

INTROL

LINKER AND LOADER
REFERENCE MANUAL

The contents of this manual have been carefully reviewed and are
believed to be entirely correct. However, Introl Corp. assumes no
responsibility for inaccuracies.

The software described in this manual is proprietary and is
furnished under a license agreement from Introl Corp. The software
and supporting documentation may be used and/or copied only in
accordance with said license agreement.

INTROL-C is a registered trademark of Introl Corp.
UNIX is a trademark of Bell Laboratories
TNIX is a trademark of Tektronix, Inc.
INIX is a trademark of Introl Corp.

Introl Corp.
647 W. Virginia St.

Milwaukee, WI 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
All Rights Reserved

Table of Contents

Linker And Loader Reference Manual

Table of Contents L.0.1

Linker L.1.1

Loader L.2.1

Library manager L.3.1

Appendices L.A.1

L.0.1

L.0.2

LINKER

The function of the Linker is to join several relocatable object
modules together to form a single relocatable object module as the
result. Normally, when the Introl Linker finishes, it will
automatically call the Loader, causing the object module produced by
the Linker to be then translated into an executable file by the
Loader. Once such executable file has been generated, the actual
object module generated by the Linker is normally automatically
deleted. Thus, although the Linker itself produces an intermediate
relocatable module, the more usual result of a linker command line
call is an executable file that is subsequently produced by the
Loader. Options are provided, however, to permit the Linker's output
module to be retained even though an executable file has been
produced; also, an option exists to inhibit the Loader call entirely
when the desired result is simply the relocatable module generated
by the Linker.

LINKER COMMAND LINE

The general form of the link command line is:

ilink <files> {<options>} {<files>} {<options>}

where <options> can be zero or more Linker and Loader option
specifiers (described later in this Section), and <files> are the
filenames of the relocatable files or libraries which are to be
input to the Linker. Unless an option to inhibit loading is
explicitly specified on the command line (the "-n" option), the
Loader will be automatically executed when the Linker finishes.

The Linker expects each of its input files to have a filename
extension; if none is explicitly defined, the filename extension is
assumed to be ".R", which is the filename extension normally
assigned to relocatable files generated by the Assembler. If the
Linker is being run independently (ie with the "-n" option
specified, which inhibits the automatic call to the Loader), the
Linker will produce a relocatable module as the end result, having
the filename extension ".RL". Such modules (ie modules which have
been linked but not loaded) are themselves relocatable modules which
can be legally reused as inputs to the Linker, if desired. If the
Loader call is not explicitly inhibited, a link command line call
will result in generation of an executable output file as the final
result (ie, the file produced by the Loader pass). In this latter
case, the intermediate relocatable module generated by the Linker
(ie the file having a ".RL" filename extension) will not be retained
unless the user specifically opts to do so (via the "-r" Linker
option). In either case, the filename assigned to the output
module(s) produced as a result of the linker call will be determined
by the "primary function name" symbol, which is discussed under
Operation, below.

L.1.1

OPERATION

When the Linker is first invoked, it begins its linking process by
attempting to resolve two references which are implicit to the
Linker. The first is called the "primary function name", the second
is the program "entry point". The user may, as an option
specification on the link command line (the "-m=<file>" option),
specify any symbol as a primary function name. If none is explicitly
defined, however, the primary function naming symbol will be assumed
to be "_main", the symbol that represents the name of the usual
starting function ("main") in a C program. The filename of the
module in which the Linker finds the primary function name will
normally be the name assigned to the Linker's relocatable output
module, but with the filename extension ".RL" being appended to the
Linker's output module.

The Linker begins its search by first searching through all of the
files specified on the link command line, searching these files in
the order they are listed, attempting to resolve the primary
function name. If it succeeds, it will include the module which
contains the definition of the primary function name, and will then
proceed to resolve any external references which that module makes.
(If the primary function name cannot be found, the Linker
automatically loads the Standard Library and attempts to resolve the
"entry point" symbol, as described below.) When all possible
external references caused by inclusion of the module containing the
primary function name have been satisfied, the Linker will then
attempt to resolve the "entry point" symbol. In doing so, the Linker
will first search through the files on the link command line, and
then search the Standard Library if necessary, looking for a module
which has an entry point symbol defined. If it finds one, it will
include the module which contains the entry point and attempt to
resolve any resultant external references that module makes.

An unmodified Standard Library will always contain a module for
which an entry point is defined. This is the module usually used to
set up the environment required before the first C function (usually
"main") can be executed. The Compiler itself does not normally
define an entry point when it produces a module. An assembly
language programmer, however, may specify the entry point of an
assembly language module by placing the name of the entry point
following the END assembler directive. If there is more than one
module with an entry point defined, the Linker will assume the entry
point is that of the first such module it finds after beginning its
search. It begins its search with the files on the link command
line, scanning left to right, and then searches the Standard
Library, top to bottom. Therefore, if a module on the link command
line defines an entry point, that module will be the first module
found by the Linker and, therefore, will be the one selected for
inclusion (ie rather than the module contained in the Standard
Library). If no module on the link command line contains an entry
point, the Linker will assume the entry point symbol is "cstart",
which happens to be the usual name for the Standard Library routine
which sets up the environment for a C program.

L.1.2

The Linker terminates when it has no more external references to
resolve or, alternatively, when it runs out of files to search in
attempting to satisfy any unresolved references that might still
exist. The Linker's output will be a relocatable module that has the
same name as the name of the module which contains the primary
function name, but with a ".RL" filename extension appended. When
the Linker has determined it has resolved all the external
references it possibly can, it will automatically call the Loader.
If all external references have been successfully resolved by the
Linker, the Loader will load the Linker's output into an executable
output file. If unresolved references still exist, however, the
Loader will complain and loading of the module will be unsuccessful.

As indicated above, it is perfectly legal to use the Linker to link
several modules together which, of themselves, do not satisfy all
the external references they make. This feature is very useful when
it is desired to link two or more relocatable files together to
produce a single resultant "partially linked" module (which may
contain some unresolved references). Such partially linked modules
may themselves then be reused as inputs in subsequent linking
operations, and linked with other relocatable modules as necessary.
In such-cases, when it is the user's intention to do partial linking
of this type, a user option ("-n") to prevent automatic execution of
the Loader must be specified on the link command line.

In many cases, such as for a compiled C program contained in a
single module, calling the Linker may be as simple as specifing the
name of a single relocatable file produced by the Compiler. For
example, if the file to be linked and loaded had the name "test.R"
(which is the file that would be produced by the Compiler if the
user had compiled a program called "test.c"), the user could call
the Linker by entering the following:

ilink test

For this example, the Linker would proceed to first link the file
'test.R" with applicable referenced functions from the Standard
Library ("libc.R"), producing the linked module "test.RL" as an
intermediate result. It would then automatically call the Loader,
which would load "test.RL" into either an executable file or a file
of load records, as appropriate to the type of Introl Loader being
used. Since the "-r" option was not specified on the linker command
line for this particular example, the Loader would also
automatically delete the "test.RL" file when it had finished using
it. Note that it is unnecessary to specify the Standard Library,
"libc.R", on the command line; the Standard Library is always
implicit to the Linker when it is called.

LINKER CLASS LIST

Each relocatable module produced by the Assembler, as well as each
module contained in the Standard Library, has an attribute called

L.1.3

its "class", which is a user-assignable number from
"0" (zero) to
"255". During the linking process, the Linker always uses the
module's class number in combination with the module's filename for
module identification purposes. The class number is, in effect, an
"extra identifier" that provides a mechanism for distinguishing
between several identically named modules that may be contained in a
library.

The default "class" for modules produced bv the Assembler is "0";
however, any other legal class number (ie "1" through "255") may be
selectively assigned to any of these modules by the user. Similarly,
most of the library routines contained in the Standard Library,
libc.R, have a preassigned class number of "C", although several
non-zero class modules are also supplied. For example, libc.R
contains 3 different classes of the ofmt routines used by the
"printf", "fprintf", and "sprintf" Standard Library functions
(classes 0, 5, and 6) and 3 different classes of the imft routines
used by the "scanf", "fscanf", and "sscanf" Standard Library
functions (classes 0, 7, and 8). The class 0 ofmt routine supports
longs, ints, and floats; the class 5 ofmt routine supports longs
only; and the class 6 ofmt routine supports longs and ints.
Similarly, the class 0 ifnt routine supports longs, ints, and
floats; the class 7 ifmt routine supports only longs; and the class
8 ifmt routine supports longs and ints.

Because of a relocatable module's class attribute, one of the link
time options available to the user is the specification of a "linker
class list" on the link command line. Use of a class list
specification is only necessary when the user wants modules other
than class "O" modules to be considered for inclusion by the Linker.

The linker class list specification defines two things to the
Linker: (1) it defines the specific non-zero classes of modules that
should be potentially considered for that particular link process,
and (2) it simultaneously establishes a priority ranking of these
classes of modules, which enables the Linker to choose the "correct"
module from among possibly several that may have been given
identical filenames in a library.

A linker class list is specified on the link command line as one or
more <option> entries of the form:

t=<class list>

where <class list> is a series of one or more numerical values from
"1" through "255" (see -t option below). The numerical values
contained in <class list> represent those specific non-zero module
classes, listed in the order in which they are to be "preferred" for
possible use, which are to be considered potentially valid for
inclusion for that particular link process. Modules of class "O" are
ALWAYS implicit in any class list specification and therefore are
not included in a linker class list on the command line. The Linker
automatically assigns lowest "preference" to class "O" modules and
will only use a class 0 module if it cannot find some other

L.1.4

identically named module having one of the non-zero
classes defined
in the linker class list.

As mentioned earlier, a class list specification on the linker
command link is only necessary if modules having a class other than
"0" are to be considered for use by the Linker. When a class list is
specified, however, it is important to note that the order in which
any class numbers appear on the command line is just as significant
to the Linker as the actual class numbers themselves. This is
because the Linker (which scans the entire command line from left to
right to determine all of the acceptable classes) assumes that the
class numbers are listed by the user in ordered sequence on the
command line, with the "most preferred"'class being the class it
first encounters on the command line, the "next most preferred"
class being the second class it encounters, and so on. The Linker
will always select the "most preferred" class of any given named
module that it can find.

An ordered class list of this type is necessary for the user to
unambiguously define, and the Linker to properly select, the
intended module in many instances. For example, suppose the user had
compiled and assembled a program module, "file1", (with a class of
"0") that referenced two library routines contained in the Standard
Library, one called "abc" and the second called "xyz". Further
assume that two different versions of the abc module existed, one
with class 0 and the other with class 1; and three versions of xyz
existed, one with class 0, one with class 1, and one with class 2.
If the user wanted to link file1 with the class 1 module of abc and
the class 2 module of xyz, he could enter a link command line such
as:

ilink file1 t=2,1

In this case the Linker would ascertain that, given the choice, it
should give highest preference to using class 2 modules, next
highest preference to class 1 modules, and lowest preference to
class 0 modules. During the linking process the Linker would first
look for a class 2 filel module and, failing that, then look for a
class 1 file1 module and, failing that, then look for a class 0 file
1 module, which it would find and therefore include. The Linker
would then begin searching the Standard Library to resolve the
references filel makes to abc and xyz. it would begin its search for
abc by first looking for an abc class 2 module and, failing that,
then begin looking for an abc class 1 module which it would find and
link in with filel to resolve the reference made to abc. Similarly,
it would begin its search for xyz by first looking for an xyz class
2 module which it will find and link in to file1 to resolve the
reference made to xyz. Aithough an abc class 0 module and xyz class
1 and xyz class 0 modules also existed in the library, these would
have been ignored by the Linker inasmuch as it had been able to find
"more preferred" versions of abc and xyz.

By comparison, if the user had used a link command line such as

L.1.5

ilink t=1,2 file1

the Linker would instead have given highest preference to class 1
modules and next highest preference to class 2 modules, with class 0
modules again having lowest priority (as is ALWAYS the case for
class 0 modules). In this case the Linker would first look for a
class 1 file1 module, then a class 2 file1 module, and then a class
0 file1 module which it would find and include. The Linker would
then look for, find, and link in the ("most preferred") class 1 abc
module; then look for, find, and link in the ("most preferred")
class 1 xyz module. The class 2 xyz module would ONLY have been
considered for inclusion in this instance if the Linker were unable
to find the "more preferred" class 1 module, which of course it does
find in the example situation given.

Notice that the class list may contain multiple class specifiers and
that class zero is ALWAYS implicit in any class list specification.

LINK COMMAND LINE OPTIONS

Linker options, as well as Loader options, may be specified on the
link command line. Loader options, if specified, will be passed on
to the Loader when it is automatically called by the Linker. The
"linker-specific" options listed below are those options which apply
specifically to the Linker, per se. The Loader options that may also
be specified on the link command line are discussed in the Loader
Appendices to this manual.

Linker-Specific options include:

-b
 This option prevents the Standard Library, "libc.R", from being
 searched by the Linker. Usually this option is specified in
 combination with the "-f" Linker option, discussed below, when
 programs are being

-c=<file>
 The option specifies that <file> is a command file where the
 Linker will find additional information. The command file is a
 text file which may contain extra options and additional file
 names to be referenced following those listed on the command
 line. Each option or file name must appear on a separate line
 in the command file.

-d[<c>]
 This option is used for specifying, at link time, which of
 several (optionally available) Introl Loaders is to be called
 by the Linker when linking is completed. Specifically, use of
 this option will cause the Linker to call the Loader whose
 Introl filename is "<c>ld", where the <c> represents the first
 character of the desired Loader's "name". For example, the

L.1.6

 option specification "-dh" would instruct the Linker to call
 the Loader named "hld" when it finishes (assuming of course
 that the "hld" Introl Loader is actually available for use). If
 the -d[<c>] option is not specified, or if there is no
 character specified via the <c> entry, the Loader selected for
 use will default to the "standard" Loader supplied with the
 Compiler. (In general, the "standard" Loader is one which
 produces code that is executable on the Compiler's host
 operating system.) The several different types of Loaders that
 are optionally available for use, and the "<c>ld" names
 associated with each, are described in the Loader Appendix of
 this manual.

 NOTE: When an "optional" target- system- dependent-type of
 Loader is being specified for use, the compatible "standard
 library" supplied with that optional Loader must also be
 specified for use during the linking process. In such cases the
 "-b" Linker option can be used to inhibit the Linker's use of
 the "standard" libc.R library, and the "-f" option used to
 instruct the Linker to instead find and use the "optional"
 standard library which is compatible with the target operating
 system.

-e=<symbol>
 This option sets the entry point. If the <symbol> being
 specifed as the entry point refers to a C symbol that has been
 generated by the Compiler, the <symbol> name must include a
 leading underscore character (ie the Compiler automatically
 pre-pends a leading underscore to all symbols it generates). If
 this option is not used, the Linker will search through all the
 modules in the order they are listed on the command line, and
 then search the Standard Library if necessary, in an attempt to
 find one which has an entry point defined. The entry point will
 be that of the first such file the Linker finds. If no input
 module specifies an entry point, the Linker will usually find
 one called "cstart" in a module of the same name in the
 Standard Library. For assembly language programs, an entry
 point is placed in a module by placing the desired entry point
 symbol on the "end" directive in an assembly language file (see
 Assembler section of the Compiler Reference Manual).

-f<string> or -f=<string>
 This option, which has two forms, is used to specify that
 additional libraries will be found in the standard library
 place which are to be searched by the Linker (ie libraries that
 are to be searched in addition to the Standard Library,
 libc. R) .The "-f<string>" form of the option specifies that an
 additional library to be searched is named "lib<string>.R",
 where <string> represents any series of characters. The
 "-f=<string>" form specifies that an additional library to be
 searched is named "<string>.R", where <string> can represent
 any string of characters. This option must normally be used
 (together with the "-b" option mentioned above) when an
 "optional" Loader is being called; this is necessary so that

L.1.7

 the Linker uses a "standard library" which is compatible with
 that particular Loader.

-l[s][x][u][=<file>]
 This option causes a linker listing to be produced. The
 optional file name indicates that the listing is to be placed
 in the indicated file rather than being listed on the console.
 The "s", "x" and "u" characters are all optional and affect
 the listing's contents, as follows: If the "s" character is
 specified the listing will include all symbols. If the "X"
 character is specified the listing will include a cross
 reference symbol listing. If the "u" character is specified the
 listing will include a list of the modules taken from each
 the files specified on the command line. Any combination of
 these three characters may be specified.

-m=<symbol>
 This option defines the primary function naming symbol. The
 primary function name is the external reference which the
 Linker attempts to resolve first. If left unspecified, the
 naming symbol defaults to "_main", which is usually the primary
 function in a C program. (At the C program level this primary
 function name is specified as "main", but the leading
 underscore is added by the Compiler, as is the case for all
 symbols generated by the Compiler. It is therefore important to
 remember that, when specifying a naming symbol that is
 contained in a compiled module, the symbol will always begin
 with a leading underscore.) The filename of the module which
 contains the primary function name is normally the name that
 will be assigned to any file(s) produced as a result of a
 Linker call line.

-n
 This option prevents the Loader from being automatically
 executed when the Linker finishes. When the "-n" option is not
 specified, the Linker will normally default to calling the
 "standard" Loader (unless some other loader type has been
 optionally specified using the "-d(<c>]" option discussed
 previously).

-o=<file>
 This option is used to assign a specific name, represented by
 <file>, to the Linker's output file. If this option is not used
 the output file will be given the same name as the module in
 which the primary function name is found. If no filename
 extension is explicitly specified, the Linker output filename
 will default to having a ".RL" extension.

-P[<C>]
 This option is useful only an Unix-like operating systems, such
 as UNIX, INIX, and TNIX for example. On such systems, it causes
 the output of the Linker to be piped to the Loader rather than
 to be transferred in a temporary file. On some systems this

L.1.8

 will cause a noticeable speed, improvement. The [<c>] indicates
 an optional character which may be used to specify that the
 Linker output should be sent to a particular optional Loader
 when use of the default "standard" Loader is not desired. The
 <c> character, when specified, represents the first letter in
 the Introl name of the desired Loader, just as for the case of
 the "-d[<c>]" option described previously.

-s
 This option specifies that the output file is to be stripped of
 all non-entry defined symbols. This is useful when producing a
 partially linked module in which the user wishes to "hide" all
 the already resolved symbols. Partially linked modules are
 typically modules that have been linked, but not loaded, which
 may still contain unresolved references.

-t=<classlist>
 This option is used to define an ordered listing of those
 non-zero class numbers, between 1 and 255, which are to be
 "preferred" for use in the linking process. The <classlist> can
 be a series of one or more numbers from "1" through "255". When
 a class list contains multiple class number entries, a comma or
 period must separate successive class numbers, as in "t=3,7,4",
 for example, which specifies the classes "3", "7", and "4". The
 order in which class numbers are entered on the link command
 line is significant to the Linker and defines the order of
 class preference. The first-entered (ie left-most) class
 appearing on the link command line will be given highest
 preference for inclusion by the Linker, the second-entered
 class will be given next highest preference, and so on. Modules
 of class 0 are always considered by the Linker as having lowest
 priority and are used in the linking process only if an
 identically named module having a class number which is
 included in the linker class list specification cannot be found
 by the Linker. For example, a class list such as "t=3,7,4"
 tells the Linker to preferably use modules of class 3 (if they
 can be found), or else use class 7 modules (if they can be
 found), or else use class 4 modules (if they can be found), or
 else, as a last resort, use modules of class 0 (if they can be
 found).

The reader is referred to the Loader Appendices of this manual for
applicable Loader options that may be specified on the link command
line.

L.1.9

L.1.10

LOADER

It is the Loader's function to fix absolute addresses for the
relocated values in a relocatable module, thereby converting a
relocatable module into an "executable" output file. The Loader is
usually called automatically by the Linker but it may also be called
separately by the user. As indicated below, several different
Loaders are (optionally) available for use with Introl-C and, if the
user has elected to obtain such optional Loaders, a variety of
executable output file formats can be generated, depending on the
Loader being used.

Each resident Introl-C compiler package, and each Introl-C
cross-compiler package, nominally includes a single, specific type
of Introl Loader which is considered as being the "standard" Loader
for that compiler's particular host system configuration. For
resident Introl-C Compiler packages, the 'standard' Loader that is
furnished is an "operating system dependent" type of Loader which
generates an output file that is executable on that particular
Compiler's host system. For cross-compiler versions of Introl-C, the
"standard" Loader furnished is typically a "hex" type Loader that
generates a file of output load records, which can be either
Motorola S-Records, intel Hex, Tektronix Hex, or Tektronix Extended
Hex at user option. Besides the "standard" Loader that accompanies
any given Compiler type, it is also possible for the user to
optionally obtain and use other compatible "cross-Loaders" which
generate output formats unrelated to the Compiler's host operating
system. For example, "hex-type" Loaders are optionally available for
use with resident versions of Introl-C; "operating system dependent"
type Loaders are optionally available for use with cross-compiler
versions; etc.

There are, therefore, several different species of Loaders, (as well
as several different types of related Standard Libraries) that may
potentially be used under Introl-C. The "standard" Loader supplied
with your Introl-C package, as well as any other Loaders that may
have been optionally ordered, are described in detail in the Loader
Appendix of this Linker Reference Manual. This Loader section
describes the general features that are common to all Loader types.

Normally the input to the Loader is expected to be a relocatable
file which has no unresolved external references; if unresolved
references do exist in its input, loading will normally not be
successful. A Loader option is provided, however, to force a file to
be loaded even if it contains unresolved references.

Usually a relocatable file has to be linked before it can be used as
input to the Loader. It is also possible, of course, to assemble a
file which makes no external references and then use the relocatable
output file produced by the Assembler directly as input to the
Loader (ie without having actually linked it).

L.2.1

LOADER COMMAND LINE

The "standard" Loader supplied with your Introl-C package (see
Loader Appendices to this manual) is normally automatically called
by the Linker when the Linker pass finishes. However, linker command
line options exist (see Linker Section of this manual) that mav be
used to alternatively force the Linker to automatically call other
optional Loaders (assuming such optional Loaders have been obtained
for use). Situations also arise when it is desirable to explicitly
call the Loader alone, without first executing the Linker. When such
situations arise, the Loader may be independently called by the user
with a loader command line of the general form:

<c>ld <file> {<option>}

where <c>ld represents the Introl filename of the specific Loader
being called, <file> is the name of the (linked) relocatable module
which is to be loaded, and (<option>) represents zero or more Loader
option specifiers.

Each of the potentially usable Introl Loaders is uniquely identified
by a 3-letter Loader filename, the last two letters of which are
always "ld". The <c> designator indicated in the "<c>ld" loader call
on the command line therefore represents the first letter in the
three-letter Loader name. For example, to call the Introl hex type
of Loader, which has the filename "hld", the "<c>ld" entry on the
command line would actually become "hld". For further specifics on
the names of the loaders which can be legally accessed, refer to the
Loader Appendices of this manual.

The relocatable file that is input to the Loader is expected to have
a filenarne extension; if none is specified, the default filename
extension ".RL" is assumed. Normally the name of the executable
output file will be identical to the name of the input file, but
with a filename extension typically added by the Loader. The
filename extensions each Loader appends are discussed in the Loader
Appendices to this manual.

LOADER OPTIONS

Each type of Loader available for use with the Introl-C has its own,
generally unique set of options. The specific options that apply to
each Loader furnished are discussed in the Loader Appendices.

When the Loader is being called separately, Loader options are
specified directly on the loader command line when the Loader is
being automatically called by the Linker, Loader options are
specified on the link command line, together with the Linker
options. If Loader options are specified on the link command line,
any such options (ie those that do not apply to the Linker) will be
automatically sent on to the Loader. For the most part Linker and
Loader option specifiers tend to be distinct, so that there is
little ambiguity when Loader options are specified on the link
command line.

L.2.2

LIBRARY MANAGER

This section describes the features and operation of the Introl
Library Manager.

For a program to be succesfully linked and loaded, all its external
references must be resolved. That is, any functions which are
referenced by the program but not included in the program must be
added to it at link time. The Linker can be directed to search
various files to find already compiled functions which satisfy these
references. When it finds a piece of compiled code which satisfies a
reference it includes the code in the resultant program. Any
compiled or assembled file may be a legitimate input to the Linker.
To facilitate the Linking process, it is often useful to have a file
which contains more than a single piece of compiled code so that the
user can specify a whole series of routines to the Linker with a
minimum of fuss. Such a file is called a library file, an example of
which is the introl-C Standard Library (libc.R). The Linker can
search a library file and selectively extract only those modules it
requires to link the file.

LIBRARY FILES

A library file is a file which contains one or more linkable object
modules of the type produced by the Introl Assembler. When a file is
compiled and assembled, the result is exactly one linkable module
which is placed into a file. This file is actually a library which
happens to contain only a single module. When the user links a
program, one or more of these "libraries" are specified on the link
command line. Usually the "libraries" are those produced as a result
of a compilation and contain only a single module, however, they may
also contain several modules. The Library Manager, "libman", is a
program which allows the user to place several modules into a single
library file. When the user has a large set of modules which are
commonly used in programs, it is usually convenient to place them
all in one library and then simply specify the library once on the
link command line. The Linker will extract only those modules it
requires in order to satisfy the external references of the program.

The Linker is designed to automatically search the "Standard
Library", libc.R, if it still has external references to satisfy
after it has exhausted all the alternatives provided by the modules
specified an the link command line. For many C programs, the
Standard Library is usually where most of the external references
are satisfied. Many users find it useful to add to, or modify
routines in, the Standard Library.

The Library Manager is the utility program which allows the user to
create new libraries and also to maintain existing ones.

LIBRARY MANAGER

Because any file that is produced by the Assembler is already
technically a library file, the Library Manager can correctly be

L.3.1

looked upon as a program which manipulates libraries. Its input is a
library file, such as a linkable object file produced by the
Assembler. Thus, in the description below, references to "libraries"
also implicitly includes those files output by the Assembler.

The Library Manager is called by entering a command line of the
form:

libman <lib> {<optional-direct-command>}

where <lib> is the name of the library to be edited and
<optional-direct-command> is an optional command to the Library
Manager. If the <optional-direct-command> entry is omitted, the
Library Manager will enter its "Interactive Mode" of operation and
solicit library management commands from the user terminal.

The input library specified by <lib> may be either a new library or
an existing one and, unless the user takes contrary action, it will
also be the nane of the output library.

MODES OF OPERATION

The Library Manager has three modes of operation: Direct Mode,
Interactive Mode, and Command File Mode. The most convenient to use
for simple additions and deletions to the library is the Direct
Mode. For more extensive modifications the user may instead wish to
use Interactive mode. The third mode is the Command File mode which
causes the Library Manager to read its commands from a file rather
than getting them from the user terminal.

Direct Mode: In Direct Mode the user is permitted to specify a
single command on the library manager command line. When the Library
Manager is called, it executes this single command function and then
immediately exits from the Library Manager. When modifying
libraries, however, a single command function is often all that is
necessary to accomplish the change desired by the user. When Direct
Mode is being used, the desired command is specified right on the
command line, following the <lib> library specification. Any Library
Manager command may be used in the Direct Mode.

Interactive Mode: if no command is specified on the Library Manager
call line, the Library Manager will enter its Interactive Mode of
operation. In Interactive Mode the Library Manager will print a
colon (".") as a promet and will accept a succession of commands
directly from the user terminal. Interactive Mode is useful when the
user must make extensive changes to a library, or when the user
wishes to step through the library checking and/or changing modules
in an "interactive" manner. Once selected, the Interactive Mode will
remain in effect until the user enters a "quit" or "omit" command.

Command File Mode: One of the commands which the user can specify as
an Interactive code or a Direct Mode command entry is the "Comfile"
command. This command instructs the Library Manager to read
subsequent instructions from a command file. When a "Comfile"

L.3.2

command is entered, the Library Manager will read from the file
specified until it reads a "quit" or "omit" command or,
alternatively, until it reaches the end of the file. when exiting
the Command File Mode, the Library Manager will return to whatever
mode it was in before the Command File Mode was entered. If the
Command File Mode was entered as the result of a Direct Mode
command, then the Library Manager will terminate when Command File
Mode is exited. If entered from the Interactive Mode, it will return
to the Interactive Mode.

LIBRARY MANAGER COMMANDS

In the descriptions that follow, the commands may be abbreviated to
the characters shown in capital letters. For simplicity, the
descriptions are specified in a BNF type form. In this form items
enclosed in angle brackets "<" and ">" represent names or numbers to
be chosen by the user. Items enclosed in square brackets "[" and "]"
represent optional items. Anything enclosed in curly brackets "{"
and "}" may be repeated zero or more times. These "meta" characters
(ie <,>,{,},[, and]) are just to help the user understand what is
required and should not actually be typed in. Thus the "delete"
specification ...

Delete {<module>{,<class>])

means that the delete command (which may be abbreviated to just "d")
requires zero or more user-specified module names, each of which may
have an optional class specifer which is separated from the module
name by a comma.

In the following:

<module> refers to the name of a module (which should consist
 of a series of characters). The first character may
 not be a digit.

<file> refers to any legal file or path name.

<class> is a number from 0 to 255 which represents a module's
 class number.

Thus a legal example of the delete command could be:

d modulea,2 moduleb modulec, 0

which would cause three modules to be deleted; the class 2 "modulea"
module, the class 0 "moduleb" module, and the class 0 "modulec"
module.

Add {<file>{,<module>f,<class>]}}
The add command is used to add modules to an existing library or to
create a new library. It consists of the word "add", which may be
abbreviated to "a", followed by one or more filenames, each of which
may be followed by zero or more module specifications, each of which

L.3.3

may include a class specification. It is possible to add modules at
a specific place in the library (see the "find", command) but for
most linking applications it makes no difference where a module is
located in the library. In Direct Mode, the add command will add
modules to the end of a library. In Interactive Mode or Command File
Mode, the Library Manager can be directed to add a module anywhere
in a library. The argument to the add command is a filename which
should contain at least one linkable module (such as that produced
by a compilation). The filename may be followed by any number of
module names. If there are no specifications following the file
name, the Library Manager will attemct to add all of the modules
contained in the file. If specific nodules are named, the Library
Manager will attempt to add only those modules from the named file.
Any module may have an optional class specification, which is a
numeric specifier in the range of 0 to 255. If the class
specification is not present, the first module encountered having
the specified module name, regardless of its class, will be added to
the library; otherwise only a module with a matching name and class
will be added. The add command will not add any module whose name
and class match one already existing in the library.

Delete {<module>{,<class>]}
This command allows the user to delete modules from a library. The
delete command will attempt to delete the named modules, taking into
account the module's class, if it is specified. If the class
specifier is omitted, and there is more than one module having the
specified name in the library, the delete command will print a
warning message and will not delete the module. The user may then
delete the module by specifying the class of the module which is to
be deleted.

The delete command will print a warning message if no module name is
specified.

Revlace {<file>{,<module>{,<class>]}}
The replace command is used to replace modules in an existing
library. It consists of the word "replace", which may be abbreviated
to "r" followed by one or more filenames, each of which may be
followed by zero or more module specifications, each of which may
include a class specification. The argument to the replace command
is a file name which should contain at least one linkable module
(such as that produced by a compilation). The filename may be
followed by any number of module names. If there are no module
specifications following the file name, the Library Manager will
attempt to replace all of the modules contained in the file. If
specific modules are named, the Library Manager will attempt to
replace onlv those modules. Any module may have an optional class
specification. If the class specification is not present, the first
module with a matching name, regardless of its class, will be
replaced in the library; otherwise only a module with a matching
name and class will be replaced. The replace command will only
replace a module whose name, or name and class (if both are
specified), match a module already in the library.

L.3.4

Quit
This command quits the Library Manager, first saving the library
file if it has changed. This command may be abbreviated to "q".

OMIT
This command directly exits the Library Manager without saving the
library that was being edited. You may want to remember this one in
case you hopelessly mess up a library file (although that shouldn't
be cause for panic since the Library Manager always makes a backup
file). Notice that there is no abbreviation for this command.

List {<module>{,<class>}}
The list command will print out information an the named modules. If
no modules are specified, the list command will print out
information on all of the modules in the library.

SList {<module>[,<class>]}
This is a short form of the List command. It prints out an
abbreviated listing containing only the module name, class, and
revision of each named module. If no modules are specified, this
information will be printed for all modules in the library.

Help
The help command allows the user to obtain on-line help when using
the Library Manager. It assumes there is a help text file available.
The help command will print a menu and request a number from the
user; it then prints the associated message and enters Interactive
Mode.

LOad {<file>}
When anything is done involving a library which is currently not in
memory, it is automatically loaded. The "load" command may be used
to explicitly load a library without actually doing anything with
it. Loaded libraries are not the same as the library you are
editing; it is simply a library whose module information is in
memory. When a module is from a library, for example, the
module information for the entire library is loaded into memory so
that the Library Manager can more quickly reference it. Before a
file is loaded, the memory is checked to see if the file has already
been loaded. A file is never loaded more than once. The "load"
command may be abbreviated to "lo".

The reason a user may want to load a library explicitly is so the
contents of a loaded library may be listed and examined using the
load-list command as described below.

LList {<file>}
The LList command allows the user to list a loaded library. When
used with a library name, the LList command will list the contents
of the named library. When specified without any library name the
LList command will list the names of all the currently loaded
libraries. The "llist" command may be abbreviated to "ll".

L.3.5

SLList {<file>}
This command provides an abbreviated load-listing, including only
the module name, class, and version. When this command is used
without any library name specified, it will list the names of all
currently loaded libraries. The "sllist" command may be abreviated
to "sll".

Save {<file>)
The save command will force the Library Manager to save the library
using the filename indicated by <file>. If no filename is explicitly
specified, the library will be saved using the library name
originally specified on the command line. As a safety measure, any
time a file is saved the Library Manager will make a backup copy of
any file which would have been overwritten by the save process. It
will append a ".bak" extension to this backup file. The Library
Manager will automatically save the library whenever the user exits
using a "quit" command.

Comfile {<file>}
This command will direct the Library Manager to execute commands
read from one or more specified files until it reads a "quit" or
"omit" from the specified files or, alternatively until the end of
the file is reached. An error message will be printed if no file is
specified. The "comfile" command may be abbreviated by "c".

Echo {<any-string>}
This command simply echos the specifed strings to the terminal. This
command can be useful in a command file to inform the user of its
progress.

INTeractive
This command will explicitly place the Library Manager in
Interactive Mode. Needless to say, it has no use when already in the
Interactive mode, and very little use as a Direct Mode command
(since the user can more readily enter Interactive Mode by simply
not specifing any command whatever when calling the Library
Manager). It is potentially useful in the Command File Mode,
however, and can be included in a command file to force a return to
the interactive Mode. The "interactive" command may be abbreviated
as "int".

Find {<module>{,<class>]}
This command is used to "find" the module whose name and class is
given.

There is a pointer in the Library Manager which points to what is
known as the "current" module. When the Library Manager starts, the
"current" module is the last-occurring module in the library being
edited (assuming there are any modules in the library being edited).
When an "Add" command is executed for example, the newly added
modules are added following the "current" module. Almost every
command has some effect on which particular module in the library is
considered as being the "current" module after the commanded action
has been completed. Following an add command, for instance, the

L.3.6

"current" module will become the last module that was added because
of that add command. The list command also causes the current module
to become the last module that is actually listed. In this manner,
user command inputs continuously alter which specific module is
actually considered the "current" module at any give time.

The find command can be used to explicitly define the current module
to be any specific module in a library. Thus, if the user wishes to
place a module in a specific place within the library, he can "find"
the module which is to immediately precede the new module, and then
"add" the new module. This will cause the new module to be placed
immediately after the module that was "found" using the find
command; this, of course, would also cause the "current" module to
then become the newly added one.

The find command will attempt to move the "current" module pointer
to the named module. It starts searching from the current module and
continues until it reaches the bottom of the file, at which point it
starts searching from the top of the file. It searches in this
manner until it finds the named module, or until it reaches the
original current module. If no module class is specified, the find
command will stop at the first module it encounters that has the
specified module name, regardless of its module class number;
otherwise it will attempt to find a module which has both the name
and class specified in the find command.

Print {<module>[,<class>]}
This command causes information to be printed for the named modules.
If no modules are specified, it will print information on the
"current" module.

SPrint {<module>[,<class>]}
This command works just like the Print command except it prints an
abbreviated listing which includes only the name of the module, its
class, and its revision.

Insert {<file>{,<module>f,[class>]}}
This command is similar to the "Add" command except, rather than
placing the named modules after the "current" module, it will place
them proceeding the current module in the library. When the Insert
function finishes, the last module that was inserted then becomes
the current module.

Stepping Through The Library
When editing a library using the Library Manager, a pointer exists
which indicates the "current" module (as was described previously
under the "find" command). This pointer is used as a starting point
for searches when adding, exchanging, and deleting modules. It also
points to the module which will be printed out by a "print" command
when print is used without arguments. Most of the commands affect
the value of this pointer, usually leaving it pointing to the last
module that was referenced. There are several ways for the user to
change the "current" module pointer. One is via the "find" command
(see the Find command, above). For example, the following command

L.3.7

moves the painter to a module named "thing":

find thing

The user may also move the current module pointer around in a
"relative" fashion by specifing a signed integer on the line. For
example, the following will move the pointer backwards four (4)
modules:

-4

By comparison an entry such as:

+2

will move the pointer forward two (2) modules.

It is also legal to specify one or more successive minus ("-")or
plus ("+") signs to indicate the total number of modules to move
backward or forward. For examole, a single minus or plus sign would
move the pointer backward or forward one module, respectively. Two
minus or two plus signs will move the pointer backward or forward
two modules respectively (one for each symbol), and so on. It is
also legal to move the pointer to a module located an absolute
number of modules from the begining of the library; this is done by
entering an unsigned number. For example, entering:

12

will move the pointer to the twelvth module in the library.

Any time one of these commands is executed, the Library Manager will
print the name of the resultant current module. If one of these
commands attempts to move the "current module pointer" above the top
or below the bottom of the library, the Library Manager will print
"TOP" or "BOTTOM" respectively.

CRstep
Executing this command toggles a flag which, when "on", causes a
carriage return to act like a plus ("+") sign. This then allows a
user to step down through the library, one module at a time, by
simply hitting the carriage return. The CRstep command toggles this
feature on (if previously off) or off (if previously on) with each
execution. Therefore, if this feature has been previously selected
to be "on", it can be selected to be "off" by simply re-entering the
CRstep command once again.

QUIET
This command will prevent the Library Manager from printing out the
name of the current module when the "current module" pointer moving
commands are used. The "quiet" command may be abbreviated by "quie".

Additional Notes
If the user wishes to write out a module which is in a library, this

L.3.8

can be easily done by a command of the type:

libman newmod add oldlib,mod

For the filenames used in this example, this instructs the Library
Manager to make a new library, called "newmcd", which contains a
single module, called "mod", which was obtained from a library
called "oldlib".

L.3.9

L.3.10

APPENDICES

This section contains miscellaneous reference information which may
be useful to the programmer.

 Appendix A Linkable File Format L.A.1
 Appendix L* Loaders L.L*.l

A.1

A.2

APPENDIX A

LINKABLE FILE FORMAT

The following is the linkable file format which is expected by the
Introl Linker and Loader.

There is no difference between a library file and a linkable object
file as produced by the Assembler, other than the fact that a
linkable object file contains only a single module whereas a library
usually contains multiple modules. In the special case of a file
which contains only a single module, it is permissible to have a
text size specified as zero even though the text has a non-zero
length. When a multi-byte value is specified, the most significant
byte is assumed to appear first.

INTROL LINKABLE BINARY FILE FORMAT

HEADER
 2 bytes Magic #
 2 bytes Number of module descriptors in this file
 1 byte Checksum of header

MODULE DESCRIPTOR (repeated for each module)
 4 bytes Offset to module text in file
 4 bytes Size of text (may be zero if
 single module in this file)
 2 bytes Size of string area
 1 byte Module class
 1 byte Module revision
 4 bytes Relocatable segment @ax sizes

 |SF|SE|...|S7|S6|...|S0|

 Sn is a two bit max size specifier:
 00 one byte max size
 01 - two byte max size
 10 - three byte max size
 11 - four byte max size

 4 bytes Relocatable segment size descriptors

 |SF|SE|...|S7|S6|...|S0|

 Sn is a two bit descriptor size value:
 00 - no size
 01 - one byte size
 10 - two byte size
 11 - four byte size

 { 0..4 bytes segment 0 size }
 { 0..4 bytes segment 1 size }
 .
 .
 .

L.A.1

 { 0..4 bytes segment F size }

 2 byte symbol count

 For each symbol up to symbol count:

 2 bytes Offset of identifier in string area
 2 byte Descriptor value

 |SZ|XXXXX|N|E|I|R|A|SEGM|

 SZ is the descriptor of the symbol's value
 00 - the value is zero
 01 - the value follows in one byte
 10 - the value follows in two bytes
 11 - the value follows in four bytes

 X is reserved
 N set if the symbol is an entry point
 A set if the symbol is absolute
 E set if the symbol is exported
 I set is the symbol is imported
 (both E and I are set if the symbol
 is undefined segment imported)
 SEGM is the segment the symbol resides in if
 non-absolute.

 { 0..4 byte symbol value }

 The module descriptor string area starts here. The strings in
 the string area are null terminated ASCII character strings.
 The first string in the string area is the module name.

PROGRAM TEXT (follows all module descriptors in the file)

 The basic text format is:

 |CM|MODIFY| { 0 or more operand bytes }

 CM is the two bit command.
 MODIFY is 6 bits of command specific info.

 code 00 - Special function

 |00|FNCODE| {|function specific operands|}

 FNCODE is a six bit special function code:

 0 - end of text
 1 - set byte size relocation
 2 - set word size relocation

L.A.2

 3 - set long size relocation

 codes 4-15 are Loader commands

 4 -reserved
 5 -reserved
 6 - "
 7 - "
 8 - "
 9 - "
 10 - "
 11 - "
 12 - "
 13 - "
 14 - "
 15 - "
 Multiple byte commands
 The byte count is represented in the lower
 two bits as follows:
 00 - the byte count follows in one
 byte
 01 - the operand follows in one byte
 10 - the operand follows in two bytes
 11 - the operand follows in four bytes
 16 - reserved
 17 - skip with one byte byte count
 18 - skip with two byte byte count
 19 - skip with four byte byte count
 20 - reserved
 24 - reserved
 28 - reserved

 Segment set commands

 32 - set segment 0
 33 - set segment 1
 34 - set segment 2
 .
 .
 46 - set segment E
 47 - set segment F
 48 - reserved
 49 - "
 .
 .
 63 reserved

 coce 01 - pass absolute text
 |01|TCOUNT| |TCOUNT bytes of text|

L.A.3

 TCOUNT - is the number of bytes to pass
 (1-64). If TCOUNT == 0 then
 byte count is 64.

 code 10 - offset relocation command

 |10|R|X|SEGM| |relocation size offset|

 Relocation is done in the previously
 specified relocation size. The result
 is the proper relocated datum with the
 base of the given segment in this module
 added to the following offset. If the
 relative bit is set, the result is the
 proper relocated datum with the result
 being equal to the relocated value minus
 the value of the location counter follow-
 the relocated value.

 R - set if the relocation is relative
 X - is reserved
 SEGM - is the segment # to relocate with

 code 11 - symbol relocation command

 |11|R|XX|S|OF |one or two byte symbol #| {|offset|}

 Relocation is done in the previously
 specified relocation size. The result
 is the proper relocated datum with the
 result being equal to the value of the re-
 solved symbol plus the optional following
 offset. If the relative bit is set, the
 result is the proper relocated datum
 with the result being equal to the
 relocated value minus the value of the
 location counter following the relocated
 value.

 R - set if the relocation is relative
 XX - reserved
 S - 0 if one byte symbol #, 1 if two byte sym. #
 OF - size of the following offset

 00 - zero offset
 01 - byte offset
 10 - word offset
 11 - long offset

L.A.4

APPENDIX LF

FLD LOADER
OPTIONS AND RUNTIME ENVIRONMENT

The Introl Loader which generates Flex format output files is called
the "fld" Loader.

The fld Loader is the "standard" Loader that is furnished with the
part number FC6809 Introl-C Compiler and, as such, is the the Loader
normally called by the FC6809's Linker when it finishes linking. The
fld Loader is also optionally available for use with other versions
of Introl-C (ie for Introl-C packages that do not themselves run
under the Flex operating system) and, in such cases, is considered
as being an "optional" Loader for these versions. (Refer to the
"-d[<c>]" option discussed in the Linker section of this manual.)

The loader command line call for the fld Loader is of the form:

fld <filename> {<options>}

where <filename> is the module to be loaded and <options> are zero
or more fld Loader option specifiers.

The fld Loader expects its input to be a relocatable module as
produced by the Introl Linker, with any applicable "standard
library", references having been being resolved using the FC6809
Standard Library. The fld Loader produces an output that is
compatible with, and executable under, the Flex operating system.
Executable files generated by the fld Loader are characterized by
the filename extension ".CMD", which the fld Loader automatically
appends to its output file.

Unless otherwise indicated, the following options for the fld Loader
may be specified on either the linker command line (the typical case
when the Loader is being automatically called by the Linker) or on
the loader command line (when the Loader is being called
independently by the user).

OPTIONS

-a=<sec>:<seg>{,<seg>}
 Assign segment to a section; where <sec> represents a Flex
 program segment which should be either "text", "data", or
 "bss", and <seg> is a segment number in the range 0 to 15. This
 option allows the user to override the default settings for
 placement of program segments.

-c=<file>
 Get additional parameters from a command file; where <file> is
 the command file filename. This option allows the user to
 specify an unlimited number of parameters by placing them, one
 to a line, in the named text file.

L.LF.1

-l[s][=<file>]
 Produce an output listing; where the "s" character is an
 optional entry, and <file> is an optional filename. This option
 forces the Loader to generate an output listing. If the
 optional s character is specified, the listing will contain
 symbol information. If the optional filename specification is
 included, the listing will be placed in the named file.

-o=<name>
 Set output file name; where <name> is to be the name of the
 output file. If this option is omitted, the output file name
 will be that of the input name. If no filename extension is
 explicitly defined, the default extension ".CMD" will be
 assigned.

-W
 Make an executable file no matter what! This option will cause
 the Loader to produce an executable output file even if there
 are still unresolved external references. It is not guaranteed
 as to what the result will be if the program actually attempts
 to access one of these unresolved items.

-y[{t|d|b}]=<origin>
 Set origin; where the "t" or "d" or "b" character is optional,
 and <origin> is a hexadecimal number. This option may be used
 to set the origins of the text, initialized data, and
 uninitialized sections of the output file. If no t or d or b
 character is specified, or if the t character is specified, the
 text section will be placed at the location indicated by
 <origin>. If the d character is specified, the initialized data
 section will be placed at the location indicated by <origin>.
 If the b character is specified, the bss (uninitialized data)
 section will be placed at the location indicated by <origin>.
 if this option is not specifed, the text section will default
 be being placed at the zero origin, and will be immediately
 followed by the initialized data section, which will be
 immediately followed by the uninitialized data section.

-Z
 Zap the input file. This option deletes the input file after
 the Loader has finished using it. When the Linker automatically
 calls the Loader, the Linker normally specifies this -z option
 as part of the call to cause the Loader to delete the file
 produced by the Linker (ie the intermediate ".RL" extension
 file) when it is no longer needed for loading purposes.

L.LF.2

RUNTIME DATA MEMORY MAP

The runtime memory map shows the layout of the data space which a
program has available during execution. The data appears in two
areas, one of which is placed toward the low end of memory and
another which is placed at the high end of memory (below the Flex
operating system). The heap is placed in the low end of memory and
grows upward by asking the operating system to enlarge its memory
space. The stack is placed in the area at the high end of memory.

 DATA MEMORY MAP

 (low memory)
TEXT SECTION

DATA SECTION

BSS SECTION

.
 .
 .

 SP ->

(high memory)

Introl-C is a registered trademark of Introl Corp.
Flex is a trademark of Technical Systems Consultants, Inc.

L.LF.4

INDEX

class list, linker 1.3, 1.4, 1.9 linker filenames 1.8
command file, library manager 3.2 linker input files 1.1
command files, library manager 3.6 linker listing 1.8
command files, linker 1.6 linker operation 1.2
command line, linker 1.1 linker options 1.6
command line, loader 2.2 linker output files 1.1
commands, library manager 3.3 linking, partial 1.3
compiler-generated symbols 1.8 listing, linker 1.8
entry point specification 1.7 loader calls 1.6, 1.8, 2.1
entry point symbol 1.2 loader command line 2.2
filenames, linker 1.8 loader filenames 2.2
filenames, loader 2.2 loader names 2.2
files, library 3.1 loader options 2.2
input files, linker 1.1 module class number 1.3
libman 3.1 naming symbol, primary function 1.8
library files 3.1 operation, linker 1.2
library manager 3.1 options, linker 1.6
library manager call line 3.2 options, loader 2.2
library manager command file 3.2 output files, linker 1.1
library manager command files 3.6 partial linking 1.3
library manager commands 3.3 primary function name 1.2
linker class list 1.3. 1.4, 1.9 primary function naming symbol 1.8
linker command files 1.6 symbols, compiler-generated 1.8
linker command line 1.1

Program Text

 External and Static area
 (initialized)

 (unitialized)

 Dynamic Memory Heap

Stack Area

local variables and
subroutine linkages

Parameter area

