\
I-"""
WA
L 4

JIASM

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

EJIASM

PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROMA
RADIO SHACK FRANCHISEE OR DEALER AT TS AUTHORIZED LOCATION

LIMITED WARRANTY

I. CUSTOMER OBLIGATIONS

A

B.

CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “Equipment”), and any copies of Radio Shack
software included with the Equipment or licensed separately (the “Software”) meets the specifications, capacity, capabilities, versatility, and other
requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE
A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO SHACK

warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT
ITS AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has
been subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price. at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an “AS IS” basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK.

Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER

M. LIMITATION OF LIABILITY

A

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PER-
SON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED ORALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY
BY “EQUIPMENT" OR “SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO,
ANY INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE “EQUIPMENT” OR “SOFTWARE” IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS,
ORANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE. LEASE, LICENSE, USE ORANTICIPATED USE OF THE' EQUIPMENT” OR “SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED
BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “EQUIPMENT” OR “SOFT-
WARE” INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not
apply to CUSTOMER

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the
following provisions:

A

B
C
D

G.

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER. but not title to
the Software

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
unction

CUSTOMER shall not use. make, manufacture. or reproduce copies of Software except for use on one computer and as is specifically provided
in this Software License. Customer is expressly prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in
the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However. for TRSDOS
Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'’S own use

CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER

All copyright notices shall be retained on all copies of the Software

V. APPLICABILITY OF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK. the author. owner and/or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from
state to state

IR e

EJIASM

\
l-"”
WA
4

JiASM

COLOR COMPUTER
DISK EDITOR ASSEMBLER WITH ZBUG

CUSTOM MANUFACTURED
IN USA BY RADIO SHACK
A DIVISION OF TANDY CORPORATION

EJIASM

Disk EDTASM Software: Copyright 1983, Microsoft. All Rights
Reserved. Licensed to Tandy Corporation.

Disk EDTASM Manual: Copyright 1983, Tandy Corporation. All
Rights Reserved.

Reproduction or use without express written permission from
Tandy Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in the preparation
of this manual to assure its accuracy, Tandy Corpdration as-
sumes no liability resulting from any errors or omissions in this
manual, or from the use of the information contained herein.

To Our Customers ...

The heart of the Color Computer is a 6809E “proces-
sor.” It controls all other parts of the Color Computer.

The processor understands only a code of Os and 1s,
not at all intelligible to the human mind. This code is
called “6809 machine code.”

When you run a BASIC program, a system called the
“BASIC Interpreter” translates each statement, one at
a time, into 6809 machine code. This is an easy way to
program, but inefficient.

The Disk EDTASM lets you program using an intelligi-
ble representation of 6809 machine code, called “as-
sembly language,” that talks directly to the processor.
You then assemble the entire program into 6809 ma-
chine code before running it.

Programming with the Disk EDTASM gives you these
benefits:

* You have direct and complete control of the Color
Computer. You can use its features - such as high
resolution graphics - in ways that are impossible with
BASIC.

* Your program runs faster. This is because it is already
translated into 6809 machine code when you run it.

To Use the Disk EDTASM
You Need ...

A Color Computer Disk System that has at least 16K
of RAM, preferably 32K. (A 16K System will leave you
little room for programs.)

The Disk EDTASM
Contains:

e EDTASM/BIN, a system for creating 6809 programs.
EDTASM contains:
An editor, for writing and editing 6809 assembly
language programs.

An assembler, for assembling the programs into
6809 machine code.

ZBUG, for examining and debugging 6809
machine-code programs.

You must have 32K to run EDTASM. If you have
16K, run EDTASMOQOV (described next).

* EDTASMOV/BIN, a memory-efficient version of EDT
ASM consisting of overlays. EDTASMOV contains the
editor and assembler, but not ZBUG.

e ZBUG/BIN, a stand-alone version of ZBUG, primarily
for use with EDTASMOV.

* DOS/BIN, a disk operating system. DOS contains
disk access routines that you can call from an as-
sembly language program. (You cannot call BASIC’s
disk access routines with any program other than
BASIC.)

EDTASM/BIN, EDTASMOV/BIN, and ZBUG/BIN all
use DOS routines and must be run with DOS.

The Disk EDT ASM also contains:
e DOS/BAS. A BASIC program that loads DOS/BIN.

* ZBUG/BAS. A BASIC program that loads ZBUG/BIN.

EJIASM

EJIASM

How to Use this Manual

This manual is organized for both beginning and ad-
vanced assembly language programmers. Sections I-
1V are tutorials; Section V is reference.

Beginning Programmers:

Read Section | first. It shows how the entire system
works and explains enough about assembly language
to get you started.

Then, read Sections Il, lll, and IV in any order you want.
Use Section V, “Reference,” as a summary.

This manual does not try to teach you 6809 mne-
monics. To learn this, read:

Radio Shack Catalog #62-2077
by William Barden Jr.

6809 Assembly Language Programming
by Lance A. Leventhal

Nor does it teach you disk programming concepts. To
learn these, read:

Color Computer Disk System Manual
(Radio Shack Catalog #26-3022)

Advanced Programmers:

First, read Chapters 1 and 2 to get started and see how
the entire system works. Then, read Section V, “Refer-
ence’”

You can use the DOS program listing to obtain infor-
mation on routines and addresses not explained in this
manual. Please note the following:

Radio Shack supports only these DOS routines:
OPEN, CLOSE, READ, and WRITE. Additional
DOS routines are listed in Reference H. However,
Radio Shack does not promise to support them.

Even more DOS routines and addresses can be
found in the program listing. However, Radio Shack
does not promise to support them nor even provide
them in the future.

For technical information on the Color Computer Disk
System and 6809, refer to 6809 Assembly Language
Programming and Color Computer Disk System Man-
ual, listed above.

This manual uses these
terms and notations:

KEY To denote a key you must press.

ltalics To denote a value you must supply.

filespec To denote a DOS file specification. A DOS

filespec is in one of these formats:

filename/ext:drive
filename.ext:drive

filename has one to eight characters.
extension has one to three characters.

drive is the drive number. If the drive number
is omitted, DOS uses the first available drive.

$ To denote a hexadecimal (Base 16) number.
For example, $OF represents hexadecimal
OF, which is equal to 15 in decimal (Base 10)
notation

Contents

Section 1/ Getting Started

Chapter 1/ Preparing Diskettesccccocvveeeeennnns 3
Chapter 2/ Running a Sample Program 5
Chapter 3/ OVerview.........ccceviieeeiiiiiee e 9

Section Il Commands

Chapter 4/ Using the DOS Menu.........c.coccveeeeninnnn.

(DOS Commands)cccceeeeeiriineeenns 15
Chapter 5/ Examining Memory.........cccccoovciieeeninnenn.

(ZBUG Commands - Part I) 17
Chapter 6/ Editing the Source Program....................

(Editor Commands).........cccceeeiriieeenns 21
Chapter 7/ Assembling the Program

(Assembler Commands)ccce..... 25
Chapter 8/ Debugging the Program

(ZBUG Commands - Part Il) 31
Chapter 9/ Using the ZBUG Calculator

(ZBUG Commands - Part Ill) 35

Section Ill/
Assembly Language

Chapter 10/ Writing the Program............ccccceeeeeeennns 41
Chapter 11/ Using Pseudo OpsS.........cocccvvveeeeeennnnns 47
Chapter 12/ Using Macros..........ccceeviiiiiiiiieeeneeenns 51

Section IV/ ROM
and DOS Routines

Chapter 13/ Using the Keyboard and Video Display

(ROM ROULINES)evvvrveniinniiiiiiiiiiiniianis 57
Chapter 14/ Opening and Closing a Disk File

(DOS Routines - Part I).........cccuvvvvvnnenes 61
Chapter 15/ Reading and Writing a Disk File

(DOS Routines - Part Il)...........evvvvenees 65

Section V/ Reference

A/ Editor Commandscceeeviiiiiiiiiiieeeeeeees 71
B/ Assembler Commands and Switches 75
C/ ZBUG Commands.........cceuueeeeieeeieeeeeiieeeeeeennn 77
D/ EDTASM Error Messagesccccvveeeeeeeeennnnns 81
E/ Assembler Pseudo Opscccccvvvvvvveiieenieenenn. 85
F/' ROM RoOULINES......ccoeeeveeeeiieeeeeeeeeeeeeeeee e, 89
G/ DOS Data Control Block (DCB)ccccccevveeneee. 91
H/' DOS ROULINES ...ovveieieiieeeeeeee e 95
I/ DOS Error Codes.......coooevueieeeiiiieeeeeeeeeeeeennn. 101
JI Memory Map......ccoooei 103
K/ ASCIHI COdESovveeeeeieeeeeeeee e 105
L/ 6809 MNEMONICS......ccvueeeeiiieeeeeeee e 109
M/ Sample Programscccccceeeiiiiiiiieeneeeeennes 125

Section VI/ Program Listing
Index

EJIASM

EJIASM

SECTION |
GETTING STARTED

EJIASM

SECTION I

GETTING STARTED

This section gets you started using the Disk
EDTASM and explains some concepts you
need to know.

EJIASM

EJIASM

Chapter 1/ Preparing Diskettes

Before using the Disk EDTASM, you need to format
blank diskettes and back up the master Disk EDTASM
diskette.

Formatting Blank Diskettes

1. Power up your disk system and insert a blank
diskette in Drive 0. (See the Color Computer
Disk System Manual for help.)

2. At the OK prompt, type:
DEEINIG
BASIC formats the diskette. When finished, it
again shows the OK prompt.

Making Backups
of Disk EDTASM

Single-Drive Systems

1.Insert the master Disk EDTASM diskette, your
“source” diskette, in Drive 0.

2. Atthe BASIC OK prompt, type:
BACKUF & TO @

3. BASIC then prompts you to insert the “desti-
nation” diskette. Remove the source diskette
and insert a formatted diskette.

4. BASIC prompts you to alternatively insert the
source, then destination diskettes. When the
backup is finished, the OK prompt appears.

The destination diskette is now a duplicate of the master
Disk EDTASM diskette.

Multi-Drive Systems
1.Insert the master Disk EDTASM diskette in Drive 0.
2.Insert a formatted diskette in Drive 1.
3.At BASIC’s OK prompt, type:
BHCEUP & TO 1

BASIC makes the backup. When the backup is fin-
ished, the OK prompt appears.

The diskette in Drive 1 is now a duplicate of the master
Disk EDTASM diskette.

EJIASM

EJIASM

Chapter 2/
Running a Sample Program

This “sample session” gets you started writing programs
and shows how to use the Disk EDTASM. The next chap-
ters explain why the program works the way it does.

1. Load and Run DOS

Insert the Disk EDTASM diskette in Drive O. At the OK
prompt, type:

FUM T Dosy

DOS then loads and puts you in its “command mode.” The
screen shows the DOS command menu:

ENTER

1. Exdt oo BASIC

2. E=zec s Program

F. Start Clock Displsay
b, Disk Rllocastion Map
B l:::::pl:; Files

B, Directory

DOS consists of many disk input and output routines
which EDTASM uses. You must load DOS before loading
EDTASM.

2. Load and Run EDTASM

At the DOS Menu, press 2 to select “Execute a Program.
The screen asks for the name of a program file.

If your system has 32K or more, use EDTASM. If it has
only a 16K system, use EDTASMOV.

Loading EDTASM:
Type EDTASM. The screen shows:

EECUTE H PROGRAN

FROGRAM HAME: [EDTASH J-BIH

If you make a typing error, use the [to reposition the cur-
sor at the beginning of the line, then correct the mistake.
Replace any trailing characters with blank spaces.

Press [ENTERl. EDTASM loads and shows its startup mes-
sage.

Loading EDTASMOV:

Type EDTASMOV. The screen shows:
EXECUTE A PROGRAM
FROGRAM HMAME: [EOTASHOVIC-BIN
If you make a mistake, use the [< to reposition the cursor,
then correct the mistake.
EDTASMOV loads and shows its startup message.

Always keep EDTASMOV in Drive 0. It contains overlays
which it loads into memory as required. It always looks
for these overlays in Drive 0.

3. Type the Source Program

Notice the asterisk(*) prompt. This means you are in the
editor program of EDTASM or EDTASMOV. The editor lets
you type and edit an assembly language “source” pro-
gram.

At the * prompt, type:
I

This puts you in the editor’s insert mode. The editor re-
sponds with line number 00100. Type:
STARTBRILOAR#$F 2ENTER

The right arrow tabs to the next column. inserts the
line in the editor’'s “edit buffer” The $ means that F9 is a
hexadecimal (Base 16) number.

2 / RUNNING A SAMPLE PROGRAM

Your screen should show:
palan STHART
palie

meaning that you inserted line 100 and can now insert line
110.

If you make a mistake, press Then, at the *
prompt, delete Line 100 by typing:

Dilga

Now, insert Line 100 correctly in the same manner
described above.

Log #EFS

Insert the entire assembly language program listed below.

Note that line 150 uses brackets. Do not substitute
parentheses for the brackets. To produce the left
bracket, press and at the same time. To
produce the right bracket, press and [at the
same time.

aalan STHRT LOE #EFS
p@iia LOx #ELDE
Balza SCREEM 2TH 1+
aalza CHF# Lepn
aEida BEHE SCREEN
gaisa WMEIT JER Tegopan]
pAlEd BED WATIT
BRiTo CLE 71
ABLER THF [FFFE]
galag OoMHE Bl ®

Bazan EHD

If you make a mistake, press Then, at the * prompt,
delete the program by typing:

LS
Now, insert the program correctly.

When finished, press BREAK]. The program you have in-
serted is an assembly language “source” program,
which we’ll explain in the next chapter.

4. Assemble the Source
Program in Memory

At the * prompt, type:
A-THAWE

which loads the assembler program. The assembler then
assembles your source program into 6809 machine code

into the memory area just above the EDTASM or EDTAS-
MOV program. To let you know what it has done, it prints
this listing:

HEZE BG F3 aaiad STHRT
Lo #EFS
UEZA BE a4gd apilg
Lo #EURR
UE2D A7 o6 a@alcd SCREEN
=TH 1+
HEZF BC asdd a@niaa
CHPE #ESQQ
UREI2 28 F3 apida
EHE SCHREEN
HEsW [l aF gead aaicd WEaIT
JSR Tdnaoa]
HEIs 27 FH agisd
BED MAIT
UEIR aF 71 apiTe
CLE 71
HESD sE 9F FFFE G@lcd
IMF [$FFFE]
Haua a@isd DOME
EqU ®
ARRE Aa2aa
EMb
aRaad TOTAL ERRORS
OOMHE Haua
SOREEM UEzh
STHEHRT UEZE
MARIT baay

(If using EDTASMOV, the numbers will be different.)

If the assembler does not print this entire listing, but stops
and shows an error message instead, you have an error
in the source program. Repeat Steps 3 and 4.

The assembiler listing is explained in Figure 1 of Chapter
7.

5. Prepare the
Program for DOS

Before saving the program, you need to prepare it so that
you can load and run it from DOS.

First, you must give it an “origination address” for DOS to
use in loading the program back into memory. (We rec-
ommend you use Address $1200, the first address

available after the DOS system.) To do so, type:

IE@
and insert this line:

B@ ORG filzes
Next, you need to add two lines to your program to tell
DOS how long the program is. Insert these lines:

EE BEGIH JHF ETART

T@ FOE ODOME-BEGTIH
When finished, press BREAK]. To see the entire program,
type:

Fiew

It should look like this:

BRAER ORG Fizen

R Rr Y] HEEGIH JHF STHRT
BaaTH FORE OOME-BEGIN
aalag STHRT LOH #EFS
aalia L #i4an
galza SCREEM S5TH g ok
Balaa CHPH #EERG
gaiua BEMHE SOREEM
Balsa WEIT JEHR TEoaaal
galed BEO MEIT
paiTe CLE 271
BELRG JHF [%FFFE]
aalaa OOrME EOU *

i Rr R i Er

If you make a mistake, delete the line with the error and
insert it again.

6. Save the Source
Program on Disk

To save the source program, type (at the* prompt):
WO SAMPLE
This saves the source program on disk as SAMPLE/ASM.

7. Save the Assembled
Program on Disk

At the * prompt, type:

AD SHAMPLE ~SH

Be sure you have a blank space between SAMPLE and
/SR. This causes the assembler to again assemble the
source program into 6809 code. This time, the Assembler
saves the assembled program on disk as SAMPLE/BIN.

(You must use the /SR “switch” to assemble any program
that you want to load and run from DOS.)

8. Run the Assembled
Program from DOS

To run the assembled program, you need to be in the DOS
command mode. At the * prompt, type:

k. [ENTER

which causes the Editor to return you to the DOS com-
mand menu. Press (2) to execute a program. Then type
SAMPLE, the name of the assembled program. (The as-
sembler assumes you mean SAMPLE/BIN.) The screen
shows:

EXECUTE A PROGRAM

FROGRAM MAME: [SAMFLE 1-7BIN
Press ENTER|. The SAMPLE program executes, filling your
entire screen with a graphics checkerboard. Press any key
to exit the program. The program returns to BASIC startup
message.

9. Debug the Program
(if necessary)

ZBUG lets you to look at memory. How you load ZBUG
depends on whether you are using EDTASM or EDTAS-
MOV.

EDTASM Users:

You can load ZBUG from EDTASM. Load DOS and ED-
TASM again (Steps 1 and 2). Then, at the * prompt, type:

[ENTER

EDT ASM loads its ZBUG program and displays ZBUG’s
#prompt. You can now examine any memory address.
Type:

LA@Ens

EJIASM

2 / RUNNING A SAMPLE PROGRAM

and ZBUG shows you what is in memory at this address.
Press [1] a few times to look at more memory addresses.
When finished, press [BREAK],

In Chapter 8, we’ll show you how to use ZBUG to examine
and test your program. To return to EDTASM’s editor, type:

E (ENTER)

EDTASMOV Users:

You must use the Stand-Alone ZBUG. Load DOS again
(Step 1). Atthe DOS Menu, press 2, “Execute a Program,”
and run the ZBUG program. After typing ZBUG, the screen
shows:

EXECUTE A FROGRAN
FROGRAM MAME: [ZBUG 1-BIH
DOS loads the stand-alone ZBUG and displays ZBUG’s

#prompt. You can now examine any memory address.
Type:

=11
and ZBUG shows you what is in memory at this address.

Press [1] a few times to look at more memory addresses.
When finished, press [BREAKI.

In Chapter 8, we’ll show you how to use ZBUG to examine
and test your program. To return to DOS, type:
K

Chapter 3/ Overview

This chapter is for beginning assembly language pro-
grammers. It explains some concepts you need. If you're
not a beginner, use this chapter as a refresher or skip it.

The Color
Computer Hardware
The Color Computer consists of:

* The 6809E Processor
* Memory
e Input/Output Devices

This shows how they relate to each other:

1/0 1/0
device device
Memory
Processor
I/0 110
device device

The Processor

The processor processes all data going to each memory
address and device. It contains:

* Registers - for temporarily storing 1- or 2-byte values.
* Buses - for transferring data to or from the processor.

All instructions to the processor must be in 6809 machine

code: a code of Os and 1 s containing “opcodes” and data.
“Opcodes” are instructions that tell the processor to ma-
nipulate data in some way.

For example, the machine-code instruction “10000110
11111001” contains:

e The opcode “10000110” (decimal 134 or hexadecimal
86)

* The data “11111001” (decimal 249 or hexadecimal F9)

This instruction tells the processor to load Register A with
11111001.

Memory

Memory is a storage area for programs and data. There
are two kinds of memory:

* Random access memory (RAM) - for temporary storage
of programs or data. When you load a program from
disk, you load it Into RAM. Many opcodes store data in
RAM temporarily.

* Read only memory (ROM) - for permanent storage of
programs. BASIC, as well as any program pack you use,
is stored in ROM. The Color Computer contains several
“ROM routines” that you can use to access the key-
board, screen, or tape recorder.

When writing an assembly language program, you must
constantly be aware of what’s happening in memory. For
this reason, this manual provides a memory map. (See
Reference J.)

Devices

All other parts of the hardware are called devices. A device
expects the processor to input or output data to it in a cer-
tain format. To input or output data in this format, you can
use these pre-programmed subroutines:

EJIASM

3 / OVERVIEW

* Routines stored in ROM (ROM routines) - for inputting
or outputting to the keyboard, screen, printer, or tape
recorder.

* Routines stored in DOS (DOS routines) - for inputting or
outputting to disk.

The Disk EDTASM

Assembler

The Disk EDT ASM looks for three fields in your instruc-
tions: label, command, and operand. For example, in this
instruction:

BECGIH JHF STHART
BEGIN is the label. JMP is the command. START is the
operand.
In the label field, it looks for:
* Symbols (symbolic names)
In the command field, it looks for:

* Mnemonics
e Pseudo Ops

In the operand field, it looks for:

* Symbols

* Operators

* Addressing-Mode Characters
* Data

Symbols

A symbol is similar to a variable. It can represent a value
or a location. BEGIN (in the sample session) is a symbol
that represents the location of the instruction JMP START.
START is also a symbol that represents the location of
LOA #$F9.

Mnemonics

A mnemonic is a symbolic representation of an opcode. It
is a command to the processor. “LOA” is a mnemonic. De-
pending on which “addressing-mode character” you use,
LOA represents one of these opcodes:

10000110

10010110
10110110

10100110
(Addressing-mode characters are discussed below.)

Mnemonics are specific to a particular processor. For ex-
ample, Radio Shack’s Model 4 uses the zao processor,
which understands zao mnemonics, rather than the 6809
mnemonics.

Pseudo Ops

A pseudo op is a command to the assembler. END (in the
sample session) is a pseudo op. It tells the assembler to
quit assembling the program.

Data

Data is numbers or characters. Many of the mnemonics
and pseudo ops call for data. Unless you use an operator
(described next), the assembler interprets your data as a
decimal (Base 10) number.

Operators

An operator tells the assembler to perform a certain oper-
ation on the data. In the value $1200, the $ sign is an op-
erator. It tells the assembler that 1200 is a hexadecimal
(Base 16) number, rather than a decimal (Base 10)
number.

The more commonly used operators are arithmetic and
relational. Addition (+) and equation (=) are examples of
these operators.

Addressing-Mode Characters

An addressing mode character tells the assembler how it
should interpret the mnemonic. The assembler then as-
sembles the mnemonic into the appropriate opcode.

The sample session uses the # character with the LOA
mnemonic to denote the “immediate” addressing mode.
This causes the assembler to assemble LOA into the op-
code 10000110.

The immediate mode means that the number following the
mnemonic (in this case, $F9) is data rather than an ad-
dress where the data is stored.

Pseudo ops, symbols, operators, and addressing-mode
characters vary from one assembler to another. Section Il
explains them in detail.

10

EJIASM

Sample Program

This is how each line in the sample program works:

L ORG Flzan
ORG is a pseudo op for “originate.” It tells the assembler
to begin loading the program at Location $1200 (Hexadec-
imal 1200). This means that when you load and run the

program from DOS, the program starts at Memory Ad-
dress $1200.

E@ BEGTH Nl START
BEGIN is a symbol. It equals the location where the JMP
START instruction is stored.

JMP is a mnemonic for “jump to an address.” It causes the
processor to jump to the location of the program labeled
by the symbol START, which is the LOA #$F9 instruction.
You must use JMP or LBRA as the first instruction in a
DOS program.

TR FOE DOME-BEGIH

FDB is a pseudo op for “store a 2-byte value in memory:.
It stores the value of DONE-BEGIN (the length of the pro-
gram) in the next two bytes of memory. You must store this
value at the beginning of the program to tell DOS how
much of the program to load.

Bpaiaa STHRT LOH #EF3

START is a symbol. It equals the location where LDA #$F9
is stored.

”

LDA is a mnemonic for “load Register A It loads Register
A with $F9, which is the hexadecimal ASCII code for a
graphics character. The ASCII characters are listed in Ref-
erence K.

BElie LD #fFuan
LDX is a mnemonic for “load Register X.” It loads Register
X with $400, the first address of video memory. Reference
J shows where video memory begins and ends.

B@lze SCREEN ;
SCREEN is a symbol. It equals the location where STA
, X+ is stored.

STH L W

STA is a mnemonic for “store Register A It stores the
contents of Register A ($F9) in the address contained in
Register X ($400). This puts the $F9 graphics character at
the upper left corner of your screen.

The “ and “ + “ are addressing-mode characters. The ,
causes the processor to store $F9 in the address con-
tained in Register X. The + causes the processor to then

increment the contents of Register X to $401.

falEa CHPE #Fcan
CMPX is a mnemonic for “compare Register X.” It com-
pares the contents of Register X with $600. If Register X

contains $600, the processor sets the “Z” bit in the Reg-
ister CCto 1.

pALHG BME SCREEN

BNE is a mnemonic for “branch if not equal.’ It tells the
processor return to SCREEN (the STA,X + instruction)
until the Z bit is set.

The BNE SCREEN instruction creates a loop. The pro-
gram branches back to SCREEN, filling all video memory
addresses with $F9, until it fills Address $600. At that time,
Register X contains $600, Bit Z is set, and program control
continues to the next instruction.

paisd WAIT TR [$noaal

JSR is a mnemonic for “jump to a subroutine” $A000 is a
memory address that stores the address of a ROM routine
called POLCAT. (See Reference F))

POLCAT scans the keyboard to see if you press a key.
When you do, it clears the Z bit.

The “[1" are addressing-mode characters. They tell the pro-
cessor to use an address contained in an address, rather
than the address itself. Always use the “[]” signs when cal-
ling ROM routines.

paien BEQ WAIT

BEQ is a mnemonic for “branch if equal.” It branches to the
JSR [$A00Q] instruction until the Z bit is clear. This
causes the program to loop until you press a key, at which
time POL CAT clears the Z bit.

paiTe CLR 71

aaian IMF [$FFFE]
CLR is a mnemonic for “clear,” and JMP is a mnemonic
for “jump to memory address.” These two instructions

end the program and return to BASIC’s startup mes-
sage.

(CLR inserts a zero in Address $71 ; this signals that the
system is at its original “uninitialized” condition. JMP goes
to the address contained in Address $FFFE; this is where
BASIC initialization begins.)

paled DOME ol o#®

EQU is a pseudo op. It equates the symbol DONE with an
asterisk (*), which represents the last line in the program.

11

3 / OVERVIEW

fpnlian EMD

END is a psuedo op. It tells the assembler to quit assem-
bling the program.

12

SECTION i

COMMANDS

EJIASM

EJIASM

SECTION |

COMMANDS

This section shows how to use the many Disk
EDTASM commands. Knowing these com-
mands will help you edit and test your pro-

gram.

13

EJIASM

EJIASM

Chapter 4/ Using the DOS Menu
(DOS Commands)

When you first enter DOS, a menu of six DOS commands
appear on the screen. Chapter 2 shows how to use the
first two DOS commands. This chapter shows how to use
the remaining commands:

» Start Clock Display

e Disk Allocation Map

* Copy Files

* Directory

To use the examples in this chapter, you need to have the
SAMPLE disk files, which you created in Chapter 2, on the
diskette in Drive 0.

Directory

The DOS “directory” command lets you select the direc-
tory entries you want to see, using three fields: filename,
extension, and drive number.

To select the directory entries, press [6l at the DOS Menu.
Then, press the [& to move the cursor left or [I] to move
right.

Type this line to select all directory entries that have the
flename SAMPLE.

[somMPLE®s] [#ewx] @] «FILE SPEC
Use the .[SPACEBAR] to erase characters. Press when

finished. Then, press any key to return to the DOS menu,
and press [l to return to the directory.

Type this line to select all directory entries with the exten-
sion /BIN:

D] [BIMT :[@] «FILE SPEC
Press when finished. Return to the main menu.

To see all directory entries on the disk in Drive 0, simply
press without specifying a filename or extension:

[###ﬁ##x#] {ﬁxﬁ] [@} JFILE SPEC

Disk Allocation Map

The “disk allocation map” command tells you how much
free space you have on your diskettes. To see the map,
press [at the DOS menu.

DOS shows a map of the diskettes that are in each drive.
The map shows how each of the diskette’s 68 granules is
allocated:

* A period (.) means the granule is free.

* An X means all the sectors in the granule are currently
allocated to afile.

* A number indicates how many sectors in the granule are
currently allocated to a file.

Press any key to return to the DOS menu.

Copy Files

The “Copy Files” command makes a duplicate of a disk
file. To use it, press B at the DOS menu. DOS then
prompts you for the names of the files.

Single-Drive Copy

The first example copies SAMPLE/ASM to another file
named COPY/ASM. Use the [*] and [¥ to position the cur-
sor. Answer the prompts as shown:

Zource File Hame [zAanFLE]
Extaension [Azn]
Oriwve (@]
festination File MHame [COPY 1
Extension Fasnl
Orive [a]
IF Driwes are The Samse arse dJou
wEing diffar shkattas?

i - 1]

4 [/ USING THE DOS MENU

When finished, press [ENTER. DOS copies SAMPLE/ ASM
to a new file named COPY/ASM and then returns to the
DOS menu. Check the directory (by pressing [6l) and you'll
see that both SAMPLE/ASM and COPY/ASM are on your
diskette.

The next example copies SAMPLE/ASM to another disk-
ette. Answer the prompts as shown:

Source File Mame [zanrLE]
Exrension fa=n]
Oriwve [al

Oesztination File MHame [oopy 1
Extension [asr]
Orive (o]

I¥ Driwes are the same are Jou

wEing different disksttes?

. o ['.!.l}

U

Press ENTERI. DOS then prompts you to insert the source
diskette. Press again.

DOS then prompts you for a destination diskette. Insert
the destination diskette and press ENTER]. After copying the
file, DOS prompts you for a system diskette. If you press
without inserting a system diskette, you will get a
SYSTEM FAILURE error.

When finished, it returns to the DOS menu.

Multi-Drive Copy

This example copies SAMPLE/ASM in Drive 0 to SAM-
PLE/ASM in Drive 1. Answer the prompts as shown:

Sourcs File Mame [saMPLE]
Exrenzion fasmd
Oriwe [a]

Destination File Mame [SAMFLE]
Exrtension [a=r]

Drdw (1]

IF Oriwes are The samse arse you

wEing different diskettes?

S S T & I [H]

Start Clock Display

The Color Computer has a clock that runs on 60-cycle in-
terrupts. Since the clock skips a second or more when the
computer accesses tape or disk, we recommend that you
not use it while executing a program.

To use the clock, press 3], “Start Clock Display.” Six digits
appear at the upper right corner of your screen. The first
two are hours, the next are minutes, and the next are sec-
onds. This clock counts the time until you exit DOS.

16

Chapter 5/ Examining Memory
ZBUG Commands — Part |

To use the Disk EDTASM, you must understand the Color
Computer's memory. You need to know about memory to
write the program, assembile it, debug it, and execute it.

In this chapter, we’ll explore memory and see some of the
many ways you can get the information you want. To do
this, we’ll use ZBUG.

If you are not “in” ZBUG, with the ZBUG # prompt dis-
played, you need to get in it now.

EDTASM: Load and run DOS, then execute the
EDTASM program. At the editor's* prompt, type:

- [ENTER
EDTASMOV: Load and run DOS, then execute the
ZBUG program.

You should now have a# prompt on your screen. This
means you are in ZBUG and you may enter a ZBUG com-
mand. All ZBUG commands must be entered at this com-
mand level. You can return to the command level by
pressing or [ENTER].

Examining a
Memory Location

The 6809 can address 65,536 one-byte memory ad-
dresses, numbered 0-65535 ($0000-$FFFF). We’'ll ex-
amine Address $AOO0O. At the# prompt, type:

E
to get into the “byte mode” Then type:
injniniy

and ZBUG shows the contents of Address $AOOO. To
see the contents of the next bytes, press 1. Use [to
scroll to the preceding address.

Continue pressing [or [11. Notice that as you use the
the screen continues to scroll down. The smaller ad-
dresses are on the lower part of the screen.

All the numbers you see are hexadecimal (Base 16). You
see not only the 10 numeric digits, but also the 6 alpha
characters needed for Base 16 (A-F). Unless you specify
another base (which we do in Chapter 9), ZBUG assumes
you want to see Base 16 numbers. Notice that a zero pre-
cedes all the hexadecimal numbers that begin with an al-
phabetic character. This is done to avoid any confusion
between hexadecimal numbers and registers.

Examination Modes

To help you interpret the contents of memory, ZBUG offers
four ways of examining it:

* Byte Mode

e Word Mode

e ASCII Mode

e Mnemonic Mode
Byte Mode

Until now, you’ve been using the byte mode. Typing B
[ENTERI. at the # prompt got you into this mode.

The byte mode displays every byte of memory as a
number, whether it is part of a machine-language program
or data.

In this examination mode, the [{] increments the address
by one. The decrements the address by one.

17

EJIASM

5 /| EXAMINING MEMORY

Word Mode

Type to get back to the # prompt. To enter the word
mode, type:

b
Look at the same memory address again. Press the [i] key
a few times. In this mode, the [increments the address
by two. The numbers contained in each address are the

same, but you are seeing them two bytes or one word at
a time.

Press the [1] a few times. The [t always decrements the
address by one, regardless of the examination mode.

Look at Address $A000 again by typing:
HBgas

Note the contents of this address “word.” This is the ad-
dress where POLCAT, a ROM routine, is stored. Examine
the POLCAT routine. For example, if $A000 contains
A1C1, type:

AICLS
and you’ll see the contents of the first two bytes in the

POLCAT routine. We’ll examine this routine later in this
chapter using the “mnemonic mode.”

ASCII Mode

Return to the command level. To enter the ASCIl mode,
type:
A

ZBUG now assumes the content of each memory address
is an ASCII code. If the “code” is between $21 and $7F,
ZBUG displays the character it represents. Otherwise, it
displays meaningless characters or “garbage.”

Here, the [1] increments the address by one.

Mnemonic Mode

This is the default mode. Unless you ask for some other
mode, you will be in the default mode.

Return to the # prompt. To enter the mnemonic mode from
another mode, type:

i (ENTER)
Look at the addresses where the POLCAT routine is

stored. For example, if you found that POLCAT is at ad-
dress $A1C1, type:

AICLS

Press the [I] a few times. In the mnemonic mode, ZBUG
assumes you’re examining an assembly language pro-
gram. The [increments memory one to five bytes at a
time by “disassembling” the numbers into the mnemonics
they represent.

For example, assume the first two addresses in POLCAT
contain $3454. $3454 is an opcode for the PSHS U,X,B
mnemonic. Therefore, ZBUG disassembles $3454 into
PSHS U,X,B.

Begin the disassembly at a different byte. Press and
then examine the address of POLCAT plus one. For ex-
ample, if POLCAT starts at address $A1C1, type:

HICES

You now see a different disassembly. The contents of
memory have not changed. ZBUG has, however, inter-
preted them differently.

For example, assume $A1C2 contains a $54. This is the
opcode for the LSRB mnemonic. Therefore, ZBUG dis-
assembles $54 into LSRB.

To see the program correctly, you must be sure you are
beginning at the correct byte. Sometimes, several bytes
will contain the symbol “??”. This means ZBUG can’t figure
out which instruction is in that byte and is possibly dis-
assembling from the wrong point. The only way of knowing
you’re on the right byte is to know where the program
starts.

Changing Memory

As you look at the contents of memory addresses, notice
that the cursor is to the right. This allows you to change
the contents of that address. After typing the new contents,
press or [¥1; the change will be made.

To show how to change memory, we’ll open an address in
video memory. Get into the byte mode and open Address
$015A by typing:

B

BlERS

Note that the cursor is to the right. To put a 1 in that ad-
dress, type:
1

18

If you want to change the contents of more than one ad-
dress, type:

BIEAS
Then type:
oo
This changes the contents to DD and lets you change the

next address. (Press the [t to see that the change has
been made.)

The size of the changes you make depends on the ex-
amination mode you are in. In the byte mode, you will
change one byte only and can type one or two digits.

In the word mode, you will change one word at a time. Any
1-, 2-, 3-, or 4-digit number you type will be the new value
of the word.

If you type a hexadecimal number that is also the name of
a 6809 registers (A,B,D,CC,DPX,Y,U,S,PC), ZBUG as-
sumes it's a register and gives you an “EXPRESSION
ERROR! To avoid this confusion, include a leading zero
(OA,0B, etc.)

To change memory in the ASCII mode, use an apos-
trophe before the new letter. For example, here’s how to
write the letter C in memory at Address $015A. To get
into the ASCII examination mode, type:

He

To open Address $015A,type:
BlERs

To change its contents to a C, type:
]

Pressing the [A will assure you that the address contains
the letter C.

If you are in mnemonic mode, you must change one to five
bytes of memory depending on the length of the opcode.
Changing memory is complex in mnemonic mode be-
cause you must type the opcodes rather than the mne-
monic.

For example, get into the mnemonic mode and open Ad-
dress $015A. Type:

i

Bleas
To change this instruction, type:
& [ENTER

Now Address $015A contains the opcode for the LDA
mnemonic. Open location 015B:

BlnEs
and insert $06, the operand:
{1 & [ENTER]

Upon examining Address $015A again, you'll see it now
contains an LOA #6 instruction.

Exploring the
Computer’s Memory

You are now invited to examine each section of memory
using ZBUG commands to change examination modes.
Use the Memory Map in Reference J.

Don’t hesitate to try commands or change memory. You
can restore anything you alter simply by removing the disk-
ette and turning the computer off and then on again.

19

EJIASM

Chapter 6/ Editing the Program
Editor Commands

The editor has many commands to help you edit your
source program. Chapter 2 shows how to enter a source
program. This chapter shows how to edit it.

To use the edit commands you must return to the editor
from ZBUG:

EDTASM: From EDTASM ZBUG, return to the ed-
itor by typing E

EDTASMOV: From Stand-Alone ZBUG, return to
the DOS menu by typing K [ENTER]). Then, execute
the EDTASMOV program.

The screen now shows the editor’s * prompt. While in the
editor, you can return to the * prompt at any time by
pressing BREAK].

This chapter uses SAMPLE/ASM from Chapter 2 as an
example. To load SAMPLE/ASM into the editor, type:

L SAMPLE-RSN ENIER

Print Command

Prange

To print a line of the program on the screen, type:
F 1 f1B[ENTER]

To print more than one line, type:
Flg@: 1320 ENTER)

You will often refer to the first line, last line, and current
line (the last line you printed or inserted). To make this
easier, you can refer to each with a single character:

first line

* last line
current line (the last line you printed or
inserted.)

To print the current line, type:
F. (ENTER)

To print the entire text of the sample program, type:
P#:*[ENTER]
This is the same as P050:200 e.

The colon separates the beginning and ending lines in a
range of lines. Another way to specify a range of lines is
with!. Type:

F#! S[ENTER|

and five lines of your program, beginning with the first one,
are printed on the screen.

To stop the listing while it is scrolling, quickly type:
[SHIFT] i#

To continue, press any key.

Printer Commands

Hrange
Trange

If you have a printer, you can print your program with the
H and T commands. The H command prints the editorsup-
plied line numbers. The T command does not.

To print every line of the edit buffer to the printer, type:
H# ¢ #[ENTER|

You are prompted with:
FRIMTER READY
Respond with when ready.

The next example prints six lines, beginning with line 100,
but without the editor-supplied line numbers. Type:

Tigp SENTER
Edit Command
Eline

You can edit lines in the same way you edit Extended

21

EJIASM

6 / EDITING THE SOURCE PROGRAM

COLOR BASIC lines. For example, to edit line 100, type:
E 1 @A [ENTER]

The new line 100 is displayed below the old line 100 and
is ready to be changed.

Press the to position the cursor just after START. Type
this insert subcommand:

TEDENTER]
which inserts ED in the line.
The edit subcommands are listed in Reference A.
Delete Command
Drange

If you are using the sample program, be sure you have
written it on disk before you experiment with this com-
mand. Type:

D110:140e
Lines 110 through 140 are gone.

Insert Command
Istartline, Increment

Type:
Tigz, Z2ENTER

You may now insert lines (up to 127 characters long) be-
ginning with line 152. Each line is incremented by two.
(The editor does not allow you to accidently overwrite an
existing line. When you get to line 160, it gives you an error
message.)

Press to return to the command level. Then type:
1 2@ E([ENTER]

This lets you begin inserting lines at the end of the pro-
gram. Each line is incremented by two, the last increment
you used.
Type:

ENTER] T

The editor begins inserting at the current line.

On startup, the editor sets the current line to 100 and the
increment to 10. You may use any line numbers between
and 63999.

Renumber Command
Nstartline,Increment

Another command that helps with inserting lines between
the lines is N (for renumber). From the command level,

type:
(1@, SEENTER

The first line is now Line 100 and each line is incremented
by 50. This allows much more room for inserting between
lines.

Type:
4[ENTER

The current line is now the first line number. Renumber
now so you will be ready for the next instruction. Type:

Higg, | BENTER

Replace Command
Rstartline,Increment

The replace command is a variation of the insert com-
mand. Type:

R100,3e
You may now replace line 100 with a new line and begin
inserting lines using an increment of three.

Copy Command
Cstartline,range,Increment

The copy command saves typing by duplicating any part
of your program to another location in the program.

To copy lines, type:
Chag, 10@: 158, 1 BENTER
This copies lines 100 to 150 to a new location beginning

at Line 500, with an increment of 10. An attempt to copy
lines over each other will fail.

ZBUG Command

The EDTASM system contains a copy of the stand-alone
ZBUG program. This allows you to enter ZBUG while your
program is still in memory.

EDTASMOV Users: You need to use the StandAlone
ZBUG program, as shown in Chapter 2.

22

EJIASM

To enter ZBUG, type:
The # prompt tells you that you are now in ZBUG.

To re-enter the editor from ZBUG, type the ZBUG com-
mand:

F [ENTER

If you print your program, you'll see that entering and ex-
iting ZBUG did not change it.

BASIC Command

To enter BASIC from the editor, type:
l:g ENTER

If you want to enter DOS from the editor, type:
k. [ENTER]

Entering DOS or BASIC empties your edit buffer. Reen-
tering the editor empties your BASIC buffer.

Write Command
WD filespec

This command is the same one you used in Chapter 2 to
write the source program to disk. It saves the program in
a disk file named filespec. Filespec can be in one of these
forms:

filename/ext:drive
filename.ext:drive

The filename can be one to eight characters. It is required.

The extension can be one to three characters. It is op-
tional. If the extension is omitted, the editor assigns the file
the extension /ASM.

The drive can be a number from O to 4. It is also optional.
If the drive number is omitted, the editor uses the first
available drive.

Examples:
WD TESTENTER

saves source file currently in memory as TEST/ ASM.
WO TESTSPFRI

saves the source file currently in memory as TEST/PR1.

Load Command

LD filespec
LDA filespec
This command loads a source filespec from disk into the

edit buffer. If the source filespec you specify does not have
an extension, the editor uses /ASM.

If you don’t specify the A option, the editor empties the edit
buffer before loading the file.

If you specify the A option, the editor appends the file to
the current contents of the edit buffer.

Appending files can be useful for chaining long programs.

When the second file is loaded, simply renumber
the file with the renumber command.

Examples:

LD sAMPLE: L
empties the edit buffer, then loads a file named
SAMPLE/ASM from Drive 1.

LA SAMPLESFRO

loads a file named SAMPLE/PRO from the first available
drive, then appends to the current contents of the edit
buffer.

The editor has several other commands. These are
listed in Reference A.

Hints on Writing Your Program

Copy short programs from any legal source available
to you. Then modify them one step at a time to learn
how different commands and addressing modes
work. Try to make the program relocatable by using
indexed, relative, and indirect addressing (described
in Section Ill).

Try to write a long program as a series of short rou-
tines that use the same symbols. They will be easier
to understand and debug. They can later be combined
into longer routines.

Note: You can use the editor to edit your BASIC programs,
as well as assembly language programs. You might find
this very useful since the EDT ASM editor is much more
powerful than the BASIC editor. You need to first save the
BASIC program in ASCII format:

SAVE filespec, A
Then, load the program into the editor.

23

24

Chapter 7/ Assembling the Program
(Assembler Commands)

To load the assembler program and assemble the source
program into 6809 machine code, EDTASM (or EDTAS-
MQV) has an “assembly command.” Depending on how
you enter the command, the assembler:

* Shows an “assembly listing” giving information on how
the assembler is assembling the program.

* Stores the assembled program in memory.
» Stores the assembled program on disk.
» Stores the assembled program on tape.

This chapter shows the different ways you can control the
assembly listing, the in-memory assembly, and the disk
assembly. Knowing this will help you understand and
debug a program.

The Assembly Command

The command to assemble your source program into
6809 machine code is:

Assembling in memory:

A /IM /switch2/switch3/ ...
The /IM (in memory) switch is required.
Assembling to disk:

A filespec /switch1/switch2 ...

The assembled program is stored on disk as filespec. If
filespec does not include an extension, the assembler
uses /BIN.

Assembling to tape:
A filename /switch1/switch2/ ...

The assembled program is stored on tape as filename.

The switch options are as follows:

/AO Absolute origin

/IM Assemble into memory

/LP Assembler listing on the line printer
/MO Manual origin

/NL No listing

/NO No object code in memory or disk
/NS No symbol table in the listing

/SR Single record

/SS Short screen listing

/WE Wait on assembly errors

/WS With symbols

You may use any combination of the switch options. Be
sure to include a blank space before the first switch. If you
omit filespec, you must use the in-memory switch (/IM).

Examples:
FoTHASWE

assembles the source program in memory (/IM) and stops
at each error (/WE).

4 TEST ~LF

A
assembles the source program and saves it on disk as
TEST/BIN. The listing is printed on the printer (/LP). Note
that there must be a space between the filespec and the
switch.

H TESTSFRO

assembles the source program and saves it on disk as
ATEST/PRO.

25

EJIASM

7 /| ASSEMBLING THE PROGRAM

BaaLa

Tizon

1285 @HRsd BEGIHN
START

aain BHaTE
NHE-BEGTH

aole@ START
Fa

auaa (B2l 1@y

#Euan
@@izd SCREEM

)
o

T

apize

5

paida

BELEG WAIT

ux}
[y} =
m

T 0 00 T gk e 0
n)

aaize

i S I~ T B O I
-

aaiTe

1217 aF

-]

71
9F FFFE aalea
[$FFFE]
1210 a@lag DOHE
EqU *
prgrdrgr rgri g
EMD

W N

(epp@w TOTAL ERRORS)

BEGINM
OOME
SCREEHN

START 12@5
WHIT

1. The location in memory where the assembled code will
be stored. In this example, the assembled code for
LDA#$F9 will be stored at hexadecimal location #1200.

2. The assembled code for the program line. $86F9 is the
assembled code for LOA #$F9.

3. The program line.

4. The number of errors. If you have errors, you will want
to assemble the program again with the /WE switch.

5.The symbols you used in your program and the memory
locations they refer to.

Figure 1. Assembly Display Listing

26

EJIASM

Controlling the
Assembly Listing

The assembler normally displays an assembly listing sim-
ilar to the one in Figure 1. You can alter this listing with one
of these switches:

/SS Short screen listing

/NS No symbol table in the listing
/NL No fisting

/LP Listing printed on the printer

For example:

A SHEMPLE #HME
assembles SAMPLE and shows a listing without the sym-
bol table.

If you are printing the listing on the printer, you might want
to set different parameters. You can do this with the editor’s
“set line printer parameters” command:

To use this command, type (at the* prompt):
= [ENTER
The editor shows you the current values for:
e LINCNT - the number of lines printed on each page.
(“line count”)
* PAGLEN - the number of lines on a page. (“page length”)
* PAGWID - the number of columns on a page. (“page
width”)

e FLDFLG - the “fold flag” (This flag should contain 1 if
your printer does not “wrap around.” Otherwise, the flag
should contain 0.)

EDTASMOV PROGRAM
$36D6

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

$3FFF
$7FFF

(16K)
(32K)

TOP OF RAM

It then prompts you for different values. Check your printer
manual for the appropriate parameters. If you want the
value to remain the same, simply press [ENTERI,
For example:

LIMOHT=E8

FRGLEM=EE

FRAGWID=EQ

FLOFLG=@
sets the number of lines to 58, the page length to 66, and
the page width to 80 columns. You can then assemble the
program with the /LP switch:

A OSAMPLE SLP
and the assembler prints the listing on the line printer
using the parameters just set.

In-Memory Assembly
The /IM Switch

The /IM switch causes the program to be assembled in
memory, not on disk or tape. This is a good way to find er-
rors in a program.

Where in memory? This depends on whether you use the
/IM switch alone or accompany it with an ORG instruction,
an /AO switch, or an /MO switch.

Using the /IM Switch Alone

This is the most efficient use of memory. The assembler
stores your program at the first available address after the
EDTASM (or EDTASMOV) program, the edit buffer, and
the symbol table:

EDTASM PROGRAM
$4A2E

EDIT BUFFER
MACRO TABLE
SYMBOL TABLE

ASSEMBLED PROGRAM

STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 2. In-Memory Assembly

7 /| ASSEMBLING THE PROGRAM

The EDTASM program ends at Address $4A2D. The EDT
ASMOV program ends at $36D5.

The edit buffer contains the source program. It begins at
Address $4A2E or $36D6 and varies in size depending on
your program’s length.

The macro table references all the macro symbols in your
program and their corresponding values. (Macros are de-
scribed in Chapter 12.) Its size varies depending on how
many macros your program contains.

The symbol table references all your program’s symbols
and their corresponding values. lts size varies depending
on how many symbols your program contains.

Example:
Load the SAMPLE/ASM back into the edit buffer. At the*
prompt, type:
L SAMPLESASH

Delete the ORG line. At the * prompt, type:

D50e
Then assemble the program in memory by typing:

A/IMe

(If you want another look, type A/IM again. You can pause
the display by pressing and continue by pressing
any key.)

Since this sample program uses START to label the be-
ginning of the program, you can find its originating address
from the assembiler listing. If you are using EDTASM, it
should begin at Address $4B1E. If you are using EDTAS-
MOV, it should begin at $37C6.

EDTASMOV PROGRAM

$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$3800

ASSEMBLED PROGRAM
STARTS HERE

$3FFF (16K)
$7FFF (32K)

TOP OF RAM

Using ORG with /IM
for Origination Offset

If you have an ORG instruction in your program and do
not use the AO switch, the assembler stores your program
at:

The first available address + the vplue of ORG
Example:
Insert this line at the beginning of the sample program:
EDTASM Systems:

AALG ORG e inln
EDTASMOV Systems:
ApEQ ORG fFrang
Then, at the * prompt, type:
HoTH

The START address is now the first available address +
$6000 or $3800. This means that if you have less than 32K
(with EDT ASM) or less than 16K (with EDTASMOV), the
program extends past the top of RAM and you will get a
BAD MEMORY error.

Using IM with /AO for Absolute Origin

The AO switch causes the assembler to store your pro-
gram “absolutely” at the address specified by ORG.

With the ORG instruction inserted, type (at the * prompt):
ML HDe
Your program now starts at address $6000 or $3800:

EDTASM PROGRAM

$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6000

ASSEMBLED PROGRAM
STARTS HERE

TOP OF RAM $7FFF (32K)

Figure 3. /AO In-Memory Assembly.

EJIASM

As you can see, the AO switch set the location of the as-
sembled program only. It did not set the location of the edit
buffer or the symbol table.

If your ORG instruction does not allow enough memory
for your program, you will get a BAD MEMORY error. The
assembler cannot store your program beyond the top of
RAM.

Using /MO with /IM

for Manual Origin

The /MO switch causes your program to be assembled at
the address set by USRORG (plus the value set in your

ORG instruction, if you use one). To set USRORG, use the
editor’s “origin”. command.

Before setting USRORG, remove the ORG instruction
from your program. Then, at the* prompt, type:

[1[ENTER
The editor shows you the current values for:
* FIRST - the first hexadecimal address available

EDTASMOV PROGRAM
$36D6
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
ASSEMBLED PROGRAM $3800
STARTS HERE
$3FFF (16K)

TOP OF RAM $7FFF (32K)

Figure 4. /MO In-

e LAST - the last hexadecimal address available

e USRORG — the current hexadecimal value of US-
RORG. (On startup, USRORG is set to
the top of RAM.)

It then prompts you for a new value for USRORG. If you
want USRORG to remain the same, press (ENTER).

If you want to enter a new value, it must be between the
FIRST address and LAST address. Otherwise, you will get
a BAD MEMORY error.

EDTASM Systems: Set USRORG to $6050:
UERORG=EAE5 BENTER|

EDTASMOV Systems: Set USRORG to $3800:
UERORG=2200ENTER

After setting USRORG, you can assemble the program at
the USRORG address. Type:

TR0

Your assembled program now starts at Address $6050 or
$3800:

EDTASMOV PROGRAM

$4A2E
EDIT BUFFER
MACRO TABLE
SYMBOL TABLE
$6050

ASSEMBLED PROGRAM
STARTS HERE
$7FFF (32K)

TOP OF RAM

Memory Assembly.

29

7 /| ASSEMBLING THE PROGRAM

Disk Assembly

When you specify a filespec in the assembler command,
the assembler saves the assembled program on disk. You
can then load the program from one of these systems:

* DOS (to run as a stand-alone program)
* ZBUG (to debug with the stand-alone ZBUG program)
* BASIC (to call from a BASIC program)

The program originates at the address you specify in the
ORG instruction.

What address you should use as the originating address
depends upon which of the three systems you will be load-
ing it into.

Assembling for DOS

Reference J shows the memory map that is in effect when
DOS is loaded. As you can see, DOS consumes all the
memory up to Address $1200. This means you must orig-
inate the program after $1200 or you will overwrite DOS.

In the sample program, reinsert the ORG $1200 instruc-
tion:

= ORG qi1zam
and assemble it to disk by typing:
A SAMFPLE ~SSRENTER

Note the /SR switch. You must use /SR when assembling
to disk a program that you plan to load back into DOS. This
puts the program in the format expected by DOS.

The assembler saves SAMPLE/BIN to disk with a starting
address of $1200. You can now load and execute SAM-
PLE/BIN from the DOS menu.

Assembling for Stand-Alone
ZBUG (EDTASMOV Users)

If you plan to use the stand-alone ZBUG for debugging

your program, you need to save the program on disk so
that you can load it into ZBUG.

Reference J also shows the memory map that is in effect
when ZBUG is loaded. As you can see, you must use an
originating address of at least $3800 or you will- overwrite
ZBUG. Change the ORG instruction to:

Lo ORG fFrang
So that you can test this from ZBUG, without the program

returning to BASIC, you need to change the ending of it.
First, delete the CLR instruction in Line 170:

01 7@ ENTER|
Then, change the JMP instruction in Line 180 to this:
1@ SWI
After making the changes to the program, assembile it to
disk by typing:
A SAMPLECSBUG SlWSe
The assembler saves SAMPLE/BUG on disk with a start-

ing address of $3800. The /WS switch causes the
assembler to save the symbol table also.

Hints On Assembly
e Use a symbol to label the beginning of your program.

* When doing an in-memory assembly on a program
with an ORG instruction, you may want to use the /AO
switch. Otherwise, the assembler will not use ORG as
the program’s originating address. It will use it to offset
(add- to) the loading address.

e The /WE switch is an excellent debugging tool. Use it
to detect assembly errors before debugging the pro-
gram.

e If you would like to examine the edit buffer and symbol
table after an in-memory assembly, use ZBUG to ex-
amine the appropriate memory locations.

EJIASM

Chapter 8/ Debugg

ing the Program

(ZBUG Commands — Part ll)

ZBUG has some powerful tools for a trial run of your as-
sembled program. You can use them to look at each reg-
ister, every flag, and every memory address during every
step of running the program.

Before reading any further, you might want to review the
ZBUG commands you learned in Chapter 5. We will be
using these commands here.
Preparing the
Program for ZBUG

In this chapter, we’ll use the sample program from Chapter
2 to show how to test a program. How you load the pro-
gram into ZBUG depends on whether you are using ED-
TASM’s ZBUG program or the stand-alone ZBUG
program.

EDTASM ZBUG:

If you are using EDTASM, you can use EDTASM’s ZBUG
program.

1. Load SAMPLE/ASM into EDTASM (if it's not already
loaded).

So that your program will be in the same area of mem-
ory as ours, change the ORG instruction to:

L@ ORG fooon
So that you can test the program properly from ZBUG
(without the program returning to BASIC), you need to

change the program’s ending. First, delete the CLR in-
struction in Line 170:

[11 7@ [ENTER]
Then, change the JMP instruction in Line 180 to this:
i8n sSWI

4. Assemble the program in memory using the /IM and
/AQ switches. At the* prompt, type:

ASTHAE0
5. Enter ZBUG. At the * prompt, type:
7 [ENTER

When the # prompt appears, you're in ZBUG and
can test the sample program.

Stand-Alone ZBUG:

If you are using EDTASMQV, you should use the Stand-
Alone ZBUG.

1. Assemble SAMPLE/BUG to disk as instructed in the
last chapter (“Assembling for Stand-Alone ZBUG”).

Return to DOS and execute the stand-alone ZBUG
program:

EAECUTE A PROGRAN
PROGRANM MAME [ZBUG 1-BIH
ZBUG loads and displays its # prompt.

Load SAMPLE/BUG, along with its symbol table, into
ZBUG. Type:

LOS SAMPLESBUG

When the # prompt appears, you're ready to test the
sample program with ZBUG.

Display Modes

In Chapter 5, we discussed four examination modes.
ZBUG also has three display modes.

We’ll examine each of these display modes from the
mnemonic examination mode. If you’re not in this mode,
type HM[ENTER] to get into it.

31

11 / USING PSEUDO OPS

Numeric Mode

Type:
4 [ENTER
and examine the memory addresses that contain your pro-

gram: $5800-$5817 for EDTASM’s ZBUG or $3800 -
$3817 for Stand-Alone ZBUG.

In the numeric mode, you do not see any of the symbols
in your program (BEGIN, START, SCREEN, WAIT, and
DONE). All you see are numbers. For example, with ED-
TASM’s ZBUG, Address $580F shows the instruction BNE
580A rather than BNE SCREEN.

Symbolic Mode
From the command level, type:
= [ENTER]
and examine your program again. ZBUG displays your en-
tire program in terms of its symbols (BEGIN, START,

SCREEN, WAIT, and DONE). Examine the memory ad-
dress containing the BNE SCREEN instruction and type:

u
K

The semicolon causes ZBUG to display the operand
(SCREEN) as a number (580A or 380A).

Half-Symbolic Mode

From the command level, type:
H[ENTER
and examine the program. Now all the memory addresses

(on the left) are shown as symbols, but the operands (on
the right) are shown as numbers.

Using Symbols to
Examine Memory

Since ZBUG understands symbols, you can use them in
your commands. For example, with EDTASM’s ZBUG,
both these commands open the same memory address
no matter which display mode you are in:

BEGIMS
Logas

Both of these commands get ZBUG to display your entire
program:

T BEGIHM
T Lopg

You can print this same listing on your printer by substitut-
ing TH for T.

Executing the Program

You can run your program from ZBUG using the G (Go)
command followed by the program’s start address:

EDTASM ZBUG: Type either of the following:

GEEGITHENTER]
G5B AENTER]

OOME

ElT

Stand-Alone ZBUG: Type either of the following:

GEEGITHENTER]
GEEH@ENTER|

The program executes, filling all of your screen with a pat-
tern made up of F9 graphics characters. If you don’t get
this pattern, the program probably has a “bug.” The rest of
the chapter discusses program bugs.

After executing the program, ZBUG displays 8 BRK @
5817, 8 BRK @ 3817, or 8 BRK @ DONE. This tells you
the program stopped executing at the SWI instruction lo-
cated at Address DONE. ZBUG interprets your closing
SWI instruction as the eighth or final “breakpoint” (dis-
cussed below).

Setting Breakpoints

If your program doesn’t work properly, you might find it
easier to debug it if you break it up into small units and run
each unit separately. From the command level, type X fol-
lowed by the address where you want execution to break.

We'll set a breakpoint at the first address that contains the
symbol SCREEN: $580A for EDTASM’s ZBUG or 380A for
Stand-Alone ZBUG.

EDTASM ZBUG: Type either of the following:
HECREEMENTER
:

32

EJIASM

Stand-Alone ZBUG: Type either of the following:
AECREEMENTER
W AR RENTER]
Now type GBEGIN[ENTER] to execute the program. Each
time execution breaks, type:

Z[ENTER

to continue. A graphics character appears on the screen
each time ZBUG executes the SCREEN loop. (The char-
acters appear to be in different positions because of scroll-
ing.You will not see the first 32 characters because they
scroll off the screen.)

Type:
[1[ENTER

to display all the breakpoints you have set. (You may set
up to eight breakpoints numbered O through 7.)

Type:
> 1 A[ENTER]

and the tenth time ZBUG encounters that breakpoint, it
halts execution.

Type:

*[ENTER

This is the command to “yank” (delete) all breakpoints. You
can also delete a specific breakpoint. For example:

' {4 [ENTER]
This deletes the first breakpoint (Breakpoint 0).

You may not set a breakpoint in a ROM routine. If you set
a breakpoint at the point where you are calling a ROM rou-
tine, the C command will not let you continue.

Examining Registers
and Flags

Type:
F [ENTER]

What you see are the contents of every register during this
stage of program execution. (See Chapter 10 for definition
of all the 6809 registers and flags.)

Look at Register CC (the Condition Code). Notice the
letters to the right of it. These are the flags that are set in
Register CC. The E, for example, means the E flag is set.

Type:

and ZBUG displays only the contents of Register X. You
can change this in the same way you change the contents
of memory. Type:

#[ENTER

and the Register X now contains a zero.

Stepping Through
the Program

BEGIHM, Mote the commal

LDA #$F9 is the next instruction to be executed. The first
instruction, JMP START, has just been executed. To see
the next instruction, type:

, Simply a comma

Now, LOA #$F9 has been executed and LOX #$500 is the
next. Type:

& [ENTER

and you’ll see this instruction has loaded Register A with
$F9.

Use the comma and R command to continue singlestep-
ping through the program examining the registers at will.
If you manage to reach the JSR [$AOQQ] instruction,
ZBUG prints:

CHMH'T COMTIMUE

ZBUG cannot single-step through a ROM routine or
through some of the DOS routines.

Transferring a Block
of Memory

EDTASM ZBUG: Type:
W ESRd Eage sENTER
Stand-Alone ZBUG: Type:
o380 3BL@ EENTER

Now the first six bytes of your program have been copied
to memory addresses beginning at 5000 or 3850

11 / USING PSEUDO OPS

Saving Memory to Disk

To save a block of memory from ZBUG, including the sym-
bol table, type:

EDTASM ZBUG: F& TESTSBUG L2E@
EE81T LEQAENTER
Stand-Alone ZBUG: F= TEST ~BUG 886

BTl
R

3 E D B[ENTER]
This saves your program on disk, beginning at Address
5800 (or 3800) and ending at Address 5817 (or 3817). The

last address is where your program begins execution
when you load it back into memory. In this case, this

address is the same as the start address.

To load TEST/BUG and its symbol table back into ZBUG,
type:

LOS TEST.BUG
Hints on Debugging

Don’t expect your first program to work the first time.
Have patience. Most new programs have bugs. De-
bugging is a fact of life for all ‘programmers, not just
beginners.

Be sure to make a copy of what you have in the edit
buffer before executing the program. The edit buffer is
not protected from machine language programs.
ZBUG has a built-in calculator that performs arith-
metic, relational, and logical operations. Also, it lets
you use three different numbering systems, ASCII
characters, and symbols.

34

Chapter 9/ Using the ZBUG Calculator
(ZBUG Commands — Part lll)

This chapter contains many examples of how to use the
calculator. Some of these examples use the same assem-
bled program that we used in the last chapter.

Stand-Alone ZBUG: Some of the memory ad-
dresses we use in the examples are too high for
your system. Subtract $1000 from all the hexadec-
imal addresses and 4096 from all the decimal
numbers.

Numbering System Modes

ZBUG recognizes numbers in three numbering systems:
hexadecimal (Base 16), decimal (Base 10), and octal
(Base 8).

Output Mode

The output mode determines which numbering system
ZBUG uses to output (display) numbers. From the ZBUG
command level, type:

% 1 A [ENTER]

Examine memory. The T at the end of each number stands
for Base 10. Type:

A= [ENTER

Examine memory. The Q at the end of each number
stands for Base 8. Type:

1 &[ENTER]
You’re now back in Base 16, the default output mode.

Input Mode

You can change input modes in the same way you change
output modes. For example, type:

I 1 A[ENTER]

Now, ZBUG interprets any number you input as a Base 10
number. For example, if you are in this mode and type:

T HZ1EE 4o gZENTER

ZSBUG shows you memory addresses 49152 (Base 10)
through 49162 (Base 10). Note that what is printed on the
screen is determined by the output mode, not the input
mode.

You can use these special characters to “override” your
input mode:

BASE BEFORE NUMBER | AFTER NUMBER
Base 10 & T
Base 16 $ H

Base 8 @ Q

Table 1. Special Input Mode Characters
For example, while still in the 110 mode, type:
T U8ie? $00 1 aENER

The “$” overrides the 110 mode. ZBUG, therefore, inter-
prets C010 as a hexadecimal number. As another exam-
ple, get into the 116 mode and type:

T 4218527 Ol aENTER

Here, the “T” overrides the 116 mode. ZBUG interprets
49152 as decimal.

35

EJIASM

11 / USING PSEUDO OPS

Operations

ZBUG performs many kinds of operations for you. For ex-
ample, type:

CERR+E2ETS

and ZBUG goes to memory address C019 (Base 16), the
sum of COOO (Base 16) and 25 (Base 10). If you simply
want ZBUG to print the results of this calculation, type:

CRRR+2ET=

On the following pages, we’ll use the terms “operands,”
“operators,” and “operation.” An operation is any calculation
you want ZBUG to solve. In this operation:

1+2=
“1” and “2” are the operands. “+” is the operator.

Operands
You may use any of these as operands:..

1.ASCII characters
2.Symbols

3.Numbers (in either Base 8, 1 o, or 16) — Please note
that ZBUG recognizes integers (whole numbers) only

Examples (Get into the 016 mode):
i Q P

prints 41, the ASCII hexadecimal code for “A”.
START=

prints the START address of the sample program. (It will
print UNDEFINDED SYMBOL if you don’t have the sam-
ple program assembled in memory:.)

1E0=
prints the hexadecimal equivalent of octal 15.
If you want your results printed in a different numbering

system, use a different output mode. For example, get into
the 010 mode and try the above examples again.

Operators

You may use arithmetic, relational, or logical operators.
(Get into the 016 mode for the following examples.)

Arithmetic Operators

Addition +
Subtraction -
Multiplication *
Division .DIV.
Modulus .MOD.
Positive +
Negative -
Examples:
OOME-STHRT=

prints the length of the sample program (not including the
SWI at the end).

. 0Ty, 2=
prints 4. (ZBUG can divide integers only.)
L. M00. 2=
prints 1, the remainder of 9 divided by 2.
1-2
prints OFFFF,65535T, or 177777Q, depending on which
output mode you are in. ZBUG does not use negative

numbers. Instead, it uses a “number circle” which operates
on modulus 10000 (hexadecimal):

0

FFFF

FFFD

equals

Figure 5. Number Circle lllustration of Memory

36

EJIASM

To understand this number circle, you can use the clock
as an analogy. A clock operates on modulus 12 in tile
same way the ZBUG operates on modulus 10000. There-
fore, on a clock, 1 :00 minus 2 equals 11 :00:

0

11:00 1:00

9:00 3:00
I minus 1
equals 2
11:00 1:00

Figure 6. Number Circle lllustration of Clock.
Relational Operators

Equal to
Not Equal to

O
« HEG.

These operators determine whether a relationship is true
or false.

Examples:
ELEQULE=

prints OFFFF, since the relationship is true. (ZBUG prints
65535T in the 010 mode or 177777Q in the 08 mode.)

ELHEQ.B=
prints 0, since the relationship is false.

Logical Operators

Shift 5
LogicalAND « FHD.
InclusiveOR . R
ExclusiveOR - AR
Complement L HOT.

Logical operators perform bit manipulation on binary
numbers. To understand bit manipulation, see the

6809 assembly language book we referred to in the in-
troduction.

Examples:
1y 2=

shifts 1 O two bits to the left to equal 40. The 6809 SL in-
struction also performs this operation.

1@s-2=

shifts 10 two bits to the right to equal 4. The 6809 ASR
instruction also performs this operation.

B.ulR. B

prints 3, the exclusive or of 6 and 5. The 6809 EOR in-
struction also performs this operation.

Complex Operations
ZBUG calculates complex operations in this order:

+ LOIN. LMoo,
. EIMIO.

LOF. L HOR
+ -

LEQU. .HEO,

You may use parentheses to change this order.
Examples:
Bl TV, &=
The division is performed first.
CHL DTV, &=
The addition is performed first.
Wi, DIV, U=
The multiplication is performed first.

37

SECTION Il

ASSEMBLY
LANGUAGE

SECTION Il

ASSEMBLY LANGUAGE

This section gives details on the Disk EDTASM
assmbly language. It does not explain the 6809
mnemonics, however, since there are many
books available on the 6809.

To learn about 6809 mnemonics, read one of
the books listed in “About This Manual.” if you
need more technical information on the 6809
read:

MC68090MC6809E

8-Bit Microprocessor Programming

Manual

Motorola, Inc.

39

EJIASM

40

Chapter 10/
Writing the Program

Chapter 3 gives a general description of assembly lan-
guage instructions. This chapter describes them in
detail.

The 6809 Registers

The 6809 contains nine temporary storage areas that you
may use in your program:

REGISTER SIZE DESCRIPTION
A 1 byte Accumulator
B 1 byte Accumulator
D 2 bytes Accumulator
(a combination
of A and B)
DP 1 byte Direct Page
CC 1 byte Condition Code
PC 2 bytes Program Counter
X 2 bytes Index
Y 2 bytes Index
U 2 bytes Stack Pointer
S 2 bytes Stack Pointer

Table 2. 6809 Registers

Registers A and B can manipulate data and perform
arithmetic calculations. They each hold one byte of data.
If you like, you can address them as D, a single 2-byte reg-
ister.

Register DP is for direct addressing. It stores the most
significant byte of an address. This lets the processor di-
rectly access an address with the single, least significant
byte.

Registers X and Y can each hold two bytes of data. They
are mainly for indexed addressing.

Register PC stores the address of the next instruction to
be executed.

Registers U and S each hold a 2-byte address that points
to an entire “stack” of memory. This address is the top of
the stack + 1. For example, if Register U contains 0155,
the stack begins with Address 154 and continues down-
wards.

The processor automatically points Register S to a stack
of memory during subroutine calls and interrupts. Register
U is solely for your own use. You can access either stack
with the PSH and PUL mnemonics or with indexed ad-
dressing.

Register CC is for testing conditions and setting interrupts.
It consists of eight “flags.” Many mnemonics “set” or “clear’
one or more of these flags. Others test to see if a certain
flag is set or clear.

This is the meaning of each flag, if set:

C (Carry), Bit 0 — an 8-bit arithmetic operation
caused a carry or borrow from the most significant bit.

V (Overflow), Bit 1 — an arithmetic operation caused
a signed overflow.

Z (Zero), Bit 2 — the result of the previous operation
is zero.

N (Negative), Bit 3 — the result of the previous op-
eration is a negative number.

| (Interrupt Request Mask), Bit 4 — any requests
for interrupts are disabled.

H (Half Carry), Bit 5 — an 8-bit addition operation
caused a carry from Bit 3.

F (Fast Interrupt Request Mask), Bit 6 — any
requests for fast interrupts are disabled.

E (Entire Flag), Bit 7 — all the registers were stacked
during the last interrupt stacking operation. (If not set,
only Registers PC and CC were stacked.)

Assembly Language Fields

You may use four fields in an assembly language in-
struction:

41

EJIASM

10 / WRITING THE PROGRAM

Assembly Language Fields

You may use four fields in an assembly language instruc-
tion:

START LOA #$F9 GETS CHAR

START is the label. LOA is the command. #$F9 + 1 is the
operand. GETS CHAR is the comment.

The comment is solely for your convenience. The assem-
bler ignores it.

The Label

You can use a symbol in the label field to define a memory
address or data. The above instruction uses START to de-
fine its memory address.

Once the address is defined, you can use START as an
operand in other instructions. For example:

BNE START
branches to the memory address defined by START.

The assembler stores all the symbols, with the addresses
or data they define, in a “symbol table,” rather than as part
of the “executable program.” The symbol can be up to six
characters.

The Command

The command can be either a pseudo op or a mne-
monic.

Pseudo ops are commands to the assembler. The assem-
bler does not translate them into opcodes and does not
store them with the executable program. For example:

MAME EOu Fuz
defines the symbol NAME as $43. The assembler stores
this in its symbol table.

ORG Froo

tells the assembler to begin the executable program at Ad-
dress $3000.

SYHMBOL FCE
stores 6 in the current memory address and labels this ad-

dress SYMBOL. The assembler stores this information in
its symbol table.

EE

Mnemonics are commands to the processor. The

assembler translates them into opcodes and stores them
with the executable program. For example:

CLRA
tells the processor to clear Register A. The assembler as-

sembles this into opcode number $4F and stores it with
the executable program.

The next chapter shows how to use pseudo ops. Refer-
ence L lists the 6809 mnemonics.

The Operand

The operand is either a memory address or data. For ex-
ample:

LbD HOBQA+FCOUNT

loads Register 0 with $3000 plus the value of COUNT.
The operand, #$3000 + COUNT, specifies a data
constant.

The assembler stores the operand with its opcode. Both
are stored with the executable program.

Operators

The plus sign (+) in the above operand (#3000 + COUNT)
is called an operator.

You can use any of the operators described in Chapter 9,
“Using the ZBUG Calculator,” as part of the operand.

Addressing Modes

The above example uses the # sign to tell the assembler
and the processor that $3000 is data. When you omit the
sign, they interpret $3000 in a different “addressing
mode.”

Example:
Lon et inly

tells the assembler and processor that $3000 is an ad-
dress. The processor loads O with the data contained in
Address $3000 and $3001.

Each of the 6809 mnemonics lets you use one to six ad-
dressing modes. These addressing modes tell you:

* If the processor requires an operand to execute the
opcode

* How the assembler and processor will interpret the
operand

42

1. Inherent Addressing

There is no operand, since the instruction doesn’t require
one. For example:

ST
interrupts software. No operand is required.
CLREA
clears Register A. Again, no operand is required. Register
A is part of the instruction.
2. Immediate Addressing

The operand is data. You must use the# sign to specify this
mode. For example:

ADDA #Fz0
adds the value $30 to the contents of Register A.

OATA E fFEnny
LD #OATH

loads the value $8004 into Register X.

CHPE #%1
compares the contents of Register X with the value
1234.

3. Extended Addressing

The operand is an address. This is the default mode of all
operands.

]

(Exception: If the first byte of the operand is identical to
the direct page, which is 00 on startup, it is directly ad-
dressed. This is an automatic function of the assembler
and the processor. You need not be concerned with it if
you’re a beginner.)

For example:
JER #Hlzou
jumps to Address $1234.
SEOT B o
=2TH SROT

stores the contents of Register A in Address $1234.

If the instruction calls for data, the operand contains the
address where the data is stored.

i e 1)

does not load Register A with $1234. The processor loads
A with whatever data is in Address $1234. If $06 is

Lo

stored in Address $1234, Register A is loaded with $06.
Flzzy
adds whatever data is stored in Address $1234 to the
contents of Register A.

Lon 12y

loads D, a 2-byte register, with the data stored in memory
addresses $1234 and $1235.

You can use the > sign, which is the sign for extended ad-
dressing, to force this mode. (See “Direct Addressing.”)

HODA

Extended Indirect Addressing.

The operand is the address of an address. This is a vari-
ation of the extended addressing mode. The [] signs
specify it. (Use to produce the [sign and
to produce the] sign.)

In understanding this mode, think of a treasure hunt game.
The first instruction is “Look in the clock.” The clock con-
tains the second instruction, “Look in the refrigerator.

Examples:

JER Tdizz

jumps to the address contained in Addresses $1234 and

$1235. If $1234 contains $06 and $1235 contains $11, the

effective address is $0611. The program jumps to $0611.

SROT EQu 1

ETH [=pF

stores the contents of Register A in the address contained

in Addresses $1234 and $1235.
LoD

loads D with the data stored in the address that is stored
in Addresses $1234 and $1235.

This is a good mode of addressing to use when calling
ROM . routines. For example, the entry address of the
POLCAT routine is contained in Address $A000. There-
fore, you can call it with these instructions:
FOLCART EOU Fraan

JER [POLCAT]
If a new version of ROM puts the entry point in a different
address, your program still works without changes.
4. Indexed Addressing

The operand is an index register which points to an

o

43

EJIASM

10 / WRITING THE PROGRAM

address. The index register can be any of the 2-byte reg-
isters, including PC. You can augment it with:

* A constant or register offset
¢ An auto-increment or auto-decrement of 1 or 2

The commay(,) indicates indexed addressing. As an exam-
ple, load X, a 2-byte register, with $1234:

LD #F1234

You can now access Address $1234 through indexed ad-
dressing. This instruction:

STH 5
stores the contents of A in Address $1234
=ZTH HaH

stores the contents of A in Address $1237, which is $1234
+ 3. (The number 3 is a constant offset.)

SYMBOL EOU $uU

STH SYMBOL, &

stores the contents of A in Address $1238, which is $1234
+ SYMBOL. (SYMBOL is a constant offset.)

LR #EE

ETH By M

stores the contents of A in Address $1239 which is $1234

+ the contents of B. (B is a register offset. You can use

either of the accumulator registers as a register offset.)
=TH g HF

This instruction does two tasks: (1) stores A’s contents in

Address $1234 (the contents of X) and then- (2) incre-

ments

X’s contents by one, so that X contains $1235.

S5TH
(1) stores A’s contents in Address $1235 (the current
contents of X) and then (2) increments X’s contents by two
to equal $1237.
5TE

(1) decrements the current contents of X by two to equal
$1235 ($1237 - 2) and then (2) stores A’s contents in Ad-
dress $1235.

As we said above, you can use PC as an index register. In

this form of addressing, called program counter relative,
the offset is interpreted differently. For example:

sYHBOL FCBE i@

LA sSYHBOL, FCR

g b

While assembling the program, the assembler subtracts
the contents of Register PC from the offset:

LOH SYMBOL-FOIRPOR

While running the program, the processor adds the
contents of Register PC to the offset. This causes A to be
loaded with SYMBOL.

This seems to be the same as extended addressing. But,
by using program counter relative adressing, you can re-
locate the program without having to reassemble it.

Indexed Indirect Addressing.

The operand is an index register which points to the ad-
dress of an address. This is a variation of indexed address-

ing.
For example, assume that :

* Register X contains $1234

* Address $1234 contains $11
* Address $1235 contains $23
» Address $1123 contains $64

This instruction:
Lom [L=]

loads A with 64. (Register X points to the addresses of the
address. This address is storing 6, the required data.)

2TR [,#]
stores the contents ot A in Address $1123. (Register X

points to the addresses, $1234 and $1235, of the effective
address, $1123.)

5. Relative Addressing

The assembler interprets the operand as a relative ad-
dress. There is no sign to indicate this mode. The assem-
bler automatically uses it for all branching instructions.

For example, if this instruction is located at Address
$0580:

BRA $0585

The assembler converts $0585 to a relative branch of + 3
(0585-0582).

This mode is invisible to you unless you get a BYTE
OVERFLOW error, which we discuss below. Because the
processor uses this mode, you can relocate your

44

EJIASM

program in memory without changing any of the branching
instructions.

The BYTE OVERFLOW error means that the relative
branch is outside the range of -128 to + 127. You must use
a long branching instruction instead. For example:

LERA foean
allows a relative branching range of -32768 to + 32767.
6. Direct Addressing

In this mode, the operand is half of an address. The other
half of the address is in Register DP:

DP REGISTER
ADDRESS = | (most significant O.PE.R.AND (least
byte) significant byte)

Figure 7. Direct Addressing

The assembler and the processor use this mode automat-
ically whenever they approach an operand whose first byte
is what they assume to be a “direct page” (the contents of
Register DP). Until you change the direct page, the as-
sembler and the processor assume it is 00.

For example, both of these instructions:

TSR ERR1E
ISR $1E

cause a jump to Address $0015. In both cases, the as-
sembler uses only 15 as the operand, not 00. When the
processor executes them, it gets the 00 portion from Reg-
ister DP and combines it with $15. (On startup, DP con-
tains 0, as do all the other registers.)

Because of direct addressing, all operands beginning with
00, the direct page, consume less room in memory

and run quicker. If most of your operands begin with $12,
you might want to make $12 the direct page.

To do this, you first need to tell the assembler what you
are doing, by putting a SETDP pseudo-operation in your
program:

SETOF iz

This tells the assembler to drop the $12 from all operands
that begin with $12. That is, the assembler assembles the
operand “1234” as simply “34”.

Then, you must load Register DP with $12. Since you can
use LD only with the accumulator registers, you have to
load DP in a round-about manner:

LOE #F12

TFR E,OF
Now the direct page is $12, rather than 00. The processor

executes all operands that begin with $12 (rather than 00)
in an efficient, direct manner.

The assembler uses direct addressing on all operands
whose first byte is the same as the direct page. You can
denote direct addressing with the < sign if you want to doc-
ument or be sure that direct addressing is being used.

For example, if the direct page is $12:

TSR sE1E
jumps to Address $1215. This instruction documents that
the processor uses direct addressing.

Similarly, you might want to use the > sign to force ex-
tended addressing. For example:

JER =H121E

jumps to Address $1215. The assembler and processor
use both bytes of the operand.

To learn more about 6809 addressing modes, read one of
the books listed at the beginning of this manual.

45

Chapter 11/
Using Psuedo Ops

As discussed earlier, pseudo ops direct the assembler. You
can use them to:

* Control where the program is assembled

* Define symbols

* Insert data into the program

* Change the assembly listing

* Do a “conditional” assembly

¢ Include another source file in your program

Pseudo ops are unique to the assembler you are using.
Other 6809 assemblers may not recognize the Disk ED-
TASM pseudo ops.

The Disk EDTASM pseudo ops make it easier for you to
program. This chapter shows how to use pseudo ops.

Controlling Where the
Program is Assembled

The Disk EDTASM has two pseudo ops that control where
the program is assembled:

* ORG, sets the first location
* END, ends the assembly

ORG
ORG expression

Tells the assembler to begin assembling the program at
expression. Example:

COFEG Fic0aa

tells the assembler to start assembling the program at Ad-
dress $1800.

You can put more than one ORG command in a pro-

gram. When the assembler arrives at the new ORG, it be-
gins assembling at the new expression.

END

END expression

Tells the assembler to quit assembling the program. The
expression option lets you store the program’s start ad-
dress. Use END as the last instruction in all your assembly
language programs.

Example:
ORG %1800
OATH FLo "This iz =ome data’
START LOR DAETH
EMD ZTART

The END pseudo op quits the assembly and stores the
program’s entry address (the value of START) on disk.
When you load the program, the processor knows to start
executing at START (the LOA instruction) rather than at
DATA (the FCC instruction).

FCC is a pseudo op explained later in this chapter.

Defining Symbols

Symbols make it easy to write a program and also make
the program easy to read and revise. The Disk EDTASM
has two pseudo ops for defining symbols:

* EQU, for defining a constant value
* SET, for defining a variable value

47

EJIASM

11 / USING PSEUDO OPS

EQU

symbol EQU expression
Equates symbol to expression. Examples:

CHAR EL FFa
equates CHAR to $F9.
SCREEN B tEon
L0 H#LOREEN

equates SCREEN to $500. The next instruction loads X
with $500.

EQU helps set the values of constants. You can use it any-
where in your program.

SET
symbol SET expression

Sets symbol equal to expression. You can use SET to
reset the symbol elsewhere in the program. Example:

SYHBOL SET

g

et

sets SYMBOL equal to 25. Later in the program, you can
reset SYMBOL.

Sy MBOL SET
now SYMBOL equals 25 +COUNT.

Inserting Data into
Your Program

The Disk EDTASM has four pseudo ops that make it sim-
ple for you to reserve memory and insert data in your pro-
gram:

SYMEBOL4+COUNT

* RMB, for reserving areas of memory for data

* FCB, for inserting one byte of data in memory
* FOB, for inserting two bytes of data in memory
* FCC, for inserting a string of data in memory

Remember that the processor cannot “execute” a block of
data in your program. If you use these pseudo ops:

e Use them at the end of your program (just before the
END instruction), or

* Precede them with an instruction that jumps or
branches to the next “executable” instruction.

RMB

symbol RMB expression

Reserves expression bytes of memory for data.
Example:

BUFFER FiE ZEE
reserves 256 bytes for data, starting at Address BUFFER.
OATH RiE B+EYHBOL

reserves 6 +SYMBOL bytes for data beginning at Address
DATA.

FCB
symbol FCB expression

Stores a 1-byte expression in memory at the current ad-
dress. The symbol is optional.

Examples:
OATA FCE $33
stores $33 in Address DATA.
FROTOR FLE M2
LOH FROTOR

stores NUM/2 in Address FACTOR, then, loads NUM/2
into Register A.

FDB
symbol FDB expression

Stores a 2-byte expression in memory starting at the cur-
rent address. The symbol is optional. Example:

ORTR FhOR R
stores $3322 in Address DATA and DATA + 1.
FCC

symbol FCC delimiter string delimiter

Stores an ASCII string in memory, beginning at the current
address. The symbol is optional. The delimiter can be any
character.

Examples:
TRELE FOO STHIZ IS5 8 STRINGS

stores the ASCII codes for THIS IS A STRING in memory
locations, beginning with TABLE.

48

EJIASM

MAME FCo Oylan!
FOR Fan
LOE #HAME
IHIT LOA MAME
IHCE
CHPA MAME
BEME IHIT

The first instruction stores “Dylan” in the five memory ad-
dresses beginning with NAME. The next instructions pro-
cess this data.

Changing the
Assembly Listing

You can use three pseudo ops to change the listing the
assembler prints for you:

TITLE, inserts a title at the top of each listing page
PAGE, ejects the listing to the next page

OPT, turns on or off the switches that determine how
the assembler lists “macros” (Macros are discussed in
the next chapter.)

TITLE string

Tells the assembler to print the first 32 characters of the
string at the top of each assembly listing page. Example:

TITLE

causes the assembler to print Budget Program as the title
of each page in the assembly listing.

PAGE

Starts a new page if the assembly listing is being printed
on the line printer. Example:

FHCGE
tells the assembler to eject the listing to the next page.
OPT
OPT switch, switch, ...

Causes the assembiler to use the specified switches when
printing its listing. You can specify these switches with
OPT:

MC List macro calls (default)
NOMC Do not list macro calls

Budgst Frogram

MD List macro definitions (default)
NOMD Do not list macro definitions
MEX List macro expansions
NOMEX Do not list macro expansions (default)
L Turn on the listing (default)
NOL Turn off the listing
Example:
oFT ME®

Causes the assembler to list the macro expansions in its
listing. (Macros are discussed in the next chapter.)

Conditional Assembly

You may want to execute a certain section of your program
only if a certain condition is true. The Disk EDTASM lets
you set up a “conditional” section of your program, using
these two pseudo ops:

COND

COND condition expression

Assembles the following instructions only if the expression
is true (non-zero). If not true (zero), the assembler goes to
the instruction that immediately follows the ENDC instruc-
tion.

Only these operators are recognized in a condition expres-
sion: +,-,/,*.See ENDC below for an example.

ENDC
ENDC
Ends a conditional assembly, initiated by COND.
Examples:
COMD SYMEOL
l;“_H o

assembles the lines between COND SYMBOL and ENDC
only if SYMBOL is not equal to zero.

COND VALUE2-VALUE1

ENDC
assembles the lines between VALUE2-VALUE1 only if

VALUE2-VALUE1 are not equal (which causes the result
to be a non-zero value).

49

11 / USING PSEUDO OPS

Including Other
Source Files

To let you load another source file and include it in your
program, the Disk EDTASM offers an INCLUDE pseudo
op.

INCLUDE

INCLUDE filespec

Inserts filespec, a file of source assembly language in-
structions, at the point where INCLUDE appears in the

program. The assembler assembles the entire included file
before assembling the next instruction.

Example:
IHCLUDE FOUTIMHE-SRO

inserts and assembles ROUTINE/SAC, a source file, be-
fore assembling the next instruction.

ITHCLUDE SUB LSRR

THOLUDE SR SSRD
inserts and assembles SUB1, then inserts and assembles
SUB2, then proceeds with the next instruction.

50

Chapter 12/
Using Macros

A macro is like a subroutine. It lets you call an entire group
of instructions with a single program line. This helps when
you want to use the same group of instructions many
times in the program.

This chapter first tells how to use a macro. It then gives
guidelines on the format of a macro.

How to Use a Macro

To use a macro, you must first define it. For example, you
could define the entire sample program (from Chapter 2)
as a macro named GRAPH.

After defining the macro, you can use its name the same
way you use a mnemonic. Whenever the assembler en-
counters the macro’s name, it expands it into the defined
instructions.

Defining a Macro
To define a macro, you need to:

Use MACRO (a pseudo op) to begin the macro defi-
nition and assign it a name.

Use source instructions to define the macro.

Use ENDM (a pseudo op) to end the macro definition.

This is an example of the sample program converted into
a macro definition:

AE@EED GRAFPH MACRO

aaian LOA #EFS
aEile L #EupE
aELEe -, A 5TH y
a@lEm CHP #hEnm
aEiYm BHE "y B
BRLER ., B JER [daaon]
aEiED RED .y B
aniam EMHDOHM

Line 30 names the macro as GRAPH, lines 50-160 define
the macro, and line 180 ends the macro definition.

Notice the names of the symbols within the macro defini-
tion: \.A and \ .B. If you do not use this format for naming
symbols, you’ll get a MULTIPLY DEFINED SYMBOL error
when you call the macro more than once. (More on this
later.)

Insert the above program using to generate
the backslash character (\). Save the program on disk as
MACRO1 and then delete it.

WO MRCRO 1
Do

Calling a Macro

To call a macro, simply use the macro name as if it were
a mnemonic. For example, this sample program calls
GRAPH and then ends:

paiia ORG Fizaa
aalze BECGIM JIMF STHRT
f@alza FhOE OOME-BEGIN
aAaiuaG STHRT =

g@aisa IHCLUDE MARCROLIA5H
aalied GHREFPH

paiTE CLR 71

@p@isa IHP [%FFFE]

g@aiag OOME *®

HAZaG EMD

Line 150 loads MACRO1, the file containing the definition
of GRAPH, and includes it in the source program. Line
160 calls the GRAPH macro.

To see how the assembler expands the GRAPHIC macro,

insert this line:
BalEk OFT ME

and assemble the program. The assembler listing shows
how the assembler expands GRAPH into its defined in-
structions.

51

EJiASM

12 / USING MACROS

Note that the assembler has replaced \.A with AO000 and
\.B with 80000. The zeroes indicate that this is the first ex-
pansion of the symbols in GRAPH. (In this case, this is
the only expansion.)

Passing Values to a Macro

A convenient way to use a macro is to pass values to it.
You can use a macro many times in your program, pass-
ing different values to it each time.

This is a definition of the GRAPH macro, slightly modified
so that you can pass two values to it. Insert this program,
save it as MACRO02 and then delete it.

BREZE GRAFPHZ MACRHO

haiaa LOH 8
aEllE LD .l
paiza e H =2TH Lo+

rigr i CHPE #5500
paiya EME ey H
apisg L B IZR [fropn]
anism BEL "y B
HHloG EMOM

The \0 and \1 are dummy values. The assembler replaces
these numbers with the values you specify when you call
GRAPH.

The following program calls GRAPH2 three times. Each
time it passes two different sets of values:

paing ORG Li1zon
a@iig BEGIM THF STHRT
aaiza Fiog OOME-BEGTIH
a@dlaa STHRT #

@aiua orT ME=

A@ing ITHOLUDE MACReZ.HEN
ARien GRAFHZ #%Foigfdyon
pEiTE GRAFHZ #3Foi#fuca
aaicg GRAPHZ #$FT1#%500
pEisG CLR 71

e g IMF [4FFFE]
A@Bzia OoMHE ®

GazLR ErD

When the assembler expands the macro, it replaces the
dummy values with the values passed by the macro call.
For example, the second time GRAPH2 is called, the as-
sembler replaces \0 with #$F8 and replaces \1 with
#$450.

Assemble the above program. Note that each time the as-
sembler expands GRAPH2, it replaces the \.A and \.B
symbols with different symbol names: First AOOOO and
B0000, then A0O001 and B0001, and finally AO0O02 and
B0002.

If the assembler used the same symbol names in each
expansion, it would be forced to assign different value to
the symbols in each expansion. You would get a MUL-
TIPLY DEFINED SYMBOL error.

Also, note the assembler has inserted an additional sym-
bol, NARG, in the symbol table. NARG is always set to
the number of values passed in the most recent macro
call.

In the sample program, the symbol table shows that
NARG is set to “2” at the end of the assembly. This shows
that there were two values passed to GRAPH2 the last
time it was called.

You might want to use NARG as a variable in your pro-
gram. For example, you could conditionally assemble
parts of a macro definition based on the current value of
NARG.

To see the program run, assemble it to disk, press a key
three times to see different graphics and then end the
program.

Format of Macros

The remainder of this chapter gives details on the format
to use in a macro definition and macro call.

Macro Definition

Beginning the Definition

Use this format for beginning the macro definition and as-
signing it a name:

symbol MACRO
symbol is the name of the macro. It is, of course, required.

Using Symbols in the Definition

Use this format to name any symbols you use within a
macro definition:

\.c

c is an alpha character (A-Z). When the assembler ex-
pands the macro, it replaces \.c with:

cnnnn

nnnnis a 4-digit hexadecimal number that the assembler
increments each time the assembler expands the macro.

52

For example, if you use the symbol \.M in the macro def-
inition and you call the macro 10 times, the assembler re-
places \.M with these symbol names:

1st expansion MO001
2nd expansion MO0002
10th expansion MOOOA

You must use this symbol-name format when calling a
macro more than once. Otherwise, you get MULTIPLY
DEFINED SYMBOL errors.

Using Dummy Values in the Definition

Use this format for specifying dummy values within a
macro definition:

\n

n is an alphanumeric character (0-9,A-Z). The assembler
replaces this dummy value with a corresponding value in
the macro call line:

\O is replaced with the 1st value
\1 is replaced with the 2nd value

\9 is replaced with the 10th value
\A is replaced with the 11th value

\Z is replaced with the 36th value
For example, this line in a macro definition:
LOg R

specifies \B as a dummy value. The assembler replaces
\B with the 12th value in the macro call line. If the macro
call line is:

RO HUMS, MURL , HUMZ, HURSE MUY,
PR, MUME, HURT, HUME, HURS, HUMA, HUME

the assembler replaces \B with NUMB.

You do not need to assign macro call values to dummy
values in consecutive order. For example:

GRAPHEH #EFo, #3u00, #fcan
MACHEO
LO
Loy
LOA
LOE
EHDM

GRAPH=

= f

Here, the assembler replaces dummy value \1 with#3$400,
replaces dummy value \2 with #$600, and, in two lines,
replaces dummy value \0 with #$F9. Note that you can
pass a value to a macro more than once, as this example
does with #$F9.

If there are more dummy values than values in a macro
call, a byte overflow error results.

If there are more values than dummy values in a macro
call, the extra values are ignored.

Be sure not to enclose dummy values in quotes. If you do
this, the assembler treats them as ordinary characters.

Ending the Macro Definition
Use this format for ending the macro definition:
EMHOM

You may not use a symbol to label this line. If you do so,
you get a MISSING END STATEMENT error at the end of
the assembly listing.

Macro Call

Use this format when passing values to a macro in a
macro call line:

macro call string 1, string2, ...

macro call is the name of the macro.

string(s) is the value being passed to the macro. It can be
1 to 16 characters (any extra characters are ignored).

Each string, except the last, must be separated by a
comma. The last string must be terminated by a comma,
space, carriage return, or tab.

Each string may contain any characters except a carriage
return. If a string contains a comma, space, tab, or left pa-
renthesis, you must enclose it in parentheses. For exam-
ple, in this macro call:

FRIWNT {RBC,DEF:
the assembler interprets ABC,DEF as a single string. Ho-
wever, in this call:

FRIWMT HBC,DEF

the assembiler interprets ABC as one string and DEF as
another.

Hints on Macros

¢ Remember to define a macro before calling it. If you
call a macro without defining it, you get a BAD OP-
CODE error.

53

EJIASM

12 / USING MACROS

* We recommend storing all macro definitions in a file
and then using INCLUDE to insert them into your main
program.

e Do not use a mnemonic or pseudo op as a macro
name. This causes the assembler to redefine the mne-
monic or pseudo op according to the macro definition.

¢ |f the macro definition has an error, you will not discover

the error until you call the macro. The assembler waits
until you call the macro before it assembles it.

¢ You cannot “nest” macro definitions. That is, one macro
definition cannot call another.

* Using the same macro more than once uses a large
amount of memory. Expand a large macro only once.
When you want to use it again, call it as a subroutine.

54

SECTION 1V

ROM AND DOS
ROUTINES

EJIASM

EJIASM

SECTION IV

ROM AND DOS ROUTINES

In an assembly language program, the sim-
plest way to use the I/O devices is with ROM
and DOS routine. This section shows how.

Complete lists of the ROM routines and DOS
routines are in the reference section.

55

EJIASM

56

EJIASM

Chapter 13/
Using the Keyboard and Video Display
(ROM Routines)

The Color Computer uses its own machine-code routines
to access the screen, keyboard, and tape. These routines
are built into the computer's ROM. You can use the same
routines in your own program.

Appendix F lists each ROM routine and the ROM address
that points to it. This chapter uses two of these routines,
POLCAT and CHROUT, as samples in showing the steps
for using ROM routines.

Steps for Calling ROM
Routines
We recommend these steps for calling a ROM routine:

1. Equate the routine’s address to its name. This lets you
refer to the routine by its name rather than its address,
making your program easier to read and revise.

. Set up any entry conditions required by the routine.
This lets you pass data to the routine.

. Preserve the contents of the registers. Since many
routines change the contents of the registers, you
might want to store the registers’ contents temporarily
before jumping to the routine.

. Call the ROM routine, using the indirect addressing
mode.

Use any exit conditions that the routine passes back
to your program.

Restore the contents of the registers (if you temporarily
preserved them in Step 3).

Sample 1
Keyboard Input with
POLCAT

POLCAT “polls” the keyboard to see if you press a key. If
you do not, POLCAT sets Bit Z.

If you do press a key, POLCAT:

(1) Clears Bit Z of Register CC and (2) Loads Register A
with the key’s ASCII code.

This short program uses POLCAT to poll the keyboard.
When you press a key, the program ends:

ORG Fizan
BEGIH JHF STHRT

= OOME-BEGIN
FOLCRT EQU Fapan
STHRT FPSHS DPF,CO,H, Y, U
WATIT ISR TroLcaT]

BED WATIT

FULS OF, OO, M, v, U

CLR 71

THF [$FFFE]
OOME #

EHD

This is how we applied the above steps in writing this pro-
gram:-

1. Equate POLCAT to its Address

This equates POLCAT to $A0000, the address that points
to POLCAT’s address:

FOLCAT ECTU frooa

57

13 / USING THE KEYBOARD AND VIDEO DISPLAY

2. Set Up Entry Conditions
POLCAT has no entry conditions.

3. Preserve the Registers’ Contents

POLCAT’s “Exit Conditions” state that POLCAT modifies
all registers except B and X. Assume that you want to pre-
serve the contents of Registers DP, CC, X, Y, and U. To
do this, you can “push” these values into the “hardware
stack”™

PESHS OF, 0o, H Y. U

(The hardware stack is an area of memory, pointed to by
Register S, that the processor uses for subroutines. PSHS
“preserves” the contents of certain registers by storing
them in the hardware stack.)

4. Jump to POLCAT

This jumps to POLCAT using its indirect address:
WARIT JER [POLCAT]

5. Use Exit Conditions

For now, assume you want to look only at the status of Bit
Z to see if a key has been pressed:

BEQ WARIT

The above instruction branches back to WAIT (the JSR
[POLCAT] instruction) unless you press a key. (Pressing
a key causes POLCAT to clear Bit Z.)

6. Restore the Register’s Contents

This “pulls” (inserts) the contents of the hardware stack
back into the registers:

FLLS DF,CC, 8,7, U

Now, the above registers are restored to the data they
contained before executing the POLCAT routine.

Sample 2
Character Output with
CHROUT

The CHROUT routine prints a character on either the
screen or printer. On entry, it checks two places:

¢ Register A - to determine which character to print

* Address $6F - to determine whether to print it on the
screen or the printer

This program uses CHROUT to print ‘This is a Message”
on the screen. It then uses POLCAT to wait for you to
press a key before returning to BASIC.

ORG $1zoo
******EQUEEEE For Fourdines sSdEddss
FOLOCAT EQul froon
CHROUT B fronz
DEVHLN EQu FEBEF
K e O g A o e o g o o e R T IR T o o o o R o o o o K o o
SOREEM EGQU 3]
EED0E Programming Conwvention #d
BEGIH JHE STHRT

FOE DOME-BEGIH
dEEEREEd Print the Message wedsdss
STHRT LOE #ECREEN

=TE DEVMUNM

LD HBHEG
FRIMT LDA Lk

TER [oHROUT]

CHRFR #foe

EME FRIMT
dEdmwdkERsllain For o a ey Ssdoksdsdss
IHFUT FSHE OF,C0,H, Y, U
WAIT TER [POLCAT]

BED WATIT

FULS OF, 00, B v, U

CLR 57

THF [$FFFE]
S0 S R R A Heggage O o X
MEG Foo PTHIS I% A MESSAHGE!

FoB Fan
wEdwdkEd Mamory For Stack soksdsses
DOME #

EMD

Most of the steps we used in writing this program are ob-
vious. What may not be obvious is the way we set up
CHROUT’s entry conditions, Address $6F and Register
A.

These lines set Address $6F to 00 (the screen):

DEVHUM EQU FEF

SCREEM EOU B

STHRT LOE #SOREEN
=ZTE DEMMLN

58

EJIASM

Setting Register A involves two steps. First, point Register
X to the message:
MEG FOo
Fig ton
L HHMEG
and then load Register A with each character in the mes-
sage:
FRIMT

HGE !

"THIS IS A HME

LI L

ISR [CHROUT]
CHPA #Ean

EiHE FRIMT

Sample 3
POLCAT and CHROUT

This combines POLCAT with CHROUT. It prints on the
screen whatever key you press. When you press [H(hexa-
decimal OA), the program returns to BASIC:
ORG 1200

b S o S Z+1Eq ataes For FBogtines SddsdEss

FOLCAT EOQU Fraag

CHROUT EQuU Frnaz

DEWHUKM EOQU FEF

FRERE Ry Yariabhle
SCREEM EQU an
ERD0E Programming Conventilon s
BEGIH IMF MATH

FOE DOME-BEGIHN
dEdwdkEREd Main Program sk
HATH JER IHFUT
CHEA
BE(
JER
BRA
71

S0 S S S S R A S

#FaA

FIMIGH

FRIMT

METH

FIMISH CLR
[$FFFE]

From Eedbosard

SHE DOF,C0,H,7,U

SR [FOLCAT]

WEIT

DR, CC, Ry, U

¥Input & Character
IHFUT
WETT

¥EFrint & Charascter on Displsay %
FRIMT LOE BECREEN

=2TE DEVMUNM

TER [ToHROUT]
TS
FREREEERE Mampor i For Stack #ddsdddss
OOHE

EMD

59

EJIASM

60

Chapter 14/
Opening and Closing a Disk File
DOS Routines — Part |

Because of the organization and timing of a disk, reading
it and writing to it are complex. This is why you’ll want to
make use of DOS routines in your disk programs.

This chapter shows how to use DOS routines to open and
close a disk file. The next chapter shows how to use them
to read a disk and write to it. Reference H contains a com-
plete list of all the DOS routines supported by Radio
Shack.

Overview

All DOS routines, like ROM routines, have their own entry
and exit conditions. However, most DOS routines have
more involved entry conditions than do ROM routines.
They require you to set up three areas in memory: two
“buffers” and a “data control block.”

Buffers

Buffers are areas in memory that DOS uses for storing
data to be input or output to disk. DOS requires that you
reserve two buffers:

¢ A logical buffer - This can be any length. Your program
uses this to store data for DOS to input or output to
disk.

¢ A physical buffer - This must be 256 bytes. DOS uses
this to hold data temporarily so that it can input and out-
put the data to a disk sector in 256-byte blocks.

For example, suppose you want to output 100 10-byte
records to disk. You can send each record, one at a time,
to the area you reserved as the logical buffer.

DOS then transfers the records from the logical buffer to
the area you reserved as the physical buffer. As soon as

there are 256 bytes in the physical buffer, DOS sends
them out to a disk sector.

You need not be concerned that DOS’ “physical” records
are a different size from your program’s “logical” records.
DOS handles the “spanning” of logical records into phys-
ical records internally. Except for reserving memory for a
physical buffer, you do not need to be concerned with
physical records.

Data Control Block

A data control block is a 49-byte “block” of memory that
DOS uses to control a disk file. You need to reserve this
block of memory for each disk file you are using. If you
have three disk files open at the same time, you need to
reserve three 49-byte data control blocks.

Reference G shows how DOS uses each of the 49 bytes,
numbered 0-48, in the data control block. As you can see,
DOS divides the data control block into 21 data-control
segments.

Before opening a file, you must load the proper data into
four of the segments of the data control block (DCB):

DCB Segment DCB Address You must load
with ...
Filename Bytes 0-7 The eight-
(DCBFNM) character name
of your file.
Extension Bytes 8-10 The three
(DCB EXT) character
extension of
your filename.
Drive Number Byte 33 The drive
(DCBDRV) containing the
disk file.

61

EJIASM

14 / OPENING AND CLOSING A DISK FILE

Physical Byte 36-37 The first

Buffer Address address of

(DCBBUF) the physical
buffer you

have reserved.

For example, if you want to open a file in Drive 1, you
need to load “1” into the DCBDRYV location, which is the
33rd byte of the data control block.

You need not be concerned with most of the remaining
segments of the data control block, unless you want to
use them as data in your program. They are handled in-
ternally by DOS. The exceptions to this are:

e Logical Buffer Address, Record Size, Variable Record
Terminator, and Logical Record Number - You need to
use these when you read and write to the file. They are
discussed in the next chapter.

e File Type and ASCII Flag- If you want your file to be
compatible with BASIC and other Radio Shack pro-
grams, you need to set these when you create the fire.
See the “Technical Information” chapter of your Disk
System Owners Manual and Programming Guide.

Steps for Using DOS
Routines

The steps for using DOS routines are:

1. Equate the routine’s address (for ease in reading the

program).

Reserve memory for a physical buffer, logical buffer,
and the DCB.

Clear the DCB and the physical buffer. You need to
make sure they do not have extraneous data.

Set up all other entry conditions. Besides setting up
registers, you need to load certain segments of the
DCB with data. Which segments you load depends on
the DOS routine you are using.

Preserve the contents of the registers. DOS routines
change the contents of many of the registers. To be
safe, you should preserve all of them that you want to
use later in your program. Be sure to preserve Reg-
isters U and DP. If DOS changes their contents, your
program acts unpredictably.

o

. Call the routine.

~

. Restore the contents of the registers.

. Use all exit conditions. Most DOS routines return an
error code in Register A if the routine did not work
properly. If there were no errors, Register A contains
a zero.

Sample Session
Opening and Closing
a Disk File

The DOS routines for opening and closing a file are
OPEN and CLOSE. Both routines check Register U for
the address of DCB. They expect to find the four seg-
ments described above in this block.

OPEN also expects you to set a file mode in Register A.
It creates or opens an existing file depending on the mode
you set.

Both routines return a status code in Register A. Refer-
ence | tells the meaning of the status codes.

Figure 8 at the end of this chapter is a sample program
which creates, opens, and closes a disk file named
WORKEFILE/TXT. After running this program, you can look
at your directory to see that the program has created this
file. This shows how we applied the above steps in this
program.

1. Equate OPEN and CLOSE

This equates OPEN and CLOSE to $600 and $602, their
indirect addresses:
OFEN EqL
CLOSE ErL
2. Reserve Memory for
Buffers and DCB

The OPEN and CLOSE routines use only the physical

buffer, not the logical buffer. This stores 256 bytes for the

physical buffer and uses PBUF to label those bytes:
FELF RIE

This reserves memory for a 49-byte DCB and stores the
filename, WORKFILE, and the extension, TXT, in the first
11 bytes:

LEEG
FERZ

SRR

i ot 3

ooE EOU #
Foo "WORKFILE!
Fon PTET I
RHBE 28

62

EJIASM

3. Clear DCB
This clears all but the first 11 bytes of DCB:
RCLEAR L #OCBE+11
CLERRL CLA y
CHPE #OCE+UE
BEMHE CLERRL
L #FPELUF
and this clears the physical buffer:
CLERREZ CLA y
CHPE HFPBUF+2EE
BMHE CLERRZ
RTE

4. Set Up Entry Conditions

On entry, OPEN and CLOSE require you to: (1) Set Reg-
ister U to a DCB containing a filename, extension, drive
number, and physical buffer address, and (2) Set Register
A to a file mode.

Setting Register U

This sets Register U to the address of the first byte of the
DCB:

Lo #OCE

The following lines set the drive number segment to 0.
They do this by storing DRVNUM (0) into DCBDRYV (33)
+ the contents of Register U (DCB). This inserts 0 into the
33rd byte of DCB:

DophRY ECL a3
DRMLIT FCBE na
LOA DRUWHLN
SZTH DOBRORYV, U

The following lines set the physical buffer address to
PBUF. They do this by storing the address of PBUF into
the memory address pointed to by Register U plus
DCBBUF. This stores PBUF in the 36th byte of DCB:
OCEBLUF Equ
LI #FELUF
5T ODCEEUF, U
(The filename and extension were set in Step 2.)

Setting Register A

ok

This table shows how you should set each bit in Register

A to select one or more file modes:

MODE BIT DECIMAL NUMBER
(IF SET)

Read Bit 0 1

Write Bit 1 2

Create Bit 2 4

Extend Bit 3 8

Work File Bit 4 16

(delete the file, when closed)

FAT Bit 5 32

(rewrite to the FAT* only when closed)
Shared Buffer Bit 6 64

* The disk directory’s FAT (file allocation table) is de-
scribed in the “Techncial Information” chapter of the Disk
System Manual.

The sample program loads Register A with decimal
1+2+4+8+32:
LOA

This tells DOS to set the file mode to read (decimal 1),
write (decimal 2), create (decimal 4), extend (decimal 8),
and rewrite the FAT only when the file is closed (decimal
32).

5. Preserve Registers

Bl+2+U+a+al

This preserves the contents of Registers U and DP:

ROFPEHN FoHE L, oF
6. Jump to the DOS Routine
These lines jump to OPEN and CLOSE:
JER [OFEN]
JER fToLose]

7. Restore Registers

This restores the contents of Registers U and DP:
FULS i, op

8. Use Exit Conditions

The sample program branches to an error handling sub-
routine after each DOS routine. The subroutine tests Reg-
ister A to see if it contains a non-zero value. If so, it

63

14 / OPENING AND CLOSING A DISK FILE

prints the status code on the screen and waits for you to

press a key:

JER
TSETH
RETURH
S5TH
JER
BEQ
RETURH

BED

WHIT

ERROR

FUCa
[POLCAT]
WHIT

RTE

Figure 8. Sample Program to Open and Close a File

ORG
For DO5
En

¥REquates and
OFEM
CLOSE Bl
FOLCHT EOu

wdddssbEquastes for [DCE
DORDREY EqL
OCERUF Bl

EX R Sl
BEGTH JHF

FOE

dddddhdddddddMain Progr

MAEIN JER
JER
JER
CLA
JHF

wddEesFNogrtine to

RCLERR
CLEARL

LOkK
CLA
CHF s
EME
LOkK

Frogramming C

Clear
R A Phgzical =3

Flzan
FOM routines
LEQ8
LEA2
FHaRG

K

ofFs

ok ok

onwention wEERw
MATIH
DOME-BEGIH
o ok
RCLEAR
FOFPEM
ROLOSE
T
[$FFFE]
rhe OCE Sssssk
UF Far sk e
#OoE+11
. e
#OCOEBE+US
CLEARL
H#FELUF

CLEHRRSZ CLR
CHP®
EBME
RTS

dEsdERERogtine to Open a File

FOFEH FEHES
Lo
LA
ZTH
Lis
2TH
LA
JER
FLILS
JER
RTE

nln]
PoHZ
Lo
JER
FLLS
JER
RTE

FEERERoUTine
ROLOSE

Cloze

, M
#FPBUF+2ZEE
CLEARZ

ke
U, oF
#OCE
DFWHUE
DopDRW, U
#FBUF
DORRBUF, U
$Fl+I+d+B+3R
[OFEM]
U, OF
EFRROR

i h = F 1 l = ke o o A 4

U, OF

#OOE

[cLosE]

U, OF

EFRROR

FREREREError Handldin = Fougtrims $ddddds

ERROR TETH
BED
STH
TSR
BED
RTS

WHIT

RETURHN

FEUF RHE

FETURHM

UL
[FOLCAT]
MEIT

Stacks wEd®
=

SEE

K o o e o o i o IR T i For Wardiables Sdddddss

DRVHLR FLE
#*ﬁﬁ##**ﬁﬁ#ﬁemgpg
OCE EQU

Foo

Foo

RHE

For DOR dddddddkssg

K 3
'WORKFILE "
PTHT

Pt
e

B e O S0 o e O SR T e O S o e O S R e o o e i S e e o o e i o o o T o

DOHE EQU

EMD

k 3

64

EJIASM

Chapter 15/
Reading and Writing a Disk File
DOS Routines — Part 2

DOS has a WRITE routine for writing to a file and a READ
routine for reading it back into memory. The way you use
these routines depends on which method you are using
to access the file:

* Sequential Access
* Direct Access

This chapter describes how to use these two methods in
their simplest forms. You can use any variation of them
that you want.

Sequential vs. Direct Access

Sequential Access
(For Files with Variable-Length Records)

Sequential access lets you read and write to files with
variable-length records. Using this method, you insert a
terminator character at the end of each record. This char-
acter tells DOS where each record ends.

Before writing data to the file, you must load DCB with the
following:

DCB Segment DCB Address You must
load with ...
Logical Bytes 39-40 The first
Buffer Address address of the
(DCBLRB) logical buffer
you have
reserved
Terminator Byte 19 The character
Character you select
(DCBTRM) to end each
record

When reading data from just one file, you need only
specify the logical buffer address, not the terminator char-
acter. DOS reads the terminator character from the disk’s
directory into DCBTRM.

Figure 9 at the end of this chapter is a program that writes
to a file using $OD (the character) as a terminator
character. Figure 10 reads the same file back into mem-
ory.

Direct Access
(For Files with Fixed-Length Records)
Direct access works only with files containing fixed length

records. With this method, DOS uses the record size and
record number to access the record.

Before reading data from the file or writing data to it, you
must set this DCB segment:

DCB Segment DCB Address You must
load with ..
Logical Bytes 39-40 The address
Buffer Address of the first
(DCBLRB) byte of the
logical buffer
you have
reserved

Unless you are using the record size already in the file’s
directory, you must also set:

Bytes 17-18 The size of

each record

Logical Record

Size (DCBRSZ)

65

15 /| READING AND WRITING A DISK FILE

If you want to write a record which is not sequentially the
next one, you must also set:

Logical Bytes 46-47 The number of

Record Number the record

(DCBLRN) you want to
access

Setting the
Read/Write Option

DOS requires that you set Register A with a “read/write
option” before entering the READ or WRITE routines. The
read/write option lets you specify:

e Whether you want direct or sequential access

¢ Whether you want DOS to point to the next record after
reading or writing the record

To set the read/write option, load the first two bits of Reg-
ister A with one of these four values:

Decimal

Read/Write Option Bits Number
Direct Access 00 0
Point to next record
Sequential Access 01 1
Point to next record
Direct Access 10 2
Do not point to next record
Sequential Access 11 3
Do not point to next record
For example:

LA #2

J5R [RERD]

tells DOS to write the record sequentially (up to the ter-
minator character). When finished, DOS points to the next
sequential record.

Figure 9. Sample Program to Write to a File

ORG Blzoo
*REquates for DOE and ROM routines *%
OFEHM Equ FEna
CLOSE EQU FEnz
WRITE Equ FEnE
FOLCAT EqQu Frana

#xwddd Equates for DCE offsets®sssdds

DCBRTRR
DORDRIT
OCBERBUF
DCBRLRE
ddske0s
BEGIH

Efi
Efi
Efi
Efi

Frogramming

JHF
FORE

18

a3 a3 a3
[I]

Comvention sddfks
MEIN

OOME~-BEGIN

EEEEREEEEREENain Program $EEdRsssssis

FMEIH

JER
JER
JER
JER
JER
JER
CLA
JHF

FRERERFRogtine o
and the Physical and Logicsel Buffers

CLEAR
CLEARL

CLEARZ

CLEARZ

SOFPEN

L
CLR
CHPE
BHE
L
CLR
CHPE
BHE
L
CLR
CHPE
BHE
FTE

F¥¥ilzluss in

CLEAR
IHTOCE
SOFEN
SFRIMT
SWRITE
SCLOSE
T
[$FFFE]

Clear the DOB Shdwws

HFELUF

g

HFEUF+2EE

CLEAR]

#LELUF

g

#LEUF+2Y

CLEARZ

#OCE+11

g

HFLEBUF+US

CLEARS

e OO E{— e o O O o o o o K

LD #OCE
LA DRWVHUR
STH DCRDRY, U
LA #5a0
STH DCBTRR, U
L HPEUF
ST DOBEBUF, U
L #LEUF
ST DCBLRE, U
RTE

fRdEEEERoutinse o Dpen 2 File ®dddsdds
LD #OCE
FoHE I, OF
LA Bl+2+Uro+32
TER [OFEM]
FULE I, OF
JER ERROR
RTEZ

fRdEEEERFRoyrine o Frint Hig B S S S

66

SFRINT LOY #icon
L D :: # H E; G
CHAR LDA Pt

STH
CHF
BHE
L0k
Loy

FRREREERogtinge to

#LELF

#EETE

o

I Putr Daotaosddcsddss

ddchdddddddd From keyboard sobshkhhhokk

SINFUT PSHS

WAITL JSR
BE
FULS
STH
STH
CHPA
BE
CHPH
EME

EHDIMF RTS

dFdkEEEERourine o
R R ORI

SWRITE FIHES
L
LORA
JER
FULE
JER
RTES
o e e F; cig 1 Iy
F :L 1 = ke o o o I o o o
SCLOSE PSHS
Lo
JER
FULS
JER
RTE

U, OF, v
[FOLCATT]
WAITL

W, OF,

) '.‘.' o+

. Ht

#Ea0
EMOIMF
#LEUF+ZH
SIHPUT

Wrirte Dataddddddssd

F l 1 = e o O o o o o O o O 4

Uipp
#OCE

#1
[WMRITE]
U, OF
ERROR

T Enfn] Close

U, OF
#OCE
[cLnsE]

U, oF
ERROR

FEEEEEEError Handling Fogtrims $REddds

ERFROR TETH
BEQ
5TH
WATITZ T5R

BEL
RETURM RTS

RETURHM
F11EG
[FPOLCAT]
WARITZ

#dd Memory For Buffers and Stachks sddw

FEUF RHE
LELUF RHE

FEEEEEEE Menory For

ORVHLTM FOE

Variashles sdddddss

dddddddREEE Mamory For DOE sk

DCE EquU
FCC
Foo
FHE

*
'WORKFILE !
PTHT

FEEEsEEdEEfencry for Message #HdEssdsdd
FEG Foo PEMTER YOUR HMAME: !
BB T R o e R o e R o e R B e R o e i R o i 1 o o e i o . e S o

EJIASM

DoMHE Equ
EMD

Figure 10. Sample Program to Read to a File

Note: When running this program, a status code
(generated by the Error subroutine) may appear
on your screen. Press any key to continue pro-

gram execution.

ORG

#% Equates for DOZ

OFEHN EQU
CLOSE EOu
RERD EQL
FOLCAT EOU
CHROUT EOU
R o A S Equateg
DEWVHURM EOu
SOHREEHN EOu
DCBRTRRA EQL
DoBDRY EOL
OCERBUF EOU
DOBLRE EOu

Fizoa

and ROM routines %

LEAG
FE@z
FE@Y
Fomaa
Famaz

For DCOE offzetsdddsdsd

LEF

PRI I S]

L T Dl 00

FREEFRDODE Programming Conventilon #3ddk

BEGIH JHF
FOE

MATH
OOME-BEGIN

EEEEEEEEEEERain Program $EEddssssssg

FEIN JoR
JoR
JER
JER
JoR
JER
CLA
JHF

FRERERFogtine o

CLEAR
IMTOCE
SOFREN
SREAD
ECLGSE
SFRIMT
T4
[$FEEE]

Clear the OCOE #dwdwd

arnd the Physicel and Logicsl Buffers

CLEAR L0
CLEARL CLA
CHF =
EBMHE
LOK
CLEARZ CLR
CHPE
EME
L0k
CLEARS CLA
CHFP®
BHE
RTS

#FPEUF

. b
#PBUF+2ER
CLERRL
#LEBUF

. e
#BLEBUF+24
CLERRZ
#DOB+11
5ﬁ+
#OCE+YES
CLERRZ

67

15 /| READING AND WRITING A DISK FILE

FdEEEEREEREE Fourins
ddEddEERERE Valuyss
IHTOCE Ll
LA
=ZTH
LA
=ZTH
L
E5TH
L
E5TH
FTE

FRERERERoutine to Open &

SOFEM FEoHE
L
LA
JER
FULS
JER
RTx
FEFEEERERouTine
SREAD FaHE
Lo
LOE
JER
FULS
JER
RTx
FEFEEERER ot ine
SPRIMT LOE
STE
L
FRIMT

ki)

Insert $dddddddd
OO dddddddsd

DR LR
DCRDRY, U
#50@
DCBTRM, U
HFEBUF
OCEBUF, U
HLEBUF
OCELRE, U
Frile #dddfkds
i, OF

#OCE

#EZF

[OFEM]

i, OF

ERROR

oS R R o O
i, oF

#OCE

#7

[READ]

i, OF

ERFOR

Frimt Datrasfsddsddd

#SCREEN
DEWHUM
#LEUF

LOA, ¥+

TER
CHRPAE
EMHE
JTER
BED
FTE
FEEREEERoutine
SCLOSE FoHS
Lo
JER
FLULE
JER
RFTE

WHITI

k)

Cloze

[CHROUT]
#LEBUF+2Y
FRIMT
[POLCAT]
WMATITI

Filmdddddddd
U, OF

HOCOE

[cLosE]

U, OF

ERROR

FHREREREError Handldin = Fougtrims $ddddss

ERFOR TETH
BED
STH
TEF
BED
RETURH

WHITE

#Ed Memory For Buffers

FERLUF
LELF

RHE
RHE

o o e o o i o IR T i For

DRUHLT FoB

dariables

FETURHM

Fuca

[FOLCAT]

HEITZ

FTS

oo 4

nod Stack

v
v

]

g

e
e

SRR

R R o o R
B

FEEEERdEEEENenory for DOB ssddsssssdd

OCe EQu
FLO
FLO

RHE

*#
'WORKFILE'
PTHT

Pt]
e

R e O S o e SR T e O S R e o R e o o e i S o e o o e i o o o T o

DOHE EOu

EMD

K 4

68

SECTION V/

REFERENCE

EJIASM

EJIASM

SECTION V/

REFERENCE

This section summarizes all the features of the
Disk EDTASM.

69

70

EJIASM

Reference A/
Editor Commands

Definition of Terms

line

A line number in the program. Any lines between 0-63999 may be used. These symbols may be used:
First line in the program
* Last line in the program
. Current line in the program

current line
The last line inserted, edited, or printed.

startline
The line where an operation will begin. In most commands startline is optional. If startline is omitted, the current line
is used.

An asterisk(*) denotes a comment line when used as the first character in the line.
range
The line or lines to use in an operation. If the range includes more than one line, they must be specified with one of

these symbols:

: to separate the startline from the ending line
, to separate the startline from the number of lines

Increment
The increment to use between lines. In most commands, increment is optional. If the increment is omitted, the last
specified increment is used. On startup, increment is set to 10.

filespec
A DOS disk file specification in the format:

filename/ext:drive

COMMANDS PAGES
DISCUSSED

7

A / EDITOR COMMANDS

Cstartline, range, Increment
Copies range to a new location beginning with startline using the specified increments. startline,
range, and increment must be included.

Coe@, 100: 150, 10

Drange
Deletes range. If range is omitted, current line is deleted.
Diag Dig@: 150 @
Eline
Enters a line tor editing. If line is omitted, current line is used.
Elgg E
These are the editing subcommands:
A Cancels all changes and restarts the edit.
nCstring Changes n characters to string. If nis omitted, changes
the character at the current cursor position.
nD Deletes n characters. If n is omitted, deletes character at
current cursor position.
E Ends line editing and enters all changes without displaying
the rest of the line.
H Deletes rest of line and allows insert.
| string Inserts string starting at the current cursor position.
While in the mode, =] deletes a character, and
ends the mode.
K Deletes all characters from the current cursor position to
the end of the line.
L Lists current line and continues edit.
nScharacter Searches for nth occurrence of character. If nis omitted,
searches for the first occurrence.
X Extends line.
ENTER [SPACEBARI[SPACEBARIENds line editing, enters all changes and displays the
rest of the line.[SPACEBAR]
[SHIETI[A] [SPACEBARI[SPACEBARIE scapes from subcommand.

N[SPACEBAR] [SPACEBARI[SPACEBARIMoves cursor n positions to the right. If nis omitted,
moves one position.[SPACEBAR]
n[<] [SPACEBARI[SPACEBARI[SPACEBAR|Moves cursor n positions to the left. If nis omitted,
moves the cursor one position.[SPAGEBARI
SPACEBAR|
Fstring
Finds the string of characters. Search begins with the current line and ends each time string is
found. If string is omitted, the last string defined is used.

FREC F

Hrange

Prints range on the printer. If range is omitted, the current line is printed.
Higd Hig@: 200 H

Istartline,increment

Inserts lines up to 127 characters long beginning at startline, using the specified increment.
startline and increment are optional.

T1E®, 1200 I,1m

72

EJIASM

K
Returns to DOS.

LCA filename
Loads filename from tape into the edit buffer. A is optional. If included, filename is appended to
the edit buffer. If filename is omitted, the next tape file is loaded.

LC SAMFLE/EXT LCA SAMPLE/EXT

LOA filespec
Loads the specified file from disk into the edit buffer. A is optional. If included, filespec is
appended to the current contents of the edit buffer. If extension is omitted, /ASM is used.

LO SAMPLEC-EST LOR SAMPLESERET
Mstartline, range, Increment
Move command, works like copy except the original lines are deleted.

Nstartline, Increment
Renumbers beginning at startline, using the specified increment. startline and increment are
optional.

Higg, 58 Higg M

o)

Shows the hexadecimal values of (1) the first available memory address, (2) the last available
address, and (3) USRORG, the address where the assembler originates an /IM assembly with
the /MO switch. Then, prompts you to change USRORG.

Prange

Displays range on the screen.
Flag: 200 Flag b F# F+
FoiFrints 1 lines o the soreen:

Q

Returns to BASIC.

R startline, increment
Allows you to replace startline and then insert lines using increment. startline and increment
are optional.

Figg, 18 Riga F
S
Shows the current printer parameters and lets you change them.
Trange
Prints range to the printer, without line numbers.
Tiga Tid@: B8R
Vfilename

Verifies filename (a tape file) to ensure that it is free of checksum errors. Works like BASIC’s
SKIPF command. If filename is omitted, this command verifies the next file found.

WC filename
Writes filename to tape. If filename is omitted, NONAME is used.

73

A / EDITOR COMMANDS

WD filespec
Writes filespec to disk. If the extension is omitted, ASM is used.

WO SAMPLESESET
z
Jumps to ZBUG (EDTASM system only).

Scrolls up in memory.

Scrolls down in memory.

CLEAR
Is used to create a backslash ().

74

EJIASM

Reference B/ Assembler
Commands and Switches

COMMANDS PAGES
DISCUSSED

AC filename switch ...

Assembles the source program into machine code. If you specify the /IM switch, the assembly
is in memory. If you specify filename, the assembly is saved on tape as filename. If you omit
both filename and switch, the assembly is saved on tape as NONAME.

AD fllespec switch ...
Assembles the source program into machine code. Either the /IM switch or filespec is required:
With /IM, the assembily is in memory; with filespec, the assembly is on disk. The D is optional.

There must be a space between filespec and switch.

The switches are:

IAO Absolute origin.(Applies only If /IM is set.)
/IM In-memory assembly.
ILP Assembly listing on the printer.
/MO Manual origin. (Applies only if /IM is set.)
INL No listing printed.
INO No object code generated.
INS No symbol table generated.
ISR Single record.
ISS Short screen.
IWE Wait on assembly errors.
IWS With symbofs.
Examples:
AD SAMPLE
AD-THASHD

AD SHMFLE SHESSR
A SHMFLESTET SWE
AC SHAFLE

I

75

76

EJIASM

Reference C/
ZBUG Commands

Definition of Terms

expression
One or more numbers, symbols, or ASCII characters. If more than one is used, you may separate them with these
operators:

Multiplication * Addition +
Division .DIV Subtraction —
Modulus .MOD Equals .EQU
Shift < Not Equal .NEG
Local And .AND Positive +
Exclusive Or XOR Negative —
Logical Or .OR Complement .NOT
address

A location in memory. This may be specified as an expression using numbers or symbols.

filename
A BASIC cassette file specification.

fllespec
A DOS file specification. (The same as a BASIC specification.)

COMMANDS PAGES
DISCUSSED
C
Continues execution of the program after interruption at a breakpoint.
D
Displays all breakpoints that have been set.
E

Exits ZBUG and enters the editor. (This applies to the EDTASM ZBUG only, not to Stand-
Alone ZBUG.)

Gaddress
Executes the program beginning at address.

77

C / ZBUG COMMANDS

K
Returns to DOS. (Applies to Stand-Alone ZBUG only.)

LC filename address
Loads filename from tape. The optional address offsets the file’s loading address. If filename is omitted,
the next file is loaded.

LD filespec address
Loads filespec from disk. The optional address offsets the file’s loading address.

LDS filespec address1 address2

Loads filespec from disk with its appended symbol table. The optional address? offsets the file’s loading
address. The optional address?2 offsets the symbol table’s loading address. Note that address2 does
not offset the values of the symbols. The D is optional.

PC filename start address end address execution address

Saves memory from start address to end address to tape. You must also specify an execution address,
the first address to be executed when the file is loaded. Filename is optional; if omitted, NONAME is
used.

PD filespec start address end address execution address
Saves memory to disk from start address to end address. You must also specify an execution address,
the first address to be executed when the file is loaded. (The D is optional.)

PDS filespec start address end address execution address

Saves memory to disk from start address to end address, with the current appended symbol table. You
must also specify an execution address, the first address to be executed when the file is loaded. (The
D is optional.)

Q
Returns to BASIC. (Applies to Stand-Alone ZBUG only.)

R
Displays the contents of all the registers.

Taddress1 address2
Displays the memory locations from address? to address2, inclusive.

THaddress1 address2
Prints the memory locations from address1 to address2, inclusive.

Usource address destination address count
Transfers the contents of memory beginning at source address and continuing for count bytes to
another location in memory beginning with destination address.

Vfilename
Verifies date on the specified file or, if no filename is specified, the next file on tape.

Xaddress

Sets a breakpoint at address. If address is omitted, the current location is used. Each breakpoint is as-
signed a number from Oto 7. The first breakpoint set is assigned as Breakpoint 0. A maximum of eight
breakpoints may be set at one time.

Yn
Deletes the breakpoint referenced by the n number. If n is omitted, all breakpoints are deleted.

78

EJIASM

Examination Mode Commands

A ASCIl Mode

B Byte Mode

M Mnemonic Mode
w Word Mode

(The default is M)

Display Mode Commands

H Half Symbolic
N Numeric
S Symbolic

(The default is S)

Numbering System Mode Commands
Obase Output
Ibase Input
(Base can be 8, 10, or 16. The default is 16)

Special Symbols
address/
register/

Opens address of register and displays its contents.

If address or register is omitted, the last address opened will be reopened. After the contents have been displayed,

you may type:

new value To change the contents.

e To close and enter any change.

b To close and delete any change.

d To open next address and enter any change.

u To open preceding address.

address= To branch to the address pointed to by the instruction
beginning at address. If address is omitted, the current
address is used.

; To force numeric display mode.

= To force numeric and byte modes.

: To force flags.”

“ To force ASCII mode.

address,

Executes address, if address is omitted, the next instruction is executed.

expression=
Calculates expression and displays the results.

* The colon does not actually have anything to do with the CC (status flag) register. It simply
interprets the contents of the given address AS IF it contained flag bits.

79

EJIASM

Reference D/ EDTASM Error Messages

These are error messages you can get while in EDTASM or EDTASMOQV:

BAD BREAKPOINT (ZBUG)

You are attempting to set a breakpoint (1) greater than 7,
(2) in ROM, (3) at a SWI command, (4) at an address
where one is already set.

BAD COMMAND (Editor)
An illegal command letter was used on the command line.

BAD COMMAND (ZBUG)
You are not using a ZBUG command.

BAD FILE DESCRIPTOR (Disk,ZBug)

The filespec is not in the proper DOS format. See “About
This Manual” at the beginning of this manual for the
proper file specification format.

BAD LABEL (Assembler)

The symbol you are using is (1) not a legal symbol, (2)
not terminated with either a space, a tab, or a carriage re-
turn, (3) has been used with ORG or END, which do not
allow labels, or (4) longer than six characters.

BAD MEMORY (Assembler)

You are attempting to do an in-memory assembly that
would (1) overwrite system memory (an address lower
than $1200) (2) overwrite the edit buffer of the symbol
table, (3) go into the protected area set by USROG, or (4)
go over the top of RAM.

If using the /AO switch, check to see that you’ve included
an ORG instruction. When using /MO, check the ad-
dresses you set for BEGTEMP and USRORG. This could
also be caused by the data not being stored correctly be-
cause of some code generated by an inmemory as-
sembly. See Chapter 7 for more information.

BAD MEMORY (ZBUG)

The data did not store correctly on a memory modifica-
tion. This error will occur if you try to modify ROM ad-
dresses or try to store anything beyond MAXMEM.

BAD OPCODE (Assembler)
The op code is either not valid or is not terminated with a.
space, tab, or carriage return.

BAD OPERAND (Assembler)
There is some syntax error in the operand field. See Sec-
tion Il for the syntax of assembly language instructions.

BAD PARAMETERS (Editor,ZBug)
Usually this means your command line has a syntax error.

BAD PARAMETERS (ZBUG)
You have specified a filename that has more than eight
characters.

BAD RADIX (ZBUG)
You have specified a numbering system other than 10, 8
or 16.

BUFFER EMPTY (Editor)
The specified command requires that there be some text
in the Edit Buffer, and there isn’t any.

BUFFER FULL (Editor)
There is not enough room in the edit buffer for another
line of text.

BYTE OVERFLOW (Assembler)

There is a field overflow in an 8-bit data quantity in an im-
mediate operand, an offset, a short branch, or an FCB
pseudo op.

DIRECTORY FULL (Disk)

The directory does not have enough room for another
entry. Use another diskette or delete a file (using the
BASIC KILL command).

DISK FULL (Disk)

The diskette does not have enough room for another file.
Use another diskette or delete a file (using the BASIC
KILL command).

81

D / EDTASM ERROR MESSAGES

EJIASM

DISK WRITE PROTECTED (Disk)

You are attempting to write to a diskette that has the write-
protect notch covered. Remove the write-protect label or
use another diskette.

DOS ERROR (Disk)

This indicates an internal DOS error. It usually means
either the DOS or the Editor/Assembler has been mod-
ified by the user program with harmful results.

DP ERROR (Assembler)

Direct Page error. The high order byte of an operand
where direct addressing has been forced (,) does not
match the value set by the most recent SETDP pseudo
op.

DRIVE NOT READY (Disk)

The drive is not connected, powered up, working properly,
or loaded properly.

END OF FILE (Disk)
Your program is attempting to access a record past the
end of the file.

ENDC WITHOUT COND (Assembler)
The pseudo op ENDC was found without a matching
COND having previously been encountered.

ENDM WITHOUT MACRO (Assembler)
The pseudo op ENDM was found without a matching
MACRO having previously been encountered.

EXPRESSION ERROR (Assembler and ZBUG)
Either the syntax for the expression is incorrect (check
Chapter 9) or the expression is dividing by zero.

FILE NOT FOUND (Disk)
The file is not on the disk’s directory.

FM ERROR (Editor, ZBUG and Disk)
File Mode Error. The file you are attempting to load is not
a TEXT file (if in the Editor) or a CODE file (if in ZBUG).

ILLEGAL NESTING (Assembler)
lllegal nesting conditions include the following:
1. Nested macro definitions.
2. Nested macro expansions.
3. Nested INCLUDE pseudo ops.
4. INCLUDE nested within a macro definition.

I/0 ERROR (Editor, ZBUG and Disk)
Input/Output error. A checksum error was encountered

while loading a file from a cassette tape. The tape may be
bad, or the volume setting may be wrong. Try a higher vol-
ume.

MACRO FORWARD REFERENCE

(Assembler)

A reference to the macro, which is defined on the current
line, occurs previous to the macro definition.

MACRO TABLE FULL (Assembler)

The macro table is full, any additional entries will overwrite
the symbol table. This happens when all memory allo-
cated for the edit buffer, macro table, and symbol table
has been used. Adjust USRORG using the Origin (0)
command. (See the Chapter 7.)

MISSING END (Assembler)
Every assembly language program must have END as its
last command.

MISSING INFORMATION (Assembler)
(1) There is a missing delimiter in an FCC pseudo op or
(2) there is no label on a SET or EQU pseudo op.

MISSING OPERAND (Assembler,ZBug)
The command requires one or more operands.

MULTIPLY DEFINED SYMBOL (Assembler)

Your program has defined the same symbol with different
values. If the error occurs in a macro expansion, use the
/.1 notation to name the symbols. See Chapter 12.

NO ROOM BETWEEN LINES (Editor)

There is not enough room between lines to use the incre-
ment specified. Specify a smaller increment or renumber
(N) the text using a larger increment. Remember that the
last increment you used is kept until you specify a new
one.

NO SUCH LINES (Editor)
The specified line or lines do not exist.

REGISTER ERROR (Assembler)

(1) No registers have been specified with a PSH/PUL in-
struction, (2) a register has been specified more than
once in a PSH/PUL instruction, or (3) there is a register
mismatch with an EXG/TFR instruction.

SEARCH FAILS (Editor)

The string specified in the Find (F) command could not
be found in the edit buffer beginning with the line speci-
fied. If no line is specified the current line is used.

82

EJIASM

SYMBOL TABLE OVERFLOW (Assembler) SYNTAX ERROR (Assembler)
The symbol table is extending past USRORG into the pro- ~ There is a syntax error in a macro dummy argument.

tected area of user memory. Adjust USRORG using the UNDEFINED SYMBOL (Assembler,ZBug)
0 command. See Chapter 7. Your program has not defined the symbol being used.

83

84

1 / USING PSEUDO OPS Emm

Reference E/
Assembler Psuedo Ops

Definition of Terms

symbol
Any string from one to six characters long, typed in the symbol field.

expression
Any expression typed in the operand field. See Reference C, “ZBUG commands,” for a definition of valid expressions.

COMMANDS PAGES
DISCUSSED

COND expression
Assembles the instructions between COND and ENDC only if expression is true (a non-zero
value).

COMD SYHMEBOL
SYHMEBEOL FCE i
VHLUE FCE =)

COMD SYMBOL-VALUE

Valid operators for a conditional expression are +, —, /, *. If the expression equals zero, it is
false; if non-zero, it is true.

END expression
Ends the assembly. The optional expression specifies the start address of the program.

ENDC
Ends a conditional assembly.

ENDM
Ends a macro definition.

symbol EQU expression
Equates symbol to an expression.
SYHMBOL EQL FLnaan

85

E / ASSEMBLER PSEUDO OPS

symbol FCB expression, ...
Stores a 1-byte expression beginning at the current address.

ORTHZ FCE FEIFCOUNT
symbol FCC delimiter string delimiter

Stores string in memory beginning with the current address. The delimiter can be any
character.

THELE FCo STHIS I8 A STRIMGS
symbol FDB expression
Stores a 2-byte expression in memory begining at the current address.
DATH FOE Fazzz
INCLUDE source fllespec
Includes source filespec in the current position of the source program.

IHCLUDE SHMPLE-HEN
symbol MACRO
Defines the instructions between MACRO and ENDM as a macro named symbol.
DIVIDE MACRD
OPT switch, ...
Uses switch to control the listing of macros when assembling the program. The switches are:
MC List macro calls (default)
NOMC Do not list macro calls
MD List macro definitions (default)
NOMD Do not list macro definitions
MEX List macro expansionns
NOMEX Do not list macro expansions (default)
L Turn on the listing (default)
NOL Turn off the listing

ORG expression
Originates the program at expression address.

ORG LEF a0
PAGE
Ejects the assembily listing to the next page.

RMB expression
Reserves expression bytes of memory for data.

OHTH RME fFos

symbol SET expression
Sets or resets symbol to expression.

sYHEOL SET Froom

86

EJIASM

SETDP expression
Sets the direct page to expression.

SETOF Rl
TITLE string

Prints string as the title of each page of the assembly listing. String can be up to 32
characters.

TITLE Frogam 1

87

EJIASM

Reference F/
Rom Routines

This reference lists the indirect addresses where the Color Computer's ROM routines are stored. It also shows the
entry and exit conditions for each routine.

The name of the routine is for documentation only. To jump to the routine, you must use its indirect address (the address
contained in the brackets).

COMMANDS PAGES
DISCUSSED

BLKIN = [$A006]
Reads a block from a cassette.
Entry Conditions:
Cassette must be on and in bit sync (see CSROON).
CBUFAD contains the buffer address.
Exit Conditions:
BLKTYP, located at $7C, contains the block type:
0 =file header
1 =data
FF= end of file
BLKLEN, located at $70, contains the number of data bytes in the block (0-255):
Bit Z in the Register CC, Register A, and CSRERR, located at Address $81, contains the
error:
Z =1, A= CSRERR = 0 (if no errors)
Z =0, A= CSRERR = 1 (if a checksum error occurs)
Z =0, A= CSRERR = 2 (if a memory error occurs)
BLKOUT = [$A008]
Writes a block to cassette.
Entry Conditions:
If this is the first block write after turning the motor on, the tape should be up to speed
and a $55s should be written first.
CBUFAD, located at $7E, contains the buffer address.
BLKTYP, located at $7C, contains the block type.
BLKLEN, located at $70, contains the number of bytes.
Exit Conditions:
Interrupts are masked.
X = CBUFAD + BLKLEN.
All registers are modified.

89

F / ROM ROUTINES

CHROUT = [A002]
Outputs a character to a device.
Entry Conditions:
Register A = character to be output
Address 6F (DEVNUM) = the device (-2 = printer; 0 = screen)
Exit Conditions:
Register CC is changed; all others are preserved.

CSRDON = [$A004]
Starts the cassette and gets into bit sync for reading.
Entry Conditions:
None
Exit Conditions:
FIRQ and IRO are masked.
Registers U and Y are preserved. All others are modified.

JOYIN = [$A00A]
Samples the four joystick pots and stores their values in POTVAL through POTVAL + 3.

Left Joystick:

Up/Down 15A
Right/Left 15B
Right Joystick:

Up/Down 15C
Right/Left 15D

For Up/Down, the minimum value equals Up.
For Right/Left, the minimum value equals Left.

POLCAT = [A000]
Polls the keyboard for a character.
Entry Conditions:
None
Exit Conditions:
If no key is seen — Flag Z =1, Register A= 0O
If a key is seen — Flag Z = 0, Register A = key code
Registers Band X are preserved.
All other registers are modified.

90

EJIASM

Reference G/
DOS Disk Data Control Block (DCB)

DOS uses a 49-byte DCB to access a disk file. This reference shows the contents of each
of the bytes (Bytes 0-48) in the DCB.

Bytes 0-31

The first 32 bytes of the DCB correspond to the disk file’'s 32-byte directory entry. When
creating a file, DOS writes the DCB’s first 32 bytes to the directory.

When opening an existing file, DOS searches each directory entry for the filename and ex-
tension you have set in the DCB. If it finds a match, it overwrites the first 32 bytes of the
DCB with the 32-byte directory entry.

When you close the file, DOS overwrites the directory entry with the first 32 bytes of the
DCB.

Filename (DCBFNM) Bytes 0-7
Contains the name of the file you want to access. You must set this value.

Extension (DCBFNM) Bytes 8-10
Contains the extension of the file you want to access. You must set this value.

File Type (DCBFTY) Byte 11
Contains the type of file you want to access. DOS ignores this, but BASIC uses it. You need
to set this value when creating the file if you want the file compatible with BASIC.

ASCII Flag (DCBASC) Byte 12
Contains a flag if the file is in ASCII format. DOS ignores this, but BASIC uses it. You need
to set this value when creating the file if you want the file compatible with BASIC.

First Cluster {DCBFCL) Byte 13
Contains the number of the first cluster in the file. (When you first create a file, this contains
$FF.) DOS sets this value .. Do not change it.

First Sector Bytes (DCBNLS) Bytes 14-15
Contains the number of bytes used in the first sector of the file. DOS ignores this. However,
tobe compatible with BASIC files, you should set this value before closing an output file.

File Mode (DCBCFS) Byte 16
Contains the mode you specified with Register A in the OPEN, WRITE, or READ routine.
DOS sets this value.

91

G / DDS DATA CONTROL BLOCK (DCB)

Record Size (DCBRSZ) Bytes 17-18
Contains the size of each record. Use this with fixed-length records only. You set this value
before reading from or writing to a direct access file.

Record Terminator (DCBTRM) Byte 19
Contains the character that DOS uses to terminate each record. You supply this value when
reading from or writing to a sequential access file.

Undefined (DCBUSR) Bytes 20-31
Contains nothing at present. In future releases, DOS may use part of this.

Bytes 32- 48

Bytes 32-48 are primarily set by DOS. However, you may use the contents of these bytes
as data in your program.

The exceptions to this are the bytes for the drive number, physical buffer address, and log-
ical buffer address. You must set the contents of these bytes before opening a file.

Operation Code (DCBOPC) Byte 32
Contains the last physical 1/0 operation performed on the file. See your Disk System Manual
for details. DOS sets this value.

Drive Number (DCBDRYV) Byte 33
Contains the drive number (0-3 or $FF). $FF tells DOS to use the first available drive and
then insert the drive number in this segment. You must set this value before opening a file.

Track Number (DCBTRK) Byte 34

Contains the number of the last track DOS accessed while doing 1/0 for this file. DOS sets
this value.

Sector Number (DCBSEC) Byte 35

Contains the number of the last sector DOS accessed while doing 1/0 for this file. DOS
sets this value.

Physical Buffer Address (DCBBUF) Bytes 36-37
Contains the start address of a 256-byte physical buffer. The physical buffer is for storing
data before or after disk 1/0. You must set this value before opening a file.

Error Code (DCBOK) Byte 38
Contains the same value that the DOS routine returns in Register A: a zero if the last DOS
routine was successful; the error number if there was an error. DOS sets this value.

Logical Buffer Address (DCBLRN) Bytes 39-40

Contains the start address of a logical buffer. The logical buffer is for storing a logical record
before or after it goes through the physical buffer. You must set this value before opening a
file, unless you have specified the “share” file mode. (See OPEN.)

Physical Record Number (DCBPRN). Bytes 41-42

Contains the number of the physical record currently in the physical buffer. DOS uses this
to determine whether another physical read or write is required. This contains $FFFF when
the file is opened. It also contains $FFFF after every read or write when the buffer is
“shared.” DOS sets this value.

92

EJIASM

Relative Byte Address (DCBRBA} Bytes 43-45

Contains an address which points to the record you want to read or write (zero when the
file is first opened). With sequential access, this address always points to the next record.
With direct access, this address is the product of DCBRSZ times DCBPRN. DOS sets and
updates this value.

Logical Record Number (DCBLRN). Bytes 46-47
Contains the number of the next record to be accessed (zero when the file is first opened).
Unless you set this value, DOS increments it after accessing each record.

Modified Data Tag (DCBMDT} Byte 48

Contains a tag (“1) if the contents of the physical buffer need to be written to disk. DOS
sets this tag each time it writes to the logical buffer. The contents of the physical buffer are
written to disk only when DOS must access a different sector (because the 256-byte buffer
is full) or close the file. If the physical buffer is “shared,” the physical buffer is written to disk
after each logical write. DOS sets and updates this value.

93

EJIASM

Reference H/
DOS Routines

This reference lists all the DOS routines that Radio Shack will continue to provide in future releases. Please note that
Radio Shack will support only the OPEN, CLOSE, READ, and WRITE routines. The other routines listed in this reference
will be provided, but not necessarily supported.

Definition of Terms

root program
The portion of the program that is not an overlay. If you are not using overlays, this is the entire program.

overlay
A portion of the program that DOS loads into memory only when called. This can be your own overlay (called with
DOUSR, GOUSR, or LOUSR) or a DOS overlay (called with DO, GO, or LOAD).

DOS programming convention

A convention, which any program using DOS routines must follow:

* The execution address must be the first instruction in the program.

e The first three bytes of the program must contain a JMP or LBR to any part of the root program. (JMP and LBR are
both 3-byte instructions.) Example:

ETHART JHF BEGINM
* The next two bytes must contain the length of the root program. If you are not using overlays, this is the entire
program. Example:

FOE ODOME-START
* If you are using overlays, this is the root program. Example:
FOE DOMHE-OUWYL

DOS overlay conventions
A convention, which any of your own overlays must follow:
e The first two bytes must contain the size of the overlay. Example:

oyl FOE Oy 20y 1
* The next three bytes must contain a JMP or LBRA to any part of the overlay. Example:
JER FROWE

e The last instruction should be an RTS, GO, or GOUSR.
* You must assign the overlay a number that is sequential. For example, assign your first overlay the overlay number
of 1:

ouy ECU i

95

H / DOS ROUTINES

e The overlay must be written with relocatable (rather than absolute) addresses. When DOS loads the overlay, it sets
Register X equal to the overlay’s base address. Therefore, you can refer to all the local variables as an offset to
Register X.

COMMANDS PAGES
DISCUSSED

CLOSE = [$602]
Closes access to a disk file.
Entry Conditions:
Register U = the address of the DCB that was previously opened.
Program must follow DOS programming convention.
Exit Conditions
Register A = status code
Technical Function of CLOSE:
¢ Checks the drive specified by DCBDRYV for a directory entry matching DCBFNM and DCBFEX. When the entry is
found, checks to see if the file was previously open by seeing if DCBCFS contains a non-zero value.
e Checks DCBMDT for a modification tag. If found, writes the contents of the physical buffer to the disk.
e Sets DCBCFS to zero.
* Rewrites the directory entry with the first 32 bytes of the DCB. Any changes in the first 32 bytes of the DCB after
OPEN and before CLOSE are recorded in the directory.
* Rewrites the diskette’s FAT.

DO=[$60A]
Calls a DOS overlay.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = status code

DOUSR =[$0610]

Calls one of your own overlays.

Entry Conditions:

Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:

Register A = status code

GO=[$60C]
Calls one DOS overlay from another DOS overlay.
Entry Conditions:
Register A = DOS overlay number
Exit Conditions:
Register A = status code

96

EJIASM

GOUSR =[$612]
Calls one overlay from another overlay. For example, OVY1 calls OVY2.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = “0” if no error; error code if error

LOAD = [$60E]
Loads a DOS overlay but does not execute it.
Entry Conditions:
Register A= DOS overlay number
Exit Conditions:
Register A =“0" if no error; error code if error

LODUSR = [$614]
Loads one of your overlays but does not execute it.
Entry Conditions:
Register A = overlay number (the number you have assigned to the overlay)
Exit Conditions:
Register A = “0” if no error; error code if error

OPEN =[$600]
Opens access to a disk file using the specified file mode.
Entry Conditions:
Register A = file mode
The file modes are:
Bit O set — allows reads
Bit 1 set — allows writes
Bit 2 set — allows file creation
Bit 3 set — allows extension past end of file
Bit 4 set — deletes the file when closed (work file)
Bit 5 set — rewrites the directory’s file allocation table (FAT) only when the file is
closed. (Otherwise, rewrites FAT after each READ; see the Disk System
Manual for information on the FAT.)
Bit 6 set — shares the physical and logical buffer
Bit 7 set — undefined
Register U = the address where the DCB is stored.
The DCB must contain values for DCBFNM, DCBFEX, DCBDRYV, and DCBBUF
Program must follow DOS programming conventions.
Exit Conditions:
Register A = 0 if no error; error code if error
Technical Function of OPEN:
» Checks the drive specified by DCBDRYV for a directory entry matching DCBFNM and DCBFEX.
« If a match is found:
* Uses the directory entry to overwrite the first 32 bytes of the DCB
» Checks DCBCFS. It indicates a write, create, or extend, the file is opened and Status Code Lis returned.
* Inserts the file mode (contained in Register A) in DCBCFS.
* Overwrites the directory entry with the first 32 bytes of the DCB.
« If a match is not found and the file mode is “create,” creates a directory entry using the first 32 bytes of the DCB

97

H / DOS ROUTINES

+ Sets DCBPRN to $FFFF
» Clears DCBLRN, DCBMDT, and DCBRBA.

READ = [$604]
Reads a record from a disk file.
Entry Conditions
Register A = read option
The read options are:
Bit 0 clear — direct access (read by record number; fixed length records)

Bit 0 set — sequential access (read by terminator character; variable length records)
Bit 1 clear — exit READ pointing to next record
Bit 1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to next record)

The other bits can contain any value.
Register U = address pointing to the DCB
Program must follow DOS programming convention
Exit Conditions:
Register A = 0 if no error; error number if error logical buffer (pointed to by DCBLRB)
contains the record
Technical Function of READ:
» Checks DCBCEFS to see if the file was opened for “read.”
* Checks DCBRBA for the record you want to access. (If Bit O in Register A is clear, READ calculates DCBRBA as
the product of DCBLRN times DCBRSZ).
* Checks to see if the record is in the physical buffer (by comparing the high two bytes of DCBRBA with the
contents of DCBPRN).
If the record is not in the physical buffer, READ reads the record into the physical buffer then transfers it to the
logical buffer.
* Checks to see if Register A's Bit 1 is set. If so, restore DCBLRN and DCBRBA to their original values.

RELSE = [$608]
Frees a physical buffer so that you can use it with another file.
Entry Conditions:
Register U = address where the DCB is stored of the file currently using the physical buffer.
Register A = 0 if no error; error code if error.
Technical Function of RELSE:
+ Check DCBMDT. If the tag is set, the contents of the physical buffer are written to disk and DCBMDT is cleared.
+ Sets DCBPRN to $FFFF.

WRITE = [$606]
Writes a logical record to disk.
Entry Conditions:
Register A = read/write option
The read/write options are:
Bit 0 clear — direct access (write by record number; fixed length records)
Bit 0 set — sequentialaccess (write by terminator character; variable length records)

98

EJIASM

Bit 1 clear — exit READ pointing to next record
Bit1 set — exit READ leaving DCBLRN and DCBRBA the same (not pointing to next record)
The other bits can contain any value.

Register U = address pointing to the DCB logical buffer (pointed to by DCBLRB) contains the record you want

to write
Program must follow DOS programming conventions.
Exit Conditions:

Register A = 0 if no error; status code if error

Technical Function of WRITE:

» Checks DCBCFS to see if the file was opened for “write.”

» Checks DCBRBA for the record you want to access. (If Bit 0 in Register A is off, WRITE calculates DCBRBA as
the product of DCBLRN times DCBRSZ).

» Transfers the contents of the logical buffer to the physical buffer. If all 256 bytes of the physical buffer are full,
writes the contents of the physical buffer to disk. If there is still more contents in the logical buffer, WRITE transfer
these contents to the physical buffer and sets DCBMDT to 1.

+ If the file mode is “share,” writes the complete contents of the physical buffer to disk regardless of whether it com
pletely fills the sector. Then, sets DCBPRN to $FFFF.

99

EJIASM

Error
Code

00
01

02
03
04
05
06
07
08
09
0A
0B
0C
oD
OE
OF
10
11

12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

Hex

Code

40
41

42
43
44
48
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

Reference I/
DOS Error Codes

Character
Displayed

>— - —N<XXS<CHOWIOUTVOZZrXc—IOTMMOUOW>O

Error

No errors

I/O error (drive not ready)

I/O error (write-protected diskette)

I/O error (write fault)

I/O error (seek error or record not found)
I/O error (CER error)

I/O error (lost data)

I/O error (undefined Bit 1)

I/O error (undefined Bit 0)

Register argument is invalid

File directory entry not found

Full directory

File was created by the OPEN function

File not closed after changes

Attempt to access an opened file

Attempt to read a read-protected file

RBA overflow (exceeds 3 bytes -16,777,216)
Access beyond EOF or extension not allowed
FAT rewrite error

Attempt to close an unopened file

Can’t access directly (record size is 0)
Attempt to write on write-protected diskette
Can’t extend file (disk capacity exceeded)
Error while loading overlay

Insufficient print space allocated

1/0 error during BASIC line read
Program’s load address is too low

First byte of program file is not equal to zero
Not enough space for buffered keyboard
Not enough memory

Output file already exists

Wrong diskette

101

EJIASM

$0 - $69
$70-$FF
$100-$111
$112-$119
$11A
$11B-$159
$15A-$15D
$15E-$3FF
$400-$5FF
$600-$11FF
$1200-$3FFF
$1200-$7FFF
$8000-$9FFF
$A000-$BFFF
$C000-$DFFF
$E000-$FEFF
$FF00-$FFEE
$FFFO-$FFFF

Reference J/
Memory Map

Direct page RAM
System direct page RAM
Interrupt vectors

System RAM

Keyboard alpha lock flag
System RAM

Joystick pot values
System RAM

Video memory

DOS

16K user memory

32K user memory
Extended BASIC

BASIC

Disk BASIC

ROM expansion
Hardware address
Interrupt vectors

103

EJIASM

Reference K/
ASCII Codes

Video Control Codes

Dec Hex PRINT CHR$(code)

8 08 Backspaces and erases current character.
13 0D Linefeed with carriage return.
32 20 Space

Color Codes

CODE COLOR

0 Black

1 Green

2 Yellow

3 Blue

4 Red

5 Buff

6 Cyan

7 Magenta

8 Orange

Graphic Character
Codes

Given the color (1-8) and the pattern (0-15), this formula
will generate the correct code:

code = 128 + 16 * (color -1) + pattern

0

12

1

13

2

14

3l 4[] sl
of | 10 | 1]y

15

For example, to print pattern 9 in blue (code 3), type:

= 128

2]

CHRE

+ 1B

#oO4E-1 o+ B

105

K / ASCIl CODES

Alphanumeric
Character Codes
DECIMAL HEXADECIMAL
CHARACTER CODE CODE

32 20

33 21
“ 34 22
35 23
$ 36 24
% 37 25
& 38 26
¢ 39 27
(40 28
) 41 29
* 42 2A
+ 43 28
¢ 44 2C
- 45 20
. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 38
< 60 3C
= 61 30
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
| 73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
(@) 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53

106

EJIASM

AT =

T 84 54

u 85 55
\Y% 86 56
w 87 57
X 88 58
Y 89 59

Z 90 5A

* 94 5E

* 10 0A

* 8 08

* 9 09
BREAK 03 03
12 oC
ENTER 13 oD

*If shifted, the code for these characters are as follows:
is 92 (hex 5C); [is 95 (hex 5F); W is 91 (hex 5B);
is 21 (hex 15); and = is 93 (hex 5D).

These are the ASCII codes for lowercase letters. You can
produce these characters by pressing [SHIETI[D simulta-
neously to get into an upper-lowercase mode. The lower-
case letters will appear on your screen in reversed colors
(green with a black background).

DECIMAL HEXADECIMAL
CHARACTER CODE CODE
a 97 61
b 98 62
c 99 63
d 100 64
e 101 6S
f 102 66
g 103 67
h 104 68
i 108 69
i 106 6A
k 107 68
[108 6C
m 109 6D
n 110 6E
0 111 6F
p 112 70
q 113 71
r 114 72
S 115 73
t 116 74
u 117 7S
Y, 118 76
w 119 77
X 120 78
y 121 79
z 122 7A

107

EJIASM

Reference L/
6809 Mnemonics

Definition of Terms
Source Forms:

This shows all the possible variations you can use with
the instruction. Table 4 gives the meaning of all the nota-
tions we use. The notations in italics represent values you
can supply.

For example, the BEQ instruction has two source forms.
BEQ dd allows you to use these instructions:

BEQ f@z BEQ $FF EBEQ %A@
Whereas LBEQ DODD allows you these:
LBEQ $C000 LBEQ $FFFF

Operation:

This uses shorthand notation to show exactly what the in-
struction does, step by step. The meaning of all the codes
are also in Table 4.

For example, the BEQ operation does this:

“if, (but only if), the zero flag is set, branch to
the location indicated by the program counter
plus the value of the 8-bit offset.”

Condition Codes:

This shows which of the flags in the CC register are af-
fected by the instruction, if any. As you’ll note, BEQ does
not set or clear any of the flags.

Description:

This is an overall description, in English, of what the in-
struction does.

Addressing Mode:

This tells you which addressing modes you may use with
the instruction. BEQ allows only the Relative addressing
mode.

109

L / 6809 MNEMONICS

ABBREVIATION MEANING ABBREVIATION MEANING
ACCA or A Accumulator A. UsorU User stack pointer.
ACCB or B Accumulator B. P A memory location with immediate,
ACCA:ACCBor D Accumulator D. direct, extended, and indexed
ACCX Either accumulator A or addressing modes.
accumulator B. Q A read-write-modify argument with
CCRorCC Condition code register. direct, extended and indexed
DPR or DP Direct page register. addressing modes.
EA Effective address. () The data pointed to by the enclosed
IFF If and only if. (16 bit address).
IX or X Index register X. dd 8-bit branch offset.
Y orY Index register Y. DDDD 16-bit offset.
LSN Least significant nibble. # Immediate value follows.
M Memory location. $ Hexadecimal value follows.
Ml Memory immediate. [] Indirection.
MSN Most significant nibble. . Indicates indexed addressing.
PC Program counter. — Is transferred to.
R A register before the operation. / Boolean AND.
R’ A register after the operation. \" Boolean OR.
TEMP A temporary storage location. 0] Boolean Exclusive OR (XOR).
xxH Most significant byte of any -- Boolean NOT.
location. : Concatination.
xxL Least significant byte of any + Arithmetic plus.
location. - Arithmetic minus.
SporS Hardware stack pointer. X Arithmetic multiply.

Table 4. Notations and Codes

110

Add Accumulator B
into Index Register X

Source Form: ABX
Operation: IX' —IX+ACCB

Condition Codes: Not affected.

Description: Add the 8-bit unsigned value in accumulator B
into index register X.

Addressing Mode: Inherent.

AE:

Add with Carry into Register

Source Forms: ADCA P; ADCB P

Operation: R'«—R+M+C

Condition Codes:
H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.
Description: Adds the contents of the C (carry) bit and the
memory byte into an 8-bit accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

ML

Add Memory into Register

Source Forms: ADDA P; ADDB P

Operation: R—R+M

Condition Codes:
H — Set if a half-carry is generated; cleared otherwise.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.
C — Set if a carry is generated; cleared otherwise.
Description: Adds the memory byte into an 8-bit
accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Add Memory into Register

Source Form: ADDO P

Operation: R'—R+M:M+1

Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V - Set if an overflow is generated; cleared otherwise.
C - Set if a carry is generated; cleared otherwise.
Description: Adds the 16-bit memory value into the 16-bit
accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Memory
into Register
Source Forms: ANDA P; ANDB P
Operation: R—R A M
Condition Codes:
H - Not affected.
N -Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: Performs the logical AND operation between
the contents of an accumulator and the contents of memory
location M and the result is stored in the accumulator.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Logical AND Immediate Memory
into Condition Code Register
Source Form: ANDCC #xx

Operation: R<—R A Ml

Condition Codes: Affected according to the operation.

Description: Performs a logical AND between the condition
code register and the immediate byte specified in the
instruction and places the result in the condition code
register.

Addressing Mode: Immediate.

HMHL

Arithmetic Shift Left

Source Forms: ASL Q; ASLA; ASLB
Operation:C—[[| [T [| T 1
b7
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z —Set if the result is zero; cleared otherwise.

| 0

b0

«—

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.
Description: Shifts all bits of the operand one place to the
left. Bit zero is loaded with a zero. Bit seven is shifted into
the C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

i
i1

EJIASM

111

L / 6809 MNEMONICS

AR

=R

=

EED

BLE

BT
EHE

Arithmetic Shift Right

Source Forms: ASR Q; ASRA; ASRB
Operation: - LT T T [[[1]

—C

b
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.
Description: Shifts all bits of the operand one place to the
right. Bit seven is held constant. Bit zero is shifted into the
C (carry) bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.

Branch on Carry Clear
Source Forms: BCC dd; LBCC DODD
Operation:

TEMP—MI

IFFC=0 then PC'—PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branch if it is clear.

Addressing Mode: Relative.

Comments: Equivalent to BHS dd; LBHS DDDD.

Branch on Carry Set
Source Forms: BCS dd; LBCS DODD
Operation:

TEMP«MI

IFF C = 1 then PC’-PC + TEMP

Condition Codes: Not affected.

Description: Tests the state of the C (carry) bit and causes a
branch if it is set.

Addressing Mode: Relative.

Comments: Equivalent to BLO dd; LBLO DDDD.

Branch on Equal

Source Forms: SEQ dd; LBEQ DDDD
Operation:

TEMP<«—MI

IFF Z =1 then PC’ — PC+ TEMP
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is set. When used after a subtract or compare
operation, this instruction will branch if the compared values,
signed or unsigned, were exactly the same.

Addressing Mode: Relative.

Branch on Greater than
or Equal to Zero
Source Forms: BGE dd: LBGE DDDD
Operation:

TEMP «— Ml

IFF Z A[N & V] = 0 then PC'«—PC + TEMP
Condition Codes: Not affected.

Description: Causes a branch if the N (negative) bit and the
V (overflow) bit are either both set or both clear. That is,
branch if the sign of a valid twos complement result is, or
would be, positive. When used after a subtract or compare
operation on twos complement values, this instruction will
branch if the register was greater than or equal to the
memory operand.

Addressing Mode: Relative.

Branch on Greater

Source Forms: SGT dd; LBGT DDDD
Operation:

TEMP—MI

IFF Z A [N @ V] =0 then PC’-PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if the N (negative) bit and
V (overflow) bit are either both set or both clear and the

Z (zero) bit is clear. In other words, branch if the sign of a
valid’ twos complement result is, or would be, positive and
not zero. When used after a subtract or compare operation
on twos complement values, this instruction will branch if the
register was greater than the memory operand.
Addressing Mode: Relative.

Branch if Higher
Source Forms: SHI dd; LBHI DDDD
Operation:
TEMP—MI
IFF [C v Z] = 0 then PC’' — PC+ TEMP
Condition Codes: Not affected.
Description: Causes a branch if the previous operation

subtract or compare operation on unsigned binary values,
this instruction will branch if the register was higher than the
memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC. LD/TST,

caused neither a carry nor a zero result. When used aftera and TST/CLR/COM instructions.

112

EJIASM

Branch if Higher or Same

Source Forms: BHS dd; LBHS DDDD
Operation:
TEMP<MI
IFF C =0then PC' — PC + M|
Condition Codes: Not affected.
Description: Tests the state of the C (carry) bit and causes
a branch if it is clear. When used after a subtract or compare

on unsigned binary values. this instruction will branch if the
register was higher than or the same as the memory
operand.

Addressing Mode: Relative.

Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction BCC. Generally
not useful after INC/DEC, LO/ST, and TST/CLR/COM
intructions.

R

Bit Test

Source Form: BIT P

Operation: TEMP<—R A M

Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Performs the logica! AND of the contents of BIT
accumulator A or B and the contents of memory location M
and modifies the condition codes accordingly. The contents
of accumulator A or B and memory location M are not
affected.
Addressing Modes: Immediate; Extended; Direct; Indexed

EIT

Branch on Less than

or Equal to Zero

Source Forms: BLE dd; LBLE DDDD
Operation:

TEMP<«—MI

IFF Zv [N & V]= 1 then PC’ « PC + TEMP
Condition Codes: Not affected.

Description: Causes a branch if the exclusive OR of the N
(negative) and V (overflow) bits is 1 or if the Z (zero) bit is
set. That is, branch if the sign of a valid twos complement
result is, or would be, negative. When used after a subtract
or compare operation on twos complement values, this
instruction will branch if the register was less than or equal
to the memory operand.

Addressing Mode: Relative.

BLE

Branch on Lower

Source Forms: BLO dd; LBLO DDDD
Operation:
TEMP « MI
IFF (C v Z) = 1 then PC’ « PC + TEMP
Condition Codes: Not affected.
Description:Tests the state of the C (Carry) bit and causes

a branch if it is set. When used after a subtract or compare on
unsigned binary values, this instruction will branch if the
register was lower than the memory operand.

Addressing Mode: Relative.

Comments: This is a dupli.cate assembly-language
mnemonic for the single machine instruction BCS. Generally
not useful after INC/DEC, LO/ST, and TST/CLR/COM
instructions.

=R

Branch on Lower or Same

Source Forms: BLO dd; LBLO DDDD
Operation:
TEMP « MI Comments:
IFF (C v Z) =1 then PC’' « PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if the previous operation

caused either a carry or a zero result. When used after a
subtract or compare operation on unsigned binary values,
this instruction will branch ii the register was lower than or
the same as the memory operand.

Addressing Mode: Relative.

Comments: Generally not useful after INC/DEC, LO/ST, and
TST/CLR/COM instructions.

i

Branch on Less than Zero

Source Forms: BLT dd; LBLT DDDD
Operation:
TEMP « MI
IFF [N @ V] =1 then PC’ < PC + TEMP
Condition Codes: Not affected.
Description: Causes a branch if either, but not both, of the

N (negative) or V (overflow) bits is set. That is, branch if the
sign of a valid twos complement result is, or would be,
negative. When used after a subtract or compare operation
on twos complement binary values, this instruction will
branch if the register was less than the memory operand.
Addressing Mode: Relative.

BLT

Branch on Minus

Source Forms: BMI dd; LBMI DDDD
Operation:
TEMP<MI
IFF N =1 then PC’' < PC + TEMP
Condition Codes: Not affected.
Description: Tests the state of the N (negative) bit and

causes a branch if set. That is, branch if the sign of the twos
complement result is negative.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary
values. this instruction will branch if the result is minus. It is
generally preferred to use the LBL T instruction after signed
operations.

=L

113

L / 6809 MNEMONICS

ik

EFL

Bk

Bk

R

LA

Bl

LR

Branch Not Equal
Source Forms: BNE dd; LBNE DDDD
Operation:

TEMP — M|

IFFZ = 0 then PC’-PC + TEMP
Condition Codes: Not affected.

Description: Tests the state of the Z (zero) bit and causes a
branch if it is clear. When used after a subtract or compare
operation on any binary values, this instruction will branch

if the register is, or would be. not equal to the memory
operand.

Addressing Mode: Relative.

Branch on Plus

Source Forms: BPL dd; LBPL DDDD
Operation:
TEMP — Ml
IFF N = 0 then PC’ < PC+ TEMP
Condition Codes: Not affected.
Description: Tests the state of the N (negative) bit and

causes a branch if it is clear. That is. branch if the sign

of the twos complement result is positive.

Addressing Mode: Relative.

Comments: When used after an operation on signed binary
values, this instruction will branch if the result (possibly
invalid) is positive. It is generally preferred to use the BGE
instruction after signed operations.

Branch Always
Source Forms: BRA dd; LBRA DDDD
Operation:

TEMP «— Ml

PC «— PC + TEMP

Condition Codes: Not affected.
Description: Causes an unconditional branch.
Addressing Mode: Relative.

Branch Never

Source Forms: BRN dd; LBRN DDDD
Operation: TEMP — Ml
Condition Codes: Not affected.

Description: Does not cause a branch. This instruction is
essentially a no operation, but has a bit pattern logically
related to branch always.

Addressing Mode: Relative.

Branch to Subroutine

Source Forms: BSR dd; LBSR DDDD
Operation:

TEMP — M|

SP’« SP-1, CSPI — PCL

SP’« SP- 1, CSPI +— PCH

PC «— PC + TEMP

Condition Codes: Not affected.

Description: The program counter is pushed onto the stack.
The program counter is then loaded with the sum of the
program counter and the offset.

Addressing Mode: Relative.

Comments: A return from subroutine CRTS> instruction is
used to reverse this process and must be the last instruction
executed in a subroutine.

Branch on Overflow Clear

Source Forms: BVC dd; LBVC DDDD
Operation:

TEMP «— Ml

IFFV = 0then PC' — PC +TEMP
Condition Codes: Not affected.

Description: Tests the state of the V (overflow) bit and
causes a branch if it is clear. That is, branch if the twos
complement result was valid. When used after an operation
on twos complement binary values, this instruction will
branch if there was no overflow.

Addressing Mode: Relative.

BVS Branch on Overflow set

Source Forms: BVS dd; LBVS DODD
Operation:

Temp «— M

IFF V=1 then PC’ — PC+ TEMP
Condition Codes: Not affected.

Description: Tests the state of V (overflow) bit and causes

a branch if it is set. That is, branch if twos complement

result was invalid. When used after an operation on twos
complement binary values, this instruction will branch if there
was an overflow.

Addressing Mode: Relative.

CLR Clear

Source Forms: CLR Q
Operation: TEMP «— M M « 00 (base 16)
Condition codes:

H — Not affected.

N — Always cleared.

Z — Always set.

V — Always cleared.

C — Always cleared.
Description: Accumulator A or B or memory location M is
loaded with 00000000. Note that the EA is read during this
operation.
Addressing Modes: Inherent, Extended, Direct, Indexed.

114

Compare Memory from Register
Source Forms: CMPA P, CMPB P
Operation: TEMP — R - M
Condition Codes:
H - Undefined.
N - Set if the result is negative; cleared otherwise.
Z - Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.

C — Set if a borrow is generated; cleared otherwise.
Description: Compares the contents of memory location
to the contents of the specified register and sets the
appropriate condition codes. Neither memory location M nor
the specified register is modified. The carry flag represents a
borrow and is set to the inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Compare Memory from Register
Source Forms: CMPD P; CMPX P; CMPY P; CMPU P;
CMPS P
Operation: TEMP «— R-M: M + 1
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if an overflow is generated; cleared otherwise.

C — Set iF a borrow is generated; cleared otherwise.
Description: Compares the 16-bit contents of the
concatenated memory locations M: M + 1 to the contents
of the specified register and sets the appropriate condition
codes. Neither the memory locations nor the specified
register is modified unless autoincrement or autodecrement
are used. The carry flag represents a borrow and is set to
the inverse of the resulting binary carry.

Addressing Modes: Immediate; Extended; Direct; Indexed.

Complement

Source Forms: COM Q; COMA; COMB
Operation: M’ — O + M
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V —Always cleared.
C —Always set.

Description: Replaces the contents of memory location M
or accumulator A or B with its logical complement. When
operating on unsigned values, only BEQ and BNE branches
can be expected to behave properly following a COM
instruction. When operating on twos complement values,

all signed branches are available.

Addressing Modes: Inherent; Extended; Direct; Indexed.

R

Clear CC bits and Wait
for Interrupt
Source Form: CWAI #$XX
Operation: |[E[| F|[H][I[N]Z][V]C]
CCR « CCR A Ml (Possibly clear masks)
Set E (entire state saved)
SP’— SP -1, (SP) — PCL
SP’«— SP -1, (SP) — PCH
SP’« SP -1, (SP) « USL
SP’«— SP -1, (SP) — USH
SP’— SP -1, (SP) « IYL
SP’— SP -1, (SP) — IYH
SP’ « SP -1, (SP) — IXL
SP’« SP - 1.(SP) « IXH
SP’— SP - 1, (SP) — DPR
SP’— SP -1, (SP) — ACCB
SP’— SP -1, (SP) — ACCA
SP’«— SP - 1, (SP) — CCR
Condition Codes: Affected according to the operation.

Description: This instruction ANDs an immediate byte with
the condition code register which may clear the interrupt
mask bits | and F, stacks the entire machine state on the
hardware stack and then looks for an interrupt. When a
non-masked interrupt occurs, no further machine state
information need be saved before vectoring to the interrupt
handling routine. This instruction replaced the MC6800 CLI
WAI sequence, but does not place the buses in a high-
impedance state. A FIRQ (fast interrupt request) may enter
its interrupt handler with its entire machine state saved. The
RTI (return from interrupt) instruction will automatically return
the entire machine state after testing the E (entire> bit of the
recovered condition code register.
Addressing Mode: Immediate.
Comments: The following immediate values will have the
following results:

FF= enable neither

EF =enable IRQ

BF= enable FIRQ

AF= enable both

LT

Decimal Addition Adjust

Source Form: DAA
Operation: ACCA’ < ACCA + CF (MSN):CF(LSN)
where CF is a Correction Factor, as follows: the CF for each
nibble <BCD> digit is detenmined separately, and is either
6 or0.
Least Significant Nibble
CF(LSN)=6IFF 1)C=1
or 2)LSN>9
Most Significant Nibble
CF(MSN)=6IFF 1)C=1
or 2)MSN>9
or 3) MSN > 8 andLSN > 9
Condition Codes:
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Undefined.

C — Set if a carry is generated or if the carry bit was set

before the operation; cleared otherwise.

Description: The sequence of a single-byte add instruction
on accumulator A (either ADDA or ADCA) and a following
decimal addition adjust instruction results in a BCD addition
with an appropriate carry bit. Both values to be added must
be in proper BCD form (each nibble such that: 0 < nibble <
9). Multiple-precision addition must add the carry generated
by this decimal addition adust into the next higher digit during
the add operation (ADCA) immediately prior to the next
decimal addition adjust.
Addressing Mode: Inherent.

115

L / 6909 MNEMONICS

L1

ELF

W

THE

Decrement
Source Forms: DEC Q; DECA; DECB
Operation: M’ — M - 1
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the original operand was 10000000; cleared
otherwise.

C — Not affected.
Description: Subtract one from the operand. The carry bit
is not affected, thus allowing this instruction to be used as
a loop counter in multiple-precision computations. When
operating on unsigned values, only BEQ and BNE branches
can be expected to behave consistently. When operating on
twos complement values, all signed branches are available.
Addressing Modes: Inherent; Extended; Direct; Indexed.

Exclusive OR
Source Forms: EORA P; EORB P
Operation: R — R & M
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V —Always cleared.

C — Not affected.
Description: The contents of memory location M is
exclusive ORed into an 8-bit register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Exchange Registers

Source Form: EXG R1,R2

Operation: R1 <~ R2

Condition Codes: Not affected Cunless one of the registers
is the condition code registerl.

Description: Exchanges data between two designated
registers. Bits 3-0 of the postbyte define one register, while
bits 7-4 define the other, as follows:

0010=Y 1010 = CCR
0011 =US 1011 =DPR
0100 =SP 1100 = Undefined
0101=PC 1101 = Undefined

0110 = Undefined 1110 = Undefined
0111 = Undefined 1111 = Undefined
Only like size registers may be exchanged. CS-bit with

0000=A:B 1000=A 8-bit or 16-bit with 16-bit.|
0001 =X 1001=B Addressing Mode: Immediate.
Increment

Source Forms: INC @; INCA; INCB
Operation: M’ — M+1
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the original operand was 01111111;
cleared otherwise.

C — Not affected.
Description: Adds to the operand. The carry bit is not
affected, thus allowing this instruction to be used as a loop
counter in multiple-precision computations. When operating
on unsigned values, only the BEQ and BNE branches can be
expected to behave consistently. When operating on twos
complement values, all signed branches are correctly
available.
Addressing Modes: Inherent; Extended; Direct; Indexed.

Jump

Source Form: JMP EA
Operation: PC’ — EA
Condition Codes: Not affected.

Description: Program control is transferred to the effective
address.
Addressing Modes: Extended; Direct; Indexed.

Jump to Subroutine

Source Form: JSR EA
Operation:
SP’« SP- 1, (SP)+PCL
SP’« SP- 1, (SP)+-PCH
PC — EA

Condition Codes: Not affected.

Description: Program control is transferred to the effective
address after storing the return address on the hardware
stack. A RTS instruction should be the last executed
instruction of the subroutine.

Addressing Modes: Extended; Direct; Indexed.

Load Register from Memory

Source Forms: LOA P; LOB P
Operation: R’ <— M
Condition Codes:
H — Not affected.
N — Set if the loaded data is negative; cleared
otherwise.

Z — Set if the loaded data is zero; cleared otherwise.
V — Always cleared.
C — Not affected.
Description: Loads the contents of memory location M into
the designated register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

116

Load Register from Memory

Source Forms: LDD P; LDX P; LDY P; LDS P; LDU P
Operation: R — M:M + 1
Condition Codes:
H — Not affected.
N — Set if the loaded data is negative; cleared
otherwise.

Z — Set if the loaded data is zero; cleared otherwise.
V —Always cleared.
C — Not affected.
Description: Load the contents of the memory location
M:M + 1 into the designated 16-bit register.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Load Effective Address

Source Forms: LEAX, LEAY, LEAS, LEAU
Operation: R — EA
Condition Codes:

H — Not affected.

N — Not affected.

Z — LEAX, LEAY: Set if the result is zero; cleared

otherwise. LEAS, LEAU: Not affected.

V — Not affected.

C — Not affected.
Description: Calculates the effective address from the index
addressing mode and places the address in an indexable
register.
LEAX and LEAY affect the Z (zero) bit to allow use of
these registers as counters and for MC6800 INX/DEX
compatibility.
LEAU and LEAS do not affect the Z bit to allow cleaning up
the stack while returning the Z bit as a parameter to a calling

routine, and also for MC6800 INS/DES compatibility.
Addressing Mode: Indexed.

Comments: Due to the order in which effective addresses
are calculated internally, the LEAX, X + + and LEAX,X + do
not add 2 and 1 (respectively) to the X register; bu1 instead
leave the X register unchanged. This also applies to the

Y, U, and S registers. For the expected results, use the
faster instruction LEAX 2, X and LEAX 1, X.

Some examples of LEA instruction uses are given in the
following table.

Instruction Operation Comment
LEAX 10, X X+10-X Adds 5-bit constant 1 o to X.
LEAX 500, X X +500-X Adds 16-bit constant 500 to X.
LEAY AY Y+A-Y Adds 8-bit accumulator to Y.
LEAY D,Y Y+D-Y Adds 16-bit D accumulator to Y.
LEAU -10,U U-10-U Subtracts 10 from U.
LEAS -10, S S-10-S Used to reserve area on stack.
LEAS 10,S S+10-S Used to 'clean up’ stack.
LEAX 5S S+5-X Transfers as well as adds.

Logical Shift Left

Source Forms: LSL Q;LSLA; LSLB
Operaton:0—[[[[T [[T 1

|-C

b7 b0
Condition Codes:
H — Undefined.

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Loaded with the result of the exclusive OR of bits

six and seven of the original operand.

C — Loaded with bit seven of the original operand.
Description: Shifts all bits of accumulator A or B or memory
location M one place to the left. Bit zero is loaded with a
zero. Bit seven of accumulator A or B or memory location M
is shifted into the C Ccarryl bit.

Addressing Modes: Inherent; Extended; Direct; Indexed.
Comments: This is a duplicate assembly-language
mnemonic for the single machine instruction ASL.

Logical Shift Right
Source Forms: LSR Q; LSRA; LSRB
Operaton:0—| [[| [[[]
b7
Condition Codes:
H — Not affected.

| -C

b0

N —Always cleared.

Z —Set if the result is zero; cleared otherwise.

V — Not affected.

C — Loaded with bit zero of the original operand.
Description: Performs a logical shift right on the operand.
Shifts a zero into bit seven and bit zero into the C Ccarryl bit.
Addressing Modes: Inherent; Extended; Direct; Indexed.

Multiply
Source Form: MUL
Operation: ACCA:ACCB’ — ACCA x ACCB
Condition Codes:
H — Not affected.
N — Not affected.
Z — Set if the result is zero; cleared otherwise.
V — Not affected.

C — Set if ACCB bit 7 of result is set; cleared otherwise.
Description: Multiply the unsigned binary numbers in the
accumulators and place the result in both accumulators
(ACCA contains the most-significant byte of the result).
Unsigned multiply allows multiple-precision operations.
Addressing Mode: Inherent.

Comments: The C (carry) bit allows rounding the most sig-
nificant byte through the sequence: MUL ADCA #0.

L=k

LoH

ML

117

L / 6809 MNEMONICS

MEL

MO

L

L

FEHS

L

Negate

Source Forms: NEG Q; NEGA; NEGB
Operation: M — 0-M
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Set if the original operand was 10000000.

C — Set if a borrow is generated; cleared otherwise.
Description: Replaces the operand with its twos
complement. The C (carry) bit represents a borrow and is set
to the inverse of the resulting binary carry. Note that 804¢ is
replaced by itself and only in this case is the V Coverflow! bit
set. The value 0044 is also replaced by itself, and only in this
case is the C Ccarryl bit cleared.

Addressing Modes: Inherent; Extended; Direct.

No Operation

Source Form: NOP
Operation: Not affected.

Condition Codes: This instruction causes only the program
counter to be incremented. No other registers or memory
locations are affected.

Addressing Mode: Inherent.

Inclusive OR Memory
into Register
Source Forms: ORA P; ORB P
Operation: R <— RvM
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Performs an inclusive OR operation between
the contents of accumulator A or B and the contents of
memory location M and the result is stored in accumulator
AorB.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Inclusive OR Memory Immediate
into Condition Code Register

Source Form: ORCC #XX
Operation: R <— R v Ml
Condition Codes: Affected according to the operation.

Description: Performs an inclusive OR operation between
the contents of the condition code registers and the
immediate value, and the result is placed in the condition
code register. This instruction may be used to set interrupt
masks (disable interrupts) or any other bit(s).

Addressing Mode: Immediate.

Push Registers on
the Hardware Stack

Source Form:
PSHS register list
PSHS #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
[PC[U[Y [XDP[B[A[CAI
push order —

Operation:
IFF b7 of postbyte set, then: SP’ «— SP - 1, (SP
SP’—SP -1, (SP
IFF b6 of postbyte set. then: SP’«— SP - 1, (SP
SP’—SP -1, (SP

— PCL
«— PCH
«— USL
«— USH

~— — — —

IFF b5 of postbyte set, then: SP’«— SP -1,(SP) — IYL
SP’«— SP -1,(SP) < IYH
IFF b4 of postbyte set, then: SP’«— SP -1,(SP) «— IXL
SP’ «— SP -1,(SP) « IXH
IFF b3 of postbyte set, then: SP’— SP -1,(SP) — DPR
IFF b2 of postbyte set, then: SP’— SP -1,(SP) — ACCB
IFF b1 of postbyte set, then: SP’«— SP -1,(SP) — ACCA
IFF bO of postbyte set, then: SP’«— SP-1,(SP) — CCR

Condition Codes: Not affected.

Description: All, some, or none of the processor registers
are pushed onto the hardware stack Cwith the exception of
the hardware stack pointer itselfl.

Addressing Mode: Immediate.

Comments: A single register may be placed on the stack
with the condition codes set by doing an autodecrement
store onto the stack (example: STX, - - S).

Push Registers on
the User Stack

Source Form:
PSHU register list
PSHU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
PCIUY [XIDP[B[A]CA!
push order —

Operation:
IFF b7 of postbyte set, then: US’ — US - 1, (US) « PCL
US'—USs-1, (US) — PCH
IFF b6 of postbyte set, then: US’ «— US - 1, (US) «— SPL
US < US -1, (US) — SPH

IFF b5 of postbyte set, then: US « US -1, (US) — IYL
US‘—US-1, (US) « IYH
US‘—US-1, (US) « IXL
US‘—US-1, (US) « IXH
US‘—US-1, (US) — DPR
US‘—US- 1, (US)—ACCB
US‘—US- 1, (US)—ACCA
US‘«—US-1, (US) — CCR

IFF b4 of postbyte set, then:

IFF b3 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b0 of postbyte set, then:
Condition Codes: Not affected.
Description: All, some, or none of the processor registers
are pushed onto the user stack (with the exception of the
user stack pointer itself).
Addressing Mode: Immediate.
Comments: A single register may be placed on the stack
with the condition codes set by doing an autodecrement
store onto the stack (example: STX, - - U).

118

EJIASM

Pull Registers from
the Hardware Stack

Source Form:
PULS register list
PULS #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
PCIU]Y [X|DP|B A]CC|
« pull order
Operation:
IFF b0 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b3 of postbyte set, then:
IFF b4 of postbyte set, then:

IXH’
IXL

CCR « (SP
ACCA’«— (SP
ACCB’« (SP
DPR « (SP
«— (SP
«— (SP

, SP’— SP+1
, SP’ SP+1
, SP’— SP+1
, SP’— SP+ 1
, SP’— SP+ 1
, SP’— SP+ 1

— — — — — —

Condition Codes: May be pulled from stack; not affected
otherwise.

IFF b5 of postbyte set, then: IYH « (SP), SP’ — SP+ 1
IYL <« (SP), SP’« SP+1
IFF b6 of postbyte set, then: USH’ «— (SP), SP’ — SP+ 1
USL « (SP), SP’ — SP+ 1
IFF b7 of postbyte set, then: PCH’ «— (SP), SP’ — SP+ 1
PCL « (SP), SP’« SP+1

Description: All, some, or none of the processor registers
are pulled from the hardware stack (with the exception of the
hardware stack pointer itself).

Addressing Mode: Immediate.

Comments: A single register may be pulled from the stack
with condition codes set by doing an autoincrement load
from the stack (example; LDX,S + +).

Pull Registers from
the User Stack

Source Form:
PULU register list
PULU #LABEL
Postbyte:
b7 b6 b5 b4 b3 b2 b1 b0
lPclu Y [X]pP|B [A]cC|
« pull order
Operation:
IFF b0 of postbyte set, then:
IFF b1 of postbyte set, then:
IFF b2 of postbyte set, then:
IFF b3 of postbyte set, then:
IFF b4 of postbyte set, then:

CCR’

DPR’
IXH
XL

ACCA’
ACCB’ «

, US + US+1
, US + US+1
, US + US+1
, US + US+1
, US + US+1
, US + US+1

Addressing Mode: Immediate.

with condition codes set by doing an autoincrement load
from the stack (example: LDX, U + +)

IYH
YL
SPH’
SPL

IFF b5 of postbyte set, then: «—(US), US'+ US+1

«—(US), US’'+ US+1

IFF b6 of postbyte set, then: «—(US), US'+ US+1

«—(US), US’'+ US+1

PCH «(US), US'+ US+1

PCL «(US),US + US+1

Condition Codes: May be pulled from stack; not affected
otherwise.

Description: All, some, or none of the processor registers

are pulled from the user stack Cwith the exception of the user]

stack pointer itselfl.

IFF b7 of postbyte set, then:

Comments: A single register may be pulled from the stack

Rotate Left

Source Forms: ROL Q; ROLA; ROLB
|

N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

_ ' V — Loaded with the result of the exclusive OR of bits
Operation: L‘ T T T T T 177 | six and seven of the original operand.
- C — Loaded with bit seven of the original operand.
Condition Co desk-ﬂ - bo Description: Rotates a!l bitg of the op.erand.one place left
H — Not affe(;te d through the C Ccarryl bit. This is a 9-bit rotation.
’ Addressing Mode: Inherent; Extended; Direct; Indexed.
ROtate nght N — Set if the result is negative; cleared otherwise.
Source Forms: ROA Q; RORA; RORB Z — Set if the result is zero; cleared otherwise.
P V — Not affected.

Operation:

Llllllclﬁ

b7
Condition Codes:
H — Not affected.

—

b0

C — Loaded with bit zero of the previous operand.
Description: Rotates all bits of the operand one place right
through the C (carry) bit. This is a 9-bit rotation.
Addressing Modes: Inherent; Extended; Direct; Indexed.

FLULS

FULL

HUL

SIS

119

L / 6809 MNEMONICS

HTL

T

ot e I

SEH

=L
i =

Return from Interrupt

Source Form: RTI
Operation: CCR'’ « (SP), SP’— SP+ 1, then

IFF CCR bit E is set, then: ACCA’ «(SP), SP’ « SP+ 1
ACCB’ «(SP), SP’— SP+ 1
DPR «(SP), SP’— SP+1
IXH «(SP), SP’— SP+ 1
IXL «(SP), SP’— SP+1
IYH «(SP), SP’— SP+1
YU «(SP), SP’— SP+1
USH «(SP), SP’— SP+1
USL «(SP), SP’« SP+1

PCH
PCL

«—(SP), SP’ — SP+ 1
«—(SP), SP’ — SP+ 1
IFF CCR bit E is clear. then: PCH «(SP), SP’ «— SP+1
PCL «—(SP), SP’— SP+1
Condition Codes: Recovered from the stack.
Description: The saved machine state is recovered from the
hardware stack and control is returned to the interrupted
program. If the recovered E (entire) bit is clear, it indicates
that only a subset of the machine state was saved (return
address and condition codes) and only that subset is
recovered.
Addressing Mode: Inherent.

Return from Subroutine

Source Form: RTS

Operation:
PCH’ < (SP), SP’ « SP+ 1
PCL « (SP), SP’ < SP+1

Condition Codes: Not affected.

Description: Program control is returned from the
subroutine to the calling program. The return address
is pulled from the stack.

Addressing Mode: Inherent.

Subtract with Borrow

Source Forms: SBCA P; SBCB P

Operation: R — R-R-M-C

Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if an overflow is generated; cleared otherwise.

C — Set if a borrow is generated; cleared otherwise.
Description: Subtracts the contents of memory location M
and the borrow (in the C (carry) bit) from the contents of the
designated 8-bit register, and places the result in that
register. The C bit represents a borrow and is set to the
inverse of the resulting binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

Sign Extended

Source Form: SEX
Operation:
If bit seven of ACCB is set then ACCA’ — FF g
else ACCA’ — 001 6
Condition Codes:
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero. cleared otherwise.

V — Not affected.

C — Not affected.
Description: This instruction transforms a twos complement
8-bit value in accumulator B into a twos complement 16-bit
value in the D accumulator.
Addressing Mode: Inherent.

Store Register into Memory

Source Forms: STA P;STB P
Operation: M’ — R
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Writes the contents of an 8-bit register into a
memory location.
Addressing Modes: Extended; Direct; Indexed.

Store Register into Memory

Source Forms: STD P; STX P; STY P;STS P; STUP
Operation: M:M+ 1« R
Condition Codes:

H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Always cleared.

C — Not affected.
Description: Writes the contents of a 16-bit register into two
consecutive memory locations.
Addressing Modes: Extended; Direct; Indexed.

Subtract Memory from Register

Source Forms: SUSA P; SUBS P
Operation:R—R-M
Condition Codes:
H — Undefined.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.

V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.
Description: Subtracts the value in memory location M from
the contents of a designated 8-bit register. The C (carry) bit
represents a borrow and is set to the inverse of the resulting
binary carry.
Addressing Modes: Immediate; Extended; Direct; Indexed.

120

EJIASM

Subtract Memory from Register
Source Forms: SUBD P
Operation: R < R - M:M + 1
Condition Codes
H — Not affected.

N — Set if the result is negative; cleared otherwise.

Z — Set if the result is zero; cleared otherwise.

V — Set if the overflow is generated; cleared otherwise.
C — Set if a borrow is generated; cleared otherwise.
Description: Subtracts the value in memory location
M: M + 1 from the contents of a designated 16-bit register.
The C (carry) bit represents a borrow and is set to the
inverse of the resulting binary carry.
Addressing Modes: Immediate: Extended; Direct: Indexed.

Software Interrupt

Source Form: SWI

Operation:
Set E (entire state will be saved)
SP’« SP -1, (SP) — PCL
SP’« SP -1, (SP) — PCH
SP’« SP -1, (SP) — USL
SP’« SP -1, (SP) — USH
SP’« SP -1, (SP) — IYL
SP’« SP -1, (SP) « IYH
SP’« SP -1, (SP) — IXL
SP «— SP -1, (SP) « ‘IXH

— = — = — —

SP — SP -1, (SP) — DPR

SP — SP -1, (SP) — ACCB

SP «— SP -1, (SP) — ACCA

SP «— SP -1, (SP) — CCR

Set |, F (mask interrupts)

PC’ — (FFFA):(FFFB)
Condition Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt vector. Both the normal and fast interrupts are
masked (disabled).
Addressing Mode: Inherent.

Software Interrupt 2

Source Form: SWI2
Operation:
Set E (entire state saved)
SP <SP -1, (SP) +— PCL

SP «SP-1, (SP) «— PCH
SP «SP -1, (SP) « USL
SP «SP-1, (SP) «— USH
SP«SP-1,(SP) « IYL
SP «SP-1, (SP) « IYH
SP «SP-1, (SP) « IXL
SP <SP -1, (SP) « IXH

SP «SP -1,
SP «—SP -1,

SP) < DPR
SP) < ACCB

SP «—SP -1, (SP) — ACCA

SP <SP -1, (SP) — CCR

PC’ «(FFF4):(FFF5)
Condition Codes: Not affected.
Description: All of the processor registers are pushed onto
the hardware stack (with the exception of the hardware stack
pointer itself), and control is transferred through the software
interrupt 2 vector. This interrupt is available to the end user
and must not be used in packaged software. This interrupt
does not mask (disable) the normal and fast interrupts.
Addressing Mode: Inherent.

o~~~ —

Software Interrupt 3

Source Form: SWI3

Operation:
Set E (entire state will be saved)
SP <SP -1, (SP) — PCL

SP <SP -1, (SP) « PCH
SP <SP -1, (SP) «— USL
SP «SP-1, (SP) «— USH
SP«<SP-1,(SP) — IYL
SP «<SP-1, (SP) « IYH
SP «SP-1, (SP) « IXL
SP <SP -1, (SP) « IXH

SP <SP -1, (SP) — DPR
SP <SP -1, (SP) — ACCB
SP <SP -1, (SP) — ACCA
SP <SP -1, (SP) — CCR
PC — (FFF2) (FFF3)

Condition Codes: Not affected.

Description: All of the processor registers are pushed onto

the hardware stack (with the exception of the hardware stack

pointer itself), and control is transferred through the software

interrupt 3 vector. This interrupt does not mask (disable) the

normal and fast interrupts.

Addressing Mode: Inherent

=
A Ry = R

L

A

Rt [

121

L / 6809 MNEMONICS

S

T=T

FIFD

Synchronize to External Event

Source Form: SYNC

Operation: Stop processing instructions.

Condition Codes: Not affected.

Description: When a SYNC instruction is executed, the
processor enters a synchronizing state, stops processing
instructions, and waits for an interrupt. When an interrupt
occurs, the synchronizing state is cleared and processing
continues. If the interrupt is enabled, and it last three cycles
or more, the processor will perform the interrupt routine. If
the interrupt is masked or is shorter than three cycles, the
processor simply continues to the next instruction. While in
the synchronizing state, the address and data buses are in
the high-impedance state.

This instruction provides software synchronization with a
hardware process. Consider the following example for high-
peed acquisition of data:

FAST SYNC WAIT FOR DATA
Interrupt!
LDA DISC DATA FROM DISC AND
CLEAR INTERRUPT
STA X+ PUT IN BUFFER
DECB COUNT IT, DONE?
BNE FAST GO AGAIN IF NOT.

The synchronizing state is cleared by any interrupt. Of
course, enabled interrupts at this point may destroy the data
transfer and, as such, should represent only emergency
conditions.

The same connection used for interrupt-driven 1/O service
may also be used for high-speed data transfers by setting
the interrupt mask and using the SYNC instruction as the
above example demonstrates.

Addressing Mode: Inherent.

Transfer Register to Register

Source Form: TFR RI, R2
Operation: R1 — R2
Condition Code: Not affected unless R2 is the condition
code register.
Description: Transfers data between two designated
registers. Bits 7-4 of the postbyte define the source register,
while bits 3-0 define the destination register, as follows:
0000= AB 1000 =A
0001 = X 1001 =B

0010=Y 1010 =CCR
0011 = US 1011 =DPR
0100= SP 1100 = Undefined
0101 = PC 1101 = Undefined

0110 = Undefined 1110 = Undefined

0111 = Undefined 1111 = Undefined
Only like size registers may be transferred. (8-bit to 8-bit,
or 16-bit to 16-bit.)
Addressing Mode: Immediate.

Test

Source Forms: TST Q; TSTA; TSTB
Operation: TEMP «— M -0
Condition Codes:
H — Not affected.
N — Set if the result is negative; cleared otherwise.
Z — Set if the result is zero; cleared otherwise.
V — Always cleared.
C — Not affected.

Description: Set the N (negative) and Z (zero) bits according
to the contents of memory location M, and clear the V
(overflow) bit. The TST instruction provides only minimum
information when testing unsigned values; since no unsigned
value is less than zero, BLO and BLS have no utility. While
BHI could be used alter TST, it provides exactly the same
control as BNE, which is preferred. The signed branches are
available.

Addressing Modes: Inherent; Extended; Direct; Indexed.
Comments: The MC6800 processor clears the C (carry) bit.

Fast Interrupt Request
(Hardware Interrupt)

Operation:
IFF F bit clear, then: SP’« SP- 1, (SP) «— PCL
SP’— SP-1, (SP) «— PCH
Clear E (subset state is saved)
SP’— SP-1, (SP) — CCR
Set F, | (mask further interrupts)
PC’ — (FFF6):(FFF7)
Condition Codes: Not affected.
Description: A FIRQ Cfast interrupt request) with the F (fast
interrupt request mask) bit clear causes this interrupt
sequence to occur at the end of the current instruction. The
program counter and condition code register are pushed

onto the hardware stack. Program control is transferred
through the fast interrupt request vector. An RTI (return from
interrupt) instruction returns the processor to the original
task. It is possible to enter the fast interrupt request routine
with the entire machine state saved if the fast interrupt
request occurs alter a clear and wait for interrupt instruction.
A normal interrupt request has lower priority than the fast
interrupt request and is prevented from interrupting the

fast interrupt request routine by automatic setting of the

| (interrupt request mask) bit. This mask bit could then be
reset during the interrupt routine if priority was not desired.
The fast interrupt request allows operations on memory, TST,
INC, DEC, etc. instructions without the overhead of saving
the entire machine state on the stack.

Addressing Mode: Inherent.

122

EJIASM

Interrupt Request
(Hardware Interrupt)

Operation:

IFF | bit clear, then: SP’— SP-1, (SP) «— PCL

)
SP’ — SP-1, (SP) « PCH
SP’ — SP-1, (SP) « USL
SP’ — SP-1, (SP) « USH
SP’ SP-1, (SP) « IYL
SP’ — SP-1, (SP) < IYH
SP’ SP-1, (SP) « IXL
SP’ SP-1, (SP) «— IXH
SP’« SP-1, (SP) — DPR
SP’ — SP-1, (SP) «— ACCB
P)

SP’— SP-1, (SP) — ACCA

Set E Centire state saved) IRQ

SP’ — SP-1, (SP) — (CCR

Set | (mask further IRQ interrupts)

PC’ < (FFF8):(FFF9)
Condition Codes: Not affected.
Description: If the | (interrupt request mask) bit is clear, a
low level on the IRQ input causes this interrupt sequence to
occur at the end of the current instruction. Control is
returned to the interrupted program using a RTI (return from
interrupt) instruction. A FIRQ fast interrupt requestl may
interrupt a normal IRQ (interupt request) routine and be
recognized anytime after the interrupt vector is taken.
Addressing Mode: Inherent.

Non-Maskable Interrupt
(Hardware Interrupt)

Operation:

SP’« SP-1, (SP) < PCL
SP’« SP-1, (SP) < PCH
SP’« SP-1, (SP) « USL
SP’« SP-1, (SP) « USH

SP’ — SP-1, (SP) —
SP’ — SP-1, (SP) —

IYL
IYH

SP’ — SP-1, (SP) < IXL
SP’ — SP-1, (SP) «— IXH
SP’ — SP-1, (SP) — DPR
SP’ — SP-1, (SP) — ACCB
SP’ — SP-1, (SP) — ACCA
Set E (entire state save)
SP’ — SP-1, (SP) — CCR

Set |, F (mask interrupts)

PC’ — (FFFC):(FFFD)
Condition Codes: Not affected. o
Description: A negative edge on the NMI (non-maskable
interrupt) input causes all of the processor’s registers
(except the hardware stack pointer) to be pushed onto the
hardware stack. starting at the end of the current instruction.
Program control is transferred through the NMI vector.
Successive negative edges on the NMI input will cause
successive NMI operations. Non-maskable interrupt
operation can be internally blocked by a RESET operation
and any non-maskable interrupt that occurs will be latched. If
this happens, the non-maskable interrupt operation will occur
after the first load into the stack pointer CLOS; TFR r,s; EXG
r,s; etc.| after RESET.
Addressing Mode: Inherent.

Restart (Hardware Interrupt)

Operation:

CCR’ « X1X1XXXX

DPR’ 0015

PC’ — (FFFE):(FFFF)

Condition Codes: Not affected.

Description: The processor is initialized (required after
power-on) to start program execution. The starting address
is fetched from the restart vector.

Addressing Mode: Extended; Indirect.

TR

ML

RESTHRT

123

EJIASM

ig ¢
4
1 .
da ¢
=1
TE o
Q@
1aa
iia
1z@
1z@
i4a
1@
1@
i7a@
iza
R=1"
el
2ia
22a
238
4@
2ba
laaa
laia
laza
1aza
lada
laLa
laoa
1@a7a
laoa
laag
1iga
iiia
1iza
1iza

CLERR Z@8,1is127
FCLERR B

DEF

resaryve B opages of graphics memory
UeRa=18128 ‘'define the subroutine stariting address
PoThe disk driwve uses pages B oand 1 oof wideo memordg,
Yo muEt start at page 2, h 12@a,
lect Ho starting at page I

FHODE 2,2 i
FCLS :
SOREEM 1,8 i
COLOR 3,1 o
Fe=s !
Yodrawm s Fram

Reference M/
Sample Programs

Example 1

iz is an exanplse of &

= = I program tha
an azzembly langusage pro

B =)
gram Do paint the sor

l_u 57

After entering the BASIC program save it on disk,
Fum D02 and enter the assembly languags program,
e the WO and AD sssenbler commands Lo write the
sourcs programn o disk oand to assemble it

er returning to BASIC, losd the ssssmbled
progran into menorg with the LOADM command, You
 load the asssembled program before the BASIC

iz progran demonstrates how omoch Faster

BAE statemnant. After dgou run the program onos,
deletve lines 18326, 1848, 1858, and 1128. Insert
this statemsant

1128 PARAIHT {1,1:,2
ard =ee how much longer it takes BRASIC to paint

the entire soreen gyellow.
addraess BHEIC can us

lamguage subroutins,

1

- T
i
T
T
i

i
oo
fn}

zoreen, color et @
ound color to blus

L]

w77

w7
m o B £ I 1

o

-

i1

i

ot
1
o
ih
iy

i

i
i
ot
~ty
b
-1

Fods

f[‘

ambly programn can perform s Funotion than a

e i
CoFrom uEing the menory that contains

Eemblg lamguage subroutines

125

M / SAMPLE PROGRAMS

EJIASM

1iua
11k@
11ga
117@
1iga
ii9n
12608
121@
1228

2EE
12ua
1288
1268
127@
12a8
1z29n
1368
131@
1az@
1333
1aua
13Ea
13E8
137@
13sR
1398
1H@H@
i@
14z
14za

1Hu@
1HER
1HER
147a@
14aa
idan
1L
1n1@
1628
15328
1Lu@
1LE@
1LER
1L7@
1LE
1E93
1ERA
1E1a
1EZA
1Eza
1EWA
1ERA

LIME {@,@:={28,191:,FSET,B
LIME {12,128 {23H2,178%, P'ET E
FHIMT {2,283,4,3
FOR #=5@ Té 28 STER 28 odraw top circles
Y=3Rr5T=. 5 EMN=2 ! of big oloud
GOSUE Sagd
Y=hfis ZT=0:EMN=.k
GOSUE S@@@: HEST = !
FH' A=led TD 188 STER 28
=3 5T=, 5 EM=0@ odraw top circles
EDCUE LRag ! of little cloud
Y=ERr S T=0sEM=, & odraw bottom circles
EDCUE ERR@: MEST = ! of little cloud
=11@s5T=, 2t EN=, Tk
EDCUE LRZa
A=lB@: GOSUE LA2@
A=l ET=.ThiEM=. 2k
SUE RBZE
A=l0@: GOSUE @2 @
FHIMT (B2, 38 3
PQIHT ’IF

tdraw bottom circles
l_l'l" tlla l_ll..”._llj

YFA1l the clouds in with

odraw the umbrells

odraw the spokes of the
,u:EDfUE EEH@ ! umbralls

=i odraw the scalloped edges
T 184 STER 22 ! on the umbrells
Y=12We GOSUE LOGE

odpaw umbrells handle

OFEE “Eﬁizisl“@ OUB s REs D2 RE s D2 R U R U R U3y
2elEe L2 D@ L2 DEs L3 U L3 U L3y Uiy

FRIMT {122, ;;' A Paint umbrellas handle
FHIMT {124,181, 3
FHIMT {128,183, 3

C=8 tget highest color nullber
FOR #=88 TO 188 STEP 24 '"Paint umbrells Panels
FHIMT {#,12 @'_ I
C=C-1:MEXT ¥

"PFlay the sorng "Raindrops Keep Falling On My Head!
GOSUER co@d: PLAY LE

GOSUR S9@@: FLAY LE

FLAY ME:PLAY EF:PLAY HE

FLAY GE:PLAY Ef:PLAY 2%

FLAY PE:PLAY OF:PLAY EF

FLAY RE:PLAY SH:PLAY RE

FLAY TE:PLAY PE:PLAY ES

FLAY Uf:COSUR @S0aa

FLAY WE:PLAY EF:PLAY Ef

FLAY WE:PLAY =%

"Resp tThe image on the screen until & key is press
ZF=IHKEYS

IF ZF="" THEM 18320

EMD

IT‘

'+111 in the frame with red

oraw left sides of oclouds

odraw right osides of clouds

126

EJIASM

S@@a
E@ia
@2
L@z
S@ya
LSRG
L@sa
SaTa
ER@EG
E@ia
EREa
E@Ea
E@UG
EREG
E@Sa
E@T@
E@Sa
E@Sd
E1@a
E11d
E128
E13a
E14a3
E1Ea
E18a
E1Ta
E18d
E1od
E2@G
E21d
E22
E23a
SE@EG
SEia
S@2a
S@Ea
SEUHa
SRLG

p@piaa
paiia
paiEa
p@iEa
pEiya
paiLa
paica
paiTe
paica
BEion
RRZaa
papzia
RR2Ea

CIRCLE {¥,¥},13,3,.45,5T,EH
RETURH
CIRCLE {%,¥},16,3,.75,5T,EH
RETURH
CIRCLE ¢124,124%,FR,3,H,.5,0
RETURH

These lines define the notes of
Af= @z LUmLe. A LIBALE. B~ L1

BEf= “PU:PQ PU:PIF”

D= “@:7L1t7L5@4_LHE;LS.;D;LIEC;LS,;D;L

DfF= "@a;LIi6M; LURB- G F U Ey PUY

E$= npun

Fd= "@UsLe, D L1803 Le, s LIBE @ LY,

GE= vpgv

M= vadg Ly, Do

Pd= "R LUC LS. 30 @3 LIGBALE, s B

Th= "@usLIgC@3Le. B L1sa"

Bf= U@L LU, gy PUY

L= "@3;LYFyFyGY

Mf= "@zsL2;A"

Mf= "@uLa, 0@z LG

0= “@‘“L!,SH.LHE—fLHH;LHD“

Ffi= VRZsLE. s FsLUAs LY. g GV

OF= "@Z; LU Le,. B~ Ol QU0 LUCY

Fg= YPogpig?

SE= YEIiLisfz@dLal LYo Loy

Té= "@IsLI1GM; AU LeE LUDy L2

U= “P2yp1

W= YEZiLHFiFiGiLE. Y

WE= "@zsLe,. sFsLIBF U Le, s D 1B @3 LYF

AE= VAZ LSRG LUFs L. g FY

FLAY A%:FLAY BR:FLAY CF

FLAY df:FLAY Ef:FLAY F§

FLAY GE:PLAY HE:FLAY GF

FLAY If:FPLAY T%

FLAY If:FPLAY E$

FETURH

M oor EDTHSMOY to enter this
Frnqram on disk with WD oo
zaemblse the Prnqram with HDO o
the 2R switoch because this
led from BRSIC, not ssecutse

oy
i
in
Ll
]
o W |
It I

LTI T I]

o
m i

-

the LOADM command to load the as
into MEmory before You load th
The ORG statement tells BRSIC
to losd the program.

"
Hy

CiFG FEFR

1ECyLE, o

EH

QUroora. Sawve
mmard and
cmmand. Do not

programn LE
o From DOS.

EEublHd LUdH
& BASIC Program.
whsra in mEmory

127

M / SAMPLE PROGRAMS

BAZEZE % Put the hex code for s ys
pRzuda % register A oand the
BRZEG W& of wideo memory (12
ppZed % The first buyte of
pRzTe % becadse the dishk dr
BAZoE ® address

fppZog %

fpZon %

BAZHR START LA #EEE

apzia LD #E170m

pREze %

BAZZE % Store The gyellow dot st ©
LT Y address and inocrams
ARG % menory address.

k)

et
B@ETa
Rp@zaa
e]
Rapyaa
papyia
REYEa
RapyEa

iEHEEH =TH
CHPE
BHE
RFT=

s M+
HBEEFFF
SOREEN

3
DoME Equ

EMD =

2@ After entering the BRASIC pro
el

i Y Fun DO0S and enter the aszsemb
1 the WD and AD aszsembler
=37 souros program to disk

Tao
BT
Qi
iag
i@
12@ ¢
iz@
i@ o

Fraer returning to BASIC, o
L oeg e Sm imto mEmory Wit
must load the asszsefbled

o B

addraess
From WEL

SZpecify the highest
Frevents BAST

=Y your assenbly Languages
1E® CLEAR 286, 18127

178 DEF USRE=18128 =
1@ CLE =
198 ' Print & prompitilng messags s
@@ THPUT YPress [EMTER] when res
218 A=USR{@: =
228 'Print snother prompting mess
233 THRPUT Y"Wamt to do it sgain''s
2HE VIF operator Dypes des, sSDarh
2R IF Af="vESY THEM 28 ELSE EHD

1Tlow Foimnt {5EHY in
address of the first bybe
By dn register .

video memnory is 1208 hex
iwe WUESS menord up o that
he current wideo memory

nt oW o the next video

it the end of wideso mﬁmﬁrq?
Mo, ocontinus o store dots
yes, =it subprogram anod
urn o BHSIC

gram =ave 1t on disk.

1y language program. Use
commands o write the
ard o azsemble it

ad the aszsembled

Foohe LOADH colbmand. gou

progran before the BRASIC

BRASIC cam usse. This

mg the memory That contains
subroutins,

efine address of subroutins
lear the =oresn

md walt For & responsse.
dg“, Q$

a1l subroutins

age and walt for & response
a%

over, Oioherwizs end

128

EJIASM

Uze EDTASH or EDTASHMOY to enter this program, Save
the program on o disk with WD command and
azsaemnble the program with AD command. Do onot
uEe the SR switch because this program 1=
called from BRASIC, not sxecuted from DDE+

whe LOADM command fo load the as
imto menory before gou losad th

e

n
i

mbrled ocode
BRsIC

2 BASTO program.
The ORG statement tells BASIC where in memory
o load the program.
ORG $3F0@

Fut the hex code for a red

0o W G E
-1

THRT LA #FarFs
Lo #Euan

ot
1
or
ih

Ztore the red checkerbozard a current wideo
manory address and dnorement B oto the nest
wideo memory address.

01w W G w

CREEM 5TH g Tz it the end of video memory?
CHFE #fc0@ IFf mo, continuge o store red
EMHE SCREEHN checkerboards

IFf yes, s=it subprogram and
RTS and return Do BRASIC

padza DOMNE EOu
BAYHEG EHD

0y

129

SECTION VI

PROGRAM LISTING

1 / USING PSEUDO OPS Emm

EJIASM

SECTION VI

PROGRAM LISTING

This section provides a complete source list-
ing of the DOS program.

131

EJIASM

0
I
5

FHRGE @@z Qoo

pREzn ppiiz
paeya apiiz
RERD apiid
pRaEEln 2@11s
pRETH BRLlE
paeza apLiy
pREDn aplis
paToa apiia
2aTie ppize
rdrargedr
v rpetv}
aTua
BATER
QaTER
aaTT?
QaTae
BATHG
udrt=drind
azla
ulri=hedn
rdriedetn)
ului=ar
==t
rdrdatatn
a@ETa
pazag
rdriedetn]
rdrag=lrdn

H-:I{(Z-(-:Z+:2+:Z+2:+:2+Z:+2:+22+Z:+::§C1‘1]-2:1!-::-((1‘4-:1{'::-(-2:1-:2+:Z+2:+:2+Z:+2:+221]-::+::kii]-::{-:tkﬂ-:1+:Z+2Z+:2+:Z+2:+:2+Z:+2

T HETRUODODTIOMNS F R s E

H-:1{(:-(-2:1-:2+:Z+2:+:2+Z:+2:\E:llilll(:kii]-::{-:tk1‘1-:1{(:-(-2:1-:21]':3{-2: Z:+2:+22+::+::kii]-::{-:tki‘i-::&::-(-::{-::n](: :2+Z:+2

kS

*

D0 S0 R SR SR R R R R R R R R B A R R O O O O O O O O R R O S S o S S S S S R R R . R R S . R . R R B R B O O R O O O O O O R o o S o o o o o R 4

ERROR HUMEBERS AMD THEIR MEAMIMG

{THE EQUATES ARE USED S50 THART ERRORE CAM BE RESEARCHED USINHNG HREF LIEST:

DEFIMITIONS START WITH BREIC LIME HUMBER IM o

R0 R0 R R R R K S O S O S O A o o KRR
ERFR@ EOu 2EE MO ERRORS

ERR1 Equ 27 Io0 ERROR -~ DRIVE MOT RERDY

ERFRZ EOu t L0 ERROR ~ WRITE FPROTECTED

ERRZ EOU ST ERROR - WRITE FARULT

¥l

RIR R R SRR R R R R R
prninin]
Baal
e
rdnnic]
pnini
rdnni)
prninisy
rdnlning
prdninisd
prdninic]
prdnlnis]
rdrni=]
prninig
rdnning
BRRE
BREF
aaia
wall
Bale
waLE
aaiy
Bals
aale
waLT
aaia
wala
aaia
aale
Baic
wain
BRlE
BaLF

ERR4 EQU <01 ERROR - SEEK ERROR OR RECORD MOT FOUMD
ERRZ EQL

ST ERROR - CRC ERROR
ERRE EqU -
ERRT EQL

0 ERROR - LOST DATH
“0 ERROR - UMDEFIMED BIT 1

ERRZ EQU 264 L°0 ERROR - UMDEFIMED EIT @
ERRI EQU 5 REGISTER ARGUMENT IMVALID
ERR1D EQU : FILE'S DIRECTORY EMTRY MOT FOUMD
ERR11 EOU DIRECTORY IS FULL
ERR1Z EQU : FILE WAS CREATED BY "OFEM" FUMCTION
ERR1Z EOU FILE MOT CLOSED AFTER CHAMGES
ERR14 EQU ATTEMPTING TO RCCESS AM UMOFEMED FILE
ERRIE EQU ATTEMPT TO READ - READ FROTECTED
ERR1E EQU © REA OWERFLOW {EXCEEDS 3 BYTES - 16,777,216}
ERRLIT EOU : ACCESS BEYOMD EOF - EXTEMSION MOT ALLOWED
ERR1E EQU FAT REWRITE ERROR
ERR1Z EOU . ATTEMPT TO CLOSE UNMOPEMED FILE
EqU : CAM'T ACCESS RAMDOMLY - REC SIZE IS ZERO
EQU " ATTEMPT TO WRITE - WRITE PROTECTED
EqU : CAM'T EXTEMD FILE - DISK CAPACITY EWCEEDED
EqU ERROR WHILE LOADIMG OVERLAY - FUMCTION HOT PERFORMED
EqU IMSUFFICIEMT PRIMT SPACE ALLOCATED
EQL I-0 ERROR DURING B LIME RERD
EqU FROGRAM'S LOAD ADDRESS IS TOO LOW
EqU : FIRST BYTE OF PROGRAM FILE MOT EQUAL TO ZERO
EqU SPACE FOR BUFFERED KED MOT BIG EMOUGH
EQU . MOT EMOUGH MEMORY

EqU : OUTPUT FILE ALREADY EXISTS
ERRZ1 EQU WROMG DISKETTE
E 3
gk

OISE

aaze
rdrid=detn]

LA IS B N o O = T O i)

aazg
a@ang
Q1apa
aimie
iaze
et}
aiaua
it
lasa
aiaTa
iaza
Blgng
a1iga
rppedrilv}
aiize
aiize
fiivg
Biisa
aiiga
aiive
aiige
Bl
D1z0a

B T T o T T T T T ¢ T ¢ e 1 e 1 e B R T o B T o T T T ¢ T ¢ T ¢ e 1 e W o B B o B B o e e o B

IR T R SR TR R R SR TR R B B R R R ok B R R o RO R R Rk R R 0t
» FORMAT

SRRl

EJIASM

FRGE @84 DOC

i
@138

iupa
iyl
piuze
aiyza
aiuua
iyea
iuea
aiyTa
fiuza
Biyog
1s0a

alal

aal
aaiaz
lrpR=Es
il Rl
paioe
paLaT

T
=

aaagn
rdrinis
aaaE
paac
aaan

B o T T e o e e §

DOS - IMSTRUCTIONMES

RO R T R O R T R o o R R R o o R O o T o o O o R o o K
#
* BYTES COMTEMTS
THESE ITEMS ARE A COPY OF DISKE DIRECTORY EMTRY
-7 FILEMAME
S-10 FILE E=TEMSTION
11 Fa=BEREIC PGH, I=BRASIC DATH, 2=MACHIME LAMG. FGH,3=TEXT ED. SOURCE:
12 ASCIT FLAG {@=BIMARY, FF = ASCII FILE:
13 MUMEER OF FIRST CLUSTER IM FILE
14-15 MUMBER OF BYTES IM USE IM LAST SECTOR OF FILE
THESE ITEMS WERE ADDED, ME LAST 16 BYTES OF DIRECTORY EMTRY
1E CURREMT FILE STHTUS
BIT @ OM ALLOWE READS
BIT 1 O ALLOWS WRITES
EIT Of ALLOWES FILE CREATE IF MOM-EXISTAMT
EIT Of ALLOWS FILE EXTEMSION BEYOHD EOF OM RACCESS ATTEMFTES
EIT oM MEAME WORE FILE - DELETE FILE WHEH CL o
EIT Of FREVEMTS REWRITE OF FAT EVERY TIME A SECTOR IS ADDED TO
THE FILE. {MIMOR FOWER FRAILURE IHCOMEISTAMCY COULD RESULT:
BEIT & OM MEAMS I.0 BUFFER IS SHARED. EACH LOGICAL I-0 REQUIRES
A PHYSICAL I.0
BEIT 7 RESERVED FOR FUTURE OFTIOM{LIKE RELERSE SPRACE WHEM FILE SHORTEMED:
fALL BITS OFF = FILE CLOSED:
17-18 LOGICAL RECORD SIZE CRS OF LAST TIME FILE WAS CLOSED:
ZERD MEAME VARIABLE LEMGTH WITH RECORDE TERMIMATED BY THE
DELIMITER STORED BELOW.
$FFFF MEAMS VARIABLE LEMGTH WITH FIRST TWO BYTES OF RECORD
COMTARIMIMG SIZE OF THE REST OF THE RECORD.
ALL OTHER VALUES MEAM FIKED LEMGTH OF SPECIFIED SIZE.
ia VARTIABLE LEMGTH RECORD TERMIMATOR
2@B-31 AT PRESEMT, UHUSED FPART OF DIRECTORY EHMTRY - USE WITH CRAUTION.

-]

ITEMS ARE USED FOR FHYSICAL I-0 PARAMETERS
LAST I.0 OFCD

LAST I.0 DRIVE

LAST TRACK

LAST SECTOR

27 LAST BUFFER FOIMTER

LAST O RESULT CODE

THESE ITEME ARE FOR LOGICAL USE

38-4@d LOGICAL RECORD BUFFER JCAM BE SAME AS DCEBEUF IF DCEBRSZ=Z2EE

i-42 LAST L-0 PHYSICAL RECORD HUMBER ({EFORE XLATE IMTO SECTOR WITHIHN
GRAMULE:. THIS IZ THE RECORD CURRENTLY IM THE EBUFFER.

Uz2-U4E CURKREMT RELATIVE BYTE RADDRESS (RERY OF FILE DATR FOINTER

Ue-U7 CURREMT LOGICAL RECORD MUMEER

e MODIFIED DATA TRAG - SET HOM-ZERD WHEM BUFFER COMTEMTS CHAMGED

¢ EQUATES FOLLOW FOR MERMIMGFUL SOURCE CODE WHEM RCCESSING DCB
IE: STD DCELRM, U SAVE MEW LOGICAL RECORD HUMBER
{BETTER THAM STD d&,0 3
DCEFMM EOQU il FILE HMAME
DCRFES EOU o FILE MAME EXTEMESION
DCEFTY EOU 11 FILE TYFE
> EOU 12 SCIT CODE
EQU 13 2T CLUSTER MUMEER

DOBASC

EJIASM

FRGE @@L DOC

wiTHg
Blsng

izea
BlaTe
fizag
aiang

T

Rapa
21s2
R2BA
AARE
[alJns
AR
Rage
aaTe
aThn
2aTE
i
21ER
21i1iA

T e T e e S e e S o e v o e e i e)

s e e e e o e e o i

s e e e B e o B e

Iv I

T

Oos - IMETRUCTIONE
DoBHLE
o
OCEREZ
DCETRH
DCEMRE
DCBUSH
DCROFD
DCeDRY EQU
DCBETRE EQU
oo s EQU
DCERBUF EQU
DCEOE EQU
DCBLRE EQU el

DCERPRH EQU 41

DCBEREA EQU b

DCBELRH EQU Ui

DCEMDT EOU L]

nDoesz EQU OCEMDT+1
*

EqQU 14
EqL 16
EqQU 17
Eri :
ECiU
Eri
ECiU

MUMBER OF BEYTES USED

CURREMT FILE STATUS

RECORD SIZE

VAR LEM RECORD

MAx RER

UZER ARER

OFERATION CODE

DRIVE

TRACEK

OR

ST BUFFER ADDRESE

<0 RESULT CODE

AL RECORD
YEICAL RECORD

CURREMT RELATIVE

MODIFIED DATH TRG
SIZE OF DCE

f R R R BT R R O R R R K R o R o R o R o R
IM ROM OFERATIMG
B R O T O R o o R R o

EQUATES TO SUPPORT ROUTIHES
B L o o o
FOLCAT EqQU
ROLTHEE EQU
JOYIM EqQU
BLEIN EQU
CERDON EQU
WRTLOR EQU
BLEOUT EOU
BLETYF EQU
BLELEHM EQU
CEUFAD EOU
IRO EOU
FPOTS Efu
FLPHLE EQU
*
3 SRR
EQUATE

S

LUAck
LILADR
udann
UYECR
LUEDR
UYERD
LsAck
LBADR
Uaanh
UaRCR
UaRDR
(R =inin]
E 3
MISC
EMABLE

AT
15z
FRBRA
Eg=lrlni
FRBAY
FrRaac
frRaas
5T
70
FTE
pic
18R
$11A

KED ROLLOVER TRELE

JOYETICK
KBD RTH'S

FOT VALUES
ALPHA LOCK

OMTROL REG
DATA REG
DATA DIRECTION REG

=l
=l
=l
=l
=l
=l
=l
=l
=l
=l
EqU
=l

fFF22
FFF@L
FFFo@
FFF@m
tFF3
FFFaz
§FFoz

AODITIONAL EQUATES
EQOU palialal
DEABLE EOU Ma@llalon

COLOR WALUES

BUFF EOU %0@@0a0an

CYAM EOQU SRlaladll

EBUFFER
MUMEER
EYTE RADDRESS
CURREMT LOGICAL RECORD

IM LAST SECTOR

TERMIMATOR

RAODRESE
IM BUFFER

MUMEBER

{CURREMTLY B0 BYTES:

SWITCH

EJIASM

FRGE @@s DOC

o
fin]
]

DOS - INSTRUCTIOMS

DAAA
QaFF
rlrgrde
=t
DARA
QaFF

MGHTE EQuU ldialala

ORAMGE EQU BiIL111111

GREEM EqQU eninlrgrininininl

YELLOW EQU plailaial

BLUE EOU Bldialela

RED EOuU BiIL111111

CODES RETURHED BY POLCAT FOR FUMCTIOM EEYS

LIF EQL $5E UFP ARROW

[RiATE] ECL $@a DOWM ARROW

RIGHT EOU 23 RIGHT ARROW

LEFT ECL $@8 LEFT ARROW

SUR EQL $5F SHIFT UFR ARROW

DOWM EQU $5B SHIFT DOWM ARROW

SRIGHT EOU $50 SHIFT RIGHT ARROW

SLEFT EOW %1% SHIFT LEFT ARROW

EREAE EOU 232 BREAK EEY

CLERR EOU 00 CLEAR EEY

SCLEAR EOU $50 SHIFTED CLEARR

EMTER EOU 80 EMTER KEY

HT EQL fua vEv KEY

SAT ECL 13 SHIFTED “@' KEY

*

o B SRR TR R R R R R R R R R B R R R R B R R o R R R R R R SR TR ok R R R R R

MmAECROD ARD LOGICAL EQURTEH:S

USRS 3 SR R R R SRR R R R R R R R R R R R R RO R Rk RO R Rk R R
MACR CARLL A

LOA #-1 OPTION

JsR [~@a] IHDIRECT FUMCTION ADDR
ZERG EMDN

BIZEER AA3LE #*

EQUATES USED WITH DOS MACRO

K3

THE FOLLOWING USED WITH “OPEMN

OFEM EOu FEam OFEM FUMCTION

CREATE EQU Y ALLOWS FILE CREATION OM OPEM IF HOT FOUMD

ESTEMD EQU ALLOWS ESTEMSION OF FILE TO POIMT OF ACCESS

IHFUT EQU USED TO STGHIFY THAT RERDS ARE ALLOWED

I EOu SHORTER FORM OF ABROVE

OuT EOU ALLOWES WRITES

QUTPUT EQU REATE+ESTEMD+OUT USUAL COMBIMATION FOR QUTPUT FILES

WORK EOU = CHUSES FILE TO BE FILLED WHEM CLOSED <WORK FILE:

aaila FRET EOU MIMIMIZES FAT REWRITES

rdrijed] SHARE EqQU USED WHEM & OR MORE FILES SHARE THE SAME L0 BUFFER

Baya # EXAMFLES:

;I D I I I

ASE
i gris)
apa
gty
QRAsF
=t
Qasn
s
anz
vy
=t
aan
Qada
[l p e

T D I D I D I D I D I D I I

] 1]
azRa

pEEZR

BEQG
rlrgnlay
rlrdniss
aanl
anl
e
rlrdnl=s

N o I R)

D DD DD D IDID I I

E4

D05 OFPEM IMFUT TO READ AN EXISTING FILE
D0E OFEM OUTPUT TO CREATE & EXTEMD AWM OUTPUT FILE

005 OFPEM IM+0UT TOOUPDATE AM EXISTING FILE «<MO EXTEMSIOMNS:
D05 OPEM IMFUT+OUTFUT+WORE TO CREATE, ESTEMD, READ & WRITE AMD EILL

*® WHEM CLOSED <A WORK FILE:

USHAREY CAM BE ADDED TO AMY OF THE ABOVE EXAMFLES IF & OR MORE FILES

WILL BE USIMG THE SAME I-0 BUFFER AT THE SAME TIME. THIS OPTIOM CAU

B OPHYSICAL I0 TO REFRESH THE BUFFER WITH EVERY LOGICAL I.0 OPERATION.
&

k3

&

#

kA

#

WITHOUT THIZ OPTIOML SEVERAL LOGICAL READS OR WRITES TO OR FROM THE

SAME PHYSICAL SECTOR CAM BE DOME WITH A SINGLE PHYSICAL I.0. "SHARE"
IMCREASES THE AMOUMT OF ACTUAL T.-0 ACTIVITY, BUT ALLOWS USE OF MANHY
FILESZ AT THE SAME TIME WITH MUCH LESS MEMORY RBEQUIREMENTS FOR BUFFERS.

USED WITH "CLOSE" FUMCTION

T

rii=tried
pralrgrlr

ri=inity
rl=tnlss
anl
ralrgrlr
rlrdulrg
e
rlrduiss

a1

QaRE

v gris)

T

Iv I I D I I I

T

DOS - INSTRUCTIOMS

CLOSE EQU Feaz CLOSE A FILE OPTIONS MOT USED

EQU @

005 CLOSE, IT TO CLOSE A FILE

USED WITH "READY AMD "WRITEY FUMCTIOMS

RERD Equ Feay RERD A RECORD

WRITE EQU Feas WRITE A RECORD

=] Equ 1 TO READ USING REL BYTE RDDR
RECORD EQU
REC Equ
UFDATE EQU
MO EOU

TO PREVENT ADVANCING REC MER OR RZA AFTER A READ
1 = EMSURE I-0 BUFFER IS WRITTEM TO DISK AFTER LOGICAL

Lo SN O o]

EXAMPLES:
00s READ, RECORD TO RAMDOMLY READ BY RECORD HUMBER
{FINED LEMGTH RECS OMLY
{USE THIS FOR MORMAL SEQUEMTIAL READ OF FIXED LEMGTH:
DOS RERD.REA TO READ THE RECORD POIMTED AT BY RSA
{REQUIRED IF USING VARIAEBLE LEMGTH RECORDS:
Dos REARD, UPDATE TO READ BY REC MHER WITHOUT ADVAMCIMG REC MER
00 READ,REA+UFDATE TO READ THE RECORD FOIMTED AT BY REA & MOT CHAMGE REA
Dos WRITE,REC WRITE WIA RECORD MUMBER <FIRED LEMGTH OMHLY:
0oz WRITE,REA WRITE FISED OR VWARIAEBLE RECORD
DOS WRITE,UPDATE UMLIKELY OFTIOM - WRITES RECORD BUT DOES MOT CHAMGE
RER OR REC MUMBER. COULD BE REWRITTEM AGAIN.
DOS WRITE, REA+MHOW SAME AS: DOS WRITE,REBA FOLLOWED BY DOS RELSE,IT

RELZE EQU fe22 USE TO RELERSE I-0 BUFFER WITHOUT CLOSIMG FILE

IF COMTENTS OF BUFFER HAVE BEEM CHAMGED, IT IS REWRITTEM. THEM DCEFRH
Iz SET TO $FFFF TO EMSURE A PHYSICAL I-0 BEFORE THE MEWT LOGICAL I.0.
USE THIZ FUNMCTION WHEM USER IS COMTROLLING A SHARED BUFFER.

ExAMPLE:

Doz RELSE, IT

&

&

¢ USED WITH OVERLAYABLE FUMCTIOMS
oo EQu FEBA USE TO LOAD IF HMECESSARY, THEM EXECUTE AM OVERLAY
GO EQU FEAC UsSE TO WFER COMTROL FROM OME OWERLAY TO AMOTHER IH

A LoAn EQU FERE USE TO LoAD A SYSTEM OVERLAY - IT IS LOADED AT THE

ERANMPLE:
 O0s Do MAER
*

THE FOLLOWIMG USED WITH U"LORD' AMD D0 FUMCTIONS
IHIT EQU 1 IMITIALIZATION OF DOs

ERANMPLE:

DoE D0 INIT ESIT PROGR
MOTE: STACK AND oLyYLoo

AM & RE-IMITIALIZE DOS
SHOULD EE RESET BEFORE USING THIS OVERLAY

MEMU EQU iy DISFLAY DOS MAIM MEMU
ExAMPLE:

LOE #S5TACK

LoD #0OURLAY WHERE OVERLAY AREAR SHOULD START
STO =0LYLOC

Dos 0oL MEMU

HMAF EQu i@ DISFLAY BRASIC LIMES
EXAMFLE:

LoD #2802 FIRST LIME HUMBER TO BE DISFLAYED
Loy #2283 LAST LIME TO BE DISPLAYED

EJIASM

EJIASM

FHRGE @@ Do

rdriyries
aunz
payay
aunL
rdriyri=s
aauaT
o padns
aauna
payia
padll
paYlz
au1z
payiy
auis
padie
aaulT
payla
oauila

T

v gries

vy

gl

Qapc

aan

naaF

g

11

oI

A ERROR

00S - IMSTRUCTIONS

LOU <CURSOR STARTIMG DISPLAY ADDRESS
{IF STARTIMG ADDR IS FERO, SCREEM WILL BE CLEARED FIRST AMD ROUTINE

WILL E®IT WITH U-»FIRST CHAR AFTER FIRST LEFT BRACKET ON SCREEM}

HE [O,%,U {PARAMETERS ARE PASSED IM THE STACK:

Do, BASHSG

FULS O,%,U MORMALIZE STACK

EME ERROR BRAMCH OM AMY FAILURE IF DESIRED

#
#
#
#
#
#
#
#

RUMIF EOU 2 EEYIM A MAME AMD RUM PGH
EWAMFLE:

0 DOE DO RUNIP

3
CRYFLE EOU 5

EWAMFLE:

DoE Do, CPYFLE {IF
3
FIELDT EOU 11
ERANPLE:

LOd DEST WHERE THE DATA GOES IN MEMORY

LOw FLOADR POINT TO FIELD OM SCREEH

0oE D0LFIELDT IMPUTE THE FIELD

B I RETURMED COMTAIMIMG LAST KEYSTROKE ENTERED

GET IWFO FROM USER & COPY A FILE

UEOT USED DOS MEMU FOLLOWS COPY FUMCTIOM:

INFUT A MAFFED FIELD

=

=EC EQU 1z

ExAMPLE:
{WHATEVER LOGIC TO FUT MAME IN DCE AT *USROCE®:
DOs GO, EXEC JUMP TO LORD & EXECUTE OVERLAY

GIVEM USRDCE COMTEMTS, LOAD ROOT & EXECUTE PROGRAN

wOE E T E E E E

=

REALTH EOU 13
#
BUFFRT EOU 15
ERANFLE:

kY LLOu #5IZE

CLOCK DISPLAY OVERLAY (SEE SKEL FOR ERAMPLE OF USER

EUFFERED PRIMT OMERLAY

{TOTAL MEMORY TO BE USED
* {ROUTINE IS ABOUT 220 BYT
* BUFFRT {SETS IT UF - OVERLAY & BUFFER PROTECTED FROM
* BEING OVERLAYED?.

% FROM THIS POINT OM, CHARACTERS PRINTED EY
* THROUGH BUFFERED I-0. TO WRAF UF AT EOT,
ES

*

ES

*

ES

(ROUTINE + BUFFER}

Dos oo,

CRLLIMG
00 THIS:

F¥PEMTH WILL GO
CLRA

ISR [PRMT] REQUEST TO EHD BUFFERTNG.

HIS WILL CAUSE “FRHT" TO WAIT UMTIL THE BUFFER IS
S CAUGHT UPY, AHD THEN OVERLAY AMD

T EMFTIED {FRIMTER
A EUFFER AREAR ARE RELERZED.

CORY EQU 17
* GIVEM:

U-»Z0URCE FILE DCEB {MOT OPEMED:

DEST FILE DCE JHOT OPEHED:

B {BIT @ - OFF IF MO DISKETTE SWAFPPIMG,
#

*

#

CoPY A FILE

Of FOR DISKETTE SWAPFPING

RETURMED A=ERROR MUMEBER

* SIMILAR FUMCTIONS FOR USIHG USER OVERLAYS

DOUSR EQU $E1@ LOAD IF MECESSARY & EXECUTE USER OVERLAY
G EQu fEiz JUMP TO A DIFFEREMT OWERLAY

FOEOU $E1Y LOAD USER OVERLAY

* USER SHOULD PROVIDE EQUATES FOR HIS OVERLAYS HERE

FElE JSR HERE FOR DISPLAY OF ERR MSG

ES

EJIASM

0w
T

FHRGE @@a Do

auile
auize
B et}
yiug
auisa
auiga
auiTe
uize
SRl
UzZRa

ayuua
=t

e s=l]
UERR

UEUR
BUEER

BYEDG
BUERR

A TS ok o
asle
UEsd PRR1ITA BIGE

PE18
a0a1
aoon

Elc

Iv I I

DOS - INSTRUCTIOMS

TIME EQU %
il EQU 1
OFF Equ]
ERANMPLE
LD #THERTH LORD ADDR OF ROUTIME

[D0OE TIME,OM GO ACTIVATE THIS ROUTINE

K

FRMT EqQU FE1A FRIMNT A CHARACTER OM PRIMTER

THIS IS CHAMGED BY CRALLIMG BUFFERED FRIMTER OVERLAY TO FOINT
AT BUFFERED IO ROUTIHE

K

EEYIM EQU FEiC FOLL KEYEBOARD FOR IMPUT CHARACTER

THIS IS CHAMGED BY CRALLIMG BUFFERED KEYEBORRD OVERLAY TO FOINT
AT BUFFERED IO ROUTIHE

K

BRASIC EQU FE1E TP HERE TO RETURM TO BRSIC

K

A O R O S S S o o e e e . R R R R R O R

#* 0 THEHR U EF UL MACRDO FoLLodu

A R O R O R o O O L e o e o ek

EMAEBLT MACRH EMABLE IMTERUFTE

Izl AMDCC #%Riiieiild

3@ EMDM

E1 TURH OM-0FF TIME ROUTINE

m

DEABLT MACH DISABLE IMTERUPTSES
UZER ORCC #%21010200

Uz27e EMOM

*

HEGD MACH HMEGRATE O
wuag CoMe

Uyl COoMe

wuze [nDo #1

WUzl EMDM

LERD MACH LOGICAL SHIFT RIGHT D
Uued LERA
Uu7a RORE
uuza EMOM

LELD MACH LOGICAL SHIFT LEFT D
UEID LELE
UEZD ROLA
HEZE EMDM

CLRD FMACR CLERR D
weEd CLREA

HETE CLRE

weozd EMDM

#

IHCD MACR ADD L Ta D
il AbDD #1

WEzd EMDM

#

bR T R RO O T R O o R R R o o R R R o o R

HDDITIHHHL M‘]
ORG F1EE

EJIASM

FRGE @l@ Doc EH: D DOs - IMSTRUCTIONMS
BUEDE
UTRa
auTie
uTze
auT IR
uTUa
BUTER
UTER
auTT]
auTae
BUTHE
BUEna
auEla
auEza
rE=detn]
BUELa
BUEEd
puzER
BuETE
auzza
ayang
uana

PAE1EA PEQR
as13

ORG Rl
WHERE USER [CC
VECTOR RME 2wl 2
OFEM OFEM A DISE FILE
CLOSE CLOSE A DISK FILE

REARD REARD FROM A DISK FILE

WRITE WRITE TO A DISK FILE

RELSE RELERSE I.0 BUFFER <BRLLOW USE FOR AMOTHER FILE:
O LORD & ESECUTE A SYSTEM OVERLAY
GOOLOAD O TOFP OF CURREMT OVERLAY
LOAD LOAD SYSTEM OVERLAY

OolER LOoAD & EXECUTE USER OVERLAY
o LOAD oM TOP OF CURREMT OVERLAY &
LODLER LOAD USER OVERLAY

ERROR DISFLAY ERROR MUMBER IH ®QA%

TIME TURM OM-O0FF TIME IMTERVAL ROUTIME
FRHET FRIMNT A CHARACTER OM FRIMTER
EEYTIH IHFUT HEST KEYSTROEE FROM EEYEOARD

BRHETIC RETURM TO BRSIC COMTROL

CLoC FHE 2 COUMT OF BBTHS OF A SECOMD

V5 ORME MUMEBER OF IL-0 BETREYS IMITIALLY SET TO L

FHE TIME COMSTAMT THAT COMTROLE PRIMTER TRAMSHMISSION SFEED

FRME AODRESS WHERE CURREMT OVERLAY WAS LOADED

FHE BRSE OF USER'S ROOT + 1. POIMTES TO EMTRY ZERD OF OVERLAY'S RBA
FRME JUST BEFORE CHECKIMG FOR RUTO ESECUTE

FHE JUST BEFORE EBRAMCHIMG TO USER FROGRAM

FRME
FHE
% RiHE
R RHME
CE RME
CE RME
FRME
FHE
EQU
FHE
FRHE
FHE
FRHE
EQL
FME
FHE
OFT
FHE
OFT ML
2 R O R T TR R

* ARER ELE WECTORS & VARIABLES

BYTES PER VECTOR

STORED

& JUMP TO SYSTERM OWERLAY

JUMFP TO USER OVERLAY

O E R R E o E o E

=

papz A
aaal A
papz A
rdrr e A
paaz A
rJrr b A
paaz A
rJrr b A
paaz A
rfrr e A
papz A
Jrich) A
A
A
A
A
A
3]
A
3]
A
3]
A

RATE
oLyLoc
USRESE

auaza
L= detv]

2asUzA
[dri=p L]
AsUER
pasuER
asUTH
[dri=p 2]
aasuan
rdri=a =t]
REE1A
rdri=t=tes
DRLEZA
BRAEEYA

1
E
::‘;1
E
::‘;1
::‘;1
E
::‘;1
E

uazg RETURM THRU HERE
oDy

=g drdn
aE@le
=t et
= et}
=
=it}
=t
pEATR
=it
rl=grdetr
=g yrdn}
el
eize
=g petv}
aeiug
=g =t
eiga
BEl1Ta
rdrdn R
rridr et}
rdrdrdetn)
rdrin i tn}
rdrdr i
rdrdn it}

COMTAINES
DoB UsED

TWO RTE CODES - ALL HOOKS
TO RERD SYSTEM OVERLA®
DCE USED TO READ "MARS" AND MESSAGES

DCBE USED TO RERD USER'S PROGRAM & OVERLAYS

BUFFER FOR SYSTEM USESDIRECTORY + FAT READS & WRITES:
FILE ALLOCATION THBLE <FAT: SIZE

SAVE AREAR FOR DRIVE @ FAT THELE

SAME FOR DRIVE 1

lnich
pazi
aiga
paYE
AaLE
paLE
AaLE
paLE
aTCE
papz
paml
pagl
paml A

FRTZ
FATS
MASMEM
DRIVES

ADDR
MAx MER

OF HIGHEST USEREBLE MEMORY
OF DRIVES TO SEARRCH OM GLOBAL OPEM

uk=1ulm
220E

manF EMDOWEE EMD OF EXTEMDED WS

bR R R BT R T O O T T R o o R R R T o o O R o R
H E i E
ok ok

3 ko dokoobok bk ok
WALLE R

ORG ORGIN SEE 15
oFrT L

TTL Dos
oFrT HoL

MODULE FOR

HED

- IS0 ROUTIMES

-

oOFEHN 0Is FILE

=

QaaTa
rdrdrdetn]
urinietvd

asETY
RETE

GIVEM:
FA=0ESIRED
U= DCE

FILE STHTUS

EJIASM

FRGE @11 Doc EH: D DOS - INSTRUCTIOMS
OCEORM, U = DRIVE TO BE CHECKED {$FF=CHECK ALL DRIVES:

BEFORE CRALLIMG 'OFPEM', DCB SHOULD COMTAIM: FILEMAME, EXTEMSION,

I-0 BUFFER ADDRESS. MAME AMD EXTEMSION OMLY ARE COMFPARED

TO DIRECTORY EMTRIES TO FIMD MATCH. TYPE AND ASCIT FLAG ARE USED OMLY
WHEM CREATIMG FILE {OTHERWISE THEY ARE OVERLAYED BY EXISTIMNG VALUES:.
ALL L0 MEEDED TO OFPEM FILE USES THE 258 BYTE ARER FOIMTED TO BY

LAST I.-0 ADDRESS AS A BUFFER.

OFEM WORE
BY FILE STATUS SUPPLIED IM ‘A {SEE DOBCFS IM DOB DESCRIPTION:.

EXACTLY THE SAME FOR IHFUT OR OUTPUTH ACTIOM IS COMTROLLED

OCE ARE FLACED IM DIRECTORY EXCEFT THAT DCBFCL IS SET TO $FF, DCEHLE
SET TO ZEROD AND DCBCFS IS SET TO PROVIDED STRATUS.

I=

OPEMING AWM EXISTIMG FILE - THE 22 BEYTE DIRECTORY EMTRY OVERLAYS THE
FIRST 22 BYTES OF THE DCE ESCERT FOR DCBCFE WHICH IS SET TO THE PROVIDED
VALLE.

WHEM FILE IS OFEMED DCEBFRM IS SET TO $FFFF (AN IHVALID VALUE:. DCERER
Is SET TO ZERO, AMD DCEBLRM IS SET TO ZERO. AT ANYTIME BEFORE OR AFTER
CALLING OPEM, DCBLRE CAM BE SET OR CHAMGED.

FILE T¥FE AMD ASCIT FLAG CAM BE CHAMGED AFTER OPEM TO CRAUSE THEM TO BE
CHAMGED WHEM FILE IS CLOSED.

#
#
#
#
#
#
#
#
#
#
#
#
OFEMIMG A HOM-ESISTAMT FILE - IF CREATION IS ALLOWED, FIRST 22 BYTES OF
#
#
#
#
#
#
#
#
#
#
#*
#
#*

pRED1
poEDE *
ARERS bR TR R TR O O T R o o R R o R R o R o o R R R o
BAEHYA el OOPEM LDE OCEDRW, U
PREDEA FEHS D,H
BRERER CHFE #EFF REQUEST FOR SCAM OF ALL DRIVES
BAEATH EEG [l IF YES
BREBEA CHFE #4 VALID DRIVE REQUESTED?
BAERIA EBCS DAl IF YES
maElEn LA HERRS FRRAMETER ERROR
pasEilA DOERRE STH -]
maE1EA FLULE Oy e, PO RETURM WITH ERROR COMDITION
nAE1EA noa CLRE START WITH DRIVE ZERO
maEiYA e o2l A DOl ETE OCEDRW, U
nAE1EA CLRA SAY LOOE FOR MATCH
naE1EA BEDE BCTE LESR CHRDIR CHECE DIRECTORY O THIS DRIVE FOR MATCOH
I,

o

o
X
L [T

i
=d T =d T -] 0 00 e e} e DT
=
i

o

i
L
I
=
0
0

A R R x]
R L

&
[N

o

i
=
-
=
0
0

LOCHE S

DO B I]
O O O O O
mm
e DT G I
=
=
DD DOD oD DD

o

P o R xR xR xR x
i
o T e e oo

0 2 e S 0 I

RE1TH 23 27 =1 BaFe BEG nacs IF MATCH FOUMD
pRE1BEA 29 2B na aapm EMI Dz IF MO L-0 ERRORS - JUST DIDHT FIMD IT

aEla # IT WAS S0ME KIMD OF I-0 ERROR
DREZAR POAE CHPAR #1 DRIVE MOT RERDY?
QaAA EMHE DOERR IF MO
rd=1am TET 1,5 REQUEST FOR SPECIFIC DRIVEY
DAAE EFL DOERR IF YEZ, THEM THIZ IS AM ERROR
pagn ooz TET 1,5 REQUEST FOR SPECIFIC DRIVEY
pagz EFL Dy IF YEZ, I DIDNT FIMD HIZ FILE
k=1 LOoE DCEDRV, U LAST DRIVE CHECKED
=10 InHCE
pags CHPE DRIMES AMOTHER WALID DRIVE TO CHECEK?
QaEE BCE Dol IF YEE
® MATCH MOT FOUMD - IS IT O TO CREATE?
Dy Log 5 5 {DESIRED STATUS:

EITA #CREATE CREATE BIT OHP

EMHE nay IF YEE

ol

w3 OT8 Pt
im
L]
=
o
0

aETa
rdri=getn]
ulri=getvd
rdridegrin}

m
o
=
0
X i
b i i i

oS i
oD e 0
b
0
m

‘_
o
]
e

BEDE

]
X T e T o B T M o B 3 R

o TE Y [TT fod
im

=

=

0

i

o e]

23BD AE E4
BaEF EBS 4
2acl e au

P i

BRETH

o
0
Il

EJIASM

FRGE @1z IO LEH @G oos - LT ROUTIMES
i o8 rda] =] LOA HERF 1@ FILE DIRECTORY EMTRY HOT FOUMD
i 3] ni ans EFA OOERR
i =] =31 A D@EYA TST 1,5 AMY DRIVE SPECIFIEDY
i 2A [rde] BACE EFL DAuE IF SFECIFIC
naceE BF ocE o2l =] CLR OCBDRY, U CREATE OM DRIVE ZERO
BATEG PRAEI9A PACE BE FF A DEYE LOA #EFF SAY LOOE FOR OFPEM SLOT
pATHE @psyan g9pd 1T BEZAE BCTE LEZR CHEDIR M THE DIRECTORY
BATED @REHIA PRE3E ET = Bane EEQ Diauc IF SLOT FOUMD
DATED @@EYZA P90R ZA [aas EFL OOERR IF S0ME KIMD OF L0 ERROR
BATTE DREHIA PRET 28 nE A LOA HEFRFR11 ODIRECTORY IS FULL
DATEG @pEHUA P90s Za ED maEs DOERRL BRA OOERR
BATHE PREHEA PR0DE AE EY A DEYc LOA = DESIRED STATUS
DRSHE @nsuER T =31 =] ETH 1,5 AVE IT
nasle @RsEdTA E ac A LOA HERFR1Z SAY DIRECTORY WAS CREATED
D@SIE @nsdEa T EY =] ETH =
BREEE @nsdER E FF A LA #EFF
n@syE @nssgn T Y] =] ETH OCBFCL, U SET MUMBER OF 15T CLUSTER
nRsED BRAEE1A CLRD
rdrisiatrd L2 ED LE =] ETO OCBMLE, U CLEAR BYTES IM LAST SECTOR
BAETE BAEEEA ED [T A 5TO OCEMRE, U CLEAR MAX RERA
p@SEg gpeELun @3 AT cEole =] ETH OCEMRE+Z, U
npEng BREEEA 17 BEZED BCET LESR OCEDIR AFER DATA TO DIRECTORY
DRSpE @RsnER 2@ 18 BRZE EFRA e GO COMTIMUE PROCESSING
] # DIRECTORY EMTRY FOUMD
EY A OO% LOA = DESIRED STATUS
El A 5TH 1,5 SAVE IT
EY A CLF .5
a8 o1a A LOA OCBCFS, W CHE PREVIOUS FILE STATUS
an BRZE EEDQ niaeE IF IT WAS CLOSED
BE A AMDA HUREATE+ESTEMD+OUT IF LAST OFEMED TO MODIFICATIONT
rid] BRZE EEDQ niaeE IF HO
EE 1@ A TET OCBCFS, . CHE PREVIOUS FILE STATUS
i) BHBE EEDQ Dae
an A LOA HERFR1Z SAY OIT WASHT PREVIOUSLY CLOSED
EY =] ETH =
HFER DIRECTORY EMTRY TO DCE
=31 A D@e LOA 1,5 DESIRED STHTUS
a8 i@ u] 5TH OCBCFS, s FUT IH DIRECTORY EMTRY
BIUE ACEF LEER OIRDCE AFER DIRECTORY EMTRY TO DCB
=T A LOA OCRCFS, U
BE =] AMDA HBCREATE+ESTEMD+OUT WRITES ALLOWED?
nE BAZE EBED D@aER IF MO
BIIF BDaEF LEER SYEWRT REWRITE DIRECTORY RECORD
ET mans EME DOERRL IF I-0 ERROR
[A DaEA LOn #2
=Rl A ETH DCBSEC, U
BEFD p@Ey LEER SYERED RERD FAT RECORD
=1 mans EME DOERRL
BZIC ACUE LEEZR AORFAT FOIMT '#' AT FAT TABLE IHM HMEMORY
Wi A FEHS
nECE =] Lo FOIMT TO BUFFER
UE A LOE EYTES TO MOVE
BEZE BT LEEZR AFRLE MOVE THEM
Y] A FLLE i
OO0 OFEM RESETTIMG
FFFF A Loo #FFFFF

ce 23 ETO DCRFPRMH, U
BlEEE Aasnln BRaYl CLRD

T

EJIASM

aTRan
aaTaiA
aaTiiA
aTizA
aT1zA
2aTiNA
aTiIEA
aTien
aaTiTAH
aTien
aTian
aT2eA

BATUHA
aTUEAR
aTHER
aTuTAH
aTHEA
aTua

A4
2AUE
A4S

PAULC E

BAYF

[xr A R BT I N]

B

]

£ =) £ R3]

G T

bl

T
A
]
F

=

Tl
oI) T ST

D N B B e S I A T T T i O A I o B 2

P R R R e e e xR xR xR xR R R e e i]
o T o S S S e S o e e o S o e S o e e i o e 1 i o

o

o

oo
P o T D

L]

LECE R R X]

O 03 e [T O3 I3 00 - O
Podt 00 0 e D BOOJD e (T3

e o i A

T

R i XX

F
Y
F
,
7
A
=3
[
=3
[
86
@
[
iy
7
E
"

e L JT] pd

o]

0 L I I

ol

I

0k I e

i
Bt O = O e o s e & T 2 x

p=g

00 0 O

o T O B
o

=
@
@
@
E
C
[
@

&
=
.
&
g
g
g
-
z

T
P

)
o

oy
1@

un

O T T O

o0
pou)

aige

7z
2E
15

o

I % I %]

Fl

L g
]
i e e e)

I I I I o0 I I

=
n}
I

in
P e w I e w R

=
I
]

oos - LoD ROUTIMES

*
3
*
*
*
*
*
*
*
*

L DCERR

nlng]

® MARK

e

QEA
nCuy

=T
STH
=T
CLR
LERA

GIVEM: U

FUMCTION:
FIHD
TO BE KEFT,
IF FILE IS

THEM MAR

o R R O

DCLOSE CLRA

FEHE

CLREA

LESH

DIRECTORY ENTRY

EEQ
BFL
LoA

LERA

Log
EME
Log
ERA
Lon

PSHS
LESF
FULS

EMHE
=T
Log

FEHE

CLR

AHDA

BEQ
CLF

FEHS

DCEREA,
DCERER+2
DCELEM, U
DCEMOT, U

IR TR B SRR R R B R R R R B R Rk B R R R Rk 3R R ko R SRR R o R R R R
FILE

» DCE SCOMTAIMNIMNG FILE STATUS:

AMD WERIFY THAT FILE IS OFPEM. THEM, IF FILE IS

UFDATE AMD RE-WRITE DIRECTORY EMTRY AMD REWRITE FAT TRELE.
T BE PURGED, MARE DIRECTORY ENTRY AS RE-USEREBLE AMD RE-WRITE

USTER!

O,

CHEDIR
ool
DCERR
#ERR1D
DOERR

DCBCOFS,

ooz
#ERR13
DCERR
DCETRE
o
REWRTE
o
DCERR

DCETRE,
DCBCFS, U

A

AYATLABLE IM FAT TAEBLE AMD REWRITE.

IR TR B R R R R R R R R R B R R ok B R Rk 3R R R R SRR R o R R R B
TRESULT CODE:

SAY LOOK FOR A MATCH

CHECK DIRECTORY FOR A MATCH
IF MATCH FOUMD

IF I-0 ERR

DIRECTORY EMTRY MOT FOURD

U IS FILE OPENF

CLOSTHG UMOFEMED FILE

SAVE LOC OF DIR ENT
REWRITE BUFFER IF IT HAD BEEM MODIFIED

IF I.-0 ERROR OQCCURRED IM THE PROCESS

U RESTORE LOC OF DIR ENT

SAVE FOR DIRECTORY RE-WRITE DECISION

DCBCFS, U CLEAR CUR FILE STATUS IN DCE

HWORE
i)
LU

(%
I

WORE FILE TO BE DELETED®

IF MO GO REWRITE DIRECTORY & FAT THELE
MARE DIRECTORY ENTRY AS RE-USERBLE
SAVE ADDR OF DIRECTORY EMTRY

FAT THELE EMTRIES AS AVAILRAELE

LESF
LOA
BHI
LOE
CLR
OEC
TFR
TETA
BFL
PULE
LESF
PULE
AHDA
BEQ

ADORFAT

DCRFCL, U GET FIRS

OCER
FyH
o
FyH
EB.A

nocs
DCBEDOIR
A

DCUE

ZET DCEMLE

FOIMT '¥' AT FAT THELE IM MEM
=T CLUSTER MUMBER

IF MO CLUSTERS IN USE

GET MUMBER OF HERT CLUSTER
CLEAR CLUSTER ENHTRY

SET TO %FF

IF MORE TO GO

ADDOR OF DIR EMTRY
AFER TO DIRECTORY
FRE-CLOSE CF2

H#CREATE+EXTEMD+OUT WRITES ALLOWED?

TO REFLECT DCEMRE (MAX RSB}

EJIASM

FHRGE

miaya
BlEEa

BATEHA
ATEEREA

BATEYA
ATERA
ey

LA |

SR EEE C R s I

e

W W W
ExXx N B N vl P I

pasaiA
rlriatrie
aznz
rulri=tnBs
BASRLA
rdridedrii=s]
BASATA

BRAT
BAAS
BRAE
aRAD
aRE?
BREZ
BREL
BARET
aRER 2
BAREC
BREF
BAcT
BRCY
BACE
aRca
BACE
aRch
raf=inlrd
rf=tues
af=inlay
ruf=1ulry
rf=iuix}
rf=tnlm
BADE
BRE?

Do I I N

VLY e 0T G e

L B R e B ARt Bt B B B A 3 =it B X

LR e O SN

PREZ
BREY CC
BRET

BAREA
BRED
QAREE

h)
pou)
ot
P

o
R
e
B 1
b
I
)
™ T o

=

g

=

=
=
I
]

anEF
BREF
BCUE
g =
aEcs
UE
aiAs
i
EA
aiav
ua
az
CB 23
2L @alaF
az BRDE
E4 =]
E4 =]
=l= =]

I

AcE

A R it B e o]

=
Il
o

v I I

ey

niaF A
a3l BTE

]

oo

CLRR
LOe
EHE
Lon
BEGH
Lon
ET0
LESR
EHE
LESR
FEHE
Lo
LDE
LESRE
LEAS
LOe
LESR
PULE
LOA
5TH
LESR
EEQ
ETH
TET
FULE

DouA

OCUE

R R R R
#* R EAD

GIMEM: U
ol
BIT @ 0OH
: OFF
[ali]
OFF
[alg]
OFF

2

#

2

#

kA

* BIT 1
:

#

4

* EXAMPLE:
#

#

2

#

2

#

2

#

2

* BIT 2

THE LOGIC
RECORD. A
© IM THE FI
* AHERD OF

¢ MOTE:
ADDRESS
® AMD
¢ TRAMSFER
DCBTRM
FogkR
DREAD

Lo
A
]

FEHS
Loo
LESR

DRE LOE

CLREA

Log

HFER
»BUFFER,

- L-70 ROUTIMES

DCBMRE+2, H
(IR 3]
DCBEMRE, = IS
(IR 3] IF
#5120

IT A MULL FILE

YES

RECORD

! WRT
DCERR
AORFAT

U SAVE DCE

RE-WRITE DIRECTORY
IF I.-0 ERROR

RAOOR

#EYEBUF SYSTEM'S BUFFER
#
HFRsU

1,u

FOINT TO

WFER INTO EUFFEF

CLERR TO %FF

H REST OF BUFFER
L RESTORE DCE

ADDR
WRITE IT

IF I.-0 ERROR
SET COMD CODES

EIRE 3 B R IE R R B R R R R B R R R ok B R R R R RO R Rk o R UR R o U TR o R R R R R R R R
M Lo I oAbl oI sk RECaRD

~s[CE
= FUMCTION DESIRED
T RERD WIA REA

T RERD WIA LRH
TO READ WITHOUT CHAMGIMG
TOOEAIT AFTER POINTING
TO RERD BRACEWARDS

T RERD FORWARD

A=ZERD TO READ THE CURREMT LOGICAL RECORD AMD THEM ADVAMCE
AL RECORD HMUMBER BY 1. B = 2 TO "RERD FOR UPDATE' A LOGTCAL
= 1+ {5y TO READ STARTIMG WITH THE REAR'TH EBYTE OF DATH

LE FOR DCERSEZ BYTES. THEM SET REBR TO POIHT DCBRSE BYTESDS
THE FIRST EYTE RERD.

{THAT HAS ALREADY BEEM OFEMED! :
CODED RS FOLLOWS:

FOIMTER

AT HEXT {FREVIOUS: RECORD

ICAL RECORD SIZE, RECORD STORAGE ADDRESS AMD I-0 BUFFER
RE USED. IF LOGICAL RECORD SIZE IS RECORD STORAGE
UFFER MAY BE THE SAME ADDRESS. IF DCBRSZ IS ZERO, READS WILL
FROM THE FILE TO [DCEREC] UMTIL A CHARACTER MATCHIMNG
TRAMSFERRED.

E s o o 0 o o o o o o o o o o o o o s o

Fys,
#50100+ERRLE
FOIR 0o SETUR COMMOM TO RERD

ARD WRITE

EYTESZ TO RECORD ARER
Y-»RECORD ARER}
DCERBA+Z, U DISPLACEMEMT IM CURREMT SECTOR

O.H GET A BYTE

EJIASM

Bis IO

rdridedrik=as]
rdrd=dride i)
=R]
pasiiA
rri=p]
as1zA
azidA
pasitA
p@Elen
nAsiTA
palen
az13[
frfrideedr]
pasziA

frrd=gaRr]
pastiA
frrd=i]
pasy A
=]
asuEA
paalen
BAsYTA
rdri=Bas]s
pazua
frfrided=tr]

g
o

s

BAFG
BAFZ
BAFS
BAFT
BAFA
BAFA
BAFF
rid =1 el
=7
rid =i x|
rd=trda]
rid =i x|
BEGE
aEla
nEL:

aEls
aELT
aEla
aein
AE1E
poza

o
fin]

DO 0w I N B o B N |

Jowes D T G PO e [T I OIT] ROl B3

LU S e X B s

O i O SR M O

o I

Ex I o e N RN B B R 2 |

I O e)

EC
3 ED

B EC

lapz

]

(=13

o

(R I]

0% I B & B O

o

000 O T

i

O 0 0 0

F QN I o o T e T T s T e T O O s O B e T

o SRR

ia

2B

29

2B
14

20
18

2B
i4
20
1E

B T e

BEEA
aouz

I

ARYE

3 e

rl=3che

o i

O

mom
£ AT

pd
bl
- b L
e T e T o o o T o e o T o e)

=
i
-1

oos - L0 ROUTIMES
ETH
IHC
EHE
LESR
EHE
Loo
AOOD
57D
LESH
EEQ
LERS
ETH
FULS
LESR .
EHE DREAR
Loo W5

BED DREA
SUED #1

5TD , 5

BME DRE

EFRA ROWFR:
LoA DCETRH, U
CHPA =1.%

BME DRE

. ’.’.' +
DABREBR+Z,
DRSE
REWRTE
DREAR
DABREA, U
#1
DABREA, U
CRLSEC

STORE IM RERORD AREA

I ADVAMCE FOIMTER IH BUFFER
IF IM SAME SECTOR
EMEURE FREVIOUSLY
IF WRITE ERR

MODIFIED DATA GETS

FOINT TO MERT SECTOR
RECALCULATE TRACK &
IF 0Ok

SCRAP STUFF IM STRCK

SECTOR

ORE

pixd
fin]
T

DREA
IF I.-0 ERROR

GET AQUMT DOWH VALUE

IF VARIABLE LEMGTH STRING

OREE

GOOGET AMOTHER CHR

GOOD0 CLEAM-UR COMMOM TO
STRIMG DELIMITER

WHS LAST AHR STORED A
IF MO, EEEF GOIMG

READ AMD
OREC

DELIMITERY

*

R TR R R R B O R R R o R K R

CLEAM UP COMMOM TO READ AMD WRITE

ok Aokl ok R R R R R R ROR R

* RECORD HAS BEEM READ - CLEAM UF

ROWR: PULS 0

LIA ORBAFS, U FILE STATUS

EITH #SHARE OFTION SETF

EEQ OREA IF MO

LEER REWRTE FREE UUF BUFFER

Loo #EFFFF MARK IHVALID SEATOR

EFA OREE

ORERA LOA &,5

EITH #HOW REWRITE MOW?

EBME OREAR IF YE

Loo DCEREBA, U LAST SEATOR ACCESSED

5TO OREBFRM, U MARE WHIAH SEATOR IS
FOR MEW DCEMRE

Loo DCEREA, U

CHFD DCEMRE, U

ECE ORED IF IM A LOWER SECTOR

EME OREC IF A HIGHER SECTOR

LIA OCERBA+Z, U

CHPA DCEMRE+Z, U

ECE ORED IF A LOWER BYTE

Loo DCEREA, U

57O DCEMRE, U

LA OCERBA+Z, U

E5TH OCEMRE+Z, U

LA P RERD-WRITE OFTIOMN

HMOA H#UFDATE SHOULD REA & LRM BE RESET

FULS A, H,T

EEQ OREE IF MO

* RESTORE ORIGIMAL FPOIMTERS

DREAR
IM BUFFER

W OPTION

bl

DREER
CHECE

HOW IM BUFFER

OREC

ORED

TO STARTIMG

WRITTEM

WRITE

WRLUEY

EJIASM

FHRGE

=
ey
ar]
sy
]
pixd
fin]
]

Oos - L0 ROUTIM, S

aEsl AT
BETE AF
BETI 18AF
BETT EF
BETH 3L

o0
ZE
ZE

DCBEREA+Z, U
DCBERBA, U
DCBLREM, U

Lo)

DREE CLR
FULS

by B e B]
[R
e o e e)

, ¥y PC

SRR R B R R R R R UR R R R R R R R R
SETUR FOR RERD OR WRITE

GIVEM: A=1 FOR RERD, 2 FOR WRITE
* B=ERR MHER FOR P IELE USE

Fogkok g ook b R *

ROWR FEHE 0 SAVE IH CRSE MEEDED
I% FILE OPENY

[x] LOf OCRCFS, U

A EHE ROWRL IF YES

A Loe #ERR1UY IF HOT OPEH
A

A

A

#
#
#
#

QETE 2

i
=
b
i
I

2ETD
rl=3stn
B2
ul=3=s
EEE
rl=3etes

RG]
-
=

[0 I

ROWRER LERS b, 5 COIOMY T MEED IT AMD RET RDDR:
5TH =1
FULE Ay, Y, PO
#*I5 THIS TYPE OF OPERATION ALLOWED <READ OR WRITE:?
BESA R ROWRL BITA . 5 ¢1 FOR RERD, 2 FOR WRITE:
aEac 268 au R EBHE ROWRZ IF YEEZ
3 5 LOA 1.5 SERROR MUMBER PROVIDED:
aEoe 28 F2 aERY EBRA ROWRER
pdnizteind #*
pdnizie b # CHECE FOR,STARTING REBEA
2 # I5 I-70 BY RBAR OR LOGICAL RECORDY
BRI A Bl ROWRZ2 LDA U, 5 OFTION PROVIDED
aEay Ay @l AHDA #REA
aEIE 2B BE BEAE EBHE ROWRY IF READ WIA RBA, USE RBA'S CURREMT COMTEMTS
RERD BY RECORD HUMBER
aEIn EC e o1l A Lon DCBEREE, U FISED OR VARIAEBLE LEMGTH REROR,S?
aESE 28 i) BEAL EHE ROWRZ IF FIVED LEMGTH
aRsonn apalh Be 4 A Loe #ERRZA CAMT CALCULATE -~ RSE = ZEROD
BRSGER BBIF 28 EX BESY EBRA ROWRER
aRaain appl 1w BiE3 abhEYT RDWRZ LBSRE CHLREA CALCULATE RECORD'S STARTING RBA
BREEEZA aBRY 28 [DE BEEY EHE ROWRER IF OVERFLOW OCCURRED
ke trie] &
pdnizln s arT L
rdni=lriy # MAKE SURE, STRARTIMG RECORD IS IM BUFFER
BREEER BBRE EC o 2B A RDWRY LDD DCEREBA, U CRELATIVE RERORD HEEDED:
BRIATH ABAD 10AZ AR A CHPD DCBEPRM, U I% MEEDED REARORD IM BUFFER?
BREasa apRb 27 11 BECE EBEQ ROWRYA IF %,%5
BRIgnE appF 1wy @lal ahdyz LESR REWRTE REWRITE BUFFER IF IT H,% BEEHM MODIFIED
BaEian 3 [BESY EHE ROWRER IF IS0 ERROR IM THE PROA,SE
aRalia aped 17 BlEZ Bhas LESR CRLESEC CALCULATE TRACK &,SECTOR
AR BBRT 28 HE BESY EHE ROWRER IF TRYIMG TO GO BEYOMD EOF
f aEREa 1T BlEE BCET LESR DEKRED READ THE SECTOR
BREiYA BBEA 28 HE RSy EHE ROWRER IF IS0 ERR
BRIlEA @BRE 28 =) BECE ERA RDOWRE
BREIER apRe 1T @i0A BDaF RDWRYA LBSRE CEEMT CHECE FOR EOF
BRAILTA ABAD 2B BF aEay BHE ROWRER IF TRYIMG TO GO PAST EOF
#
CORRECT STARTIMG SECTOR IS IM BUFFER
GET SET TO SFER RECORD
aEAR 3k 2B A ROWRE PULE O, (0=1-%, ERFR HBR, ¥ RBETURHM ADDRL
oFT MOL
BEAT RE s 2E A LD DCBLRM, U

Ly I

DRI I O T I)
[) B
R g) X

T
=
T

by

ol

X

m

T
0 1

fxxi

fonie

I

Iv I

FRGE 817 I0

BECH 24
BECC 3
BECE AF
BEDL RE
aEOY As
BEDT 24
nEDs EC
nEDC 34
BEDE 24
BEE® RE
BEEZ 180E
BEET =9

@OES
A BOERA
PEED, !

O R]
[s e

I = 0T

PR R R]

BRIEYA
Ra3EEA QEFF

1T e T] TSR [T

RaIE3R PAGD
RATHR QRBA
Ra3aTiA QABF
etz

BR3aTIA
BASTYA
BAATEA
BRITEA
BAaTTA
BRaaTeA

Wt [TE 0 JTE Bl 0
o B Y]

SRR}

a3aziA

o
fin]

p=g

ot
L)

b

ZE
ZE
oo

11

24

I T O T T e T s O s T et O

Lo N i x

e e e e o B e o i

27
2z =
p21E A

mi BETE

CE 2D

T

CB 24

n}
=
s e e o i

cE oz0

23 noEy
BREE BCEA
BE moiy
AE B
mpal
[Tl
niayT aoas
= aciA
ET A
EY =]
EBZ A
BAAR BCET
FE moiy
mi =]
=Rl A
EY =]
k=] moEl

Iv I I

oos - LoD ROUTIMES

FEHE “ SAVE IM A, SE POINTE,S DOM'T ADVAMCE

LERH: 1.4 FOINT TO ME=T RERORD

STH DCBELRM, U

LOx ODCEREA, U

LoA DCERBA+Z, U

A, SAYE TIHCASE POIMTERE DOM'T ADVAMCE

DCBREZ, U GET RECORD LEMGTH

o SAVE A5 COUNT DOWM VALUE FOR LOOF

i SAVE RET ADDR

DCEERUF, U ADDR OF EBUFFER

DCELRE, U ADDR OF LOGIAAL REAORD BUFFER
RETURM TO RERD OR WRITE LOOF

#
R TR R TR O O T T R O o R R bR K B R O O R R O o R R S
WRITE A LOoGIACL OT sk RECBRDED

kS
GIVEM: U - DOB O {THAT H, S ALRBEADY BEEM OPEHED! @
* B o= FUMATION 0,5IRED AODED 5 FOLLO,S:
BIT @ O TO WRITE VIR RER
* OFF TO WRITE WIA LEH
BIT 1 O TO WRITE WITHOUT CHAMGIHG FPOIMTER
* OFF TO ERWIT AFTER POIMTIMG AT HEST (FREVIOUS) RERORD
BIT 2 O TO WRITE BRCKWARDS
* OFF TO WRITE FORWARD
BIT 2 0O TO RELERSE BUFFER RFTER WRITE
* OFF TO WAIT UMTIL PHYSICAL T.0 IE MECESSA
MOTE: FUMC : MEARLY THE SHAME RS DREAD - SEE MOTES UMDER DRERAD.
ok 0 2 Y O B R R o O R R R O o O R o O R O o O e R e o O o R Y O
OWMRITE FIH:
Lon #EAZPD+ERRZL
EBER FLHIF O SETUR COMMOM TO RERD AHD WRITE

k3
LOOF TO SFER BYTES FROM RECORD ARER
{w-:BUFFER, Y->RECORD RAREAX
niii= LOE OCERBA+Z, U DISPLACEMENT IM CURREMT, SECTOR
CLRA
LI ORBEBEUF, U ADDR OF BUFFER
LERX Oy DETERMIME RADDR IM BUFFER
LOA o i GET BYTE FROM RERORD FAREA
STH i STORE IM BUFFER
IMC OCERBA+Z, U ADVAMRE FPOIMTER IM BUFFER
EME OWEE IF IM SAME SECTOR
LEER DEEWRT REWRITE, SEATOR
EME OWEAR IF Is0 ERROR
Loo DCEREBA, U
AODD #1 FOIMT TO HERT,SECTOR
=TO DCEREBA, U
X CALSEC RECALCULATE TRACEK &%,SECTOR
OWER IF 0K
TS SCRARP, STUFF IM, STACE

DWERA

DWER Sk
DWEAR IF I.-9 ERROR
#1

STH DCERMDT, U MARK MEW REC AS MODIFIED
DWER Loo = GET COUMT DOWH VALUE

EBEQ DWEC IF VARIAEBLE LEMGTH,STRING

EJIASM

283
a1ppan
aieaiA
R Trie]
B1anzA
a1madA
2105
alppe
aigeaT
R lnt=
a1ana
aiale
i@l
iz
1@m1zA
aiaidA
R R R=12]
Bimien
aieiTA
aimien
aigia

123
B1Ez4A
1BzEA

ol

i B O T S |
Dl Sl O]

m =i o

17
[
s ED
UF

HoEE

=
Pl
=
m
o]
im

=

b

I

by

Lo X
DX e I S]

g AN
o

I

0T G
o I QO g o

I
i

0D T
0 I - T

LoV]

T

BEREF
riimei =
13 A

v I I

P1o@ o043
FFFF @

CE 23 A

o

A
A
BCET

8 k3o
o I

]

bl

Iv I

[

BCEF

o IS (W

fam}
T

A
=1 A

BCET

*TRAMSFER

oos - LoD ROUTIMES
SUBD #1
5TO W5
EHE DE
ERA Due
LoA DCETRM, U STRING DELIMITER
CHPA =1,% WAZ LAST CHR STORED A
EHE DE IF MO, KEEF GOING

GO GET AMOTHER CHR
OWED
DELTIMITER?

k3
RECORD HAS BEEM WRITTEH - CLEARM UP
[LoA #1
E5TH OCEMOT, U EMSURE THIS SECTOR GETE REWRITTEM (EVEMTUALLY)
JHF ROWR: CLEAM UF SAME AS FOR RERD

*
BB R0 O O R A R O O R R O O O e R O O O R o Y R
RELEFRSE THE I-0 BUFFER
{USED WHEH USER WAMTES TO COMTROL, SHARED BUFFER:
GIVEM: U-=0CE
BB R0 B O R T R O O R O O O e O O O R o Y R
ORELSE LESR REWRTE REWRITE BUFFER COMTEM,S IF HEC,SS5ARY
Lon #EFFFF
STO DCBEPRAM, U FORCE RERAD MEST TIME
CLRA
RTS
oFT
TTL os
oFT ML
BB O OB SR O R SR o T SR o S R S o B R o I R o o B R o B R o O R o o i
FOIMT & AT FAT TRELE IM MEMORY
GIVEM: U-» DCBE COMTRIMIMG DCBORY
RETURMED: ¥
B o R K 8

L

- SUPFPORTING SUBROUTIMES

oo o o oo o o o
#FATES FAT THBLE,STORE ARER
DCRDRY, U DRIVE COMTAIMIMG FILE
#ED HUMBER OF BYTPSHERVED

ADRFAT LOX
LoA
LOE
MUL
LERH:
RTS

0K FOINT TO CORRECT AREA

FEOUTIHNE

EYTES FROM tAT LU TO DIREC
FEHS D,
LOE $32
ESH HFRLK
FULE D, U,PC
HFER 32 BYTES FROM DIRECTORY
OIRDCE FS O,=,U
LOE #
ESR HFREU
FULS D,#,U,FC
TRAMSFER B BYTES FROM ,U TO X
HERUS LOE g L
5TH s W
DECE
EMHE
RTS
B BYTES FROM ,¥ TO

HSFER nim=]

OCBEDIR

BYTES TO HFER

AT .« TO DCE AT LU

HFRLUE

EJIASM

EJIASM

aiautan
aiauifp
alauza
a1auzA
alauy
B1auL
alaue
aiauy
alaus
aiaus
aipsa
21l
1=
B1Es3
Biomsy
B1BsEA
B1psER
B1BETAH

B1pEYA
B1BeEA
B1pEER
B1BETAH

flopean
aiaTan
a1aviA
R pe]
B1@BTEA
B1aTHA
21aTE
B1aTEA
B1aTTA
R =]
a1eTan

QaTTR
v et
QaTae
@E @@

s 4@
npsng
rdrisi st
nasTe
aigia
npsng
rjrgaridl EIWHHH

B1asEA

B1asTA

wig RTH

A BCRE

1E
ah
1E

5 33

aCAR

@EED i'
oAz 2

AL
QCAT
BCAS
BCAR

00 To00 T

T T3 oed O - O30T -l T -

LR N S e e SN]

R

I R xR IR 1 O O R

G R T RS O T OH —d O

I =)

@
13 A
Fu BRET
13 A
BE A
1@ A
oEo22 A
e ppeic] A
[rif = A
wz A
2 A
BEZE A
waas ahEv
@

-

A
Y
PEZE A,
A
o

rnes]

o1
TR Ta
E4 A
EE A
@057 BO2T
FT @oas
@3 BCAT
PEZE A
121E A
51 A
PECE A
E4 A
@A BCEC
B4 A
@7 BCES
1B @CEl
Eu4 A
EE A
24 A
12 BADD
1F ZAE1
85 A
L5 A
@7 BCcoo
IHAE

2B A
FE BCCE

DOS - SUPPORTIMG SUBROUTIMES

wFR=U E
BSE
Eﬁ;
]

*

3

HHEHH
GIMVEM: A=
[OMOT ZER
® U o-u [OCE
RETURMED:
#
#
E 3

DIE

EITUE*

= DPI“E

ZERD IF LDDLIHb FOR A MATCH

0 IF LOOKIMG

A=ZERD IF

FOR AVAILABLE SLOT

REQUEST SUCC

A=FF IF MO MATCH FOUMD
A=1-8 IF I-0 ERROR

Y¥OEMTRY

EEEEEE S SRR L S E R LSS ++++++++++‘++++++¥+#+++++++++

CHEDIR PSHE
Loo
ETH
TR
OmHL
LA
FEHE
LA
ZTH
LEEZR
PULS
BED
ETE
CHPA
EHE
ZTH
PULE
LEEZR
EHE
ERA
THE
TR
LA
ZTH
Lo
TET
EEQ
LA
EEQ
BEFL
CLA
PULE
COMPARE L
ChE LA
EEQ
BMI
CLRE
LA
CHPA
BEME

RETRY
ool

CO1E

colA

CHECK
ooz
chzA

oo

ADuy

CHPE
BOS

o,
#fiimz
OCETRE,

Y IF DRIVE
+RETRYS
A
#2
+RETRYS
SRED

coz
+RETRYS
#ERRL
ColA

o, FPC
SYSRED
COLE
ChzA
OIRECTORY
SRETRYS
#B

Ea
e

irl
m
L
i

e R
o}

i

Dy
[
o

o, b
[ninis
coT
COR

E.H
E.U
oo

#11
ChE

U SET TO RERD DIRECTORY
DCRSEC, U SET TO RERD FILST DIRECTORY EMTRILS

SOAVE OPTION
TRACK

Iz READY

% CHAMGED IM VER B %%

oo PHYSICAL READ
GET ORIG MER OF RETRYS
IF I-0 0K

DRIVE HOT READY?
IF I sHOULD TRY,

SOME MORE

GOOTRY SOME MORE
IF,STILL ERROR

EMTRIEZ IM THIS RECORD
MUMBER OF DIRECTORY

FOINT AT
OFTION?
IF LOOKING FOR A MATCH
LOOK AT 18T BYTE

IF I FOUMD RE-USRAELE, SFACE
IF MHOT USERBLE

SYSTEM BUFFER

RETURHM, SUCCESSFULLY
Lok
IF DELETED ENTRY

IF EMD OF DIRECTORY EMTRIES
CHARACTER POSITION COUMNTER
CHRE IM DIRECTORY FILE MAME
CHR IM DCB FILE MAME

IF HMOT A MATCH
MORE CHARACTERS TO COMPAREY
IF YEE

I BUFFER

EMTRYS FER REC

AT 15T BYTE OF DIRECTORY

EJIASM

FHRGE

B@aua

a1
a1@aan
aiiga
aiiglnA
R
211iazA
21ia4A
2110ER
B1igen
a1iavAa
aiige
a1igan
aiiien
aiiiiA
@iz
111z
aiiid
21iis
aiiie
1117
Biile
aiila
aiizen
a1iziA
a1l

B IR 3 R i % }

@iidaEn
BiidiA
miidzEA
BmlidEA
BlidyA
B1i4ER
iidER
B1i4TA
Biidan
miivaEn
BlisEn
BliE1A
BliszA
EEA
B1iEHA
B11EER

is1a

a2E RTH

ooy
dmuis)
oD
aCoF

BCET
QCES

BCER
BCEC
QCEF

aLFz
ACFY
BLFT
ACFA
BCFC
ACFF
rinlz}
alhay
rdulri
noas
paninic]
noaE
aoan
aharF
aoia
rink el

ol
baxd

o

T
B

e
EBE
E
ED
E
ED
E
ED
a4
UF
iF
ah
1
UF
E&

EAn

LA
Pl

]
0 e

L IS 0
DUUIE = i =T

2
=il

L]

DR)

o

ot
L
3 T

]

Ex B B
o

P
[

o0
O et O b

pd

e
OO 00

03 g
SO

ani

I3

anieE

0Dos - SUPPORTIMG SUBROUTINES

® MATCH FOUMD
ERA

FOIMT TO HEST DIRECTORY EMTRY
MORE EMTRIES TO LOOE AT IM THIS
IF YES

LERH:
DEC
EMHE
IHC
Log
CHPA
BCE
® DIRECTORY
chge Log
STH
FULS

BESED, U
DCESEC, U
#1z MORE DIRECTORY
[N IF YE=Z
EMTRY MOT FOUMD OM THIS
#EFF

RECORDE TO RERD?

DRIVE

O, FC

o
* PHY
GIVEM:

FUMCTION:
#

g e D A e D S e e R e R R R R R R S R L

TCAL DISE READ

=-=0CE

READ IHTO DCBBUF

SHOTE: DS M RETRYS OM ERROR &

RETURMED: DOBOK RESULT CoDE
L Z\E 21]-: # ? "l]- >

READ SECTOR OF O

SHIP OVER HMEST INETH

TIMES:

#E
LEC

DEKRED

LoA
FCE

#
R R

oo ool o ok ol ok b ok ko

REOVE
e R %
#3 WRITE 0OF CODE
DoEOPC, U
OCEMDT, U

DEEWRT LDA
DEKTIO

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

CLR
FARLL

EIE S

kA

K3

K X

CALL O M

GIVEM:FRARAMETERS IM DCE
FUMCTIOM: “FER FRRAEMS TO [Cooe]
SO0

* LT CODE TO DCE
* ILT CODE IM A

g o O O o L o

XFRIOF P

o
DCETRE, U
o
DCEBUF, U
e

oF

AIDEMT

A, DOF
DaIm
oF

Do I @

GET RESULT CODE
IF MO ERROR, EXIT

LOE L
IO

RECT

EJIASM

FRGE 221 RTH PRt Oo% - SUPPORTIMG SUBROUTINES

GEMERATE ERROR HUMBER BRSED O WHICH BIT IS OH

aoiy &2 wIOA 5 THIS BIT ZETF
aoie 2 e aoiA “I0R IF YES
o1y
aoie
A B0lA 4O
aoie 3h Gy

pazy

iRt
BlLEd
BiETE
BiLag
iRt
R =trir
aiEla
a1
Blesg
Bleua
BlEna
BlEsg
BLETR
Blesmg
aleng
v
aivie
BiTze
et
BTG
B1TRe
BiTER
BLyvTe
BiTEe
BiTvae
Bisng
aizle

FA aaiy AI0A

B, ¥, PC

=l ERF1+ERR2+ERRS+ERRY+ERRS+ERREG+ERRT+ERRE
* THE REOVE SIMPLY PUTS ERR1-8 OH THE ®REF HMAP
ooTo =

AoBDiD 34
aoiF B @EZZ
A oBhzz BE Coay
aozs BE Ay

o e e i

STEM FUMCTIOMS
5 EUFFEE U ED

Lo DIETH} i

i TRACK & SECTOR

ERRA S IOEMT FIMISH UF LIKE USER IO
&
EREEEE R E RS R R R R R S P R R R R RS E
EM FUMCTION
R R EEREEE S

aoEF BE @z HOSYSWRT LOA

aoul 2@ EEB poza EBRA
*
ER R R R R L R R R R R R R R R o sy R R R R R S E R RS R %3
IF DATA IM BUFFER HAE BEEM MODIFIED MOT HMOT = @1 CHECE

T SEE IF WRITES ARE ALLOWED. IF MO, DO MOT SET ERROR - JUST ERXIT.

IF YES, REWRITE BLOCK IM BUFFER {EWIT WITH ERROR IM A IF WRITE MO GOOD.

a1iak
Biioe

G DCBEFRM = PHYSICAL REC HUHEEE THHT Is

#
£
#
£
*

=gl H DCEMOT, U DATH IM BUFFER MODIFIED?
oz anuA Rl IF YEE

RH =
oa 1@ B RWL LA DCECFE, U
oz A AMDA #0OUT ARE WRITES ALLOWED?
F7 BOYE BEGL IF MO, ESIT WITH MO ERROR
L1 anaF BER RE-ESTRELISH TRE & SEC FROM PRM
Fi aoys EME IF MG, ESIT WITH ERROR
23 ACER ERA GO DO REWRITE & RETURM TO CALLER

e 1t
e v
e g
e batv

23 HAE
ALCULATE RELATIVE BYTE RADDRE
{OCEREAR = D!EHx: ® OCBLRMY

D S O S S S S S S DR S R R 0 S R R L . R . . S R R O R O O O O O O O O 8

FEE L
L RECORD HUMBER

FROM LOGTI

*
*
#
#
#

K
BaoeET I To A CALRER P

EJIASM

FRGE 822 RTH SH: @ D0s ~ SUPPORTIMG SUBROUTIMES
BLZ14A B@ass za@ H LE, & OCBEREA, U
B1Z18A BDEC 31 A LERAY DEEEQZ.U
BizZien BDEF 23 H LE, U OCBELRMH, U
BIZITA BREZ EF A CLR 2
BizZisnA posy BF H CLR

nREE EBF A CLR e
AoBaEs AE H LOA 1.%
BoOER EE A LOE 1,U
aoec 20 ML
npEn ED @l A ET0 1.5
noeF A 21 H LOA 1.
naTl EE Cu A LDE WU
naTE D@ ML
naTy B3 8y A ROOD 5 o
maTE 2510 aoaEs EBCS CRERER IF CHRRY
maTE ED 8y A =570 5 o
BaTH AE A4 H LOA 27
aoTo EE Wl A LOE 1,U
BOTE Z@ MUL
aoTF EZ 8y A ROOD 5 o
p@sl 25 12 aoaEs EBCS CRERER
m@Es ED 8y A =570 5
n@ss A A4 H LOA it
npET EE Ol A LOE o U
n@Es e ML
ek noER ERB8 A RODE 5
@pizy@n ahec 25 @y aoaEs BCS CRERER
BiZYH1A BDeE ay A ! 5
BIZUZA Baon 5
BizZYEA peal nz nlr=l=y EME CRERER
BIZUYA paaz Fa H FULE Hy W, U, PO
BIZHER BRSE 1@ A LOA #ERRIE
BiZUER B@ay o Fa H FULE Hy W, U, PO

B1zUT
Blzus
m1?u4

CALCULATE TRACK & SECTOR

GIVEM: DCEBFRM = RELATIVE RECORD MUMBER

FUMCTION: FOLLOW CLUS EE CHAIM UMTIL FROPER CLUSTER FOUND
RESULT: DCETRE & RECORD IM RAMGE
THEY FOINT TO IF MOT IM RAMGE.

A = ZERO IF SUCCE

MOM ZERO IF HOT
o o o s oo o o o

DLEHEH I DESTIRED REC HUMEBER

DCEFRM U SAVE AS THE REC IM THE EUFFER

QCEFCL U

Fy®

H#FATS

R pass EC
B1283AR 2@3C ED
BI1ZEQR QR3F AE
Ei’klﬂ oAl 24
2oOAs SE

20OAE AE DCEDRY, U

aoAD CE #FATEZ

aoAE 2@

aoAc 22 Oy FOINT TO PROFER FRAT TRELE

20AE EC DCEFRM, U REC MUMEBER DESIRED

OBl B2

aoEZ 2B IF AT EMD OF CLUSTERS {MULL FILE:
A BDEE 23

IF IM THIS CLUSTER

B1271A 2DES

1B anne BCE

EJIASM

rideac]

B1ZavdA
B1Z95EA

B1EREA
B12032A
B12R4A
BizBEA
B1zRER
Biz@aTA
21202
B1z03

a1zle

miziiA
B1E12A
B1z2132AR
B1EI4A
BizitA
B1zle

pRchin

RCHR=12]
21213/

RTH

aoco
aocF
aool
annz

anps

ooy
anna
aooe

anon =

anoF
aoE1
anE:
aoEL
anET
aoER
anES

BOEE =&

anFa
noFz
alnFy

BOFT i

anFa

anFe
aOFE
anFF
=g
aE@Y
BERE
rl=gulss
BEBR

EQC

A BEBF

PELL
BELZ

M&Mm-mmmE

L]

L]

E I I p QO iy 5]

ot

m o im
ot B}

o D
i s 5

o R

o B x 1)

) g
DEa I i w I 5 BN |

T S

Do I OO T N N I 5]

T T S 0
]

LA

i S I B |
PO S O e]

1
R =

Lo R
UL

D a Il
o0 e T T

o ST S

L e]

3

TS e

12

12

Iv I

DERE

A
anoi
BELF

oos -

SUFPORTING SUBROUTIMES

FEHS
LOA
LOA GET HEXT CLUSTER FOIMTER
EMT IF AT EMD OF CLUSTERS
ETH
FLLE
EFRA
CER FULE
*
REC IS BEYOMD EMD OF CURREMT CLUSTERS
AN T ALLOWED TO ADD AMOTHER CLUSTERY
oE3 LOR DCBCFS, U
AMDA HEATEMD @AM I ALLOWED?
EME CEE IF YES, GO TRY IT
CEEA LOA HERRLT ESTEMSION HOT ALLOWED
EFRA CSERR
*
RECORD IS5 IW THIS CLUSTER
(=1 ADDE #1@ TRESULT IS 1-33%
I5 THE SECTOR MUMBER IH B IM USE IM THIS CLUSTER YETF
LOA .5 {CLUSTER HUMBER)
Fy I% THIS CLUSTER THE LAST IW THE FILE®
[IF Mo
SHE o CLUSTER HUMBERSSECTOR MUMEBER
I% THIS RECORD BEYOMD CURREMT LAST SECTOR USED?
LOE Ay
AMDE HED CURREMT LAST SECTOR USED
CHFE 1, THIS OHE
EBCC CEUA IF THIZ IS S5 OR EQUAL TO CURREMT EHD
LOE OCBCFS, U GET FILE STATU
AMDE HEHTEMD FILE EXMTEMSIONS ALLOWED?
EME CEUE IF YES
CEYAE PULE o
EFA ESTEHSTION MOT ALLOWED
CEHA EME CEuc IF HMOT IM LAST SECTOR
LoE DCBCFS, U
AMDA HESTEMD ALLOWED?
EME CEUD IF ITS OK
I5% REC BEYOMD LAST BYTEY
LOE OCEREA+Z, U
CLRA
CHFD OCEMLE, U
ECS CEus IF Ok
EFA HAE IF MG
EATEMD LAST SECTOR IM THIS CLUSTER
CEHE LOE 1,5 SECTOR HUMEER
OFRE #EC@
ETE Ay FUT IM FAT THELE
FHAT HAS CHAMGED - CAM I BYPASS UPDATE THIS TIMEY
Loe OCECFS, U
AMDA HFAST
EME CEUD IF YES
ESR WRTFAT RE-WRITE FAT THELE TO REFLECT CHAMGE
EEQ CEUD IF L7 WAS Ok
FULE i)
LA HERRLE FAT FRW ERR
CEERR STH =
FLLE Ay, PO

EJIASM

FRAGE @24 RTH LEH @G Oos - SUFPORTIMG SUBROUTIMES
= A CEHC FLULE i) COMTIMUE - IT IS MOW WITHIM RAMGE OF FILE
RECORD IS5 IW RAMGE OF FILE -~ HLATE CLUSTER IWTO TRACE SECTOR
EY A CEE LOA = CLUSTER MUMBER
LERA I5 THIS AM ODD CLUSTER?
nz BEZE EBCC CEEA IF Mo
k=] A AODE #3 IF YES, USE SECTORS 1@-18
CE 23 A CEEA E5TE DOBESEC, U
11 A CHFA #1T I5 CLUSTER BELOW DIRECTORYT
mi BEZD EBCS CERE IF YEZ
THCA IF HOT GO OME TRACKE FARTHER
CE 22 A CEREE ETH OCBETRE, U
EY A CLR =
HE =] FLULS
Z-(lf
TRY TO ADD AMOTHER CLUSTER TO THE FILE
MEST CLUSTER USED WILL BE THE CLOSEST OHE TO THE LAST OME USED BY
THIZ FILE. IF FIRST EVER FOR THIZ FILE, IT WILL BE CLOSEST TO MIDDLE.
BI3YTA BEIT EE EY A CEE LOE = LAST CLUSTER MUMBER USED
pizdsR BEID ZR Z BEZD EFL IF HOT VERY FIRST ASSIGHED TO FILE
BlzdaR BEIE CE 22 A LOE : START SEARCH AT CLUS a4
B1ZE@A BEID UF CEER CLRA STARTIMG DISFLACEMEMT
BI3E1A BEZE 34 [l A FEHE D
z2 # LOOF TO LOOK FOR AM AVAILABLE CLUSTER
BEYH AE El A CET LOA 1,5 LAST CLUSTER OF FILE
BEYE AB EY =] ADDA = ADD ODISFLACEMEMT
BEUHY 21 Ly A CHFA HEE IM RAMGE OF TAELET
BEUYE 24 = BEWE EBCC CETH IF Mo
BEUYE EE 86 A LOE # GET FAT TRELE EYTE
BEUM CL FF =] CHFE I5 IT AVAILAELE
BEUD 2T 1B BEES EEQ IF YES
BEYE AE 51 A CSTH LOA
BEED ARG EY A SUER LOOK THE OTHER WAY
BEERZ 2B rid= BEERA BlE IF HMOT IM RAMGE OF THE THELE
BEEY EE EE A LOE GET FAT TRELE EYTE
BESE C1 FF =] CHFE AVATILABLEY
BESE 27 aF REED EBED IF YES
BESH A EY A CETE LOA
BEED WO THCA
BEED AT EY =] ETH =
BEEF 21 Ly A CHFA HEE HAVE T TRIED ALL FPOSSIEILITIEST
BEE1 ZE oo BEWD ECS CET IF HOT YET
hE A FLLE] MORMALIZE STRACE
A BEEE =8 18 =] LOA HERRZZ OISk FULL
BEET 2@ EZ BELE EFA :
A BEED EE B2 A CEg LOE ORIGIMAL EMDIMG CLUSTER
BEEE 2R iy BET1 EFL
BEED AT uo =] ETH BFCL, U THIS IS FIRST CLUSTER
BEEF 2@ nz BETE EFA r]
BETL AT g =] ETH E. ADD TO CHAIH
BETE CE (] A LOE #EC@ SAY MOME OF THESE SECTORS USED
BETE ET oE =] E5TE 2P
BETT =& nE A FLLE]
BETH ZE 1z =] FULE 2P HORMALIZE STRCE
BETE TE noarF A JHF CEEMT GOOTRY AGAIM FROM THE TOF
k3

OB R T R T O T O R o o R O R o o R o K
* REWRITE FAT TRBLE OH DIRECTORY TRACK
%

EJIASM

FHRGE

g

Bi4pan
aiupiA
Bi4pzA
2iunzA
Bi4auda
BiunLA
Bi4pen
aiuaTAa
aiyps
aiupa
aidia
fiuil
41z
aiu1z
aidiy
iuis
Bidien
iui1TA
aidizn
aidian
aiyzen

BiuzzA
BiyzuA

aiyzan
aiuziA

aiyuan
aiuuinp
Biyuza
aiuuza
Ziyuye
fluuLR

RTH

QETE =

BESZR
BESZ

A BE2E

BEET
BESA
RESC
BESF
PE31
BESZ

BESE 3

BEST
E3S
BESA
BEZIE
BEAR

PEAZ 2B

BEAY T

BEAT
BEAS
BERE
BERD
BEARF
BEEL
BEEZ
BEBL
BEET
BEEBSD
BEEE
BEED
BEEF
BECL
BECE
BECE
BECT
BECH
RECE
BECD

BECF
BEDE
BEDE
REDS
BEDC
QEDF
BEEZ
BEEE

un

Al
TE
[

Fo

33

i@
Cpne
nz
=]
e o2l
=3}
iiaz
21
EY
21
[lik]

b e T e e e e i e e

=B
aF
B
=1
SR

Capy

s i e i

arone
rul=t=in]
aEEl
ul=t=1s
aAUE
acgs
acEL
riinjede]

T I I D I D I M I D I D I D I D I D I D I

4 BEDC
aF BElE H
BFFE A
12[2
frl=ed=s

Los - SUPPO

EIE R SRR
WRTFAT P

TFR
JER
FLULS
LOA
FLULS
TTL
*
EXEE R R R E
OM DISK,
I RECDRD
LDADED IH
DDWH TD T
ook ko ok b ok
JHF
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE
FOE

MIMIMUM T
oosl

oos
TETA
BEQ
TSR
THR
Loo
=TO
RTS

RTIMG SUBROUTIMES

WRITE
DCRDRY, U
L HE
#E11@2
Qo

L5 ADDR
L

OF
CLRA
[, OF
[$C@au]
OF

TRACK 17,

SECTODR 2

OF FAT THELE

ooIn

2

L P

ESULT OD0s - PAGING & DVERLAYS

o o o S O S R O S R O R
THIS FPROGRAM BEGINS THIMG THAT PRECEEDS THIS PDRIMT
ED O DISE AFTER THE EMD DF THE DVERLAYE. WHEHW DDES IS FIRET
TOOMEMDRY, THE RDUTIME CALLED 'DURLAYY SHIFTS THDSE RDUTIMNES
HEIFR FROFER FLACE.

2 T TR TR R o TR O O R o 8
noEl JUrMP DVER DIS
Bl-005
BE-00%

BE3-00%
BU-00%
BS-00%
BE-O0S
BT-005
BE-00%
Ba-00%
Bla-Dos
Bli-D0s
Bilz-005
Blz-00s
Bid-D0%
BilE-D05
Bile-D0s
BiT-005
BiE-D0s
Ela-00s
Bz@a-D0s

MITIALIZATION FOLLOWS

OO, ITHIT GD IMITIALIZE

R R R R O o
LACEMEMTE TD DVERLAYES

deokodkok bk o bk ok ok

{MEML ETC)

ooEz

[ERRDR]
OEARSTC
H#IOWRLAY
sl LD

EJIASM

FHRGE

rdredetn]
aupa
aayia
pauza
et}
pauua
it}
pauea
aayTa
pauza
Bayng
rdrd=yrdn
asla
rdrd=pedr
rdri=petn]
asua
rri=g=tn]
RaLER
RETa
rdrd=gatn
ulri=netr
udrd=grind
aEla
rrizpedn
DREDR
BRELR
DRERR
DREER
BRETR
rdrdatatn
BaEng
QaTRg
aaTie
vl
v rpetv}
aTua
pATER
paTER
aaTTa
QaTae
BATHE
urt=drivd
aasla
rri=hedv
rdrisdetn]
ului=ar)
=it
rdrdatatn
BaETE
pazaa
rdriedetn]

mEe ML

BiUEER
BiYEER
BIUETAH

BiYEan
Ziueln

BiYEYH
BlUERR
BiYEER
BiUETH

Biuean
BiyTan
aiuTiA
BIYTEA
BiuTIA
BIYTHA
BIUTEAR
Bi4Te

BiUTTA
=]
aiuTan

QEEE 24
BEED EE
BEEER Uy
BEEC 24
QEEE 2B
BEFR 3B
QEFZ 24
BEFY
BEFE
BEFZ

0

PEFS 2
PEFE C
PEFD 3

BEFF
aFQa
aF@al

0
LRI s € S S S S o e

PFOZ &
PFO3 &

FQE
aFaT
aF@as =

FaE
BF@ED FT
oFip 2B

T

DoOs - PAGIHG & OVERLAYS

#
R BT R TR O O R R o R R o R o o R R o
8 BIT FRIMTER DRIVER

GIMEM: A=CHR TO BE SEMT TO PRIMTER

RETURMED:A IM TRCT

* Coo= & COMDITION IF SEMT O

HOM-2 IF PRIMTER HOT READY - TRY
TR B R O o R B R o o

* o
R R R B R R
I% FPRIMTER READY?
OFRHT PS (A
= =UYEDR
LOA
LERA ol IF RERDY
ECC #1 SET MOM-Z COMDITION
LOA O,8,FPC
OF1 FLLE [N SAVE THTERUFT STATUS
FEHS MO IHTERUFTS DURIMG HARD LOOF TIMIMG
DEABLT 1,5 CHR TO SEMD
LOA
CLRE SEMD START BIT
ESR LFSHD BITS TO SEMD
LOE #a LOoF COUMTER
oFz FEHES E
CLRE
LERA
ROLE
ROLE LFSHD SEMD THE BIT
BEF .-
DEC oFz GO OBACK
EME E
#IMITIATE STOF BIT IT COMTIMUES UMTIL PRIMTER SAYS "REARDY '
LOE #E
STE =LUHADR
FULE CC RESTORE IMTERUFT STATUS
CLRA SET ZERO COMDITION CODES
FULE O,H,PC
LFsHD =TE =LUHADR LATCH BIT TO OUTRUT
LI =RATE TIME COMSTAMT FOR TRAMSHMISSION
LFOLF LERHE ~1,H
EME LFOLF
RTS

#
oo o oo oo o oo o oo oo ol oo ol oo o o ook o ok o
TURM OM OR OFF A TIME DRIVEM ROUTINE

GIMEM: U-x START OF ROUTIME THAT FOLLOWE
oo o 2T SRR T o T T T I 0 R o o SR R R 8 R

A DTHEOM PSHS OLu

TETAH REO FOR OM OR OFFF
EED OTHEOF IF OFF
Loo »IRO+1
=TO 1.U
LEAL .U
ST IR0+
FULS O,U,PC
#
bR DR T T T o R B o DR R T o R S R o o o R R R 4
TURM OFF A TIME DRIVEM ROUTIME
GIMEM: U -3 START OF ROUTIME

EJIASM

[R=Tr e
B150EA
B1sRER
B1E07TAH
B1sReA
21503/
R=R RV
21s11A
B1E12A
B15132A
B1E14A
B151ER
R=R =T
EIEITH

B1EUTAH
FR=T 2=
A= 2= 12]
B1EERA
RT3]

EIEEE
B1EE3A
B1EERA

2iEUl B1EELA

LXK]
]

w00 T
=d 3T S L

BFEE
oFEE
BFER
BFEE
BFEL
FEZ
BFEY

TE
Fi

Fo
UF
1F
2@

ol
PEZE
iF
11
4

oy
L
=
UE
=

oy

aFap
i@

BEZE
i@
1E

14

v I Iy I I

aFYa

aFYD

I I I

]

I I I I

oo

R R SRR 3 R

DTHEOF LERU
FEHE
Lo
R
CHPE
BEGH
CHPE
BEGH
TFR
LEAU
EBRA
FULE
PULE

OTo

oToz
&
OTOZ LOX
STH
PULS
FULS

AHDARD

FOIMTIMG
U POIMTIMG

- PRGING & OVERLAYS

i

Aald
$IRO+1
L
$STOTHE

OTo:
o,u
-2, U
oTo
Hald
o, U, P

AT DESIRED
AT WHERE THAT FPOIMTER

o
2.4
s L
.t

O,U, PC

SR K B o o R R R R o R K
TIME ROUTIME - LIME

R SRR

R
TORED

ADDOR IM CHAIH

LOOK AT ADDOR OF MEXT R, UTIME
IS IT EMD OF CHAINF

IF YES, GET OUT

IS IT THE OME SOUGHTY

IF YES

ROUTIME
CAME FROM

GET RDDR THAT DESIRED R,UTIHE POIMTS TO

UMLTIME HIZ ROUTIME

IHITIHL TRART UP

e o o o o o o oo
ROUTIME

B R B B K g B O R K e A O B K g B O B O B K R B e K R B O B K O B B K g B O B o R B O B K g o R B o g K R B o g o R Y

STHE
STOTHE

THP
Lon
IHCD
STD
CLREA
TFR
ERA

GIVEM:

OMERLAY IS

® MOTE

Wi
FCLOCE

»CLOCK

A, OF
STH

TEH OWERLAY
OUERLAY MHUMBER
LOADED
HOT PRE

g

IF MOT FRES
RYED

EMSURE ROM ROUTIME USES PRAGE ZEROD

EIE R SRR S

{0R U
T "a»

ER OVERLAY

EMT IM MEMORY
- USED FOR OVERLAY
Aok

BASE ADDRE
LR

FOINT AT CURREMT OVERLAY LOAD
IS THE DESIRED OVERLAY ALREADY
IF YES

AREA

SYSTEM OR
IF USER
LoRD THE OVERLAY

HEERT

LoRD THE OVERLAY
IF Ok
IF LOAD ERROR

WHERE TO GO 0O THE WAY BRCK FROM THE

OVERLAY LOAD AREA
EMTRY POIMT WITHIM OVERLAY

FROVIDE USER WITH HIS BRSE ADDRESS

THEREY

OYERLAY

EJIASM

f1saa
BlEDE
BlEna
BlEla
BlEze
BlEza
BlELa
BlEER
DlEEd
BlETR
lezg
Bleng
a17na
aiTie
ai7ze
B1TEe
QiTua
B1TER
2iTeR
2iTTR
ivae
B1Tae
Blsng

aig
Blasg
fizea
BlaTe
fizag
aiang

et}

pz2iga
Bzl
iz

g =grir]
ileniA
R =gride]
B1ER2A
R =gr]
B1EREA
BlEREA
B1ERTH
BlEneA
Blen3a

BlEla

2iE1l

BlEls

B1E12A
R R R]
B1E1EA
BlElER
B1E1TAH

BFaE
BFaz
BFaY
BFEE
BFag

oFae =

aFan
2FAR

A BFAZ

2FAY

BFASD

BFAE

BFRE -

FER
BFEZ
2FEY
BFEE
FES
BFER
2FED

BFEF &

BFCL
BFC3
BFCT
BFCA

0w
T

EC
2@
el
EF

ok

=18
a4
EC
ED
[

ED

el

BFCC 2T

2FCE

aFDp =

aFDz
aFOY
aFDe
aFOE
aFon
BFOF

i
1azE
CE
ED

TE

ok

iHe DoOs - PAGIHG & OVERLAYS

=y
=B
e
BEZE
L)

Loo s GET SIZE OF OVERLAY

LERH: = FOINT TO EMD OF OVERLAY

LER: FOINT TO BRSE OF MEXT OVERLAY RARER
575 FOLYLOC

FULES B, x5, PO BRZE ADDR OF OVERLAY

e o e e)

OF THE WAY BACK, ADJUST OLYLOC
YEEY PEHES I
LD =OLYLOC
LERH =3, H
Loo 5
HEGD
LERH A FOIMT AT BEGIMHMIMG OF OWERLAY I AM ESITIMG
5T SOLYLOD SRAVE IT
FLULS Co, 0,8, PO

e o e

GET SIZE OF THIS OVERLAY

oo o
-} T
o
o
Iv I I

&

R R R R R S O O o O I S O o R R o R R R o R R e O e R e

RETURM FROM OME OVERLAY & HWFER COMTROL TO AMOTHER

GIVEM: STACK HORMALIZED AS IF READY TO RTS FROM AM OVERLAY

A = DESTRED OVERLAY HMUMEBER

R R R R R S O O o O I S O o R R o R R R o R R e O e R e

OUSFRED ORA #Ea@

oo FEHS
Loo
STD
Loo
STD
FLLE

o
L]

SHVE D
{RET ADDR TO SYS@U:

CRUSE 'RETURM' TO S¥S0OLY AFTER "UNMDOING'

OO T S O S 00
s e e e e i

LU =i B O
faxl
&

RETURME TO sYsau

#
bR TR R TR R O R R o o R R o
TEM OVERLAY {OR USER OVERLAY X

Y MUMEBER

FEHS Yy U

Loy =LUEREBSE

Lo #USROCE

ESR FAGETH LOAD THE OWERLAY

EED SO IF LOADED Ok

LOA HERRZE

PLULS WU, PO

FEHS iy U

Loy HOOS+1 LOC OF OWERLAY'S RBEA TABLE IM MEMORY
Lol #OOSOCE POIMT AT SYSTEM'S DCE
ESR FRAGETH LOAD THE OWVERLAY

EME ABORT IF SYSTEM FRAILURE
FULE Yy U, PO

o R 0 O R S R R o XK O O O e 4
FATAL ERROR OCCURRED I O
o
ABORT LD #Euon WID

Lol HHETHEG

LOE #1E

LESR HFRUX

Lo #EUpa

LOE HIEE

CECE R SRR R R RO R
s - CAM'T PROCEED
=

aupa
1aan
1@

FCTE
aupa
Fa

FCT3 QCET LESR HFRLUE

B R]

=

1

T
I

EJIASM

FRGE 223 ML SRR DoOs - PAGIHG & OVERLAYS

BFFY 20 aF 1@3Es ESR
@FFE 4D OBMASTC TSTA
BFFT 27 rd] laae EED
BFFa 18CE ayan A Los
BFFD ED BEDF =] TSR
1aaa oos
l@gae TF maTl A OBASL CLR
1ggaa BE A JHP
l@an B3 A ABTHSG FOO
@1z E@ A FCB

=]

A

DERR

WRIT FOR A KEYSTROKE

STHCE & OLyLoo

1@l b Fic SFRILURES
FOE FEaED

121E ERER

#

R R R R R O R R R R R R R

USER AEORT ROUTIME

ERROR MUMBER IHM A

ERESEE R EERESEEREE R F 5

DERROR TFR A,EB
LOA #1
FEHS]
Lo HE@
Loy #ED
Lo #i@
ESR DorAR
FLULE i)

{ROD ZEE TO ITE

SAVE FOR LATER

START OF IMSTRUCTIOMS
EMD OF IHSTRUCTIONS
CLEAR SCREEM FIRST
GIVE IHSTRUCTIONS

BlE33A
Bledan
RT3]
BisdzA
B1EUZA
R =R]

B1EUER
BlEUER
B1EUTAH
BlEuan
aleuan

TFR
ESR

DERR 3=

BED
FTS

TEM POLCAT

O,
DOMAR

DERR

DISFLAY ERROR
WAIT FOR ANY KEYSTROKE

£
iy SR S R e Y O R S R R Y R R %
00 MAP DISFLEY FUNMCTION
aLc, fROK K RO R S R T R R %
A DORAR O,y
0o, MAF
O, U, PO

1@z
18Z2E
1oy

faxl
T
I

T
b
I

LoRD oMERLAY FROUDTIHNE
GIVEM: A=0VERLAY MHUMEBER
w PROGRAM DOE
Y- THELE COMTRIMIMG REA'S OF OVERLAYS
THE FILE MUST HAVE FPREVIO EEEM OFEMED

1F o oo oo ool o o ol ool dookodbokdokododok ok R R R o R O R o
lade oY BEZE FRGETIH LD LY LT

1

EE

wE E E E E E R

laus B 5TH =1,H
1BUE UF = TFR A, B

BIEESA 184D EC TF AMDE 2ETF

BIET@EA 1@4UF C3 LELE

1BEd EF CLRA

l@s1 ED HE Loo A

1@es oo AODD HE

1BEE ED == CLR DCEREBA, U

1@BES N E5TO DCBEREBA+L, U

1R Lo #2 LEMGTH OF A SIZE FIELD

1BEF E5TO OCERSZ, U SET TO RERAD 2 BYTES

I I I I

2 BYTES PER VECTOR

GET RER OF STRART OF OMERLAY
ADTUST TO RBA WITHIM DISK FILE

;I I I I I

B1ETTAH

EJIASM

B17TREA
B1TREA
B17TeTAH
gt
B17RaA
aiTie
21711
1Tz
171z
B1Tid
2171E
Bivie
17T
Bivie

O E E S S & S & &

1@3g
1gac
1@3F

12A1

12A2
12AE
1aas
1@AC
18AE

1ge® -

1082

12EY

127 C

12ER
12BC
12EF
18C3

RE
1F

1aCE
EE

ieDa@
riEpetal
mEis
=i
[}
3F
Fa

rl=grdny
114
ce

BCEF

a4aa
aien

ot
L)
fas)

Ao D DD D DD DM D DD

v Iy I on

Iv I I D

I I

DoOs - PAGIHG & OVERLAYS

STE DCBELRE, U

Lon #EFFFF

STO DCBEPRAM, U FORCE IMITIAL PHYESICAL RERD

EBSR FIRD

LEMH .

Lo [OCELRE, U] LEMGTH OF ROUTIME {IMCLUDING SIZE WORD:

STE DOELRE, U WHERE REST OF OVERLAY GOES

LEAX FOIMT TO EMD OF OVERLAY + 2

STO AVE HIS SIZE AT EMD

CLF COHD VALID OVERLAYES FOLLOW

SUERD E OF THE REST

ETO DCEREZ, U SAVE AS RECORD SIZE

EBER FIRD

CLRA

RTS
FIRD oos READ, REA

EEDQ FIEFRS

LERS 2.5 EYFASES RET ADDR
FIERR LI s LT

CLF . i SEY THIS OVERLAY DOSH'T ESIET IH HMERORY

TETH SET COMD CODES
FIER® RTE
*
A O R R O S S O o e e . A B R R R R R O R
MIMIFMUF LOGIC TO LOAD & PRSE COMTROL TO USER PROGRAM
#® JUMF HERE FROM OVERLAY 12
B o OB O o A SR S T TR o o B R o R o . R R o B R o . R o o B R o R SR o B R o R o o R SR o B R o o R o o 4
E1ZA i READ,REA READ IWM THE ROOT SEGHENT

LI DCBELRE, U BASE OF PROGRAM

TFFR o S JURF TO ROOT

*
FCE @ FLACE WHERE HUMBER OF 157 OVERLAY LOADED GOES

*

BB S O O R O O N T O O N N e O O N 0 . O R R o O O o O R o O R R o O N o . Y R

LAY S ECTION FoLLows

FOLLOW ARE RELOCATABLE.

I LOADED AT THIS ADDRE

L

R R K

R R R

THE FOLLOWIMG ROUTIME SIMPLY SHIFTS PART OF DOS DOWM TO 283, IT
I% LOADED AFTER THE EMD OF THE REST OF THE FPGHM S0 A% TO FREVEMT
COMFLICTS WITH BREIC.
IT Is CLOBEERED WHEM FIRST OWERLAY IS LOADED
OWRLAY LDE
Lo
Loy
VL LOA 5 Fk
ETH R
LEAY =1,
EME OWLF
IMITIALIZE MECTORS AT $E02
Lo #EE00R
LI HUECTIMI
LOE HEMDVEC-VECTIHT
TSR AFREL MOWE IT TO $50@
FROM THIS POIMT OM, WECTORS AT %500 MAY BE USED
Los HETACE
Lo »IRO+1 VECTOR TO DISE ROM TIHME ROUTIHE

#
#
#
#
#
#
#
#

“FER

EJIASM

B1733A
B1THaA
B1iTuiA
BiTuz

B1TUZA
B1TUHA
B1TUER
B1TUER
B1TUTAH
B1TUHER
a1Tuan
B1TERA

lace
18CE
lany
1207

1208
1ann
1a0F
12E®R
12E2
12EY
12EE
12ES
12EC
12EE
12F1
1aFy
laFsz
1aFe
1181

1104
1ige
1igz
112R

A1l

112E
111@
1112
1114
111e
111z
111R
111C
111E
11z2@
1122
1124
11ze
1127
1129
11:2B
1120

2ECE

2ECE

12E

oo

LEAS
E5TH
Lo
nos
Lon
A 570
DETERMINE
A LD
LOA
COME
ETH
CHPE
EBEO
LD
ETH
Loe
ETH
Lo
Lhs
JER
oos
JHP

] I I I I

DO R)

ouLPl

s e e e e i

]

#

VECINT FOR
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FhE
FCB
Fhe
FhE
Fhe
FhE
Fhe
FhE
Fhe
FhE
FhE

;I D I D I D I D I D I D I D I D I D I D I D I D I I

® IMIT
Foro
FoB
FCE
FoB
FOE
FoB
FOE

s e e e i

COPY O

- PRGING & OVERLAYS

FOR WHICH INTERUPT IT
EMTRY POIMT

EYFASES CHECE
IR0+ STORE REVISED
HETHE

TIME, OH
HPOLCAT
#HEYTIH

o

ADDR OF ROM KBD SCAM ROUTIME
SAVE IM EEVIM VECTOR

MEMORY SIZE

EMD OF 22K

#ETFFF
OWLFPL
#EEFFF
SHMAEMEN
#U
ORIVES
#OOS0CE
HETACK
ooss
OFEM, THPUT RERD OHLY
nos

MACHIME

MAX MUMBER OF DRIVES

DOPEN
OCLOSE
DREAD
DWRITE
DRELEE

FOIMTER TO OPEM FUMCTION

RELERSE I.0 EUFFER

CRLL SYSTEM OVERLAY

JUMP BETWEEM SYSTEM OWERLAYS
LOAD A SYSTEM OVERLAY

CALL USER OWERLAY

JUMP BETWEEM USER OVERLAYS
LoRD A USER OVERLAY

USER FATAL ERROR EXIT

TIME ROUTIME OM-OFF

BEIT PRIMTER DRIVER

@ SLOT FOR KEVWIH

OBASIC RETURM TO BRSIC

@ IHITIAL CLOCK
E IMITIAL RETRY
FRE FRIMNTER TIME CO
OURLAY LOAD ADDRESES FOR
o ;

RETURH
RETURHM
RETURH
RETURHM
RETURM 5

3 RETURM CODE FOR HOOKS

UsROLY
DUERGD
LERLOD
DERROR
DTHEOH
DFRNHT E

STAMT

MEXT OVERLAY

EJIASM

[g=ditr]
aig@aiA
[g=dride]
B120zA
Blany
BisBEA
B1apen
BigaTA
Blapen
a1z0an
R R=R]
migiiA
R R=R]
1213
=R R]
BlEls
Bizle
@iEy
aiale
aiz13
BlEzen

=
b=}

@iaul
Blaus
aiauz
R]
BisdEA
aiauen
BisyTA
alauan
aizua
g ==t]
BigElA

116R
1175
117E
118/
118E
113@
1131
1133

113E
11AE
11AF
11ER
11EBF
11c1
11c2
1icy

1ico

1ico

11CF
1102
11i0e
1103
11nc
110F
11E1
11E3
11EE
11ET
11E9
11EE
11ED
11EF
11F1
11F2
11FY
11FA

POCHE R

oI

Lo i)

)
PO e T e} e T30

[]

o0
Dx e w I B

ot

v

T

Uiy
g
v
g
PECE
g
rlrgrde
g

;I D I I I D I

28
g
g
g
eECs
v
aga
v

o e o o o B T i v}

g

=6

npzz
zpa
rideget=s
Qaga
1@EC

e o e e e)

o
&
i
=
I I

A ENDVED

oo

Fog
copy
Foo
FCE
FoB
FCE
FOE
FCE
FOE
FCE
Copy
Foro
FoB
FCE
FoB
FOE
FoB
FOE
FoB
FCE

THIT

® IMIT

*

*

R R SR R TR R R R UR R R R R R B R Rk R RO R o R R
THITIAL START UP -~ CHECK FOR AUTO EXECUTE

*

bR R T R R O O R K R o R R K R
H OBl FOE
FOR AUTO PROGRAM EXECUTION

CHECK
Lon
Loy
Lo
JER
R
LOe
LOA
CHPE
EBEQ
Loe
CHFR
BCS
EORA
5TH
DECE
EBHE
oos
nos

STRTI

STRTZ

MEMLIZ
#
#
MAIH
kb

FhE
Lon
Loy
Lo
JER
® MOTE UL -

MEHU

- PRGING & OVERLAYS

2,

0F

@]
@]
@]
SYESBEUF
@
@
@

0,0,2,0,0,0,0

{SET WHEM USEDY

a,@,8,2,8,0,8

OF USER

R~ R T O
= -

EE-E1

#51
#%1
#5@
OoFARF
#USEOCE
#E

LU
#E50
MEMLIR
IR
#5500
ETRTZ
#54@
) HH

STRTI1
GO, EXEC
GO, MEMU

DoMAR
FIRST IMPUT FIELD OH 3

#USRDCE

U

FGH DCE

2,0,0,2,0,8,0

EMD OF FRESET DATH

SIZE OF OMERLAY

CLR SCREEM & IF RAUTO EXWISTE,

MAME LEHGTH
GET 15T CHR
IS IT A BLAME
IF YES,

GOOLOAD & EXECUTE

GO DISPLAY

- EHECUTE A PR

ZE OF DUVERLAY
STARTIMG LIME HUMEER
EMOIMG HUMBER

DISPLAY SCREEM FORMAT
CREEM
FOINT AT DCB
AnDR OF VIO

ARER

FROM SCREEH

MO FAUTD FUMCTION

FROGRAM

MEML & RE-IMITIALIZE

& GET ADDR

% DEST AREA

DIzFPLAY

SRR B R SR R R R SRR o U R R R R R U

f R R B TR R R O R RO T R O o R R K R

IT

OF IMFUT FIELD

EJIASM

e

T

nis
nisvEn
BiETIA
BisTEA
BiaTIA
@1'?4

SEIA

EIHEMH
aiapiA
EIHE “H

EIHEHH
2130E[
B1apen
21307AH
21902
Blopan

oLy . SH:

rul=3ul
REZE
28

REZE
aHis

g
B4

2
PE25

e
]
]

e o o o o T i v}

T

Iv I I

L e e)

0D I M I D I D I D I D I D I XD I I I o I

]

Oos — PAGIHG & OVERLAYE
OO, IFTELDT INPUT A
U

G, EXEC

FIELD

GOOESECUTE IT

oo o o o e e
MATH MEMU SELECTION
R R R R R R
BE FOE BU-B3
Loo MAEMER
SUED HEIY-EIZ+E ALLOW ROOHM FOR
=70 MAEMER
Loy OLyLoC
FEHS i
E5TO OLyLoC
Lo #EYBR+IE2-5
CLRE
Loy

EEREEE LSS R LR E EEF SRR Y
- THRH HH lLUEP DI FLHf

CLOCK

ROUTIME

DISPLAY AT TOP RIGHT CORMER
#7
nos
LERS .5
FULES Y
STY oLyLoo
Doz GO, MEMU

DO,REALTH TURM OM DISFLAY
MORMALIZE STHCK

*
A R O O S S S o o o L e e e e R R R
MAIH MEMUS SELECTION 4 - D L FREE HCE MAF
A R O o o o Ao s o o o
B FLE BE-ELU SIFE
Lo H#TH START OF SCREEM FORMAT
Lo #HEE EMDN OF FORMAT

Lo #0

TER QAR
CLRA

FEHE H

Lo #Euan
EBER FREZ1
OMCE FER DRIVE
CHPL #3EFF
B FRE®
FEHE L

LD ECRRE
LI
LIOE
STh
Lo
STh
Lo
STh
LD
STH
JER
LD
ETH

OISPLAY FORMAT
CORIVE COUMTER:
WID EBUFFER
FIHD STARTIMG DISPLAY POSH
LO0OF
FREL MORE DISPLAY
IF MO

SHVE MEXRT DISFLAY ADDRESS
FOIMT AT FARAMETERS
TRERAD Y

SORIVE:

ROOM?

,H;+
#Fii1@z
R

{TRE 17, BEC 2}

#2
+RETRYS
OoTo

#E
»RETRYS
FULE u

{OMLY 2 RETRYS)

{RESTORE TO B3
SOITSPLAY oo
Loy HEYSEUF
LIOE #
LOFA
BEQ
LOA

LOOF COUuMT
RESULT
IF ik

LA

FREE

FREZ #4558

EJIASM

FRAGE @34 oLy SH: @ OO% - PAGIMG & OVERLAYS
BEEEA Ai9i@a 129F 20 e 1203 BSR FREZET
pREED A1911A 1ZA1 EA OECE
BEATE BiaizA » FE FA 12an BHE FREZ
=1 I b R R EC EU A FREY IHC . ORIVE COUMT
B1aiYA AE EY A LA .=
B1a1EA a1 oy A #4 MORE DRIVES TO GOP
B1alEA = ED 1264 FRE1 IF YES
B1a1TA ED 1@3E A FREX DERF WAIT FOR A KEYSTROKE
35 2 A A
G0, HEHU
DISFLAEY FOR THIS DRIVE
AE AR A FREE LOA s
B Ay 120 EMI FREE IF PART OF ALL AVAILAEBLE
BE EE fi LOA #EE8 CE
pac 1200 ERA FREE
=3 FF 0 FREE CHFAE #EFF ALL AYAILRELE®
B ay 1208 EME FRET IF FRART USED
28 BE A LA HEEE {PERIOO
el v 1 1200 ERA
a4 aF A FRET AMDA #EF
EM Tia = ORA #ET@
a0 @BE 1203 FRE® ESF FREZET
=) DECE
2B ET 12ES EMHE FREE
el b 12AY ERA FREY G0 BACK FOR MEXT DRIVE
*

STORE CHR OM SCREEM & FIMD MEXKT DISFLAY FPOSH

L AT EF E5TH =1,U
HE [} LOE o L

iaven 1207 21 EE CHPA #EEE FERIOD?
@aiadip 1209 27 [lik] EEQ FRES®
BiayeEn 1Z0E 1183 dcha A CHPLU #FE00 EMD OF SCREEM?
@iayza 120F 2 Fu 1205 EME FRESZ1 IF MO
piovdE 1ZEL = EF A LEAU -1,
BiadEA FREZ: RTS
miaye #
AiauT sk oo ok :
miays * MAIH MEHU SELECTION & - COPY FILES
Alays b0 o o o o o 2 R0 o R O OR8]

B1asan SIZE OF OVERLAY
BigE1A
B1asz

B13532A
BiaEYA
Bi9EEA

3]

A SHE
C ERA
A BSDCEL RHME
A BSDCEBE RHME
A BER Lon
A
A
A
A

START OF FORMAT
EHD OF FORMAT
CLEAR SCREEM FIRST

Loy
Lo
JER norMar DISPLAY SCREEH

=] i LOE #7
) oos 0o, IHFTS
1 i) A CHPE #EREAK
3 EF 13y EEQ BaH
kA
EMTER FPUSHED SET UP DCEBE
auaa A BET Lo #Eunn
E4 a Lo .5 BASE ADDR
UE f LEAL BEDCBL-BE, U POIMT AT S0OURCE DCE

EJIASM

FRGE @35 0Ly

L3 00

o0
[BN}

f1saa
iy ==l
BlEna

[

AR B X]
0o

fxa}
o3

N e]

pix

o O

OY TN I

LK O L B e)

D

el
i R=detn
= =Rk 1
D12Eg pzoppR 1
iBED 2z0R1A 1
2ieTe pzapzA 1
2R 1

1

1

o)
I D
DR TN Qe el

Qilgen BzZo@zA
1oy pzapua
21aga azZaamA
21a1g pZopeER
D19z 2Z0@aTA 13

@ pERnEA

i
oI T I
m o I

el e

280 BzalzA
21oaog azaiun
e drdn
redr v
pze
et et}
pzaua
et

)

ot
=
vl s;l“l n} s;l“l

o
b}

0l
3o (T2
oD I

o l";F
3]
A

1T

b e)

]
03 e (T2
Do

)
T T E D &S D T T

pzp@an 13B0D 4D
B2P1EAR 13BE 27
22@11A 13C2 A0 3

LECTED

- PRGING &

ESR
LEAU
ESR
EFA

A DCE

BEZR
LOE
LERY

E
LERY
LOE
ESR
BER
LoA
SUEBR
STH
RTS
LA
CHFAR
EME
RTS
LA

FOE

OIRECTORY
ool oo oo ok b o kol

OUERLAYS

EETAE

#E

L

EEMOW
EETAE
OCEFEH, U
#3

EEMOW
EETAE

#5780
DCBEORV, U
it
#EER
EETHE
it
#5E@
BSHON
#Eu@
. '.i.‘ +

BSHOM

BEETHE

#$53
EEH
HEUE
ERH

.5

SET UP SOURCE DCE
FOINT AT DEST DCE

MOWE EXTEMTION

{ZERD:

TO YoM
"
M

EBASE

BEEDCEL-BE

o

BEOCEZ-BE, H

oo, COPy
EEX

[ERROR]
GO, MEMU

ER X R

ET-EE

BERARG-BE, =

OO0 T 00 00 G [T
om0 moda m

o]
]

oo
o O v B x 5

B e R
L B L B]

o D

b

Dap I BN B s 1]

o
=

o opd
&1 in

]
o

o I

LA R O)
0 I o) I3 T e T

ot

L o R e R e e R N R e e R e R R R e o o e e R o e e xR o R e o R R e o e o R e o e e e

P Pl Fd B B B Fod B B B3 Fod B B B Fod Bl Bt B B3 Bl B B B3 Bl B B B B3 B B B Fd B B B Fd Bl Bd B3 Fod Fod Fod B B3 Fd b B B3 Fod B Bt B3 Fod B B B3 PR3 B

I L m
o0 L Im

=

T
1
TT
EE
@
T
&

I e 0

T T
Ll =g =g 5

s T e T
- TR [T

BEQG

a4
EE
@a
[}
Wi
a3

F1

E4

R O1E

=0

o R m R R

i

fie et e fonie
£2E ££ £
[ixERix] [} hix)
o I D3I O I I I

v I Iy I I

A
A
1453

H

,..L
0=
i
i

H
=
e

o W e w03

I I

14y

Iv I I~ I D

H
=
-4
oI T

v I I

143

(il
v I I

s - PRGIMG

Foo
Loo
Loy
Lo
JER
#® GET USER
LB
oos
¥ SETUR
Lo
LEAL
(AR
BSR
LOE
BSR
BESR
Los
BESR
BSR
LA
HHOE
Lol
STH
CLR
FREFARE
BED LA
CHFA
ZEQ

BED1

* DISFLAY
BEF LA
CHFA
EME
LoA
ORA
=TH
DECE
EME
* DISFLAY
SER Lo
LERL
LoA

& OVERLAYS

#E02
#EUS
#ILL
DOMARP
IHFUTE
#32

DISPLAY

HUMEBER

IMPUT SCREEM

OF FIELDS

00O, IMFTES GET IMFUTES

ARGUMENTS

o
=

2.
#Humn
BEETAE
#2
BEHOY
EETAE
#3
EEHO
SETAE
L
#3

=

5

oM

1,4
LISTIMG
y it
#EEE
EBEE
$EF I
EBEE
#5600
BED
DERR
U
GO, MEMU

o

oLl
0o, SCHDIR
1
1,U
BEDL

L
Hy

FAF
#HEEE
EEG
g L
#EUG

LM

EEF
EXTENT

=

5

I

g L

L+

FOIMT T

WARIT FO

ENTRY
IF MO

0 MHAME

R A KEYSTROKE

FouMDy

FOINT AT MAME FOUMD

MR

MAME LEMGTH

FOINT AT EXT

EJIASM

i4an
143F
14A1
14A3
14AE
14A7T
14AE
14AA

B2104A
B210ER
et A=
[ea ¥ rg]
e it
pziga
azilag
p2i11
B2l
B21132Am
7 op2iidA
B211ER
p2ile
B2117A
B2ilen

14ce
14CH

14CE

p2idifg 14Cho

ol

el

o D

EEx I e w BN S I S T o S o B B N e T o O 3 S O o O 3

A
a2
A
=

2@

B x|
o O SR

rxiExxl
Pt

=
=

[}

g3

g3

aga

acs
14CE

e
g

Qaga

L]
i
fanl
faxl

H
=
o

H
=
o X
e e w B B w R e W e

i4an

4cn
A

A

A

Oos - PRGIMG & OVERLAYS
CHFA
EMHE
LIOE
LOA
CHFA
EMHE
LOA IS
ORA #EU4@
STH § HE
DECE

EHE BEH
EFA BED
LOA § HE
CHFA #EEE
EHE BETHE
RTS

LOA § HE
CHFA #E50
BlE BEMOVL
SUER #EU4@
STH IS
DECE

EBHE

RTS

#EEF
BEED
#3
#3EE
EED

GO GET MEXT OHE

BEH

BEMOU

BEMOUVL

*
R O R O O O
FILL FOR ROUTIMES HOT YET WRITTEM
B R 0 o R o o R o B o % T K R o S o R % A
{OTHER MAIM GO, MEMUMEMU FUMCTIONS:
FOE BE-BT SIZE OF OMERLAY
nos GO, MEHU
RTE

oo oo ok ok o ok ol ok

FOE
pos
RTS

Ba-g2
GO, MEMU

SIZE OF OMERLAY

FOBE
oos
RTS

Eloa-B3
GO, MEMU

SIZE OF OMERLAY

ok
EEM LIMES

ool ook ol ok ok ol b kol ok

OuT OF BRSIC

GIMEM IM THE STHCK{PUSHED BEFORE CRLLING:

RET ADDR TO UMHDO:

RET RDDR TO CRALLER:

TARTING LIME MUMEBER DESIRED
EMDIMG LIME LIME HUMBER DESIRED
+ IMITIAL DISFLAY

it

P =

I

EY Fodk
Bl FhE

MAFBESE EOU

Ell-El@
Elg

OVERLRAY SIZE

SOMLY THIS LIME & OME ABOVE MUST CHG TO USE DIF OVRLAY
EFRA

MEFOSH FCR a

BYFRES LOCALS

FILE OPEM SW - @ WHEM OVERLAY LST LOADED. 1 FROM THEHN

MAFLH
*

FOE @ LAST LIME MUMBER REARD

MAF1 Lo #MSGOCE POIMT AT DCE

EJIASM

EJIASM

1BRE D&
lapF Cg 2
&0 4
1

Bz1
B2iu4A
B2iukR
piue

-
f

B21532A
B21E4A
B218ER
e Rt

5 CE
oo

L ED

n}

R]
LU SR i R e el

ot

pia

R

ot

o

s

o

o

= =

A
A
A

DT DD L T T m

O B O €3 B B B

® CLEAR

m

Los —- PAGIH
Loy
5T
TET
EBHE

#® IF FIREST

nos
LOA
E5TH

RESET TO

MAFZ CLRD

=TO

ST

LOA

5TH

TTO

EST

Lon

ST

Lon

CHPD

B

nIs

Lon

EBHE

THE

Lo

ST

Lon

Loy

ST

LEAY

EBHE

3

{REOU
HARS

CHECK

READCDISF
READ A LI
MAFE Lo
Loo
ETO
1]
EME
Loy
Loo
EED
Loo
5TO
FEHS
CLR
o
FULE
EME
CHFD
ECE
CHFD
BEQ
ECC
FOUA
FEHS
Lo

G & DVERLAYS

(FOIMTS BEYOMD THIS OVERLAY
5 5 LOGTICAL RECORD BUFFER
W-MAFESE, ® FILE OFEHED?
IF YES

TIME CALLED, OFEM DI

OFEM, THFUT OFEHM DISE

#1

MAFDSW-MAFESE, ¥ SAY FILE IS OFEH
BEGIMMIMG OF FILE

OLYLOC TWHERE HEST OMERLAY WOULD GO

MAPLHM-MAFESE, ¥ RESET LAST LIME RERAD
DCBERBA, U
#2 {START READIMG AT REA 22 22
OCEREA+Z, U
SEE IF FILE HMEEDE TO BE RESET
MUST BE » LAST LIME RERD:
#EFFFF
DCEPRM, U TO FORCE RE-RERD IMTO
MAPLM-MAPESE, » LAST LIME RERD
b,s ST LIME TO BE DISFLAYED
MARZ GOOSTART OVER AT BOF
FLAY LOC OFTION
2,8 STARTIMG DISPLAY
IF RDDRESS GIVEM

e

ELUFFER

o, Lo
FMAFE

SCREEM
#Euan
#EEaED
HIEE
IR
~-1,%

MAFY

o

START DISPLAY
BLANKS

AT ToOF OF SCREEM

LAy Loop

HE
#MEGOCE POIMT AT DCE

#4 LEMGTH OF LIME HER MEM ADDR

DCBREZ, U SET TO REARD 4 BYTE RECORD
RERD, REA

MAFERR IF I-0 ERROR

SOLYLOC JLOGICAL REC BUFFER:

4 GET 'MEMORY RADDRESS!

MAF12 IF AT EOF

2. GET LIME MUMEER

MAPLM-MAFBSE, SAVE FOR

[u]

DCBERSZ+1, U SET FOR WARIAELE LENGTH RECORDS
RERD,REA READ A STRING

B

A

i

FUTURE REFEREMCE

R
o
MAPERR
U, 5
MAPE
B, 5
HMAPE
MAP L@

FER

IF Is7 ERROR
I AT LEAST AS FAR AS STARTING
HOT FHER EMOUGH, GO RERD AHOTHER
I IT BEYOMD LAST OHE?
IF THIS IS THE LAST OHE
IF AT EMD OF RAMGE

IT TO SCREEH

LIME HUMBER?

0

i
SOLYLOC

EJIASM

FRGE @33 oLy SRR DoOs - PAGIHG & OVERLAYS

1BEEE @ a1 A LER: 1, ok THE 'REM'
1BEU 12RE BC A Loy S+l 5 DESTIMATION ADDRESES

MOVE CHAERACTER LOOF
MAFT LDA L ZET A CHARACTER
CHPA DCETRM,U IS IT THE TERMIMATOR BYTEF
BEQ MAFS IF YES
CHPR #E4m I5 IT SPL CHR?
BCC MAFE IF MO
ORA #3u@
MAFE 5TA
BRA
MAFS LD
LERH
BT
FULS e
BRE MAFE, G0 GET MEST LIME
FIMD START OF IMPUT FIELD
MAFLE LD #Euaa
Loy #E1Z MAE CHRS TO TEST
Loe #EEE {LEFT BREACKET OM SCREEM:
MAFLL CHPA IS
BECQ MARLZ
LERY —1,%
EHE MAFLL
Lo #EUpm IF MO FIELD FOUMD
MAFLZ 5TU a,5
CLRA
RTS
MAFERR LDA #ERRZE
RTS

o
D B ¥ N |
o3 I
B)
&0
I o
ot
I
e
o
B

[
R
=
P
-
o o
s i k
Fat S B v el R e o e

I L
T
D xiExx]
P Ias

e et i et et
] T T 0 T 0 T 00 OO O on
Enl B R v xR DR £ B ¢

R .

]

i

T

e

o

]

© O R R OR O OR OR OR e On O

Fa o
P O R o]

ot
Le
Ty}
e
o
ey

i

[
bl
M
5
£=
b
L)

o

t
o
m

Fx e ey Spuiy Ruly iy |

o IS R S O i
[N
o
o
ot
o
-]

LR]

T e e} b T
=
-
e
o
0
I Iy I o~y I D I D

L]

b b b bk b ok o b ok b b ek
-
i
I

O R R O O OR OR OR On On O

o 0D 00

o
pan}

#

f R R R TR R TR O T T R o o R O R o o R O B R o O R
IMPUT A FIELD FROM THE KEYBOARD (ECHO OM THE SCREEM:

k3

RET TO UMHDO:

RET TO CALLER
AODR OF IMPUT FIELD IM WS
1 OF IMPUT FIELD OH

FREE

152E pi4e A BL1 FOE E OF OVERLAY
1590 EE &6 A Lou

1532 10AE &4 A LOY 4,5

1595 1183 ouga A CHPU #§42@ MO FIELD DEFINED?
1593 27 12 15AE BE FLDIZ IF MO FIELD MARKERS

MOVE ORIG COMTEMTE TO SCREEH
FLOI1 LDA o U LOOK AT DESTIMATION FPOSITION
CHFA #3EE LEFT ERACKETY
EEQ FLOIZ IF YES
CHFA #3500 RIGHT BRACKET?
EEQ FLOIZ IF YES
LOA g i
STH o L
EFRA FLOI1
FLFDZ TSR DERR WAIT FOR A KEYSTROKE
TFR H, E
Lo B, 5
Loy W, =
CHPLU #fuaa MO FIELD MAREERS?

oom
oI

R

=
n
ot
o
T

Pexi)
oy
e
i piyl
h T
Lo o R xR s B

D =) T D0 e T
o
by
TI
L)
ot
biyd
o

O D D D D DD I i

m
m
]
-
=
o
1

Pt et et ek feh fek feh ek b ek b b et

SO R R O O R O O i

VoM

mn

m

[

[
I I I I

T
T
5
i
=
=
=
]
r
pixd
fin]
]

DoOs - PAGIHG & OVERLAYS

5=
T
-t
fxxd
)

EEQ FLDOT IF MO FIELD MARKERS, EWIT WITH KEY IM A & B
CHPA #Fza WRs IT LOW COMTROL KEYF
E FLOT= IF YES
CHPA #EEE SFL CHR-MUMBERS-UFFER CHZE?
BCE FLOTH IF YES
CHPA #fea HIGH COMTROL CODES?
BCE FLOT= IF YES
FALL THRU WITH LOWER CASE

Pt et
I
e

o

T
I

o
-1 o

SRR I

R g
e
o
[

oo

P
[
e
o
T

10T H cH A FLDIN LDA S U

103 & 5B A CHPA #EEE IS CURSOR OMER STHRT OF FIELDF
1ECE 2 i 15ES EEQ FLOT= IF YES

1ECD = =] A CHFA #EED OYER EMD OF FIELD®

1BCF 2 12 15ES EEQ FLOTE IF YES

101 1 =1 A TFR E. A

103 A Hi A E5TH T SAVE CHR IM INPUT ARER

1E0E & i A CHFA #fua SFL CHR?

1507 2 150k BCC FLOIE IF YES

1503
1E0E

ORA #EU4@
FLOIE

s o e e

5

A ca L L
1500 12AF &Y FLOIEA ¢ U, 5
1EE® E EE By S
15EZ &
1EEZ A LU

LXK B B B e e e B B B B x i
=
=

0
i]

1BEE & CHPA #%50 FIELD OVERFLOW?
1BET 2 el 1EAE EME FLOIZ

K 3
EAIT WITH LAST EEY PUSHED IM B {ZERO IF FIELD OVERFLOW:
FLOTH CHFA #LEFT
EHE
LOA
ETH
5TH
LOA
CHFA #EEE IM FIRST FOSH HOWF
EEDQ FLOI®L IF YEZ
LERY =1,
LERL =1,
FLOT1 LDA #5220
ETH 2T
5TH LU
EFA FLOIERA
FLOTHS RTE

ot
o
-t
bxxd
)

= bl

B = B

-t

o

BN

Lo o e T o e s o O i

o
b
Do oD oD

(23
e

e
o
o]
b

E 3

okl ok
ACTUALLY LOAD AMD
GIMVEM: DCEB FOR THE FROGRAM FILE STORED
M u

rdning A EBELZ FOE

i@ T A FEHE ® SAVE MY BRASE JLOWEST LOAD ADDRESS ALLOWED:
STEF 1 OFPEM THE FROGRAM FILE - DOES IT EXISTE
A Lo HUSROCE

1E@n A LOA #5FF
1E@F A 5TH DCEORY, U SERRCH ALL DRIVES
1812 nos OFEM, THFUT
181E 27 i@ 1620 BED Ex1 IF Ok
1E1A = CHFA #ERRLZ HOT FREY CLOSED IS 0K
1810 ac 1EZA EED Ex1

Do
-4 T

R
~] -]
=
P
I

(R

EJIASM

FRGE @ad1 oLy SRR DoOs - PAGIHG & OVERLAYS

. A EXERR J:SR [ERROR]
A FLLE #

oos GO, MEMU
E3
RERD FILE PREFIS DATA {LOAD RDDR, REBAR OF 15T OVERLRAY. ETCH
Exl LI SOLYLOC POIMT BEYOMD HE

STE DOBELRE, U USE AS LOGICAL REC BUFFER

Lo #1@ READ 15T 1@ BYTES OF PROGRAM FILE

STD OCERSZ, U

oos READ, REA

EHE ESERR

TET . i I% 15T BYTE ZERO?

BEL ExZ IF 2y 0K

LOEA WROMG TYFE FILE

EFA
ExZ Lo

EELQ

Iv I I D

M
L)
-t
fxxd
ot

L)
=
-t
fxxd
=

)
o
-t
fxxd
ot

{LOAD ADDRE
IF EASED AT ZERD, ASSUME RELOCATAELE
CHRD HE MUST LOAD ABOVE THIS FOINT

BCC O EX IF HE IS 0K

LOA #ERRZ6 LOAD ADDR IS TOO LOW

BRA EXERR

AODORESS IS HIGH EMOUGH

570 DCELRE,U SET THIS AS LOGICAL RECORD EUFFER
LoD DCBLRE,U

IHCD
5TO
Loo , {SHOULD BE REA OF 15T OMERLAY)

5T0 DCBRSEZ,U THAT IS ALSO HOW BIG ROOT SECTION IS

ADOD DCELRE,U RESULT IS WHERE END OF ROOT WILL EE IM MEMORY
ADOD #3

5T0D :OLYLOC SET THIS AS BASE OF FUTURE OVERLAYS

TFR D%

LOA #%FF INVALIOATE WHICH OVERLAY IS IM OVERLAY AREA
TR —1,¥

LOA #5

5TA DCBREA+Z,U START READING WITH BTH BYTE

PULE u

THF EB1ZA G0 LOAD ROOT & WFER COMTROL TO IT

)
Pl
e
bxxd
[ia}

B4R 1883 EY
14D 24 i)
1EUHF &8 TR
A O1BEl zZ@ CE

)
Ll
et
bxxd
i x
I 0 IO IO IO I

e
faxl
ot

T

I
]
M
Ty
bl
)
[R SN}

by X

£ 0T
- =
]

o0 T
o)
]

o Ol

[BRI N
-

_.‘
[o B B o)
=]

Pt T

o
-
-
-

AT 2F
SE

T ce 20
E ia

E l@as

D T e e T R S S S
o T T T T T TS O o

oo 0 e T D e T
[
il

DD DDDD DD D D D DD

#
dodokokbok

fOR TR R R TR TR R R R o R o T R o R o o R R o B
ROUTIME

RELOCATABLE REAL-TIME CLOCK

DESTIGHED TO BE LOADED BY MAIMLIME OF USER'S PROGRAM, SAVING ITS
Loan ADDRESE. THEM ACCESSED THRU THE SAVED VECTOR TO PERFORH
FUMCTIONS.

GIVEM: E=2 - IMITIAL CALL, LIHE SELF IMTO TIME IMTERUFT AMD PROTECT
MYSELF FROM BEING OVERLAYED
B=FF - UMLIMK AHD RELERSE OVERLAY SPACE
B=1 - GET TIHE
B=2 - ZET TIME
WITH GET & SET TIME, Y COMTAINS

SECOMDS AMD EATHS
W COMTAIME HOURS AMD MIMUT
WITH IMITIAL CALL, U -: DISFLAY ADDRESS J{@=HO D LAY DESIRED:
k) 1 FOR HOURE, FOR MIMUTES, 4 FOR SECOMDES
OF AMY COMBIMATION {ADDED TOGETHER:
oo o o o oo o o o o o o o oo ok o s o o
OVERLAY SIZE

OF SECOMDS

it

CIEE R R R R R R
FhE Bid-B

1870 aE1 A

EJIASM

FRGE @uz

OFMEMT

pzunen
B2UBTH
pzupzA
et}

pzui1anA
B4l

B2u1zA
B241zA
pzui4n
B2U1sR
pzule

B241TAH
pzui1zA
B2u1an
pzuzan

P xR xR o xR xR e e
Pt B B3 B B B3 R B3 B3 B B3

P = S S S e e e e

oLy

é Lax Iy

o Ol 00

]
3 T

oo
AR

LA]

LA]

D T T e T S T T S S S S S
o T T T T T ST T T T T T O R w

n)
F e B e w A ¥ 5]

i

Ol e

R

LR R v v T v T e
Rt BRI X

ok ke b ke b fde b ke feh ke ot
o

Fox T T)

m

1@z
1E04
1E@E
1e0E
1E0A
1E0E
1&00
1E0E
1EER
1BEZ
1EEU
1BEE

om

¢ ED
L

29

FTE

EBE
E
5
ED
c1
25
EF
2B
143
ED
21
25
UF
AT

T

il

i

X

s e e e e

T

baxl
bix

oI

CLESET

T

R m i R e =)

T

T

T

oA I

E
I i R)

o
[)

DoOs - PAGIHG & OVERLAYS

CLE EQu

EFRA
HREE FCE
MIN FCE
SEC FCE
CHT FCE
THELOCFCE
THEOFTFCE
CLEL TSTE
EBED
LERH
TETE
EMI
OECE

CLESET LDU

Loy
CLRA
RTES

CLEGD ST

TFR
sTE
LERL
ST
oo
Lon
FSHS
CLRA
LERX
RTES

LERAL
nos
FULE
=Th
CLRA
RTES

k3

CLETHE JHF
LD
oo
IHCE

CLRE

L
=

[
@
]
@
]
@
]

THEOPT-CL
CLETHE-CL

3

s

{TOOALLOW CHAMGIMG TO DIFFEREMT OMERLAY DURING DEVEL-

JUMP OVER LOCALS
HOURS {COUMTS TO
MIMUTES {ALL WALUES
SECOMDE

ET TO ZERO WHEMN LORDED:

TIME DISFLAY LOC
HF, MIM, SEC OFTION
WHICH OFTION?

THELOC-CLE, ¥ SAVE DISFLAY ADDRESS

! SAVE DISFLAY OFTION

% POIMT AT IMTERVAL ROUTINE

SET LDM COMMAND TO LOAD CURREMT X WALUE

PLUG IM THE CLOCK

RET ADDR TO CALLER

PUT IM TOPF OF STACK TO BEYFASS MORMAL EXIT OF OUVERLAY

TELL USER WHERE TO ENTER HME
RETURM TO CALLER

CLETHE-CLE,® FOIMT AT IWNTERVAL ROUTIME
TIME,OFF PULL THE PLUG

RET ADDR TO CALLER
SET TO RET TO HIM AFTER EXITIMG FROM OVERLRAY

THIS IMETR MODIFIED BY ABOVE ROUTIME

A LOAD SEC & BRTHES

IE;

FULL SECOHD®
IF Mo, EXIT

IE;

FULL MIMUTE?®
IF Mo

EJIASM

FHRGE

v et}
BaATHR
Basng
nasla

1BET
1EBES
1EEE
1BED
1BEE
1EFQ
1BFZ
1EFU
1EFE
1EFT
1EFS
1EFA
1BFC

1EFE
1708
1782
1704
1705
1787
1709

EC
CE
1E
13
1E
ET
C1
25
EF
=15
19
ED
Z8

EE

EAn

ES
sS4
24
AE
B

T

p=g

(R X
0o

X3
o0

o

L e
L

fe)
par

L]
[

ol

o
Ih oo

-
Lo s

Iv I I

ot
fayl
T
mI oI

Iy I I I I I

Iv I I D

1720

1782

1720

oo

Loo
AODE
Exi
DAA
Exi
ETE
CHFE
BCE
CLRE
ADOA
j=]x
57O
ERH
DISFLAY
CLEDSF LDU
BEQ
LOE
LERE
BCC
LD
BESH
LERE
BCC
LD
BSH
LERE
BCC
LD
BSH
EFRA

CLKZ

CLKZ

® EDIT

CLEEDT P&
LERA
LERA
LERA
LERA
AODA
5TH
FULES
AMDA
ADDA
STH
RTS

MATH

Fhe
#® DISPLAY
Lon
Loy
Lo
JER
MEMUIL
EBEO
SUEBR
EBEQ
BCS

MEMU D

E1E-B1U
Dos

- PRGING & OVERLAYS

HES-CLE, ¥
#1
A.E

H, B
MIH-CLE, ®
#EE@

FULL HOUR?
IF Mo

CLETHE
RESULTS IF HECESSARY

THELOC-CL
CLETHE E:
THEOPT-CLE,

v DISFLAY LOC

W DISPLAY OPTION

IF Mo

HRS-CLE, ®
CLEED
MIMUTES DESIREDT
CLEZ IF MO
MIH-CLE, ®
CLEEDT
SECOMDE DESIRED?

CLETHE IF Mo

CLETHE
THE BCD HUMBER IM A

- DISFLAY AT U

#E5@
IR

#FarF
#Em@
IR

SIZE OF OVERLAY

MEML SCREEM

#1080 STARTIMG LIME HUMEER
#1a3 EMDO OF RAMGE

#@ SAY CLEAR SCREEM FIRST
DorAR DISPLAY MEMU MAP
FOLCAT
MEMUL
#5321
MEMUZ
MEMUL

LEZS THAM 17
IF 1 ENTERED
IF YEZ

{RET TO BRSIC:

EJIASM

=
=
£
]
r
pixd
fin]

He

= A
Fao 1720

O9F Eps A
QFFE A

ot
-]
o
bl

anz
17EE
ac 176
rrgrdvy
Qapa
rlrgrdr
Qapa
rlrgrdr
Qapa

Wl -

1
T e e v O B v i

D e i
R I B B e B |

I OO O on

03 e °T]

fie gt fie et i
e B B B B
[R)
5 I -3
by
I

a1
il
24
oy
RE
Aa
EZE
QaRE
=t
QaAT

a1TeEe
BiTae
Blang
miEle
alaze
iBz2
Blaua
BlEEa
aizea
BlETe

pane

oA P T

om

PR B e sy fy (i Gy B,

[IxERAx]
T e e o e v i e

o0
o

oo

LA]

rlri=pes

1A

L]
L S O]

e o e o e

P b ek o ok b ek e ek e ek ek ek ek b ek ek ek
S 00 S &

I T T T T B e B e M e M B B B B)

oI I
O Dl e T OO0 OO0 N T OO - 00 T

Oos - PRAGIMG & OVERLAYES
CHPA
BCC
IHCH

MEMUZ TSR [Go]

THF OER

R BT R TR O O T T R R o R R o R o R R R o R K

BUFFERED FRIMT I-0 OVERLAY

#E
MEMUL

MUMBER OF MEMU SELECTIONS
IF HOT IM RAMGE

TO GET OVERLAY HUMEBER
FRGE IT IM & GO TO IT

THAT HAVE BEEM WRITTEM

OF SERVICE ROUTIME

T ACTIMATE:
: LOU #STZE <TOTAL MEMORY TO USE FOR THIS FURPOSER
OoE 0o, BUFFRT

#
%
#
%
E 3
TO USE:

#* LOA CHARACTER TO PRINT

AGATH CLRE <SAYS T AM MHOT SHUTTIMG DOMMH'
*

#

#

#

#

*

*

IsR [PRAT]
BHE AGAIN IF BUFFER MRS FULL, TRY AGRIN {0OR GO DISPLAY MEG)

TO TERMIMATE:

LOE #1 $@HY HOM-ZERD SAYS
zR [PRAHT]
o 2 S A A

SHUT Doy

R B TR R TR O O T T R R o R R R o o

EBlE
EF

FOE
Equ ElL
ERA EF1
FoE 7]

BEle-BlE: ESIZE OF OMERLAY

{FOR USE IM RELATIVE ADDRESSIMG
JUMP OMER LOCALS

FOIMTER TO PRIMT BUFFER

SIZE OF FRIMT BUFFER

HMUMBEFR 0OF CHRS IN BUFFER

FOIMTER IMTO BUFFER FOR CHRE BEIMG
FOIMTER IMTO BUFFER FOR CHRE BEIMG
SAVE ARER FOR VECTOR TO ORIG FRMT

FRTEUF
BUFZZ FOR
BUFCHT FOR
SHOCHR FOR
STROHR FOR
FRHTEY FOR
#
SEE IF EMOUGH ROOM PROVIDED
BF1 TFR U, FUT SPACE ALLOWED IM D
SUBD H#EPSZ+E AMOUNT HOT AVAILABLE FOR BUFFER
Boo EF1A IF ROOM FOR AT LEAST 1 BYTE BUFFER
Loe #ERR2U BUFFER HMOT BIG EMOUGH
RTs
#® SET WP FOR
BFIA ADDG
ST
LEAY
ST
LEAY
CLR

SEMT
STORED
ROUTIMNE

Lo o)

ELUFFERED
#1

FRIMTIMG
JACTUAL STIEZE OF BUFFER:
SAVE BUFFER 52

.4 POIMT AT BRSE OF BUFFER
FRTEUF-EF, SAVE IT
A FOIMT BEYOMD EHMD OF BUFFER
LR OBAY BAY MO WALID OVERLAY FOLLOWE
SOLYLOC THIS IS5 WHERE HMEXT OVERLAY G
EFTHE+Y-BF, s MODIFY LDW COMMAMD
ERFOUT+IZ-BF, 5 ¢30 IT EMOMS WHERE LOCAL WS
EFTHE~BF,® FOIMT AT TIME ROUTIME
TIM, OH FLUG IT IH
“FRHET GET ADDR OF ORIGIMAL FRIMT ROUTIME
FRHTSV-BF, ¥ SAVE IT
EFOUT-BF, s FOIMT AT
“FRET

A

ES

IS

EMTRY FOR BUFFERED FRINT
RET ADR TO USER

5 MORMAL RETURH THRU UM-D0%
DOME 0K

SAY

EJIASM

FHRGE

UL

oLz

miaya

MDD D DD
Eoe MO0 -

LXCRE K]

LX)
b

o I

bl I'.'l bl I'.'l bl I'.'l]
SO D -] E R T I

)

1702
Ao1ToY
170E
1709
170e
1700

170OF

SRE
SRS

o3 00

A
@
aF

o

oo

by

3 pE

o OuE

52 A

rlrgrde A

e
k=

et
)
]

ot
=4
i

B v e w e w4}

il
a1

i

s

F3

ot
-
I

a4
ac
CE
anl

b
L e T e e

az

ac
EH
CH
=3
anl
=3

e e e

0z

=3 A
FC 170F

=249

I

2E
2E1R
4
PEZE
wa

(=3

;I I I I I

Qaga A
e grdr A

=T
Bl anl
D]

o oI

Tl O S
b
o
]
.

oo

EF@l

EF@1A

EBFOZ

WALT
[=iagries

k3
TIME
EFTIME

® IS T

* TRY

® ADVA

- PRGING & OVERLAYS

B,
#0

EF@Z

EFR1A
#1
B,
EFD1

B
DSABLT
Lo
Loo
LEAL
ADDD
CHPD
ECE
CLRD
5TD
Lo W&
STH LU
Lom
ADDD
STD
EMAELT
PULE @,%,U,FC
FOF BUFFER
Lom
EME
LEAL
oos
Lom
5TD
Lom
=STD }UL?LUC
PULE U

5TD
RTS

o,
#1

BPDZ

#1

EFQZ
TIME, OFF

»FRMT

]

IMTERVAL DRIVEH
JHF =@
LD #2

HERE DATA IM THE
Loo
EEQ

T SEMD
Lo
Loo
LoA
JER
EME EFTHE

MCE BUFFER
Loo
AODD
CHFD

EFTHE
IT IT

o,u

#1

RACTER TO THE FRIMTER

FRTEUF-EF,
STRCHR-EBP

FRHTSV-EF, ¥

FRTEUF-EF,x WHERE HEST OUVERLAY SHOULD HAVE

BUFSZ-BF,® IS

VWIA BUFFERED I-0

{THIZ IMETR MODIFIED BY SETUP
REQUEST TO SHUT DOWHF

EUFCHT-EF, »
BEUFSZ-BF, s ROOM FOR MORE?

IF ROOM
SET MOM-Z2 COMD

IF MO ROOM

DIZPLACEMENT IM BUFFER
FOINT AT MEXT STORE POSITION

BUFSZ-BF, s WRAP AROUNDY

IF Mo

STROHR-EBEF, =

{CHR TO BE PRIMTED:

BUFCHT-BF, =

BUFCHT-BF, =

TO EMPTY
EUFCHT-BF,» EMPTY YET?

IF MO WAIT

EFTHE-BF,® POIMT AT TIME ROUTIMNE

UM PLUG IT
GET RDDR OF ORIG
RESTORE IT

DRIVER

{RET ADOR
I'M SET TO RETURM WIR UM-DO

FRINT LOGIC

{TO MEXT TIME ROUTIME:
{IMSTRUCTION MODIFIED BY
BUFFER TO BE SENT TO PRIMTER?

BUFCHT-BF,

IF Mo, ERIT

{PRIMTER MIGHT HOT BE RERDY:
FRTEUF-EF,x FOINT AT BUFFER
SHOCHR-BF,» DISPLACEMENT WITHIM BUFFER

GET CHR OUT OF BUFFER

[FRHTEV-EBF, 2]

IF FPRIMTER WAS MOT READY

FOIMTER
SHOCHR-EBF, &

FOIMTER WRAFPFIMG AROUMD EMD OF

LOGIC:

GOME

ABOVE LOGIC)

BUFFER?

EJIASM

FRGE @ade oLvz . SH:

0w
T
=

DoOs - PAGIHG & OVERLAYS

nz lain ECE EFTI IF MO
CLRD
] H EFTL E5TO SMOCHR-EF, ¥ SAVE FOIMTER TO HEXT CHR
ADTUST BUFFER COUNT
k=] H Loo EUFCHT-EF, &
rdn]r) A SUBD #1
k=] H E5TO EUFCHT-EF, &
oy 1TFC EFA EFTHE E=IT {OMLY SEMD OME CHR FER IMTERUFT! X
#
bR DR T T T o T o DR R T B R SR R o o o R R R 3 4
BUFFERED KEYBOARD IMPUT OVERLAY
bR DR T T T o T o DR R T B R SR R o o o R R R 3 4
El FOE EiT-BlE
EBFEZ EqU Big-Bl1E {FOR PREVIOUS ROUTIME'S USER
Bk Equ ElE
EFA Ek1 JUMP OVER LOCALS
EEYEUF FDE AODFR OF KEYBOARD BUFFER
FOE SIZE OF KED BUFFER
T FOE MUMBER OF KEYSTRO . IH BUFFER
SHOKEY FDBE DISPLACEMEMT TO MEXT EEY TO GIVE USER
STREEY FDE OISPLACEMENMT FOR STORIMG MEST KEYSTROKE
EEYEW FDBE SAVE ARER FOR ADDR OF ORIGIMAL KED ROUTIME
#
SET UP FOR BUFFERED EED

o] A EBEK1 TFR o FUT SFACE ALLOWED IH D
nacH A SUED #EBESZ+E AMOUMT MOT AVAILABLE FOR BUFFER
3¢ R=10 3 BT ER1A IF ROOM FOR AT LERST 1 BYTE BUFFER
ic A LoA HERRZE EUFFER HOT BIG EMOUGH

RTES
EK1A AODD # CACTUAL SIEZE OF BUFFER)

ETO [FVE BUF BEZ

LEAY BKSZ+3,% POINT AT BASE OF BUFFER

5TY KEYBUF-BK, X
o,
R SRV MDD VALID OVERLAY FOLLOWS
SOLYLOC HEST OWERLAY HERE
; ERTHE+Y-BE, ¥ MODIFY Lo IMETR
ST ERGIVE+Z-BK,w DITTO
LEAL ERTHE-EK , ¥
nos TIME,OM PLUG IM TIME RTH
Lo K14
ST
LEAL
ST
Lo
FEHS
CLRA
RTS

nacE
anz
laza
@ 1BE
v grdr
aga
v grdr
gl
v grdr
gl

L)

T e e v e v i e
B
m

Lo O)

o

oo

o
[

L

o
ST I p T el % i o |

anl

=

29 aacs
4

AE

A2

PEZE

o9 sz
23 QRsE
29 paTE

i

o]

m
§ o] O B3 e T]ED TG

Ll ITH 3

XA |
]

oD @ b T

i

SR BT I B
s e e e

D DD DD D I I I

0O 00 1

xxiiunl

]
]
oM

=
Pl
iy
1
o B i e i

#
POLL FOR A CHARRCTER TO GIVE USER
BEGIVE PSHES By, U
LD #3 CTHIS IMSTRUCTION MODIFIED BY SETUR:
Lon EEYOHT-BE, ¥ COUMT OF BUFFERED CHRE
3 BHE BEGL IF OME TO SERD
FULE E, IF HMOME, EHIT WITH A=ZERO
BEGL Lot EEYBUF-BE, ¥ BDDR OF BUFFER
Lon SHOREY-BE, ¥ DISPLACEMENT
LEAU o,u FOINT AT CHARACTER

=
=
=
=
I I I

=
P
e
b
By
o

I I I I

EJIASM

FRGE au7 oLvz SRR DoOs - PAGIHG & OVERLAYS

AOJUST POINTER TO HEXT POSTITION
ADOD #1
CHRD Z-BK, % WRAP AROUND?
BCE BEG1 IF HO
CLRO

BKGZ STD SMOKEY-EK, ¥

LOoA LU
FEHE A
Lon KEYCHT-EE, %
SUBD #1
57O KEYCHT-EE
TET W5
PULE D, H,U,FC

Re3 anl

TSR
-3 (T
e

o

o

o

o000

e et
oo
b o o e T o T e o e e o |

b
T

Zl(lf
TIME IMTERVYAL KEYEORRD SCAM ROUTIME
EKTHE JHP 50 TO HEXT TIME ROUTINE
LOx #0 {MODIFIED BY SETUR:
EKTHER LOD KEYCHT~EK, &
CHPD KEYSZ-E IS BUFFER FULL?
Ei EKTL IF HO
% BUFFER IS FULL - GO BEEP
LD #LUEDR
LOA W
EORA #2 COMPLIMEMT SOUMD BIT
STA W
Lo :
EKTZ LERAY
EME :
ERA BKTHE
A0 9B O EKT1 JSR [KEYSY-EK, %] G0 POLL KEYEORRD
4o TSTA
2AE EEG EKTHE IF HO HEW KEYSTROKES, EXIT
FSHS & SAVE KEY
Lo KEYEUF-EK, ¥
LOD STRKEY-E
LEAL o, u
=talala]
CHFD
BLS
CLRO
B BKTZ STD STRKEY-BK
a LoD KEYCHT~E
= AOOD #1
ED @8 a STO KEYCHT~EK, &
q ;
a

baxl
-
m
L]
=
b
=

i

]
X
i
b

A]
e
e

[

et fed fed et e
i
I D I

- FTT
"3 b [T} O
T
T
I
]
T
&1I|Ilrlﬁ

P

)
o0 T D

a

FULSE WIDTH

oo
I

Podt B3 e e T 000 T
T o S - 00 M
X3
£

m
ul
b
=
o
b

iy
Do I D I I I D

3
b
it
ol

o n]
.

[

e
IT]
=

I

1
1
1
1
1
1
1
1
1
1

.

SRR
Dl w
P

)

=

w3 I

ot

i

I

bl

i
3

i

v DISFLACEMENT TO SAVE LOC
FOIMT AT SAVE LOC

FOIMT TO MEXT SAVE LOC

WRAF AROUMD?

IF MO

b
fon

0 0

i
P

1

I

by}
i
LI e e w e w J w Je w}

0

i
P

o
oI G N~ G R R R
m
o
=
&

[
£
[
et
]
P

i

)

o

i

o

i

FULE 3]
STA LU
ERA EETHER GO CHECKE FOR AMOTHER KEY DOWH

o

i

T

IR URU U]

ax
=
b
o
-
-
s
T
=

s i 0 SR O 0B T R SR L R O S A OB S O R DR o O R o R S o O R o R o o R R o B R o R o o B R o R o o B R o 3
COPY FILE OWERLAY
GIVEM: B BIT @ = ZERO IF MO DISK SWAPFPIMG, 1 IF SWAPFIHG
=% SOURCE FILE DCE {UMOFEMED
DEST FILE DCE {UMOPEMED:
SOMEMORY FROM 'OLYLOCY TO 'HAESMEN!
LAST LIME OM REEM FOR FPROMPTS IF S
O K o 2 S e e e e A R R R O R S L o L o o
FOE Elg-BLT
FEHS Oy, U

= E R R

o

2R 18ED B1EF
TZIA 1BEF 34 TE

b i w]
m

EJIASM

FRGE @ads oLvz SRR DoOs - PAGIHG & OVERLAYS

PO
I
e
Hix)
i
T
-
m
n}
L)
i
- (T3
o0

ERA E

. & EOF SU
2, 5=HEXT INFUT FRHM

=0DEST DCE ADDR
SOURCE DCB ADDR
¢ 14, 5=RET RDDRA
B1THLI FCO SLOAD S0URCE DISKETTE
BITHZ FCOC SLOAD DESTIMATION DISKETTE
BITHZ FCO SLOAD 5 Y 5 T E M DISKETTE
E 3
SETUFP STRCE
E1TH AMDE #1 SET TO 1 OR @
LOA OCaiRy, U
CHFA DCEDRY, Y SAME DRIVE?
EEDQ ELITE IF YES
E CLRE
¥ B1TE E5TE T SHME
UF CLRA
EF CLRE
E5TO
5TO
E5TO
Loo
SUED HOW MUCH MEM TO WORE WITH
ECS EITEL IF HOT EMOUGH
uo TET
; : EHE B1TC IF AT LERST 1 PAGE
HE in A BITEL LDA HERFZE HOT EMOUGH MEM
*
COMMON ESIT
EL1TH S5TH 8,5
TET T 5
EED BLITAIT
RECOVER SYETEM DISKETTE
LI 3,5
LERH EITHZ~B1T, "
ESR ELITWTE
Lol HMEGOCE
ooz OFEM, IHMFUT TO RE-LOAD FAT TRELE
EITAIT LEAS E, 5
FLULE Do, U, PO

o

Iv I I

oo
pix

'"U:-

L B O]
ol
i
-

L R i

vl
e
pix}
o

o
G R GEG RG]

o
Ch R B CTI D D -
i

=}
faxl
-
T

STARTIMG IMPUT FRH
STARTIHG QUTPUT PR
i

oo
m
b
)]
=
Mo Do DD

oy 111
(AR
]
1 T
o
o
-t
o
=}

FR3oER LT OIN 00 O A
T
T

§
fary
-t
o
[
o

]
e

5 BB

i

O
Dix iyl
d T

m

a3

=

—-

=]
oI

P
]
=] =] =
o=
]
-4 1
et
o0
i
1

P
OO e
M
I
=

s}
T
m
o3 I

000

o i
)
e
pix}
L

’EU

=

o
T e T3 I

o
oS 00
i
T
bazl

LOCRE X

o
«
-1 E
X OO
m

..]".I
5
R
-

b b b b e
i

o

oo

s}
a1
o
baxl
0
Iv I

Zl(lf
DISPLAY FLASHIMG MSG & WAIT FOR DISKETTE SWAP
E1TWTE LOY $FURR+E12-32 (LAST LINE:

LDE #32
E1TWTL LOA L

STH L

DECE
F3 1997 BME EL1TWTL
PEZ1 A CLF 5 CLOCK+1

E1TWTZ SYSTEM POLCAT WAIT FOR KEYSTROKE

1 @n A CHFA #3500

i
pr

DE R I R R A R x)

o

Pt et et ek b fek fek ek et

i)
T T in 0

E
1
E

EJIASM

FRGE @ads oLvz SRR DoOs - PAGIHG & OVERLAYS

E EEQ EL1TWTH
QEER A LOx #FUaa+E12-32
nEZ1 A LoA CLOCK+1
28 A AMDA #Fz0
LELA
az A FEHS
28 A LOE
a4 A BITWTE LDA
A
A
A

000

o

L L A

0

L

EF AMDE
OFA
ETH
DECE
F& 1B EHE
nz A FLLE A
oo laml EFA BITWTZ
EITWTH RTE
*
E1TC 5TH E,5 FAGES AVATILABLE
*
LOOF TO COPY FILE
B1TD Lo 2,5
oo = OLY LD
5TO DCEEUF, U
TET T 5 SWAFFIMGT
EED ELTD@ IF MO
WALIT FOR SOURCE DISKETTE
LI 2,5
1apE 2@ LERH EITHI-B1T, "
laps & ESR ELITWTE
130 BiTDE DOS OFEM, THFUT
19ED 28 EME 21TH IF HOT FOUMD
18EZ EC Loo 245
13EY ED ETO OCBEFRM, U SET STARTIMG SECTOR HUMEBER
18ET 28 EME EL1TE IF HOT FIRST TIME
FIRST TIME - SAVE DIRECTORY DATA IM OUTRUT DCE
A Loy 18,5
=] LEAL ii,u
A LERY 11,% ESCEFT FOR MAME
=]
A
=]

=i

DOCIE SN UK O e)

EE AR L B w3 e J e QO = w B 3 QO = x s
iT]
=

]
)
byl
i
]

EE
FC
ED
=N}

o

SOURCE

i

o I T T)
oS I

o
baxl

R R
i

o

=}

i

T]

[e

o
3
€=
e
pix}
)
Iv D I DI

o
o1

1abyd AE

X
]
Dix sl oo
-]
[[
o pix}
i X
-1 i i]

R SN
]
t

o0
[

ot
-
o
T

19ES
189EC
189EE
18F@
19F2 A
18FY A
19FE &

E

B

1

& LOE #232-11
£ BLTDL LDA o L+

7 STH s

A DECE

19FT 28

18F3 EE

19FE BF

Fo 19FZ BHE B17O01
(=1] Lo 12,8 SOURCE
R BITE CLR o5 SECTORS IN MEMORY
*
LOFAD LOoop
19FD BD @OSF A BLTF TSR CEENT ¥LATE FRM INTO TRACK & SECTOR
1R@E 28 1E HEZ EHE B1TF1 IF OUT OF RAMGE
1ROz TSR DEKRED DO PHYSICAL IO
1AE EME E1THH IF 10 ERR
1ABT Loo DCEFRMH, L
LABA ADDD #1
1AM 57D DCEFRMH, L
1Ale IHE DCEELUF, 1
1A1E IHEC W5 COUNT SECTORS READ
1ALE LOE .
1ALT CHFE E,S

e
t
L e I 0

aUTTR
auTEe
BUTHE
auEng

s e e e i

IS BUFFER FULL

EJIASM

FHRGE

=]

oLz

=
BUEER

1A19
1A1E
1A1D

a1
27

20

xn] :-,] 0 .]: 03 b

a0
xR

o0)

._ll—"-l"s‘,ll_[_l!
R R
™D T
O O On O

T
028
F

P i
i o e i
Lo]
O 0
w3 0
payl

=
[
=

ot
I
faxl
pix}
M
)

T

T
]

D e T
m
=

o
Tl
£

0 = =] =] =] =] (T3

et ped e et Bt e e ped i ek
AT e [T

P

el

o T B B o e B

oo

= EC

H
T
o0
o

E2
25

FFET

0 S I
Lo R e

O T o
In T I M

b
fay

o

o

Rl
=

15FD
1Azz2
1877

e
I
]
[]

s

B)
ot
fix)
o
I I e I D

e
I
i
e TG

et
oI
- T

[]

e
I
byl
Do I

e
I
ey
b

oos - PRGIMG &
EHE
EFA

BE1TH LERA
ZI(II
IMPUT AT EMD

IHC
#
CLOSE IHPUT
B1TG Lon

E5TO

oos

LA

EED
&
OFEM OQUTPUT
TET
EEDQ
L
LERH
LESR
Lo
Loo
STD
nos
EED
CHFA
EED
EFA

E1TH

FILE
E1THL

EHISTS
Loo
EHE
oos
Lo
EFA

CREATED
Loo

EED

Lo

EFA

Z-(-I
ELITL
&
WRITE LOOP
BLITT IR
EHE
IsR
LEME
Loo
=lainln
ETD
IHC
DEC
EHE

=TO

E 3
CLOSE THFPUT
Loo

OVERLAYS

E1TF
E1TG
BL1TH

IF Mo

GOOWRITE IT
THIS STHT USED 85 M UP-LIHE
- SET EOF =W

1,5

DCEFRMH, U
7,5 SAYE FOR
CLOSE,IT

El

MEXT EBATCH

AMY SECTORE RERD?
IF MO, I'M DONE

Ts 5 SWAFPINGT

E1TH IF MO

A, 5

EITHE-BLIT, "

BITWTE WAIT FOR DESTIMATION DISKETTE
12,5 QUTFUT FILE DCE

SOLYLOD START OF BUFFER

DCEBUF,

OFEM, OUTPUT+FAST

E1ITHL IF FILE EXIESTE

#12
E1THZ
Ei1TH:

IF CRERTED
IF OTHER ERROR

b, 5

BITI
CLOSE,IT
#ERRZR
B1THE

IF MOT FIRST TIME ITE 0K

b, 5
BITI
#ERR31
E1THS

IF FIRST TIME,
MIZC ERR

O

DCEFRM, U

CEENT

HLATE PRM INTO TRACK & SECTOR

WRITE SECTOR

DCEFRMH, U
#1

DCEFRMH, U
OCERLF, U
. COUMT

DoWM SECTORS WRITTEH

EL1TT

DCEFRH, U

EJIASM

FRGE @51 OLyz SR Oos — PAGIHG & OVERLAYE
1REE ED E1) A E5T0 b, 5 SAVE FOR MEXT BATCH
iRsD 83 Rl A SUBD #1
1RSE ED oEoid A ET0 DCBEMRE, U
1R3E RE =1 A LD 245 SOURCE DCE
1ARSE EC BE A Lon DCBEMLE, 8
1RET ED UE A ST DCBEHLE, U
1RSS ET o oie A DCBEMRE+2, U
1RaC CLOSE,IT
1AAZ UF
1AAS Bd =3 A AT EOF?
1AAE @126 FFTY 1RLD I DOME
1AAS LG FFIC 1808 GOOCOPY AMOTHER BRATCH OF SECTORS

ol *
o A A R O R K O
o # GET MULTIFLE USER IHFUTES
1 E =MHUMBER OF IMPUTS
o o K B R0 R R S R O R
3R O1RAC pnisie] A BIR FhOE Bla-BlE
L walE AOIMFTES EOU 18
R O1ARE BB ni A Loe #1
B OLREBS 34 aeE A FEHE 0
TH OIABEZ CE auaa A EBIBEE Lol #Euan
S 1ARBE EB E4 A LDE . 5
SR 1ABT BB e A BIRC Loe o L
@R IRES 21 235 A CHFRE #3EE
1A 1REBE 27 @a 1ACE BEQ Biah
A 1RE o3 BsnR A CHPU #EEan
] o Fu 1AET BCS Biac
L aual A Lo HEU@L
=3 B1ED DECE
EE 1AET EHE Bisc
27 #® THPUT B FIELD
2EA OLACE TF ezl A CLA CLOCE+1
SR 1RCC 28 EF A LEAS -1,
@R IRCE Fe ezl A BISE LDE CLOCE+1
1A 1RD1 CY i@ A AMHDE #1E
3 ET i) 1ADS EBEQ Bi2EL
ADE 26 ER A Loe #E52
AOT 2@ 2 1ADE EFRA E1ZEZ
ADE BE ik A BlREL #5182
AT B A OBISEZ .
1RDD 24 =3 A Hald
1ARDF FOLCAT
1RES 3k =3 A Hald
1HER
1REE EE 1ACE Bi12E
1RES e A HERERAK
1HRER =3 1BEIC Blax
1TRED i @A A H#O0WH
1REE 2 1A 1BaA ElaF
1AF&@ i BE A H#LIF
1AF2 21 1B1E BIBG
@ A HEMTER
Wi 1BEIC Blax
@ A H#LEFT
a4 138 Bial
2 A #E2m
CE 1ACE E1BE

EJIASM

FRGE @2 OLvz . SH:

Xu RNyl

rd=grdniv}

1
pEalR 18
rd=gredrd 18
nEas 18
AEAELG ia
BEALR
BEASR 18@n As
BEATE laan AL
rd=grsdnd 188E 24
1819 4o
1811 AT
1813 2@

5 RAE
T oE1
227
E UA
C AT
E 2B
228 A7
22 20
24 o
E AT

azpRia 1
aappzEA 1
fzpRzA 1
aIppdA 18
1
1

EE

I

(I ax]

0

bix
o

1

=1 A
28 1B2Y
=17 A
ic 1B24
cH 1ACE
EH A
g1 A
2E 1B1E
EH A
23 1B1E
E4 A
a1 A
2z 1B1E
E4 A
=1 A
=8 A
EE 1REZ
ua A
ca A
cH A
E0 A
alm 1B2A

=14 1ACE

DO B B wu d
Lo S i)

E

DoOs - PAGIHG & OVERLAYS

#3EE
E1EH
CHPA #5500
ECS EiEH
EFA El1ZE

[0WH
EilaF LOA . 5
CHFA 1,5
BT Elacl IF AT EHMD ALRERDY

® P IHCAH
BISG STH
ERA

Loe
CHFRE
BEQ
DECH
5TH i

EigGl LDA #3EE
5TH 2
ERA ElgE

TERT CHR

E1EBH ORA #5U4@

=TH RS
Lo LU

CHFA #E50
EBEQ ElaF

EFA El1ZE

BHCE ARROW

Bi&T Loe .U
AMDAE #EEBF
CHFA #E1E
EME BE1EE
LoE RS
EFA Blal

* BREAE OFR EMTER

BlEs TFFR A, B
LERS 2,5
LOA #3EE
ETH L
RTS

Z-(-I

ok
AN FOR

FOE

=l
LOx FARAMETER AREA
LoA RERD
STH
LOA DRIVE
STH
Loo TRACK & SECTOR
STD LEAVE = -» SECTOR
Loy
STY
LoA STARTING OCCURAMCE
E132A CHPA #72 AMY MORE OM THIS DRIVER

EJIASM

FRGE @RZ OLYZ EHDE Oos - PRGIMG & OVERLAYS
1BEZ 2 BE 1BCE B BlaMn
1BEL 2@ s A BlOE SUEA #E
7 1BED BlE Elac IF IM THIS SECTOR
o A IHC . i
Fa laEy EFA Elag
s A Blac AODA #E
7y 1877 EBEO Elan
e e} A LIOE HEZ
g FLIL OISFLACEMENT IM THIS SECTOR
@ HE A LEAY O, OFFSET TO O1ST EMT TO SCAH
g i 1Baz EFA Blani
e TH A oBlaD FEHE Ha U
[oF Ccpad A ISR [$Capy]
e a5 TH A FLLE et
g HE rije} H LD RESULT
e 2E Ui 1acs EMHE IF I-1 ERF
g # COMPARE AGAIMST ARGUMEMT
e # REGISTERS: @-»SECTOR MER
g * EMTRY IH BUFFER
e £ ERRCH ARGUMEMT
g et =3 A oBlabl PSHES iyl
e CE rid= A LIOE #11 EYTES TO COMPARE
e e 2 H LEAL 2. TOOSTHRT OF ARGUMEMT
e HE FL A LOFA 27
e 1BSE 27 i 1B EBEQ BlaEl IF EHMFTY EMTRY
e 1BED 2B A 1EES EMI Bl3EL IF EMD OF DIRECTORY
frif= 1BSF HE v} A OBlIE LD g L
e 1Bal =21 2R A CHFA #w WILDCARDY
g iBaz 27 iF laay EBEQ ElaF
e 1BSE AL i A CHFA 2
e ZH1BaT 27 in 1BEE EBEQ Blac
e # MO MATOH
il 1Ban 2k =3 HOBlZIEL PULES Yyl
e 1BSE BC Hi A IHC 1,U
i@ 1Bal [Ae i H LD 1.U
i@ 1BSF 21 ua A CHFA #T2 AMY HMORET
il - 1BAL 24 2B 1BCE Boo i
e] 1BAZ 21 HE 2B i LERAY BELN FOIMT AT MEXET EMTRY
@ : TBAE 1@t avoe H CHPY YEBUF+ZEE
i@ I 1BAR 2B ov laas BCE =
@ jride # READ HEST 2
BE! i 1BAD 1B2E BECE A Lo
s jride 1BBD BC ot H IHC
] i 1BEZ 28 e} 1BTT EFA
ride 1BEBY AE iz HOBLOF LI BYFRSES SOURCE CHR
I 1BEE BR Blac DECE
ride 1BET Z8 [1BEF EHE El13E
i # MATCH FOUMD
jride 1BED 2R =3 H FLLE
rad 1BEE EC Hi A IHC SEARCH COMTIMUES WITH HEST EHTRY
ride 1BBD 232 W H LERAL
1BEF CE e} A LIOE
1Bl AE iz A BilaH LOA
1BCE AT v} A ETH
1BCE BR DECE
= Fa 1BC1 EHE ElaH
RTS

FF A Bland LDA #EFF

EJIASM

FRGE @Ed OLvz . SH:

BTied BIaTeA 1BCE AT
1ECD =3

1BCE @221
1BECF h@nl

aaal

TOTAL ERROR

i

T

o T e o T o QO e o e e

rdradr it g inlr)
TOTAL WARMIMGE 2@229--0@0a9

oFT
RHE
=l
=l
=l
=l
=l
=l
=l
=l
=l
TTL
EHD

- PRGING & OVERLAYS

1,u SAY MO MORE

1
1

L

1 EMD OF OVERLAYS

LAST FG

E1T-BlE

OURLAY-ORGIN-1

LASTPG-ORGIMN-1

nos STRART OF DISK FILE

LASTPG+DOZ-0RGIN END OF DISE FILE

OURLAY IHITIAL EMTRY POIMT IMTO PROGRAM
OVRLAY+Z LOWEST POIMT WHERE USER PGHM CAM LOAD
FLE@@~LASTRG+ORGIN POINT THAT BRSIC CLOBBERS
0oz - CROSS REFERENCE

/AQO (Absolute Origin)coeeviiiiiiiiiieeee e
/IM (Assemble into Memory)cccccoevvieeeiiniiiineenns
JIM SWItCH L.
/LP (Assembler listing)
/MO (Manual Ofiginceeeriieeeeiiiiee e 25,
/NL (No listing)
/NO (No object code in memory)ccccceeveerennnnns
/NS (No symbol table)cccceeiiieeiiiiiiieeeeieeen
/SR (Single record)
/SR “switch”
/SS (Short screen listing)
/WE (Wait on assembly errors)
/WS (With symbols)
6809
6809 Mnemonics, Reference
6809 Registerscccvviiiieiiieeeeee e

Absolute Origin Assemblyccccoviiieeiiniiineenee
Addressing—Mode Characters
Addressing Modes
Direct Addressing
Extended Addressing
Immediate Addressingcccceeeeeeieieeenn.
Indexed Addressing
Indirect ADAressingcceeeeerveiiirereeeeennnnnns
Inherent Addressing
Relative Addressingcoooeevieiiiiiiiiiieeee
Alphanumeric Character Codes
Arithmetic Operators
Addition (+)
Subtraction (-)
Multiplication (*)
Division (DIV) ..o
Modulus (MOD)
Positive (+)
Negative (-)
ASCII Codes
Alphanumeric Characterccccceeevunenn. 1
(©70] o] U PRRRRR 1
Graphic Character
Video Controlevvevieviviniiiiiiiiiiiiiiieiinns 1
ASCIIMOAE ...
Assembler Commandscccoeciieieiniiieeeeieeee
Assembler Commands and Switches,
Reference

Assembler Pseudo Ops, Reference 85
ASSEMDBIING .ooeeieiiii e 25
Assembling for DOSccoiviiiiiieiieee e 30
Assembling for Stand—Alone ZBUG 30
Assembly Display Listingccccooveeeiiiiiiiiiieeeeenn. 26
Assembly Listing, Changingcccccuvcvrieiniinneennns 49
COND ... 49
ENDC ..o 49
INCLUDEooiiiiieeeeeeeeeee e 50
OP T e 49
PAGE ... 49
TITLE. . 49
—B—
Backups ..o 3
BASIC Commandccccuviieiieeeieieeee e 23
Breakpointscccoooiviiiieiii e 32
BUffers oo, 61
Byte MOAE ..o 17
—C—
Changing Memorycccooviiiiiiiiieeeee e 18
CHROUT ..o 58
Clock Displaycoocueeeeeiiiieie e 16
Closing a Disk Fileccccooiiiiiiiiiiiiieeeeeiiiiieeeeen 62
Color COAESoooiiiiiieeee e 105
ComMMANG ..ooeieiiiee e 42
Complex Operationsoocccveveeeeeeeeeeiiiiieeeeeeenn 37
COND .. 49
Controlling Assembly Origincccoocveeeiiiiienennne 47
END oo 47
ORG .. 47
Copy CommMaNdcoooiiiiiiiiiiieee e 22
Cstartline, range, increment 22
COPY FilES ..veeeiiiiiiiiiiiiii s 15
Cstartline, range, incrementccccceceuvuveenannn. 22
—D—
Data Control BIOCKeeeeeiieeiiiiiiiieeeee e 61
Data Control Block (DCB), Reference 91
Defining Symbolscccoeiiiiiiiiie 47
EQU ..o 48
SE T 48
Delete Commandcccceveeieeeiiciieeeee e 22
Drange ..o 22
DireCt ACCESS ...cooieeieeiieeeeeee, 65
Direct AddreSSingcoovcuvveieeeieeeeiie e 45
DIreCIOIY e 15
Disk Allocation Mapccooovveiiiiiiii, 15
Disk Assembly ..o, 30
Assembling for DOSccccciiiiiiiiiiiieenn. 30
Assembling Stand—Alone ZBUG 30
Display MOEScccvviviiiiiiieieeeeeeeecce e 31
Half-Symbolic Modeccccocooeeiiiiiieneee 32

11 / USING PSEUDO OPS

Numeric Mode ..o, 32
Symbolic Modec.ceveiiiiiiiiiiiee e 32
DOS Error Codes, Referencecccceeeeeeeveeeiinnnns 101
DOS ROULINES ..vvveieieeeeeee e 10, 61
DOS Routines, Referencecccoooevvvvveeiiiiiineennnnnn. 95
Drange ... 22
—E —
Edit Command ..o 21
EliNe ..o 21
Editor Commands, Referencecccooeevvvvvnneennn. 71
EDTASM ..o 5
EDTASMOV ... 5
EliNe... ... 21
END e 47
ENDC oo 49
EQU ..o 48
Error Codes, DOS Referencecccoccvveeiiiinenn. 101
Error Messages, EDTASM Reference 81
Examination Modescccccceviiiiiiiiiiieieee 17
ASCIIMode ... 18
Byte Modecccooiiieeiiii 17
Mnemonic MOdecoooiiiiiiiiiieeeeeeeeee 18
Word Modeoooeeviiiiiieiiiieeeeeee e 18
Examining Memorycccceviiiiiiii 17
Examining Registers and Flagscccccccoviiiiinneen. 33
Executing a Program from ZBUGcccceeveeeen. 32
Extended Addressingcccceeevinimieiieenee e 43
Indirect Addressingcccveeeeeeeeeeniiiiieeeeeeeenn 43
Extended Indirect Addressingccccoecveeeiiiineenn. 43
—F—
FCB e 48
FCC 48
FOB . 48
Flags, EXaminingccccooeiiiiiniiiiiee e, 33
FLDFLG ... 27
Formattingoovvveeiiii e 3
—G—
Graphic Character Codesccceviiieieiiiiinenennne 105
—H—

Half—Symbolic Modecccooeiiiiiiiiieeeee 32
HIENGE ...ooooiieeee e 21
— | —

Immediate ADdresSingcccooveeieemieeeeeeieiiiieeee. 43
INCLUDEooieee e 50
Indexed AdAresSSiNgccceeeeeeeeiiiiiiiiieee e 43

Indirect Addressingcccvvveeeeeeeiiiiiiiieeeeeeenns 44
Indexed Indirect ADAressingcccceeeeeeeeiiiiiiiienenn. 44
Indirect AddresSiNgcccvvveeeeieiiiniiieieee e 43
Inherent Addressingccoocoveviiiciiieieniieee e 43

INPUt MOdE ... 35
Insert Commandooovuveiieiieeeeeeieeeee e 22
Istartline, incrementcccoeeeveevveeineennn. 22
Inserting Dataocccoeiiiiiiiiiie e 48
FCB e 48
FCC e 48
[D] = 48
RMB ... 48
[startline, iINCrementcoveeueeiieeeiieieeieeee e, 22
— L —
Label e 42
LD fileSPECeeveeeeeeiiieieeeee e 23
LDA fil@SPECeevveeiiiiiiiiiiiieeeeeeeeee e 23
Left bracket ([) «eveeeeeeeeeiiiiiieieee e 6
LINCNT e 27
Load Commandceuuveeeiiiieiiiiiiiiee e, 23
LD fileSpecccouveeeeeeieiiiiiii 23
LDA fil€SPECueeeeeeeiiiacieiiiieeeeeeeeeea e 23
Logical Operatorscccceerieeeeiniiieee e 37
Shift (<) e, 37
LogicalAND (AND)cccoiiiiiieeeeeeeeeeeen 37
INClusiveOR (OR)ovviiiiiieiiiieeee e 37
ExclusiveOR (XOR)cceeeeeiiiieiiiieeee e 37
Complement (NOT)cooviiiiiiiiiiieeeeieeee e 37
— M —
Y= Tod (o T 7= | 53
Macro, Callingccoeoviiiiiiiiiiiiee e 51
Macro, Definingcoooviiiiiiiieiie 51
Macro, Dummy Valuesccccceiiiii. 53
Macro, Formatoooeeeiieiiieee e, 52
Macro Definitioncoevvveeeiiiiiiiieeeeeeeee, 52
Macro, Passing Valuescccccooi, 52
Y=o (0T T 51
Manual Origin Assemblyccccooiiiiiiiiiiieenieenn. 29
MemOory Mapcooviiiiiiiiiieieeee e 103
Mnemonic Modecooovveviiiiiiiee e, 18
MNEMONICS ... 10
Mnemonics, 6809 Referenceccccceeevevvvnnnnnnn. 109
— N —
Nstartline, iINCrementcoo.oeeeeeeeeeiiiiiieiieiienns 22
Numbering System Modesccccoveeiiiieceniinenn. 35
Input Mode ..o 35
Output Mode ... 35
Numeric Modecoueiiiiiiiiiieee e 32
—0—
OPCOAE ..t 9
Opening a Disk File ... 62
OPErandsooooiiiiiiiiiiiieee e 36

(O 0 =1 =110 1= 36

OPperands.......cccooeecuueeiieee e 36

OPEratorscuueveiiiiie e 36

Arithmeticooevvieiie e, 36

Logicalcoooeiiiiieiiii e 37

Relationalccoooevviviiiiiiieeeee, 37

Complex Operations 3..........ccccceeeveeiiniiiiinnen. 7

OPeratorsooovciueiiiiieee e 10, 36

Arithmetic ..o 36

Logical ...coovvvieiiiiiiiiiiiii 37

Relationalcccoooviiiiiiiiiiie 37

(O] SR 49

(O] {C TS 47

Origination Offset Assemblyccccoeiiiiiiieenne. 28

Output MOdE ... 35
—P—

PAGE ... e 49

Y I =1 27

PAGWID ... 27

POLCAT ..t 57

Prange ... 21

Print Commandooovvviieiiiiiieeeeeee e 21

Prange ... 21

Printer Commandscceeeeiiiiiiiieieieeeeeeeeeeeeeean 21

HIange ... 21

Trange ... 21

PrOCESSON .o 9

Registers ... 9

OPCOUL i 9

Program Editor Commandscccccoeeieeerniineenn. 21

Copy Commandcceeeeeeiiiiiiiiiiieeee s 22
Cstartline, range,

INCrEMENtooueeeeiiiieieeiiiii e 22

Delete Commandccccceeeeeeiieiiieiiiinnnen. 22

Drangeccccooiiiiiiii, 22

Edit Commandooovvvviieeeeeeeeeeeene, 21

EliNG ..o 21

Insert Commandcoevveeeeeeeeiiieeiinen. 22

Istartline, incrementcccccoevevnnenn. 22

Load Commandceeeeeieeeeiiiiiiiiee e 23

LD fileSpeccccueeeeeeeciiiieeaeeeeeanns 23

LDA fileSPecCccueeeeeeeiiiieeaeeeeeinns 23

Print Commandcoovveeeeieiieiieeeenen, 21

Prange ..., 21

Printer Commandscccceeeeveeiiiiiievernnnn. 21

Hrange ... 21

Trange ... 21

Renumber Commandcccooovvvvvivvvnnnnnn.n. 22

Nstartline, increment 22

Replace Commandcccoccveeeiiiiieeeeninee. 22

Rstartline, increment 22

Write Commandooveiiiiiiieeeeeeeeeeeenn. 23

WD fileSpeccccoouueeeeiiiiiiiiiiienn 23

ZBUG Commandcooeevvviveiieieieeeieeeeeen 22

PSeUdO OPS ..ooeiiiiiiiiiiiiee e 10, 47
Pseudo Ops, Referencecccccceecvvvieieeeeeeeccinnee, 85
—R—

Read/Write Optioncccoeeiiiiiiiiiieeeeeeee e 66
Reading a Disk Filecccoveiiiiiiieee 65
Read to a File Sample Programcccccveeninnenn. 67
RegISters ... 9

B809 ... 41
Registers, EXaminingccccceviiviiiiireeeee e 33
Relational Operatorscccccceeeiiiiiiiiieeee e 37

Equal to (EQU) .eeovveeiiiiieeeee e 37

Not Equal to (NEQ)cccvvviiiieiieeiiieeeee, 37
Relative ADdressing ... 44
Renumber Commandcccceevviiiiiiiiieiee e, 22

Nstartline, incrementcccoevveeveninennnen. 22
Replace Commandccccooeeiii, 22

Rstartline, incrementcccoeeveeeeieneneennn.. 22

Right bracket (1) ..eeeeeeriiiiiiiieeceeeee 6

RMB oo 48
ROM RoOULINES ..ovvieieeieeeeeeeeeeeeeeee e 10, 57

CHROUT oo 58

POLCAT .. 57
ROM Routines, Referencecccceeeeveieeeiiiivinnnnnn. 89
Routines

DOS oo 10

ROM oo 10
Rstartline, incrementcceeeeeeeeeeeeeeeieeenaennn. 22

—S—

Sample Programccccooeiiiiiiieeee e 5, 11
Sample Programsccccceeiiiiieiiniiieee e 125
Saving Memory from ZBUGccoceeiiiiieneennen 34
SE T e 48
Sequential ACCESS ...oovvivvviiiiiiiiiieee e 65
Single Steppingccceeeviiiiieieiee e 33
Switches

TAO e 25

TIM e 25

TLP e 25, 27

IMO e 25

INL e 25, 27

INO e 25

INS e 25, 27

ISR e 7,25

ISS e 25

TWE oo 25, 27

TWS e 25
Symbolic Modecooiiiiiiiiiee e 32
SYMDOIS .o 10

Examine Memorycccoveveiiiiiiiiiiineeeeenn 32

—T— Write Commandoooeeeeeeee e 23

TITLE e 49 WD fil@SPECcceeeaiieeieeiieeeeeee e 23
TrANGE ... 21 Write to a File Sample Programcccccviieeens 67
Transferring Memory BIOCKSccccoviiiiiiieeenennn. 33 Writing @ Disk Fileoooviiiiiiiiieeieeen 65
—V —
Video Control Codes 1.......oooiiiiiiieeiiiiiiiiiieeeeeeee 05 —Z—
ZBUG Calculatorcccooeeiiiiieiees 35
—W— ZBUG Commandcccccceviiiiiiiienennnnnns 22
WD Fil@SPECueeueeiiiieasvav e 23 ZBUG Commandscoeevnveeeeeeeeeeeeeeeeeeeeeeeeenn 17, 31

LAY oY (o I 1Y, (oo =X 18 ZBUG Commands Referenceccocceeevvveevevnnnnenn, 77

263254-12/83-TM

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM UK.
91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.SW.2770 5140 NANINNE WEST MIDLANDS WS10 7N

Printed in U.S.A

