      specifications used  to control the 
     interpretation    of   the input   stream.    Each   conversion 
     specification  provides information used to translate a segment 
     of  the input stream into a value which may then be placed into 
     an  argument  pointed to  by its  corresponding pointer  in the 
     argument list. 
 
     Conversion   specifications  begin  with  a  percent  character 
     perhaps     followed     by  some options, and  terminated by a 
     conversion character.  All the options are, of course, optional 
     but those that are included must appear in the specified order. 
     The  legal  options  (in  the  order  they  must  appear)  are: 
 
     Star   (*): indicates that this conversion specification has no 
           corresponding  pointer  in the    argument   list.   This 
           effectively skips a value in the input stream. 
 
     Digit  string: indicates  the maximum field  width; the maximum 
           number  of characters which this conversion specification 
           will cause to be read from the input stream. 
 
     Long (l): (letter ell) indicates that the corresponding pointer 
           is  pointing to a long  rather than an int.   This has no 
           effect when preceding an e or f. 
 
     The  valid  conversion  characters and  their  meanings  are as 
     follows: 
 
     d     A decimal integer  is expected  in the input string.  Its 
           corresponding pointer is assumed to be of type *int. 
 
 
 
 
 

22.1 



     o   An octal  integer  is  expected in  the  input  string. Its 
         corresponding pointer is assumed to be of type *int. 
 
     x   A hexadecimal integer is expected in  the input string. Its 
         corresponding pointer is assumed to be of type lint. 
 
     h   A decimal  integer is expected  in  the  input string.  Its 
         corresponding pointer is assumed to be of type short. 
 
     u   An  unsigned   decimal integer  is   expected in  the input 
         string.  Its corresponding pointer is assumed to be of type 
         *unsigned. 
 
     c   The  very  next  character  is read  from the  input string 
         (even  if  it's a  blank).   Its  corresponding  pointer is 
         assumed to be of type char. 
 
     s    A   string    is    expected    in   the input string. Its 
         corresponding  pointer is assumed to be  of  type *char. It 
         should  point to  a space  large enough  to hold  the input 
         string  plus an added null.   Characters are read, starting 
         with  the  next  nonblank character,  until  the  number of 
         characters  given in  the precision  is reached  or until a 
         blank, tab, or newline is reached. 
 
     e   (same as f) 
 
     f   A floating  point number is  expected in the  input string. 
         Its corresponding pointer is assumed to be of type  *float. 
 
DIAGNOSTICS 
     The  return value of this function  is the number of parameters 
     that were matched (read in from the input line) or EOF (-1). 
 
SEE ALSO 
     scanf(), sscanf() 
 
NOTES 
     Exactly one line of input  is consumed for each call to fscanf. 
     Thus  fscanf will  not fetch a  new line even  though there are 
     still  conversion specifications  left to  process nor  will it 
     save  any input left from the  preceding line for the next call 
     to fscanf. 
 
     A hexadecimal number may not be preceded by a 0x. 
 
     Any  character  within a  conversion specifier  which is  not a 
     legal  conversion specifier option or conversion character will 
     be  ignored  along  with  the preceding  percent  sign  and any 
     characters  inbetween.  Thus there is no  way to match a '%' on 
     the input line. 
 
 
 
 
 
 
 

22.2 



NAME 
     getc - get the next character from a file 
 
SYNOPSIS 
     #include "stdio.h" 
     int     getc(fp) 
     FILE    fp; 
 
DESCRIPTION 
     Getc  returns the next character from the file indicated by its 
     argument.   Its argument is of  type pointer to FILE and should 
     have  been previously returned from an  fopen call unless it is 
     STDIN. 
 
DIAGNOSTICS 
     Getc returns ECF (-1) upon reading end of file or on error. 
 
SEE ALSO 
     getchar() 
 
NOTES 
     Notice the return value of getc is an integer not a character. 
     This is so that getc can return ECF (-1) on end of file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

23.1 



NAME 
     getchar - get a character from the standard input 
 
SYNOPSIS 
     int     getchar() 
 
DESCRIPTION 
     Getchar  is  identical to  getc(stdin).   It  returns  the next 
     character from the standard input. 
 
DIAGNOSTICS 
     Getchar returns ECF (-1) upon reading end of file or on error. 
 
SEE ALSO 
     getc() 
 
NOTES 
     Notice  the  return  value  of  getchar  is  an  integer  not a 
     character.   This is so that getchar  can return an ECF (-1) on 
     end of file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24.1 



NAME 
     _getchr - Call FLEX GETCHR entry point. 
 
SYNOPSIS 
     #include "stdio.h" 
     int      _getchr() 
 
DESCRIPTION 
     This  function returns the value obtained by a call to the FLEX 
     entry point GETCHR (get console character). 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
     This  routine is used  internally by some  of the file routines 
     and is not guaranteed to be supported in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

25.1 



NAME 
     gets - read input into string 
 
SYNOPSIS 
     int        gets(s) 
     char       *S; 
 
DESCRIPTION 
     Gets  will read  a line  from the  standard input  (STDIN) into 
     the  area pointed to  by its argument.   Gets returns a pointer 
     to  the start of the  line read, or NULL  if for some reason no 
     line  could be read.   The function reads until  an end of line 
     is  encountered.  The  trailing newline is  NOT included in the 
     line read (compare this with fgets(s,n,stdin)). 
 
DIAGNOSTICS 
     Gets will return NULL on end of file and error., 
 
SEE ALSO 
     Fclose(),   fflush(),  fgets(),  fopen(),  fprintf(),  fputs(), 
     fscanf(), getc(). 
 
NOTES 
     Gets  will not  include any  trailing newline  character in the 
     string whereas fgets will. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

26.1 



NAME 
     index - find first occurrence of character 
 
SYNOPSIS 
     int     index(s,c) 
     char    *s; 
     char c; 
 
DESCRIPTION 
     Index  searches the string whose pointer is passed as its first 
     argument  and returns a pointer to  the first occurrence of the 
     character specified by the second argument.  A zero is returned 
     if the character does not appear in the string. 
 
DIAGNOSTICS 
 
SEE ALSO 
     rindex() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

27.1 



NAME 
     isalpha - test for alpha character 
 
SYNOPSIS 
     int     isalpha(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns true (non zero)  if its argument  is an alpha character 
     (a through z or A through Z); otherwise returns false (zero). 
 
DIAGNOSTICS 
 
SEE ALSO 
     isdigit(),  islower(), isspace(), isupper() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

28.1 



NAME 
     isdigit - test for digit 
 
SYNOPSIS 
     int     isdigit(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns  true (non zero) if its  argument is a digit (0 through 
     9); otherwise returns false (zero). 
 
DIAGNOSTICS 
 
SEE ALSO 
     isalpha(), islower(), isspace(), isupper() 
 
NOTES 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

29.1 



NAME 
     islower - test for lower case 
 
SYNOPSIS 
     int     islower(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns  true (non zero) if its  argument is a lower case alpha 
     character (a through z); otherwise returns false (zero). 
 
DIAGNOSTICS 
 
SEE ALSO 
     isalpha(), isdigit(), isspace(), isupper() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

30.1 



NAME 
     isspace - test for white space 
 
SYNOPSIS 
     int     isspace(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns  true (non zero)  if its argument is  a space, tab, or 
     newline character; otherwise returns false (zero). 
 
DIAGNOSTICS 
 
SEE ALSO 
     isalpha(), isdigit(), islower(), isupper() 
 
NOTES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

31.1 



NAME 
     isupper - test for upper case 
 
SYNOPSIS 
     int     isupper(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns  true (non zero) if its argument is an upper case alpha 
     character (A through Z); otherwise returns false (zero). 
 
DIAGNOSTICS 
 
SEE ALSO 
     isalpha(), isdigit(), islower(), isspace() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

32.1 



NAME 
     itoa -  convert integer  to ascii string 
 
SYNOPSIS 
     int     itoa(n,s) 
     int     n; 
     char    *S; 
 
DESCRIPTION 
     Itoa  converts its first argument into a null  terminated ascii 
     string which is stored at the location pointed to by its second 
     argument.    If  the  integer is  negative  the string  will be 
     preceded by a  minus sign.  The second argument should point to 
     an area  large enough to contain the resultant string which may 
     contain  a  sign,  up  to  5  digits,  and  a  NULL termination 
     character. 
 
DIAGNOSTICS 
 
SEE ALSO 
     fcvt(), ecvt() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

33.1 



NAME 
     longjmp - non-local goto 
 
SYNOPSIS 
     #include     "stdio.h" 
     int     longjmp(envp,n) 
     struct jmp_buf *envp; 
     int     n; 
 
DESCRIPTION 
     Longjmp works in conjunction with setjmp to provide the ability 
     to  jump outside  of a function.  Compare this to a normal goto 
     for  which the destination must be in the  same function as the 
     goto  statement.   Setjmp  is  used to  mark  a  location  as a 
     destination  (that is save a  copy  of the current environment) 
     for later use by the longjmp routine. The argument to setjmp is 
     a pointer to structure which will hold the current environment. 
     A pointer to this structure is  used as an argument to longjmp. 
     Longjmp simply  restores the environment which was saved by the 
     setjmp  call.  The  effect is that  execution  continues at the 
     location  where the  environment  was saved  (inside the setjmp 
     call).  The appearance is that of a return from setjmp. 
 
     To  mark a  location  one  makes a call  to setjmp.   This will 
     initialize  the  contents  of the  structure whose  pointer was 
     passed  as an argument. From  this call, setjmp will return the 
     value  0.  Later, when control is returned here from a longjmp, 
     the return value  will be decided by the second argument of the 
     longjmp call. 
 
     Now  a jump can be  made  to this location  by making a call to 
     longjmp,  using  a  pointer  to the  same  structure  that  was 
     initialized  by setjmp as the  first argument and an integer as 
     the  second argument. The  second argument, will be used as the 
     return  value  when  control  is  transferred   to  the  setjmp 
     environment 
 
     The  destination of a longjump must  be in a function which has 
     not  itself  returned inbetween the call to setjmp and the call 
     to  longjmp.   That is,  the  destination of a  longjmp must be 
     within a currently active function. 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 

34.1 



NAME 
     malloc   allocate memory 
 
SYNOPSIS 
     char    *malloc(size) 
     int     size; 
 
DESCRIPTION 
     malloc will attempt  to allocate a block of memory whose size is 
     given by the argument.  If it is successful it returns a pointer 
     to that memory, otherwise it returns NULL. 
 
DIAGNOSTICS 
     Returns NULL if the memory could not be allocated. 
 
SEE ALSO 
     free(), sbrk() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

35.1 



NAME 
     max - return the maximum of two values 
 
SYNOPSIS 
     int     max(a,b) 
     int     a,b; 
 
DESCRIPTION 
     Max returns the greater of its two arguments. 
 
DIAGNOSTICS 
 
SEE ALSO 
     min() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

36.1 



NAME 
     min - return the minimum of two values 
 
SYNOPSIS 
     int     min(a,b) 
     int     a,b; 
 
DESCRIPTION 
     Min returns the lesser of its two arguments. 
 
DIAGNOSTICS 
 
SEE ALSO 
     max() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

37.1 



NAME 
     modf - return fractional part of float 
 
SYNOPSIS 
     float   modf(fp,fint) 
     float   fp; 
     float   *fint; 
 
DESCRIPTION 
     Modf  takes a floating point number  as its  first argument and 
     returns  its fractional part. Its nonfractional part is written 
     to the location pointed to by the second argument. 
 
     This routine is used by ecvt and fcvt. 
 
DIAGNCSTICS 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

38.1 



NAME 
     movmem  - copy a block of  memory from one location to another 
 
SYNOPSIS 
     int     movmem (from,to,length) 
     char    *from, *to; 
     unsigned        length; 
 
DESCRIPTION 
     Movmem  copies the number  of bytes given by the third argument 
     from the location  pointed to by first argument to the location 
     pointed  to by the second argument.  The new copy  will exactly 
     reflect the  original as it existed before the call even if the 
     two  blocks of  memory overlap  (in  that case,  of course, the 
     original will be partially overwritten). 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

39.1 



NAME 
     printf - formatted output conversion 
 
SYNOPSIS 
     int     printf(control [,arg]...) 
     char    *control; 
 
DESCRIPTION 
     Printf  is nearly identical to fprintf  excect that there is no 
     output  file  specification  explicitly stated;  the  result is 
     written  to  stdout.   The parameters  to  printf consist  of a 
     pointer  to a null  terminated string followed  by zero or more 
     arguments.   Printf formats and  writes the arguments following 
     the   control  string  using  the   control  string  to  direct 
     formatting  and  conversion.   The  control string  may contain 
     normal  characters (which are simply copied to the output file) 
     and  conversion specifications which control the writing of the 
     arguments.   Each conversion specification provides information 
     used to format its corresponding argument following the control 
     string.       Conversion  specifications begin  with  a percent 
     character  (%), perhaps followed by some options and terminated 
     by  a conversion  character.  All  the options  are, of course, 
     optional  but  those  that  are  included  must  appear  in the 
     specified  order.   The legal options  (in the  order they must 
     appear) are as follows: 
 
     Dash (-): indicates that if the number to be written is shorter 
          than  the  specified  field  length,  it  should  be  left 
          justified.  if this option  is omitted the  number will be 
          right justified. 
 
     Zero (0): indicates that if the number to be written is shorter 
          than  the specified field length, it should be padded with 
          zeros to fill the field length.  If this option is omitted 
          the field will be padded with blanks. 
 
     Digit  string: indicates the minimum field width.  The argument 
          will be written in a field at least this wide.  This field 
          may be replaced with a star (*) which will cause the field 
          width  to be  taken from  the next  corresponding argument 
          (assumed to be an integer) in the argument list. 
 
     Period  (.):  separates the  field  width from  the  next digit 
          string. 
 
     Digit   string:  indicates  the  precision.  For  a  float  the 
          precision  is the  number of digits  to be  written to the 
          right of the decimal point.  For a string the precision is 
          the maximum number of characters which will be written. 
          This  field may  be replaced  with a  star (*)  which will 
          cause      the    field  width to  be taken  from the next 
          corresponding  argument (assumed to be  an integer) in the 
          argument list. 
 
 
 
 
 

40.1 



     Long    (l):  (letter  ell)  indicates  that  the corresponding 
         argument is to be written as a long rather than an int. 
 
     The  valid  conversion  characters and  their  meanings  are as 
     follows: 
 
     d    The argument  is assumed to be of  type int and is written 
         in decimal notation. 
 
     o   The argument is written in octal (without leading 0). 
 
     x   Argument is written in hexadecimal (without leading Ox). 
 
     u   The  argument  is assumed  to  be  unsigned and  written in 
         decimal notation. 
 
     c   The argument is written as a character. 
 
     s   The  argument  is  assumed  to  be  a  pointer  to  a  null 
         terminated  string.  Characters are copied from the control 
         string  to  the output  string  until a  null  character is 
         reached  or  until the  number of  characters given  by the 
         precision are copied.  The terminating  null is not copied. 
 
     e   The argument  is assumed to be a float and written out in a 
         decimal     notation     of     the     following     form: 
         [-]d.dddddde[+|-]dd  That is a negative  sign if the number 
         is  negative, a single digit,  followed by a decimal point, 
         followed  by several  digits, followed by  an 'e', followed 
         by a sign, followed by two digits. 
 
     f   The argument is  assumed to be a float and written out in a 
         decimal  notation of the  following form: [-]ddd.dddd where 
         the  length of the  string of digits  following the decimal 
         point is given by the precision. 
 
     g   Prints in either e or f format; whichever is shorter. 
 
     If   a  character which is  neither an option  nor a conversion 
     character  is found  while scanning  a conversion specification 
     the  character following the percent sign (%) is simply written 
     and no conversion specification is assumed. Thus to print out a 
     percent  sign one writes it twice (%%).  A space is NOT a legal 
     option. 
 
DIAGNOSTICS 
     Printf returns  ERROR if it fails. 
 
SEE ALSO 
     fprintf(), sprintf() 
 
NOTES 
 
 
 
 
 
 

40.2 



NAME 
     putc - write a character to a file 
 
SYNOPSIS 
     #include  "stdio.h" 
     int      putc(c,fp) 
     char     c; 
     FILE     *fp; 
 
DESCRIPTION 
     Putc  sends the  character given as  its first  argument to the 
     file  whose file pointer is given  as its second argument.  The 
     file  pointer must have been  previously returned from an fopen 
     call unless it is STDOUT or STDERR. 
 
DIAGNOSTICS 
     Putc  returns ERROR  (-1) if an  error occurs  during the write 
     process. 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

41.1 



NAME 
     putchar   -   write  a   character   to  the   standard  output 
 
SYNOPSIS 
     int     putchar(c) 
     char    C; 
 
DESCRIPTION 
     Putchar sends the character given as its argument to STDOUT.  A 
     call of the form putchar(c) is identical to putc(c,stdout). 
 
DIAGNOSTICS 
     Putchar  returns ERROR (-1) if an error occurs during the write 
     process. 
 
SEE ALSO 
     putc() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

42.1 



NAME 
     putchr - Call FLEX PUTCHR entry point. 
 
SYNOPSIS 
     #include "Istdio.h" 
     int      _putchr(c) 
     char     c; 
 
DESCRIPTION 
     This function performs a call to the FLEX entry point PUTCHR to 
     perform console output. 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
     This  routine is used  internally by some  of the file routines 
     and is not guaranteed to be supported in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

43.1 



NAME 
     puterr - write a char  to the standard  error output (STDERR) 
 
SYNOPSIS 
     int     puterr(c) 
     char    c; 
 
DESCRIPTION 
     Puterr  sends the character given as its argument to STDERR.  A 
     call of the form puterr(c) is identical to putc(c,stderr). 
 
DIAGNOSTICS 
     Puterr  returns ERROR (-1) if an  error occurs during the write 
     process. 
 
SEE ALSO 
 
NOTES 
     STDERR is always directed to the terminal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

44.1 



NAME 
     puts - write a string to standard output 
 
SYNOPSIS 
     int    puts(s) 
     char   *s; 
 
DESCRIPTION 
     Puts  copies  the  string pointed  to  by the  argument  to the 
     standard output.  The effect is the same as fputs(s,stdout). 
 
DIAGNOSTICS 
     Returns  ERROR if an  error occurred while  attempting to write 
     the string. 
 
SEE ALSO 
     fputs() 
 
NOTES 
     Does NOT append a newline (contrary to some implementations). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

45.1 



NAME  
     reverse - reverse a string in place 
 
SYNOPSIS 
     int     reverse(s) 
     char    *s; 
 
DESCRIPTION 
     Reverses  the order of  the elements  of a string pointed to by 
     the  argument.   If  the  string  the  argument pointed  to was 
     "abcdef" before the call, it would be "fedcba" after the call. 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

46.1 



NAME 
     rewind - reset specified file to beginning 
 
SYNOPSIS 
     #include "stdio.h" 
     int      rewind(fp) 
     FILE     *fp; 
 
DESCRIPTION 
     Rewind resets the file back to the beginning. 
 
DIAGNOSTICS 
     Returns ERROR  for improper file specification. 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

47.1 



NAME 
     rindex - find last occurrence of character 
 
SYNOPSIS 
     int     rindex(s,c) 
     char    *S; 
     char c; 
 
DESCRIPTION 
     Rindex searches the string whose pointer is passed as its first 
     argument  and returns a  pointer to the  last occurrence of the 
     character  specified by the second argument. A zero is returned 
     if the character does not appear in the string. 
 
DIAGNOSTICS 
 
SEE ALSO 
     index() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

48.1 



NAME 
     sbrk - allocate memory 
 
SYNOPSIS 
     char     *sbrk(size) 
     int      size; 
 
DESCRIPTION 
     Sbrk  will attempt to allocate a  block of memory whose size is 
     given by the argument. If it is successful it returns a pointer 
     to that memory; otherwise it returns ERROR. 
 
     Sbrk  is similar to alloc except that there is no way to return 
     the memory to the system. 
 
DIAGNOSTICS 
     Returns ERROR (-1) if the   memory could not be allocated. 
 
SEE ALSO 
     alloc(), brk(),  free() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

49.1 



NAME 
     scanf - formatted input conversion 
 
SYNOPSIS 
     int    scanf(control [,pointer1] ... ) 
     char   *control; 
 
DESCRIPTION 
     Scanf  is nearly  identical to fscanf  except that  there is no 
     input  file specification explicitly stated; the input is taken 
     from  stdin. The parameters to scanf  consist of a pointer to a 
     null terminated string (the control string) followed by zero or 
     more     arguments    of  type pointer.  Scanf reads  groups of 
     characters  from the standard  input, interprets them according 
     to the control string and writes the results into the arguments 
     pointed  to  by  their corresponding  argument  pointers.   The 
     control  string may  contain blanks,  tabs, and  newlines which 
     match  optional  white  space  in  the  input;  it  may contain 
     ordinary  characters which must match  the input string exactly 
     character    per      character; and it  may contain conversion 
     specifications  used to control the interpretation of the input 
     stream. Each conversion specification provides information used 
     to  translate a segment of the  input stream into a value which 
     may  then  be  placed  into  an  argument  pointed  to  by  its 
     corresponding   pointer  in   the  argument   list.  Conversion 
     specifications  begin  with  a percent  character  (%), perhaps 
     followed  by  some  options,  and  terminated  by  a conversion 
     character.   All the options are, of course, optional but those 
     that are included must appear in the specified order. 
 
     The  legal  options  (in the  order  they must  appear)  are as 
     follows: 
 
     Star  (*): indicates that this  conversion specification has no 
           corresponding   pointer   in   the    argument list. This 
           effectively skips a value in the input stream. 
 
     Digit string:  indicates  the maximum field  width; the maximum 
           number  of characters which this conversion specification 
           will cause to be read off the input stream. 
 
     Long  (letter  ell)  indicates  that the  corresponding pointer 
           is  pointing to  a long rather  than an int.  This has no 
           effect when preceding an e or f. 
 
     The  valid  conversion  characters and  their  meanings  are as 
     follows: 
 
     d     A decimal  integer is  expected  in the input string. Its 
           corresponding pointer is assumed to be of type *int. 
 
     o     An  octal integer  is expected  in  the input string. Its 
           corresponding pointer is assumed to be of type *int. 
 
 
 
 
 

50.1 



     x   A hexadecimal integer is  expected in the inout string. Its 
         corresponding pointer is assumed to be of type lint. 
 
     h   A decimal  integer is expected  in  the  input  string. Its 
         corresponding pointer is assumed to be of type short. 
 
     u   An unsigned  integer is expected in  the input string.  Its 
         corresponding pointer is assumed to be of type *unsigned. 
 
     c   The very  next character  is  read  from  the  input string 
         (even  if  it's a  blank).   Its  corresponding  pointer is 
         assumed to be of type *char. 
 
     s   A   string   is   expected   in   the   input  string.  Its 
         corresponding  pointer is assumed to be  of type *char.  It 
         should  point to  a space  large enough  to hold  the input 
         string  plus an added null.   Characters are read, starting 
         with  the  next  nonblank character,  until  the  number of 
         characters  given in  the precision  is reached  or until a 
         blank, tab, or newline is reached. 
 
     e   (same as f) 
 
     f   A  floating  point number  is expected in  the input string 
         Its  corresponding pointer is assumed to be of type *float. 
 
     The  return value of this function  is the number of parameters 
     that were matched (read in off the input line) or ECF. 
 
DIAGNOSTICS 
 
SEE ALSO 
     fscanf(), sscanf() 
 
NOTES 
     Exactly one line  of input is consumed  for each call to scanf. 
     Thus  scanf will  not fetch  a new  line even  though there are 
     still  conversion   specifications left  to process nor will it 
     save  any input left from the  preceding line for the next call 
     to  scanf.  If, for  example, one makes a  call to scanf with a 
     control  string which indicates 3  arguments are expected while 
     only 2 appear on the input line scanf will NOT continue to read 
     lines. Fscanf will simply return with a value of 2. Likewise if 
     the input line had contained 4 arguments only 3 would have been 
     read while the fourth would be discarded. 
 
     A hexadecimal number may not be preceded by a Ox. 
 
     Any  character  within a  conversion specifier  which is  not a 
     legal  conversion specifier option or conversion character will 
     be  ignored  along  with  the preceding  percent  sign  and any 
     characters  in between.  Thus there is no way to match a '%' on 
     the input line. 
 
 
 
 
 

50.2 



NAME 
     _setext - Call FLEX SETEXT entry point 
 
SYNOPSIS 
     #include "stdio.h" 
     int     _setext(fp,ext) 
     FILE     fp; 
     char    ext; 
 
DESCRIPTION 
     The _setext function performs a call to the FLEX routine SETEXT 
     to  set  a  default file  name  extension into  the  given file 
     control block. 
 
DIAGNOSTICS 
 
SEE ALSO 
 
NOTES 
     This  routine is used  internally by some  of the file routines 
     and is not guaranteed to be supported in the future. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

51.1 



NAME 
     setjmp - non-local goto 
 
SYNOPSIS 
     #include 
     int     setjmp (envp) 
            jmp_buf *envp; 
 
DESCRIPTION 
     Setjmp works in conjunction with longjmp to provide the ability 
     to  jump outside of a function.   Compare this to a normal goto 
     for  which the destination must be  in the same function as the 
     goto  statement.    Setjmp is  used  to  mark a  location  as a 
     destination  (that is save  a copy of  the current environment) 
     for later use by the longjmp routine. The argument to setjmp is 
     a pointer to structure which will hold the current environment. 
     A  pointer to this structure is used as one of the arguments to 
     longjmp.   Longjmp  simply restores  the environment  which was 
     saved  by  the  setjmp  call.   The  effect  is  that execution 
     continues  at  the  location where  the  environment  was saved 
     (inside  the setjmp call).  The  appearance is that of a return 
     from setjmp. 
 
     To  mark  a location  one  makes a  call  to setjmp.  This will 
     initialize  the  contents of  the  structure whose  pointer was 
     passed  as an argument.  From  this call setjmp will return the 
     value  0. Later, when control is  returned here from a longjmp, 
     the  return value will be decided by the second argument of the 
     longjmp call. (see longjmp) 
 
     Now  a jump can  be made to  this location by  making a call to 
     longjmp  using  a  pointer  to  the  same  structure  that  was 
     initialized  by setjmp as the first  argument and an integer as 
     the  second argument.  The second  argument will be used as the 
     return  value  when  control    is  transferred  to  the setjmp 
     environment. 
 
     The  destination of a  longjmp must be in  a function which has 
     not  itself returned inbetween the call  to setjmp and the call 
 
     to longjmp. 
 
DIAGNOSTICS 
 
SEE ALSO 
     longjmp() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 

52.1 



NAME 
     sprintf - formatted output conversion 
 
SYNOPSIS 
     int     sprintf(string,control [,arg1]...) 
     char    *string, *control; 
 
DESCRIPTION 
     Sprintf  is nearly identical to  printf except that rather than 
     writing  to the standard output  (stdout), the result is placed 
     in  a null terminated  string pointed to  by the first argument 
     (which  is assumed  to be  of type  pointer to  character). The 
     parameters to sprintf consist of a pointer to char, followed by 
     a pointer to a null terminated string, followed by zero or more 
     arguments.  Sprintf formats the arguments following the control 
     string,  using  the  control string  to  direct  formatting and 
     conversion.  It places the  result in the  string pointed to by 
     the first argument which must be long enough to accept it.  The 
     control  string may contain normal characters (which are simply 
     copied  to  the  output string)  and  conversion specifications 
     which  control the cooying  of the arguments.   Each conversion 
     specification   provides    information    used   to format its 
     corresponding argument following the control string. Conversion 
     specifications  begin  with a  percent character,  (%), perhaps 
     followed  by  some  options,  and  terminated  by  a conversion 
     character.   All the options are, of course, optional but those 
     that are included must appear in the specified order. The legal 
     options  (in  the  order  they  must  appear)  are  as follows: 
 
     Dash (-): indicates that, if the number to be copied is shorter 
          than  the  specified  field  length,  it  should  be  left 
          justified.  if this option  is omitted the  number will be 
          right justified. 
 
     Zero (0): indicates that, if the number to be copied is shorter 
          than  the specified field length, it should be padded with 
          zeros  to fill th field length.  If this option is omitted 
          the field will be padded with blanks. 
       
     Digit  string: indicates the minimum  field width. The argument 
          will be copied into a field at least this wide. This field 
          may be replaced with a star (*) which will cause the field 
          width  to be taken from   the next  corresponding argument 
          (assumed an integer) in the argument list. 
 
     Period  (.):  separates the  field  width from  the  next digit 
           string. 
 
     Digit  string:  indicates   the  precision.  For  a  float  the 
          precision  is the number  of digits to  be  written to the 
          right of the decimal point.  For a string the precision is 
          the maximum  number  of characters which  will be written. 
          This  field may  be  replaced with  a star  (*) which will 
          cause   the  field  width  to  be  taken   from  the  next 
 
 
 
 

53.1 



          corresponding  argument (assumed to be  an integer) in the 
          argument list 
 
     Long    (l):  (letter  ell)  indicates  that  its corresponding 
          argument is to be written as a long rather than an int. 
 
     The  valid  conversion  characters and  their  meanings  are as 
     follows: 
 
     d     The argument is assumed  to be of type int and is written 
          in decimal notation. 
 
     o    The argument is written in octal (without leading 0). 
 
     x    Argument is written in hexadecimal (without leading Ox). 
 
     u      The argument  is assumed  to be unsigned  and written in 
          decimal notation. 
 
     c    The argument is written as a character. 
 
     s       The  argument is  assumed  to be  a  pointer to  a null 
          terminated string.  Characters are copied from the control 
          string  to  the output  string until  a null  character is 
          reached  or until  the number  of characters  given by the 
          precision are copied.  The terminating null is not copied. 
 
     e    The argument is assumed to be a float and written out in a 
          decimal notation  of the following  form: 
          [-]d.ddddddde[+|-]dd That is a negative sign if the number 
          is  negative, a single digit, followed by a decimal point, 
          followed  by several digits, followed  by an 'e', followed 
          by a sign, followed by two digits. 
 
     f    The argument is assumed to be a float and written out in a 
          decimal  notation of the following form: [-]ddd.dddd where 
          the  length of the string  of digits following the decimal 
          point is given by the precision. 
 
     g     Prints in either e or f format; whichever is shorter. 
 
     if    a character  which is neither an  option nor a conversion 
     character  is found while   scanning a conversion specification 
     the  character following the percent sign (%) is simply written 
     and  no conversion specification  is assumed.   Thus to write a 
     percent sign one writes it twice (%%) 
 
DIAGNOSTICS 
 
SEE ALSO 
     printf(), fprintf() 
 
NOTES 
 
 
 
 
 

53.2 



NAME 
     sscanf - formatted string conversion 
 
SYNOPSIS 
     int     sscanf(string,control [,pointer1] ... ) 
     char    *string, *control; 
 
DESCRIPTION 
     Sscanf   is nearly identical to fscanf except that its input is 
     taken  from the string pointed to  by the first argument rather 
     than  a file.  The parameters to sscanf consist of a pointer to 
     char,  followed by a  pointer to a  null terminated string (the 
     control  string), followed  by zero  or more  arguments of type 
     pointer.    Sscanf reads  groups of  characters from  the input 
     string  pointed  to  by  the  first  argument,  interprets them 
     according  to the control  string, and writes  the results into 
     the  arguments  pointed  to  by  their  corresponding  argument 
     pointers.  The  control string  may  contain blanks,  tabs, and 
     newlines  which match optional white space in the input string; 
     it  may contain ordinary characters  which must match the input 
     string  exactly  character per  character;  and it  may contain 
     conversion specifications used to control the interpretation of 
     the   input  string.  Each  conversion  specification  provides 
     information  used to  translate a  segment of  the input string 
     into  a value which may then be placed into an argument pointed 
     to by its corresponding pointer in the argument list. 
 
     Conversion  specifications begin with a percent character, (%), 
     perhaps   followed  by  some  options,   and  terminated  by  a 
     conversion character.  All the options are, of course, optional 
     but those that are included must appear in the specified order. 
 
     The  legal  options  (in the  order  they must  appear)  are as 
     follows: 
 
 
     Star   (*) indicates that  this conversion specification has no 
          corresponding   pointer   in  the   argument   list.  This 
          effectively skips a value in the input string. 
 
     Digit  string: indicates  the maximum field  width; the maximum 
          number  of characters which  this conversion specification 
          will cause to be read off the input string. 
 
     Long (l): (letter ell) indicates that the corresponding pointer 
          is   pointing to  a long rather  than an int.  This has no 
          effect when preceding an e or f. 
 
     The  valid  conversion  characters and  their  meanings  are as 
     follows: 
 
     d      A decimal integer  is expected in  the input string. Its 
          corresponding pointer is assumed to be of type lint. 
 
 
 
 
 

54.1 



     o    An octal  integer  is  expected in the  input string.  Its 
          corresponding pointer is assumed to be of type *int. 
 
     x    A hexadecimal integer is expected in the input string. Its 
          corresponding pointer is assumed to be of type *int. 
 
     h    A decimal integer  is expected  in  the input string.  Its 
          corresponding pointer is assumed to be of type *short. 
 
     u    An  unsigned  decimal  integer  is  expected in  the input 
          string. Its corresponding pointer is assumed to be of type 
          *unsigned. 
 
     c    The  very  next character  is  read from  the input string 
          (even  if  it's a  blank).   Its corresponding  pointer is 
          assumed to be of type *char. 
 
     S        A string    is  expected  in   the  input  string. Its 
          corresponding  pointer is assumed to be of type *char.  It 
          should  point to  a space large  enough to  hold the input 
          string  plus an added null.  Characters are read, starting 
          with  the  next nonblank  character,  until the  number of 
          characters  given in the  precision is reached  or until a 
          blank, tab, or newline is reached. 
 
     e    (same as f) 
 
     f    A floating  point number is expected  in the input string. 
          Its corresponding pointer is assumed to be of type *float. 
 
     The   return value of this function is the number of parameters 
     that were matched (read in off the input line) or EOF. 
 
DIAGNOSTICS 
 
SEE ALSO 
     scanf(), fscanf() 
 
NOTES 
     A hexadecimal number may   not be preceded by   a Ox. 
 
     Any  character  within a  conversion specifier  which is  not a 
     legal  conversion specifier option or conversion character will 
     be  ignored  along  with  the preceding  percent  sign  and any 
     characters  inbetween.  Thus there is no  way to match a '%' on 
     the input line (i.e. writings %% in the control string will not 
     cause it to try to match a % in the input string). 
 
 
 
 
 
 
 
 
 
 
 

54.2 



NAME 
     strcat - copy string 
 
SYNOPSIS 
     int     strcat(sl,s2) 
     char    *sl,*s2; 
 
DESCRIPTION 
     Strcat   appends a copy of the  string pointed to by its second 
     argument  to  the end  of the  string pointed  to by  its first 
     argument.   It is assumed that  the first argument points to an 
     area large enough to accomodate the resultant string. 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcmp(), strlen(), strsave() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

55.1 



NAME 
     strcmp - compare strings lexicographically 
 
SYNOPSIS 
     int     strcmp(sl,s2) 
     char    *sl,*s2; 
 
DESCRIPTION 
     Strcmp  lexicographically compares its  first argument with its 
     second. It returns 1 if the first is greater than the second, 0 
     if  the two  are equal, and  -1 if  the first is  less than the 
     second. 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcpy(), strlen(), strsave() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

56.1 



NAME 
     strcpy - copy string 
 
SYNOPSIS 
     int     strcpy(sl,s2) 
     char    *sl,*s2; 
 
DESCRIPTION 
     Strcpy  copies the string pointed to  by the second argument to 
     the  area  pointed  to by  the  first.  It stops  after  a null 
     character has been conied. 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcmp(), strlen(), strsaveo 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

57.1 



NAME 
     strlen - return string length 
 
SYNOPSIS 
     int     strlen(s) 
     char    *s; 
 
DESCRIPTION 
     Strlen  returns  the length  of the  string  pointed to  by the 
     argument (not including the terminating null). 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcmp(), stcpy(), strsave() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

58.1 



NAME 
     strncat - copy string 
 
SYNOPSIS 
     int      strncat(sl,s2,n) 
     char     *sl,*s2; 
     int      n; 
 
DESCRIPTION 
     Strncat   appends a copy of the string pointed to by its second 
     argument  to  the end  of the  string pointed  to by  its first 
     argument.    Strncat copies  at most  the number  of characters 
     specified  by its third argument. It  is assumed that the first 
     argument   points  to an  area large  enough to  accomodate the 
     resultant string. 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcat(), strcmd(), strlen(), strsave() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

59.1 



NAME 
     strncmp - compare strings lexicographically 
 
SYNOPSIS 
     int      strncmp(sl,s2,n) 
     char     *sl,*s2; 
     int      n; 
 
DESCRIPTION 
     Strncmp    lexicographically compares  its first  argument with 
     its  second.   It returns  1 if the  first is  greater than the 
     second,  0 if the  two are equal,  and -1 if  the first is less 
     than  the  second.   Strncmp  compares  at most  the  number of 
     characters  specified  by its  third  argument; any  others are 
     not considered. 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcmp(), strcpy(), strlen(), strsave() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

60.1 



NAME 
     strncpy - copy string 
 
SYNOPSIS 
     int     strncpy (s1,s2,n) 
     char    *sl,*s2; 
     int n; 
 
DESCRIPTION 
     Strncpy  copies the string pointed to by the second argument to 
     the area pointed to by the first.  It stops after it has copied 
     the  number of  characters specified  by its  third argument or 
     when a null character has been copied. 
 
DIAGNOSTICS 
 
SEE ALSO 
     strcmp(), strcpy(), strlen(), strsave() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

61.1 



NAME 
     strsave - save string in memory 
 
SYNOPSIS 
     char    *strsave(s) 
     char    *S; 
 
DESCRIPTION 
     Strsave  attempts to allocate a space in memory large enough to 
     hold   the  string  pointed  to   by  the  argument  (plus  its 
     terminating  null).  If  it succeeds strsave  copies the string 
     pointed  to  by  the argument  into  the memory  and  returns a 
     pointer  to  it. If  it  fails to  allocate  sufficient memory, 
     strsave returns NULL. 
 
     The  area used by "strsave" to save the string is obtained by a 
     call  to "alloc" and  thus may be  returned to the  system by a 
     call to "free" using the string pointer as an argument. 
 
DIAGNOSTICS 
 
SEE ALSO 
     alloc(), free(), strcmp(), strcpy(), strlen() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

62.1 



NAME 
     tolower - convert to lower case 
 
SYNOPSIS 
     char    tolower(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns its argument converted to lower case 
 
DIAGNOSTICS 
 
SEE ALSO 
     toupper() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

63.1 



NAME 
     toupper - convert to upper case 
 
SYNOPSIS 
     char    toupper(ch) 
     char    ch; 
 
DESCRIPTION 
     Returns  its argument converted to upper case 
 
DIAGNOSTICS 
 
SEE ALSO 
     tolower() 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

64.1 



NAME 
     uldiv   unsigned long integer divide 
 
SYNOPSIS 
     long    uldiv(opl,op2) 
     long    opl,op2; 
 
DESCRIPTION 
     Uldiv   returns a long (unsigned) integer  which represents the 
     nonfractional  result  of dividing  the  first  (unsigned) long 
     integer     argument    by the  second  (unsigned) long integer 
     argument. 
 
DIAGNOSTICS 
     Division by 0 will return (long) -1. 
 
SEE ALSO 
     ulmod(), ulmul() 
 
NOTES 
     There  is actually no  type "unsigned long".  Uldiv operates on 
     longs  as  if  they were unsigned  by ignoring  the normal sign 
     conventions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

65.1 



NAME 
     ulmod - unsigned long modulo operation 
 
SYNOPSIS 
     long    ulmod (opl, op2) 
     long    opl,op2; 
 
DESCRIPTION 
     Ulmod  returns a  long (unsigned) integer  which represents the 
     remainder      of the  result  produced by  dividing  the first 
     (unsigned)  long integer argument by the second (unsigned) long 
     integer argument. 
 
DIAGNOSTICS 
     When  the second argument is zero  (division by 0) the function 
     returns the first argument. 
 
SEE ALSO 
     uldiv(),  ulmul() 
 
NOTES 
     There  is actually no  type "unsigned long".  Ulmod operates on 
     longs  as if  they were  unsigned by  ignoring the  normal sign 
     conventions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

66.1 



NAME 
     ulmul - unsigned long multiply 
 
SYNOPSIS 
     long    ulmul (opl, op2) 
     long    opl,op2; 
 
DESCRIPTION 
     Ulmul  returns a  long (unsigned) integer  which represents the 
     result     of  multiplying  the first  (unsigned)  long integer 
     argument by the second (unsigned) long integer argument. 
 
DIAGNOSTICS 
 
SEE ALSO 
     uldiv(), ulmod 
 
NOTES 
     There  is actually no type "unsigned  long".  Ulmul operates on 
     longs  as if  they were  unsigned by  ignoring the  normal sign 
     conventions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

67.1 



NAME 
     _unext - unextend float 
 
SYNOPSIS 
     float    unext(ef) 
     struct   extflt 
              { 
              char    sign; 
              int     exp; 
              long    mantissa; 
              } *ef; 
 
DESCRIPTION 
     _unext  returns the float which  is represented by the extended 
     floating  point number contained in the structure pointed to by 
     the argument.  The first element of the structure is assumed to 
     contain  the sign bit of the  number, the second element should 
     contain the unbiased exponent, and the third the mantissa. 
 
DIAGNOSTICS 
 
SEE ALSO 
     _extend() 
 
NOTES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

68.1 



NAME 
     ungetc - push character back on input stream 
 
SYNOPSIS 
     #include "stdio.h" 
     int     ungetc (c, fp) 
     FILE    *fp; 
     int     c; 
 
DESCRIPTION 
     Ungetc attempts to push a character back on the input stream so 
     that  it will be the next one retrieved.  At most one character 
     may be pushed back inbetween calls to getc.  The first argument 
     is  the character to  be pushed the  second is a pointer to the 
     file into which the character is to be pushed. The file pointer 
     must have been previously returned from an fopen call unless it 
     is STDIN. 
 
DIAGNOSTICS 
      Ungetc returns ERROR (-1) if it could not push the character. 
 
SEE ALSO 
      getc() 
 
NOTES 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

69.1 



NAME 
     ungetchar  -  push character  back on  standard   innut stream 
 
SYNOPSIS 
     #include "stdio.h" 
     int      ungetchar(c) 
     char     c; 
 
DESCRIPTION 
     Ungetchar  attempts to  push  a character back  on the standard 
     input stream so that it will be the next one retrieved. At most 
     one character may  be pushed back  inbetween calls  to getchar. 
     The  argument is  the character  to  be  pushed.   This call is 
     equivalent to ungetc (c, STDIN) 
 
DIAGNOSTICS 
     Ungetchar  returns  ERROR  (-1)  if  it  could  not  push  the 
     character. 
 
SEE ALSO 
 
NOTES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

70.1 



NAME 
     unlink - delete file 
 
SYNOPSIS 
     int     unlink(name) 
     char    *name; 
 
DESCRIPTION 
     Unlink  deletes the file whose name  is contained in the string 
     pointed to by its argument. Under some operating systems unlink 
     simply decreases a link  count to the file and deletes the file 
     if the link count reaches zero as a result. 
 
DIAGNOSTICS 
     Unlink returns ERROR if the file could not be cveleted. 
 
SEE ALSO 
 
NOTES 
     Under the Flex and 0S9 operating systems  unlink simply has the 
     effect  of deleting the file.   Under  more Unix like operating 
     systems such as UniFLEX  unlink decreases the link count on the 
     file.  Such an operating system will delete any file whose link 
     count decreases to zero.  There is a companion library routine, 
     link(),  which  increases  the link count  on a  file for those 
     operating systems which support it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

71.1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

72.1 



ADDENDUM TO THE INTROL-C USER MANUAL 
 
 
LINKER AND LOADER REFERENCE MANUAL 
 
-b Option 
Two  forms  of  the' "-b"  option  described  on page  L.1.6  of the 
Linker And Loader Reference Manual are now available: 
 
      -b      -or-     -b=<Pathnarne> 
 
The   first  form  above,  "-b",   prevents  the  Standard  Library, 
libc.R,  from  being  searched  by  the  Linker.  The  second  form, 
"-b=<Pathname>",  defines <pathname>  as being  a non-standard place 
in which to find the Standard Library, libc.R. 
 
-i Option 
A  "-i"  option  has been  added  for the  Linker.   When.  a  -i is 
specified  on  the link  command  line, this  option  specifier will 
force loading of all modules on the command line. 
 
-l Option 
 
Two  forms  of  the "-l"  option  described  on page  L.1.8.  of the 
Linker And Loader Reference Manual are now available: 
 
    -l[s][x][u][=<file>]         -or-          -ll[s][x][u][=<file>] 
 
The  first  form above,  where a  single  leading "1"  is specified, 
causes  a  linker listing  to be  produced  exactly as  described on 
page  L.1.8 of  the User  Manual.  The  second form,  where a double 
leading  "l"  is  used,  instead  causes  a  loader  listing  to  be 
produced.    That is,  an option  specification beginning  with "-l" 
will  be  ignored by  the  linker itself  and  passed intact  to the 
loader to cause a loader listing to be generated. 
 
-r option 
A  "-r"  option  has been  added  for  the Linker.    The  -r option 
specifier  causes the  .RL output  file generated  by the  Linker to 
be  saved  during  an automatic  link-and-load  sequence.   Normally 
(when   the  -r   option   is  not   specified),  when   the  Linker 
automatically  calls  the Loader,  the  Linker passes  the  Loader a 
"-z"  option specifier which  causes the Loader  to delete its input 
file  (ie  the  Linker's  .RL  output  file)  when  the  Loader  has 
finished  with it.   Specifying  the -r  option on  the link command 
line  inhibits  the  Linker from  passing  the -z  specifier  to the 
Loader,  thus  causing the  intermediate  RL Linker  output  file to 
be retained. 
 
STANDARD LIBRARY REFERENCE MANUAL (UC6809 Library Only) 
 
The  Standard  Library  Reference Manual  erroneously  describes two 
routines  that  do  not  exist  in  the  supplied  Standard Library: 
      rand  - Return random number 
      srand - Set seed for random number generator 
Therefore,  please  delete/ignore  the  descriptions  for  these two 
routines. 



APPENDIX A 
FC6809 STANDARD LIBRARY 

 
NON-ZERO CLASS LIBRARY ROUTINES 

 
As  discussed in the Compiler  Reference manual and Linker Reference 
manual,  all relocatable  modules (including those  contained in the 
Standard  Library)  have a  special  identifying attribute  called a 
"class" specifier, which is a number in the range 0 through 255.  At 
link  time, the Linker uses a module's class number to differentiate 
between  different versions  of identically  named modules  that may 
possibly co-exist within the same library. 
 
In  the case  of the FC6809  Standard Library, most  of the function 
modules  supplied  in the  library have  a preassigned  modure class 
specifier  of  "O" (zero).   In  fact, each  of the  various runtime 
support  functions is furnished  and available for use  as a class 0 
type    of module.  However, the  library also  includes "alternate" 
versions  of some runtime  functions.  Where  such alternate support 
routines  exist,  they  have been  given  the same  filename  as the 
"standard"  version of the routine,  but have been assigned non-zero 
class numbers. 
 
In  all cases, the class  0 version of a  given library routine will 
always  provide  the full  runtime support  features that  have been 
described  for that routine in this  reference manual.  Any non-zero 
classes  of library routines, by comparison, provide a modified (and 
typically  abbreviated)  level  of  support  for  the  given runtime 
function, usually resulting in smaller runtime overhead in the final 
program. 
 
Four  non-zero class categories of library functions are included in 
the FC6809 Standard Library; class 5, class 6, class 7, and class 8. 
 
Classes  5 and 6 are associated  with selection of modified versions 
of  the  output formatting  routines, such  as printf,  fprintf, and 
sprintf;  classes  7 and  8 select  modified  versions of  the input 
formatting routines, such as scanf, fscanf, and sscanf.  Whereas the 
class  0 versions of these  respective routines provide full support 
for  longs, integers, and floating point numbers, the non-zero class 
versions differ as follows: 
 
    Class 5 - Output formatting routines will support only integers. 
 
    Class 6 - Output formatting  routines will support only integers 
    and longs. 
 
    Class 7 - Input  formatting routines will support only integers. 
 
    Class 8 - Input formatting  routines  will support only integers 
    and longs. 
 
 
 
 
 
 
 

A.1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A.2 



APPENDIX D 
 

INSTALLATION OF THE FC6809 INTROL-C COMPILER 
 
This  section  describes the  installation of  Introl-C on  the Flex 
operating system. 
 
The FC6809 Introl-C Compiler is shipped on standard 8 inch or 5 inch 
floppy disk format.  Verify that the disk is indeed intended for the 
Flex  operating system  and also  that the  disk format  is what you 
expect by  reading the label  on the distribution diskette envelope. 
Note that the disk shipped to you is not bootable and thus cannot be 
used to start your Flex system. 
 
Before it can be used, the Compiler and its associated programs must 
be  copied from the  distribution disk to the  system drive.  Unless 
specified  otherwise, the program to be compiled is assumed to be on 
the work drive. 
 
Notice  that the "stdio.h",  "flex.h", and "setjmp.h"  files are NOT 
capitalized. When you copy these files, be sure that their names are 
in  lower case.   On many FLEX systems  file names are automatically 
converted to upper case even when typed in lower case.  Many systems 
already  have a  utility to defeat  this "feature" but,  if not, the 
distribution  disk includes a utivity called "CASE" which, when run, 
prevents this automatic conversion. The CASE program toggles between 
'upper/lower  case' and 'upper case only' each  time it is run so if 
it  is run  an even  number of times  the system  will again convert 
lower case to upper. 
 
You  may also wish to take note of  the other files you find on your 
distribution disk.  They include source code examples of many of the 
standard  library routines  and perhaps  some useful  or interesting 
routines.   See your FLEX System  Users Manual for details on making 
copies of files. 
 
 
 
 
 
 
 
 
 
 
 
 
INTROL-C is a registered trademark of Introl Corp. 
Flex is a trademark of Technical Systems Consultants, Inc. 
 
 
 
 
 
 
 
 
 

0D.1 


