COLOR COMPUTER
EDITOR ASSEMBLER
WITH ZEUG/

_ J

TABLE OF CONTENTS

SECTION ONE: USING THE EDITOR-

ASSEMBLERF .oy nuvse

Chapter 1 Aintroduction . i i s Vi drei arvsnamn My e nitas
Chapler 2/ Examiting Memory oo iiee s iiina s Lo ciidi i i s e

Chapter 3 / Writing the Program

Chapter 4/ ASeambling o oo s v s s S i St W 3 P s -
Chapter 5/ DebuggingwithZBUGccccvvvin i
Chapter 6./ Using the ZBUG CalCulator . .o ss s s viiscn 55 s siais & s s
Chapter 7 / Running the Program from BASIC,

SECTION TWO: 6809 ASSEMBLY

LANGUAGE REFERENCE ...

24

Chapter & / 6808 Assembly Lanquage

Chapter 9 / Assembler Pseudo Operations
Chapter 10/ 6808 InstructionSet v covo i iiiiia i diadviviii i

SECTION THREE: APPENDIXES

Appendix A/ Editor Commands .

Appendix B / Assembler Command & Switches
Appendix C/ ZBUG Commands i

Appendix D/ BrrorMessages

Appendix E/ Memory Map e
Appendix FAROMBOUNNES . . . sa b s v adsasesnn s s

I R e e o e e R G e L A T S

27

el

a7

1/Introduction

The brain of the Color Computer is the 6809 Micropro-
cessor. It is always operating in 6809 machine code, the
only language it knows.

When you program in BASIC, a ROM program called the
BASIC Interpreter “translates” each statement, one at a
time, into 6809 machine code.

The Editor-Assembler + allows you to write a program in
6809 assembly language and assemble it into a single,
efficient 68098 machine code program. This gives you
two very powerful advantages:

+ You are no longer limited to the commands in the BASIC
language.

- Many steps that are necessary to interpret a BASIC
statement into machine code will no longer be needed.
Therefore, the programs you write with the Editor-
Assembler + will run much faster, and probably use
less memaory.

This manual demonstrates how to use the Editor-
Assembler + . It will not teach you how to program in
assembly language. Radio Shack has an excellent book
devoted to the subject. It's Catalog Number is 62-2077.
You can purchase it through any Radio Shack store.
The Editor-Assembler + contains three systems:

+ The Editor, for writing and editing 6809 assembly lan-
guage programs.

- The Assembler, for assembling the programs into
6809 machine code.

« ZBUG, for examining and debugging your machine
code programs.

To use them, all you need is a Color Computer with 16K
HAM and a tape recorder.

How You Will Use
These Systems

1. First you'll write the program in assembly language,

using mnemaonics which the Assembler recognizes
and which is fairly easy to use. This is done in the
Editor and the resulting program listing is called TEXT.

2. Then you'll assemble the instructions of TEXT into
machine code which the 6808 Microprocessor can
recognize, but which looks like nonsense to most peo-
ple. Thus, you'll create CODE consisting of op codes
and data.

3. You'll use ZBUG to test and debug CODE until it's per-
fect. Then you'll store it on tape. Storing CODE is the
final task of the Editor-Assembler - .

4, From BASIC, you'll load CODE (with CLOADM) and
run it. You can either run it as a stand-alone program
(with EXEC) or as a subroutine (with USR).

How This Manual
Will Guide You

This manual will walk you through all these steps and also
give you some useful information about your Editor-
Assembler +.

In Chapter 2, we'll explore memaory. You'll need this foun-
dation to understand the rest of the manual. We'll do this
with ZBUG.

Chapters 3, 4, 5, and & will show you how to write the
program, assemble it, and debug it. Finally in Chapter 7,
we'll show you how to run the program from BASIC.,

If youve used other editor-assemblers, you might want to
start with the Appendixes. There, youll find all the com-
mands summarized with page number references.

And Now Let’s Get On
With It...

To use the Editor-Assembler + | follow these steps:
1. Tum OFF the computer.

1/ INTRODUCTION

2. Insert the ROM pack into the slot on the right side of EDTASH+ 1.0

the computer. COPYRIGHT & 1981 BY MICROSOFT
3. Turm the Computer ON. &
When you turn the computer ON, you will see: The asterisk prompt (*) tells you that the Editor is now

available. We say you are “in"the Editor,

2 /| Examining Memory

To use the Editor-Assembler +, you must have a good
understanding of the Color Computer's memory. You will
need to know about memory to write the program,
assemble it, debug it, and execute it.

In this Chapter, we'll explore memory and see some of
the many ways you can get the information you want. To
do this, we'll use ZBUG.

Type:
7 (ENTER

and ZBUG will display its # prompt. You are now “in”

ZBUG and you may enter a ZBUG command.

All ZBUG commands must be entered in this command
level. You can return to it by pressing (BREAK) or (ENTER).

Examining a Memory Location

The 8809 can address 65,536 one-byte memory loca-
tions, numbered 0-65535 (0000-FFFF hexadecimal).
We'll examine hexadecimal location CO00, the beginning
of the Editor-Assembler program. Type:

caag/s

LDA #6 is the "mnemonic” instruction that begins at loca-
tion COOO,

To examine the next instructions, press the (=], Use the
(= to get back to a preceding location. Notice that when
you use the (=] the screen continues to scroll down. The
smaller addresses are displayed at the bottom of the
SCreen.

Also notice that the (= will increment by more than ong
byte in this particular examination mode. More on this in
the following pages.

The (=], however, will always decrement the address by
one, regardless of the examination mode.

All the numbers you see are hexadecimal. Hexadecimal
means base 16. You will see not only the ten numeric dig-
its, but also the six alpha characters needed for base 16
(A-F). ZBUG assumes you want to see base 16 numbers
unless you specify ancther base (which we’ll do in
Chapter 6).

MNotice that a zero precedes all the hexadecimal numbers
beginning with an alphabetic character. This is done to
avoid any confusion between hexadecimal numbers and
registers.

Examining Modes

To help you interpret the contents of memory, ZBUG
offers four ways of looking at it:

Byte Mode

Type [BREAK to get into the command level and then type:
B (ENTER
Examine the contents beginning at location CO00 again.

LDA #6 is now represented as a number. 86 is the op
code for LDA. The operand, 8. is in location CO01.

The byte mode displays every byte of memory as a num-
ber, whether it is part of a2 machine language program
or data.

In this examination mode, the (=] increments the address
by one.

Word Mode

Get back into the command level and type:
W (ENTER!

Look at the same memory. Press the (=] key a few times.
The numbers are the same, but you are seeing them two
bytes or one word at a time.

Here, the (= increments the address by two.

ASCIl Mode

From the command level, type:
o (ENTER)

ZBUG is now assuming that the contents of each mem-
ory location is an ASCIl code, If the "code” is between 21
and 7F (hexadecimal), ZBUG displays the character it
represents. Otherwise, it displays nathing.

Examine the locations beginning with C056. These loca-
tions contain the Editor-Assembler + display heading.

EJiASM -

2/ EXAMINING VIEMORY

Note: ZBUG will also display the A7 through FF as
ASCIl characters. However, they are not the frue
characters which these codes represent.

Here, the (=) increments the address by ane,

Mnemonic Mode

This is the default mode. Unless you ask for some other
mode, as we have been doing, you will be in the default
mode. To return to it, get in the command level and type:.

M [ENTER
Look at the locations beginning at CO00 again. You'll see

the same instructions you saw at the beginning of this
chapter:

cogas LDa =5
CRBZ/ STA@OFF
efc.

In this mode, ZBUG assumes you're examining a
machinz lanquage program. It examines memory from
onhe to five bytes at a time by “disassembling” the num-
hers into the mrermonics they represent. The number
8606 (from locations G000 and CO01) has been disas-
sembled into LDA #6: BTOOFF (from locations CO02,
C003, and C004) into STA=-FF; efc.

Begin the disassembly at a different byte. Type (ERERK
coRl/ and press the (=) several times. You will see a
ditferent disassembly:

caals ROR<RAB7
CAR3/ MEG- AFF
efo.

The contents of memory have not changed. ZBUG has,
however, interpreted them differently. The number 0687
(from locations 001 and CO02) has been disassembled
inta ROR-"0B7: OOFF (from locations C003 and C0O04)
has been disassembled into NEG-0FF; eic.

To see the program correctly, you must be sure you are
beginning cn the correct byte. Sometimes, several bytes
will contain ?7. This means ZBUG can't figure out what
instruction is in that byte and is possibly disassembling
fram the wrong point. Unfortunately, though, the only
sure way of knowing if you're on the right byte is by know-
ing where the program starts.

Changing Memory

As vou look at the contents of memory locations, notice
that the cursor is to the right. This allows you to charige
the contents of that location. After typing the new con-

Eor an example of changing memory, well open a loca-
tion in Random Access Memory (RAM). Up to now, weve

only been examining locations in Read Only Memory
(ROM) which we can't change. Get into the byte mode
and open location 10AA by typing:

‘BREAK| © [ENTER
1RAA /

Note that the cursor is to the nght. Type:
1 [ENTER
and the location now contains a 1. You can accomplish
the same thing by typing:
10AA /S
and then:
o0 [

which changes the contents to DD and allows you to
change the next location. (Press (=] to see that the
change has been made.)

The size of the changes you make will depend an the
examination mode you are in. In byte mode, you will
change one byte only and can type one or two digits.

In the word mode, you will be changing one worrd at a
time. Any ane, two, three or four digit number you type
will be the new value of the word.

if vou happen to tvpe a number which is also the name cf
one of the 6809 registers (A,B D.CC DR X, Y.U,5,PC),
ZBUG will assume it's a register and give you an
"EXPRESSION ERROR.” To avoid this confusion, type a
leading zero (0A,0B.etc.).

To change memory in the ASCIl mode, use an apos-
trophe before the new letter. For example, to write the iet-
ter A in memory at location 0000, type:

A [ENTER
to go into ASCII examination mode, type:
QRan/
to open that location and type:
‘A (-]
to change it. Typing the (= will assure you that the loca-
tion contains the letter A.

If you are in mnemonic mode. you are expected to
change one to five bytes of memory depending on the
length of the particular instruction. Things get just a bit
complex in mnemonic mode because you can't use mne-
manic assembly language instructions. You must use the
op code equivalent instead.

For example, get into the mnemonic mode and open
location 1000, Type:

M (ENTER]
1000/

To change this instruction, type:
15 (ENTER)
MNow location 1000 contains the op code for the LDA
instruction. Open location 1001:
1001/
and insert 08, the operand:
@& (ENTER)

Upon examining !ocation 1000 again, youll see it now
contains a LDA #6 instruction.

Exploring the Computer’s
Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Appendix E.

The following activities will allow you to become familiar
with the Editor so don't be afraid to try commands or
change memory. You can restore anything you alter by
simply turning the computer OFF and ON again.

EgiASM -

3/Writing the Program

To write assembly language programs, you will use the
Editor. You can enter it by powering-up, pressing RESET,
or (from ZBUG) typing E (ENTER). The asterisk prompt tells
you that the Editor is available for commands, We say
vou are "in"the Editor,

The Editor has guite an assortment of commands to
assist you. To use any of them, you must be at command
level, as you are now. You can return to this command
level by pressing (BREAK.

Sample Programming
Exercise

For those of you new to editor-assemblers, we're includ-
ing this sample programming exercise. We'll be referring
to it in our examples throughout the manual. If you've
used other editor-assembilers, you may skip this exercise
and begin reading about the Write command.

To get started, type:
I (ENTER)

Even though you have not typed anything yet. the Editor
thinks that you are inserting lines into an already existing,
although empty, edit buffer.

The Editor will respond with a line number. This line num-
ber is for your convenience while in the Editor and will not
affect the machine language program at all.

To insert a comment line, type an asterisk and comment
away. For example, insert this line:

PR1P@ =#THIS IS A COMMENT LIME [ENTER)
The Assembler will ignore comment lines. You may type

as many of them as you wish to explain your program to
passing humans without confusing the computer,

You may delete this line and start over by pressing (BREAK)

to get back into the command level and then typing:
D1@@ (ENTER

To type a program line, you will use four fields: the sym-

bol, command, operand and comment fields. You can tab
from one field to the next by pressing the [#] key.

Insert this program line, using the (%] key to tab from one
column to the next:

@R1P@ SYMBOL CMD OPERAMDCOMMENT (ENTER)

The symbol, command and operand fields must be ter-
minated by a tab, space or carriage return. The symbaol
may be up to six characters. The comment is optional.
The maximum line length is 128 characters. Note that
long lines will “wrap around” your screen to the next line,

Delete whatever lines you have in the edit buffer and
insert the following sample program. You may omit the
comments, if you like:

08180 5S5TART LCA =%0F3 LOAD ASCII CHAR
2@110@ LOx =#%500 BEGIN VIDEOD MEM
08128 SCREENM ST& x4 PUT CHAR ON SCREEN
J@133 CHMPX #$5FF GEE IF END VIDEOQ MEM
oa142 ENE SCREEN BRANCH IF NOT

1@ DOME SKWI

2016@ END

This stores graphics character number F9 into video
memory locations 500-5FF The dollar symbaol (%) indi-
cates a hexadecimal number. Without this symbol, the
Editor will assume the number is decimal. (Note that the
Editor defaults to decimal, whereas ZBUG defaults to
hexadecimal.)

A description of all the other symbols, as well as the 6809
instructions, are in Part Two, "6802 Programming Ref-
erence Section.”’

Write Command
W filename

To save the sample program to tape (before making any
experimental changes), type:

W S4MPLE [(ENTER
You will be prompted with "“READY CASSETTE". When
the recorder is ready to record (i.e.. you have inserted a

tape and pressed PLAY and RECORD), type (ENTER). Your
program will be saved as a "TEXT file.

3/ WRITING THE PROGRAM

If you don't give your tile a name, the default name
NONAME will be assigned. It is a good idea to use file-
names, especially if you will be storing more than one file
on a single tape. Filenames may be up to eight charac-
ters long and must begin with a letter of the alphabet,

We recommend that you make a copy of your program
before executing it. An assembly language program is
not nearly as forgiving as BASIC. Executing the program
with even a very small bug might result in erasing the
entire edit buffer. In less than a second, many hours of
editing and trial assembly can be completely obliterated!

After writing the file, it is useful to verify the tape with the
V command. This command verifies the checksum on the
tape. This verification could save frustration when saving
long programs. The V command is listed in Appendix A.

Load Command

L filename

To load the TEXT file from tape, type:
L SAMELE (ENTER

You will be prompted to get your cassette recorder ready.
(Rewind the tape and press PLAY.) When you press
[ENTER), the recorder will begin searching for a file named
SAMPLE. If you just want the first file, or whatever file is
next on the tape, you may omit the filename.

This command will load a TEXT file only. (You will use the
BASIC CLOADM command to load your assembled
CODE file)
Note: The Editor does not automatically empty its
buffer before a LOAD. If a program is currently in
memory. the program being LOADed will be
dppended ta the one in mamory.,

This can be useful for chaining long programs,
When the second file is loaded, simply renumber
the file (e, N100, 1001

If you do not desire this, empty the buffer before
loading & new program (Le., D#).

Print Command
Prange
To print a line of the program on the screen, type:
P1Q@ (ENTER
To print more than one line, type:
P1D0:130 (ENTER)
Since the first ling, last line, and current line are very

often referred to, you can refer to them with a single
character:

= first line

lastline
current line (the last line you printed or inserted)
To print the current line, type:
F. (ENTER)
To print the entire text of the sample program, type:
P=:x (ENTER)
This is the same as P10@: 16@ (ENTER).

The colon separates the beginning and ending lines in a
range of lines. Ancther way to specify a range of lines is
with 1, Type:

P#15 [ENTER
and five lines of your program, beginning with the first
one, will be pninted an the screen.
To stop the listing, you may quickly type:

SHIFT) @

Ta continue, press any key.

Printer Commands
Hrange

Trange

If you have a printer. you can print your program with the
H and T commands. Both are closely related to the
F command.

H=:# (ENTER)

will print every line of the edit buffer to the printer. You will
be prompted with:

PRINTER READY
and you should respond with (ENTER) when ready,
Ti00'G (ENTER

will print six lines, beginning with line 100, to the printer,
but without the Editor-supplied line numbers,

Edit Command
Eline

You can edit lines in the same way you edit Extended
BASIC lines. For example, to edit line 100, type:

E108 (ENTER)

The new line 100 is below old line 100 ready to be
changed.

Press the (SPACEBAR to position the cursor just after
START and type this insert subcommand:

1EC (ENTER)
which inserts ED in the line.

All the edit subcommands are listed in Appendix A.

10

EDASM-L

Delete Command

Drange

It you are using the sample program, be sure you have
written it on tape before you experiment with this com-
mand. Type:

C11@:14@ (ENTER
Lines 110 through 140 are gone,

Insert Command
|startline,increment

Type:

1152 .2 [(ENTER
You may now insert lines beginning with line 152, Each
line will be incremented by 2. (The Editor will not allow

you to accidently overwrite an existing line. When you get
to line 160, it will give you an error message.)

1170 (ENTER]

This allows you to begin inserting lines at the end of the
program. Each line will again be incremented by 2, the
last increment you used.
Type:

(BREAK! I (ENTER
The Editor will begin inserting at the current line.

On start-up, the Editor sets the current line to 100 and the
increment to 10. You may use any line numbers betweaen
0 and 63999,

Renumber Command
Nstartline, increment

Another command that helps with inserting lines between
the lines is N (for reNumber). From the command level,

type:
N1@D ,5@ (ENTER
Now the lines begin with line 100 and are all incremented

by 50. This allows you much more room for inserting
between lines,

Type:
N (ENTER)
The current line is now the first line number.

Renumber now so we will all be together for the next
instruction. Type:

N1B2.1@ (ENTER)

Replace Command
Rstartfine,increment

The replace command is a variation of the insert com-
mand. Type:
102 +2 (ENTER

You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command

Cstartline, range,increment

The copy command will save you a lot of typing by dupli-
cating any part of your program to another location in the
program.
To copy lines, type:

C50@,10@:150 .12 (ENTER)
This will copy the range of lines from 100 to 150 to a new

location beginning at line 500, with a line increment of 10.
An attempt to copy lines over each other will fail.

ZBUG Command
To exit the Editor and enter ZBUG, type:
Z ENTER|

A different prompt, the =, tells vou that you are now in
ZBUG.

To re-enter the editor from ZBUG, type the ZBUG
command:
£ (ENTER

If you print your program, you'll see that entering and
exiting ZBUG did not change it.

BASIC Command

To enter BASIC from the Editor, type:
0 (ENTER

for Quit. To re-enter the Editor from BASIC, type:
EXEC 49152 (ENTER

or
EXEC LHCERO@ (ENTER|

which is the same address in hexadecimal. This is the
first address of the Editor. You must use the decimal form
if you have a 4K computer.

Entering BASIC will empty your edit buffer. Re-entering
the Editor will empty your BASIC buffer.

Hints on Writing Your Program:

« Copy short programs unreservedly from any legal
source available to you. Then modify them one

11

32/ WRITING THE PROGRAM

step at a time to learn how different commands easier to understand and debug. They can later be

and addressing modes work. Try to make the pro- combined into longer routines.

gram relocatable by using indexed, relative, and Note: You can use the Editor fo edit

e . : 3 : yvour BASIC

indirect qddres—:smg (described in F’_art 1), programs, as well as assembly language pro-

Trv to write a long program as a series of short rou- grams. You might find this very useful since the

tines that share the same symbols. They will be EEE%SM + Editor is much more powerful than
iLs

12

EDJTASM-

4 /Assembling

The command to assemble your text program into
machine-code is simple. Just type (from the Editor com-
mand level):

5 FILEWAME [(ENTER

If your program is in memaory, you will be prompted with:
CASSETTE READY

and when you press (ENTER) your cassette recorder will
start. You are assembling the object program on tape for
use another time and place. The Assembler will display
a listing to explain what it is doing. (See Figure 7 for an
explanation of the listing.)

While this is the simplest form of the assemble com-
mand, it is not the one you will use first. You will want to
make absolutely sure the program works before you
assemble it to tape.

There are several options called switches which you can
use to assemble the program for trial purposes. You may
use any combination of these switches, For example:
ANNMAWE

AWE/LP/NS

A TEST/LP

are all acceptable assembler commands.

WE
Wait On Errors Switch

You will normally want to use this switch. It causes the
Assembler to stop each time it encounters an error in
your program. Press any key to continue the listing.

/1SS /NO /NS /NL /LP
Listing Switches

Use these switches if you want the assembler listing
(illustrated in Figure 1) to appear differently:

/S8 Short screen listing

/NO Mo object code in the listing

NS Mo symbaol table in the listing
/NL Mo listing at all

/LP Listing printed on the printer

/IM

Assembling In Memory Switch

The program will be assembled in memaory, not on tape.
This is usually for a trial assembly,

Where in memory? Used with no other switches, the
Assembler will store your program just after the symbol
table which is just after the edit buffer:

- 0800
EDIT BUFFER
SYMBOL TABLE
ASSEMBELED PROGRAM STARTS HERE
+ AFFF (16K)
TOP OF RAM 7FFF (32K)

Figure 2. In Memory Assembly

The edit buffer contains your assembly language pro-
gram. It begins at hexadecimal address 0800, and will
vary in size depending on how long your program is.

The symbol table references all the symbols in your pro-
gram and their corresponding values. Its size also varies
depending on how many symbols your program has.

If you typed the sample program, you can try out an in-
memory assembly. Make sure the program is in the Editor
In its original form. Then, from the Editor command level,
type:

ASIN (ENTER)
(If you want another look, type &/ IM over again. You can

pause the display with SHIFT) (=) and continue with
any key.)

Since this sample program uses START to label the
beginning of the program, you can find its originating

13

LDA
2022 BE
LDA
@ags A7 Q0120 SCREEN
=TH
pea? ac BaL3g
CHPX
A00A 26 Ba1da

SCREEN
gaac Q0150 DONE
SH I

Baea 08160
EMD

eo0ee TOTAL ERRORS

DONE gaec

SCREEN 2025

START oaeg

(0

The location in memory where the assembled code
will be stored. In this example, the assembled code
for LOA #%F9 will be stored at hexadecimal location
0000.

2} The assembled code for the program line. 86F9 is the

assembled code for LDA #%5F9,
The program line.

' The number of errors. If you have errors, you will want

to assemble the program again with the /WE switch.

' The symbols you used in your program and the mem-

ary locations they refer to.

Figure 1. Assembly Display Listing

14

g / ASSEMBLING

address from the assembler listing. If you examine it with
ZBUG, youll see that it has been assembled into memory
beginning between 0800 and 0900.

AO

Absolute Origin Switch

This switch allows you to absolutely determine where in

memaory you want your assembled program to originate.

To use it, you need to have an ORG instruction at the

beginning of your program.

Insert this line at the beginning of the sample program:
aoesa ORG $3FQQ

Mow type:
A/ IMAAD

If you use ZBUG, you'll see that your assembled program
now begins at location 3F00:

« 0800
EDIT BUFFER
SYMBOL TABLE
+ JFO0
ASSEMBLED SAMPLE PROGRAM
- 4FFF (16K
TOP OF RAM 7FFF (32K)

Figure 3. /AQ In Memory Assembly

As you can see, the AD switch set the location of the
assembled program only. It did not set the location of the
edit buffer ar the symbol table.

If your ORG instruction has not allowed enough room in
memory for your program, you will get a BAD MEMORY
errar. The assembler cannat store your program beyond
the top of RAM.

/MO
Manual Origin Switch

The manual origin switch offers you maximum control of
in-memory assemblies. You can use it to assemble the
program using the contents of these two memory
addresses:

= USRORG (which contains the originating address of the
assembled program)
« BEGTEMPF (which contains 0600. This is the originating

address of the edit buffer and the symbaol table (which
Is 0800 minus 200.)

By rmanually changing the contents of USRORG and
BEGTEMP, youll be able to set the originating address of
the edit buffer and symbol table as well as the executable
program. Since this procedure is somewhat involved, not
everyone will want to use the /MO switch.

To change the contents of these memory locations, you
will need to get into ZBUG. Save the program you cur-
rently have in the Editor first. This procedure will destroy
the contents of the edit buffer.
Then get into the ZBUG word made by typing:

Z (ENTER

W (ENTER'
and follow the procedures for setting USRORG or BEG-
TEMP (or both of them).

Setting USRORG

On start-up, 00FD points to the top of BAM. |In this exam-
ple. we'll change it to 2F00. Type:

FO/
ZFO@ (ENTER
Now memory locations beginning with 2F00 are pro-

tected from EDTASM + and can be used for your assem-
bled program.

Setting BEGTEMP

On start-up, 0OFF points to 0800. In this example we'll
change it to 2000. This will make room for high resolution
graphics and data. Type:

FE ¢
7020 (ENTER)
The address you put in BECSTELT m
« a "page boundary” (a hexadecimal numbar ending in 00)
= greater than 0600
+ at least 300 bytes less than the contents of USRORG

Assembling the Program
To get back into the Editor, type:

GCORE (ENTER
Load the sample program and, if you inserted an ORG
instruction, delete it. Then type:

a/IM/M0 (ENTER!
This will assemble your program into the address you set
for USRORG and BEGTEMPE. If vou followed our exam-

ples above, this command will assemble your program as
follows:

15

EJIASVE

« 0B00C - .
Hints on Assembling
- Use a symbol to label the beginning of your
BEGTEMP + 2200 (set by orogram.

A chandine . Use the ORG instruction only when using the /AQ
switch. Used with AM alone or AMMO, the ORG
address will not be the programs originating
address. The Assembler will use it to offset (add

USRORG - « 2F00 (set by tal the loading address.
AeRENBLEL SakiPLE changing = The /WE switch is an excellent debugging tool.
PROGRAM location F1) Use it to detect assembly errors before debugging

« 3FFF (16K) the program.

TOP OF RAM (16K) TEFE (32K)
by « As vour program hbrary grows, it helps to use a
different system of names to separate your TEXT,

Figure 4. MO In Memory Assembiy CODE, and BASIC files. For instance, you might

wart to use T, C, or B as the last letter of each file.

/NO . . « If vou would like to examine the edit buffer and

No Object Code Switch symbol table after vou assemble the program, use

Use this switch if you do not want to store any object ZBUG to examine memaory locations beginning
code in memory or on tape, with address 0800.

16

5/Debugging with ZBUG

ZBUG has some very powerful tools for a trial run of your
machine language program. You can use them to look at
every register, every flag, and every memory location
during every step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 1. We will be
using these commands in this chapter.

Sample Program Exercise

In this Chapter. we'll use the sample program to illustrate
the debug commands. |f you would like to use it and have
not typed it in yet, see "Sample Programming Exercise”
in Chapter 2.

Then insert an ORG $3F00 instruction at the beginning
of the program (reinsert it, if you deleted it) and assemhble
the program using the /AQ switch. See the discussion of
the /AD switch in Chapter 3 if yvou need help. Then enter
ZBUG by typing "2” from command level in the Editor,

Display Modes

in Chapter 1, we discussed four examination modes.
ZBUG also has three display modes.

We'll examine each of these display modes from the mne-
monic examination mode. If you're not in this mode, type
M ([ENTER.

Numeric Mode
Type:
 (ENTER]

and examine memaory locations 3F00 through 3F0C,
which contain your program. In the numeric mode, you
will not see any of the symbals in your program (START,
SCREEN, and DONE). All vou see are numbers. For
example, location 3FDA displays the instruction BNE
3F05 rather than BNE SCREEN.

Symbolic Mode

From the command level, type:
5 (ENTER

and examine your program again. ZBUG is displaying
your entire program in terms of its symbols (START,
SCREEN. and DONE). Examine the memory location
containing the BNE SCREEN instruction and type:

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (3F05).

Half-Symbolic Mode

From the command level, type:
H (ENTER)

and examine the program. Now all the memory locations
(on the left) are displayed as symbols, but the operands
(on the right) are displayed as numbers,

Using Symbols to
Examine Memory

Since ZBUG understands symbols, you can use them in
your commands. For example, both of these commands
open the same memory location (no matter which display
mode you are in):

STARTY

IFER/

While either of these commands will get ZBUG to display
your entire program:

T START DOMNE

T ZF@Q 3FQC

You can print this same listing on your printer by substi-
tuting TH for T.

Executing the Program

Before trying a trial run of the program, be sure you have
a copy of it. As we've warmed you, a small bug in it can
destroy everything you have in memaory.

You can run it from ZBUG using the G (Go) command fal-
lowed by the program's start address. Type either of the
following:

17

EJVASM-L

S / DEBUGGING WITH ZBUG

GSTART (ENTER

GIFOQ (ENTER)
and the program will execute, filling part of your screen
with graphics character number FQ. If it doesn't dao this,
the program probably has a "bug” which is what the rest
of this chapter is about,

The 8 BRK « 3F0C or 8 BRK @ DONE is ZBUG telling
you that the program stopped executing at the Swi
instruction located at 3F0OC. ZBUG interprets your clos-
ing 3WI instruction as the eighth or final “breakpoint” (dis-
cussed below),

Setting Breakpoints

If your program doesn't work properly, you might find it
easier 10 debug it if you break it up into small units and
run each unit separately. From the command level, type
% followed by the address where you want execution to
break.

We'll set a breakpoint at location 3F0S, the first location
confaining the symbol SCREEN. To do this, type either of
the followina:

XECREEN [(ENTER!

X3IFQES (ENTER)
Mow type GSTART (ENTER) to execute the program. Each
time execution breaks, type:

C (ENTER
to continue. A graphics character will appear on the
screen each time ZBUG executes the SCREEN loop.

(The characters appear to be in a diagonal line because
ZBUG scralls to give you the breakpoint message.)

Type:
O (ENTER
to display all the breakpaoints you have set. Type:
C10 (ENTER
and the tenth time ZBUG encounters that breakpoint, it
halts execution. Type:
v (ENTER)

This is the command to delete (Yank) a breakpoint. A
breakpoint number after the Y will delete the breakpoint
at that address. Used with no breakpoint number, ZBUG
will delete all breakponts.

You may set up 1o eight different breakpoints numbered
0 through 7. You may not set a breakpoint in a ROM
routine.

Examining Registers
and Flags

Type:
R (ENTER
What you see are the contents of every register during

this stage of program execution. (See Section Il for a de'
inition of all the 6809 registers and flags.)

Look at register CC (the Condition Code). Notice the l=i-
ters to the right of it. These are the flags that are set
the CC register. The E, for example. means the E ilag
is set.

Type:
®/
and ZBUG displays only the contents of the X reqgiste

You can change this in the same way you change the
contents of memory. Type:

@ (ENTER)
and the X register now contains a zero.

Stepping Through
the Program

Type:
3FOB . Note the comma!

LDX #3$500 is the next instruction to be executed. The
first instruction, LDA #%FD, has just been executed
Type:

® (ENTER
and you'l see this instruction has loaded register A with
F3. To see the next instruction (LDX #3%500) executed,
type:

' {(Simply a comma)

You may continue single stepping through the program,
examining the registers at will, until you reach the end.
you do manage to get to SWI, the last instruction, ZBU
will print:

CAN‘T CONTINUE

which means it has reached the final step in the program
(SWI| causes ZBUG lo stop execution. If you omit S
from your program, ZBUG will continue executin
memaory.)

1R

EJTASME

Transferring a Block
of Memory

Type:
U JFP@ @P@R@ & (ENTER

Now the first six bytes of your program have been copied
to memory locations beqginning with 0000,

Saving Memory on Tape

To save a block of memory from ZBUG, type:
P TEST 3FP@ 3FBC 3F@R (ENTEA)

When the cassette is ready for recording, press [ENTER).
This saves your program, beginning at memory location

3F00 and ending at 3FOC, on tape. The last number is
where your program begins execution. In this case, this
number is the same as the start address.

To load TEST back into ZBUG, type:

Hints on Debugging

- Don't expect your first program to work the first
time. Have patience. Every programmer has bugs
in his new programs, and debugging is a fact of
life for ail programmers, not just beginners.

+ Be sure to make a copy of what you have in the
edif buffer befare executing the program. The edit
buffer is not protected from machine language
programs.

19

6/Using the ZBUG Calculator

ZBUG has a built-in calculator that will perform arithme-
tic, relational, and logical operations. Furthermare, it
allows you to interchangeably use three different num-
bering systems, ASCIl characters, and symbols.

This Chapter contains many examples on how to use the
calculator. Some of these examples require that you have
the same sample program assembled in memaory that we
used in Chapter 5.

Numbering System Modes

ZBUG recognizes numbers in three numbering systems:
hexadecimal (base 16), decimal (base 10), and octal
(base 8).

Output Mode

The output mode determines which numbering system
ZBUG will use to print or output numbers on the screen.
From the ZBUG command level, type:

n1@ (ENTER!
and examine memaory. The T at the end of each number
stands for base 10. Type:

08 (ENTER
and you will see a () at the end of each number, The num-
bers are all base 8. Type:

016 (ENTER
and you are now back in base 18, which is the default
output mode.

Input Mode
You can change input modes in the same way you
change output modes. For example, type:

110 (ENTER)

Now ZBUG will interpret whatever number you input as
a base 10 number, For example, if you are in this mode
and type:

T 493152 49162 (ENTER)
ZBUG will show you memory locations 49152 (base 100
through 49162 (base 10). Note that what is printed on the

screen is determined by the output mode, not the input
mode.

You can use these special characters to "override” your
input mode:

BASE EEEDHE NUMBER .AFI'EH NUMBER
Base 10 & T
Base 18 8 H
| BaseB i Q]

Table 1. Special Input Mode Characters

For example, while still in the 110 mode, type:
T 49152 sC@1@ (ENTER)
The %" overrides the 110 mode. ZBUG, therefore, inter-

prets C010 as a hexadecimal number. As another exam-
ple, get into the 116 mode and type:

T d313227 CA1g

Here, the “T" overrides the |16 mode. ZBUG interprets
49152 as decimal.

Operations

ZBUG will perform many different types of aperations for
you. For example, type:

COR@+Z5T/

and ZBUG goes to memory location C019 (base 16), the
sum of CO00 (base 18) and 25 (base ten). If you simply
want ZBUG to print the results of this calculation, type:

CA@A+25T=
On the following pages, we'll use the terms "operands.

“operators, and "operation.” An operation is any calcula-
tion you want ZBUG to solve. |n this operation:

1+2=
“1"and "2" are the operands. "+ " is the operator,

Operands

You may use any of these as operands:
1. ASCIl characters

2. Symbols

3. Numbers (in either base 8, 10, or 18) — Please note
that ZBUG will recognize integers (whole numbers)
only

21

EUiASM-

&/ USING THE ZBUG CALCULATOR

Examples:
.

prints 41, the ASCI code for A
START=

prints the START address of the sample program. (It will
print UNDEFINED SYMBOL if you don't have the sample
program assembled in memory.)

120Q=
prints the hexadecimal equivalent of octal 15.
If you would like your results printed in a different num-
bering system, use a different output mode. For example,

get into the 010 mode and try all the above examples
again.

Operators

You may use arithmetic, relational, or logical operators.
(Get into the 016 mode for the following examples.)

Arithmetic Operators

Addition +
Subtraction -
Multiplication ¥
Division DIV,
Modulus .MOD .
Positive +
Negative -
Examples:

DOME-START =
prints the length of the sample program (not including the
SWiI at the end).

9.0IV,2=
prints 4. (ZBUG can perform only integer division.)

8,M0D, 2=
prints 1, the remainder of 9 divided by 2.

1-2=

prints OFFFF, 865535T, or 177777Q, depending on which
output mode you are in. ZBUG will never calculate a neg-
ative number as a result. Instead, it uses a “number cir-
cle” which operates on modulus 10000 (hexadecimal);

FFFF B :

FFFD

I minus 1

equals 2
FFFF 1

Figure 5. Number Circle lllustration of Memory

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in the
same way the ZBUG operates on modulus 10000, There-
fore, on a clock. 1:00 minus 2 equals 11:00:

11:00 0

1:00

9: 06 300
I minus 1
equals)
11:00 1:00

Figure 6. Number Circle lllustration of Clock

Relational Operators

Equals
Mot Equal

vEQU.
HEWD .

These operators determine whether a relationship is true
or false.
Examples:

a.EQU. 3=

prints OFFFF, since the relationship is true. (ZBUG will
print 65535T in the O10 mode or 1777770 in the 08
mode.)

5.NEG.5=
prints O, since the relationship is false.

Logical Operators

Shift 4
Logical AND AND .
Inclusive OR JOR
Exclusive XOR HOR .
Complement NOT.

Logical operators perform bit manipulation on binary
numbers. To understand bit manipulations, see the 6809
assembly language book we referenced in the
introduction.

Examples:

1@<2=
shifts 10 two bits to the left to equal 40. This is the same
operation the 66809 ASL instruction performs.

1B<-2=
shifts 10 two bits to the right to equal 4. The ASR instruc-
tion also performs this operation.

B HOR.5=

prints 3, the Exclusive Or of 6 and 5. The 6803 EOR
instruction performs this operation.

22

Complex Operations

ZBUG will calculate complex operations in this order:

+ DIV. mMOD.
v AND .
|GE1 rxﬂﬁl

ke

+EQU. .HEDQ.

You may use parentheses to change this order.

Examples:
a+4,pIy,2=

The division is performed first.
(4+4),DIV, 2=

The addition is performed first.
d=4.D1V.4=

The multiplication is performed first,

23

7/ Running the Program From BASIC

The finished product of your labors is an assembled.
debugged machine-code program. You can run this pro-
gram directly from BASIC as either a stand-alone pro-
gram or as a subroutine to your BASIC pragram.

The steps are:

From the Editor-Assembler:

1. Revise the program so that it will run as a rautine and
return to BASIC

2. Assemble the program on tape

From BASIC:
3. Load the assembled program with CLOADM
4. Execute the program

= as a stand-alone program using EXEC, or

- a5 a subroutine to your BASIC program using CLEAR
and USR

1. Revising the Program

Before you can use the program from BASIC, you need
to make a minor change to it. Change it to a routine
which, after executing, will return to BASIC.

In our sample program, the next to the last instruction is:
SWI
Load the program into the Editor and change that instruc-
tion to:
RTS
Now the program is actually a routine which YOU Can run
fram BASIC. (f you want to execute it again from ZBUG,

youll have to change RTS back to SWI or set a break-
paint before SWI and never execute it.)

So that your program is the same as ours, be sure that it
has an ORG $3F00 instruction at the beginning of the
program. This is the revised sample program.

ORG FAFOD
START LCA *E@FO

LD #5000
3CREEN STA it

CHMFH ®rESFF

ENE
RTS
END

SCREEN
DONE

2. Assembling the Program

Once the program is revised, assemble it to tape with this
command:

A SAMPLE [(ENTER
You are now finished with the Editor-Assembler. so you

may start-up the Computer without the EDTASM + ROM
cartridge or enter BASIC with the Q command.

3. Loading the Program

To load the program, prepare your recorder and type:
CLOADM (ENTER

Since we inserted an ORG $3F00 instruction in the sam-
ple program, you did not need to specify where in mem-
ory the program should be loaded. The program will be
loaded at memory locations beginning with 3F00 (dec-
imal 16128).

If your program does nat have an ORG instruction, your
CLOADM command will need to specify a loading
address. CLOADMAIG000 (ENTER!, for example, would
load the program into memary locations beginning with
16000,

4. Executing the Program

You can either execute the program as a stand-alone pro-
gram or as a subroutine.
As a Stand-Alone Program
Type:
EMEC 15128 (ENTER

The program will execute and return you to BASIC's OK
prompt.

25

7 / RUNNING THE PROGRAM FROM

As a BASIC Subroutine

This is the most popular way to use machine language
routines. When you need to do a task which is 100 slow
or impossible in BASIC, you can call a machine-code
subroutine. When the task is completed, it will return con-
trol to your BASIC program.

Type and RUN this BASIC program:
18 CLEAR Z0@. LE12E

28 DEF USRB=1G6128

3@ CLS

4B INPUT “"PRESS <ENTER> WHEN READY": A%
5@ A=USR{@)

G@ INPUT “WANT TO DO IT AGAIN"3 A%

78 IF A%="YES" THEN 20
RUN (ENTER

Normally BASIC can use any memory locations from
decimal 1536 to the top of RAM. This means it could pos-
sibly overwrite your machine-code program. Line 10
CLEARs an area of memaory from 16128 (which is hex-
adecimal 3F00) to the top of RAM, thereby restricting
BASIC from using this area.

Line 20 defines the originating address of the machine-
code program (USR) to be 16128. Line 50 calls the
subroutine.

Passing Parameters

If you want to send some data to your machine-code pro-
gram (we call this "passing a parameter’), you can sub-
stitute the “parameter” for the 0. For example:

A=USRLS}

BASIC

will call the machine-code program and pass the parar
eter of 5 to it. To get this parameter, your machine-cod
program will need to have these two instructions:

INTCNY EQU sB3ED
JSEk CINTCNW]

which calls a routing called INTCNV. (INTCNV is locate
in your BASIC ROM. along with other routines you ¢z
use. All the BASIC ROM routines are listed in Appena
E.) INTCNV will get 5. the parameter in your USR stat:
ment, and load it into the D register.

Your machine-code program can, in turn, return a parar
eter to your BASIC program by loading it in the D regist:
and then executing these instructions:
GIVABF EQU $B4F4
JSR [GIVABF]

GIVABF will set the variable in yvour USR statement,
this case A, equal 1o the contents of the D register.

For more information on passing parameters, see i
B809 assembly language hook we referenced in tr
introduction.

Note: to generate the [character, type BHIFT (e .
To generate the I type (SHIFTI(®).

Hints and Tips

- To save memory, use this formula to calculate the
originating address of your program: top of RAM
minus the length of the program (in bytes).

26

8/6809 Assembly Language

This is a brief reference section on programming the
G809 microprocessar, It will not teach you assembly lan-
fuage programming.

Newcomers to assembly language programming will
want to read:

Radio Shack Catalog No. 62-2077
by William Barden Jr.

Others, who want more information on the 6809 for tech-
nical applications, will want to read:

MCEE09-MCE809E

8 Bit Microprocessor Programming Manual

Motorola, Inc.

The 6809 Microprocessor

The 6809 Microprocessor is produced by Motorola, Inc.
It is an enhanced version of the MCS800 Microproces-
sor. Programs wnitten on the 6800 are upwards compat-
inle with the 6809,

Registers

The B809 Processor contains nine temporary storage
areas which you may use in your program:

| REGISTER SZE | DESCRIPTION
A 1 byte Accumulator
B 1 byte Accumulator
D 2 bytes Accumulator
(a combination
of A and B
' DP 1 byte Direct Page
5 1 byte | Condition Code
PC 2 bytes Program Counter
b4 2 bytes Index
Y 2 byteas [Index
) 2 bytes Slack Pointer
S | 2bytes Stack Pointer

Table 2. 6809 Registers

The A and B registers are for manipulating data and
doing arithmetic calculations. They can each hold one
byte of data. If you like. you can address them as D, a
single two byte register.

The DP register is for direct addressing. It will store the
most significant byte of an address. This allows the Pro-
cessor to directly access an address with the single,
least significant byte.

The X and Y registers can each hold two bytes of data.
You will use these registers primarily with indexed
addressing.

The PC register stores the address of the next instruc-
tion to be executed.

The Uand S registers can each hold a two byte address
which points to an entire “stack” of memory. This address
s one plus the top of the stack. For example, if the U reg-
ister contains 0155, the stack begins with address 154
and continues downwards.

The processor automatically uses the S register to point
to a stack of memory during subroutine calls and inter-
rupts. The U register is solely for your own use. You can
access either of these stacks with the PSH and PUL
instructions or with indexed addressing.

The CC register is for testing conditions and setting
interrupts. It is divided into eight “flags.” Many 6809
operations will “set” or “clear” one or more of these flags.
Other operations will test to see whether a certain flag is
set or clear. This is the meaning of each flag, if set:

C (Carry), bit 0 — an 8-bit arithmetic operation caused
a carry or borrow from bit 7.

V (Overflow). bit 1 - an arithmetic operation caused
a signed overflow.

Z (Zero), bit 2 the result of the previous operation is
=T

N (Negative), bit 3 — the result of the previous oper-
ation is a negative number.

I (Interrupt Request Mask), bit 4
interrupts will be disabled.

H (Half Carry), bit 5
caused a carry from hit 3.

F (Fast Interrupt Request Mask), bit 6
requests for fast interrupts will be disabled.

any requests for
an 8-bit addition operation

any

29

8 /6809 ASSEMBLY LANGUAGE

E (Entire Flag), bit 7 all the registers were stacked
during the last interrupt stacking operation. (If clear,
only the PC and CC registers were stacked).

The Assembly Language
Program

You may use four fields in an assembly language instruc-
tion: symbol, command. operand, comment. [n this
instruction:
START

LCA #sFd GETS CHAR

START is the symbol. LDA is the command. #3F3 is the
operand (we will discuss the meaning of the # and 5
signs later). GETS CHAR is the comment,

The comment is purely for your convenience. It is ignored
by the Assembler.

The Symbol

You can use symbols to define memory addresses or
data. The above instruction uses START to define its
memory address. Once defined, you can use START as
an operand in other instructions. For example:

BNE START
branches to the memory address defined by START.

The Assembler stores all the symbols. along with the
addresses or data they define, in a "symbol table.” rather
than as part of the "executable program.”

The Command

The command may be either: a "pseudo-operation. or a
6809 instruction.

Pseudo-operations control various functions of the
Assembler itself, such as defining labels, telling the
Assembler where to store the executable program, or
storing data in memory. They are not translated into 6805
machine-code and are not stored with the executable
program. For example;

NAME EQU 43

defines the symbol NAME as 43. This information is
stored in the symbol table.

ORG $3008

tells the Assembler to begin the executable program at
address 3000,

CYMBOL FCB 56

stores 6 in the current memory address and labels this

address SYMBOL SYMBOL and its corresponding
address are stored in the symbaol table.

G809 instructions tell the Microprocessor to carry out an
operation. They are translated into 6809 machine-code
as “op codes” and stored with the executable program.
Far example:

CLRA

tells the Processor to clear the A register. The Assembler
translates this into op-code number 4F and stores it with
the executable program.

All the pseudo-operations and 6809 instructions are
listed at the end of this section.

The Operand

The operand allows you to specify a memory address or
data. For example:
LDD =43000

lnads register D with 3000. The operand, #$3000, spec-
ifies a data constant,

The $ sign indicates that 3000 is a hexadecimal, rather
than decimal number. You must specity hexadecimal and
octal numbers with:

BASE | BEFORE NUMBER | AFTER NUMBER
HEXADECIMAL 3 | - |
| OCTAL | fa | Q |

Table 3. Hexadecimal and Octal Operands

For example, the Assembler interprets 17 as decimal 17;
$17 as hexadecimal 17; and 17Q as octal 17.

The Assembler treats the operand as part of the 6809
instruction. |t stores the operand with the executable
program.

Addressing Modes

In the above example, we used the # sign to tell the
Assembler and the Processor to interpret 3000 as data.
We can specify a different mode of interpretation by
omitting the # sign:

LOD +300a

which interprets 3000 as an address. The Processor will
then load D with the data contained in address 3000 and
3001,

Each of the 6809 operations allow you fo use ane to six
addressing modes. These addressing modes tell you
whether an operand is required to carry out the cperation
and which mode the Assembler and the Processor will
use in interpreting the operand,

30

EJIASM-

1. Inherent Addressing

There is no operand, since the instruction doesn't require
one. For example:

SWI
interrupts software. (No operand required.)

CLRA
clears register A. Again, no operand is reguired. The A
reqister is part of the instruction.
2. Immediate Addressing

The operand is data. You must use the # sign to specify
this mode. For example:

ACDA #530
adds the value 30 to the contents of the A register.
DATH EQU $50@4

LD #0ATA
loads the value 8004 into the X register

CHP #$1234

compares the contents of register X with the value 1234.

3. Extended Addressing

The operand is an address. This is the default mode of all
operands. (Exception: if the first byte of the operand is
identical to the direct page, which is 00 on start-up. it will
be directly addressed. This is an automatic function of
the Assembler and the Processor. You do not need to be
concerned witn it if you're a beginner.) For example:

JSR 1234
jumps to address 1234.
SPEOT EQU $1234
5TA SPOT

stores the contents of register A in address 1234.

If the instruction calls for data, the operand contains the
address where the data is stored,
LDA £1234
does not load register A with 1234, The Processor will
load A with whatever data is in address 1234. 1 06 is
stared in address 1234, register A is loaded with 08.
Ao0A %1234

adds whatever data is stored in address 1234 to the con-
tents of register A.

LGD $12324

loads D, a two-byte reqgister, with the data stored in mem-
ory locations 1234 and 1235.

You can use the = sign, which is the sign for extended
addressing, to force this mode. (See "Direct Addressing”,

Extended Indirect

The operand is an address of an address. This is a vari-
ation of the extended addressing mode. The [1 signs

=] to produce the 1sign.)

In understanding this mode, think of a treasure hunt
game. The first instruction, "Look in the clock” The clock
contains the second instruction, "Look in the refrigerator.”

Examples:

JER [$1234]
Jumps to the address that is contained in addresses
1234 and 1235. If 1234 contains 06 and 1235 contains

11, the effective address is 0611, The program will jurmp
to 0511
SPOT EQU $1234
STA [SPOTI
stores the contents of register A in the address contained
in addresses 1234 and 1235,

LOD [%1234]
loads D with the data stored in the address stored in
addresses 1234 and 1235,

This is a good mode of addressing to use when calling
ROM routines. For example, the entry address of the
POLCAT routine is contained in address AQQQ. There-
fore, you can call it with these instructions:

POLCAT EQU $A0E0
JSR CPOLCATI

If a new version of ROM puts the entry point in a different
address, your program will work without any changes.
4. Indexed Addressing

The operand is an /ndex register which points to an
address. The jndex register may be any of the two byte
registers, including PC. It may be augmented by:

- a constant or register offset
= an autoincrement or autodecrement of 1 ar 2

The comma (,) indicates indexed addressing.

As an example, we'l first load X. a two byte reqgister, with

1234:
LDY #%1734

We can now access address 1234 through indexed
addressing. This instruction:

STH ey
stores the contents of A in address 1234.
S5TA 34+Y

31

B/ 6808 ASSEMBLY LANGUAGE

—

stores the contents of A in address 1237, which is 1234
= 3. (3 is a constant offset.)

SYMBOL EQU %4

5TA SYMBOL » ¥
stores the contents of A in address 1238, which is 1234
+ SYMBOL. (SYMBOL is a constant offset.)

LDB ®g3

5TA B.X
stores the contents of A in address 1239 which is 1234
+ the contents of B. (B is a register offset. You may use
either of the accumulator registers as a register offset.)

5Th P+
This instruction does two tasks: (1) stores A's contents in
address 1234 (the contents of X) and then (2) increments

Xs contents by one, so that X will contain 1235.

STH
(1) stores As contents in address 1235 (the current con-
tents of XJ and then (2) increments X's contents by two to
equal 1237.

S5Th

(1) decrements the current contents of X by two to equal
1235 (1237 2) and then (2) stores A's contents in
address 1235.

As we said above, you can use PC as an index register.
In this form of addressing. called program counter rela-
tive, the offset is interpreted differently. For example:
SYMBOL FCB ()

LO#A SYMBOL +PCR

When this program is assembled, the Assembler SUB-

TRACTS the contents of the PC register from the offset:
i LDA SYMBOL-PCR »PCR

When it is executed, the Processor ADDS the contents

of the PC register to the offset. This causes A to be
loaded with SYMBOL.

This appears to be the same as extended addressing.
However, by using program counter relative addressing,
the resulting machine-code program is completely
relocatable.

Indexed Indirect Addressing

The operand is an index register which points to an
address of an address. This is a variation of indexed
addressing. For example, assuming that:

- the X register contains 1234
- address 1234 contains 11
« address 1235 contains 23

¢
!:-.""I'

i
¥ ==

 address 1123 contains 84
this instruction:
LDA Lo ¥
loads A with B4. (The X register points to the addresses

of the address. This address is storing 64. the required
data.)

STa LRl

stores the contents of A in address 1123. (The X register
points to the addresses, 1234 and 1235, of the effective
address, 1123.),

5. Relative Addressing

The Processor interprets the operand as a relative
address. There is no sign to indicate this mode. The Pro-
cessor automatically uses it for all branching instructions,

For example, if this instruction is located at address
0580:

BRA ¢Q5ES

The Processor will convert $0600 to a relative branch of
+ 5 (06800 - 0580),

As we said above. the Processor automatically uses this
mode on all branching instructions. It is invisible to you
unless you get a BYTE OVERFLOW error, which we'll
discuss below. Because the Processor uses this mode,
you can relocate your program in memory without chang-
ing any of the branching instructions.

The BYTE OVERFLOW error means that the relative
branch is outside the range of - 128 to + 127. You will
have to use a long branching instruction instead. For
example:

LBRA $PEQ0
allows a relative branching range of
+ 32767,
6. Direct Addressing

In this mode, the operand is half of an address. The other
half of the address is the contents of the DP register:

32768 to

DP REGISTER OPERAND
ADDRESS = | {most significant | (least significant
byteld bytel

Figure 7. Direct Addressing

The Assembler and the Processor use this mode auto-
matically whenever they approach an operand whose
first byte is what they assume to be e “direct page” (the
contents of the DP register). Until you change the direct
page. they both assume it is 00.

32

For example, both of these instructions:

JGR QD15
JSR $15

cause a jump to address 0015. In both cases, the Assem-
bler uses only 15 as the operand, not 00. When the Pro-
cessor executes them, it will get the 00 portion from the
DP register and combine it with 15. (On start-up, DP con-
tains 0, as do all the other registers.)

Because of direct addressing, all operands beginning
with 00, the direct page, consume less room in memory
and run quicker. If most of your operands begin with 12,
you might want to make 12 the direct page.

To do this you first need to tell the Assembler what you
are doing by putting a SETDF pseudo-operation in your
prugram:

SETOP
This tells the Assembler to drop the 12 from all operands

beginning with 12, That is, the Assembler will assemble
the operand “1234" as simply "34.”

%12

Then you must load the DP register with 12. Since you

can use LD only with the accumulator registers, you will
have to load DP in a round-about manner:

LDE rE17
TFFR B.:DP

Now the direct page is 12, rather than 00. The Processor
will execute all operands beginning with 12 (rather than
00) in an efficient, direct manner.

The Assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
be sure that the Assembler uses it or help document your
program by using the < sign, which is the sign for direct
addressing. For example, if the direct page is 12

JSR {$15
jumps to address 1215. This instruction documents that
the Processor will use direct addressing.
Likewise, you might want to use the = sign to force
extended addressing. For exampie:

JSR »81215
jumps to address 1215. The Assembler and Processor
use both bytes of the operand.

33

EUTASV-

9/Assembler Pseudo Operations

This iz a listing of all the pseudo operations and the syn-
taxes you should use in typing them. Addressing modes
do not apply to pseudo operations.

Definition of Terms

symbol
any string one to six characters long, typed in the symbol
field.

expression

any expression typed in the oparand field. See Appendix
C. ZBUG commands, for a definition of valid
ExXpressions.

Pseudo Operations
END

END expression

Tells the Assembler to guit assembling the program. You
can use the optional expression to specify the start
address of the program. For example:

EMD £3F0D

tells the Assembler to quit assembling the program and
to store its start address, 3F00, on tape. When vou
CLOADM the program, you will not need to specify the
start address.

EQU

symbo! EQU expression

Equates a svmbol to an expression. For example:

LGDRE EQU +3FER

causes LOOP 1 to equal $3F00. You may use LOOP1 as
data or an address.

EQU is helpful for setting the values of constants. You
may use it anywhere in your program.

FCB

symbol FCB expression

Stores an expression into memory at the current
address. The symbo/is optional. The expression may be

one byte long. For example:

DATA FCB £33

stores 33 1N address DATA.

DATAZ FCE $33+COUNT
stores 33 + COUNT in address DATAZ.
FCC

symbol FCC delimiter string delimiter

Stores an ASCII string into memory beginning with the
current address. The symbolis aoptional. The dafimiter
may be any character. For example:

TABLE FCC ITHIS IS5 A STRING/
writes the ASCII codes for THIS IS A STRING in memary
locations beginning with TABLE.

FDB

symbo! FDB expression

Stores an expression into memory beginning at the cur-
rent address. The symbo/is optional. The expression can
be two bytes long, For example:

DATA FOE $3322
stores 3322 in address DATA and DATA + 1,
ORG

ORG expression

tells the Assembler to originate the program beginning
with expression. For example:

ORG $3FRE0
causes the assembler to beqgin assembling the program
at address S3F00.

You may put more than one ORG command in a program.
When the Assembler arrives at the new ORG command,
it will beqgin locating program code at the new
EXpression.

RMB

RMB expression

Heserves expression bytes of memaory for data. For
example:

DATA RMB +0G
reserves B bytes for data beginning at address DATA.

35

9/ ASSEMEBLER PSEUDO OPERATIONS

SET
symbol SET expression

Sets symbolto be equal to expression. You may use SET
to reset the symbol elsewhere in the program. For
example:

SYMBOL SET $2500

sets SYMBOL equal to 3500. Later in the program, you
may reset SYMBOL;

SYMBOL SET $4300
now SYMBOL equals 4300.

SETDP

SETDP expression

Tells the Assembler that the direct page will be expres-
sion. Example:

SETDP 20
tells the Assembler to set the direct page to $20. You

musi also load the DP register with $20. See "Direct
Addressing” for more infarmation.

36

10/6809 Instruction Set

Definition of Terms

Source Forms:

This shows all the possible vanations you can use with
the instruction. Table 4 gives the meaning of all the nota-
tions we use. The notations in italics represent values
you can supply.

For example, the BEQ in structiar_- has hulcl source forms.
BEQ dd allows you to use these instructions:
BED $@B BED $FF BEQ $AD

Whereas LBEQ DDDD allows you these:
LBEQ $CEQE LBEQ $FFFF

Operation:

This uses shorthand notation to show exactly what the
instruction does, step by step. The meaning of all the
codes are also in Table 4.

For example, the BEQ) operation does this:

It (but only if), the zero flag is set. branch to
the location indicated by the program counter
plus the valve of the 8-bit offset”

Condition Codes:

This shows which of the flags in the CC register are
affected by the instruction, if any. As vou'll note, BEQ
does not set or clear any of the flags.

Description:
This is an overall description, in English, of what the
instruction does.

Addressing Mode:

This tells you which addressing modes you may use with
the instruction. BEQ allows only the Relative addressing
mode,

37

10 / 6809 INSTRUCTION SET

ABBREVIATION MEANING
| ACCA or A Accurmulator A
ACCBorB Accumulator B.
ACCAACCBor D Accumulator D.
ACCX Either accumulator A or
accumulator B.
CCR or CC Condition code register.
DPR or DP Direct page register
EA Effective address.
IFF It and only if.
X or X Index register X.
Yor¥Y Index register Y,
LSN Least significant nibble.
M Memaory location,
M Memary immediate.
MSM Most significant nibble,
PC Program counter.
H A register before the aperation.
R A reqister after the operatian.
| TEMP A temporary storage location,
| wxH Muost significant byte of any
location.
ok Least significant byte of any
location
Spor s | Hardware stack pointer.

Table 4. Notations and Codes

ABBREVIATION MEANING

Us or U User stack painter.

F A memory location with immediate,
direct, extended. and indexed
addressing modes.

0l A read-write-modify argument with
direct, extended and indexed
addressing modes.

() The data pointed fo by the enclosed
(16 bt address),

dd 8-bit branch offset,

poDD 16-bit offset.

| # Immediate value fallows.

5 Hexadecimal value follows.

[] Indirection,

Indicates indexed addressing.

. |5 transferred to.

Boolean AND.

W Boolean OR.

o Boolean Exclusive OR (X0OR).

Boolean NOT.
Concatination,
Arithmetic plus.
Arithmetic minus.
Arithmetic multiply.

Add Accumulator B
into Index Register X

Source Form: ARNX
Opearation: B X + ACCH

Condition Codes: o nffecied.

Description: Add the B-bd umsigned value in accumulator B
info irgdis regoter X

Addressing Mode: inherent

Add with Carry into Register

Soured Forma: ADCA 0 ADCE 2

Operation: B~ F + M ¢ C

Condition Codes:
H — Selif a hatl-carty s generated: cleared othensine
M — Sel if the resull is nenalve: cleared othenvss
Fi Lt i ther resull s 2o cleared otferwise

W Setif an overllow is generated: cleared otherwise,
C - Bet it a carry & generated, cleared olberwise
Description: Adds the contents of the C [earry) bl and the
MmEmory Syte mbo an B-bil accumiutsio:
Addreasing Modes: Immodiate; Extended: Diroet: Indoousd

Add Memory into Register

Source Forma: ADDA P, ADDS P

Chpmration: F- B« M

Condition Codea:
H — 5eif a hall-cary s goneraled; cleanad olharwise
M Set o the resalt e nicntve: clodna othesrogise
) et i the resull 5 2o cleared othirwise.

WV Sat if an owarflow 1S generated ceared othervise,
C — Set if a carry is generated; clearsd ctharwise.
Description: Adds the memosy Byle into an 8-
Al
Addressing Modes: Immedate; Extended. Direct, Indexed

Add Memory into Register

Source Form; ADDD P

Oparation: B H ¢ MM 1

Condition Codes:
H — Mot allecied
KN - Selif th resull is pegalve clagermg olhenwise
£ Sat il the nesult is rera: cleared atheraase

Vo Balilan overflow is generated; cleared otherwse,
C Seliacarry s genermted, clearsd othorwise
Description: Adds the 16-Dit memary value into th 16-bil
SCcyEmeintor.
Addressing Modes: mmediate; Extended: Direct: Indexed

Logical AND Memory
into Register

Source Forms: ANDA & ANDE £
Operation: R'- B 4 &
Condition Codes:
H - Mat aHected
Mo Setif the resull is negative: clearsd olfMerwise

L 50 if the reault s 2one: caared athenaisi,

Voo Always clesned

C — Not affected
Descripion: Peroms the logical AND operation between
the contents of an accumulator and the contends of memony
locatan M and the resulf is stored in the accumulator.
Addresaing Modes; Immediate; Extended, Direct: Indexed,

Logical AND Immediate Memory
into Condition Code Register
Source Form: ANDOD #xx

Operation: R™--R A M
Condition Codes: Aflected acoording o the ooorahion

Description: Ferforms a fagical AND batwesn the corditon
code register and the immediate bvie specfied in the
nstruction and places the resull in the condition code
Megistior

Addresaing Mode: iImmedizie

Arithmetic Shift Left

Saurce Forma: ASL O ASLA. ASLE

Operation: I::[| | , | |] ,
BT . bl
Condition Codes:
H — Lindebngd
Mo Set il the result is negative, cleared otherwisa
£ — Setil the result is zomg; cleared othensse,

|-_,

0

V o Loaded with the result of thi oxclusive OR of bils
S N0 seven of the angmal operand
C - Loaded with bit seven of the onginal operand
Description: Shitts all bds of the operand one place 1o the
left. Bit roro s loaded with a zem. Bit seven is shifted into
the C (earry) bit.
Addresaing Modes: Inherent, Extended: Diract; Indexed

AR A

AND

ASL

39

10 / 6808 INSTRUCTION SET

ALK

BEQ

BLE

BLT

BHI

Arithmetic Shift Right

Source Forms: ASR O ASRA: ASAS

operston: | T T T T T T [Jec
il

b
Condition Codes:
H Unoefined

M Setif the resull is negative; clearsd otherwise

L Setifthe resull is zarm; cleared othenveg,

W Mei affected

S Loaded with bif zero of the original operand
Description: Shifts all bits of the aperand one place o the
right. Bit seven is held constant. Bit zero is shifted inta the
i [carmy [it,
Addresszing Modes: Inherent Extendad: Diree? Indexaed.

Branch on Carry Clear

Source Forms: BCC ad LBCC DODOD
Ciperation:

TEWMP- MI

IFF C=10then P2 - PC o+ TEMP

Condition Codes: Mat affoct

Description: Tests the stale of fhe G lzamy) bit and causes 2
ararezh if it is clear,

Addressing Mode: Setative.

Comments: Equivalent ta BHS dd; LBHS DROD

Branch on Carry Set

Source Forms: BOS o7 LACS 0005
Operation:

TEMP-MI

IFF C= 1 than PC'+PC + TEMP

Condition Codes: Mot affecten

Description: Tests the state af the G {carry] bit ard causes 5
branch il it is sat,

Addressing Mode: Ralative

Comments: Equivalert to BLO od: LBLC DDOD.

Branch on Equal

Source Forms: BEQ do;, LBEC 0DD0
Oiperation:

TEMP+ bl

IFF Z =1 then PG PC o TEMP
Condition Codes: Mol alfeckd

Description: Tests the sfate of the 2 (zerod bit and causes a
bramch if it is et When used after a subiract ar compars
operation, this instruction will Branch if the compared valiyes,
signed ar unsigned, were exactly the same

Addressing Mode: Felatve

Branch on Greater than
or Equal to Zero
Source Forms: BGE oo LBGE D000
Operation;

TEMP- M

IFFIM & W] - Othen PO PC = TEMP
Condition Codes: Mot atectad

Description: Causes a branch if the N inegative) bit and the
W [pverfiow!) bit are either both set or both clear. That s,
branch if the sigr of a valid twos complement result is, ar
would be, positive. When used after a subtract ar compare
cReratan on twos complament values, thes rstrochion will
branch if the regester was greater than o egual to the
MEMCRy Opderand.

Addressing Mode: Relative

Branch on Greater

Source Forms: BGT oo LRGT 000
Operation:

TEMP+ A

IFF £ % IW == 0 then BC = PC0 TEMP
Condition Codes: Mot affected.
Description; Causes a branch if tha N inegative) bit and
W owerflow) bt are aither bath sel oe both clear and thie

Z lzerod bit 15 clear. In otber wards, branch if the sign of a
vidlsd bwos cormglesnant result is, or would be, positnee and
ot Zero When used after a suhiract or compsane operation
an beeas comalemant valuas, this nstructicn will branch il the
regester was greater than the memory operand

Addressing Mode: Relativa

Branch if Higher
Sowurce Forms: BHI o, LEH| DDOD
DOperation:

TEMP. MI

IFFIC w71 =0 then PG« PC 4+ TEMP

Condition Codes: Mot affected
Descriptlon: Causes a branch if the previcus aperation

caused nesther a carry nor & zero result, When used alier

subtract or compare cperation on unsigred Dirary values,
this instructan well branch o the reqimpr s f':-i_.i-"ll.'r than the
mEmory operand.

Addressing Mode: Helative

Comments: Generally nat useful aftor INC/DEC, LOTST,
and TSTAZLR/GOM insfructions

40

Branch if Higher or Same

Source Forms: BHS oo, LBHS DDDD
Ciperation:
TEMP-MI
IFF G = then PC~PC + MI
Condition Codes; Nat affected.
Deacription: Tests the state of the T (carmy] bet and causes a
branch if it is clear, When usad after 3 subtract ar compare

on unsigned hbirary valeas, 1His instruclian will branck i he
reqister was higher thar or the same as the mamory
CRerand.

Addressing Mode: Relative

Comments: This is a duplicate assembiy-languags
mnemanic for the single machine instruction BOC., Ganeralhy
not usaful after INC/DEC, LOWST, and TST/CLE/COM
inatructions

Bit Test

Source Form: BIT P

Operation; TEMP--R A\ M

Condition Codes:
H Mot alflested
M Sen il the resull is negative; ceared othenwiae
Fil Setif fhe rasull 15 pero: cleared athenwysn

VW Always clearsd

C — Not affected.
Description; Performs the logical AND of the contants of
accumulator & or B and the cortants of memony location M
and modifies the caondifion codeas accordirgty, Tha conterls
of accumulator A or B and memory locaticn M are nod
aftested.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Branch on Less than

or Equal to Zero

Source Forms: BLE o, LELE 000D
Operation:

TEMP- &1

IFE 2w [N -3 W= 1 than PC - PS4 TEMP
Condition Codes: Mot aflecied.

Description: Causes a branch i the exclusive OF of the M
iregativie] and W (overfiow) bits s 1 or il the Z (zero) bit is
cab. That s, branch f e sign of & valsd bewas somalemen
resull is, ar would be, megaties. When esed aller a subtras]
ar cormpare operatan on beos complerment values. this
instruction will branch il the register was less than or egual
163 T rmesmiey operand.

Addressing Mode: Halafive.

Branch on Lower

Sowurce Formas: BLO da; LELD DDO0
Operation:
TEMP-- kil
IFF =1 then PC+-PC + TEMP
Conditlon Codes: Mot affected.
Description: Tests tha state of the C (carmy) bit and causes a

beanch il if & st When used after a sulitract or compsare on
unsgned bnary values, this instruction will branch if the
registier wos lower than the memory oparand

Addressing Mode: Bolative

Comments: This is a duplicate assembly-langueage
magmonic foe the single maching instruction BCS. Genarally
not usedul after INC/DEC, LOVST, and TST'CLR/COM
INSENeShions

Branch on Lower or Same

Source Forms: BLS od; LBLS o000
Operation:
TEMP:- b
IFF (G w 21 =1 then PC'= PC | TEMP
Condition Codes: Mot affecied.
Description: Causes a branch if the previous soerabicn

caused aiftwr a carry or a Zerc result. When used afler a
subtract ar comp<ares oparatian an unsigned benary values,
this inatruction will branch if he regustor was lower tban or
the same as the memary operand

Addressing Moda: Helatna,

Comments: Generally nod wsaful atter INC/DEC, LOVST, and
TSTCLRAGOM instructions.

Branch on Less than Zero

Source Forms: BLT do; LBLT Do
Crperation:
TEMP= M
IFF [M & T =1 then PC*-PC +« TEMP
Condition Codes: Mot afectad.
Dascription; Causes a branch if either, bul not both, of 1he

M (neqgativel o V loverfiow) Dits is set That s, branch d tha
sign af & vald twos complermsent result 1S, o would be,
negative. When used after a subtract or comaare coeration
oo fwis complement binary values, this instruochan will
branch if the register was kess than the memary operand
Addressing Mode: Relabne,

Branch on Minus

Source Forms: BM| o, LEMI OD00O
Operatlon:
TEMPF- MI
IFF M = 1 then PC - PG + TEMP
Condition Codes: Not affectad,
Description: Tests the state of the N (negative) bit and

causes a branch if sat. That is, branch if the sign of the beos
complemeant result s negative

Addresaing Mode: Relative

Comments: When used after an cparation on signed Dinary
values, this instruction will branch if the resall is minus, IE s

fenerally preferred 1o use the LELT instruction atter signed

aperatons

ELASNV

BIT

BLE

BLO

BL

LI}

BLT

BMI

41

10 / 6809 INSTRUCTION SET

GNE

BPL

UL

CHMP
{B-Bit)

Branch Not Equal

Source Forms: BNE o) LEME 000D
Crperation:

TEMP+ M

IFF Z =0 thart PC' PC + TEMP
Condition Codes: Mot affecied.

Description: Tosts the stafe of the Z (zeral bit and causes o
oranch it s clear. WWhen used afer a subtract or cormpane
operation an any bnary vabues, this instructan will branch

if the registes o, of would be. nat equal o the memorny
coaranc

Addressing Mode: Relativa,

Branch on Plus

Source Forms: HPL off; LBFL D000
Operation:
TERMP- M
IFF M= then PC'= PC + TEMP
Condition Codes: MNat affected.
Deacription: Tests the state of the N (negatival b and

rauses a branch if it is clear, That s, branch it the sign

ot the twrs compiement resul s postwe

Addressing Mode: Relative

Comments; When used after an operaton on signed Bingsry
vahies, this instruction witl branch if the result (possibsy
inalich s positee, s generally preferced 1 ose (b BGE
matruchan atter sgned operabions

Branch Always

Source Forma: BEREA od; LER& DOO0
Operation:

TERMP- MI

PC-PC - TERP

Condition Codes: Mol affected
Degcription: Causes an unconditiconal branch
Addressing Mode: Relative

Branch Never

Source Forms: BEN oo LERN D00
Dperation; TERP- M|
Condition Codes: Mot atiectan

Description: Does not cause a branch. This instruction is
esmentially A no opaeratian, but has a bt pattern logically
ralated 1o branch always,

Addressing Mode: Relative

Branch to Subroutine

Source Forms: BSE oo, LBSRE DOOOD
Operation:

TEMP--MI

S5PsP 1, 15PL PCL

5P 5P - 1, (5P PCH

PC- PG | TEMP

Condition Codes: Mot atected.

Dreacription: The program counier is pushed coto the stack
The program counter is then Ipaded with the Suem ol e
program counter and the offzet,

hddressing Mode: Relative,

Comments: A refum fram subroutine IRTS! instruchan is
used to revssse this process and mos! b e last instruction
pxecuted ima subrautne

Branch on Overflow Clear

Source Forms: BVE &7 LEVE 0000

Crperation:

TERP- M

IFF % - O then PG PG - TEMP
Condition Codes: Mot affecied

Description: Tests the state aof the W lovarflow? bit and
causes a branch if it is clear, That 15, Branch if the beos
complement result was valid. When used after an operation
an bwos complement Dinary walues, this nstruction wibl
branch if there was no overliow,

Addressing Mode: Relative.

Compare Memory from Register

Source Forms: CMEA & CMPE &

Operation: TEMP- B M

Condition Codes:
H Lindefined.
M — Sei if the result is negalive, cleanesd ctherwise
7 Setif thes resullis zerg: cleansd otfherwise

Voo S if an overflon s generated; cleared otherwise.

L Selif a borrow is generated; cleared albarwise
Dascription: Compares the comtents of memory location
for the contents of the specified registar and sets the
apprapriate condition codes. MNeidher memory location M nor
the spenified regizter is madified. The carry lag represents &
borrow and is sat 10 the inverse of the resulling binary carry
Addressing Modes: Immediate; Extended, Direct; Indexed

42

Compare Memory from Register

Source Forms: CTMPD P CMPX P, CMPY P, CMPU P,
CMPS P
Cperation: TEMP-R — W& 4 1
Condition Codes:
M Mot zflected.
M Serif the resull is negative; cleared atherwise
£ Setifthe resullis zaro; cleared otherwise,
Vo Setif an overflow is generated; cleared athenwise

L Set il a borrow is generated; ceared otherwise,
Description: Compares the 15-bit comtents of the
concatenated memory locatons MM + 1 1o the contents
of the specified register and sots the appropsiate candition
codes, Meither the memary lacations nor the specified
register is madified uniess autoincrement or autodecrement
are used. The carmy flag represents 3 borrow and is 2et 1o
the inverse of the resufting binary camy,

Addressing Modes: Immediate; Extended: Diract: Indexad

Complement

Source Forma: COM 00 COMA; COMEB
Operation: M+ 0+ M
Condition Codes:
H — Not affected.
M — Sel il the resull is negative; cleared otherwise.
2 — St il the resull is rero; cleared othepsisa,
Vo Alwis clearad
G Ahways sol

Description: Replaces the contents of mamory Incation M
oF accumulator A or B with its lbogical complement, When
operaling on unsigned values, orly BED and BNE branches
can be expecied to behave praperly following & SO
nstruction. When cperating on twos complement values,

alf signed branches are available.

Addressing Modes: inherent: Extended:; Direct: Indaxed.

Clear CC bits and Wait
for Interrupt

Sowrce Form: CWal 25X MH_!_ _I J_N | 3 - 'l..’l g

Operation;
CLR-COR A MUPossibly clear masks)
el E dentire slale saved)
SR SR 1, (SPL-POL
SP. 5P 1, (SP. BE
SF-SP 1, (SP-USL
P 5P - 1, (3P)- LISH

5P 5P - 1, (3P 1YL
P8P - 1, (5P IYH
S SP -1, (5P XL
SP—5P - 1. (5P |XH
SP%W 5P 1. 15F. DPR
SP--5P- 1, (5P AGCHE
SP- 5P 1, (5PR- AGCA
P 5P 1, (5P CCH

Condition Codes: Affected according to the operation

Description: This instruction ANDs an immediate byhe with
the conditan coda register which may clear the iMerupt
rmask bits | and F, stacks the entire machine state on the
hardwsare stack and then looks for an interrupl. When a
non-masked intarrupt accurs, mo further machsne State
information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MOS800 CLI
Wal sequance, but does Not place 1he buses in a high-
mpedance state, A FIRG (fast interrupt request) may enter
its inferrupt handler with its entire machine state saved. The
RTI resturn from intermupt) instruction will automatically retum
the: entire maching state after 1zsting the £ (entira) bit of the
recovered condition code regisier.
Addressing Mode: Immediate.
Comments: The following immediate values will have the
fellonaiirg Fessults:

FF - anabla neither

EF - anable IR

BF - erabla FIRD

AF —enable bath

Decimal Addition Adjust

Source Form: Das
Operation: ACCA - ACCA « CF (MSNLCFILEN)
where CF is 8 Corection Factor, as fallows: the CF far each
nigble (BCDY digil is deterrmened soparatedy, and is either
Bor Q.
Least Significant Nibble
CFLSM)-BIFF 115 -1
ar 21 LSM -9
Most Significant Mibble
CHRMSMI -G IFF 115 -1
ar 2V MSM =8
or ¥ MEM -8 and LSN -39
Condition Codes:
H — Nat aflected

Sat if the result is negative: cloared atherwise

Sat if the result is zero: cleared atharwise.
Lndedined,

Set if a carry is generated or if the carry bit was set
befare the operation; cleared otherwise,
Description: The sequence of a single-byte add instruction
an accumulator A {either ADDA ar ADCAL and o follawing
decimal addston adjust instrection resulis in a BCOD additian
with an appropriate carry bit. Both values 1o be added must
be in proper BCD form (each nibble such that: 0= nibble=)
Muitiple-precision addition must add the carry generated by
this decimal addition adust into the rext higher digit during
the add oparation (ADCAY immediataly pricr ta the nexg
decmal addition adjust,

Addressing Mode: Inherent

[g

EJiASM-L

CMP
(iB-Bit)

COM

CWAT

43

10 / 6809 INSTRUCTION SET

DEC

EOR

I
5

INC

Decrement

Source Forms: DEC Q; DECA: DECE
Operation: M« M 1
Condition Codes:
H Mt aflacted.
Mo Setif the resalt is negative; cloared athenwise:
P Sed if b resualt s zero; cleared othersise.
Vo Setif the arigmnal operardd was 10000000 cleared
athensise,

C — Mot affected,
Description: Subtract one from the operand. The carry bit
is not affected, thus allowsng this nstruction to be used as
a aop countes o mulliple-peecescn compulations. Whan
operatng on unsigned values, only BED and BME branches
can be expected 1o behave consstently, When oparaling an
bwos cormplermant valees, all signed brarches are availabla.
Addressing Modes: Inberent;, Latended: Direct; Indexed.

Exclusive OR

Source Forms: EQORA P EORE &
Crperatiom; ' B M
Condition Codes:
H Mat aftected,
M Setif tha result @2 negative: cleared athepasase,

il Set it the resull is zam; cleared otherwise.

W Alveays cleared.

G hot atfected
Description: The contants of memary location & s
axclusive ORed into an 8-hit register.
Addregsing Modes: Immediate; Extended; Direct; Indexed.

Exchange Registers

Source Form: EXG F1.H2

Operation: B1- -H2

Condition Codes: Mol affected lunless one of the registers
s the cordifion oo ragster)

Description: Lachanges data between two desigrated
registers. Bits 3-0 of the postbyte define ane register, while
Bl P-4 dedine the odhear, s follows:

aoia-y 1010 - CCR
01t - LS 1011 - DFAH
Q0a-5P 1100 - Lindefined
101 = PG 1101 = Undefined
0110 - Undelined 1110 = Lindefined
31171 = Undefined 1111 = Undefined

Only lika size registers may be exchangad. (B-bDit with

ood0 - &8 1000 = A &-bit or 18-hit with 18-hit.]
00d1 =X 1001 -B Addressing Made: Immediate,
Increment

Source Forms: INC O; INCA: INCEB
Operation: B M 41
Condition Codes:

H Mot afectad.

Z— Mot aflected,
Degcription: Adds to the operand. The carry bil is not
affected. thus allcwing this instructon 1o be used as a lbop
counter it mulbiple-precision computations. When oparating
o unsgned values, only the BEQ and BNE branches can be

Mo Satif the result is negative; cleared otherwise aupected (o behave consistently. When oparating an twas
2 Satif the result is rero; clearsd ctherwise camplamenl values, all sigred branches ara corractly
YW Satif the anginal operand was D1111111 avanlabda,
ciaared ptharwise Addressing Modes: Inharent; Estended: Direct, Indexad
Jump

Saurce Form: JMP EA
Dperation: PC- £A
Condition Codes: Mot atected,

Description: Program controd 15 fransterraed 1o the etective
address
Addressing Modes: Extended, Direct, Indexed,

Jump to Subroutine

Source Form: JSF EA
Operation:
SP'—-5P -1, (BPL-PCL
5P+ 5P - 1, (5P--PCH
PC--E&

Condition Codes: Mot affected,

Description: Program control & fransferred o the effective
acdress after storng e return adodress an the Rardwane
stack. & BTS nstruction should boe the Bst executed
instruction af e subraufine,

Addressing Modes: Extended; Direct, Indexed.

Load Register from Memory

Source Forms: LOA 7 LDB &
Operation: B+ &4
Condition Codes:
H Mol atlecled
W Sat il the loaded data s negatae; cleared
Gl e

L — Setil the loaded data is zeny cleared atherwise

W — Ahways clesared,

Mot attected.
Description: Loads the contents of memary location M inia
the: designated register.
Addreseing Modes: Immeadiate; Extended: Direct; Indexed.

44

Load Register from Memory

Source Forms: LDD P, LDX P, LDY &, LDS A LDU P
Operation: B’ MM + 1
Condition Codes:
H — Mot sffected
M — Setif the laded data 15 negative; clearsd
atherwise

L Setif the Inaded data is zero; cleared othensics,
W o— Alwavs cleansd.
C — Mot affected,
Description: Load the contents of the memory location
KM = 1 into the desigrated 18-bit register,
Addressing Modes: Immediate; Exterded: Direct: Indexad

Load Effective Address

=ource Forms: LEAX, | EAY, LEAS, LEAL)
DOperation: H'--EA

Condition Codes:
H Mat afectad
M Nat affectad

Z — LEAX, LEAY: Set if the result 1s 2er0; cleared
atherwise. LEAS. LEALL Not affecied

W Mat afected

G — Naot affected
Description: Calculates the effective sddress from the index
acdressing mode and places the address n an indexable
recjister,
LEAK and LEAY affect thae Z (zera) hit to aliow use of
these reqistars as counters and for MCEBAD INX/DEX
crmpatinility
LEAU and LEAS do net affect the 2 bit to allow cleaning up
the stack while retuming the £ bi as a parameter o a calling

routing, and also for MCEEDD INS/DES compatibdity
Addressing Mode: Indexad

Comments: Due to the arder in which effective addresses
are cakculated infernathy, the LEAX, X+ 1+ and LEAX. X + do
notacd 2 and 1 respectively? 1o the X register; but nstead
lpave the X register unchanged. This also apples to the

¥, U. and S registers. For the expected resulfts. uso the
laster instruction LEAX 2, X and LEAX, 1, X

Some mxamples of LEA instructon uses are given in the

following table.

Instruction Operation Comment
LEAY 10, % X=-10-¥ Adds 5-bit constant 10 to X
LEAX 500, X X-+500 X Adds 16-hit constant 500 1o X
LEAY ALY YeA-Y Adds 8-bit accumulatar oY
LEay OY Y+0-% Adds 18-hit D accumulator to ¥
LEALF 10, L U -10- U Subiracts 10 from U
LEAS -10.5% 5-10-5 Usedto resene anes an stack,
LEAS 10,5 3+10-5 Used to clean up stack.
LEaX ES BE+E5-X Transfers as well as adds.

Logical Shift Left

Source Forms: LSL O; LSLA; LSLE

opwnvor: -] T [[[[T }o

N

Condition Codes:
H — Undefirad.
M — Sat if the result is negative; cleared atherwise,
£ — Sat it the result is zero; cleand atharwisa.

WV Loaded with the result of the axclusive OR of bits

six and seven of the onginal operand.

C Loaded with bit seven af the original operand
Description: Shifts all bits of accurnulator & or B or memory
lacation M are place to the lall Bit zem is baded with a
zera, Bit seven of accumulator & or B or memary [ocation b
i shitted mnta the G (carrye] bil.

Addressing Modes: Inherant: Extended; Direct; Indexad.
Comments: This is a duplicate assembly-tanguage
mnemams 1of i singlae machine instrection ASL,

Logical Shift Right

Source Forma: LSR O LSRA& LSRR

oparston: 0 | | | |]]] Jc

b7 Bl
Condition Codes:
H Mot affected

Mo Always cleared

£ Setil the resull is zero; cleared atherwise

W Mot affected

C - Loaded with bit zero of the original operand.
Description: Perorms a logical shift right on the operand
Shifts a zero into bit seven and bit zero into the G toarmy) bit
Addressing Modes; Inherent; Extended: Direct Indexsd

Multiply

Source Form: MUL
Cperatlon: ACCAADCH - ACCA = ACCE
Condition Codes:
H — Mol affacted.
N Ml affectod.
2 — S if the result is 7aro; cleared otheawiso,
WV — Moi affectad.

G — Set f ACCE bit 7 of result s set; cleared othensmsea,
Description: Multiply the unsigned biary numbers in ihe
accumulators and place the result in bath accumulatoss
.'.ﬁ.l::;ﬁ. confaims the most-significant byite of the resuln.
Linsigned multiply allows multiphe-precision operations
Addressing Mode: Inherent,

Comments: The C (carmy) bit allows raunding the most-
significant byle through the sequanca: MUL, ADCA &0,

EJiASM-+

LD
(1b-Bit)

LEA

Lol

Lok

MUL

45

I0/ 68B09 INSTRUCTION SET

NEG

NOP

OR

FSHS

PSHU

Negate
Source Forms: MEG O NEGA: NEGR
Operation: W'« 0 M
Condition Codes:
H Linchlined,
M — Zetil the resulf iz negathve: cleared alhenaise
L — et the meault is 2org; cleared otherwise:
Vo Set i the esiginal operars was 10000500,

C — Setil aborrow is genemied. ceared plherwise
Description: Heplaces the oparand with its fwos
comglement, The C (carry) bit represents a barrew and is el
to the iverse of the resulling banary carry, Note that 80, i
replaced Dy Msell and anly in thes case s the v (overflow? bit
set. The value 00, is alsa replaced by deelf, and only in this
case i the C lcary) bit clsared
Addressing Modes: iInherant, Extended: Diract

No Operation

Source Form: NOP
Operation: Not affected

Condition Codes: This instruchion causes only the program
countes 1o e mcremented. No ather rgistens or mamory
lacations are atfecied

Addressing Mode: Inherent

Inclusive OR Memory
into Register

Source Forma: ORA P OHB P
Cperation: R- B v M
Condltion Codes:
H - Not pllected.
N oo Sat i the el is negative; clesred offonsize

£ Satf the result is zera; cleared otherwise

¥V Alwiays cleared

C — Mot affectsd
Description: Performs an inclusive OR operation Detwaen
the conlents ol aocumullos A ar B and the contends of
mermary Bcaban b and the reault is slared in secumulaton
&or @
Addressing Modes: Immediale Extendec: Direct Indexad

Inclusive OR Memory Immediate
into Condition Code Register

Source Form: ORCC & XX
Cperation: B's Ry W
Condition Codes: Allected accordng 10 (he operation

Description: Pedorms a0 inclusive OR apemiton Detwaen
the contents of the conditon code registers and e
mmediate value, and the result is placed in the condition
code register This mstruction may be used 1o set mbemugt
masks (thisabla nférrupts) or any ather bit(s)

Addressing Mode: Immatiate

Push Registers on

the Hardware Stack
Source Form:

PSHS register hst

PSHS # LABEL

Foatbyte:

b7 bS b& b4 b3 b2 b1 b0

[Pe]ul¥ TxJor[BTA[cg)

oush ofder -

Cperation:

IFF bF of posthyte sel, then: SP--5P - 1, (5Pl PCL
SP--8P - 1, (ISP PCH
IFF b6 of postbyie sel, then: 5P 5P - 1, (5P USL
S 5P 1 (5P USH

IFF b5 of posttyie sel. then: SP™: SP 1, (SP)L 1YL
SP'- 8P - 1, 5P IYH
IFF b4 of postdyte set. then SP'. 5P 1. (5P IXL
SP--8P - 1, (SP.-[XH
IFF b3 o pasibyie sat, than: 3P 5P 1 (SP). DFR
IFF b2 of posthyle sot. then: SP--SP . 1 ISP ACCB
IFF b1 of postoyte set. then: SP'--SP 1, (SF. ACCA
IFF b0 of posthyte 5ot then: SP'. 8P 1. (SPM COR
Condition Codes: Not affected,
Description: All, some. o noni of the processar registers
are pushed prlo the hargware stack lwith the exception of
the hardware stack pointer dsald)
Addressing Mode: |Immaedats
Comments: & single register may be placed on he stack
with the condition codes set by doing an autodecrament
shore onto the stack (exarngle; STX, Sl

Push Registers on
the User Stack

Source Form:
PSHU registor st
PSHLU # LaEEL
Postbyie
b7 b6 b5 b4 b3 B2 Bt bO
(Pclu] ¥ x[or] 81 Joc]
push order -

Operation:
IFF b7 of posibyte sel, thene US'-US 1, [USk PCL
WS- Us 1, (USk PCH
IFF b5 of posibyte set. then: US--US 1, (USk SPL
us Us- 1. (Usk SPH

IFF b5 af postbyte set, ther; US> US 1, (USk YL
LS U5 1, (USk IYH
FF b2 of postbvie sel, theme US - US 1, LSk IXL
LS LS -1, (US)s IXH
IFF 03 of postbyte aet, then: US'- US - 1, (US OPR
IFF b2 of posthyte set, then: US - US 1, (USk ACCE
IFF b1 of postbyte set, ther; US» US 1, (USk ACCA
IFF b0 of postbyte sel. then: US'- US- 1, (US)- CCR
Condition Codes:; Mat aflected,
Description: All, some, or none ol the processor rislers
are pushed onto the usar stack (with the exception of the
usar stack painter isef),
Addressing Mode: Immediate
Comments: A single registar may be placed an (b stack
wilth the condition codes set by doing an aulodesremeant
stone onto the stack (enamole; STX, W)

46

Pull Registers from
the Hardware Stack

Source Form:
PULS reqistar list
PULS #LABEL
Pastbyte:
b7 b& b& b4 b3 b2 bt bO
pclu[v [xJor[B] acc]

pull prder

IFF b& of posthyte sel, then: YH' - (SP), 5P« 5P 4+ 1
L' (5P, 5P'+-5P + 1
IFF bE of posthyte set, then: LISH' - (SP), 5P'--5P + 1
LUSL" - (8F), S5FP'-8F +1
IFF o7 of postoyte set, then, PCH® - (GP), 5F'--3P +1
PCL" - (&P), SP«- 8P + 1
Condition Codes: May be pulled from stack: not affected
oihersise.

Oiperation: Description: All, some, or none of the processor registers
IFF b0 af posibyte set, then: COR™ —{5P), SF'--5F + 1 are pulled from the hardware stack (with the excepticn of the
IFF b1 of postbyte set, then; ACCA'- (B3P, 5P 5F + 1 hardware stack pointer itself),

IFF b2 of postbyte set, then; ACCE--[3P), 5P'- 5P + 1 Addressing Mode: Immediate.

IFF b3 of postoyte set, then: DPR' —(3P), GP'--GF « 1 Comments: & single register may be pulled From the stack

IFF bt of posthyte set, then: IXH® + (5P, SP'--5F + 1 with condition codes sat by doing an aubaincrement koad
XL (5P 5P —5F + 1 from the stack (example; LOX, S+ +),

Pull Registers from

the User Stack

oL R IFF b5 pf postbyie set, than: [YH" - (US), US'-LIS &1
PULLI register fist . = TL], Tl 41
FULL #LABEL IFF b of postbyta set, then: SPH' (LIS, LIS'--LIS + 1
Posttyie: SPLY - US)L US--LIS 1
o7 b bS b4 b3 b2 b1 b0 BEdab o ey i R

T o : i e Ll
[re[ulv [xJor[8] A Jec] Condition Codes: May be pulled from stack, not affected
« pull proer atharwise.

Operation: Descripticn: All, some, o none of the processor registers
IFF B af postbyte set, then; DORY (LIS LIS LIS + 1 are pulled fraom the user stack Dwith the excaptian of thae user
IFF bt of postbyte set. then: ACCA' (LISL LS LIS+ 1 stack pointer itself),

IFF B2 af postbyte set, then, AGCE - (LIS LIS LIS + 1 Addreasing Maode: Immediate.

IFF b of postboyie set. then; DPRY - (USE LIS- US+1 Comments: A single register may be pulled from the stack

IFF b4 of postbyie set, then: XH' - (USE US> US + 1 with condition codes set by doing an autoincrement Ioad
L« (S LS US i from the stack (examphe: LOXU - +1]

Rotate Left

Source Forms: ROL () ROLA; H_D'-I—E M — Sat if the resull is negative; cleared othersss,

: IL. I 7 Set if the result is zero; cleared otherwise,

Operation: W — Loaded with the result of the excluswe OF of bits

| six and seven af the original operand.
: C — Leaded with bit ssven of the original aparand
oy i ¥ Description: Rotates all bits of tha operand one place let

Condition Codes: thrawgh the C (carry! bt This is a S-bit rofation
H — Not affected, Addressing Mode: Inherant, Extended: Direct; Indexsad.

Rotate Right

Source Forms: ROR O: RORA: AORE

I?l . MW — Sat if the result is negative; cleared atherwise.

Operation: L= Z — Set if the result is zerm; cleared atherwise

T | | VY — Mot affected
| | | I [C — Loaded with bit zero of the previous operand
b7 . b0 Dwscription: Fotates all bita of the cperand one REace rghit
Conditlon Codes: through the C {carry) Bt This is a 2-bit rofation.

H — Mot atfecied.

Addressing Modes: Inherent, Extended; Deect, Indexed,

EJiASMVE

PULS

PULL

ROL

ROR

47

10 / 6808 INSTRUCTION SET

RTI

K19

nBL

SEX

£
I

iy

foned «

=3
(1B-Bit}

SUB
(B-Bit)

Return from Interrupt

Source Form: BT
Operation: CCH" - (5P, 5P S« 1, thea
IFF CCR Bit E is se1, thery ACCA'- [SP), SP'- 5P
AGCES [SP), SR 5P 4
OPR' - (SPL SP. SPy
MH" - (5P 5P 5P ¢
¥L" - {5F) 5F. 5P

YH' (5P, SP'--5P 4 1

ML® - (SPL SP- SP

LUSH + (SEY SP- SP
USL' ~(8F), 3P 5P |

= EE 8

PCH « (SP), BP'« SP 1
PCL" « (5P, B8P 5P)
IFF CCR 5t E is clear, then: PCH' « (SP), SP'--SP « 1

PCL' -(SP), SP'-5P 1
Condition Codes: Recovarad from the stack,
Description: The sivied machae state is recovened from the
hardwane stack and control is returned to the nterruptiod
program. If 1he recaverad E (entire] bitis clear, indichbos
tnat anly & subset of the machme stale was saved refurm
idress and condibon coces) and only that subset is
rsCovered,
Addressing Mode: Inherent

Return from Subroutine

Sourco Form: RTS
Dperation:
PCH (5P}, S5P'+-SP 11
PCL - [SP), SP- 5P« ¢t

Condition Codes: Nol affecied

Descriplion: Prograem contral is refumed from the
subrouting 1o 1he callng program. The return address
i pulled from the sinck.

Agdressing Mode: Irharent

Subtract with Borrow

Source Forms: SBCA £ SBCH @

Operation: R'- 8 M -G

Condition Codes:
H Undafinied,
N Seld the resull is negative: cleared otherwise
z Sef 1! e result o rern cfoaned oo

Vo Setd an overfiow is gonemted: cleared otherwice

GGt I a borrew is generited: cleared othenwise,
Description; Zubtracts the caiten:s of memary locatian M
ard the borow Gin the C carmy) Bt fram the conlents of the
designased 3-0it register. and places the resull i# hat
register. The G D4 represents a borrow and 19 set 1o the
mverse of the resulling binary carry
Addressing Modes: Immediate Extended: Diroct Indexed

Sign Extended

Soured Form: SEX

Operation:
I hit seven of ACCE ig sat then ACCA's FF,,
Blga ACCA'= DD,
Condition Codes:
H - Not offected

N — Set if the resull i negative; cleared athensise

Z Setit the rasult is 2er0, cleared otherwice

W Mol atiected

G — Not afectod
Descriplien: This instruction transforms a twes complament
8:bit value @ accumulator B nto 2 twas complament 18.5it
wile in i D acoumulaton
Addressing Mode: Inherent

Store Register into Memory

Source Forma: STA A STB P
Operation: M - R
Condition Codes:
H Mol affecied,
N - Set il the resull is negalves: cleaprnd olharvse

Z - Satif the rosyit is ram; cleased athersse.

Vo Always cleared,

- Not allectird
Description: Writes the contents af an B-bit register into a
memeey [ocaticon,
Addressing Modes: Extended: Direct Indexieg.

Store Register into Memory

Sourca Forma: STD P, STE P. STY P.5TS A, 8TU P
Operation: MM« 1"~ R
Condition Codes:

H - Mol atlected

M Setd the result s negatve: ciEared othersse

£ —Set il the result is 2oto; ceared otherwize

Y — Always claaned

G — Not affecied
Description: Writes the contents of a 16 bit register im0 two
consecubve memeey locafions
Addressing Modes: Cxtended: Direct Indexed.

Subtract Memory from Register

Source Forms: SUBA & SUBE P

Oparation: B'- B W

Condition Codes:
H Lindefined.
M Setd the rasull is negatve; cleared otherwse,
Z St d the resull is zerod cleaned otherwise

V — Sal i the overfiow is generated. cleared otherwise
C — Sat if a barrow is generated: cleared oiterwise
Description: Sublracts the value in memoey locastian M from
tht conients of a desgnated 8-bil regater The G (oary? bit
reoresents a bormow and i set to the inverse of the resulting
Eenary carry,
Addressing Modes: Immediate; Extended; Direct Indexed.

48

Subtract Memory from Register

Sourca Forms: SUBRD P

Operation: B'- B - MM+

Condition Codes:
H MNot attecied.
M Satif the result s negative; cleared atherwise.
7 Satf the result o zerd clearsd otheraise

Vo St i the overfiow s generated; cleared athenase,
G Setil a borrow is genermted; clearad olberwiss
Description: Subiracts the value in memory locaton
A M 4 7 Froem the contents of a designatad 16-hit regester
The C (carry] bit represents & bommow and is set ta the
inverse of the resulting binary carry,
dddressing Modes: Immediate; Extended; Direct Indexed.

Software Interrupt

Source Form: SWI

Oparation:
Sat E laniire state will be saved]
P52 1, (5P»PCL
SPp—52 1. {5PW PCH
CR'- 5P - 1. 15F). LISL
SP-SP 10058 LISH
SF—5P - 1, (5P YL
S5F5P - 1, [SP)-I¥H
SP'--5P - 1, [SPI1- XL
SP'--SP - 1, (5P IXH

SR 8P -1, (8PL-DPR

2P-5F -1, (SP-ACCEB

SP-SP - 1, (BPY-ACCA

SP. 5P -1, (BP--CCR

Sat |, F Imask interrupts)

PG - IFFFAL{FFFE]
Condition Codes: Mot affectan
Description: All of the processor reqgisters are pushed anta
the harchware stack twith the exception of the hardware stack
poirttar itsalf], and control is transferred throwgh the software
interrupd vecior. Both the normal and fast infermupts are
masked (disablad],
Addressing Mode: Inberan?.

Software Interrupt 2

Source Form: SWiz

Ciperation:
Set E lantire state saved)
SP-5P 1, (5P PCL
SR SP -1, (5P PCH
P -5F - 1, (5Ph-USL
S 5P - 1, (5Pk-LUSH
S 5P -1, (5Pk-TYL
SR 5P -1, ISPL-I¥H
SP-SP -1, [SP)= [XL
P SP -1 (5P 1XH

SF . 5P -1, [GPI-D0DFR

SP. 5P - 1, (SP1--ACCB

SP 8P -1, (EP--ACCA

SP-SP -1, (5P--CCRH

PG (FFFa 3 {FFF5)
Condition Codes: KMot afectad.
Description: All of the processar registers are pushaed onio
the hardware siack lwith the pxcaption of the hasdwans: Stack
poirvber ks, and contros is fransferred throogh 1he soffwans
intarrupt 2 vector. This interrupt is seailable o e and osers
and must not b used in packaged software. This intermaed
doas mat mask (disable) the normal ard Fast nternepls
Addressing Mode: Inheren

Software Interrupt 3

Cource Forme: SWI3

Operation:
Sef E (entire gfate witl be saved)
SF—3P -1, (SPk-PCL
SP+5P - 1. (5P PCH
5P-5P -1, (5F)--LSL
SP-5P -1, (SP)-LISH
B 5P -1, [SP-1YL
SR SP - 1, (5P IYH
BSR-5P - 1, (SP1-1XL
SP. 5P 1, 1SP)1XH

SF.. 5P 1, (5P DPR

SF-5P - 1, (5P ACCE

SF- 5P 1, (5P ACCH

5P—5P - 1, (5F: CCR

PC- (FFEZLIFFED)
Condition Codes: Not atected
Description: All of the processors regisiers are pushed anfo
fhe hardware stack Dwalh he exception of e hardwane stack
painter itself), and cantrod 13 fransiermed throwgh the sofiware
irmermupt 2 vector, This interrupt does nat mask (disablel the
rearmal ared fast mterrupts.
Addressing Mode: Inharent,

EDTASM-E

SUB
(1B-Bit)

=t

SWIZ

SWIa

49

10/ 6803 INSTRUCTION SET

-
5 YR [: Synchronize to External Event

Source Form: SYNC FAST SYNC WAIT FOR DATA
Operation: S10p processing instructions | mite=rrigpa!
Condition Codes: Not affected LDA DISC DATA FROM DISC AND
Description: When a SYNC instruction is executed. the CLEAR INTERRUPT
procassce enters a synchronizing state, stops processing STA X+ PUT IN BUFFER
instructions, and wails for an interrupt. When an intermupt OECH COUNT IT, DONE?

BNE FAST GO AGAIN IF NOT

TFR

151

FIRG

oy, the synchronizing siate is cleared and processing
contnues. If the miormupl = enabled, and i 1as1 three cycies
or more, the procesgor will perform the intarrupt rowtine. 1
the interrupt is masked or is shorter than theee cycles. the
procéssor simply coatinees 1o the next instruction, While in
1hes synchronizing stale, the adgfess and dalh buses ane @
the hagh-smpedance stabe.

Thid instruction provides soffware synchronizotion with a
hardgware process, Consider the Fallowing example for high
speed acquisition of data;

The synchronizing stae is Cleared by amy mbermupt. O
course, enabied interrupts at this post may destroy the data
traruster and, as such, should represert only emergency
condiions

The samg¢ connection used for intermpt-griven 10 seneoe
may aiso be used lor high-speed data ransters by softing
the imtarrupt rmask and using the SYNC irstruction os the
anove example demanstrates

Addressing Mode: Inherent

Transfer Register to Register

Source Form: TFR 51, A2

Dperation: A1 -R2

Condition Code: Mot affected unicss A2 = the condition
codi register.

Description: Transfers data betwoeen two designated

regenters, Bits 7.4 of the posthybe define 1he Sounce regisfier,

whille bits 3-0 dedipe the destination recusiod. as fndlpwes:

D10 =Y 1010 - CCR
Q011 =US 1011 = DPH
Qo0 - 5P P 100 = Unclefined
o1 = PG P10 = Undefined
110 = Undetined 1110 - Undefined
D111 = Lindefmned 1111 = Unckafined

Oinly Ee size registers may be transterred. (6-bet to 8-bit,

0000 - AB PO - A or 16-Duf 10 16-hit)
000t - X 1001 - B Addressing Mode: Imenedaate
TEEt Dumvplmrn Set the N (inegatnve) ong Z (rero) bits according
o the contents of memory location M, and clear the

Source Forma: TST Q- TSTA, TRTR

Operation: TEMP. M 0

Condition Codes:

i Nol affecied

Set il the result is negibve, Cloare ol heneise,
Sat il the result is pere o 00 Fhen A0
Always clepren

Mot atecled

O=MNZ I

[oorerfloawd BiE. The TET instruction pravides only minimum
irormation when testing ursigned valees: since no unsigned
walues i lgss than zera, BLO and BLS have no utility. While
BHi cowld De used after TST, it provides exactly the same
oontrod s BME, which o preferred, The signed beanches are
ywarinhle

Addressing Modes: Inherent; Extended: Dvect. Indexed,
Comments: The MCGBO0 processne clears the G (canmy) bit

Fast Interrupt Reouest
(Hardware Interruptl

Oiperation:
IFF F bit clegr, ther: SP= 8P 1. [SPk PCL

GF'--85F 1, (5P PCH
iCizar £ (subset stale i saved)
SP. 5P - 1,15P» CCR
Set F, 1 {mask further interupls)
PC' (FFFEXIFFFT]
Condition Codes: MNat aftecied
Description: A FIRG (fast inferrupt request) with the F (s
interrupd request mask) bit clesr causes this infermupd
soguance to ooy at the end of the curnent nstruction. The
program counter and condibon cade reqister are pueshed

orlo e hardware stock, Program cantral is Eransferned
throudggh thie fast inberrupt request eechor. &n BT (return Froem
inkesrugt) sshnection rirfums the processor 1o e omginal
task. I possitie to enter the fast interrupl request routne
wilh 1her gntire maching state saved if the Fast infesrupt
reguest occurs aftar o clear and wait for interrupt instructon
A narmad inderrupt reguest has lower pricsty than the 1ast
e reguLest and 5 prevenied Inom mtermupting the

fast imternupt request routine by automatic setting of e
Himterrupt reguest maskd bit. This mask it could then be
resat cunmg the interrupt soutine 1 peicnty was not desired,
The fast intefrupt requast allows operations an memory, TST,
INC. DEC, eic. instructions without thi: overhead of saving
the enfire machne ST on the sinck,

Addressing Mode: [rhoront

Interrupt Request
(Hardware Interrupt)

Ciperation:

IFF | bil clear, then 5P 3P

5P 5P
et e
SP. 5P
SR 5P
5P 5P
8P 5P
SP-5P
=] =
SP-5SP
SR 5P

1,
'SP
' (sp.

S B A e

(SF)
(SF

(5P

(5P
ISP
. (5P).
ASP)-
, (5P

. [5H)-

PCL
PCH
LISL
LISH
1YL
IYH
I
IxXH
CFA
ACCE
ACCA

Sed E (entire state saved)

SP'--8F -1, (5P CCR

Spt | (mask further IRG] interrupts)

PC - (FFFEYIFFFD)
Condition Codes: Not affected
Description: If the | Gnterrupt request mask] B is clear, a
low Sevel on the TRG input causes this interrupt sequence 1o
oocur at the end of the current instruction. Control is
retumed to the interrupted %mgrﬂ'n usirg a BT freturn from
intesrugnl) matrection. A F (st interrupt requeast] may
interrupt a narmal TAG Gerupt request] routine and ba
recagnized amytime after b interrupl vectos is takan
Addressing Modea: Inherent,

Non-Maskable Interrupt

(Hardware Interrupt)

Cperation:
S5F. 5P
SF's &F
S5H—=H
|l
SP--5F
SP—5F
5P 5F
SF - SP
ZP. 5P
SP 5P
SP--GP

ISP PCL

1, (5P PCH

4
1
1
1
1
1
|
1

ISP LISL
. [5F LisH

(5P IYL
(5P IYH
[5F). I€L
(5P xH
(5P DPR
1581 ACLE
(5P ACCA

SptE Lc-ﬁl-rr.: state smee]
1. (5. OCH

SR 5P

Set |, Fimask interrupts)

PC - IFFFCRIFFFLDO
Condition Codes: Mot affecied. L
Description: & negatve edge an the NMI inon-maskabla
irberrupd) input causes all of the processors registers
fExcept the harchware stack pointer! to B2 pushed onto the
hardwane stack. starting at the end of the current instnacticn,
Program contral is transferred through the M| vector
Successive negative edges on the NM| input will cause
succassive MM operabons. Non-maskable mbermapt
and any non-maskable irmtarrupt that oocurs will b atckad 1
this happens, the nan-maskable intarrupl aparatan will coour
after the first load inte the stack pointer ILDS; TFR rs; EXG
r.s eftc) atter HESET
Addrezaing Made: Inbarsnt.

Restart (Hardware Interrupt)

Operation:

COR %151 XK
DPR'- 00,
PG (FEFELFEFF]

Condition Codes: Mot affecied,

Description: The processar i nitakzed (reguired afler
power-onl 1 start program executon. The stading address
is fetched from the restar wvecior,

Addressing Mode: Exiended; Indirect.

EJTASM-

NMI

RESTART

51

EJiASV L

Appendix A/Editor Commands

Definition of Terms

line
A line number in the program. Any lines between 0-63992 may be used. These symbols may be used.
First line in the program.
g Last line in the program.
Current line (see definition below).

current line
The last line inserted, adited, or printed.

startline
The line where an operation will begin. In most commands startline is optional. If omitted, the current line iz used.

range
The line ar lines to use in an operation, If more than one line are in the range, they must be specified with ane of these
symbals:

to separate the startline from the ending line
! to separate the startline from the number of lines

increment

The increment to use between lines. In most commands. increment 1s ontional. If omitted, the last specified increment
is used. On start-up, increment is set to 10.

filename
A 1-B character name of a tape file.

PAGES
COMMANDS DISCUSSED

Cstartline, range, increment - _ 11
Capies range to a new location beginning with startiine using the specified increment. startling,
range, and increment must all be included.

C50@.,10@:15@ .10
Drange 11
Deletes range. If range is omitted, current line is deleted.

Di1@@ Die@@:is@ D

Eline 10
Enters a line for editing. If line is omitted, current line is used.
E10D E
These are the editing subcommands:
A Cancels all changes and restarts the edit.
nCsfring Changes n characters to string. If nis omitted, changes the character at the
current cursor position.
nD Deletes n characters. If nis omitted, deletes character at current cursor
position,
E Ends line editing and enters all changes without displaying:the rest of the
line,
H Deletes rest of line and allows insert.
| string Inserts string starting at the current cursor position. While in this Mode, (—

deletes a character.

29

APPENDIX A / EDITOR COVMMANDS

—_—— e — e — — —_— era———
COMMANDS PAGES
DISCUSSED
nKcharacter Deletes all characters from the current cursor position to the nth occurrence
of character. If nis omitted, deletes to the first occurrence.
L Lists current line and continues edit.
8 Quits the edit and ignores all changes.
nScharacter Searches for nth occurrence of character If nis omitted, searches for first
occurrence.
X Extends line,
ENTER) Ends line editing, enters all changes and displays the rest of the line.
(SHIFT) (= | Escape from subcommand.
n(SPACEBAR) Moves cursor n characters to the right. If nis omitted, moves one space.
ni=) Moves cursar 7 positions to the left. If 7 is amitted, moves the cursor one
position,
Fstring
Finds the string of characters. Search begins with the current line and ends each time the siring
is found. If string is omitted, the last string defined is used.
FABC F
Hrange 10
Prints range on the Printer. If range is omitted, current line is printed.
HIGR HI@D:ZB@ M
|startline,increment 11
Inserts lines beginning at sfartline using the specified increment. startline and increment are
optional.
I1158,5 I2\0 1+1@
L filename 10
Loads the specified text file from cassette tape. If filenameis omitted, the next file is loaded.
L SAMPLE L
Mstartline, range,increment
Move command, works like copy except the original lines are deleted,
Nstartline,increment 11
Renumbers beginning at startline, using the specified increment. startline and increment arg
optional.
NIGB,58 NIOB N
Prange 10
Displays range on the screen,
F100:200 P1B8D'S Ps= FE
=]
Q 11
Returns to BASIC. Type EXEC 49152 to retum to Editor from BASIC.
Rstartline,increment 11
Allows you to replace startline, and then insert lines using increment. startiine and increment
are optional,
RI1B@:10 RIO®D R
_ —_— -— = ——_——

56

EJiASM-

PAGES
OMMANDS
C DISCUSSED
Trange 10
Prints range on the printer, without including the line numbers.
TIBE TIQR:500
Vfilename

Verifies filename to ensure that it is free of checksum errors, Works like BASIC's SKIPF com-
mand. If filename is omitted. verifies next file found.

UTEST
i 5. 17
Go to ZBUG.
(]
Scrolls up in memaory.
[
Scrolls down in memory.

57

APPENDIX B/ ASSEMBLER COMMANDS

Appendix B/Assembler Command & Switches

PAGES
A filename swiltch . .. 13
Assembles the text program into machine code. Any of the following switches may be used:
AD Absolute Origin. (Applies anly if /IM 1s set.) 15
/1M In Memory Assembly. 1.3
ILP Assembly listing on the printer. 13
‘MO Manual Origin, (Applies only if /IM is setl.) 15
INL Mo listing printed 13
INO Mo object code generated. 13
NS Mo symbaol table generated. 13
/1SS Short screen. 13
'WE Wait on assembly errors. 13

Unless the /IM switch is used, the program will be assembled on tape using the specified one
to eight character filename. If filename is omitted, NONAME is used.

Examples
A SAMELE/SIH
H

ASIMAAG

58

EdASM+

Appendix C/ZBUG Commands

Definition of Terms

expression
One or more numbers, symbals, or ASCIl characters. If more than one are used, you may separate them with these
operators:

Multiplication 4 Addition :

Division DIV, Subtraction -

Modulus .MOD, Equals EQLU.

Shift . Mot Equal NEQ.

Local And AND. Positive t

Exclusive Or KOR. Megative

Logical Or OH. Complement NOT
address
A location in memory. This may be specified as an expression using either numbers or symbols.
filename
A one to eight character name of a tape file.
- COMMANDS FOGES
| DISCUSSED
C 18
Continues execution of the program after interruption at a breakpoint.
D 18
Displays all the breakpoints that have been set.
B
Exits ZBUG and enters tne Editor.
Gaddress 18
Executes the program beginning at address.
Lfilename ([ENTER 19
Loads the machine-code file from cassette tape. |f filename is omitted, the next file is loaded.
Pfilename first address last address start execution address 19
Saves the contents of memory from start address to ending address on tape. execution
address specifies the address where the program being saved begins execution.
R 18
Displays the contents of all the registers.
Taddress1 address2 19
Displays the memory locations from addresst to address?2, inclusive.
THaddress 1 addressZ2 19

Prints the memory locations from address 1 to address?Z, inclusive.

Usource address destination address count
ransfers the contents of memaory beginning at source address and continuing for count bytes
to another location in memory beginning with destination address.

Vfilename
Verifies date on the specified file ar the next file on the tape if no filename is specified.

59

APPENDIX C/ZBUG COVIMANDS

COMMANDS PAGES
DISCUSSED
Xaddress 18
Sets a breakpoint at address. |f address is omitted, the current location will be used.
Yaddress 18
Deletes the breakpoint at the specified address. If address is omitted, all breakpoints are
deleted.
Examination Mode Commands
A ASCIl Mode 5
B Byte Mode]
M Mnemonic Mode 6
w Word Mode =
(the default is M)
Display Mode Commands
H Half Symbolic 17
N MNumeric 17
S Symbolic 17
(the default is 5)
Numbering System Mode Commands
Obase Output 21
Ibase Input 21
(base can be 8, 10, or 16. The default is 16.)
Special Symbols
address/ 5
register/ 18
Opens address or register and displays its contents. If address or register is omitted, the last
address opened will be re-opened. After the contents have been displayed, you may type:
New contents To change the contents. B
(ENTER) To close and enter any change, B
BREAK) To close and delete any change.
(=] To open next address and enter any change. 5
() To open preceding address. =
[#) To branch to the address pointed to by the instruction beginning at the cur-
rent location.
2 To force numeric display mode. 17
= To force numeric and byte modes.
To force flags”
address, 18
Executes address. If address is omitted, the next instruction is executed.
expression= 21

Calculates expression and displays the results

‘The colon does not actually have anything to do with the CC (status flag) register. It simply
interprets the contents of the given address AS IF it contained flag bits.

Appendix D/ Editor Error Messages

The following are descriptions of the error messages you can get while in the Editor, Assembler, or ZBUG:

BAD BREAKPOINT (ZBUG)

You are attempting to set a breakpoint (1) greater than 7,
(2) in ROM, (31 at a SWI command, (4) at an address
where one is already set.

BAD COMMAND (Editor)
An illegal command letter was used on the command line.

BAD COMMAND (ZBUG)
You are not using a ZBUG command.

BAD LABEL (Assembler)

The symbol you are using is (1) not a legal symbaol, (2) not
terminated with either a space, a tab, or a carriage return,
ar (3) has been used with ORG or END, which do not
allow labels, (4) longer than six characters.

BAD LINE NUMBER (Editor)

You are using a line number that is not in the range of
1-83998, If you are loading a file from tape, this could
mean the tape is bad or the tape does not containa TEXT
file.

BAD MEMORY (Assembler)

You are atternpting to do an in-memory assembly which
would (1) overwrite system memory (an address lower
than hexadecimal 0600), (2) overwrite the edit buffer or
symbol table. (3) go into the protected area set by
USRORG, or (4) go over the top of RAM.

If using the /AD switch, check to see that you've included
an ORG instruction. When using /MO, check the
addresses you set for BEGTEMP and USRORG. This
could also be caused by the data not being stored cor-
rectly because of some code generated by an in-
memory assembly. See the Chapter on Assembling for
more information.

BAD MEMORY (ZBUG)

The data did not store correctly on a memory modifica-
tion. This error will occur if you try to modify ROM
addresses, or store anything beyond MAXMEM,

BAD OPCODE (Assembler)
The op code is either not valid or is not terminated with
a space, a tab or a carriage retum.

BAD OPERAND (Assembler)
There is some syntax error in the operand field. See the
syntax for the instruction in Section |1

BAD PARAMETERS (Editor}
Usually, this means your command line has a syntax
error.

BAD PARAMETERS (ZBUG)
You have specified a filename greater than eight
characters.

BAD RADIX (ZBUG)
You have specified a numbering system other than 10, 8
or 16.

BUFFER FULL (Editor)
There is not enough room in the Edit Buffer for another
line of text,

BUFFER EMPTY (Editor?
The specified command requires that there be some text
in the Edit Buffer, and there isn't any.

BYTE OVERFLOW (Assembler)

There is a field overflow in an 8-bit data quantity in an
immediate operand. an offset, a short branch, or an FCB
pseudo op.

DP ERROR (Assembler)

Direct Page error. The high order byte of an operand
where direct addressing has been forced (<) does
not match the value set by the most recent SETDP
pseudo op.

EXPRESSION ERROR (Assembler and ZBUG)
Same kind of syntax error in an expression or division
by zero.

FM ERROR (Editor and ZBUG)
File Mode Error. The file you are attempting to load is not
a TEXT file (if in the Editor) or a CODE file (if in ZBUG).

I/O ERROR (Editor and ZBUG)

Input/Qutput errar. A checksum error was encountered
while loading a file from a cassette tape. The tape may be
bad, or the volume setting may be wrong. Try higher,

MISSING END tAssembler)
Every assembly language must have END as its last
command.

MISSING INFORMATION (Assembler}
(1) There is a missing delimiter in an FCC pseudo op, or
(2] There is no label on a SET or EQU pseudo op.

MISSING OPERAND (Assembler)
One or more operands are missing from a command
reguirng one.

MULTIPLY DEFINED SYMBOL (Assembler)
A label has been defined maore than one time.

NO ROOM BETWEEN LINES (Editor)

There is not enough room between lines to use the incre-
ment you've specified. Specify a smaller increment or
renumber (N) the text using a larger increment. Remem-
ber that the last increment you used is kept until you
specify a new one.

61

EDJTASNM -

APPENDIX D/ EDITOR ERROR MESSAGES

NO SUCH LINES (Editor}
The specified line or lines do not exist.

REGISTER ERROR (Assembler)

(1) No registers have been specified with a PSH/PUL
instruction, (2) A reqister has been specified maore than
once in a PSH/PLUL instruction, or (3) There is a register
mis-match with an EXG/TFR instruction.

SEARCH FAILS (Editor}
The string specified in the Find (F) command could not
be found in the edit buffer, beginning with the line speci-

fied. If no line is specified the current line will be used.

SYMBOL TABLE OVERFLOW (Assembler)

(1) The symbol table will extend past USRORG into the
protected area of memory. (2) There is not enough room
between BEGTMP and USRORG for the edit buffer and
symbol table, At least 300 hexadecimal bytes must be
allowed for BEGTMP. (See the chapter on Assembling.)

UNDEFINED SYMBOL (Assembler}
The symbol in the program was never listed in the label
field or defined with an EQU statement.

62

Appendix E/Memory Map

DECIMAL HEX 14B CONTENTS DESCRIPTION
| 0-105 0-569 Direct Page RAM Can be used for machine-code programs.
1 1_3_2_515 70-FF — Cannot be used for machine-code programs.
256-273 100-111 Intemal Use Interrupt vectors. o
| 274-276 112-114 USRJMP Jump to BASIC's USR rautine. |
.. 277-281 115-119 Can be used for machine-code programs. |
282 11A Keyboard Alpha Lock 0 - not locked: FF - locked. |
| 283-284 11B-11C Keyboard Delay Constant |
| 285-337 110-151 Can be used by machine-code programs. |
_33_13_3_-1_5 152-159 Keyboard Rollover Tables |
346-349 15A-15D | Joystick Pot Values |
| 350-1023 15E-3FF Internal Use |
| 1024-1535 0400-05FF Video Text Mermary |
1536-top of RAM | 0600-top of RAM | If the Editor-Assembler is in control, it allocates these Random Access
top of BAM is top of RAM is mnhﬂﬂsmanner[mﬂﬂfmﬂmdmﬂsmin m-#fﬂcl' an
16383 for 16K AFFF for 16K how to change this):
| systemns; 32767 systems: 7FFF 1. Temporaries Space reserved for temporary storage of EDTASM's
for 32K systems for 32K systems variables buffers, and stacks (this consumes hexadecimal
200 bytes).
2. Edit Buffer Starage space for the program lines you insert with the
Editor.
3. Symbol Table Storage space for all the symbols in your program and
their correspanding values.
4, Object Code Storage space for your assembled program.
It BASIC is in control, it allocates these Random Access memoary locations in this
manner:
1. Graphics Video Space reserved for graphics video pages. 6144 bytes or
Memory 4 pages are reserved for this on start-up. This value can
be reset by the PCLEAR statement: number of pages
reserved by PCLEAR X 1,536 bytes per page. (Note: All
pages must start at a 256-byte page boundary —i.e,, a
| _ o memaory location divisible by 258.) B
2. BASIC Program Epace reserved for BASIC Programs and Variables.
Storage 455" bytes (16K systems) or 22 839" bytes (32K
1 BASIC Variable ‘;‘_-.fEJTE'I'I'Ib] are reserved for this on start-up. This value can
Storage be reset by different settings of Random File Buffers,
4 Erac:l-;. FCBs, Graphics Videa Memary, String Space or User
' | Memary. -
5. String Space Total space for string data, On start-up, 200 bytes are
- reserved, but this can be reset by the CLEAR staterment. |
6. User Memory Total space for user machine-language routines. No
space 15 reserved for this on start-up. but this can be
i | reset by the CLEAR statemment. J
S£T68-405858 5000-8FFF Extended COLOR BASIC = Read Only Memary I
ROM ,
| 40960-49151 | AOOO-BFFF | COLOR BASIC ROM . Read Only Memary |
49152-57343 | CO00-DFFF EDTASM + ROM i Read Only Memory -
5?344-552 79 | EOOO-FEFF Unused y
| 65280-65535 | F_F'D_EI-FFFF In_ [::ut.*D_utr,:nuE

63

EJiASM-+

APPENDIX F/ROM ROUTINES

Appendix F/ROM Routines

The Color BASIC ROM contains many subroutines that
can be called by a machine-language program. Each
subroutine will be described in the following format:

NAME — Entry address
Operation Performed
Entry Condition

Exit Condition

Note: The subroutine NAME is anly for reference,
It is not recognized by the Colar Computer. The
entry address i5 given in hexadecimal form; you
must use an indirect jump to this address. Entry
and Exit Conditions are given for machine-
aNgUAQE Drograms.

BLKIN =[A00G]
Reads a Block from Cassette

Entry Conditions
Cassette must be on and in bit sync (see CSRDON).
CBUFAD contains the buffer address.

Exit Conditions
BLKTYP which is located at 7C, contains the block type:
0 =File Header
1 =Data
FF = End of File
BLKLEN. located at 7D, contains the number of data
bytes in the block (0-255).
7' =1. A=CSRERR =0 (if no errors).
Z =0, A=CSRERR =1 (if a checksum error occurs).
Z =0, A=CSRERR =2 (if a memory error occursl.

Note: CSRERR—= 871

Unless a memory error occurs, X = CBUFAD + BLKLEN.
If a memory error occurs, X poinis to beyond the bad
address. Interrupts are masked. U and Y are preserved,
all other modified.

*Z is a flag in the Condition Code (CC) register.
BLKOUT =[A0081

Writes a Block to Cassette

Entry Conditions

The tape should be up to speed and a leader of hex 55s
should have been written if this is the first block to be wnt-
ten after a motor-on.

CBUFAD, located at 7E, contains the buffer address.
BLKTYP, located at 7C, contains the block type.
BLKLEN, located at 7D. contains the number of data
bytes.

Exit Conditions

Interrupts are masked.

¥ = CBUFAD + BLKLEN.

All registers are modified.

WRTLDR=[A0OCI

Turns the Cassette On and Writes a Leader
Entry Conditions
None

Exit Conditions
Mone

CHROUT =[A002]
Outputs a Character to Device

CHROUT outputs a character to the device specified by
the contents of 6F (DEVMNUM).

DEVNUM = - 2 (printer)

DEVNUM = 0 (screen)

Entry Conditions
On entry, the character to be output is in A

Exit Conditions
All registers except CC are preserved.

CSRDON=[AQ04]
Starts Cassette

CSRDON starts the cassette and gets into bit sync for
reading.

Entry Conditions

Mone

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All
others are modified.

GIVABF =[B4F41

Passes parameter to EASIC

Entry Conditions
D = parameter

Exit Conditions
SR variable = parameter

INTCNV =I[B3ED]I
Passes parameter from BASIC

Entry Conditions
USR argument = parameter

Exit Conditions

D = parameter
JOYIN =[AOQ0A]
Samples Joystick Pots

JOYIN samples all four joystick pots and stores their val-
ues in POTVAL through POTVAL + 3.

Left Joystick
Up/Down 15A
Right/Left 158

Right Joystick
Up/Down 15C
Right/Left 15D

64

A
APPENDIX F/ ROM ROUTINES EMMJ:

For Up/Down, the minimum value = UP Entry Conditions

For Right/Left, the minimum value = LEFT, None

Entry Conditions Exit Conditions

None Z=1, A=0 (if no key seen).

Exit Conditions Z=0, A=key code, (if key is seen).

Y is preserved. All others are modified. E and X are preserved. All others are modified,

POLCAT =[A000]
Polls Keyboard for a Character

65

Shsolhute OriginSwitch L o ... 15 o Regstar, o o i) N (Magativel . . e peet]
ABX (Add Accumudator B into Index Registar X1 29 G (Carmy) i s b W (Dverfiow) A i .
ADC (Add with Carry info Regester a5 E {Entire Flag} | L e e et a7 o g
ADD (Acd Memory into Register, .. .+ 38 F (Fast Interrupt Request Mask) .. . 28 GoeCommanith. . o i s s T
(2] | T R PO i P aq H Rl CEny o e e e Half-Symbolic Mode TR b
5] e e H A LR te.. |- | Chterropt) peis Immediate Addressing 5 |
Addressing Mades_... ; a0 M iMegatived | ERAFERLE g NG (Ineremant) ..o . -r]
Direct &ddressing ..., ... e .) W Cwarilow! .. T TR | Indlexed Addressing | . e PO o |
Extended Addressing ..., 3¢ Lo, . R it gt 29 Irdexad Indirect Adclreﬂslng ___________ az
Indexed Addressing ..o ciiina a1 Changing Memorg i P . Indexed Indirect Addressing 37
Imherent Addressing 3 CMF {Campare Memary from ch;;mu] Inherent Addressing o 31
Irmedeate Addressango.... ... a a8-8in . e i e e R e 42 Imput Mode ... el il B
Felative Addressing, a2 VBB s vy e R e e e 43 Imsert Command 11
AND (Logical AND Memory into Register? || 30 COM [Complementd, . Imetruetion Set .o .
AMD (Logical AND Immediate Memary into Commands | Definitioni of Terme ... _........... e
Condition Code Register] | ia el i 35 Assembler Commands [Aﬂper‘dlx BY %8 Addressing Modes ..., -
A Repister ... ik b g o Cooy Command | e Condition Codes .__....__. ., -
foithmetic: Cperatars b g AR 22 Delata anmqn-d o PE RN B BT T [1 | A SR a7
ASCH Made A Edit Command 10 Operation i Rt 11
ASL (Arithmetic Shitt Lef) a3 Editor Cammancs i.-'n.mmum PR h IS8 OIS 4o oy es s a7
ASR (Arthmetic 3hift Right) 40 Insert Command - __ Motations and Codes . . ._....... 38
Assembler Commands Appendi= 81 _ ... 488 Load Commandc..ieoesiiaieann 1 IR trterrupt Requess Hardware 51
Aszemblingc..... ceae 13, 15, 25 Print Command . _......._.... A 10 PG i v e e e 44
Assembling In Mernony Switch e T2 Printer Cammands ., ., . o . 1o JEB (ump 1o Subroutingd x a4
Assambly Language Program Chatme s S RHanumber Commangd ; a1 LO {Load Regster from Memony)
Command, The FEERR TRk o e 30 Replace Command ... oot 11 o = 44
Operand, The 0 L an Write Command .. . LY L R Rl . PR 45
Addressing Modes ... e 30 ZBLIG Commando o 11 LEA (Load Efective Address] 45
Direct Addressing 32 ZBLIG Commands (hopendix Cr 5a Listing Switches 13
Extended Addressing ; 3 Camplax Operations P R P Load Cormmand LTI i L 10
Extended Indirect s e TR | g 5T [i e e et AP | 4T] P e e
Immediate Addressng 31 CWAl (Claar CC bits and Wail for Interrupt] .., 43 Logical Operatars e T b i
Indexed Addressing A DAA (Decimal Addition Adjusty R LSL (Logical Shift Left) ..., ... R R . .
Inclexed Indirect Addressing 32 DEC (Decrementl L .44 LER flogical Shift Raght) 45
Inherent Addressing 31 Direct Acdrossieg L i . crra2 Manual Qngin Swatch R R e R 15
Redative Addrassing, az Display Modes el A A 17 11y R s S S 19
Symbod, The < 1 Hali-Symbaolic |'-"|II.|F‘ e 17 Saving Memory 19
BASIC _.iaisinslls 23 ; i e Wirmenc WDHR: , e 17 Transferring a Block of Memory 18
Ssmeembling ... L. : S Y S Symbalic Mode 17 Memory Map lppendixE1 B3
Executing, : RPERIICRS. . | Celefe Command_............ ot 11 Microprocassor | in iy s e iy pels
Sand-Alane F'n:ugrnrn A e S 25 DF Register e .. 29 Hegigterg. e, 0 e A 25
Basic Subroutire L. . 5 Edit Cormmand,.) A [4 A and B Registars | e L
Passing Parametars ..., iy Editar Cammands (Appendsx A 55 CC Registar : Sl sy
Loading ..o veis e R 75 Editar Ermor Massages (Appends D) 61 DOF Ragister . . ke
Revising, - ENIT s o a5 PC Register T & i e e 29
BaSIC Command o b ECR '.'EI"'|I..-$II.|"E.' E:IFE:l L R P | Land S Registersoooan.. 29
BASIC Subroutine ... foh A B SR 26 BO R a5 Xand Y Reqisters _......_.... o
BCC (Branch on Carry E‘l"l” P O M 40 Examimng Modes . .. g 5 Mnemanic Modeo L. .. e R
BCS (Branch on Carmy Set) R 11 | ASCH Mode ..o 5 hModas
BEGTEMPE sefttingconvvennnnnnns. 15 Byte Mode bebiin 5 Addressing Modes ... : cav. A0
BEQ (Branch an L-i]u-‘.'ui' 40 Mnemanic Madae | R PP & Extended Addressing 3|
BGE (Braach or Grester than or Equal I-:1 Terol 4D Word Mode o Direct Addressing &P
BGT (Branch an Greater) ., ., R 1 Executing : T .o 25 Inherent Acdressing 31
BHI (Eranch if Higher) : R BASIC E-ut:src:-utme 8 Immediate Addressing ..., .., a1
BHS (Branch if Higher or Snmm41 FPassing Paramaters S| Indexed Addressing ., .. R
BT IR TREEY i s i Frost 6 473 2 i vt botis . Stand-Alone Program |, |, LG TR el Relatove Addressing an
BLE {Branch an Less than ar ._qu.-sl o femd ., a1 EXG (Exchangs Registers) ., _. 44 Dezplav Modes ..., 17
BLC iBranch on Lower) | ER Extanded Addressing an Hall-Symbolic Mode .., 17
BLS (Branch on Lower ar Same) | 41 Exienced. Indimect: oo iia s sl K3 Numesic Mode 17
BLT (Erarssh an Less than feral | | . 41 Extendad Indirect ... e h Symbolic Mode y 17
BaA1 [Branch an Minus) e v AT by FCB P g S 1 a5 Mumbering Syetem Modas ; 21
BHE (Branch Not Equald 42 o L . a5 fnput ce .. ;.
BPL Banchan PIUs) ., .oooonv oo e 4z s i i i b b v e ST T e as Output ; jEn S T 21
ERA (Branch Alwaws) ... 4z FIRG tFast Interrupt Fleuue:s.ﬂ H;]rdwars:' SR i RALIL (MAwiltiply .o 45
Breakpoints, selling ... 18 Flags NEG (Megate)__..... ... i 4B
B Register Sy , . R CiCarryl |, PR AR ot s LR T 28 M1 (Non-Maskahble Interrupty Hardware 51
BAN (Branch Mever} .. ., .. ST <2 EEntre Flagr L pel= No Object Code Switch) e |-
BSR (Branch i Suhn:-urlnefl o a4 F (Fast Interrupl Reguest Mask) PP NOP (Mo Operation) | |, ek R sy i
BWC (Branch an Cwerfiow Gleart . . 42 H{Hall Carryl .._.... R s Motations and Codes . - |
Byte Mode ... 5 [rtarrupt Reguest Maskd 0oL, 20

67

Mumbszring System Modes
Input Mode
Olutput Mode

Mumeric Mode

Cperand, The

Oparands
Cparations 5y
Complex Operatians
Op=rards ;
Operators b b
Arthmetss Operatars | .
Aelational Operatoes ... T
Logicsl Operators
Operators
Arithmetic Operatars
Logical Coerators
Relational Qperators
DRG i ML :
OR lnclysive OR Memony into Begetier)
CR (rsclusies OR Memcsy mmechate o
Condibon Code Register)
Crutput Mode
Parammters. Passing
P Register
Print Command
Printer Commanis T e gl
FSHS (Push Reqisters in the Hardwane Stack)
PSHU (Push Registers on the User Stack)
Pamado Operalions
Bafiniticn of Terms
EMDO
ECLU ..
FCE

21
21

-

5 |
A7
Addrassiog Modas i ;

.. -5 |
N
i

21

.22
.23
.
g2

0o

F o

o2

2
24
a5

4G

FO:E
G
FMEB
SET
AETLIF i - s S LG v
PULS {Pull Registers from the Hardware 5
PULL (Pull Registers from the Liser Stack]
Registers i
A and B Hegisters
i Register
[P Fegisier
PC Register ..
Uand S Registers
X and % Registers
Registers and Flags, examining .
FRelatianal Operators
Relatve Addrassing
Renumber Command
Replace Commang | ..
RESTART Hardware
Fevising
FME . L.
ROL (Rofate LeH) i
RO Routine (Appendix F1 ...
ROA (Rotate Right
BET1{Raturn from Intemrupt)
RTS (Return from Subroutne?
Sample Program ...
Saving Mamory
SBC (Sublract with Barrow)

SkX [(Sign Extended) .,
B209 Instruction Set
35 Heqgister

tackl

35
35
36
36
47
a7

22

25
=]

fid

Sfand-Alone Program
ST (Store Reqgisier info Memary)
B-Bit i
1= |
SUE (Subiract Memory from Register)
B-Bat .
16-Bit

S
[Salbware Intarrupt) .
[SoMware Intarrupt 23
Uoobhwars Interrupt 33
Switches
Assembling in Memrory
Abaolute Cirigin
Listing v
Manual Orgirr .
Mo Object Switch
Wiail on Errors
Symaol, The , .
SYMC (Synchronize 1o External Eventl
Symbnln Mone

Transferring & Biock of Memory
TST (Test)
L Register .
LSORG. selimg .
Wait Or Errars Switch
Word Mode .
Write Command
¥ Begister . ., .
Y Register
ZBlG
Calcutator
Command
ZBUG Commands [Appendix)

TFR (Transfer Reguster (o Hcﬁnstur)

-1
.48

45
49

Lo 48
.. 48
]

-

T3
15
13
=3
16
12
30
ab
17

149

.50

29
15
13

g

29

21
L
ag

68

	xEdtasmPage01.JPG
	xEdtasmPage02.JPG
	xEdtasmPage03.jpg
	xEdtasmPage04.jpg
	xEdtasmPage05.jpg
	xEdtasmPage06.jpg
	xEdtasmPage07.jpg
	xEdtasmPage08.jpg
	xEdtasmPage09.jpg
	xEdtasmPage10.jpg
	xEdtasmPage11.jpg
	xEdtasmPage12.jpg
	xEdtasmPage13.jpg
	xEdtasmPage14.jpg
	xEdtasmPage15.jpg
	xEdtasmPage16.jpg
	xEdtasmPage17.jpg
	xEdtasmPage18.jpg
	xEdtasmPage19.jpg
	xEdtasmPage20.jpg
	xEdtasmPage21.jpg
	xEdtasmPage22.jpg
	xEdtasmPage23.jpg
	xEdtasmPage24.jpg
	xEdtasmPage25.jpg
	xEdtasmPage26.jpg
	xEdtasmPage27.jpg
	xEdtasmPage28.jpg
	xEdtasmPage29.jpg
	xEdtasmPage30.jpg
	xEdtasmPage31.jpg
	xEdtasmPage32.jpg
	xEdtasmPage33.jpg
	xEdtasmPage34.jpg
	xEdtasmPage35.jpg
	xEdtasmPage36.jpg
	xEdtasmPage37.jpg
	xEdtasmPage38.jpg
	xEdtasmPage39.jpg
	xEdtasmPage40.jpg
	xEdtasmPage41.jpg
	xEdtasmPage42.jpg
	xEdtasmPage43.jpg
	xEdtasmPage44.jpg
	xEdtasmPage45.jpg
	xEdtasmPage46.jpg
	xEdtasmPage47.jpg
	xEdtasmPage48.jpg
	xEdtasmPage49.jpg
	xEdtasmPage50.jpg
	xEdtasmPage51.jpg
	xEdtasmPage52.jpg
	xEdtasmPage53.jpg
	xEdtasmPage54.jpg
	xEdtasmPage55.jpg
	xEdtasmPage56.jpg
	xEdtasmPage57.jpg
	xEdtasmPage58.jpg
	xEdtasmPage59.jpg
	xEdtasmPage60.jpg
	xEdtasmPage61.jpg
	xEdtasmPage62.jpg
	xEdtasmPage63.jpg
	xEdtasmPage64.jpg
	xEdtasmPage65.jpg
	xEdtasmPage66.jpg
	xEdtasmPage67.jpg
	xEdtasmPage68.jpg

