°*DEFT Pascal
Workbench

User’s Guide

TRS-80™ Color Computer Software Series

Version 3 Second Printing

DEFT Pascal Warkbench User’s Guide
Copyright ® 1983, 1984 DEFT Systems, Ine.
Damascus, Maryland 20872, .8 A.

All Rights Reserved

Reproduction of any portion of this manual. without cxpress written
permission from DEFT Systems, Inc. iz prohibited. While reason-
able efforts have been taken in the preparation of the manual (o
assure its accuracy, DEFT Systems, lnc. assumes no liability
resulting {rom any errors or omissions in this manual or from the
use of the information obtained herein.

DEFT Pascal
DEFT Edit
DEFT Macro/6809
DEFT Linker
DEFT Dehugger
DEFT Lib
Copyright ® 1983, 1984 DEF'I' Syslems, Inc.
Damascus, Maryland 20872, U.S.A.
All Righls Reserved

The software is retained on a 5 % inch diskette in 2 binary format.
All portions of this software, whether in the binary format or other
source code format, unless otherwise stated, are copyrighted by
DEFT Systems, Inc. Reproduction or publication of any portion of
this materiul, without the prior written authorization by DEFT
Systems, Inc., is stricily prohibited.

TRS5-80™ is a Trademark of Tandy Corporation

Software License

DEFT Systems, Inc. grants to ¥ou, the customer, a non-exclusive,
paid-up license to use the DEFT Systems software on one computer,
subject to the following provisions:

1.

=

Exceptasotherwise provided in the Software License, applicable
copyright laws shall apply to the Software.

Title to the medium on which the Software is recorded (cassette
and/or diskette) or stored (ROM) is transferred to you, hut not
title to the Software.

Y ou may use the Software on one host computer and access that
Software through one ar more terminals if the Software permits
this function.

. You shall nol uge, make, manufacture, or reproduce copies of

Software except for use on one computer and as is specifically
provided in the Software License. You arc expressly prohibited
from disassemnbling the Software.

You are permitted to make additional copics of the Software only
for backup or archival purposes or il additional copies are
required in the operation of one computer with the Software, but
only to the extent the Software allows a backup copy to he made,

You may resell or distribute unmodified copies of the Software
provided you have purchased one copy of the Software for each
one sold or diziributed. The provisions of this Software License
shall also be applicable to third parties receiving copies of the
Software from you.

. All copyright notices shall be retained on all coples of the

Software.

Term

This License ig effective until terminated. You may terminate this
License at any time by destroying the Software together with all
copies in any form. It will also terminate if you fail to comply with
any term or condition of the License.

ii

Warranty

These programsg, their ingtruction manual and reference materials
are sold AS IS, without warranty as to their performance,
merchantability, or fitness for any particular purpose. The entire
risk astothe resultsand performance of these programs is assumed
by vou.

However, to the original purchaser only, DEFT Systems, Inc.
warrants the magnetic diskette on which these programs are
recorded to be free from defeets in materials and faulty work manship
under normal use for a period of thirty days from the date of
purchase. If during this thirty day peried the diskette should
become defective, it may be returned to DEFT Systems, Inc. for a
replacement without charge, provided vou have previously sent in
vour limited warranty registration notice to DEFT Systems, Inc.
or send proof of purchase of these programs.

Your sole and exclusive remedy in the event of a defect is expressly
limited to replacement of the diskette as provided above. If Failure
of a diskette has resulted from accident or abuse INEFT Systems,
Inc. shall have no responsibility to replace the diskette under the
terms of this limited warranty.

Any implied warranties relating to the diskette, including any
implied warranties of merchantability and fithess Tor a purticular
purpose, are limited to a period of thirty days from the date of
purchase. DEFT Systems, Ine. shall not be liable for indirect,
special, or consequential damages resulting from the use of this
product. Some states do notl alluw the exclusion or limitation of
incidental or consequential damages, so the above limitations might
not apply to you. This warranty gives you specific legal rights, and
you may alse have other rightls which vary from state to state.

Support

DEFT Systems, Inc. {and not Radio Shack) is completely
responsible for the Warranty and all maintenance and support of
the Softwarc. Any questions concerning the Software should be
directed to:

DEFT Systems, Inc.
P.O). Rox 359
Damascus, Md, 20872

1ii

DEFT Pascal Workbench User’s Guide

Introduction

Familiarization Exercise

DEFT Edit

DEFT Pascal Compiler

DEFT Macro/6809 Assembler

DEFT Linker

DEFT Debugger

DEFT Lib

DEFT Pascal Language

Advanced Pascal Language Extensions

DEFT Macro/6809 Assembler Language

I_ﬁdex

DEFT Pascal Workbench

1 DEFT Pascal Workbench 1
11DEFT Paseal ... e i 1
L2DEFT EdIL .. i i e it 1
1L3DEFT Macro/6808 i i, 2

. 1LADEFT Linker ... oottt i it e e e 2
1.5 DEFT Debugger ... i 2
1B DEFT Lib ... e i 2

2 DEFT Pascal Workbench Users Guide 4
21 Document Divisions ...t 4
2.2 Document Scetion Deseriptions ... oo, 4

3 Software Development 6
3.1 Program Design Development ..o oo oL, 6
3.2 Source Code Development. oo, 7
3.3 Object Code Development.ot i, 7
3.4 Load Module Development ... oo e R
3.5 Program Kxecution and Debuggingo 0. 8

4 Getting Started ... i e e 9
4.1 Program Executiono iiiiivnin e, 9
4264K Operation e 10

. 4.8 32K Operationtuiii i e e 11
A4 DEFT Files oo e e 11
4.5 DEFT Pascal Workbench Diskette Contents, 12
4.6 Single Dizk Drive Operation 11

Intro

1 DEFT Pascal Workbench

DEFT Pascal Workbench is a set of soltware development tools
designed to support a programmer through the process of creating
computber programs; from entering source code through executing
the resulting machine program. DEFT Pascal Workbench is
comprised of the following software packages:

DEFT Pascal
DEFT Edit
DEFT Macro/6809
DEFT Linker
DEFT Debugger
bERT Lib

DEFT FPascal Workbhenceh requires a TRS-80 Color Computer to
be configured with at least. 32K of memory, Exlended Disk BRASIC,
and one floppy disk drive. DEFT Pascal Workbench utilizes a
device independent file structure which 1s fully compatible with
Disk Extended BASIC. Disk and tape files ereated with DEEFT
Pascal Workbench are of the same internal [ormat as those
produced and supported hy BASIC.

1.1 DEFT Pascal

The DEFT Paseal Compiler isa fully recursive, single-pass Pascal
language compiler for the TRS-80 Color Computer. It compiles
Paseal programs directly into machine language code that can be
executed by the 6809 microprocessor in the CoCo,

DEFT Pascal generally supports most standard Paseal language
construcls, In addition, DEFT Pascal supporis many extengions to
the standard language which makes text processing, multi-language
and systems {ype programs easier to write.

1.2 DEFT Edit

DEFT Edit is a secreen mode, in-memory, ext cditor which
provides its users with a selectively moveable window into a text
file. DEFT Edit was designed primarily for the development of
program source code, but it can also be used for the production of
software documentation.

Introduction 1

1.3 DEFT Macro/6809

DEFT Macro/6809 is a device-independent software package
designed to translate Motorela 6809 Assembler source programs
into 6809 micro-processor machine programs in two passes.
Program source filex may be read from either cassette or disk with
the resulting machine program abject files written to either
cassette, disk, or the serial I/Q port, DEFT Macro/6809 parses and
cvaluates Motorola 6809 Assembler language statements and
declarations, and generates the corresponding 6809 micro-processor
machine programs according to Motorela 6809 Assembler language
svntactical rules and conventions.

1.4 DEFT Linker

DEFT Linker is a program which reads the program object files
produced by both DEFT Pascal and DEFT Macro/6809 and
converts them into machine executable binary image files suitable
for loading with the Color Computer's LOADM command. DEFT
Linker can also read multiple program object files and combine
them into one larger machine executable binary Load Module so as
to allow Color Computer users to develop very large programs one
picec at a time.

1.5 DEFT Debugger

DEFT Debugger iz an excellent ool for debugging machine
programs developed in either I’ascal or Assembler. DEFT
Debugger allows you to stop and start a program under lest al
almost any poinl. Onece the program under test has been stopped,
you ¢an display and/or change any memory location or micro-
processor register.

When used with DEFT Pascal, DEFT Dcbugger provides
symbolic access to your program as well as a trace facility for
digplaying currently active procedures,

1.6 DEFT Lib

NDEFT Lib is an excellent tool for the development of objeet module
libraries using objeet modules produced by either DEF'T Paseal or
DEFT Macro/680%. DEFT Lih is a device independent software
package capableof creating and maintaining up to 50 chject module
sectionsinonelibrary file, Onec ercated, these libraries can be used

2 Introduction

as input to DEFT Linker which will only uze those sections which
have been referenced by the particular program which is being
linked.

Introduction 3

2 DEFT Pascal Workbench Users Guide

The DEFT Pascal Workbhench Uszers Guide is structured to be
helpful in understanding and using DEFT Pascal Workhench,
The Users Guide is notintended tohe a self teaching guide in how to
program butralher a tutorial on how to use the programs in DEFT
Pascal Workbench.

If you already have an understanding of programming, then the
User’s Guide should contain more than enough information for you
to immediately begin programming. If you have only programmed
in BASIC. then vou should be able to begin programming bat you
may need @ Pageal text book when tackling some of the more
advanced portions of the language. In gither case, practice makes
perfect, and no one should expect too muceh of themselves without
some experience.

2.1 INocument Divisions

The DEFT Pascal Workbench User’s Guide is presented in three
parts: Mntraduction, How To and Buckground. Fach section was
written with two specific objeetives in mind.

® Tosupport DEFT Pascal Workbench users according Lo their
operation of a DEFT softwarce product. .

* To provide background information for reference,

2.2 Documeni Seetion Desceriptions

The Introduction section informs the reader of two things. First, it
tescribes the contents of the User’s Guide iwsell and second, it
dezeribes how, in general terms, to use DEFT Pasecal Workbench
o develop programs.

The Hme: T section deseribes in operational detail how to execute
euch tool provided in DEFT IPascal Workbench. This scetion
starts with 2 Familiarization Exercise designed to be perfermed
by you when you are first becomingacquainted with DEFT Paseal.
This exercise provides a working example program. IFollowing the
excreise are individual sections which describe the operation and
use of each program in the DEFT Paseal Worltbeneh.

The Buaelkyrownd section presents the reader with reference
information. The first part summarizes the standard language
elements of DEFT PPascal and includes a brief explanation of each.
The second part sumrmarizes the language extensions that are

1 Introduction

contained in DEFT Paseal, with an explanation of each element.
The last part summarizes the language elements of DEFT
Macro/680% assembly language.

Regardless of how much experience & you may have, we highly
recommend that vou read the entire User’s Guide. Good Tuck and
have fun with DEFT PPascal Workbench.

Introduetion 5

3 Software Development

Developing programs with the DEFT Pascal Workbench is
somewhat different from the procedure for developing programs in
BASIC. With BASIC, you cssentially {ype in the program and then
tvpe RUN, Debugging usually consists of hitting the RREAK key at
appropriate points, PRINTing variables and turning the trace on
and off.

Thisis a very good cnvironment in which to develop small Programs
which do not have o execute with exeeptional speed. However, as
the programs you writc hecome larger and more complex, some of
the limitations imposed by the BASIC language will come in 1o play.
These are primarily the small ideniifier size, lack of. program
structure, and cxecution performance of the interpreter.

DEFT Pascul Workbench takes up where BASIC leaves aff. It
should be seen as a powertul addition to your existing program
tools, It is ideal for thuse programs which heeome very large,
complex, and which execute for relatively long periods of time. All
the programs in the DEFT Pascal Workbenceh were themselves
developed using the workbench.

In general, the DEF'I' Pascal Workbench allows you to divide and
conguer a large problem in smaller pieces. The linkage facilities
found in DEFT Pascal and DEFT Macro/6809 provide 2 very
simple and straightforward method for combining the program
picees. This linkage facility is an exira siep in the program
develupment process and for amall programs may not provide many
benefits. [lowever, in lurger programs, the ahility to modularize
and compile or assemble only 2 small piccs of a program at a time
can be invaluable.

Since you are producing 6809 micro-processor instruetions with
DEFT Pascal, you will be dealing directly with the CP11 when you
begin debugging your resulting machine languape program. You
will use the DEFT Debugger to perform this step.

3.1 Program Design Development

Diesygn. This step is one that you consciously or uncomsciously
perform before typing in a program. Al the very least you should:

® Decide exuctly what things the program is supposed todao. These
are the program’s functions.

G Introduction

e Decide how 1o organize (he program around these major
funetions. This will identify what vour major program pieces
are.

® Decide how each piece should be organized to perform its
funetion.

For very large programs, you may wanl to go ta even more detailerd
design before beginning your coding. Remember that vrganizing
the program is hall the job of solving the preblem. This usually
involves defining ull of the major data elements that you will be
using before wriling the code that manipulates them,

3.2 Source Code Development

INdit. This familiar step is the entry of a program’s instructions
which usually begins about halfway through the design stage. At
this point, von wil!l be creating svurce modufe files; that is, each
program that is entered is stored in its textual form in a file, This
slep is performed by the programmer using a lexl editor such as
DEFT Edit. The resulling text file containing the program
statements is referred to as 8 sowree file or sowrce sodule file.

This step is very similar to that in BASIC, cxeept that in BASIC
onee the program is entered, it can then be immediately executed by
the BASIC interpreter. With DEFT Pascal. the program
stulemenis in text form must first be translated into machine
ingtructions for execution by the 62809 micro-processar. This leads
ua to the next phase of program development.

3.3 Object Code Development

Compile/Assenbie. This is a new step for those used to BASIC. This
step involves transforming the souree module files that you ereated
wilth DEFT Edit into ebject module files which coniain two things:
#® The machine lgnguage version of your programs

¢ Linkage information that will allow one ohjeet moduls file to be
combined with others

DEFT Pascal and DEFT Macro/680% ure bath used to perform
this step. Both programs prompt the user for both the name ol the
sowrce module file which it nses for input and the object module file
which it produces.

Introduction 7

3.4 Load Module Development

Liwnk. This is the last step before actually executing your program.
This step converts the previously created object modafe files into
single binory load module files.

When DEFT Pascal creates its object module files, it includes ealls
to machine language routines in other objeet modules which were
included on your DEFT Pascal diskette. These ahject modules are
in aspecial filecalled a runtime library and provide services such as
/0, string and set handling as well as floating point arithmetic. All
of these object modules must be combined together and all of the
address references between these modules must he adjusted
appropriately in order to ereate a working program.

DEFT Linker performs this whole operation. It prompts you for
the nameis)of the objeet module file(s) tobe linked, which it uzes for
input, and the name of the lood modide ftle which il produces. This
step Lakes all of those object module files and combines them into a
single file that ean be laaded via the BASIC LOADM command.

3.5 Program Execution and Debugging

Erecute/Debugy. This step involves actually testing your program hy
providing it with test data developed during the design step 1o
determine it the program is producing the correct results. The
DEFT Debugger permits a programmer to stop and restart a
program under tezt at any point within the program. The
programmer may then examine any memory localion and/or micro-
processor register and change its contents if desired. With the
DEFT Debugger, the user may specify up to eighl program
stopping or breck poinls al one time,

DEFT Debugger 15 an object module that is linked into your
progrant’s load module by DEFT Linker and therefore becomes a
part of it. 1t initially gains control when your program begins
execution so that you can use it to control subscquenl executior.
Onece your program ig debugged, you ean re-link it without the
debugger which will make your program smaller and faster.

For most large programs, the first and last sleps, design and
debugying, Luke the majority of the total time spent on a program.
In fact, invery large projects the first and last steps are broken into
anumber of sub-steps in order to keep the joh to a manageable size,

] Introduction

4 Getting Started

This section of the DEFT Pascal Workbench User's Guide is

meant to provide you with the nperational details required to use

DEFT softwarc products on the TRS-80 Color Computer. This

section iz required reading hefore vou should attempt anything
. with a DEFT software product.

4.1 Program Execution

All DEFT programs for the TRS-80 Color Computer are binary
machine language programs that are loaded into memory with the
LOADM command and executed with the EXEC eommand. Before
cxecuting any DEFT program or any program that you ereate with
the DEFT Pascal Workhench, it is absolutely necessary to proteet
it from BASIC. This is done with the following set of 4 BASIC
Monitor commands, These commmands need to be entered only once,
just before the first time thatyou load a DEFT program. Subsequent
loads of DEFT software will not reguire the re-entry of these
BASIC Monitor commands.

1. NEW-Thiscommand 13 nat necessary if vou have juzt turned on
yvour Color Compuler. It is used to initialize the memory area
narmally used by the BASIC Interpreter inthe Color Computer’s

. ROM.

2, POLEAR ! -'This command causes Extended BASIC to reserve
Lthe minimumn nuomber of 1.5K byte pages for graphics, Since no
DEFT software product uses BASIC's graphics for preseniation,
this command rcleases otherwise unused memory for use by the
program being loaded.

8. FILESG,6- Thiscommand tells BASIC that vou donot intend to
access uny disk [1les via BASIC. Note that even after executing
this command you can still DIR, KILL and RENAME. However,
vou will not be able to COPY. Since cach program of the DEFT
Pascal Worlkibench is an independent machine program. none
of the BASIC Interpreter's file facilities are required, therehy
frocing up oven more otherwise unused memory.

1, CLEAR 16,4349 - This reserves the upper SOK (27K in a 32K
ayatem) bytes of memaory for nse by DEFT software products. It

. will leave a little over 300 hytes of memory for use by BASIC.
This Color Computer BASIC Monitor direclive musl be enlered

exactly as presented in this example. The first directive
argument, 16, tells the BASIC Monitor how many hytes of

Introduction 9

memory to reserve for BASIC strings. Since no DEFT software
produets use the Color Computer’s BASIC language, 16 bytes of
memory is more than ¢cnough. The comma (.} preceding this next
number is required. the nexi number, 4959, tclls the RASIC
Monitor the last or highest value “address” in memory that it is
allowed to use. This number is expressed in decimal, thereby
reserving the rest of the Color Computer's memory, from
decimal address 5000 on np, for any DEFT software produet.

It is absolutely essential that you perform these commands before
executing any of the programs in the DEFT Pascal Workbench. I
you do not, BASIC may “over-write” portions of any program that
you may load. If that were to happen, the loaded program’s
execution will produce unpredictable regults.

The BASIC command for exceuting any of the programs in the
DEFT Pascal Workbench is LOADM “Zfilenwme>""EXFE(and
the possible filenames are:

PASCAL DEFT Pascal
EDITOR DEFT Edit
ASSEMBLE DEFT Macroa/6809
LINKER DEFT Linker

LIB DEFT Lib

4.2 64K Operation

Whenever any DEFT program first begins execution, it
immediately changes the Color Computer's memory map to unmap
the BASIC ROM and map inany RAM thatmay exist in the top 32K
of memory. DEFT programs areall fully sulf-contained and so don't
need the BASIC ROM (o operate.

After changing the memory map, the program will check to see
whether you have a 32K or 64K system und then adjust the size of its
main data structure to whatever memory is available. The result of
this is that these programs can aceess up to 64K bytes of memory in
your Color Computer.

With DEFT Pascal, or any other DEFT high level language
compiler, any programs that you creale will be able to use all the
available memory in the system for your data variahles. The only
restriction is thal the program instructions (not stack) must fit in
the lower 32K of memory sinee this is loaded via BASIC.

14 Introduetion

4.3 32K Operation

some 32K systems may show the same EAM memory size as a 64K
svstem. This will canse 2ll programs lo switch to memory map 1
which will cause the system to hang. If vou have such a TRS-80
Color Computer, you will want to do the following:

1. Pawer on your Color Computer,
p

2. Make a backup of your distribution diskette and put the
distribution diskette in a safe place.

3. Pul the wn-write-protected copy of the distribution disketle that
you just made into drive (.

4. Bnter the 4 BASIC commands found in the Progrom Eveewdion
scetion.

5 Enter RUN"MAKE 7K <enter™>

The program will run for about a minute and afler it finishes, the
diskette in drive 0 will conlain a 32K version of the software.

If vou have a 64K system and want to write I*ascal programs that
access the BASIC ROMs, you can rename PASROOT/ORI o
PASBGOT/64K and PASBOOT/22K to PASBOOT/OE.J. By doing
ouly this, your DEFT software will still run using all 64K but any
program linked using this new version of PASBOOTOR.) will
opcerate with the BASIC ROMs in place.

4.4 DEFT Files

Onoof the advantages of using the DET'T Pascal Workbench is the
device independent file structure which is supported while
remaining fully compatible with the TR8-80 Disk Extended Color
BASTC Syslem Software. Disk or tape files created with BASIC,
DEFT softwarc products or programs developed with DEFT
I"ascal arc all of the same fundamental format.

When executing DEFT software development tools you will have to
specify the names of the sewrce module, object module and binury
load modaule files. The file naming conventions used with the DEFT
Pascal Workbench are only slightly different. from that of BASIC
and allow complele device independence. The format of the names
are ax follows:

Intraduction 11

0.1y

<filename>/<ext><devices >

This is the same format thal BASIC uses for Disk files. However, hy
extending the device numbers, DEFT Paseal Workbench also
uses it for the keyboard, sereen, tape and printer. The <filename> is
0 to & ASCII characters. The extension is 0 to 3 ASCIT characters.
The device numbers range from -3 to 3 with the following meanings:

-3 Keyboard/Screen
-2 Printer
-1 Casselte Tape

0 Disk drive D

1 Disk drive 1

2 Disk drive 2

3 Disk drive 3

As can be seen, the positive device numbers correspond to BASIC's
drive numbers. The negative device numbers correspond to BASIC’s
device numbers with the exception that the Keyboard/Screen is -3
rather than 0.

Al of the fields are optional in diffcrent cirecumstances. When a
deviec number of -8 or -2 is specified, there is no need for a
<filename> or <exlension>>. When a device number of -1 is
specified, the <extension> i not required. For device numbers 0
thru 3, a default <lextension’> is always present depending on the
program being run. When a4 device number is not specified, 0 is
assumed. Following are some examples:

-3 Keyboard/Screen
-2 Printer
MYFILE:-2 Printer (filename ignored but allowed)

TAPEFILE:-1 Casselte Tape File

DISKFILE/ASM Assembler source file on disk drive 0

F2ZNAME:1 File ig on disk drive 1, defauit
extension used

4.5 DEFT Pascal Workbench Diskeite Contents

The following files are contained on the diskette that you received.
You arc encouraged to make a copy of the distribution disketie for
your own bhackup purposes and to execute from the backup rather
than Lhe original diskette.

1. PASCAL/BIN - This file contains the executable image of the
DEFT Pascal Compiler.

12 Introduction

ot

g

10

FEDITOR/BIN -This [1le contains the executable image of DEFT
Edit.

LINKER/EIN - This file containg the executable image of the
DEXFT Linker.

. ASSEMEBLE/BIN - This file contains the execeutable image of

DEFT Macro/6809,

. LIB/BIN -This{ile contains the executable image of DEFT Lib.
CPASCALIB/EXT - This is a4 Pascal source file which is

antomatically copied by DEFT Paseal at the beginning of all
programs which it compiles. This file contains the declarations of
all of the predefined procedures and funections provided with
DEFT I*aseal. This file must be present on disk drive 0
whenever DEFT Pascal is executed.

PASBOOT/OEB.F - Thisis the object file for the standard doot code
for all Pascal programs. All programs produced by DEFT
Software have a first anstruction. I'or DEFT Pascal programs
these first instructions are kept in this file, This object module
file contains the machine language routines for I'aseal program
initialization. "I'his file must bo present on disk drive O when
linking a Pascal program with the DEFT Linker.

. RUNTIME/LIB - This is the objeet module library file which

containg all the Paseal BEuntime routines for Fascal programs
developed with DEFT PPascal. Each library section conlains
machine language rontines which are automatically called by
DEFT Pascal when you use various parts of the language. This
file must be present on digk drive O when linking a Pasecal
program with DEFT Linker.

DEBUGGER/LIB - This is the library file which containg
DEFT Debugger for debugging any program created with
DEFT Paseal Workbench. This file must be present on disk
drive (0 when linking any program which is to include DEFT
Debugger. S3ee DEFT Debugger for more information,

FORMAT/PAS & FORMAT?:PAS - These arc the two source
files which.contain the Text Formaiter DEF'[Pascal program.
You will use these sourve files in the Famdiorizalion Exercise
part of the HOW TO section, to create your own text processing
system.

Introduction 13

onug

11, FORMATSP/ASM -This is asource file which contains the 6809
Macro Assembler language portiem aof the Tewl Formatter
program.

12, FORMATSP/OBJ - This is an object file produced by DEFT
Macro/6809 from the FORMATSP/ASM source file. It ig
ineluded onthe distribution diskette in case you donot wish to use
Lhe assembler,

13. FORMAT/TXT - This is an ASCIL file thal the FORMAT
program uses for input. The FORMAT program will produce a
sct of instruetions deseribing how to use itself.

11. PASEOOT ASM - This iz a source file which eontains 6309
Macro Assembler language instruetions which ure the very first
instructions executed by any Pascal program developed via the
DEFT Pascal.

15, MAKE32K/PAS This is a BASIC program that converts a
distribution disketle o 32K operation,

4.6 Single Disk Drive Operation

When using asingle disk drive system you will have to create a work
diskefte thal contains a couple of files from the distribution diskette
as well as your own source, object and binary files. To execute a
program you will insert the distribution disketie into vour disk
drive, load the proper binary image, insert your work diskette into
the drive and then exeeute the loaded program.

The files thal need w be copied onto vour work diskette arc:

DEBUGGER/LIB
PASGCALIB/EXT
PASBOOT/OBJ
RUNTIME/LIB

You can copy these files by using the COPY command in BASIC.
Although single drive operation is not documented, this command
works the same way BACKUP does in single drive mode.

On some early versions of Disk 1nxtended Basic the COPY eommand
will not work on a single disk drive. If vou have nne of thege, use
BACKUP to ereate a work disketie and then KILL all the files on
the diskelte except those named above,

14 Introduction

Familiarization Exercise

IIntroduclion o i e e e 1
g B T Ty A AU AP 2
A ERd . 3
4 Compile/Assemble 4

4.1 Executing the DEFT Pascal Compileroovvvunn.. 4

4.2 Execuling the 6309 Macro Azsembler 5
%0 1 131 7

6 Exccute/Debuig)

Exer

1 Introduction

In order to illustrale the use of the DEFT Pascal Workbench, a
sample program has been included on the diskette. This program is
madec up primarily of a PASCAL program which is contained in the
files FORMAT/PAS and FORMATZ/PAS. An assembler modble
FORMATSP/ASM contains a pre-initialized lookup table that is
used by the Pasecal program. The assembler module has already
been assembled into an object file (FORMATSP/OBJ), however, if
you also have DEFT Bench, then you can also perform the zection
on assembling a program.

How To)|

2 Design

This siep has already been performed for you. The purpose of the
program is to read an ASCI] file, which can be ereated by DEFT
Edit, and to produce a professional looking document. The inpul [ile
for this program contains text und text proeessing commands
which control how the resulting document.is tolook. Text processing
commands are recognized by having a period (.} as the first
character ina line. The document that will be produced as a resull of
this exercise, containg a Detailed Functional Deseription of what
the program is to do.

The program is broken down into the Iollowing major procedures:

® [nitvalize initializes ail variables and prompts for [ile names
required.
® ReadNextline reads the next line of input and determines

whether it is acormmmand or text. If itisa command. it delermines
which command that it is.

® NeaxlSymbol parsesan input command for each parameter of that
command.

¢ FillOutput and NoFillOutput ereate normal vutput text from an
input text line.

¢ One procedure per command will be used o process each
command type.

2 How To

3 Edit

This phase has also been performed. As mentioned before, the files
FORMAT/PAS and FORMAT2/PAS contain the Paseal program.
The file FOBMATSP/ASM contains the assembly language support
for the program. With DEFT Edit or your own ASCII file text
editor, you can edit these files to see what Lhey look like. We
recornmend that you don't make any changes to the program until
after vou have made a backup and have executed the final program
at least once successfully.

How 'T'o 3

4 Compile/ Assemble

We are now ready to eompile the Pasecal program and agsemble the
assemhbler supporl code. This section agsumes that yon are using a
two disk drivesystem with the DEFT Paseal Workbench diskette
in drive 0 and your work diskette in drive 1.

If vou haveonly a single drive system, then you will have to copy Lthe
following files onto your work diskette (see the section on Single
Dirive Operalton):

FORMAT/PAS
FORMAT2/PAS
FORMATSP/ASM
FORMATSP/QBJ
FORMAT/TXT

Before starting make sure that you have performed the steps
described under Getting Started to prolect the machine language
programs from BASIC.

4.1 Executing the DEFT Pascal Compiler

The command LOADM “"PASCAL-EXFEC will lead the DEFT
Pascal Compiler [rom disk drive 0 and begin execution. You will
see the DEFT Pascal Compiler sereen with all of its prompts. If you
have only a zingle dizsk drive, then remove the DEFT Pascal
Workbench dizkette [rom the drive and insert your work disketls,
Each promptl and its possible replics are deseribed below:

® SOURCE requires Lhe name of the souree file which is to be
compiled. The default extension is PAS. Your response for this
sample program will be FORMAT, FORMAT0. FORMAT/PAN
or FORMAT/PAS:0 all of which arc cquivalent.

¢ OBJECT requircs the nameof the aliject file that is to be ereated
by the compiler. This ean he either on tape or disk or the name
can be ommilled entirely if you do not wish to create an object
file. The default extension is OBJ. Your response for this sample
program will be FORMAT:1 or FORMAT/OLF:1 both of which
are equivalent. If you have a single drive system, your response
will be FORMAT, FORMAT/OBJ or FORMAT/OBJ0.

¢ LIST requiresthenameofthelist [ile whichis to be ereated by the
enmpiler. This can be tape, disk. sereen or printer or the name
cun be ommitted entirely if you do not wish to create a ligt file.
Thedefaultextensionis LT, Y our response fur this sample program

4 ITow To

will be :-2 if you have a printer or nothing if you don't.

e DEBUGY asks you whether you wish to have debug information
included in the resulling object file. You ean answer this either
with N, 7 or anything else. Anything olher than N orn(for No)is
taken to he ¥ (for Yoes).

The debug information will make your program significantly
bigger bul will allow you to symbolically debug your resulting
program if you answer the DEFT Linker’s debug? queslion with
a Y. If you specify ¥ to DEFT Pascal’s debug? question and N to
the DEFT Linker'sdebug question, then the debug informaltion
will 5till be in the {inal hinary image even though the DEFT
Debugger module is not present.

Il you want to try out the debugger, then you can answer this
guestion Y, otherwize answer it N,

& DIRECTIVE requires any DEFT Pascal direclive that you
would like to include belore any sonreelines are read. The section
Compiler Controls deseribes all the possible compiler eantrols
that vou could enter here. Y our response for this sample program
will be T<your name>> which will cause <your name> to be
printed at the top of cach page of the program listing.

After you answer the DIRECTTV £ prompt., the program will begin
executing. The compiler requires that the file PASCALIB/EXT be
present on disk drive 0 at this point. When the compiler is linished
exceuting, control will return to BASIC and you will get the OK
prompt.

This execution of the DEFT Pascal Compiler will read both the
FORMAT/PAS and FORMAT2/TAS source [iles and create the
FORM A'T/OB. object file. The FORMATZ/TAS file will be reul
because of a compiler directive at the end of the FORMAT/TAS
source file.

4.2 Executing the 6809 Macro Assembler

If vou want to try out the DEFT Maecro/6809 assembler then you
can also assemble FORMATSF/ASM into the FORMATSP/OBJ
file. If you don’t, then go to the next seclion.

First put the DEFT Pascal Workbench diskelte indisk drive (0 and
enter the command LOA DM “ASSEMBLE":EXEC tnload DEFT
Macro/6809 and hegin its exceution. If you have a single drive

How To 5

gyvster, put your work diskette into disk drive 0.

You will see the assemhbler’s sereen appear along with 1tz first
prompt. Each prompt and ils pussible replies are deseribed below:

® TITLE: requires the string of characters that you want to see at
the top of each page of your assembly listing. You do not have to
enter a title but for this sample proagram vou can enter vour
name.

¢ SOURCE FILE: requires the name of the source file which is to
be assembled. The default extension is ASM. Your response for
thizs sample program will be FORMATSP, FORMATSF:0,
FORMATSIVASM or FORMATSF/ASM:N all af which are
eguivalent.

¢ OBJECT FILE: requircs the name of the object file thatis to be
created by the assembler. Thiscan be eitheron tapeor disk or the
name can be ommitted entirely if vou do not wish to create an
object file. The default extension is OBJ. Yaur response for this
sample program will be FORMATSP:1 or FORMATSP/0BJ:1
both of which are equivalent. Il you have a single disk drive
syatem, yvou responsc will be FORMATSP, FORMATSP:N,
FORMATSP/OBJ or FORMATSP/ORIA).

¢ LIST FILI: requires the name of the list Tile which is fo he
created by the assembler. This can be tape, disk, scereen or
printer or the name can be ommitted entirely if youdo not wish to
create alist file. The default extension 1s LST. Your respanse for
this sample program will be :-2if you have a printer or nothing if
you don’t.

After von answer the LIST FILE: prompt, the assembler will begin
its first pass. During this first pass only the disk will appear to be
doing anything. For this sample program, the first pass should last
only a few seconds. The assembler will begin printing on ils secnnd
pass through the seurce code. During this zecond pass DEFT
Macro/6809 will read the FORMATSFP/ASM source file and
produce the FORMATSF/OBJT object file and a listing on your
printer.

6 How To

L

5 Link

Onece vou have created the necessary object files with the compiler
and assembler, you are ready to link them together into your final
binary image. Make sure that yom have the DEFT Pascal
Waorkhench diskette in disk drive 0 and Lhen enter the command
LOADM “TANKER™£XEC to load DEFT Linker and begin s
execution. IT you have a single drive system, put your work disketle
in disk drive 0. The Operation section in the DEFT Linker
dvcumentation deseribes how to operate the Linker. For your
sample program, the responses required will be:

ORIGIN - no response, this will invoke the default origin.
o LIST FILE: - ;-2 if you have « printer, otherwise nothing.

» BINARY FILE: - FORMAT:1 or FORMAT/BIN:1 both of
which are equivalent. If you have a single drive system, enter
FORMAT, FORMAT:0, FORMA'T/BIN or FORMAT/BIN 0 all
of which are equivalent.

o PASCAL? (Y)- Y.

e DEBUGGER? (Y)- Y if you want to try out DEFT Debugger,
otherwise N,

» ORJ NAMES FILE: - no response, this is because you do nol
have a text filethat contains the file names of all theobjeet files to
be linked.

s OBJECT FILE: - FORMAT: { or FORMAT:ORBJ:! both of
which are equivalent. If vou have a single drive system, chter
FORMAT, FORMAT-0, FORMAT;OBJ or FORMAT/OBJ 0 all
of which arc equivalent.

¢ QBJECT FILE: - FORMATSI:? or FORMATSFE/QORJ:1 both
of which are eguivalent. If you have a single drive system, enter
FORMATSPE, FORMATSF-n, FORMATSFP,GIJ or
FORMATSP/GBJT:0 all of which are equivalent,

e OBJECT FILE: - no response to indicate that you have entered
all the nhject file names that you wish to link.

The Linker will then begin operation and produce both the final
binary image in the file FORMAT/BIN und a listing on your
printer.

How To

-1

J3XY

6 Execute/Debug

The vcommand LOADM “FORMAT:1"EXEC (LOADM
SFORMAT:EXEC on a single drive system) will load the sample
program and begin ilg execution. If vou specified Y to the
LERUGGER? prompt from DEFT Linker then vou will see the
DETFT Debugger screcen, The DEFT Debugger documentaiion
provides a complete description of how to operate the debugweer. If
you did not specily ¥ or if you give DEFT Debugger the GO
command, then you will see the FORMAT screen with its first
prompt. Yo should answer the prompts as follows:

1. INPUT FILE: - FORMAT, FORMAT:0, FORMAT/TXT or
FORMAT/TXT:0 all of which are equivalent,

2. OUTPUT FILE: - :-2 if vou have a printer. If not, put the output
on disk by entering FORMA'T:1 or FORMAT/LST:1 both of
which are equivaleni. Il you have a single disk system usc
FORMAT, FORMAT:0, FORMAT/LSTor FORMAT/LST 1 all
of which are equivalent.

Onece you answer the last prompt the program will begin executing
and produce a document showing you how to use the program,

8 How To

DEFT Edit

Ilintroduction i i 1
2BRasicOperation it 2
21 Text Bereen o . viii i it i e e 2
. S3Cursor Pesitioning 5
48crolling ... o . e e 6
T FURCHIONS .. i i e e e 7
11 The CLEARKeY ..ooivii e 7
1.2 Mujor Cursor Positioning 7
1.3 UIp Arrow Character Entryot 8
1.4 Deleling Characterso i -. s
L5 Deleting Lines ...oooirr i e 8
1.6 Replace/Insert Modes ..o v 8
e .. e e 10
21Getting AFile .. oo 10
22Writing AFile .. .o e 10
2.3 Quitting and Reentering i0
bR (54 17 12T 11
2B il EBrrors i e e e 11

3 Pattern Processingt 12
21 FindingaTextPattern ...t 12
3.2 Changing Text Patlerns PP .12

4 Copyving and Moving Textccoiivivit. 14
4,1 Marking and Saving Text ...,o i i 14
4.2 Appending The Saved Text 14
4.4 Additional Mark Funetionsccoiiiiiiieiinninnns 15

1 Introduction

DEFT Edit is a program that allows vou to ereate and modify
PASCAL and Assembler source programs as well as any type of
ASCII texi file. Its features include:

® ‘T'ext is maintained in memory to provide excellent command
response.

Files can be read and merged from either cassette or disk, They
may he written to cassette, disk or printer.

® The user interface is a screen-mode “window” into Lhe texl wilh
automatic up/down and left/right scrolling.

® All keys are auto-repeat.

® The FIND command allows you to search for specific patterns,
CHANGE provides for changing the pattern in 1 or more
inslances.

o MARK and APPEND commands allow copying and moving ol
purtions of text to either other places in the working textor toa
file.

How To 1

npi

2 Basic Operation

After LOADMing and £XFECing DEFT Edit you will sec DEFT
Edit’s copyright screen which has the INITIALIZE? (YY) prompt.
The editor uses the answer to this queslion to determine whether Lo
initialize its in-memory text buffer. When you have just loaded the
cditor. you must answer this question yes. This can be done by
entering anything other than N or » (including nothing) and then
depressing the ENTER key. The only times Lhat you would answer
this question with a N or » is when you have previously used the
editor, exited and did nothing to alter the eomputer’s memory, and
ihen re-entered DEFT Kdit. Sce the QUIT command for more
information.

Onee the editoris loaded and initialized, you are now ready to enter
toxt. The following sections will deseribe and explain what you see
and what vou can do.

2.1 Text Screen

Once you have answered the INITALIZE?(Y) question, you will see
the text screen. This screen will be green with a blue square at the
top left-hand corner and some numbers and letters on the boliom
line in reverse video. The blue squarc is blinking and if you type
some characters, they appear on Lhe top line followed by a blinking
orange square, The blue square has moved down te the seeond line.
If you hold down a key, you see the carresponding character repeat.
Fach element on this sereen is discussed in detail in the following
subsections:

Blinking Square

There is always one square on the top 15 lines of the screen which
blinks. This may be either a colored square, a character ora blank.
The place on the screen which is blinking is the cursor. This is the
point at which any text that you type in will appear. In addition,
many commands that you can enter will affect text relative to the
position of the cursor.

Blue Square

The blue square indicates the end of the text held in memory.
Anytime the enrsor is on a line which is within 14 lines of the end of
the text, the blue square will appear at the left hand side of the
screen on the line following the last line of text.

2 How To

Orange Square

The orange square indicates the end of the line. [t appears on the
screen in the position that a carriage return is stored in memory.
Every line, inciuding the last line, always has a carriage return at
the end.

Status Line

The line in reverse video at the bottom of the sereen is the status line.
This line provides infarmation about the current status of your
editting session. The information provided (in order} is:

1.

The three characters at the left-hand side of the sereen indicate
the mode that the editor is in. INS (for insert) is the mode Lthat the
editor initially comes up in and causes each character typed tobe
inserted before the charaecter pointed to by the curzor. The other
modes are REP (for replace) and MARK which are discussed in
later sections.

. The number followed by the character L is the line number on

which the cursor is currently positioned. The first line is
numbered zero,

. The number followed by the character Cigthe colomn number at.

which the cursor is currently positioned. The first ecolumn on a
line is zero.

. The number followed by the characters LS is the line size of the

line on which the cursor is eorrently positioned. This count
includes the carriage return at the end of the line,

. The number folluwed by the character T is the number of

remaining characters of text which cun slill be sntered in
memary. This number is updated cach time the cursor is
positivned to a new line.

Auto-Repeat

The auto-repeat feature allows you repeat the entry of any keyon the
kevhoard by merely holding the key down lor a ful! second. After
this, the keyv will repeat at about 6 charaeters per second.

How To 3

ENTER Key

The ENTER kev is used to enter a carriage return into the text. This
effectively splits the line at the cursor pesition and so ereates two
new lines.

SHIFT-0 Keys

The SHIFT-0 combination of keying, togegles the TRS-80 Color
Computer from UPPER CASE into UPPER/lower case and from
UPPER/lower case into UPPER CASE depending on what state
the computer wag in prior to the sitnultaneous entry of the SHIFT
and 0 keys,

4 How Ta

3 Cursor Positioning

As noted above, each character entered at the keyhoard is displayed
on the sereen atthe positionof the cursor. The cursor then roves one
column to the right. If the eursor is not currently positioned where
vau want it, you can use the four arrew keys to mave the cursor. By
depressing the appropriate up, down, left or right arrow key, the
cursor will move in the same direetion.

The eursor will always be positioned within the text of some line.
This has the following side-effects:

1. When moving the cursor up or down, il the curser moves from a
long line to a short line such that 1t would be positioned heyond
the end of the short line then the cursor will be posilioned at Lhe
end of that line.

2. When movingthe cursor to theright, if the cursoriz at thecend of
the line then it will be positioned to the beginning of the next line.

3. When moving the cursor to the left, if the corsor is at the
beginning of the line then it will be positioned to the end of the
previous line,

4, When the cursor is pogitioned at the end of the text (blue sguare),
the right and down arrows will not mave it.

5. When the cursor is positioned at the beginning of the text (line 0,
column () then the left and up arrows will not move it.

Ilow To 5

4 Serolling

DEFT Edit lets vou enter lines up 1o 255 characters long. This ig
considerably more than can be displayed on a 32 column by 15 line
sereen. The way that you view all of this text is by screlling it past
the sereen. The screen becomes a window into the text.

This serolling sceurs automatically as you position the cursor by
either entering text or by using the arrow keys. If the cursor is at the
bottom of the sereen and you force the cursor down to the next line,
then zll the lines on the screen move up 1 line with the top line
disappearing and a new line appearing at the bottom of the screen.
The reverse occurs when the cursor is posilioned al the top of the
sereen and vou foree i1t to move up.

DEFT Edit also provides left and right scrolling in a similar
manner. When the eursor is positioned at the rightmost column on
the screen and vou foree it to move right, all the text on the screen
shifts to the left by 12 columns. This prevents eye fatigue when
entering data and having the textcontantly scrolling tothe left. The
Lext will seroll o Lthe right by 12 columng when the cursor is at the
leftmost side of the sereen and vou foree it to the lefi.

6 How To

1 Functions

In addition to entering text, DEFT Edit provides many powerful
functions thatspeed text editing. The general purpose funetions are
described in this section.

1.1 The CLEAR Key

The CLEAR key is used to invoke editor funetions., When the
CLEARkey isdepressed, the cursor ehanges from a reverse video of
the character that it is over to a white square. When the cursor
changes to this white square, the next key entered is interpreted as a
function rather than as a character lo be entered into the text. Once
the funetion is performed, the cursor returns to its normal reverse
video state.

The CLEAR key itself becomes an unCLEAR function when it is
depressed a second time, which returns the cursor to its normal
mode without performing any function.

1.2 Major Cursor Positioning

By using the CLEAR key in conjunction with the arrow keys you
can quickly position to a specific area of text. The CLEAR-arrow
functions are as follows:

1. CLEAR-Up Arrow makes the cursor go UP by 15 lines to the
beginning of that line. In addition, the line that the cursor is
rositioned to will be at the top of the sereen.

2. CLEAR-Down Arrow makes the cursor go DOWN by 15 lines to
the beginning of that line. In addition, the line that the cursor is
positioned to will be at the top of the sereen.

8. CLEAR-Left Arrow makes Lhe cursor go to the beginning of the
line that it is currently positioned un.

4. CLEAR-Right Arroo makes the cursor gothe end of the line that
it is currently positioned on.

5. CLEAR-£ makes the eursor go to the beginning of the text,

. CLEAR I makces the cursor go to 15 lines before the end of the
text. Thisline iz positioned at the top of the screen with the cursor
at the beginning of the line. This allows you to see the last 15 lines
in the text. This command may take a couple of seconds on large
files due to counting carriage returns in the text in order to
maintain the line number.

How To T

1.3 Up Arrow Character Entry

The Up Arrow charaeter is used in Pascal to denote pointer and file
dereferencing. It iz also used for eursor positioning by DEFT Edit.
By firsttypingthe CLEAR key and then depressing the SHIFTkey
while typing the Up Arrow, the Up Arrow character will be entered
into the text.

1.4 Deleting Characters

There are two wayvs of deleting characters. The first is with the
(LEAR-1 Tunclion. When you use Lhis function the character that
the cursor is positioned over is deleted and all the characters to the
right of the cursor are shifted to the left one eharacter.

Il vou delete the carriage return al the end of the line, the line
following will be appended to the end of the line. You cannot delete
the last carriage return in the text.

A second way to delete characters is with the shifted left arrow key.
In this case the cursor 15 moved one position to the left and the
character there is deleted as previcusly described.

A third way isto delete all charaeters from the position of the cursor
(inclusive) to the end of the line. First vou position the cursoer over
the first charaeter in the line from where you wish to hack-off the
rest of the line, then you enter (L.AAR-H. This function will Anck
thal section of the line away and delele those characters,

1.5 Deleling Lines

A complete line can be deleted by positioning the cursor to any
character on the line to he deleted (ineluding the carriage return)
and entering CLEAR-L. This Tunction allows you tao delete the last
carriage return (as well as the last line) in the text.

1.6 Replace/Insert Modes

When DEFT Edit is first executed, it 1s in the éngert mode of text
entry. Inthis mode, when a charaeter iz entered at thekevhoard it is
ingerted in frontof the characler thal the eurzor is positionsd over.
A second mode that the editor can be placed in is the replace mode.
In this mode, when a character is entered at the keyboard-it replaces
the character that the cursor s posilioned over. However, if the
cursor 13 positioned over a earriage return then the character is

8 How T'n

inserted in front of it.

You can switch between these modes with the CLEAR-f and

CLEAR-R functions, CLEAR-I puts you in the insert mode and

CLIAR-E puts vou in replace mode. The modeis always displayed
. on the status line.

How To 9

npa

2 Files

DEFT Edit allows you to load text from ASCII files on tape or disk,
edit the text and then write back to cassette or disk. In addition, you
can nse the write function to write to the printer.

2.1 Gelting A File

The CLEAR-G{Get) function allows you 1o insert the contents of 4
file into the current text in front of the character that the cursor is
currently positioned over. This allows you to both initially load a file
and to merge several files in memory.

When you enter CLEA £-(you are prompted for a file name on the
status line. When typing on the status line the only thing that you
can do is enter characters, the lefi-arrow to backspace and the
ENTER key to terminate the entry, The default suffix used by the
editoer is blanks. If you enter no file name then the function is
aborted and you return to the editing session.

2.2 Writing A File .

The CLKAE-Wfunction is used to write the in-memory text to a file.
Likethe CLEAR-G youare prompted for afile name. However, you
are given the default of the file name used in the last CLEAR-(;
operation. If you enter any key other than ENTER then the default
entry is erased and the character you entered is processed. Likc the
{LKAR-(function, if you enter a null file name the function is
aborted.

2.3 Quitting and Reentering

The CLEAR-Q function is used to quit the editor and return to
BASBIC. Afterentering the function, you should immediately get the
OK prompt.

When Icaving DEFT Edit. the contents of the texl area are not
changed (unless you forgot to protect memory from BASIC with
BASICs CLEAR statement). You can reenter the editor and
answer the INITIALIZE? (Y} question with cither an N or » and
return to the point in your edit session that you left. This is
canvenient when you wish to doa DIR Lo determine which files are
on the disk before savinyg off the text in memory.

10 How To

2.4 Exiting

The CLEAR-X function allows you to combine the CLEAR-Wand
CLEAR-() functions with a single [unction. The write function is
performed followed by the quit function. The text in memory is left
un-changed.

2.5 File Errors

When reading from or writing to a file, a number of errors can
veeur. Whenever an I/0 error occurs the message #7110 ERROE ...
is displayed on the status line and the editor waits for you to
acknowledge seeing the message by depressing any key on the
kevboard. This means that the first key depressed aller the display
of an error message will yield nothing more than the
re-establishment of a normal status line presentation. Normal
_operation is then resumed. The possible error numbers are as
follows:

e -1, End of File - You should not get this error number since an
end of file is an expecled oceurence for DEFT Edit.

e -2, [/ Evror - This indicates that some hardware oricnted
problem occeured.

o -3 File Not Found - The file specified was not found.

8 -4, Hiegal Operation - This may eceur if you try to read from the
printer.

e -5, Device Fuli- There is no more space available on the specified
device.

How 'l'o 11

3 Pattern Processing

DETFT Edit contains commands lor finding and changing text
patterns.

3.1 Finding a Text Pattern

The CLEAR-Ffunction is used to find a specific patlerninthetexi.
After entering the CLEAR-F you are prompted on the stalus line
for the string, of up to 24 characters, that you want 1o find. When
typing on the status line the only things that vou can type are
characters, the lefi-arrow to backspace, and the ENTIR key to
terminate the entry.

When you depress the ENTER key the search will bogin at the point
in the text where the cursor was when you entered the CLEAR-F
and will continue down tothe end of the text. Tl a matching string is
found then theline containing the string will e positioned at the top
of the sereen and the cursor will be positioned on the next character
following the matching characters.

It you invoke the CLEAR-F function again, you will see that the
prompt for thedesired string defaults to the string that you cntered
on the last CLEAR-F or CLEAE-C funciion. You cun just depress
the ENT'FE key to find the nextinstance of the string in the text, [f
you type anything other than the ZNTAK kev the old string wil]
erase and you will be able to enter a new string.

If you enter no characters at all, no search will be made. If a search
is made and the string is not found, the ecursor will return tn the
point at which vou entered the CLAAR-F.

3.2 Changing Text Patterns

In addition to [inding a specific character pattern, voucan change 1
or more oceurances of one patlern to a sccond patlern. You use the
CLIEAR-C funetion 1o invoke this capahility.

After entering the CLEAR- € vou are prompted for the slring to be
scarched for. After entering the string to be searched for, you are
then prompted for the siring that the first slring isto be changed to.
This can be 0 10 24 characters long. Finally, vou are prompted for
the number of oceurances that are to be changed, If you don’t enter
any number, then the editor defaults to 1 oecurance,

As each occurance is found and changed, it is displaved on the
sereen. When no more of the first string can be found, the function
slops at the point where the last change was made. As in the

12 How To

CLEAR-F [lunction, if no first strings are found, the cursor will
return to the point where it was when vou entered the CLEAR-CUIf
you don't enter a first string. no changes are made.

How To 13

4 Copying and Moving Text

There are 3 functions and a separate editor mode used to copy
and/or move porlions of text.

4.1 Marking and Saving Text

Before a portion of text can be copied and/or moved it must first, be
marked off and saved. This is done by positioning the cursor at
cither the first character or on the character following the last
character of the text urea to besaved. You then use the CLEA R-M
function to mark that end of the area.

When you mark one end of a textarea, two things happen. First. the
mode changes to MARK to indicate thal vou are now marking an
area of text ralher than entering it. Second, the character that you
marked is changed to a solid white square on the sereen, This
character will remain marked until vou mark the other end of the
text area.

Once you are in the mark mode, you cannot enter lexl. However, you
can positinn the cursor with the arrows, CLEAR-Arrows, CLEAR-
B, CLEAR-E and CLEAR-F funetions. Once vou have positioned
the cursor to the other end of the texl. you can mark it with the
CLEAR-M{unction. The textthat issaved starts with the mark that
is closest to the beginning of the text and includes all characters
down to but not including the mark closest to the end of text.

The mark funetion allows you to save up to 1.5K hytes of texi, in a
separate in-memory mark buffer. If the marked area of text is
greater than 15K bytes, then DEFT Edit prompts vou for a name
ts give the file which it will create tosave the marked text. This file
name prompt ocenrs, provided the marked area is greater than
1.5K, immediately after the entry of the last CLEAR-M funetion. [f
4 blank file name is entered then no action is taken and normal
editing may be resumed.

4.2 Appending The Saved Text

(f course justsaving the text away in a separale mark buffer or file
dnesn’t do you much good unless you ean do something with it. The
CLEAR-A function allows you to append the text in the mark bulfer
into the sereen texl beginning in frontof the current cursor position.
The CLE A R-A function is not used to append text saved in a file, the
CLEAR-Gfunction is used instead when the text was saved in a file,

14 How To

The contents of the mark buffer remain unchanged after this
operation.

A typical copy operation would invelve marking off the area of text
to he copied, and then positioning the cursor to the point that it was
o be copied to and invaking the CLEAR-A function.

If a section of text larger than 1.5K bytes needs to be copied into
another area of a document, then the CLEAR-M function would be
used to mark the text for eopy. This would then yield a file name
prompt for the file into which the saved text would be stored. Once
the marked text is saved away, then the user would positon the
cursor at the point in the document where the saved text was 1o he
copied. The saved text would then be brought in with a CLEAR-G
function lollowed by the name of the file containing the saved text.

4.3 Additional Mark Functions

When marking off a text area you can terminate the mark operation
in 3 additional ways:

1. CLEAR-Dmay be used tomark the end of a text area. When used
in this manner CLEAR-D is exactly like the CLEA R-M except
thatafter saving away the textineither the mark buffer or a file,
the area marked is deleted from the text. This provides the {irst
half of a move operation rather thana copy. It can alsobe used to
just delete areas of text.

2. CLEAE-Q} lerminates the mark operation without saving away
any text. When the CLEAL-G function is entered while the
editor is in the mark maode, the mark operation is terminated
with no action taken. The previous contents of the mark buffer
are retained.

3. CLEAR-Wallows you tosave areasofl lex{ on aseparate file or to
print them on the printer. In this case the CLEAE-W function is
entered to mark the ending point of a text arca. After entering
CLEAR-W you are prompted for a file name to which the
marked off text is to be written. The contents of the mark buffer
are not affected. This funetion allows the user to save any size of
texitobe [led, whereas the normal mark operation will anly put
text into a file if the text area being saved is larger than 16K
hytes.

How To 15

DEFT Pascal Compiler

TIntroductionc.0 . i e, 1
2 DEFT Pascal Compiler Operation 2
O R . L. e e e 2
22 OBIEC T e 2
. 2 LI i 2
A DEBUG: . e e 3
2SS DIRECTIVE: i e e 3
2.6 Compiler Executionoco i 3
3Bource Listing ... i 4
4 Compiler Contrals ciiiiiian.. 8
41 Listing Control ... i e g
4.2 Assembler Listing Control iiiiiin.. 8
d3Topof Page i i e 8

44 Titleand Subtitle et 4

1 Introduction

The DEFT Pascal Compiler is a program that allows you Lo ereate
machine language programs rom Pascal language souree programs
created with DEFT Edit or your aown ASCII file text editor. The
DEFT Paseal Compiler’s features include:

. @ (Generation of machine language programs, directly executable
by the 8809 micro-processor, from Pasecal language statements
and declarations. Caornpiled programs can run many Limes faster
than interprelive BASIC programs,

e Practically all of standard Paseal’s lanpuage elements are
supporied.

® Program source files may be read from either cassetle or disk
with the resulting object [iles written to either caszsette, disk, or
the printer.

» Powerful compiler directives which provide the user with
valuable compilation and source listing options, such as the
option of having the assembler language representalions of
Fascal statements printed between the Pascal statements on the
compiled program’s sourec listing.

& Fully recursive compilalion, which vields such flexibility ag no
. fixed limitations on the number of dimensions to an array ar
tahle.

Supports generation of recursive applications: programs that
contain procedures that call themselves.

How o 1

2 DEFT Pascal Compiler Operation

The command LOADM “PASCAL"IXEC will load the DEFT
Pascal Compiler into memory from disk drive 0 and begin ils
execution, which is in two phases. In the first phase you will see the
DEFT Paseal Compiler’s sereen with all of its prompts. This phase
prompis the user to enter information recquired by the compiler for
program compilation.

Upon the entry of the last prompted ficld, DEFT Pascal begins its
second phase of operation. In this phase DEFT Pasral reads the
source module file, parses the program statements, generales the
corresponding machine instructions, saves the machine program
version in an object medule file, and generates the program source
listing. After completing this phase DEFT Paseal has finished its
execution which is marked by the returnofthe BASIC OK prompt.,

Euach DEFT Pascal Compiler prompt and its possible replies are
deseribed in the following sections.

2.1 SOURCE:

SOURCH requires the enlry of the name of the source file which
containg the Paseal language program that is to be compiled. The
default file name extension is PAS. This means that if there is no
extension spevified with the entered file name, then the compiler
adds the default extension of PAS to the file name before scarching
for that file.

2.2 OBJECT:

OBRJECT requires the name of the object file that is to be ereated by
the DEFT IPascal Compiler to hold the newly ercated program
object module. This can he either on tape or disk or the name ean he
ommilled entirely il you do nol wish 1o create an object file. The
default extensionis OBJ. If vou do not specifyan extension with the
file name entered here, then the DEFT Pascal Compiler will add
the default “OHB.J}” extension to your file name prior to actually
ereating that {ile.

2.3 LIST:

LI8T requires the name of the sourec listing file which is to bhe

created by DEFT Paseal in itz secand phase of operation. This can

be tape, disk, screen or prinler or the name can be ommilted

entirely if vou do not wish to create a list file. In this eaze only source
lines

2 How To

with crrors and the corresponding error messages wiil be outbpul Lo
the screen,

The default exiension is LST. If vou do not specify an extension with
the file name entered here, then DEFT Pascal will add the default
. 1.8T extension Lo your file name prior to actually creating that file.

2.4 DEBUG?:

DEBUG? asks you whether you wish to have debug information
in¢luded in the resulting ohjeet file. If you intend lo use DEFT
Debugger Lo debug this program, then a Y response should be
entered. A yves response to this question results in DEFT Pascal
adding the debugger gymbolic linkages 1o your program, therefore
making the resulting object module larger than it otherwise would
have heen. If you don’t want the debug information ineluded, you
can answer this prompt with either an “N”, or “n”. Anything other
than “N” ar “n" (for No} is taken to be “Y” (for Yes).

The debug information will make your program significantly
bigger but will allow vou to symbolically debug your resulting
program if you answer the DEFT Linker's dehugger? question yes.
If you specify yes 1o the DEFT Pascal compiler’s dehug? guestion

. and No to the DEFT Linker's debugger? question, then the debug
information will still he in the final binary image even Lhough Lhe
dehugger module is not present.

2.5 DIRECTIVE:

DIRECTIVE requires any DEFT I*ascal Compiler directive that
vou would hike te include before any source lines are read. The
following section Cowmpiler Conirols describes all the possible
compiler controls that you could enter here.

2.6 Compiler Execution

After youanswer the DIRECTIVE prompt, the program will begin

cxceuting. The compiler requires that the file PASCALIRB/EXT be

prezent on disk drive 0 when the SOURCE: prompt is answered.

When the compiler is finished executing, contral will refurn to
. BASIC and you will get the OK prompl,

How To 3

-~
Y
=
-
=
e
=.
—_
o

3 Source Listing

The following is a brief deseription of the DEFT Pascal Compiler’s
source listing.

1.

[T]

Header - This is the first line at the top of the source listing
follawed by the page number for that page of the listing

Title - This is the second line from the top of the source listing.
The eontents of this line are diclated hy the programmer with a
tille directive.

_ Subtitle - Thig is the third line from the top of the source listing.

The contents of this line are dictated by the programmer with a
subtitle directive.

. Nesting Levels - The first column of numbers prinled with each

line is actually two separate nesting levels:

® The first one is the procedure nesting level. This identifics
what level of procedure the current line of code is known i,

® The second number is the begin nesting level. Thig identifics
how many begins have been encountered so far with no
matching ends.

Program Location Counter - Thissecond eolumn is a hexadecimal
representation of the program address al which that linc's
executable statement will hegin. All other numbers printed on
the listing arc decimal.

. Symbol Table- Alistof all the symbols that were defined withina

Pascal block is produced al the end of each block, This list
contains 4 number of fields for each of these sy mbols. Following
arc all the eolumn headings and a deseription of the information
printed under cach heading:

e SYMIO. - This is the symbol name.

® ULASS - This identifies what kind of Pascal language
alement this symbol represents.

e STRUCT - For struciured types and variahles, this column
identifies what their strueture is farruy. vecord, zef, pointer oy
file).

e A/.1.0C-Forvariahles, thiscelumn represents the allocation
of that variahle. Any ewfernal procedures or functions will
have EXTERNAT, printed here. Symbols which are felds

How To

within a record will have the name of the corresponding reenrd
printed here.

e DATA TYPE' - For variables, types and constants, The Paseal
type specified for the data clement represenied by thissymbol
is printed under this heading,

e VALUE - This identifies the value of the symbol. For stotic
variables, procedures, functions, labels and string constants it
is the relative offset from the beginning of the module. For
antormnatic variables itis the affzet within the stack frame. For
non-string constants, it is the value of the constant.

e LOW - This heading identifies the lowest or smallegt valucio
which the data in 4 type or variable may be set. For arrays, it
is the lowest possible subseript.

& HIGH - This heading identifies the highest or largest value to
which the data in a type or variable may be set. For arrays, it
is the highest possible subseript.

e STZLE - I'or variables, tvpes and constants, this is the number
of bytes of memory represented by the Pascal dype.

e STACK REQUIREMENTS: - This title precedes the
estimatinn of the number of hytes of stack space required to
aclivate this block.

L C'ODE 814K - 'I'his is the fifth from the last line printed an the
source listing. Following is the number of byvtes of memory that
the program will require when it is loaded.

. UNUSED STACK - The following number is the amount of
staclk space available but unused by the compiter itself. As vou
create more symhbols and deeper levels of nesting in your
program, this number will grow smaller. This stack space
essentially represents the limits of the compiler for number of
symhbols and levels of nesting (of all kinds).

9. MAX SYMBOILS - The following number is the maximum

number of symbols known at any point in the Pascal source
program, Due to pre-defined symbols and the definitions in
PasealIB/EXT, there will always be over 60 symbels defined ina
program. Note that each symbol definition takes up ahout 30
bytes of compiler stuck space,

How To 53

10, TOTAL ERRORS - This is the number of compilation errors.

1. SOUERECE FILE - Following this i3 the name of the source file
containing the program source statements whieh generated this
ligling.

12, OBJECT FILE - Following this iz the name of the file which .
contained the program object at the end of this compilation.

[
-
-]
=
-d
=1
—
-
-
Fanl

6 How To

Sample Listing

T et il b1 i€y 139N LEFT SYETRS, TES. WO M2

]
L2
- e ——x
4. “—-—..___‘______ Lo GRRA BEGLE
01 gEsd Initialise:
L1 T%9
] True BE BEGTH
€57 Pemdheciiine CF
i

Brulngaczendy
Cloae |LutTexs!,

THER FiODGLUL ELsE BeXRllIMURUL)
SbuFagelnar;

n
n

L3
‘__.-_F______,_,——- 2 P53 STALTT dLLOC SAIN IYRE LOIRY Loy 195
6. M_—uay oE FROCELLAL Vo
FILL TiLIAELD ACTGRATIC BOIIIAN =13 o 1
F1:coans. 2P
-] FIH1en Tt b aur
hertee PLELEE BUTORATIC Alrch Tt LU
e " st mulemiae e - v u
E
1ML LG it
» 4 . LI
B =35TEE AT
¢ i

& & & & & @ A B & B & B

"3 @ 2 & 6 B

=,

a
-
=
=1
—
=
-

4 Compiler Controls

Compiler controls arc those instruetions included in yvour source
code or in the DIEECTIVE: prompt which direct the compiler's
operation ratherthan the resulting program’s operation. A compiler
control i3 a source line with a percent sign (%) as the first character
in the line. The eontrol itself is & single character fullowing the %.
Any required parameters then follow the control character, For
those controlsnot requiring parameters, additiong) controls may be
included in consecutive eolumns. The % is not required in the
IMRECTIVE prompt.

4.1 Listing Control

DEFT Pascalnormally produees a source line listing file. The List
(L) and Nolist (N) eompiler controls allow you to contral which
portions of the source lines are included In this listing, These
controls are additive; that is, if you include more than one list or
nolist control in a row, it takes an equivalent number of the other 1o
cancel its effects.

This additive nature gives vou the ahility to pre-cancel an imbedded
nolisl command with a preceding list command and vice-verza. This
is verv convenient when using copy files (sec below), For example,
DEFT Paseal copies by defanlt the file PASCATIB/RX'T which
has 4 nolist control at the beginning of the file and a list command at
the end. You can “unsuppress” its listing by including a list (L)
control in response to the DIRKECTIVE prompt in the compiler
slari-up sereen.

4.2 Assembler Listing Control

DEFT Pascal is 3 true Paseal souree to 6809 objeet code compiler.
As such, it ean produce a listing of the corresponding assembly
langnage code that would be required to produce the same object.
The default condition for the compiler iz to not produce this
assembly language listing. The compiler contrel used to turn on this
listing is the plus sign (+). The compiler cantrol uzed to turn il off is
the minus sign («),

4.3 Top of Page

The spurce listing produced by the DEFT IMascal Compiler
normally prints 55 lines per page. However, you can foree the
compiler to start a new page at any point by including the gject (E)
compiler conlrol,

8 How To

4.4 Title and Subtitle

Included at the top of each page produced by the compiler is the
compiler’s name, copyright notice and page number. In addilion, on
the following two lines you can specify a title (T) and subtitle ().
The remainder of the line on which the control is specified becomes
the title or subtitle. Following are examples:

%T This is a Title Siring
%35 This is a Subtitle String

Nate that the presence of either control implies an eject {E). Blanks
immediately following the control up {o the first non-blank are
suppressed in the actual title or subtitle.

Inaddition to printing at the top of each page, the title stringis also
included as a comment statement in Lthe resulting object file. It will
then alsa appear in DEFT Linker’s listing file.

4.5 Copy

Sometimes il is desirable not to include vour entire program in a
single source file even though you wish to compile it as a single unit.
This may he due to limitations of the editor or to allow common
definitions for tnterface modules (see Sepnrate Commlation).

The copy (C) compiler control allows you to tell the compiler where
additional saurce lines should he taken from. The remainder of the
control line is considered to be the [ile name of a Paseal source file.
The compiler will read all the lines in the specified source file before
reading the next line in the current source file. Example:

%C GRAPHINT:1

This line causes the file GRAPHINT/PAS on disk drive 1 to be
completely read before reading the next line in the current file.
Note that copy controls ean be nested. That is, a file that is copied
may itself contain a copy control. This nesting isonly allowed totwo
levels,

How To 9

DEFT Macro/6809 Assembler

TIntroductiono it i ettt 1

2 6R09 Macroe Assemhler Operation 2

p A T 0 & 7 2

2 SOURCE FILE: ... e e e e 2

. 23 0RJECT FILE: oot aaaenn 2
A LIST FILE: o i i it e e e ans 3

25 Assembler Executlon ..o oo e 3
S8ource Listingot e 4

1 Introduction

The DEFT Macro/6809 Assembler isa program thatallows you to
create machine language programs from Motorola 6809 Assembler
language source programs created with DEFT Edit. DEFT
Macro/6809's features include:

® (Generalion of machine language programs, directly executable
by the 6809 microu-provessor from Motorola 6809 Assembler
language statements. Assemhled programs can run up to 1000
times faster than interpretive BASIC programs,

¢ Separate assembly facililies which enable you tnbreakupa large
program and assemble it in pieces, These pieces can be written in
either DEFT Macro/6809 assembly language or DEFT Pascal.

® Assembler directives which provide the user with valuable
assembly and source lisling options.

e Powerful maero facilities which allow the user to define inline
code sequences with one macro tnstruction in the spurce program.

2 6809 Macro Assembler Operation

The command LOADM “"ASSEMBLE:EXEC will load DEFT
Macro/6809 into memory from disk drive 0 and begin its exceution,
which is in two phases. In the first phase you will see the DEFT
Macro/6809 screen with all of its prompts. This phase prompts the
user to enter information required by the assembler for program
assembly.

Upon the entry of the last prompted field, DEFT Macro/6809
begins its seeond phase of operation. In this phase it assembles the
source language program statements into a machine program in
two passes. In the first pass, DEFT Maero/6309 reads the source
module file and generates the symbol table. In the second pass, it
generales the corresponding machine instructions, saves the
machine program version in an object module file, and generates
the program source listing. After comploting this pass, DEFT
Macra/6809 has finished its exccution which is marked by the
return of the BASIC QK prompt.

Each DEFT Macro/6809 prompt and its possible replies are
desceribed in the following sections.

2.1 TITLE:

TITLE: requiresthestring of churactersthat you want tosee at the
lopof each page of your assembly listing. You donot have toentera
Litle if you don’t want to, but it does come in handy when you want tn
identify a source listing {ile ut a glance.

2.2 SOURCE FILE:

SOQURCE FiLE: requires the entry of the name of the source [ile
which containg the 6809 assembler language program that is to be
assembled. The defaunlt file name extension is ASM. This means
that if there is no extension specified with the entered [ile name,
then DEFT Maero/6809 adds the default extension of ASM tothe
file name hefore scarching far that file,

2.3 OBJECT FILE:

OBJECT FILE requires ihe name of the object file that is to be
created by DEFT Macro/6809 to hold the newly created program
object module. This can he either on iape or disk or the name can be
ommitted cntirely if you do not wish to ereate an ohject file. I'he
default extension is OBJ. If youdo not specify an extension with the

2 How To

file name entered here, then DEFT Macro/6809 will add the
default OBJ extension to your file name prior 1o actually creating
that file.

2.4 LIST FILE:

LIST FILE: requires the name of the source listing file which is to
be created by DEFT Macro/680% in iis second phasc of operalion.
This can be tape, disk, sereen or prinler or the name can be
ommitted entirely if vou do not wish to ereate a list file, The default
extension is LET. If you do not specify an extension with the file
name centered here, then DEFT Macro/6809 Assembler will add
the default L.S7T extension to your file name prior to aetually
creating that file.

2.5 Assembler Execulion

After you have answered the LIST FILE: prompt the assembler
will begin its first pass. During this first pass only the disk will
appear 1o be doing anything. T'he assembler will begin printing on
its second pass through the source code.

wsy

3 Source Listing

The following is a brief description of the DEFT Macro/6809
Assembler's source listing.

=1

 Header - This is the first line at the top of the source listing

fallowed by the page number for that page of the listing.

. Title - The contents of thiz line are dictaled by the programmer

with a ftle direclive.

. Subtitle- The contents of this line are dictated by the programmer

wilh a subtitle directive.

. Addressing Indicator - This is an alphabetic characler which

prefixes Lhe Location Cownter to indicale how the instruction at
that location is making a reference. An R indicales that an
exlernal relative reference is being made. An X indicates thatan
axternal absolute reference is being made. An N indicates thata
local relative location is being referenced in an absolute maode.

. Location Counter - This is the four digit number which

immediuately follows the line number. This four digit number is
the hexadecimal representation of the program relative address
at which this source code instruction would begin.

(hject Representation -~ The set of numbers which immediately
follows the location counter is & hexadecimal representation of
the assembler instruction after the instruction has been converted
into the object file machine language format. The very first twa
digils of this ficld represent the instruction’s opeode. The
remaining digitsof this ficld represent the instruction’soperands,
wherc applicable.

. Symbot Table - At the end of every assembler program, a symbol

table is produced. Printed under this heading are the names of
the symbols referenced by Lhat program. Each element of this
table 1z as follows:

s Symbol Value - This is a four digit number which precedes
every symbol table entry. Thiz four digit number is
hexadecimal representation of the value or program relative
address which the symbal is used to reference.

o Symbol Type - This is the one to three character field which
immediately Iullows the symbol value. This field identifics
whether a symbol represents an absolute value (A), a program
relative valuc (R), an external address (X), a public address

How To

1,

1t.

(P), ar a duplicate reference (D),

o Symbol Nawme - This field immediately follows the symhol
type. The symhol name is the string of characters used to
reference a program value.

Position Tndependence - This is the third from the last line
printed on the saniree listing, The character expression found on
this line identifies whether the assembled program is pesition
independent or non-position independent. PIC indicates that the
resulling machine program contained in the program’s chject
file is Position Independent Code.

SOURCE FILE - This is the name of the source file containing
the program source statements which generated thig listing.

OBJEXT Fil:FE - Thigisthe name of the file which contained the
program object al the end of this assembly.

Total Errors- Thisisthe last line printed on the program source
listing and iz the decimal number of errors cnecountered by
DEFT Macro/6809 during program asssembly.

How Tu b

1_————-@—— DEFT MACRO/6809 ASSEMBLER, ¥3.0 (C) 1684 DEFT SYSTEMS, INC. PACE
—
2

g——

® PORMAT COMMAKD NAMES
.

0000 COMMANLNAMES EQU
PUELIC COMMANDNAMES
FCB 3
Fce JEG)/
FCB 3
FCC /TXT/
FCB 3
FCC /PGE/
FCB 3
FCC /HDR/
FCB 3
FCC /FTR/
FCB 3
FCC /SKE/
¥CB 3
FCC /FLL/
EN
DEFT MACRO/6809 ASSEMBLER, V3.0 (C) 19b4 DEFT SYSTEMS, INC. PAGE

SYMBOL TABLE

1 —_—

\ 0000 PF COMMAKDNAMES

]

8.
FIC
9 b SCURCE FILE: FORMATSP

10. CRJECT FILE: FCRMATSP:1
1] e & 7OTAL EWRORS)

e & & & &

How To

1

2

& ® & & ® © o & @& & @& e ® e o o & @ 2 o O

DEFT Linker

LIntrodactionciiri i i nns 1
2O0peration e 2
2L ORIGIN L. e e, 2
b I 1 L 1 Y O 3
@ caBRINARYFILE: ... 3
2 A PASCALI (Y e e 3
25 DEBUGGER? (Y) ot 3
28 ORI NAMES FILK: . 4
2T OBRJECT FILE: e, 4
GLinker Map o i e e 5
A Error Messamesovt e e 8
41 BINARYFILEL/OERRORo e 8
42 DUPLICATE - . IN o o e 8
43 DUPLICATE MAINIGNORED ... iiiiaat, o
44 HEXWORDPARMMISSINGINORBJECTRECORD ... 8
ASINVALIDDEBUGMODULEcovv. 8
46 INVALIDMARKER et g
4.7 INVALID OBJECT RKCORD ..., 9
A4BMODULETOO BIG . ot e it 9
49 K0 MAIN ENRY e e e e 9
. 410 0BJECTFILELOERROR Yy
411 PHASE ERROR ..ttt Y
412 SYMBOL MISSING IK ORJECT RRCORD b
113 8YMBOL TABRLE FULL- .. INo itiannnn, 9
414 UNDEFINED - . IN .. e 9

Blamitations 10

1 Introduction

DEFT Linker is a program which reads the object files produced
by the DEFT Macro/6809 Assernbler or DEFT Pascal Compiler
and produees an executable binary image suitable for loading with
Disk Extended Bosie’s LOADM eommand. DEFT Linker features
the following facilities:

® Object code reloeation
¢ Automatic Paseal runlime modules inclusion
e Builtin DEFT Debugger interface

¢ Support for objecl module libraries. Object module libraries
constructed hy DEFT LIB, consisting of many object module
files can be specified as input to DEFT Linker. Only those
library sections referenced by your program will be included in
the resulting binary.

e Multipleohject file input, cither explicitor via a separate ASCII
file.

o [iisk Ertended Basic ecompatihle hinary outpus file.

2 Operation

Once you have ereated the necessary object files with the compiler
and assembler, you are ready to link them together into your final
binary imagc. The ecommand LOADM “LINKER"EXEC will load
DEFT Linker from disk drive 0 and begin execution.

DEFT Linker operates in three phases. During the first phase it
displays the DEFT Linker screen and prompts vou for the
information required in subsequent phases.

The second phase starts after all the prompling is completed.
During this phase it reads the object files, builds its symbel tahle of
publiwe symbols (relocating those symbols that need it), prints the
module by module portion of its list file and reports any errors found
in the object [iles.

The third phase involves DEFT Linker once again reading all the
object files. On this last phase it performs all necessary relocation,
fixups and eclernal reference resolution while creating the final
binary image. At the end of this phase DEFT Linker prints the
symbol table.

The following provides an explanation of each prompt made by
DEFT Linker,

2.1 ORIGIN

This 1% the decimal memory address where the resulling binary
image is to be loaded by the LA M commaund. For non-position
independent files, this is the position from which the binary must
execnte. I the resulting image 13 position independent then a
parameter can he added to the LOADM command to load the
resulting file at a higher memory address.

If nooriginis specified, then it defaults to 5000 {decimal), When vou
PCLEAR 1, FILES 6,00 and CLEAR 16,5999, the 4999 of the last
command tells BASIC thal 4994 (decimal) iz the highest memary
location that BASIC is allowed touse. Therefore the lowest remory
tocation available for your use starts at 5000 (decimal). From this
memory location on up is now availuble for your specific use. This
then, 5000 (decimal), becomes the lowest memory address which is
pratected from BASIC.

If you wish 1o write programs that are called from BASIC
programs, then you will have to determine how much memory
BASIC will need and enter an ORIGIN which is high cnough to

2 How Tao

provide that much memory,

2.2 LIST FILE:

This is the standard file name (with a default suffix of L.8T)of u file
to be ereated hy DEFT Linker which reports the results of the link,
DEFT Linker will not produee any file if no file name is entered for
thiz prompt.

2.3 BINARY FILE:

This is the standard file name (with a defaullsuffix of BIN}of a disk
file Lo be ereated by the DEFT Linker. This file name must be
given and it must be a disk [ile.

2.4 PASCAL? (Y)

This prompt requires a ¥ or N response. Actually, any response
other than N or n (including noresponse) is interpreted as ves. When
this question is answered yes, the Pascal hoot module
(PASBOOT/0OBJ) and runtime library (RUNTIME/f.{53) are
included. Only those segmentsof the runtime library referenced by
your program will be included in the resulting hinary load module.
This means that the resulting program will be no larger than it has
to be. Unused Paseal runtime features will not be included.

RUNTIME/LIB and PASBOOT/OBJ must both be presenton disk
drive 0.

2.5 DEBUGGER? (Y)

Likethe PASCAL? guestion, the assumed answer isyes unless an N
or # is entered. When this is answered affirmatively, the module
DEBUGGER/LIB:0 is included in the binary. In addition, any
PPascal modules which were compiled with the debug option turned
on will have breakpnints generated and a module table will be
included for use by the debugger.

If this question is answered negatively, then DEFT Debugger is
not included, Pascal modules with the detg option turned on will
have NOD's generated in place of breakpoinls and no module table
will be produced.

NOTE: if you have the DEFT Pastvul Workbench and answer the
PASCAL? question NO and the DEBUGIER? question YES, then

How Tu 3

Mur

vou will have lo enter EUNTIME/LIB as one of the object files in
either vour OBJ NAMES FILE or tw ¢nc of the OBIECT FILE
prompts, This ig because DEFT Debugger uses some of the
facilities in the Pascal runtime library. If you have only DEFT
Bench, then you do nat have to do this since everything iz included
inthe DEBUGGHER/LIB library,

2.6 OBJ NAMES FILE:

When a large program has been divided into a number of modules,
it iz sometimes convenient to create a text file with the editor that
lists the names of the ahject files to be ineluded so that. you don’L have
1o individually type them in each time you link the program. This
prompt allows vou to specify the name of such a file.

This file musl have 1 standard [ile name per line. The defaultsuffix
for the file names included in the file iz OBJ. The default suffix for
the OBJ NAMES FILE itself is LNK, When vou enter a file name
for this prompt, DEFT Linker does not prompl you for individual
object file names,

2.7 OBJECT FILE:

This promptis made if you did not provide an OBJ NAMES FILE.
You provide avéngle object file nume, DEFT Linker will verify that
it ¢an open the file and then prompt you for another file name. If
more than one objeet file is to be included, enter the additional
objeet file names one at each prompt. Onee you have entered all the
names, jusl hit the ENTER key on the last prompt and DEFT
Linker will begin its second phase.

4 How To

3 Linker Map

The following is a brief description of the Linker Map listing
produced by DEFT Linker during linking operations.

1.

[

Header - This is the first line of every page of the linker listing.
The Header includes the page number.

. Module Nawme - Every object [le or module linked in a linker

operation is identificd by object file name. Proceding each
module name, the following is printed:

» Ohjert Generator-This [irst line fol lowing the object file name
identifies the compiler or assembiler that produced the object
file.

& Titlefs) - Al titles produced withina program source file, with
the title diractives for bath the compiler and assembler, are
printed following the object generator identification. If a
program contains no ticle(s) then none are printed.

o MODULE ORIZN - The four digit number following Lhis
title is the hexadecimal representation of the address in
memory where that module will begin within the program.

o MODULE SIZE - The four digil number following this title iz
the hexadecimal represeniation of the the number of bytes in
mcmory that this module requires.

Syrnhel Table - Atthe end of every linker operation a sy mbol table
ig produced. Prinied under this heading are the names of the
symbhols referenced by thal program. Fach element of this table
15 as [ollows:

o Symbol Value - This is a four digit number which precedes
every symbol lable entry. This four digit number iz a
hexadecimal representation of the value or program address
which the symbol is used 1o reference.

® Symbol Type - This is the one or Lwo character field which
immediately follows the symbol value. This field identifies
whether 4 symbol represents an absolute value{A), a program
relative value (R), or a duplicate reference (17).

o Symbol Name- thig Iield immediaccly follows the symbol ty pe.
The symbol name is the string of characters uzed to reference
a program value.

How To 5

=3

10.

11,

. Pagition Independence - This 1s the seventh from the lasl line

printed on the linker map listing. The characler exprossion
found on this line indicates whether the linked program is
position idependent or non-position independent. PIC indicates
that the resulting machine program contained in the program’s
load module file is Position Independent Code.

ORIGIN - The four digit number fallowing this title is the
hexadeeimal representation of the address in memory where this
program begins.

LAST ADDR - The four digit number following this title is the

hexadecimal representation of thelast address in memory where
this program resides.

MAIN ENTRY - The four digit number following this title is the
hexadecimal representation of the first address in memory
where this program begins its execution.

. VOTAL SIZE - The four digit number following this title is the

hexadecimal representation of the total number of bytes of
memory required to hold the program’s cxecutable instructions.

. STACK REQUIRED - The four digit number fullowing thistitle

iz the hexadecimal representation of the worst eaze number of
bytes of stack memory required to execute the resulting muchine
program. It is the sum of the stack requirements of each
individual module.

TOTAL MEMGRY - thigis thenext tothe lastline printed on the
linker map listing. The four digit number following this title is
the hexadecimal representation of the total number of hytes of
memory required to cxecute the resulting machine program.

TOTAL ERROKS - This is the last line printed on the linker map
listing and is the number of errors cncountered by DEFT
Linker during its execution.

How To

L@ DEFT LINKER VERSION 3.1 (C) 1984 DEFT SYSTEMS, INC. PAGE 1

@ PASBCOT

DEFT MACRO/(B09 ASSEMBLER, V3.0

PASBOCT V3.0

MODULE ORIGIN 1388

MODULE ‘STZE 00EL

FORMAT: 1
9 T—@ " DEFT RASCAL V3.3
MOLULE ORIGIN 1445
MCDULE SIZE oc1c
FORMATSP: 1
DEFT MACRO/6809 ASSEMBLER, V3.0
MCDULE ORIGIN 2061
MODULE SIZE oo1c
RUNTINE/LIE
® LIBRARY ¢
*EASDISK
DEFT MACKG/6809 ASSEMBLER, V3.0
PASDISK 5/18/B4 V3.2
MODULE ORIGIM 207D
MODULE SIZE o405
*PASIC
DEFT MACRO/680§ ASSEMBLER, V3.0
PASIO ¥3.1
MCDULE ORIGIN 248z
WCDULE SIZE ousE
#PASKEYRD
DEFT MACRC/EB0G ASSEMBLER, V3.C
PASKEYBD V3.0
HDEULE ORIGIN 2BEC

e & 6 e e 9 o

SYHB OL TAELE

25CC R CLOSE 2061 R COMMANDNAMES 2AFG b CURSOR
2F95 R DECODE 2076 R DPTCHRSIRAPF 2075 R DFTCKRETRCPY

2016 R DFTHFITEDSX 27C5 R R
2780 B DFTWRTCHAK 2765 R DFTWRTINT 2708 K
265E B DFTWATTYPE 2FF3 R EKCODE 258E R EOF
2545 B EOLN 2566 B FILEERROR 2BBF A FILETYPE
5F8 R GET 2FR3 B HEX 3057 B MARK

R 13

R B

R R

BFTH TELN 209C DFTWRITETAPE
DFTWRTSTRG

3066 R MEMAVAIL 28AF PAGE 2884
305F R RELEASE 2807 SETFILETYPE 2DAD
2DCF B STRINGDELETE 2E02 STRINGINSERT ~ 2E3F

STRINGCCFY
STRIKGFCS

PIC

GRIGIN 1388
LAST ADDR 3o7C
MAIM ENTRY 1388

R

11, TOTAL MEMORY 3516

2 2 € o e o & s e & & &6 2 & 6 & 2 2 e @

9.
_Q\ TCTAL SIZE 1CFS
10. STACK RECUIREL 089A

TOTAL ERRCRS 0

4 Error Messages

The DEFT Linker generates error megsages during its second
phase. These messapes usually involve duplicate or missing public
variable definitions. The error messages sturt with*“**¥ and are ag
follows:

4.1 BINARY FILE I/O ERROR

An I/0 error was detected while attempting to write to the binary
output file, This could be ecansed by a full disk or the write protect
being left on the diskette.

4.2 DUPLICATE - ... IN ...

The specified publie symhbol being defined in the speeified objecet file
has already been defined.

4.3 DUPLICATE MAIN IGNORED

More than une main object module hag been found, any main
modules found after the first one will be assumed to be a non-main
module. There can be only one place in the program wherc
exceution 18 v start, that is in the main module.

4.4 HEX WORD PARM MISSING IN OBJECT
RECORD

An invalid furmal object record has been detected. This may be due
to the wrong type of file heing input (o the Linker.

4.5 INVALID DEBUG MODULE

The necessary public symbols have not been defined when the
DEBUCGGRKR? question has heen answered with yes. This is
probably due to not having the lile DEBUGGREE/LIR present on
drive 00 while linking.

4.6 INVALID MARKER

An invalid format language marker record hus been found in the
object file. This may he due to the wrong type of file being input to
the Linker.

8 How To

4.7 INVALID OBJECT RECORD

Aninvalid formatobject file record has been found. This may be due
10 Lhe wrong type of file being input to the Linker.

4.8 MODULE TOO BlG

The module being processed is too big to be processed by the Linker.

4.9 NO MAIN ENTRY

No main medulehas been included, The entry point iz assumed to be
the beginning of the binary image.

4.10 OBJECT FILE 1/O ERROR

An [/} error was detected while attempting to read an object file,
This error also oecurs if vou don’t have RUNTIME/IIE or
PASROOT/GBJT un drive 0 when linking a Pascal program.

4.11 PHASE ERROR

The value of a symbol is different in the Linker’s second and third
phases. This error should not oceur and indicates some fundamental
problem with either the Linker or the object Iiles.

4.12 SYMBOL MISSING IN OBJECT RECORD

An invalid formatohject record haus been detected. This may be duc
to the wrong type of file being input to the Linker.

4.13 SYMBOL TABLE FULIL.- ... IN ...

The specified publicsy mbal heing defined inthe specified objeet file
cannot be put in the Linker's symbul table because it is full.

4.14 UNDEFINED - . IN ..

The speeified publie symbol being referenced in the speeificd objeet
file has not been defined.

How Tuo Y

5 Limitations

In addition to the abave facilities, this version of DEFT Linker has
the following limitations:

32K Memory Operation -

When running DEFT Linker in only 32K bytes of memory the
following limitations apply:

1. A maximum of 50 chjeet files can be linked together.
2. No obhject file can be larger than 4K byles.

3. No more than a total of 400 public symbols can be defined in all
the modules to be linked. The Paseal runtime package has about
8(in this version.

64K Memory Operation -

When running DEFT Linker in 64K bytes of memory the following
limitations apply:

1. A maximum of 50 object files can be linked together.
2. No ohject file can be larger than 36K bytes.

3. No more than a total of 400 public symhaols ean be defined in all
the modules (o be linked. The Paseal runtime package has about
30 in this version.

10 How To

DEFT Debugger

1Introduction i i i 1
2General Operation i 2
2.1 Linking in DEFT Debuggerot 2
R T 3 o W 2
. 2.8 Betting Breakpoints oo 3
24 Executing Your Program ... i iiaananns 3
2.5 [nterrupting Program Execution 3
2.6 Displaying/Modifying Memory and Registers 4
2.7 Checking Program State o i il 4
BCommandsooviii i e e b
3.1 Display Register (DR} ... oo o
32Display Word (DW) .o i e 5
B3R Msplay Byte (DB) ... i e i 6
3.4 Display Floating Point (DF)Y o e H
3.5 Display String (DS} ..o e 6
3.6 Display Variable (DV) i ... B
AT Display Hex (DH) ..o i i T
3.8 Display Next (DN ... i 7
3.9 Modify Register (MR)o e e 7
310 Modify Woerd (MW .o e e et 8
. 311 Modify Byte tMB) ..o et]
3.12 Modify Floating Pomt (MF)Y .o, ... oo o 23
3.3 Modify String (MS) ... 4
3.14 Modify Variable (MV) ... g
3.15 Clear Breakpoints (CB)Y ..o i iie et 9
316 User Screen (LIS) . oo e e Yy
1T Evaluate (EV) o e e i et g
BB Trace (TR . ovr et et ren e naivamees 10
Q10 Ge(GOY ... e 1)

B 20 8tep (BT . e 11
0 5 A {1 11 T 11
FEXpressions e 12
4.1 Constantso e e 12

F A e 117 o) o 12
4.3 8ymbols e 1+
4.4 Terms and Indirectioncciiiiiiiien o, 15

. 001 1 74) - N 15

Debhug

1 Introduction

The DEFT Debugger is a software module which can be linked

into any program produced by DEF T software products. [t becomes

the main module in the resulting program and allows the

programmoer 1o control its resulting execution. DEFT Debugger
. includes the following featuares:

¢ Likeother debuggers, this one provides for memary and register
display and modification as well as instruction hreakpoints.
Memary display and modification can occur in hex, decimal,
floating poinl, ASCII and string formats.

s Single Pascal statement execution is available when the DEBUG
option is specilied al compile time.

® Normal program operation can be interrupted and the Debugger
activated when the BRKAK key is depressed.

e Symbolic access Lo memory areas is automatically provided by a
special interface to the DEFT Pascal Campiler. This symbolic
access ineludes automatie as well as static variables,

o A general expression capability allows the Debugger Lo perform
all arithmetic and type and hase conversions for vou.

. & Atracefacility provides you with a procedure call history so Lthat
you can see how you got to a specific point in a Pascal program.

e Automatic sercen preservation restores the screen area and
attributes anyvtime program execution is resumed. Thissimplifies
debugping of graphic programs.

How To 1

2 (zeneral Operation

Although there are a1 number of features built into the DEFT
Debugger specifically o debug Pascal programs, any program
produced with DEPT software products ean be debugped with it.

2.1 Linking in DEFT Debugger

Inorder to use DEFT Debugerer vou answer the DEFT Linker's
DEEBT/G?(Y) guestion with anything other than N or » when you
link the program. DEFT Debugger is automatically included in
the resulting binary and gets initial control of the 6809 micro-
pracessor when your program is executed. DEFT Linker provides
DEFT Debugger with a table of all the module names and offsets
in the resulting program along with the address where your
program would normally begin execution. DEFT Debugger is
loaded, as a part of your program, when you lead your program with
the LOADM “myprogm' . EXEC commanid.

2.2 Debug Screen

After linking your program you are ready to execute it. When you
begin execution DEFT Debugger will gain controt and present
you with its sereen. This initial sereen looks like this:

SYMBOLIC ONLINE DEBUGGER V3.x
(C) 1983 DEFT SYSTEMS, INC.
COMMAND:

PS 02 B0 0000

vD 00 B1 0000

vC 0 B2 0000

B3 000D

CC B4 0000

A xx B5 0000

B xx B6 0000

DP xx B7 0000

X xxxx
Y oaoxxx
U xxxx
PC xxxx
S xxxx

DEFT Debugger is now waiting for a ecommand to execute and has
displayved the camplete sel of regislers it maintains for the program
heing debugged. You will normally enter atwo echaracter command.
DEFT Debugger then prompts yon for any additional

2 How To

parameters required by the particular command,

The ehapter on Cominands deseribes all the commands and their
required parameters. The chapter on Expressions deseribes the
rules for forming expressions which are used in most parameters.
Whal you see un the sereen when the Debugger is fivst activated or
anytime you hit a breakpoint ig the automatic cxecution of the DR
command. Following is a short deseription of the types of operations
for which you might use DEFT 1)ehugger.

2.3 Setting Breakpoints

One of the first things that you will want to do with the Debugger
will be tosct a breakpoint. A breakpoint is a place in your program
where you want your program’s execution to be suspended and
DEFT Debugger activated. This allows you to examine variables
or in the casc of assembler language, registers. You can then see if
the pragram has produced the proper intermediale resulls.

You set a breakpoint by using the Debugger’'s modify register
command to set the value of one of the eight Breakpoint registerstn
the address of the place in your program where you want the
breakpoint to cecur. You have 8 breakpoint registers which allows
you to specify up to 8 different places 1n your program uat one lime.
This 1s especially convenient when you are notsure which place your
program will go to first. The section on Symbols under Kepressions
deseribes how 1o specily a symbolic address.

2.4 Executing Your Program

After having set some {possibly no) breakpeints, you may then use
DEFT Debuggers 0 command to begin (or eontinue) your
program’s execution. Another possible command i DHEFET
Debugger’s ST (Single Step) command which will allow vou to
specify the number of 'ageal statements that you want to execute,
Note that this option is only available when vou have previeusly
enabled the debug? option when the Pasecal program was compiled.

2.5 Interrupting Program Execution

[¥ you used the (GO command o start execulion, it will stop
executing when one of the breakpoints that you specified is
encountered. If you used the 87 command, then execution will stop
when the specilied number of Pascal stutements have been executed.

How Tho 3

=
]
o2
~
o)

In cither ease you may stop the program’s execution by depressing
the BREAK key. [f the program was compiled with the DEBRTU(
option enabled then execution will stop on the next Pascal statement
that is execnted. Depressing the BREA K key while the program is
prompting [or keyboard input will cause it Lo slop even if the Debuy
option was not enabled at compile time.

2.6 Displaying/Moedifying Memory and Registers

After your program stops, the Debugger is re-activated and you can
use the display eommands to determine what your program has
done so {ar. Youran change any variable or regisler thal you wish
before resuming exceution again in order to change the way that
your program iz executing. Nate that if your program stopped
because itencountered a breakpointthat you specified via one of the
breakpoint registers, then you will have to clear that breakpoeint
hefore resuming vour program. Otherwise, the program will
immedialely breakpoint again.

2.7 Checking Program State

In addition tovariables (memory)and registers, you ean also use the
/8 {(User Screen) command 1o see what the sereen is supposed to
look like when DEFT Debugger is not using it. In addition, the TR
{'I'Race) command will follow the chain of pointers that Pascal
builds on the stack. This trace of all the current activation hlocks
will tell vou what Pascal procedures are currently active and where
they were ealled from.,

4 How To

3 Commands

This section describes all the eommands available on DEFT
Debugger, The title of each subsection names the corresponding
eommand and contains the two character command representation
in parentheses,

3.1 Display Register (DR)

Thiz command causes all the DEFT Dehugger registers to be
displayed. All registers are displayed in hexadecirmal, Those which
are 18 bit registers are also displayed as module offsets with the
module name and hex offsel displaved following the absolute hex
value.

The registers BOthrough B7 are the breakpoint registers whichcan
he set to addresses in your program at which you want execution to
stop. The registers CC, A, B, DP, X, Y, 1], PC and S are the 6809
machine registers, The remaining three registers relale to the
graphic capabilitics of the TRS-80 Color Computer and are as
fellows:

® PS s the Page Select register, The {ower 7 bits of this register
specify the upper 7 bits of the memory address at which the
sereen page beging. This value is initially 2 indicating that the
screen page beging at address $400 or 1024.

& 171} is the Video Display Generator register. The lower 3 bitz of
this register speeify the graphies mode that is to be used.

& (] is Lhe Video Contral register. The wpper 6 bits of this register
specify the color set and qualily the graphics mode selected by
the VDR.

Unlike the 6809 registers, the graphics registers cannot be read and
saved by DEFT Debugger. Therefore anytime your program
modifies these values at a pointat which you are breakpointing, you
will have to tell the Debugger whal these values should be. This is
donc via the Modify Register (ME) command.

3.2 Display Word (DW)

This command allows you to display 1 or more 16 bit words in
memory in both decimal and ASCIT formats. There are two
parameters:

* ADDRASS: - This parameter requires an cxpression which
gpecifies the address of the firsl 16 bit word to display.

How To 5

=
byl
—
-
=
i

& (COUNT:-This parameter requires an expression which specifies
the number of 16 bit words to display. 1f you enter nothing then
the count defaults tn 1.

3.3 Display Byte (DB)

Thigcommand allows you to display 1 or more 8 bithytes in memory
in both decimal and ASCII formats. There are two parameters:

® ADDRESS: - This parameter requires an expression which
specifies the address of the first 8 bit byte to display.

¢ COUNT:-Thisparameler requiresan expression which specifies
the number of 8 bit bytes to display. If vou enter nothing then the
count defaultsto 1.

3.4 Display Floating Peint (DF)

This command allows you to dizplay s Pascal floatling point (real
type) number variable. There is one parameter:

® ADDRESS: - Thig parameter requires an expression which
specifies the address of the floating point variable.

The floating point variahie is displayed in decimal format.

3.5 Display String (DS)

This command aliows you Lo display a Pascal string variable. There
is one parameler:

¢ ADDRESS: - This parameter requires an expression which
specifies the address of the string variable.

The string variable is displayed in ASCII format. In addition, the
decimal length nf the string is displayed.

3.6 Display Variable(DV)

This command allows vou 1o display 4 variable as cither a word,
bytle, floating point or string. You must use a symbol as pari of the
ADDRESS parameter. DEFT Debugger uses the type of the
symbol used to delermine which type of display to perform. There
dre two parameters;

6 How To

o ADDRESS: - This parameter requires an expression which
specifies the address of the variable.

o COUNT: - This parameter is prompted for only when the symbol
type isan ARRAY. [t requires an expression which specifies the
number of 8 hit bytes or 18 bil words lo display. If you enter
nothing then the count defaults to 1.

3.7 Display Hex (DH)

This command allows you to display 80 bytes of memeory in both hex
and ASCII representation. There iz one parameter:

o ADDRESS: - This parameter requires an expression which
specifies the address of memory Lo begin the display.

This command displays the memaory as 10 lines of & bytes each. The
lagt 3 hex digits of the mermory address is displayed at the beginning
of each lne [ollowed by the hex representation of the 8 memory
hytes at that location. Finally, the ASCII representation of those
same bytes ig displayed at the end of the line.

3.8 Display Next (DN)

This command is almost exactly the same as Displuy Hex {DH)
exceptthat youare not prompted for an address, The display beging
atthe point wherethe last Display Hex or Display Next left off. This
command provides a convenient means to page through memary.

3.9 Modify Register (MR)

This command allows you W modily any of DEFT Debugger’s
registers. All registers digsplayed on the Display Register sereen ¢an
be maodified. This cammand has two parameters:

e REGISTER: - This parameter reguires the 1 or 2 character
name of the register that i3 to be modified,

¢ VALUN: - This parameter requires an expression which is the
value that the register is to bu set to.

3.10 Modify Word (MW)

This command allows you to modify a 16 bit word in memory. It
requires two parameters:

e ADDRESS: - This parumeter requires an expression which
speeifics the address of the 16 bit word to modify.

o WORD wrox VALUK: - This prompt shows the hexadecimal
address thal will be modified (the “xxxx"). It requires an
cxpression which specifies the value that the word at that
location i to be set to. If nothing is entered, the command is
terminated and the word 1s not modified. If 1 value is entered,
then the word is modified and DEFT Debugger continues to
prampl for subseguent words until nothing is entered,

3.11 Modify Byte (MB)

This command allows you to modify an 8 bil byle in memory. It
requires twa paramcters;

o ADDRESS: - This parameler requires an expression which
specifies the address of the 8 bit byte to modify.

o BYTE xrxxxe VALUE: - This prompt shows the hexadecimal .
address that will be medified (the “xxxx™). It requires an
expression whichapecifies the value that the byte atthat location
is to be sel Lo, If nething is enlered, the command is terminated
and the byte is not modified. If u value is entered, then the byte is
madified and DEFT Debugger continues to promnpt for
subsequent byles until nathing is entered.

-
1:.
-
—
=4
I

3.12 Modify Floating Point (MF)

Thiz command allows you to modify a Pascal floating point (real
type) number variable in memeory. It requires two parameters:

® ADDRESS: - This parameter requires an expression which
specifies the address of the flvatling point number to modify.

& VA LIR: - This parameter requires the decimal representation
of the fluating point value that is to be inserted. .

8 How To

3.13 Modify String (MS)

This command allows you to modify a Pascal string in memury. IL
requires two paramelers:

® APDDRESS: - This parameter requires an expression which
specifies the address of the string to modify.

o yuoxie STRING: - This parameter requires a number of ASCII
characters to be entered. These are stored directly in the string
with the numhber of characters enlered becoming the string's
length. If nothing is entered, the command is terminated and the
string is not modified.

3.14 Modify Variable (MV)

This command allows you tomadify a Pascal variable by identifying
it symbolically. Thiz command allows DEFT Debugger to
determine whether to execute a Modify Word, Modify Byte, Modafy
Floating or Mudify String command depending on the type of the
variable named in the A DBRESSS: parameter.

3.15 Clear Breakpoints (CB)

This command is used o clear all the breakpoint registers to zero.
You can set a breakpoint by using the Modify Register (MR)
command to set one or more of these repistars to a non-zero value.
You can also elear an individual breakpoint by using the same
command 10 set a breakpoint register to zero,

3.16 User Screen (US)

Thiz command allows vou 1o view the sereen currently being
displayed by the program under tesl. The values of the P8, VD and
V(registers are used to determine what the display is to look like.
The display persists until you type any character.

3.17 Evaluate (EVY)

This command allows you to evaluate an expression and display its
results in decimal, hexadecimul and ABCII It requires one
parameter:

o VALUE: - This parameier requires an expression whieh 1s to be
evalnated.

- 3.18 Trace (TR)

This command allows you to see all the procedures which arc
currently active. The absolute address and module offset of the
current program counler (PC)and each return address on the stack
(beginning with the most recent)is displayed on each line. For thosc
modules which also have symbols, the name of the procedure or
funetion to which the return address points is also displayed, This
then provides you with a list ol each active Procedure/Function and
the point in the calling Procedure/TMunction from which they were
called.

Since this command relies on the standard Paseal frame structure,
there are some limitations on its use:

e Only those I'rocedure/Function activations that have been
eompleted will be displayed. If you set a hreakpoint at the
address of a Procedure or Funetion and then doa TR, you will not
see that Procedure or Function in the list. You must set the

breakpoint at (or Single Step to) the first statement in the.

Procedure or Function. Nele thai the Single Step (ST} command
will not breakpoint in the middle of a Procedure/Funetion
activation {unless you have zet an explicit. breakpoinl).

® The command is not meaningful until after the complete
activation of the main Paseal program. Thiz is done thesameas
Pracedure or Funclion desceribed ahove,

s Only the most recent 12 (or fewer) activations arc listed.

Calls to Assembly language routines will be listed only il they
construel @ Paseal frame structure on the stack.

3.19 Go (GO)

This eommand allows von to execute your program. If any of the
breakpoint registers ure non-zero then hreakpoints are set at those
points befare program execulion begins. DEFT Debugger will not
regain control until one of the specifiad breakpoints is encountered.
If one of the breakpoints s the same as the PO register then control
will return immediately o the Debugyer. This command has no
parameters,

Once a breakpoint is encountered, the DR command is
aulomatically executed and wou are prompted for another

10 How To

command.

3.20 Step (ST)

This command is similar tothe GO command except that it uses the
hreakpoints inserted into the program by Puseal when you specified
debug at compile time. Not only does the DEFT Pascal compiler
include symholtables, but it also gencrates a breakpoint instruetion
at the beginning of every Pascal statement when you specify the
debug option. The Step command then lets you slep through the
Puseal statements by counting the corresponding breakpoints inthe
rosulting code.

Note thal this command will operate the same as the GO command
if there are no Pascal modules with the debug oplion enabled. This
command has 1 parameter:

® COUNT: - This parameter requires an expression which is the
number of Pascal statements twexecule before returning control
to DEFT Debugger. If ne cxpression is entered, a value of 1 i3
assumed.

3.21 Quit (QU)

This cowrnmand allows you to terminate your program and return
control to BASIC,

4 Expressions

Moast DEFT Debugger commands will prompt you for some
additional information such as an address of a field or a value which
15 to be used by the command. Most of these additional prompts
require a general expression Lo be enlered. This expression can be
as simple as a single digit or as complex as several numbers in
various bases with symbols combined with different operators. This
seclion deseribes the rules for forming these expressions,

The DEFT Debugger deals entirely in 16 bit unitz. All components
of an expression have 16 bit values and any resulting expression also
has a full 16 bil value.

4.1 Constants

A constant used by itself s a legal expression. The DEFT Debugger
supports 4 types of constants,

1. A decimal constant is a set of numbers in the range of -32768 (o
32767,

2. A hexadecimal constant is a4 dollar sign (§) followed by up to 4
hexadecimal digits (0.9, A, If the constantis less than 4 digits
long, leading zeroes are assumed.

3. An ASCI} constant is a single quote*) followed by asingle ASCII
character. The value of this constant is the binary value of the
ASBCII eharacter asthe low 3 bits with the high 8 hits being zero.

4. A double ASCI constant is a double quete (%) followed hy two
ARCII characters. The value of the constant is the binary value of
the first ASCII character asthe high 8 bits and the second as the
low ¥ bits.

4.2 Registers

The currenl conlents of any of the registers can he referenced by
entering a percent sign (%) followed by a one or two character
register name. The available registers are those displayed via the
Mizplay Register {DDR) command. They are as follows:

12 How To

Mnemaonic Bit Size Descriplion
PS 8 Page Seleci

vD 8 Video Display Generator
. vC 8 Video Contral

CC 8 6809 Condition Code

A 8 6809 Accumulator A

B a 6809 Accumulator B

DP a 6809 Direct Page

X 16 6809 Index X

Y 16 6809 Index Y

u 16 6809 User Slack

PC 16 6809 Program Counter

S 16 5809 System Stack

BO 16 Breakpoini 0

B7 16 Breakpoint 7

. 4.3 Symbols

Symbols are the names or identifiers that you used in your source
code program to reference variables, procedures and functions. If
the program that you are debugging has some Pascal modulesin it
¥ou can have the compiler include the symbols found in these
modules by answering its DERL/G? prampt with anything other
than N or ». This will cause the compiler to include the names of all
the variables, procedures and funetions in specially formatted
tables. These tables are imbedded in the resulting object module
cade.

Object modules ereated with ihis option will be larger duc lo the
presence of the symbols which will be part of the final load module
hinary code. When you have several Pascal modules in 4 single
program, you can redice the symbol table memory requirements by
specifying debug symbols in only the modules that you wish to
debug. The debugger knows which modules have symbols and
. which ones don't so that you only get the symbols that you need.

There are threc types of symbols which are referenced in Lthree
different. ways:

-
—
-
-
=

h)

1.

14

A Madule symbol s the filename(not including the exiension) of
an object file or library section which was linked with the
debugger. Youindicate amaodulesymbol with a leading lessthan
sign {<0) followed by the symbol ilself. The names of ali the object
modules thatare linked together are known to DEFT Debugger
regardless of whether symbols internal to the corresponding
module are presentl. This means thal you can use module symbols
even with assembly language mordules. The value of a module
symbol is the absolute memory address of the first instruction at
the beginning of the module.

One of the most commaon uses of 2 module symbeol is to specify an

address within a module. This is usually done as follows:
<MYMODULE+$1A3

This form can be used to set breakpoints in either Pascai or

assembly language modules. In thiscase 01 A3 is the offset within

the module where the Pascal statement starts on which you want
Lo breakpoinl.

. A module symbol can he further qualified with 4 static symbol,

This is done by immediately foliowing the module symbol with 3
greater than sign (2») followed by the static symhol. This static
symbol can represent anyv Pascal procedure, function or statically
allocated varighle. The value of a static symbol is the heginning
memory address of the program clement represented by the
symbal.

A static symbol can be further qualified to any level required by
centering additional greater than signs (O2) followed by the
qualifier. For example:

<MYMODULE>UTILPROC-LCLFUNC>X

This eniry specifies the stalic symbol X, which is Tocal Lo the
function LCLFUNC which is vontained within the procedure
UTILPROC. This procedure in turn is in the module
MYMODULE.

After amodulehas been referenced (either by itself ar as partofa
static symhol reference) the next static symbol ean he specified
without specifying that same module name. DEFT Debugger
will use the last module referenced, as a basis for its scarch,
anytime a static svmbal is specified without a leading maodule
name.

How To

3. An automatic symbol is indicated when a leading alphabetic
character is detected. In this case DEFT Debugger will
automatically scope the symbol by [vllowing the static provedure
eall links in the stack. This type of symbol specification will find
the symbol which is known at the eurrent point in the program.
You can use this tvpe of specification for procedure. function and
static variable symbols as well as automatic variable symbols,

4.4 Terms and Indirection

The elements or arguments of an expression, consfants, regrsters
and symbals, are genericully known as ferms. You can add a level of
ndirection toa term by prefixing it with an at sign (@), This means
that Lhe vuiue of the term is used identify the location of. or to
adidress, a 18 bit word in memory. The contenis of that memory
word are then used as the value of the term. This is known as an
Fadhreet Term.

4.5 Operators

Terms and Indirect Terms c¢an be combined with the use of
aperators. The operators whichare available are the four arithmetic
" operators: addition (+), subtraction (), multiplication (*), and
division (/). There is no precedence between operators and all
expressions are evaluated from left to right.

DEFT Lib Object Librarian

1 Intreduction ... e e s 1
P 1 T o1 3 L1 2
210LD LIBRARY: .. i et 2
2 NEW LIBRARY: 2
. 23 DELETE SECTION: oottt 3
24 ADD OBJECT FILF: ... it b
2.5 Addingan Object Fileo i B
26 AddingaLibrary File e 1
BError Messa@est e e h
21 FILE IRNOTOBJECT OR LIBRARY 5
3.2 [0 ERRORON NEW LIBRARY ...t]
330 ERRORON ORI/LIBFILE . ..o oot 5
34O ERRORON QLD LIBRARY ...l 5
BA0PEN ERROBR: N .o e i eiiea e e b5}

1 Introduction

DEFT Lib is a program that creates and maintains librarics of
object files. These object file libraries are then conditionally used by
DEFT Linker when creating a binary load module file.

The purpose of linking with an object file library is to include only
those portions ol objeet vode used by a given program. For example,
if vou have an object file created with one of the DEFT high level
language compilers, then that particular program might not use
strings or real arithmetic. When that ohject file is linked with the
eorresponding library, the object files for strings and real arithmetic
will not be included in vour final binary load module. However,
object files far, say, /O would be ineluded.

DEFT Lib provides the following major features for library
maintenance:

® Separate input and output libraries means that mistakes can be
corrected by starting over.

® Object files can be added to a library in the form of library
sections.

e DEFT Lib ensures that duplicately named sections are not
added to the same library.

» Library sections can be deleted.
& (Complete libraries can be merged togethar.

® A library can contain up to 50 sections.

How To 1

2 Operation

Whenever you wish to create or update ohject libraries you can run
DEFT Lib. The command LOADM IR FXECwill lnad DEFT
Lib from disk drive 0 and begin its execution. Once the program is
Inaded and the disk drive light hus gone off, you may change
diskettes il you wish.

DEFT Lib operates by reading in an old library file (if one exists)
and eopying it to a new library file. It is during the copy that the
changes thal vou wish {o make are actually performed. The old
library file, isnever modified by DEFT Lib, DEFT Lib operates in
three phases.

During the first phase it prompts you for the old and new library
files. Tt then prompts vou for all the sections that you wish to delete
from the old library as it is copied Lo the new library.

The seeond phase invelves doing the actual copy and performing the
requested deletes. It is during this phase that you will find out if any
of the specified sections to be deleted were actually in the old library
to hegin with.

Once the copy is completed, the third phase will begin, DEFT Lib
will prompt vou for the namesof the object files and ohject libraries
thal you wish 1o add (0 the new library. As you specify each name,
DEFT Lib will makesure that it is not aduplicate and then add it to
the new library, DEFT Lib will display each section name and ask
if vou want that section added to the new librury. When duplicale
scetion names are encountered, DEFT Lib will let vou specify a
ew sectinn name.

Following is a deseription of each prompt made by DEFT Lib.
2.1 OLD LIBRARY:

This is the name of an existing hibrary file which isto be the primary
source of information for creating the new lihrary file. You do not

Chave o enter an old Bivrary if you are creating a wew Hbrary from

seratceh. The default file extension for this prompt is LIB.

22 NEW LIBRARY:

Thigisthe nameof the new library that DEIPT Libis going to ereate
and which will contain Lhe results of this update. You mugl enter a
new library name and it must be different from the file name that
vou entered for ofd Libywrey. I you enter the same name as the ofd

2 How To

lihrary, vou will destroy the old library file.

The default file extension for this prompt is LIB.
2.3 DELETE SECTION:

This is Lhe name of a scetion in the old library that is not to be copied
to the new library. You will only get this prompt if vou specified an
ald ibrary file name. Afler entering a section name (up 1o 8
characters), DEFT Lib will prompt you again for another section
not to copy. DEFT Lib will let vou enter up to 50 sections 1n this
manner.

Once you have entered all the names that you wish nol to appear in
the wew library, enter 4 null section name (just depress the ENTER
key without entering any characters) Lo indicate that therc are no
more section names (o be deleted.

2.4 ADD OBJECT FILE:

After the copying is completed, DEFT Lib prompts you [or any
nbject files that you would like o have added to the new bibrary. At
this point, DEFT Lib has finished using the old Ithrory file and you
ray remove the diskette containing it if you wish.

You may enter the name of either an objeet file, a library file ar no
[ile at all. If no filename is entered, DEFT Lib closes the new
library and terminates exeeution. This is how you will tell DEFT
Lib that you have no more object files or libraries ta add. The
default file extension is (JE.J

2.5 Adding an Ohject File

Tl o enter the name of an objeet file, DEFT Lib will open the file
and then prompt yon for the name of the section Lo use in the library.
The prompt that vou will et ia:

SECTION NAME (nnnnnnnn):

The defaull section name is the name of the object file. This will be
used if youdo notenter a sectiun.\name. Ymimayuscthe CLEAR key
tostop DEF'T Lib from doing the add at this pointifyou wish, If the
seetion name used (either the defaultor the one thut you specified)is
the game as one that is already in the new library, then you will
receive the [ollowing prompt:

How To 3

1

nnnnnnnn IS A DUPLICATE SECTION
NEW NAME:

You can enter a different name or vou may use the CLEAR key 10
abort the add,

(Once the seetion is added {or the add operation 1s aborted) you will
gel the A QRJECT FILE: prompl again.

2.6 Adding a Library File

If you enter the name of a library file. DEFT Lib will open the file
and begin reading each section of the specified library. For each
section found, DKEF'T Lib will then prompt vou for the name of the
sevtion to use in the rew fbrary. The prompt that vow will get 1s:

SECTION NAME {nnnnnnnn):

The default section name is the name of the seetion inthe library file
that you arc adding from. This will be uged if you do not enter a
section name. You may use the CLAEA R key Lo stop DEFT Lib from
doing the add at this point if vou wish, If the section name used
{either the default or the one that vou speeified) is the same as one
thatlis already in Lhe new library, then you will receive the following
prompt:

nannnnnrn IS A DUPLICATE SECTION
NEW NAME:

You van enter a different name or you may use the CLEAR kev to
abort the add for Lhis parlicular section.

After each section is added (or the add operation is aborted) you will
get the SKCTION NAME: prompt unti] all the sections have been
read from the library that vou arc adding from. Onee sll the sections
have heen read, you will get the A} QRJAT FILE: prumpt
again,

| Iow To

3 Error Messages

3.1 FILE IS NOT OBJECT OR LIBRARY

The file specified to un ADD OBJECT FILE: prompl was not a
legal object or library file. The file is ignored.

3.21/0 ERROR ON NEW LIBRARY

An 1/0 error cccurred while DEFT Lib was writing to the new
library file. If this ocenrs, DEFT Lib terminates execution. This
error may be due to a bad diskelte or because the diskette is full.

3.3 /O ERROR ON OBJ/LLIB FILE

An /O error occurred while DEFT Lib was reading from the
ohjeclor library filespecified tothe A 2D OBSRCT FLLE: prompt.
If an add was in progress, then it was only partially completed.

3.4 1/O ERROR ON OLD LIBRARY

An I/0O error occurred while DEFT Lib was reading from the old
lihrary file. If this occurs, DEFT Lib terminates cxecution.

. 3.5 OPEN ERROR: n

AnI/OQerror oceurred while DEFT Lib wus openning the specified
old library, new library or objeet file. DEFT Lib will prompt for
another file nanie. The » iz an crror number with one of the
folluwing values:

e -, I'ndof File - Youshould not get this error number sinee an end
of file iz an expected occurrence for DEFT Lib.

e -2 /G Error - This indicates that some hardware oriented
prablem accurred.

e -2 File Not Found - The file specified wag net found.

e 4, HNiegal Operation - This may oceur if vou try to read from the
nrinter.

® -5, Device Full- There isnomore space available on the specified
device.

[|

How To

DEFT Pascal Language

LIntroductiono e et aea s 1
2 The Pascal Programoiiiiiiiiiiiiinnnrnoes 2
21 Block STrueturet e 2
2 B CODE L\ttt e e e e 5
. 2.3 Declaration Statements . .. cai e b
54 Executable Statements ... oo e 6
2.5 Program Statement ... 7

2 Language Elements o oo 8
2.1 Reserved Words ..o e 8
o Identifiers ... e 9
3 abElS o et 9
G4 ConsLANLE ..t e 9
A5 Special Operators ... v v e e 11
BB COMINBNIE oottt e i et e 11
ACONST Statemendo iiiiniit o irarceaaa o, 12
L B o BRI 13
A1 TypeIdentifier ... o 13
B2 Enumerated ... e e 14
B Subrange .. i 15
. 0 BT 7 S 15
BHhArravs e e e e, 16
BB RerOrdS ... o e e e 17
BT POIMBES .ttt e e aea i 19
O30 T 13- SR N 20
BOPACKED Topeg v e et i e 21
B Variables ... e e e 22
6.1 Automatic Allocation o e e 22
6.2 VAR Declarabion i iriirre i iiannaaasn 22

7 Procedures and Functions ..., oo 23
7.1 PROCENURE Declarationvcoiiioiiii i, 23
7.9 Procedure Invocation ... et i i 24
TAFUNCTION Declarabion ... it iiiiiinin e 25
T4 Function Invocation 26
THEFORWARD References ..o ioiiieniarnr e, ¥7

8 Expressions and Assignments L. :

Bl B acOrs e e :
B.2 Arithmetic Operators i i iiaenen. 2
¥.3 Integer/Real Expressions oo o
8.4 Arithmetic Precedence
B0 Sl P USSI0TIS e re et ettt e e
3.6 Baolean Fopressions . i e
BT Assipnment Statement ...

9 Compound and Control Statements 36
971 BEOIN Statement, e 36
O 2 Stalement e e 36
93 WHILE Statement . 3T
94 REPEAT Statement 38
90 FOR Staternent ..o 38
06 CASE Stalemenl ... oo 40)
9.7 GOTO SLALEIMSAL L. e e e i rre i creeeens 41
98 EXIT Statement ..o i 41
DOWITH Stademenl ..o . 42

10 Input/QUtPUL ..o e e 4+
101 File Names ..o o e 14
10.2File Variables oo oo e
10.3 INPLT and OUTPUT File Variables
10,4 Overall Example oo i e
1000 Lazy Keyhoard Input oo oo oo o0 o
10,6 CTOSE SGalemionl oo e e e 18
107 EOF Function i et 48
IR EOLN Funetion ..o e 18
109 FILEERROR .. i 49
100 GET Statement ..o ne e v 49
L PAGE e al)
10012 PUT Statement o e e innaans ol
10.14 RESET and REWRITE Statements al)
10,14 READ Statement. ... al
10,16 READLN Statement ...,, 52
10,16 WRITE Statement ... i e Y

10,07 WRITELN Statement i al

11 Builtin Procedures and Functions 55

T ABS it 55
112 ARCTAN e e e e 55
L3 CIIR .o e 55
. 114 08 e 55
1L CUREOR e 56
1GEXP .o e U 56
107 LN e 56
TLEMARK oot A6
TLOMEMAVAIL .. 56
TN EW Lot e A7
LLILODD . e e 57
1112 ORD oottt e 57
LIS PRED oo e e e e e e 58
ILI4 BELEASE oot e i 58
LI BOURD ottt 58
L1018 SN e e e 5%
LT SIZEOF e 1
L1 I8 SR ot e 59
119 SR T ot e [Y
1120 SUCT oot e, 59
. 1121 TRUNCG e e 59
12 DEFT vs. Standard Paseal o i, 60

123 Error Messsameso ittt iainiiinannees 652

Paseal

1 Introduction

The DEFT Pascal Compiler is a program which reads lines of
gource code produced with DEFT Edil (or any ASCII compalible
editor) and produces a listing file and an object file. The ohject file
produced containg actual machine codes which can he dirvectly
executed by the G209 CPU in Lhe CoCo after being linked by the
DEFT Linker. This differs from a compiler which produces
prendo-code in the following respects:

1. The resulting program does nol reguire an interpreter to
execute. It is a self-sufficient program thatl requires only the
Colar Computer hardware.

2

. The runtime exeeution environment is closer o assembler than
BASIC. However, the DEF'I' Debugger provides some very
powerful features which can make debugging the resulting
machine language program almost as easy as dcbugging a
BASIC program using the inlerpreter,

3. The performance of your program will be vastly better since
each line of Paseal will result in only a few machine language
instructions being executed. Withan interpreter, several machine
language subroutines within the interpreter will gonerally he
executed per line ol zource code.

4. 'Fhe program can he easily linked with DEFT Macro/68049
assembly language modules and other DEFT high level lanpoape
modules.

A Color Computer with 32K or 64K of EAM memoryand 1or 2disk
drives is a fairly powerful computer capable al maost tasks being
done on large micros and minicomputers. Using DETFT IPascal
allows you to exploit that power to its fullest.

This section of the User’s Guide describes those portions of DEFT
Pascal which are [S0Q Standard. The following section, Advanced
Pusgral, deseribes the language extensions and assemblerinterface.

Background 1

2 The Pascal Program

When programming in BASIC, there is almost no restriction on
what order any of the statements must be placed. This is because
almast all BASIC statements are ececutable statements. The only
exception is the DIM statement, which is a declaration staterment
that defines arrays before thev are used. DATA staternents are
neither executuble nor declaration statements butthey do represent
a poriion of the programs data. One of the primary aspects of the
Pascal language is the presence of a very powerfl deelaration
syntax, which requires that all Pascal programs be written in a
specifie formart.

2.1 Block Structure

In Paseal, a program’s structure is defined via a number of different
v pes of decloration statements. These declaration statements allow
a programmer to create an environment, or program structure, in
which to get his job done with any number of the different types of
execulable statements. This provides the programmer with the
ability to create a customized program structurethatean mateh the
problem structure of each program that he writes.

Pascal programs require the following elements in this order:
PROGRAM <program heading™>;
<_declaration statements>-
BEGIN
<_executable statements’>
END.

Throughout this manual, words or phrases enclosed in <> are
nun-lerminetors, That is, they refer to a class of objects any one or
more of which may be substituted al the place where the non-
terminator iz found. Tn the example above, PROCRAM is a
terminatur which represents exactly itsclf, whereas <‘program
heading>> 1s a non-terminator and represents someoverall program
informatien which will vary from program to program.

The important items in the structure are the <declaration
statements> which define elements of your program and the
<lexeculable slatements> which actually perform work on the
defined elements.

Another way of describing the structure of a I'ascal program is as
follows:

2 Background

PROGRAM < pragram heading> ; <block>-.
Where <block> iz equivalent to:

< declaration statements>-

BEGIN

<executable statements>-

END

This concept of block is central to the overall philosophy of Pascal.
With this structure, <declaration statements>> can define sub-
blocks which in turn can themselves contain <declaration
statements> which can [urther define sub-sub-blocks, and so forth
and soon. Itis with this hicrarchy of blocks that the averall program
i¢ broken down into manageshle pieces and implemented.

Block execution is initiated when that Hock is invoked or activated.
Execution within a block starts with the first statement following
the begin and proceeds sequentially with each of the following
statements, (NOTE: in the section on Compound and Control
Statemenis you will see how the order of execution can be altered).
When the end stalement is executed, the block is deactivated and
control returns to the point at which the hlock was invoked.

Program execulion staris al the last begin statement defined in the
program. The program’s execution will terminate at the last end
statement defined in the program. Another way of pulting it s that
the last section of executable slatemenis defined within a program
i# the first section to be executed. The sub-hlocks, sub-sub-blocks,
ete., which arethe defined procedures and functionsof the program,
are activated by being invoked, or called, during the execution of the
program or one of the previously execcuting procedures or functions.

2.2 Seape

The <Zdeclaration’> statements within a dlock define <Zidentifiers™,
or data names, which are used by the <executable stalemenlss>
within that Alock. When the dfoek 1s activated, these <lidentifiers>
are activated and become Anown. When the bloel is deactivated, the
<identificrs>> are deaetinated and become vwnkown.

Identifiers used by <exeeutable statemoents’> may be either those
defined by <Idceelaration statements>within thesame<block > or those
defined inan enclosing<<block>>. All<idenlifiers>> defined within all other

Background 3

blocks of the program become unrknown.

Note also, that the same identifier may be redefined in different
levals of blocks. At any point in the program the innermost
definition known at that point will be used. The following is an

example. .

PROGRAM Example;
VAR I,J : Integer;

PROCEDURE Praci;
VAR | : Integer;

PROCEDURE Proc2; -

VAR J : Integer;

BEGIN {* Proc2 BEGIN *)
1:=d

END;

BEGIN (* Prac1 BEGIN *)
Proc2;
1:=J

END;

BEGIN (* PROGRAM Example BEGIN *) .
Proct;
1:=4J

END.

The above stalements are discussed in detail later in the manual,
but for purposes of this example, shert definitions are provided
here. The var statements declare integer variables named Fand/or
J. The I:=J meansihal thevaluein fisassigned to £, The nel;and
Proc2; statements invoke the corresponding procedures.

When the program first beging excention (Just after the last beyin)

onlvy the I and J and the procedurs Mroc! deelared within the
program Example are known, When Procl is invoked and begins
executing, Proc? becomes known, the [declured within Proe?
becomes known, the § within the program Kxmmple becomes
unknown (because of the temporary redefinition of /) and the ./
defined in the program Ezample remains known. When Proc? is
invoked and beginsexeculing, the./ definition in Prov2 temporarily .
replaces the J defined within program Erasple.

4 Background

When Froc2 returns and is deactivated, the previous . definition is
restored. When Proc! is deaclivated the previous I definition is
restored and Proc? becomes unknown, Nole that the above
definitions and redefinitions apply to any type of <declaration
statement> described below.

[n Advanced Paseal vou will find extensions to thizs fundamental
structure.
2.3 Declaration Statements

Asshown above, declaration stalemenis come hefore the executable
statements and arc separated from them with the begin reserved
word, The following are the <declaration statements>:

LABEL <identifier>, ... ,<identlfier>;
CONST <identifier>> = <constant>;
TYPE Zidentifier>- — -Ztype delinilion>;

VAR <Zidenlifier>> : <“type definition>;

PROCEDURE <identilier </parameter definition>> ;
<hlock > ;

FUNCTION <identiler> < parameter definition>>- :
<type definition>>; <block™> ;

As in most Paseals, the above declaralions may oceur in any vrder;
although according to standard I"ascal, the above order must be
followed with the exception of the PROCKEDITER and FIINCTION
declarations, which can be mixzed with each other. Note that the
above definition is reeursive in that <declaration statements> are
parlof both pracedures and funelions, both of which are themzelves
tvpes of <deeclaration statements™,

Background b

More detailed information about each of the ahove deelaration
statements can be found in the chapter on cach statement.

2.4 Executable Statementis

Executable statements are placed after the begin. The first statement
following the begin is the [irst slalement actually executed by the
resulting program. Followingisa list of the executable statements:

<Idenlifier> ;= <expression:-
BEGIN ~Zexecutable statements> END
CASE <‘expression>> OF
<Zconstant list>> : <‘executable statement>;

<Z¢onsgtant list™> ; <“executable statement>-
ELSE <executable statement-
END

FOR </identifier> := <Zexpression™> TO <expression> DD
<execulable statement-

FOR <identifier>> := < expression>> DOWNTO <expression> DO
< executable statament=- .

GQOTO <Jabel>

IF < boolean expression>> THEN < executable statement>>
ELSE < executable statement>

READ (<file specifler: <linpul list:>)

READLN (<lile specifier>- <Zinput list>)

REPEAT < execulable statements™ UNTIL <hoolean expression:>
WHILE < boalaan expression>> DO < executable statement ™
WITH <record varlable>> DQ <executable statement>>

WRITE (<file specifier:> <<output list>>)

WRITELN (<file specHler > output list>>)

<_pracedure identifier>> < parameter specification>

G Background

Anywhere that ¥ou see <executable statements> (plural) you can
usze the following:

< executable statement’>;

<“executable statement™-

Note that the semicolon (;) is used to separale rather than terminale
individual statements. Multiple statements separated by semicolons
are allowed in hoth begin and repent slatements. The else clauses in
hath the +f and cose statements are optional and may be omitted,

Complete datails on each of the above statements can be foeund in
Expressioms and Asstgnments, Control, Procedures and Funclivis,
and Fuput/ Ouipud.

2.5 Program Statement

Az shown above, the program statement is the firsl statement of
vour Paseal program. It has the following format:

PROGRAM <identifier>- | (<identifier>, ..., <identifier>)] ;

The first <identifier>> is the program neme and serves no other
purpose withinthe program. Following this isan optional parameter
list enclosed in parentheses. In standard Paseal, this Tist identifies
thage lile variables deelared within the program which represent
external files. The pre-defined file variables input and output must
be present in this list il used (explicitly or implicitly) within the
program.

In DEFT Pascal, the uptional parameter list is allowed hut
ignored. This is because all files within a DEF'I' Pascal program
are assumed to be external.

=1

Background

3 Language Elements

Before deseribing a Paseal program, it is necessary to deseribe the
fundamental elements which make up one. Like BASIC, the Pascal
language is construeted from the ASCII character zet used on the
Color Computer. These are as follows:

ABCDEFGHIJKLMNOQPQRSTUVWXYZ <upper case characters>-

abcdetghijklmnopgrstuvwiyz <lower case characters>
0123456789 <_numbers_>
14800 + BH{()*+ - f =2 < special characters>-

All the following definitions will be in terms of these charucters,
Note that exeept in character and string conslants (delined below),
there is no distinetion between upper and lower casc characiers for
those language elements using letters.

3.1 Reserved Words

Reserved words arc groups of upper or lower case characters whose
meaning has heen predefined in the language. The followingris a list
of all the reserved words used in DEFT Pascal:

ABS AND ARRAY
BEGIN BYTE* CALL*
CASE CHAR CHR .
CONST D DO
DOWNTO ELSE END

EXIT* EXTERNAL* FILE

FOR FORWARD FUNCTION
GOTO IF IN
INTERFACE* LABEL LSL*
LSR* MOD MODULE*
NEW NOT ooD

OF OR ORD
PACKED PRED PROCEDURE
PROGRAM PUBLIC* READ
READLN RECORD REPEAT
RESET REWRITE SET
SIZEOF* STATIC* sSucc
THEN TO TYPE
UNTIL VAR WHILE
WITH WORD* WRITE
WRITELN XOR*

& Backpround

Those reserved words which are suffixed with an asterisk arc part
of the language extensions of DEFT Pascal.

3.2 Identifiers

ldentifiers are groups of letters and numbers which begin with a
letter {eilher upper or lower case) and contain up to 12 upper or
lower case letters and numbers which are nol the same as any of the
above listed reserved words, Asin BASIC, theseidentifiers are used
w resresent variables. However, in Pascal they can also be used to
represent constants, types, procedures and functions as well.

3.3 Labels

I.abels are used to uniquely identify cxecutable statements so that
an executable statement may he referenced with the GOTO
statement. A Pascal label funetions much in Lhe same way as line
numbers do in BASIC. A label is a number which can be up to four
digits long, which prefixes an executahle statement with a colon {:)
in between. The following is an example:

100: 1:=J

All labels within a bloek of exccutable staterments must be declured
with the LABEL declaralion staterment prier to the bloek of
executable statements. The following is an example:

LABEL 100;

3.4 Constants

There are five types of constants supported by the DEFT Pascal
Compiler. They are individually deseribed below:

Decimal Integer Constant - A decimal integer constant is a group
of numbers which may be oplivnally preceded with either a+or -,
The allowable range for decimal integer constants is -32763 (v
32767. The following are some examples:

.45
a5
+10234
+32768 (illegal, too large)

Hexadecimal Inieger Constant - A hexadecimal integer constant
isagroupofupto 4 hexadecimal digits thalis preceded witha §. A

Rackground Y

hexadecimal digit may be any of the following: 0, 1,2,3,4,5,6,7, &,
9, A B, C D E, F. Note that only upper case characters can he nsed.
The range of hexadecimal integer constants is $0000t0 SFFFF. The
following are some examples:

$ABC
$12A5
35

Ilexadecimal integer constants are not part of standard Pascal but
a form of it can be found in many Paseal implementations.

Character Constani - A character constant is a single ASCII
characler (uther than carriage return) eontained between single
quotes (). Following are some examples:

!A,

laS

!&!
The last example is a character constant that represents a single
ouote. ''he single quote is doubled,

String Constant A string constant is similar to a character
constant excepl that more than one character is contained helween
the quoltes. The following are some examples:

'PAGE HEADING TITLE
'Sam and Joe™'s Sub Shop’

Note that in the last examuple, the twosingle quotes in Joc”s actual lv
18 interpreted as one single yuote in the string. In addilion, a
character constant can be used anywhere a siring constant is
required hut the reverse is not true.

Real Constani - A real constant is a signed, deeimal, fractional
number, optionally raised to a sighed decimal power. The general
form of & real constant is:

<Zsign>< number - number>E<slgn><numher>:
g

The allowable range of real constants is 1E-4 to 9563 both positive
and negative. Following are some examples:

10 Barkground

1.
-6.74
56.3E6
1.2E-3

. The only required elements in a real constant are the first <numhber>
and the deeimal point {). NOTE: Standard Pasecal requires at least
one decimal digil aller the decimal poind.

Constant Identifiers - Through the use of the CONST statement
deseribed later, identifiers can be defined as constants of some fype.
Three constant identifiers are predefined: true, folse and »il. Later
sections on Censtants, Types and Frpressions and Assignments
provide more informalion on these constants.

3.5 Special Operators

As in BASIC the characters +, -, * and / are used as operators.
However, Pascal also has several iwo character operators, These
are as [oliows:

<> notequal

= greatar or aqual
. <~ less or equal

. range

= assignment

3.6 Commenis

Comments may be interspersed between (but not in the middle of)
any of the above language clements. A comment starts with the
characters (* and ends with the characters *). Unlike BASIC,
Puscal comments ean extend through more Lhun one line. All the
characters following the (* are considered comments until the *} s
found later on the eurrent or subsequent line.

Background 11

4 CONST Statement

Constants as language elemenis arc a part of practically every
programming language. BASIC contains both real number and
string constants. As described in the section on Language Blements
Pascal containsg deeimal integer, hexadecimal integer, character,
string and real constants ag well as constant Idenlifiers.

There are two ways to create constanf identifiers. One way is
through the definition of enwmerated types deseribed in the section
on Types. The other is through the use of the const statement. The
general form of the const stalement is as follows:

COMNST <Jidentilier> = <constant™>;

Following are some cxamples:

CONST MinSize = -3;
MaxSize = 3451;
CharLit ='G";
StringLit = ‘This is a STRING constant’;
ExtraSize = MaxSize;
Yes = True;

The purpose of the CONST stalement is toallow the programmer Lo
symbulically define a particular constant value for use later in the
program. Note that any type of constant including a previously
defined constant identifier may be used on the right hand sideof a
conslant statement.

12 Background

5 Types

The eoncept of dype is nol entirely unigque to Pasceal, However, the
existence of a TYPE statement is a new concept for those
programmers used to BASIC. When uging BASIC, you have [our
kinds (types) of data: numbers, sirings, number arrays and string
arrays. You have different operations that can be performed with
each and their internal representations are different.

A lype refers to a data strueture rather than any particular
allocation of thatstructure. It has both a size and a sct of aperations
that can be used on it. See the seetion on Variables [or the actual
allocation of memory for a given lype.

In DEFT Pascal, real numbers and strings are hoth availablealong
with a number of other lypes, including some types that you can
define yourself. There are three classes of types: simple, structured
and pornder. Those types which refer to indivisihle entities are
referred toas simpie. An example is Lhe set of whole numbers. Those
which are made up of groups of simple types arc referred to as
structurcd. An array iz an example of a structured iype. A pointer
type refers to thuse entities (such as memory addresses) which
identify an occurrance of a type.

Asshown in the chapter on Program Siructure the general form of
the TYPE statement is as follows:

TYPE <lidentifier>> = <iype definition>;

This statement causes the <identifier: to be associated with the
<iype definilion>. Following are descriptions of all the possible
type definitions.

3.1 Type Identifier

A previvusly defined type identifier cun be used as a #ype definition.
These identifiers include all those defined in previous TYPE
statements as well as a number of pre-defined fypes thal are
available. These predelined fypes are as follows:

® [nteger - 'Thiziga 16 bit (2 bytes) Ordinal type which can ranpe in
value from -32768 w 327487.

® Real - This isa 6 byte floating point number. The high-order bit
of the first byte is the sign of thenumber. The low-order 7 bitsof the

Background 14

first byte is the signed exponent. The lagt 5 bytes contain the
mantissa in the form of 10, BCD digils. The range of the exponent
iz 63 1o -64 and reflects powers of 110,

e Char - This is an 8 bit (1 byte) ordinal type which can range in
value from NUL to DEL. These are the ASCII characters with
binary values from 0 to 127, In addition, the characters that
correspond to the hinary values from 128 to 255 arealso included.

® Ronleas - This is an SIbit (1 hyte) Ordinal type whieh can have
only two possible values: 0 (false) or 1 (true).

® String - This iz an 81 hyte structured #yoe which can contain a
variable number of Chor iypes. A minimum of 0 and a maximum
of 80 Chars can be contained in a String type. See Advanced
Pnseal for more information on strings.

o Text - This is a structured type which defines a FILE OF Char.
This type occupies 286 bytes, See the section on Input/Output for
more information.

One additional term is that of erdinal type. All simple types excent
real are also ordnal lypes. Ordinaliypes are simpletypes thal have
explicit, discrete values.

Bee the seclion on Expressions nnd Assignments for 2 diseussion of
the kinds of operations that can be performed on these varivus types.
Anexample of a TYPE stalement using a type identificer:

TYPE Number - Integer;
Number is a new fype that 1s fully compatible in expressions wilh
Integer.
5.2 Enumerated

One way you can deline vour own bype is by listing aset of values that
areto be associated with afype. Thisdefines anewordinal type. The
general form of an enumerated type definition ig as follows:

{<idenlifier>s, ... , <identifier>>)

An example of a TYPE statement using an enumerated {ype
definition is the following:

TYPRE Color = {Red, Green, Yellow, Blue, Orange, Brawn};

14 Background

Color becomes a new independent fype and any variablesof this fype
will be protected from variables of other types in an expression. All
enumerated types are 8 bit values where the identifiers eontained in
the list are implicilly delined as eonsfants of that type. The order of
the identifiers in the list is important. The internal representation
of the first value is always 0, the second is 1 and so forth. See the
section un Eopressions wad Assignments Tor a deseription of the
operations that can be performed on an Enumerated type.

5.3 Subrange

A Subrange iz a subset of values of an Ordinul type. The general
form of a Subrange definition is as follows:

<constant>..<constant>

Where the firsi <constant> must be less than or equal tothe second
<constani’>. Some examples of subrange TY K statements are az
follows:

TYPE SmallCaolor = Green..Blue;
Smallint = -128..127;

Note that in the case of & subrange ol Integers, a subrange of
-128..127 or less will result in an 8 bit#ype which is fully compatible
with the full 16 bil integer fypes.

2.4 Sets

A set is a collection of specific oecurrances of objects of the same
typc. The general form of a zet definition iz as follows:

SET OF <(type identifier:>

Where the <itypeidentifier:» specifies the types of objects eomprising
the set. The following is an example of use:

TYPE SmaliColor = {Green,Yellow,Red,Blue);
SomeColaors = SET OF SmahlColar

SmollColor 15 an enumerslion, and SoweColors s a set Lype.
Variables of the type SomeColors arc sets with ¢ to 4 members
which were listed in the declaration for the type Smallolor.

All Sets are 32 byte structured 2y pes. Each bit position within those
32 bytes represents cach member of the set. Where bit 0 of byte 0
represents member (). Bit 1 of hyte O reprezents member 1, and seon

Backgrounid 15

up to 250, All Sets may have up to 256 members. Sets ure given
values by specifyving 4 set constant as a list of constants enclosed by
[1s. If aset has no values assigned, itis ealled an cmpty set, whichis
denated by two empty brackets [].

BriteColaors :=[Yellow, Red];
DarkColars = [Green, Blue];
NoCalors :=[];

5.5 Arrays

Anarray is a familiar concept tomost programmers. In Pascal, itis
a list of types (which themselves can be arrays). The general form of
an Array definition is as follows:

ARRAY[-Cordinal type definition>>] OF <type definition>;

where the <ordingl type definition> defines not only the guantity of
<type definitions>> in the ARRAY but also how each element is
wdentified by type. I'be following examples should make (his clear.

TYPE Coloriist — ARRAY[1..6] OF Color;
Numbers = ARRAY|Green..Orange| OF Integer;
Flags = ARRAY][Caolor] OF Boolean;
ColorPlane = ARRAY[0..200] OF ColorList;

In the first example, alist of volors is being defined. Elements of the
list arc identified by the integers 1 through 6 for a total of 6
elementz. Note thal one of the mosl Trequent uses of subrange Ly pes
are in nrray definitions.

The second example shows one of theunique properties of I'aseal . 1n
this case we aredelining a4 element listof numbers where elements
of the list are identified, in order, by the colors Green through -
Orangc. The third example is similar where the number of Boolean
elements is equal Lo the tolal number of eolors und each element of
the list is identified by a different color,

The final example shows adelinition of 4 two-dimensiona) amay, In
this example there are 201 lists defined. Variables of this type
would have memaory organized as follows:

16 Backperound

zeroth CaolorList {(elements 1 through 6)
firsi ColorList {(elements 1 through 6)
second CotorList {elements 1 through 6)

two hundredth Colorlist (elements 1 through &)

Alternate {equivalent) forms of multiple dimension ARRAY
dleclarations are as follows:

TYPE ColorPlane = ARRAY[0..200] OF ARRAY[1..6] OF Color:;
or
TYPE ColorPlane = ARRAY[0..200, 1..6] OF Color;

Nute that thereis no limit to the number of dimensionz allowed and
that cach dimension can be of a different ordinal type.

The predefined type streng is actually an arrag{n.80] OF chnr,
DEFT Pascal supports a numberaof language extensions associated
with this fype. See Advnnced Pascal for language extensions on both
strings and arrays.

. 5.6 Records

A record is a ecllection of data of diverse types which are located
contiguously in memory in the order in which they appear in the
record, Bach data element or item is referred to as a leld. A fleld
may be of any fype. This means that a record field may be an array,
another recard, a set, and so on. The general form of a record
definition s us follows:

RECORD
<field list>>
END
Where the <Zfield list>> has a <[ixed pari>-and/or a <<variant part >

The < fixed part’> is a group of fields which are declared very much
likevariabies. The following isan example of a RECORD with only

. a <fixed part>;

Background 17

TYPE Employee = RECORD

Name : String {20);
Street, City : String (20);
State : String (2);
ZipCode : String (5);
Number : Integer;
END;

In addition to a <fixed part>> & RECORD can also have a <variant
part> Thig part describes several elternative <<field list>>s which
dre located in the same area of memory. This allows vou to deseribe
the same areanf memory inmore than one way. The general form of
the <Zvariant parl>> is as follows:

CASE [<lidenlitier>:] <type identifier>> OF

<Zconstant>, ... ,<constant> : { <{ield list>> };

<constant>, ... ,<{constant>-: { <[field list>)

The <lidentifier>>: following the CASE keyword is optional and if
present defines the last furzed ficld in the record. The <econstant™s
musi all be of the same {ype as the <lype identifier>>. Each (<field
list>>) begins at the same position in the reeord. The sizc of therecord
will be determined by the size of the largest (<field lisi>>). The
fullowing exumple should make things more obvious:

18 Background

TYPE JobType = (Manager, Worker, Secretary);
Employee = RECORD

{* Fixed Part Starls Here *)

MName : String (20);

Address: RECORD
Street, City : String (20);
State : String (2);
ZipCode : String (8);
END;

Number : Integer;

(* Variant Part Starts Here *)
CASE EmployeeType : JobType OF

Manager : (TotalWorkers : Integer;
SecName : String (20)};
Worker : (ManagerNbr : Integer;
TotalToals : Integer;
RoomNumber : integer);
END;

In this case we have a <<variani pari> based on the employee’s job
lype. The fields following the manager constant deseribe the
information required for a manager. The fields [ollowing the
worker constant desceribe the information required for a worker.
Only one <field set> or the other will be present in any given
ogeurance of an employee type.

Note that Lhe size of Employee is 21 (Name) + 51 (Address) + 2
{(Number) + 1 (EmployecTypce} + the size of the largest varianl
which is the onc represented by the manayer constant {(which is 23).
Although not shown here, ihe <field lists:>> in the <variant part>
can lhemselves have <variant parts:>.

5.7 Pointers

A poimter is & reference to a specific instance of a type. In stundurd
Pascal, this instance is created via the NEW procedure. A pointer is
hasically the memory address of a variable of a speeific fype. You
can create a pointer type by preceding any type delinition with an
uparrow { -). The general form of a poinfer type is:

<type definition>

Backgrount 19

An examyple painter type definition is:
TYPE EmployeePtr = " Employee;

This defines a Lype called employeepir which is a pointer to @ record
type ealled employee. you can ereate an instance of employee using
the N W procedure as follows:

MEW (EmployeePtrVar);

This altocates memory for an instance of employee and sets the
memaory address of thal inslanee in lhe variable called
employeeptrvar which is of type employeentr.

The size of & poinler lype is always 2 bytes regardless of Lhe size of
the type that it is referencing. See Advanced Pascal for DEFT
Pascal extensions on the use of pointer types.

5.8 Files

In Paseal, both fales and arroys are lists of elements. With an arroy
each element can be randomly accessed. With a file each element
can he anly sequentially aceessed. Files are the struetured fypethat
represent periperal devices such as tape, disk, printer, keyvboard
and screen.

In Puscal, each element of & file can be ol any type. File types other
than file of char are used to transfer oceurances of the binary image
nf the fype’s internal representation to and from I/0 devices. A fileof
chor has special (hut standard Pascal) properties which provides for
automatic conversion between the internal binary representation of
data and the external ASCII representation. A eomplete cxplanation
can be found in the section on faput/ Cntput. The standard predefined
typeidentifier text (file of char) can be used in file type declarations:

TYPE ThisType = FILE OF Char;
ThalFile = Text;

Both of thesc deelarations define equivalent fype 1dentifiers, Note
thata FILFK of a given type has a size which is equal to the size of the
type plus 286 bytes.

20 Background

59 PACKED Types

The reserved word PACK KD may precede either set, array, recnrd
or file in a type declaration. In standard Pascal, this reserved word
indicates that the corresponding structured typeshould be organized
to occupy the least possible amount of memeory. There are
subsequently sume resiriclions on the use of these packed bypes,

With the DEFT Pascal Compiler, the keyword PACKED is
allowed bul ignored in set, array, record and file type declarations,
This means that the memory requirements don't change and the
restrictions are not imposed on the resulting types. An example of
use is as follows:

TYPE ColorList= PACKED ARRAY[1..6] OF Color;

Backgrounid 21

6 Variables

A variable in Pascal represents a specific memory allocation of a
type. More important is when that memaory allocation is made.

6.1 Automatic Allocation

In BASIC, a variable is atlocated memory when it is first used. In
assembly language a variable is allocated memory when the
program is loaded into memory (provided it was declared with an
RMB opecode).

Inthe section on The Pascol Program the block structure of Pascal is
explained. Constants, types, procedures, functions and variables
become known only when the blocl in whieh they are declared is
activated. Flor variables, this also causes the memory for them to be
allocated. When the block is deactivated, not only do the identifiers
become unknown but the memory allocated to the variables is
deallocuted.

The implications of this allocation scheme are two-fold:

1. The value of any variable is undefined when the block is [irst
activated. This ig true even if the block was previously activated
and deactlivated. Variables will not assume the value that they
had when the block was last deactivated.

2. Anactive block can activate itself causing a second allecation of
its variables. Each econeurrent activation of ablock therefore has
its own independent copy of each variable. This allows for
recursive procedures and functions.

6.2 VAR Declaration

VYariables ure declared with the #ar statement. The general form of
the statement is as follows:

VAR <identifier>> : <iype definition>;

For example:

VAR |:Integsr;
ThisEmployee : Employee;

22 Background

7 Procedures and Functions

The concept of 4 group of statements which perform a given
opcration is certainly not new to a BASIC programmer. The gosub
statement allows exactly this type of operation. In Pascal, the
procedure slatement allows a programmer 1o set aside a group of
statements explicitly for this purpose.

In BASIC the concept of a function is provided by the DEF F'N
statement, This statement provides the ahility 16 define single line
functions. In Pasecal, the funetion statement (which i¢ almost
identical to the procedure stalement) provides a general function
definition capahility.

The facilitieg found in Paseal for defining procedures and funelions
are very powerful and constitule one of the major characteristics of
the Pascal language. As deseribed in the seetion on The Pasend
Progras Pagcal ig a bloek structured language with procedures
{and functions) at the heart of this structure. It is important to read
and understand this section in order to use the features of the
language Lo their fullest,

7.1 PROCEDURE Declaration

The procedure statement is a declaration statement which provides
the ahility to construet a complete subprogram which may itself
conlain subordinate subprograms (procedures and functiong). The
general form of the declaration is as follows:

PROCEDURE - identifier>- <Zformal parameter definition_>;
< declaration statements>

BEGIN
<axecutable statements -
END

Ag mentioned in the seclion on Block Structure the <declarution
stetements> BEGIN <erecutable statementss END conslitute a
<bloek> which is exactly the same as a program’s <block:>. The
<formal parameter deflinition>> c¢an be null if there are no
parameters to pass to the procedure or can have the following form
if parameters arc present:

(<parameter:>; <parameter>; ... <parameter>)

Rackground 23

ﬁ
m
o
-
o]
—

Where the form of </parameter.= is;
VAR <lidentifier>, ... <identifier> : <type identitier>-
OR
<identifier>>, ... ,<identifier™ : <type identifier-

The war keyword is present when the parameter is a reference
parameter and iz not present when the parameter is a oufue
parameter. Thedifference between these two classes of parameters
is important and iz discussed in full in the next scetion on Procedire
Inanoration. Following are some examples:

PROCEDURE TestProc (VAR Parm1 : Integer; Parm2, Parm3 :
Inieger);
BEGIN
Parm1 := Parm2 + Parm3
END;

PROCEDURE TestProc2;

BEGIN
IF GiobalVar1 >> 0 THEN GlobalVar2 ;= 5;
GlobalVard -~ GlobalvVar1 + 3

END;

Yeou notice in the first example that Pavm {18 a refercnee parameler

and Puarmz and Parm3 are value parameters. In the second

example GlobalVart, Global Var2and Global Var$ are all variables
deelared vutside the procedure TestProc2, Sce the scelion on The
Poscal Prograsm for 4 discussion of seope.

7.2 Procedure Invocation

[nlike BABIC s gosuh statement, Pascal has no calf statement for
invoking a procedure. In Pascal, a procedure is invoked by name,
That is, a procedure declaration implicitly defines a new executable
stalement which is the procedure name and is lormatied acearding
to the <parameter definition> provided in the declaration. The
general form of a procedure invocation is:

<Jjdentifier>> <actual parameters -

If the corresponding <formal paramcter definition> in the
procedure statement was null then the <Cactual parameters>> must
alzo be null. Otherwise the actual parameters must agree with the

furmal parameters in ordering, Lype and number. Some examples:

24 Background

TestProc1 (I, 3, J*5);
TestProc2

Before explaining the above examples, it is necessary to define what
reference and nelue paramelers are. A formal reference parameter
represents the actual rariable used when the procedure is invaoked.
The parameter used in the procedure invoeation smust be avariable,
In this case, all references to the formal parameter (the one in the
procedure declaration statement) will reference the actual
parameter (the one in the procedure invocation stalement). This
means that the actual parameter's value will be changed if the
procedure modifies the formal parameter’s value,

A formal vafue parameler represents the value of a greneral expression
used when the procedure is invoked. In this case, any tyvpe compatible
expression is allowed as the acfunal parameter since a separate
allncation of memory is made when the procedure is invoked and is
initialized to that value. The formal parameter in thiz caze
represents its own memory ares ralher than that of another
variable. Changing the formal parameter in this case, does not
change the value of any other variable.

In the first example above, I is a referenee parameter and 4 and J*5
are value parameters. When TestProct 1s invoked in this case, Tis
assigned the value g + J*5. Bince TestProe2 has no formal
paramcters, it therefore has no actual parameters,

7.3 FUNCTION Declaration

"The funetion statement. is almost identical to the procedure statement
deseribed above. This is because a funciion is 2 special lype of
provedure which is invoked in a different manner from a regular
procedure and has a typed value assoeiated with it. The syntaxof the
Sunetion statemnent is as [ollows:

FUNCTION <identifier> <formal parameter definifion>> :
<type identifier -,
< declaration statements >
BEGIN

< executable stalements >
END

The only difference between the function statementl and the
procedure statement is the beginning keyword (FUNCTION

Background 25

instead of PROCKDIURE) and the presence of the < type ideniifier>
following the parameter definition. Following are some examples:

FUNCTION TestFune (VAR Parmi : Integer; Parm2, Parm3 :
integer)
: Boolean;
BEGIN
Parm1 := Parm2 + Parm3;
TestFunc = (Parm2 > Parm3)
END;

FUNCTION TestFunc2 : Integer;

BEGIN
IF GlobalVar1 > D THEN GlobalVar2 :=5;
GlobalVar3 = GlobalVar1 + 3;
TestFunc2 = GlobalVar3 * 2;

END;

You'll notice that these examples are similar to these used in the
Procedure section except that there is an extra assignment statement.
al the end of each function. These statements use the funetion name
on the left side of the assigment symbol to assign a value to be
returned by the function, Every function is required to have at least
one assigment statement which performs this task. If more than one
assigment takes pluce, the last assigment made belore the function
terminates is the one that will be used. A funetion can only he of a
simple type.

7.4 Funetion Invocalion

A function is invoked by referencing its name {and rupplying any
required actnal parameters) in an expression. In this form the
Jfunetion relerence is similar to a reference w a variable. Following
are some examples:

IF TestFunc (1, 3, J*5) THEN | == 0;
Globalvar2 := TestFunc2 * 5

Note that for purposes of recursion there is no ambiguity as to
whether a function is being recursively invoked or having its
returned value set for its current invocation. An snvoeafion oreurs
when the funetion's nume (and actual parameter list) ure found inan

expression. A function’s returned value is set when its hame alone is
found on the left side of an assipment statement.

26 Background

7.5 FORWARD References

In Paseal, & funetion or procedure may be referenced by another
procedure or function only if the funetion or procedurce being
referenced has been defined previous to the procedure or function

. making the reference. There are limes when this restriction is
undesireable, The forward deelaration in Pascal solves this little
problem.

A forward reference is allowed only if the procedure or funetion
being referenced has been defined wsing the forward declaralion.
The following is an example:

PROCEDURE TestProc (VAR Parm1 : Integer; Parm2, Parm3 :

Integer);
FORWARD;
PRQCEDURE TestProc2;
VAR |, K, M : Integer
BEGIN
K:=17; M := 23;

IF GlobalVart <Z 0 then TestProc (K, M);
IF GlobalVar! > 0 THEN GlobalVar2 := 5;

. GlobalYar3 := Globalvari +3
END;
PROQCEDURE TestProc;
BEGIN

Parmi = Parm2 + Parm3
IF Parm1 <> 40 THEN TestProc?
END;

Note that TestProe has been declared as forwerd and is referenced
by TestMroc, even though TestProe is deflined after Test Proc?, The
same rules and conventions apply for funetions as well.

Background 27

8 Expressions and Assignments

Expressions are the cembinalion of constants, varigbles and
functions with operalors to form some result. This result ean then he
stored (assigned)in a variable, used as a parameter to a procedure
or funetion, used as a subscript in an array specification, used to
control the execulion of the program or output to a file.

8.1 Factors

The [undamental elements of an expression are called frefors.
Factors arc the constants, variables and [unctions previously
mentiohed. Following are some examples of factors:

{* Constants *)

2

IA!

"JOES"S PLACE’

(* Variabies *)

|

MyColors[1]
OurColors[137,3]
MyRecord.isColor

(* Functions *)
CHR (65)
ABS (-3)

The value of a factor is dependenton what kind of factor that itis, A
constant has a single given valuethal is ulways used whenever that
ennstant is referenced,

A variable’s value will be potentially different each time that. it, s
referenced. The last value that was stored (assigned) to that
variahle before a given reference will be the value of that variable
for that reference.

In the example abave you can see u reference to an array type
variable, The value contained in the square brackets ([J) (which can
be a full cxpression) is cailed a subsermipt and identifies which
clementof the array is being referenced. Note that every element of
an array is considered to be an independent variable, When an
array has more than one dimension, the suhscripts are ordered
according to the fype definition for that array and are separated
from each other iy commas.

4.3 Background

A reference to a field withina record is also a factor. This is done by
naming the record, appending a period (.) and then naming the
field. If the record iz an element of an array, then the period follows
the right bracket. For Example:

ArrayOiRec|i]-Field1
Record1.ArrayField|i|.SubField1

Nuolice that erraysof records and records of arrays can be refercnced
by following the above rules.

A reference to a function will actually cause the funcilion to be
invoked at the point of reference. The value relurned by that
invoecation will be the funetion’s value for that reference.

Anoctlher type of factor is the infine set:

{* In-Line Sets *)

[Green..Blue, Yellow]

[0.'9, A2

1,5, 7,1.50]
An inline set, iz a sef value that is built from a Hst of itemized ordinal
cxpressions and subranges as shown above. Note that an inline set
must always be prececded in an expression with some indication as
to what type it should assume. Thercfore, it eannot be used as the
firat factor in a boolean expression,

A final type of factor is a dereferenced pointer. Thisisareflerencetoa
variable whose address is in w pointer fype variable and can be made
by naming the pointer variable and following it with an up-arrow
{ *). The same syntax is used to reference the window of a file type
variable. For example:

PuVar
FileVar

8.2 Arithmetic Operators

An expression does not have tn have any operators so that a single
factor can be considered to be a full ex pression. However, freguently
we wish to combine one or more integer or renl type factors
arithmetically. This is done with the use of the following operators:

Rackground 29

+ Addition

- Subtraction
* Multiplication
! Real Division

DIV Imeger Division - quotient resuit
MOD Integer Division - remainder result

In addition to the above standard arithmetic operators. the DEFT
Pascal Compiler also pravides the following additional arithmelic
operators:

AND Bitwise logical AND

OR Bitwise logical inclusive OR
XOR Bitwise logical exclusive OR
LSR Bitwise shift right (zero fill)
LSL Bitwise shift left (zero fill)

Some examples of simple arithmetic expressions are as follows:

I+R {* sum of | and R, real result *)

2*3 (* product ol 2 and 3 *)

J7B (* real quotient of J divided by 6 *)

JDIVE {* integer quotient of J divided by 6 *}

I AND $1FF (* value of | with high 7 bits cleared *) .
JLSL 3 {* value of J shifted left 3 bit pasitions *)

8.3 Inleger/Real Expressions

Al the above operators (except the slash) can be used with iateger
fupes to create dnfeger type expressions. The plus (4], minus (-,
asterisk (*) and slash (/) can also be used with read Ly pes Lo create
ventd Lype expressiona,

You can also include Jateger lypes in rend expressions and DEFT
Pascal will aulomatically convert the iniegers w reals. However,
you must use either the PREUNC or ROUND built-in functions to
convert from real Lo integer. These are deseribed in the section on
Built-In Procedures and Functions. Following are somc examples af
expressions mixing integers and reals:

R:=1; {* legal *)

|~ 1.0; {* illegal *) .
R:=I1+R; (* legal *)

IFR+1=0THEN ... {* legal *)

IFI1+R~0THEN ... {* illegal *)

30 Background

In DEFT Pascalthe last expression is illegal because the expression
glarted out as integer bhefore the K was encountered. In standard
Pascal, this would be a legal expression.

. 8.4 Arithmetic Precedence

In the above examples we saw how two faclors could be combined
with an arithmetic operator. In general, there is no limit to the
number of faclors thal can be combined in a single expression. For
example;

1*dJ+5DIV3OR $FF00

The above example is a legal expression. Unfortunately it is not
immediately elear how it might be evaluated. This is because it is
notclear which order the operations are performed in. In Paseal, as
in most languages, this is resolved via rules of precedencs. For
arithmetic expressions Lhe operators are divided intotwo categories:
maltiplyinyg operators and addation operalors as shown below:

Multiplying Operators: * / DIV MOD AND XOR LSR LSL
Addition Operators: +-0R

. Expressions are generally evaluated from left to right with the
multiplying operations performed before the uddition operationa.
in the example abave, the evaluation would occur in the following

arder:
1 *d {* result 1 *)
5DV 3 {* result 2 *)
result 1 + result 2 (* resull 3 *)
resuli 3 OR $FF00 (* final resuit *)

Parentheses can he used to ehange this defauft order of operations.
In fact, the aboveexpression, although legal, i« generally considered
poor programming practice since it is not immediately clear how
the expression is to be evaluated. Al operations (both multiplying
and addition) within a set of parentheses are performed before the
resnlt is comhined with operators outside the parentheses. By
inserling parentheses in the ahove example we can change crder of
. evaluation as follows:

I * {(J + 5) DIV (3 OR $FF00)

Background 31

The parenthcses have chunged the order of evaluation to the
following:

J+5 {* result 1 *)
[* resuli 1 (* result 2 *)
3 OR 3FF0Q (* result 3 *)
result 2 DIV result 3 (* final result *)

Note in the above example that the * operation takes place before
the OR operation. That is due to the left-right nature of the
expression cvaluation, Note that parentheses may benested to form
cven a different evaluation as follows:

| * ((J + 5) DIV (3 OR $FF00))

The new parentheses have changed the order of cvaination Lo the
following:

J+5 (* result 1 %)
3 OR $FFOQ (* result 2 *)
result 1 DIV result 2 (* result 3 *)
I * result3 (* final result *)

Note that an expression inside a sct of parentheses is actually
conzidered a fuctor and is treated as such in all expressions.

8.5 Set Kxpressions

Set factors can be combined into expressions with the following
opcrators:

+ Union
Difference
* intersection

As in arithmetic expressions, two set factors are eombined with a
single operator to produce a single set resull. The above operators
produce Lthe following results:

® The Union of (wo sets produces a set. which eontains all the
elements present in cither the first or second sct.

® The Difference of two sets produces a set which contains all the
e¢lements of the [irst set which are not also in the second set.

® The Intersection of two sels produces a set whieh containg only
those elements which are in both the first and second sets.

32 Background

Intersection has precedence over Union and Difference,

8.6 Boolean Expressions

A Boolean expression has a true or fulse boolean result (this 13
aclually an 8 bit result). As in arithmetic and set expressions,
boolean expressions are formed with fuctors and operalors. The
hoalean operators are as follows;

NOT Logical NOT {* Unary *)

AND Logical AND {* Muitiplying *)

OR Logical OR {(* Addition *)

IN Set Membership

= Equals {* Relational *)

= Greater than

<! Less than

= Greater than or Egual {* Simple Types *)
Containment {* Set Types %)

<= Lese than or Equal {* Simple Types *)
Inciusion (* Set Types *)

< Not Equal

Unlikearithmetic and set expressions, hoolean cxpressions can take
any type factor as an argument. The only restriction is that they be
combined with relational operators and thal the lypes of both
fuctors arc the same. The nat, and and or logical operators require
boolean type factors (in order to produce a hoolean result). For
example:

BoolVari AND BoolVar2
Integer1 = Intager2
MyCalor1 > MyColor2

The i operator is used lo determine whether a given ordinal value
inthe range 0..255 is eontained within a set.of the same ordinal type.
For example:

MyChar IN['A’..2Z°]

The <= and > operators have a special meaning when applied to
sets.

¢ SetContainment(>=) produces a frux resull if 11l the elements of
the seeond set are also elements of the first sct.

* Set Inclusion (<) produces a frue result if all the elements of the
first scl are also elements of the second set.

Background 33

Precedence in boolean expressions is about the same as in arithmetic
expressions with the following addition: after all multiplying and
addition operations have been performed, a single relational or set
membership operation may be performed. Note that asin arithmetic
expressions, parentheses can be used to alter the order of cvaluation
and to break the expresgion down into a number of factors. The
following examples illustrate this:

J=1TAND K <=L (* illegal expression *)
(J =13 AND (K <= 1) (* legal expression *)

Where I, J, A and L are all integer variables. The following
evaluation takes place:

J-I (* boolean resuit 1 *}
K<=L (* boolean resuli 2 *)
result 1 AND result 2 {* inal boolean result *)

In the following example, changing parentheses changes nol only
the order, but also the required intermediate expression types:

J=1AND {L <= K}

The above expression is illegal unless 1 and J are boolean type
factors. Evaluation is as follows:

L<=K {* boolean result 1 *}
| AND result 1 {* boolean result 2 *)
J —result 2 {* final boolean result *)

Notonly factors, but arithmetic, set and boolean expressions may be
combined via relational operators as follows:

1*3 == J+2

Set1 <= Sef2 + Setd

{l IN |5, 6, 20..30]) = OnOfVar

(L+2)*1 >= K AND $1F0

In the lasl example, the AND operator is an arithmetic operalor
rather than a boolean operator.
8.7 Assignment Statement

This statement is similar to that found in BASIC. The symbol of
assignment is different than BASIC's to distinguish it from the
equals sign. The general lorm is as follows:

<Jdentifier>> 1= <lexpression >

34 Background

The <idenliler:> on the left must be a variable whose value isto be
set to that of the expression on the right after the expression is
evaluated. Following are some examples:

I:==1*((J + 5) DIV (3 OR $FF00})
. BoolVart :=1=J

In the second exumple, BoolVar is assigned either a True or False
value depending on whether 1 is cqual to).

Background 356

9 Compound and Control Statements

Stalemenl execution normally starts with the statement
immediately following the BEGIN keyword in the main program
block., Exccution proceeds sequentially with each subsequent
statement unlil the KNI at the end of the main program block is
reached. If any other blocks arc activated in the inlerim. execution
within that block proceeds in a similar fashion.

This section primarily describes the statements that allow vou to
alter this gencral flow of execution,

9.1 BEGIN Statement

This statement allows a programmer Lo inelude more than one
staternent in a place in the program where normally enly one
statement would be allowed. This statement does not cause any
change in the order of statement execution but is frequently used in
conjunction with the control statements deseribed below which do.
The following is the general form of the BEGIN statement:

BEGIN
<executable statement> ;

< exg;utable slatement’>
END

Nate that the semi-colon is used to separate rather than terminate
stutements. Since the DEFT Pascal Compiler supports a nall
statement, you can put a semi-colon after the lasl executable
statement before the KNS

9.2 IF Statement

The {F statement provides the capability to exceute cither one of
lwo statements based on the valucof a hoolean expressian, Following
is the general form of an JF statement:

IF <“hoolean expression> THEN <executable slatement:>
ELSE < execulable statement -

Il the boolean expression is true then the <executable statement™>
Tollow ing the THEN keyword is executed otherwise the <Zexeeutable
statement’> following the FLSFK is executed. The else clause is
optional and if it is not present, no statement is explicitly executed

36 Rackground

when the boolewn expression s ferdse, In any case, after the then or else
clause (if present) is executed, control falls through to the next
statement following the fF statement. Following are some examples:

IFI<JTHENI:=1+1ELSEJ:=J + 1;
IF J*2 = 50 THEN BEGIN

J:=5;

1:=1*3

END

The last exampleshows how the BEGIN statement can be used with
the IF statement.

9.3 WHILE Statement

The WHILE statement provides the capahility of repefitively
executing a given statement while a boolean expression istrue, This
15 one of Pascal’s structured lovpwng constructs. The general form of
the WHILFK staternent is az follows:

WHILE < bhoolean expression> DO <execwlable statement >

In the WHILE statement the <haolean expression> is evaluated
and il found Lo be frue, the <Jexeculable statement> following the
130} is exceuted and the process is repeated. This continues until the
<hoolesn expression> is found o be false. At that time, the
<executable statement>-1snot executed and control falls through to
the statement following the WHILA statement. Note that i the
<hoolesn expression>s is fulse when the WHILE statement 1s first
executed, the <<executable statement> following the 130 is not
executed at all.

Normally, the <executable slatemeni> will changs the value of gne
or more of the variables used in the <hoplean expression>. Following
arc some examples:

WHILE| <JDOI:=1+3;
WHILE J > H3 DO BEGIN
J=Jd73;
l-1+1
END

Background 37

94 REPEAT Statement

The REPEAT statement provides the capahility of repetitively
executing a given staternent until a boolean expression is false. The
general lorm of the REPEAT statement is as follows:

AREPEAT -Zexecutable statement™-; .

<_executable statement’>
UNTIL < boglean expression

In the R PRAT statement the <execulable slatement>>s following
the REPHEAT are executed. The <lboolean expression> is then
evaluated and if false the process is repeated. This continues until
the <boolean expression=> is found to be true. At that time, control
falls through to the statement following the [/ VT 1.. Notethat if the
<hoolean expression’> is frue when lhe REPRA Tstatement is first
execuled, the <Zexecutable statement>s following the REPEAT are
still executed ane time,

Normally, the <executable statementi>s will change the value of
une or more of the variables used in the <boolean expressien;>. The .
following are some examples:

REPEAT | =1+ 3UNTIL I > J;
REPEAT

J:=Jd /3

I:=1+1
UNTILJZ1+3

9.5 FOR Statement

The FOR statement provides the capability of repetitively executing
a stutement while explicitly varving an ordinal variable. The
general form of the F'OR statement i as follows:

FOR < assignment statement>> TO < expression-> DO
<Zexeculable statement

or

FOR <Zassignment statemeni> DOWNTO ~expression> DO .
<execulable statement>

b1 Background

In hoth the TOand DOWNTO versions the <Cassignment statement
s execuled [irst. The ordinal variable identifier to which the
assignment is made is used as the loop counter. The testing and
varving of the loep counter ig different in the 70 and DOWNTO
VEPsions,

In the TO version, the following sequence is performed:

1. If the locop counter is greater than the <lexpressions>, processing
in the FOR loop is terminated and contral falls thraugh to the
nextstatement following the FOR loop. Otherwise, the following
addilional steps are performed.

2. The <executable staternent™ (which may be a compound
statement) Is executed.

3. Theloop counter is advanced tothe next higher value (see SUCC
buili-in Function),

4, Control goes back to the first item in this sequence.
In the DOWXNTO version, the following sequenece is performed:

1. If the loop counter is less than the <expression>>, processing in
the FOR loop is terminated and contrel falls through to the next
statement following the FOR loop. Otherwise, the following
additional sleps are performed.

2. The<executable statement> (whichof eouirse may be a compound
statement) is execuled.

3. The loop counter is reduced to the next lower value {see PRED
built-in function),

4. Control goes back to the firsl ilem in this sequence.

Normally the <lexecutable statement> will reference the loop
counter although this izn't always the case. Following are some
examples:

FOR!:=1TO 3 DO MyColors|i] := Red;
FOR J :=0T0O 200 DO
FOR | =1 TO & DO QurColors[J,I] := Yellow;
FOR ColorVar ;= Green TO Orange DO
NumbersVar| ColorVar] := 3;

In the second example, the <lcxcculable statement > of the first FOR
statement was itgelf a FOR stalement. The second FOR loop will
execute to corpletion (6 iterations) for cach itcration of the first

Background 34

FOR loop. [n the lagt example, the loop eounter is an cnumecrated
lvpe and is uzed as the subseript of an array type variable.

9.6 CASE Statement

The CASE statement provides the ability to execute one of several
statements depending of the value of an ordinal expression. This
ordinal expression is called a seleclor. Follow ing isihe general form
of the CASF statement:

CASE Cordinal expression> OF
<Zconslant list>> : <Zexecutable statement’=;

<Zconstant list> : <executable statement >
ELSE < executable statement>>
END

The <ronstant Hsl>> 1s a list of Lype compatible conztanis separated
with commas, The <ordinal expression’>is evaluated and compared
with each constant sequentially in cuch <wonstant list>. If the
<“prdinal expression’ is found to equal a constant, the comparing is
stopped and the <exceutable statement>> immediately following
that particular constant is executed and control iz then passed to Lthe
next statement following the CASE expression. If none of the
constants mateh the <ordinal expression> and the FLSE elause is
present, then the statement following the KLSE is executed.

The FLSE clause is 2 common extension found in most Paseals
tsometimes asan OTHERWISE clausce) [isoplional, butif present
must Tollow the last case and precede the KNS Following iz an
example:

40 Background

CASE 1*5+J OF
7.9:J:=15;
11,12,13,14 : BEGIN | := 3; J := 2 END;
1:1:=J+5
ELSE J:= 0
END;

CASE MyColors|i] OF
Red, Orange : MyColors{1] := Green;
Blue:1:- 3
END

In both examples, vou will notice al least one case which has enly 1
eonstant in its <constant list>>. In the second example, the ordinal
expression is of an enumerated Ly pe,

9.7 GOTO Statement

The GOTO statement provides the ability to cease program execution
at the point of the (OTY) statement. and then resume program
execution at the poinl in the grogram identified with the
corresponding label specified in the GOTO stutement, For those
used to programming in BASIC, this featurc is very familiar, The
DEFT Mascal Compiler, however,only allows a GOTO to reference
a {nhe! that iz defined within the same block as the GOTO. The
following i3 an example;

GOTO 580;

Where 580 is 2 lubel used wo identily anexecutablestatement within
the same block as the GOTO statement.

9.8 EXIT Statement

The EXIT stalement provides the ability to deactivate a block
befure coming (o the block's KN statement. The KX T statement
ishot partof standard Paseal buta form of it is [ound in a number of
commercially available compilers. The syntax is as follows;

EXIT

When this statement is eneeuntered, the active block in which it is
found is deactivated and no further staternents within that hlock arc
executed. Note that the block being referred to is one associaled
with a procedure, fuaction or program.

Background 411

Typieally, the KXIT slatementis used in canjunction with vne of the
other control statements in order to eondilionally continue execution
withina block. KXTT ¢an be used to deactivale the program block in
which case program execution lerminates and eontrol returns to
BASIC.

9.9 WITH Statement

The WITH statement provides Lhe ability to refercnee multiple
fields within the same record with one statement. One or more lields
of a record can be referenced within a WITH slatement by their
field names alone provided the remaining part of the name, i.e. the
record name (eventually qualified by field names), is mentioned in
the WITII statement. The syntax is as [ollows:

WITH <variabie’> DO < statement>;

For example:
WITH RecordMame DO Field! .= X;
This example iz equivalent lo:

RecordName.Field1 := X;

The following is anciher example: .
WITH RecordName.GroupName DO
BEGIN
Field1 :— X;
Field2 := Y;
Fieldd := Z;
END;

This cxample is equivalent, to:

RecordMame.GroupName.Field1 := X;
RecordName.GroupName.Fiald?2 :- Y;
ReceordName.GroupName.Fieldd := Z;

Several WITIH statements ean he nested. Butl since field identifiers
are local to the record in which they are defined, different records
eah have identical field identifiers. In the case of nested WFTHs,
vwnership of like ficld identificrs is determined hy the innermost
WITH statement. This is consistent with the aseal rules of scope.
An example of nested WITH is as follows:

42 Background

WITH Record1 DO
WITH Record2 DO
WITH Recordd DO Fieid1 = X;

DEFT Pascal allows up to cight levels of WITH nesting. Also, the
<variable> in a W/TH statement cannot contain a pointer
dereference or 4 subseripted array.

Rackpground 413

10 Input/Output

Any program is telally useless unless it can, in some way, change
something external to the processor. Input/Quiput stalements
allow a program to reccive vutside slimulus (Input) and provide a
response {(Output).

With DEFT Pascal, the primary input statements are resef, get,
rend, rendin and the builtin functions eof and eoln. The primary
output statements are rewrite, pul, wrile, writeln and elose. These
statements and builtin functions provide a device independent
mechanism for reading data from the keyboard, cassette and disks,
and for wriling data Lo the screen, printer, cassette and digks.

10.1 File Names

The device or file(a portion of the total storage on a cassette or disk)
to heused in aseries of Input/Output operations is identificd with a
File noeme, The format of a [ilename is as lollows:

<filename>/<ext=<<devices

This iz the same format that BASIC uses for Disk TMles, However, by
extending the device numbers, DEFT Pasecal also uses it for the
kevhoard, zereen. tape and printer. The <filename>is 0 to 8 ASCII
characters. The extension is 0 o 3 ASCII characters, The device
numbers range from -3 to 3 with the following meanings:

-3 Keyboard/Screen
-2 Printer
-1 Casselte Tape

0 Disk drive 0

1 Disk drive 1

2 Disk drive 2

3 Disk drive 3

As can be seen, the positive deviee numbers corresponds to BASIC's
drive numbers. The negrative device numbers correspond tn BASIC's
device numbers with the exception that the Keybourd/Screen is -3
rather than 0.

All of the fields are optional in different cireumstances. When a
device number of -3 or -2 is specified, there is no need for a
<filename>> or <lextension’», When a deviee number of -1 i
spoecified, the <extension>s is nal used. Fordevies numberz 0 thr 3,
a default <extension>>is always present depending on the program
being run. When a deviee number i3 not specified, () is assumed.
Following are some examples:

44 Background

-3 Keyboard /Screen

-2 Printer

MYFILE:-2 Printer (filename ignored but allowed)
TAPEFILE:-1 Cassette Tape File

DISKFILE/ASM Assembler source file on disk drive 0
F2NAME:1 File is on disk drive 1, default extension used

10.2 File Variables

Rather than giving the file name in each Tnput/output statement
and function, a file type variadle is used. This file type variable iz
initialized by a reset or rewrite slalement which associates iv with a
file name. Other statcments and functions which subzeguently
reference this variable then canse operations to be performed to the
corresponding device or portion thereol.

A file variable has a windme which ean beread (input)or wrillen Lo
{output) depending on how the file variable was originally initialized
(using the reset or rewrite statements). You access thiz window by
derefarencing the file variahle much like the way a pointer variable
is dereferenced. The provedures and functions deseribed below
provide the ability to move data between this lile window and an
external device or file,

10.3 INPUT and OUTPUT File Variables

T'here are {wo predefined file of char (tex1) variables available with
DEFT Pascal. The variable inputis pre-initialized for access 1o the
kevhoard as though a RESET(INPUT, :-3') statement (see below)
had been executed before your program hegan. The variable outpud
is pre-initialized for access to the sereen us though a REWRITL
(OUTPUT. -3 slatement (see below) had been execuled before
your program began.

The existence of these two pro-defined and pre-initialized variables
provides the following benefits:

1. Youdonot necd to use reset or rewrdle Lo initialize these variables
before using them in rendln, writeln, ete.

2. When using read. readin, eoln and eof you can omit the <file
variable> parameter in the statement and the defanlt file
variable inpud will be used.

"

Background 4]

-

3. When using writeln, write, page and eloze vou can amit the <file
variable>> parameler in the statement and the defaul; file
variahle autput will be used. Note that although it is permissible
to use cfnse with output, it is not necessary.

NOTE: The it and output files are actually the same file which
haz been speeially initialized o allow both input from the kevhoard
and outputto the sereen. For thisreason, it iz recommended thal you
do not. use the reset or rewrile stalements with these files. When vou
wish to do I/O 1o the printer, cassette or disk, sctup a separate file
variable as shown in the general 1/0 examples further on.

10.4 Overall Example

Below isan exampleof a simple program that promptsat the sereen
for a filename to be entered and then reads that file and writes it to
the printer. The filename that is entered can be any of those
described above in the section on File Names.

PROGRAM CopyFile (Input, Oulpul);

VAR InFile, QutFile : Text;
FileName : String;
Data : String (255);

BEGIN
Page; {* clear the screen *)
WRITE {'FILE NAME: ‘};
READLN {FileName);

RESET {(InFile, FileName);
REWRITE (OufFilg, ":-2');

WHILE NOT EQF (InFile) DO BEGIN
READLN (InFile, Data);
WRITELN (OutFile, Data);
END;

CLOSE {(OutFile);
END;

In this example, InFile and OwiFile are file variables and 2-2'is a
string constant which contains a file name. The reset statement
associates the file whose name has been entered ino the string
varighle FileNoawe with the file variable fnf'ile and initializes it for
reading, The rewrite associates the printer (device number -2) with

46 Background

ithe file variable OutF4le and initializes it for writing.

The while loop causcs a check for end of file on Mnf%le BEFORE
reading the first record. The clnse statement at the end, forces any
remaining buffered data to be written. When writing to the printer
or the screen it is not absolutely necessary to do the close, but it is
recommended in caze the program may he changed to cutput to the
dizsk or cassette.

10.5 Lazy Keyhoard Input

Inorderto provide an easy touse interface for the kevboard, DEFT
Pascal incorporates the concept of lazy keyboard wnput. This
involves waiting until & read or readin slalement is executed before
actually performing an inpul from the kevboard.

Standard Pascal requires that the internal buffer be prefilled so
that the eof and ¢oln and file dereferencing operations can be
performed. If this were done for keyboard input, you would have to
enter data into the keyboard immediately after executing any
Pascal program (before your program actually begins execuling
any statements). This weuld make it very difficult for you to
svnchronize your prompis (via wrile and writelp statements) with
the corresponding inputs (via read and readin staterments).

The result of the {azy lreybowrd wnpml is that eof and esln refleet the
status as of the end of the last read or veadln statement. For
example:

WHILE NOT EOF DO BEGIN

WHILE NOT EOLN DO BEGIN
READ (X}
WRITE (X);
END:;

READLN;

WRITELN;

END;

If the first key that you hit is the CLEA R key (toindicate eof and entn
on the keyvboard) the inside loop will still execute onee sinee the
prompt does not appear until the READ (X): statement is being
executed. X will retain whatever value it had belore the read unless
A 15 & char in which ease it will contain & CHR (13).

Background 47

Remember, {azy keyboard input is only used with the kevhoard.
Your ecassette and disk input operations are pre-buffered and
conform to the Pascal standard.

10.6 CLOSE Statement

This statement is required for output files (Initialized via rewrite) to
cagsetie or disk in order to cnsure that al! data has been writlen to
the device and the directory or trailer has been written. It may also
be used for screen and printer files buil has no effect. Once this
statement is executed, the file variable is considered uninitialized
and must be initialized again (with either rewrite or reset) in order
to be used. The format of the statement is:

CLOSE (<file variable>>)

Asmentioned above, if <file variable>> is omitted, the output [ile is
assume.

10.7 EOF Function

This is a4 Boolean function which specifies whether end of file has
been reached on a particular file. This funetion can be used on a file
of any type. Its definition is:

FUNCTION EOF (VAR FileVar : Tex!) : Boolean;

It can also be used as though it had no parameter and the defaull file
input will be assumed. Note that egf can be indicated from the
keyhoard by terminating the last line with the CLEA R key instead
of the KNTHRE key.

10.8 EOLN Funetion

This is 4 bouolean function which speeifies whether an end of line
character is next in the window on a file aof chor. Ts delinilion is:

FUNCTION EOLN (VAR FileVar : Text) : Boolean;

It ean also be used as though it hasno parameter and the defaultfile
rapad will be assumned.

48 Background

10.9 FILEERROR

This is an tnfeger function which returng an indication of whether a
file I/Q error ozeurred on a particular file and what the error waus if
i1 did occur. This function ean be used with a file of any type. Its
definition is:

FUNCTION FILEERROR (VAR FileVar : Text) : Integer

It can also be used as though ithad no parameter and the defanlt file
suput will be assumed. The uleger return is a number from 0 Lo -5.
The pussible error numbers are as follows:

® (), No frror
e -1, ffnd of File - The end of 4 given [ile has been reached.

® -2 [0 Error - This indicates that some hardware oriented
problem cecurred,

® 3. File Not Found - The file specified was not found.

o -4, Hlegal Gperotion - This indicates that you attempted a read
operation on an output file or a write operation on a input file. It
can also oceur if you attempt to do a resef to the printer,

® -0, Device Full - While doing a rewrite or other write operation,
the deviee became fill.

NOTE; eof will return a tiue anytime filegrror would relurn 4
non-zero. Fileerror is a DEFT Pascal extension and is not part of
standard Pascul,

10,10 GET Statement

This statement (implemented as a built-in precedure) is used tn
input data from cassettc or disk via a fife that was previuosly
initialized with the reset proacedure. The format of the statement is;

GET (<tlte variable:>)

The action of this procednre istomove the filc window over the next
clement in the file. The get stutement cannol be used in DEFT
Pascal with a file of chor,

Background 49

10.11 PAGE

This procedureis used to output an ASCI formfeed Lo the specified
file. When a formfeed is output to the screen, the equivalent of
BASIC’s CLEAR is performed. When a formfeed iz outpul to the
printer, it will skip to the top of the nexl page. The format of the
stalement is:

PAGE (<file variabie>)

As mentlioned previously, if <Zfile variable> is omitted, the QUTPUT
file variable i3 assumed.

10.12 PUT Statement

This statement {implemented as « built-in procedure) is used 10
output dala Lo cassette or disk via a file that was previously
initialized with the rewrite procedure. The format of the statement
is:

PUT (file variable>)

The action of this procedure is 1 output the contents of the file
window to the external deviee or file and then empty the window.
The put statement cannal be used in DEFT Paseal with a file of
cher,

10.13 RESET and REWRITE Statements

These statements are used to initialize file 1ype variables for use
with subsequent Input/Output statements and functions. You cun
think of these statements as procedures with the following
definition:

PROCEDURE RESET (VAR FileVar: Text;
VAR Filename : String;
VAR DefExtension : String);

PROCEDURE REWRITE (VAR FileVar : Texi;
VAR Fllename : String;
VAR DefExtension : String);

You will only need to use oneor the other of the two statcments. fleset
initializes the File Var for input from the specified #ilename. When
using resef with a disk or cusselte [ile, a file by the name of Filename
must already exist on that device.

50 Background

Rewriteinitializes the Fiile Var for output to the speeified Falenamie,
When using rewrite for outpul lo disk, if the specified disk already
has a file by the name of Filenaine, it will be deleted. A new file is
Lthen ereated by the name of Filename. Omn eassette, a file is created
by the name of Fileiiame at the current spot on Lhe tape.

The DefFrtension specifies the default filename extension to use if
ane is not included as pard of the #ifename string. This parameter is
optional and if not present the defaull extension is blank.

10.14 READ Statement

This staternent is used to input data from the kevboard, caszette or
disk via a file thal was previously initialized with the resef
procedure. The format of the statement is:

READ (| <file variable>-,j <_variable>-, ... <variable:-}

As mentioned above, if <<file variable:> is omitled. the [ile Gl is
assumed to be referenced.

Reading froma Typed File - When using rend Lo read from a fife of
<fypes> where <fype> is not ehor, the <Zany variable> must be of the
same Lype ag the file, When the read is executed, the size of the
Ztype is used to determine the number of hytes to transfer.
Kszentially, each rend returns the next sequential oecurance of the
<typaerin the fife. For exumple, BEA DF, X)isexactly thesame as:

X=F",

GET (F);

Note that typed files can only be used wilh casselte and disk.

Reading from a FILK OF Char - If the </file variableX» is a file of
ehar then the file is assumed Lo consisl ol 4 setofl feres and the action
of the READ (F,X) statement depends on the type of X, The
following describes the legal fyppes of X and the agseciaied actions of
the reod statement:

1. Char - The next bywe of the line 13 direetly assigned.

2. String - The value of Lhe siring becormes the valne of the
remainder of the line. The line is truncated if necessary Lo [ilin
Lhe siring.

3. Leal - The next group of characters delimited by blanks und/or
end of fire characters is processed by ercodereal and the result iz

Background 3l

stored in the variable.

4. Inieger - The next group of characters delimited by blanks and,/or
end of line characters 1s processed by eneode and the result is
atored in the variable.

5. Beolean - Thesame asinteger exeept that only the numbers 0 (for
FALSE)and 1 (for TRUE) arc legal. You will gct unpredicable
results with other values.

6. Frnunerated - The same ag integer except that only the subset of
numbers (¢ through 255 that apply to the given type are legal.
Other valueg will convert to non-existent members of the type.

Some examples of uze:

READ (IntVar, IntVar2); (* integer from keyboard *}
READ (TapeFile, StringVar); (* string from cassefte *)
READ (DigkFile, CharVar); (* char from disk *)

READ (KeyBoardFile, ColorVar) (* enumerated irom keyboard *)

10.15 READLN Statement

This statement is identical to the read statement when used with
typed files and 1s almost the same when used with a file of char
except that after all the variables are vead, the window is moved
past the next end of line character,

The readln statement ean be used with no <variables>> in order to
position the file window past the next end of line character without
reading a data before that peint.

10.16 WRITE Statement

Thizstatemept is used toontputdata to thesereen, printer, casselie
or disk. The format of the statement is:

WRITE (file variable>~, -_data><width>:<decimal >,...,
<Zdata <Twidth><Jdecimal)
As mentioned above, if <Ifile variablel> is omitted, the file outpnt s
assurmed lo be referenced. The action of thewrite stalement depends
on the type of the <<file variable>,

Writing to a 'V'vped File - 1f the < file variable>: is not a file af char
then the [le is referred Lo us 4 yped file and the action of the wrete
(7, X} statement is exactly the same as:

52 Background

Fri=X
PUT (F);

where the type of the file " must be the same as the type of the
variable X. Essentially, the current value of the variahle X 15
assigned to the next element in the file F. The <width> and
<deeimal> parameters cannot be specified.

Note that typed files can only be used with cassette and disk.

Writing To a File of Char {Text) - If the <file variable>> iz a file of
chur then the action of the wwie (F, X} statement depends on the éype
of X. The following describes the legal types of X and the associated
actions of the write statement:

1.

fdey |

B

Char - The next byte of the file is direclly assigned fram the
contents of the character followed by <width>>-1 blanks. The
<decimal> parameter must not he specified.

. String - The value of the string iz output. If the <widlhZ>» is zeroar

not present, the number of columns reserved will be the size of
the string. If the <<widlh>> is less than the size of the string, only
the first <<width:> characters will be output. If <widlh> is
s¢realer than the size of the string, blanks will be output following
the string. The <decimal> must nol be spevified,

. Runt - The deenderen! procedure ig used wo convert the real to the

string of characters Lo output. The <<width> specifies the size of
the ASCIT reprosentation to output. If the <widih > is lousmall Lo
fit the number, asterisks are output to indicate overflow. The
default value is 6.

The <Zdeeimal:> specifies the number of places to the right of the
decimal point that.should he output. If </dceimal’> is not present
or neguative, scientific notation will be used.

. {ntager - The decode procedureis used to convert the integer to the

string of characters to nutput. The <width>> parameter specifigs
the size of the string to outpul wilth the number right-justified
within the string. If <-width:» isnotspecified it defaults Lo 8. The
<decimal>> parameler must not be specified.

. Boolean - Thesame as integer except thut only the nuwnbera (0 {far

Jalse} and 1 (for f34¢) are be output.

Erumerated - The sume s inleger except that only the subset of
numbers {) through 255 that apply to the given type are outlpul.

Background n3

Some examples of use:

WRITE ({IntVar); {* Integer to screen *})
WRITE (TapeFile, StringVar); {* String to cassette *)
WRITE (DiskFile, Charvarj; {* Char to disk *)
WRITE (PrntrFile, ColorVar); {* Enumerated to printer *) .
WRITE {IntVar:3); {* 3 column putput spec *)
WRITE (' The answers are ,R*3.4:10:2,
"and °,5/4.2::0); {* multiple lems in one *}

WRITE (Printer, “":30, ‘Centered Title');
(* forcing blank padding *)

Since wrile does nol oulput a carriage return al the end (as worideln
does) it is usnally used for prompting and for multiple werites to a
single ling foltowed hy a writeln (see following section).

10.17 WRITELN Statement

This statement is used to perform the same operations as a wife
statement. When used with a fyped file it 1s identical to the wrile
atatement. When uzed with a file of chur (Text) it is almost the same
except that alier all the specified outputs have heen made, a
carriage return fend of line character) is alsooutput. This statement

also allows no <Zdata’ items at all to be specified sa that only the .
carriage return will be output. All the examples shown for weite
also apply for sweriteln. Following are some additions:

WRITELN; (* carriage return to QUTPUT file *)
WRITELN {DiskFlle}); {* carriage return to DiskFile file *})
WRITE (CHR{13)) {* equivalent of WRITELN;)

a4 Bickground

11 Builtin Procedures and Functions

This zection deseribes a number of predelined functions and
procedures that are available with DEFT Iascal. Although
definition statements are shown in each of the dexcriptions, these
are purely forinformational purposes and are not tobe used in your
program.

11.1 ABS

This is an nleyer or real function that returns the abselute value of
the value parameter that is passed to it, The Funelion delinition is:

FUNCTION ABS (Value : Integer) : Integer
or
FUNCTION ABS (Value : Real) : Real

11.2 ARCTAN
This iz a real function which is uzed to compute the size of an angle
whose tangent iz passed to the function. 'T'he size of the angle

returned by the funeiton is in the form of a number of radians. The
funetion definition is;

FUNCTION ARCTAN (Tangent : Real) : Real

11.3 CHR

This is a character function that retnrns the ASCTI character for Lthe
binary value specified in the passed value parameter. The function
delinition is;

FUNCTION CHR (Value : Integer) : Char

Thiz funetion allows you Lo brewk Lype Trom integoer Lo char, See
Advanced Paseal for a more general and structuraed type breaking
language extension,

11.4 COS

This 1s a real funetion which is used tn compute the cozine of an
angle. The size of the angle [s passed (o the funetion in the form ol a
number of radians. The function definition is:

FUNCTION COS (Radians : Real} : Real

b |
ph |

Background

11.5 CURSOR

This iz a builtin procedure that allows vou to position the cursor to
anv of 512 positions on the sereen. The upper lell-hand corner is
position (. Consceutive positions proceed horizontally aeross the
sereen with the beginning of each line being a multiple of 32. The
lower right-hand corner is pasilion 511, The proceduredelinition is:

PROCEDURE CURSOR (Position : Integer)

Mote that postlion is taken modole 512 when used.

11.6 EXF

This is a rea! function which is used to compute the value of ¢
(2.718281828) to a specific power. The function definition is:

FUNCTION EXP {(Power : Real) : Real

11.7 LN

This is a rew! function which is used to compute the natural
logarithm of a positive number. The funetion definition 1s:

FUNCTION LN (Number : Real) : Real
11.8 MARK

This is a general procedure which is used Lo mark the current state
of the heap for use laler by the relense procedure. The procedure
defimtion is:

PROCEDURE MARK (VAR PtrVar : Pir)

where Ptr Var ean be a potnter to any fype. Any variables allocated
by the new procedure after saving the Aeap state in PrVar will be
deallovaled when relense is later called using the zaved Ptiwar.

11.9 MEMAVAIL

This is an énteger funetion which is used o determine the numhber of
hytes of memory remaining in the keap, The memaroil function isa
DNEFT Pascal extensinn and is not a part of standard Pascal. The
funection declaration is as follows:

FUNCTION MEMAVAIL : Integer,

56 Backgrouni

For example:

WHILE MEMAVAIL >= SIZEOF (Struct) DO
BEGIN
NEW (Struci =Pir);
NumCopy = SUCC (NumCopy);
END;

This example isusing the value of memaveil to determine how many
copies of a data structure can be dynamically allocated. NOTE: I

the heap available is greater than 32767 bytes, then memavail will
return 32767,

11.10 NEW

This is a general procedure which is used to dypamically allocatea
variable from the henp and assign its reference to a pownier typr
wariable. The type of variable alloeated 1s dependent on the type of
the pointer. The procedure definition is:

PROCEDURE NEW (VAR PtrVar : Pir)

where PtrVar can be g pornfer to any type.

11.11 ODD

This is a boolean function that returns a frue if the integer value thal
is passed is anodd number (notevenly divisible by 2) or a fafseif the
value is even, The Tunction definition is:

FUNCTION ODD (Value : Intager) : Boolean

11.12 ORD

This i% a general integer function thal can take any ordinal type
expression and convertit to an integer. The internal binary value of
the speeified type is treated as though it were an integer. The
function definition is:

FUNCTION ORD (Value : OrdinaiType) : Integer

where Valug can be any type of ordinal expression. Sce Advanced
Pascal for o more general and structured type breaking language
exicngion.

Background 57

11.13 PRED

This is a general ordinal function that returns the nex(lower ordinal
value of the same type as its argument. For integers, it is the
equivalent of subtracting 1 from the number. For chars, it is the
ASCII character with the nextlower binary value. For booleans, it
is only legal when the argument is frue rcturning false. For
emaneruted types, itisthe next preceding enumerated valae. Using
our ealor type example:

ColorVar = Green;
ColorVar = PRED (ColorYar)

Cotor Vur 1s now Red.

11.14 RELEASE

This i a general procedure which is used to deallocale variables
from the heap which were orginally allocaled via the 5o procedure.
The procedure definition is:

PROCEDURE RELEASE (PtrVar : Ptr)

where PlrVur can be a pointer to any fype. Any variables allocated
by the new procedure after saving the heap stule in PtrVar (via the
muark procediure) will be deallocated when release is later called
using the suved Prr Var.

11.15 ROUND

This is an integer function which is used to round a reud value 1o the
nearest tifeger value. The funetion definition is:

FUNCTION ROUND (VAR Value : Real) : Integer

11.16 SIN

This is a real funetion which is used to compute the sine of an angle.
The size of the angle is passed to the function in the form of number
of radians. The funetion delinition is:

FUNCTION 5IN {Radians : Real) ; Raal

ok Rackground

11.17 SIZEOF

This is a generud integer function which is used to compute Lhe size
(in bytez) of a variable or type. The function definition is:

FUNCTION SIZEQF (GenVar : AnyType} : Inleger
NOTE: Sizeof is 2 DEFT Pascal extension and is not part of
standard Pascal.

11.18 SQR

Thiz is a real function which is used to compute the square of a
number, The function definition is:

FUNCTION SQR (Number : Real) : Real

11.19 SQRT

This is 4 real function which 13 used to compute the squareroot of a
pumber, The function definition is:

FUNCTION SQRT {Number : Real) : Real
11.20 SUCC

This is a gereral ordinal function that returng the next higher
ordinal value of the same type as its argument. For integers, itiathe
equivalent of adding 1 from the number. For chars, it is the ASCII
characler with the nexthigherbinary value. Forboofenns, itisonly
legal when the argument is false returning true. For enwmeraded
fypes, it i8 the next surceeding enumerated valuc. Using our color
type example;

ColarVar := Red;
CoalarVar := SUCC (ColorVar)

ColorVar is now Grreen.,

11.21 TRUNC

This is an tnteger function which is used to truncatea renl value to its
integer valne. The funetion definition is:

FUNCTION TRUNC (VAR Value : Real} : Integer

Background 59

12 DEFT vs. Standard Pascal

DEFT Pascal conforms closely to the ISO Dralt Proposal for
standard Pasecal. Thefollowing list identifics the major areas where
DEFT Pascal differs from the standard. In many of these areas,
DEFT Paseal differs because it has features similar two those in
UCSD Paseal.

6i)

Program parameters are allowed bul ignored. The predefined
files INDPUT and OUTIPUT are always defined and opened.

Heap management is via MARK and RELEASE rather than
DISPOSE,

SiLrings are variable length and implemented via the predefined
type STRING (n) rather than being fixed length and implemented
as PACKED ARRAY[1..n] OF CITIAR.

GOTOs may only reference LABK s within the current bloek.

Lazy Keyboard Inpul is implemented in orderto allow interactive
10,

RESET and REWRITE require a second parameter and may
optionally take a third parameter for specifving external
filenames and default extensions.

Procedural parameters are not supported. A procedural
parameter is a parameler which is itself a procedure.

PACK and UNPACK statemeénts are not supported. However,
since DEFT Pascal does not have the standard restrictions on
theuse of PACKed variables, the rajor reason for the use of these
statements 13 non-cxistent.

GET and PUT cannot be used with TEX'T files.

The <record variables> in the WITH statement cannot inelude a
subscripted array or pointer dereferencc.

Conformanl arrays are nol supported. However, extensions to
ARRAY typing provide a facility for passing actual parameters
of varying nambers of elermncnts to an individual procedure,

Background

In additivn, DEFT Paseal provides a number of minor and major
erthancements. The minor enhancements are as follows:

The bitwise integer operators XOR, LSL, L3R, AN D and OR are
supported.

. ® Hguality compaﬁ sons between like structured types is allowed.
e [/0 of snumerated types to and from TEXT files is altowed.

® AnEXITstatement for prematurely returning from a procedure
or function.

e FILEERROR and SIZEQF builtin functions and CURSOR
builtin procedure.

A complete definition of all the major enhancements is contained in
the zection on Adnunced Paseal Language Retensions.

Rackground 61

13 Error Messsages

The DEFT Pascal compiler generateserror messages in the source
listing at those points where it detects either synlax errors or
encounters /0 errors while processing a source filo, The compiler
prinls aline of dashes followed by an up arrow and the message. The
arrow indicates where the error was detected which 13 not necessarily
where it vceurred. There are a number of different error messages
which are listed helow:

COPY NESTING TOO DEEP

A %C ecompiler control hag been found in a source file at the
maximum copy depth. Sce How To for information on the %C
cormpiler contral,

DUPLICATE SYMBOL

The constant, type, variable, procedure or funetion name being
defined has already been used at the current block level 1o define
annther canstant, type variable, procedure or function.,

EXPECTING ...

This message will have varicus words or symhbols following it
depending on what the compiler was expecting to find next in the
gonree Tile. This token was not found at this point.

EXPR TYPE ERROR

This message indicales that the expression type expected al this
point was not what was encountered. You may have o use a type
transfer funetion (see Advunced Pasend) to let the compiler know
thal you want o use a different type.

FILE OPEN ERROR
The souree file apecified on the DEFT Pascal Compiler’s screen,

the PASCALIB/EXT:0 file or a [ile specified in a %L compiler
control resulted in an error when an open wag attempted.

INVALID CONSTANT

At g point in the program where a constant was expected, a legal
constant was not found.

62 Background

INVALID FACTOR

While processing an expression,an invalid factor was encountered.

INVALID IDENTIFIER

At g point in the program where an identifier was expected., a legal
identifier was not found.

INVALID ORDINAL TYPE

Anerror was detected at this point while processing an ordinal type.

INVALID SIGNED TERM

A signed term was encounlered while processing an expression that
was not of type integer or real.

INVALID STATEMENT

An unknown type of statement was encountered at this point in the
program.

INVALID TYPE DECLARATION

An error was encounteraed while processing a type declaration.

INVALID TYI'E IDENTIFIER

At a point in the program where a lype identifier was expecled, a
legal type identifier was not found.

INVALID VARIABLE REFERENCE

Alapoint in the program wherca variable identifier was expected,
a legal variable identiflier was not found.

ILABEL ERROR

An illegal label decluralion was enconntered, or a label was
incorvectly specified.

Background 63

OBJ I/O ERROR

An IO error was encountered while Lrying to open or write to the
object file,

OUT OF RANGE

The explicit upper bound specified with an array type identificr
was outside of the range of the original array declaration. See
Advanced Pascel [or more information,

SKIPPING TO;

Due to a previous error, the compiler has begun skipping source
cocdde until a semicolon is encountered, This message may also
indicate that 4 semicolon is expected at this peint in the program,

SOURCE I/0 ERROR

An I/O error was encountered while trying to read the current
source Tile.

STRING CONSTANT TOO BIG

This error usually results from an unmatched quote. The maximum
length of string constants is 128 bytes. The first quote is 128 bytes
before the point of the errvor.

SYMBOL TABLE FULL

The number of symbols known al this point in {he program has
completely filled the available symbol table space. You must
restructure your program to reduce the number of known symhols
at this pointinorder to el itlo compile within Lthe currenl. memory
constraints.

SYNTAX ERROR

This is a cateh-all error for any syntax error not explicitly covered
with another error meszage,

64 Background

UNDEFINED SYMBOL

A reference is being made to a svmbol which has not been previously
defined.

UNEXPECTED END

An END statement was encountered when it was not expected.

UNEXPECTED EOF

End of file on the main source [ile was reached belore the end of the
program was reached. This may be caused by a mis-matehed
BEGIN-ENID, unmatched (* or an unmatehed quole (),

** UNDEFINED **

Thiz message appears in the symbol table Bating. A procedure was
declared as forword but was never eventually defined, a pointer
definition referenced a type identifier which was never defined ora
lubel was declared but never delined.

WITH ERROR

[Kither the compiler's maximum WITH nesting level (8) was
excerded or the<Crecord variable> partion of thestatement waz nol
4 record variable or was an element of an grray or the result of a
pointer dereference.

foiog |

Background b

ﬁmzm...m_

DEFT Macro/6809 Assembly Language

TIntroduction i it e 1
2 Language Syntaxo e e 2
2IlLine Format ...ty g
22 Identifiers oot e e e 2
2.8 Loration Counter oo evin i iiancrmr e 3
A CONBLANTS .ttt e e e e i 3
25 B RDTeSSIONE L. ottt e e 4
LIS L R] 11 < S 4
2T RegIsters .. e .4
28 Addressing Modes ... h
3 6809 Instruction Summaryo ittt 7
4 General DHrectives e 16
O T) 5O 18
4 BN e e 1h
T T) 1 PP RU 16
L O] 5 16
A OB o e e e 17
A DB o e e e 17
AT MAIN e e 17
AR RMEB . e 17
4.9 SE T D .o e 13
B M ACTO8 oottt et 19
51 General Dperationo 19
6.2 Macro Definitiont i 19
BAMacro Invocalion ... vverr o e et iia s 20
B Linkage Directiveso it ions 23
Bl PUBLIC ..o e et e 24
B2 KX T and KX TA ... i e e e 24
B.3 ST ACK .. e 24
7 Listing Controel Directives ... it 25
0 0 o) 25
= 1 13 PP 25
TANOLTRT o et e e 25
0) 7 A 25
Th NOMELET e e e e e 25
THESKIP Lot 26
a1 N N) 26
I 1) 6 0 D 26

~

BHError Messages ittt e 27

1 Introduction

DEFT Macro/6809 is a program which reads assembly language
souree code and produces ohieet code suitable for linking by DEFT
Linker. This assemnbler fealures the following facilities:

e Motorola capatible source conventions and direetives

¢ Builtin maero [acility provides for substitution of up to 9
parameters

e (Copy facility provides the ability to include several source filesin
a single assemhly (very vonvenient for cuommon equate and
macre definition files)

® (Object code format provides relocation, separale assembly and
easy interfacing to Pascal via DEFT Linker

This seclion describes the DEFT Macro/6803 assembly language.

Readers are expected to already be familiar with the 6309 instruction
set, registers and addressing modes.

Background 1

A
=
]
j—
L
9
=
I

2 Language Syntax

The syntax used in the DEFT Macro/6809 is generally compatible
with those found in other assemblers for the 6309,

2.1 Line Format

Assembly language source code is interpreted as a series of lines
read from the source file (or copy files). Each line is made up of up to
4 fields. These [ields are separated from each other with 1 or more

blanks.

1. The {abel field is an oplional [ield which, when present, contains
anidentifier thatis to be defined {sce below). Thisfield is present
when the first character in a line is non-blank.

2. The apeode field is a required field which begins with the first
non-blank character following the first hlank character in the
line. It conlains either a 6809 opcode, directive or macro and is
used to control how the other fields in the line arc used.

3. The operandfield is the next field after the OPCODE field. Ttisa
required field for same opcodes and is not present for others.
Most of the discussion of language syntax deseribes the way that
this field is used. Nole thal this [ield may contain blanks in some
circumstances (scc below).

4. The comment field iz the lasi field in the line and consists of the
remainder of the line following the operand field {or opeode field
if the operand field is not present).

Note that in the listing produced by the assembler, these fields are
uutomatically lined up on predetermined column boundaries. The
use of the label, epcode and nperand fields ismore fully explained in
the fnilowing secitons.

2.2 Identifiers

An identifier is a name used 1o represent either an absolute or
relative value, Itisaset ofupto 12 letters and numbers which must
begin with a letter. Lower case letters are aceepted and printed as
such on the listing even though they are kept internally as upper
case letters,

An identifier is defined when used in the {abel Mield in exaclly 1
source line. The vpcode field of that source line will determine what
value is assigned to the identifier. This identifier can be used in the
operand ficld of a souree line where the identifier's value will be

2 Baekground

used. In general, an identifier can be used as an operand even in
source lines preceding the one in which it is defined. For all opcodes
except EXT, EXTA and EQU he identifier acquires the value of
the locution counter (see below) at the point in the program where
the identifier is defined.

An identifier which is defined in this manner has a refatize value.
This value is one which will be refeeated by DEFT Linker into an
absolute value when the final binary file is created. The eventual
value of a relative identifier is determined by adding the location in
memory where the object code is located to the relative value
determined by the assembler.

An identifer may be defined with an absolute value by using an
EQU opcode and an absolute expression in the operand field. See
Eaxpression and QU for more information.

2.3 Location Counter

The Loecation Counter is a 16 bit value which is kept by the
assembler thal represents the number of bytes of objecl code
produced so far. You can think of it as a relative memory address
(relative (o the beginning of the program). This value always starts
at zero and increases in value as each source linc is processed. The
value of the location counter is printed at the left-hand side of the
page for each line of source code printed.

The location counter is represented in the pwerand field via the
symhol *.

2.4 Constants

A vonstunl is always an absolute 16 bit value that is represented in
some specific way. The following constants are supported by DEFT
Macro/6509:

1. Decisnul constants are numbers in the range [rom -32768 to
+32767. Base 10 is the defanlt base.

2, Hezadeetmal constants numbers in the range [rom §0 to §FFFF.
A hexadecimal constant is identified with a leading dollar sign
(%).

3. A Single ASCI{ character constant is an ASCIE character
preceded with a single quote (). The value of the resulling
constant is the binary value of the ASCH character. Example: ‘A

Background 3

e
-
x
=
=
p—
L
i
-
=
-

i

2.

Double ASCII charucter constants are two ASCII characters
preceded with a double quote (“}). The value of the resulting
constant is the binary value of the first character in the high 8
hits and the value of the sccond character in the low 8 bits.
Example: “AB

5 Expressions

Identifiers and constunts can be combined into expressions with the
use of the arithmetic operators plus (+), minus (-), multiply (*) and
divide (/). Fixpreszien evaluation is strietly left to right with ne
operator precedence. There are some restrictions on the ereation of
expressions:

Relative values can not be multiplied or divided.

You ecan add or subtractan absolute from a relative. This results
in arelalive value.

You can subtraet a relative from a relative. This results in an
absolute value,

You cannot subtract a relative from an absolute.

You cannot add a relative to a relative.

2.6 Strings

A string is a set of 1 or more ASCII characters delimited by slashes
i/} or double quotes (“). The opeades fer, fitle and stitle are the only
ones that use strings [or operands, Sbrings cunnol be combined into
eXDressions,

2.7 Registers
The 6809 registers arc named as follows:

A - high order 8 bits of the general accumulator
B -low order 8 bits of the general accumulator
CC - 8 bil condition code register

L - 16 bit general accumulator

[IF - 8 bil direct pape register

Background

e PCor PCR - 16 bit program counter. Both designations resultin
equivalent code.

¢ 5 - 16 bit system stack register
7 - 16 bit user stack register

¢ X - .16 bit index register

#® Y - 16 bit index regizier

2.8 Addressing Mades

There are a number of addressing modes which may be used with
the 6809 instruction opeodes. These are used in the operand field
and are as follows:

® Inherent - this addressing mode has no operand field. The given
opcode hag all the addressing information necessary to complete
the instruction.

& Immediate - this addressing mode is designaled with a leading
&. The expression following the # is the object of the instruction.

® Direet - thiz addressing mode is determined by DEFT
Maero/6809 when the operand expression is absolute and its
high 8 bits are equal to the value in the most recent SE7TF

& Extended -this addressing mode is determined by the assembler
when the operand expression is either relative, or its absolute
and the high 8 bits are not equal to the value in the most recent
sebely inslruction.

e Relative - this addressing modeis determined by theopeode and
raquires a relative expressinn.

¢ Indexed - thisaddressing modeis determined when the operand
18 of one of the following forms:

Zero Offset sreg>

Constant Offset < absolute expressian>,<reg:-
Accumulalor Offset < accumulator>:,<rag>>

Auto Increment <Lreg++

Auto Decrement —reg

Program counter relative <relative expression>>,PCR
< relative expression_>,PC
Indirect [<indexed mode -]

Background D

® Register-Register - this addressing mode is determined by the
opcode and requires the following form: <reg>><reg>

¢ Mulii-Register - this addressing mode is determined by the
opeode and requires the following lorm: <reg>,... <regl> .

gueusy

6 Background

3 6809 Instruction Summary

The following summary lists the 6809 instruction opeodes supperted
by the DEF'I' Macreo/6809 Assembler. The first column is the
assembler opeode. The second column contains the addressing
modes availahle for this opeode. The third column is the title of the
instruction.

ABX Inherent AddBto X

ADCA Immediate Add Memory with Carry 10 A
Direci
Indexed
Extended

ADCB Immediate Add Memory with Carry to B
Direct
indexed
Extended

ADDA Immediate Add Memory to A
Direct
Indexed
Extended

ADDB Immediate Add Memory to B
Direcl
Indexed
Extended

ADDD Immediate Add Memoryto D
Direct
Iindexed
Extended

ANDA Immediate AND Memory to A
Direct
indexed
Extended

ANDB Immediate AND Memory to B
Direct
Indexed
Extended

ANDCC Immediate AND Memaory to CC

ASL Direct Arithmetic Shift Left Memory
Indexed

Backpround 7

LI
e
'
-
=
=
fasl
Ly
L
&
=
7=

ASLA
ASLB
ASR

ASRA
ASRB
BCC
BCS
BEQ
BGE
BGT
BHI
BHS
BITA

BITB

BLE
BLO
BLS
BLT
BMI

BNE

BPL
BRA

Extended
Inherent
Inherent

Direci
Indexed
Extended

Inherent
Inherent
Relative
Relative
Relative
Relative
Relative
Relative
Relative

Immediate
Direct
Indexad
Exiended

Immediate
Diract
Indexed
Extended

Relative
Relative
Ralative
Reiative
Relative
Relative
Relative
Relative

Arithmetic Shift Left A
Arithmelic Shift Left B
Arithmetic Shift Righ! Memory

Arithmetic Shill Right A
Arithmetic Shift Right B

Branch on Carry Clear

Branch on Carry Set

Branch on Equal

Branch on Greater Than or Equal
Branch on Greater Than

Branch on Higher

Branch on Higher or Same

Bit Test Memary with A

Bit Test Memory with B

Branch on Less Than or Equal
Branch on Lower

Branch on Lower or Same
Branch on Less Than

Branch on Minus

Branch on Not Equal

8ranch on Plus

Branch Always

Background

BRN
BSR
BVC
BvS
CLR

CLRA
CLRB
CMPA

CMPB

CMPD

CMPS

CMPU

CMPX

CMPY

Relative
Relatlve
Relative
Relative

Direct
Indexed
Extended

Inherent
Inharent

Immediate
Direct
Indexed
Exiended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexad
Extended

Immediate

‘Direct

Branch Never

Branch to Subroutine
Branch on Qveriflow Clear
Branch on Overflow Set

Clear Memaory

Clear A
Clear B

Compare Memory from A

Compare Memory from B

Compare Memory from D

Compare Memory frem S

Compare Memory from U

Compare Memory from X

Compare Memory from Y

Background

Indexed
Extended

COM Direct Complement Memeory
indexed
Extended

COMA Inherent Complement A

COMB Inherent Complement B

CWAI immediate Mask CC and Wait for Interrupi
DAA inherent Decimal Adjust A

DEC Direct Decrement Memory
indexad
Extended

DECA Inherent Decrement A
DECE Inherent Decrement 8

EORA Immediate Exclusive Or Memory with A
Direct

Indexed

Extended .
EQRE Immedlate Exclusive Or Memory with B

Direct

Indexed
Extended

EXG Reg-Reg Exhange Registers

INC Direct increment Memory
Indexed
Extended

INCA Inherent Increment A
INCB Inherent Increment B

JMP Direct Jump
Indexed
Extended

JSR Direct Jump to Subroutine
Indexed
Extended

N
h
1=

10 Background

LBCC
LBCS
LBEQ

@ .
LBGT
LBHI
LBHS
LBLE
LBLO
LBLS
LBLT
LeMI
LBNE
LBPL

@ e
LBRN
LBSR
LBVC
LBVS
LDA

LDE

Relative
Relative
Relative
Relative
Reiatlve
Relative
Relalive
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative
Relative

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct

Indexed

Exiended

Long Branch on Carry Clear

Long Branch on Carry Set

Long Branch on Equal

Long Branch on Greater Than or Equal
Leng Branch on Greater Than

Long Branch on Higher

Long Branch on Higher or Same
Long Branch on Less Than or Equal
Long Branch on Lower

Long Branch on Lower or Same
Long. Branch on Less Than

Long Branch on Minus

Long Branch an Not Equal

Long Branch on Plus

Long Branch Always

Long Branch Never

Long Branch to Subroutine

Long Branch on Overllow Clear
Long Branch on Overflow Set

L.oad Memory into A

Load Memory intc B

Load Memory into D

Background 11

LDS

LDU

LDX

LDY

LEAS
LEAU
LEAX
LEAY
LSL

LSLA
LSLB
LSA

LSRA
LSRB
MUL
NEG

12

Immediate
Direct
indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Iimmediate
Direct
Indexed
Extended

Indexed
indexed
Indexed
Indexed

Direct
Indexed
Extended

Inherent
Inherent

Direct
Indexed
Extended

Inherent
Inherent
Inherent

Direct
Indexed
Extended

Lead Memory into §

Load Memory into U
Laad Memory intg X
Load Memory into Y

Load S with Effective Address

Load U with Effective Address

Load X with Effective Address .
Load Y with Effiective Address

Logical Shift Left Memory

Logical Shiift Left A
Logical Shift Left B
Loglcal Shifl Right Memoty

Logical Shift Right A
Logical Shift Right B

Muitiply .

Negale Memory

Background

NEGA
NEGB
NOP

. ORA

ORB

ORCC
PSHS
PSHU
PULS
PULU

@ -

ROLA
ROLB
ROR

RORA
RORB
RTI

S

RT:
. SBCA

Inherent
Inherent
Inherent

Immediate
Direct
Indexed
Extended

Immediate
Direcl
Indexed
Extended

immediale
Multi-Reg
Multi-Reg
Multi-Reg
Multi-Reg

Direct
Indexed
Extended

Inherem
Inherent

Direct
Indexed
Extended

Inherent
Inherent
Inherent
Inherent

Immediate
Direct
Indexed

"Extended

Negate A
Negate B
Mo Operation

Inclusive Or Memary with A

Inclusive Or Memory with B

Inclusive Or Memory with CC
Push Registers on System Stack
Push Registers on User Stack
Puli Registers from System Stack
Pull Registers from User Stack
Rotate Left Memory

Rotate Left A
Rotaie Left B
Rotate Right Memory

Rotate Right A

Rotate Right B

Return from Interrupi
Return from Subroufine

Subtract Memory with Barrow from A

Background 13

sy

SBCB

SEX
STA

5TB

STD

STS

STU

STX

STY

SUBA

14

immediate
Direct
Indexed
Extended

Inherent

Immediate
Direci
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Inclexed
Extended

Immediate
Direct
Indexed
Extended

Immaediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Immediate
Direct
Indexed
Extended

Subtract Memory with Borrow from B

Sign Extend B inta A

Store Memory from A

Store Memory from B

Store Memory from D

Store Memory from S

Store Memory fram U

Store Memotry from X

Store Memory from ¥

Subtract Memory from A

Rackground

sUBB

SuBD

Swi
swi2
SWI3
SYNC
TFR
TST

TSTA
TSTB

Immediate Subtract Memaory from B

Direct
Indexed
Extended

Immediale
Direci
Indexed
Extended

inherent
Inherent
Inherent
inherent
Reg-Reg

Direct
Indexed
Extended

Inherent

Inherent

Subtract Memory from D

Software Interrupt 1
Software Interrupt 2
Software Interrupt 3
Synchronize to Interrupt
Transfer Register o Register

Test Memory

Test A
Test B

Background 15

4 General Directives

In addition o the opeodes listed in the preceding section, which
translate directly into 6209 opeodes, DEFT Macro/680Y contains a
nurmber of directives which provide memory initializalion,
reservation and assembly conlrol,

4.1 COPY

This direective allows you to copy source lines from another file into
the current assembly. The standard file name found in the operand
field is openned {with a delault sullix of ASM) and read to end of
file, In the current vergion of the assembler, files that have been
capied cannot themgelves eontain COPY directives. Fxample;

COPY RECRDEGU:1
COPY MYMACROS

4.2 END

Thiz directive iz provided in order to allow the programmer Lo
terminate his program with an KNI, The KNI directive has no
OPERAND and does not result in code generation. The assembler
will conlinue processing any source lines following an END. The
assembler does not require aprogramtohave an END since zouree
lines are fetehed until end of file is reached. Kxample:

END
4.3 EQU

This directive provides the capability of defining an identifier to
have a specifie value. The identifier found in the label ficld is
assigned the value of the expression fuund in the vperund [eld.
Example:

LABEL1 EQU $50

LABEL2 EQU LABEL1*3

LABEL3 EQU *-EARLIERLABEL
4.4 FCC

This direetive creates an ASCII string of characters. The operand
field conlaing the ASCII siring to be created enclosed in either
slashes {/) or double quates (“). Example;

16 Background

NAME FCC /John Q. Smith/
NAME?2 FCC “Mary Jones/MD"”

4.5 FCB

This directive creates individual bytes with the values of the
expressioniz) found inthe operand field. More than one byte may he
defined by separating the expressions with commas (,). Kxample:

BYTES FCB 6,5F,LABEL1A
FCB *-BYTES

4.6 FDB

This directive ercates individual words with the values of the
expression(s) found in the operand ficld (high bitg in low order hyte).
More than one word may be defined by separating the expressions
with commas (). Example:

WORDS FDB 56
FDB WORDS+3

4.7 MAIN

This directive tells the DEFT Maecro/6809 (and subgequently
DEFT Linker) where execution should hagin. Only one main
dircetive should be included in a set of modules to be linked
together. Main has no operand, so execution will be at the value of
the location counter. Kxample:

MAIN
START

4.8 RMB

This direclive reserves memory which is preinitialized to zero. The
absolute expression found in the operund field specifies thenumber
of bytes of memory to reserve, Example:

WRKAREA RMB $200

Background L7

fguwrsy

4.9 SETDP

This direetive specifies to the assembler what page number should
constitute the direct page, Thiz direclive should generally follow u
TFR instruection that loads the DP register with a new value. The
expression (evaluated at assembly timme) in the pperand field is used
as the new direct page number. I no setdp directive is given, page
number 0 iz agsumed 1o be the direct page. Fxample:

LDA #DATATABLE/256 A=Page Number
TFR A,DP Putin DP
SETDP #DATATABLE/256 Tell assembler

Note that the above example works only if HATATARBLE is an
ahsolute.

18 Background

b Macros

When writing a program in assembly language, you frequently
encounter situations where a group of ingtructions i repeated
throughout your program with only minor variations. Subroutine
calls which require parameters to be setup are a typical example. In
this case, enly the arguments are different. What isneeded is a way
to define a template of instructions which could then be invoked at
those points in the program where they are needed. Macros are
exactly these templates,

5.1 General Operation

Before a macro can be used it must first be defined. This definition
must be processed by the assembler on source lines that are read
before the source lines on which the macro iz used. This definition
includes the name of the macro, a body which includes the fixed
elements as well as where parameters are to be substituted and
finally an ending which tells the assembler that the definition is
conmiplete,

Once the definilion is completed the macro may be used. The rame
of the macro used in the opeode [ield of a subsequent source line is
what actually invokes the maero, The substitution parameters are
placed in the operand field separated with commas. The previous
macro definition now is included at this point in the program very
much like a eopy. The main difference is that the parameters
included on the invocation line are substituted throughout the
source lines as defined in the template. These lines are then
aszembled and optionally listed.

5.2 Macro Definition

A maery is defined with a MACRO directive. The operand field
must contain a maero name of up to 6 characters. Note that the
assembler can distinguish between an identifier und 4 macro with
the same name. However, the assembler cannot distinguish belween
amacro and a predefined assemhler opeode or directiveof the same
name. Following the MACRO direclive is a number of souree lines
that constitute the template. The definition ends with an KNDMW
directive which has no operand field. Up to 80 maeros may be
defined whose templates use no more than a total of 1.5K bytes of
TTIE[T'IUI"}’.

Substitution parameters are indicated in the template lines with the
pereent sign {%) followed by single digit number (0 through 9). Upto

Background 19

9 parameters numbered from 1 to 9 can be used. The zeroth
parameter is a macro expansion count which is automatically kept
by the assembler. Use of this parameter can guarantee a uniyue
value for each expansion of the macro. This is useful when including
LABEL fields in the template. Example:

MACRO PASFUN

LDD STATICBASE,FCR

LEAY %1,PCR

LEAX %2,PCR

PSHS UY XD

LBSR PASFUN

LEAS 6.5

LDD S+t

BEQ FPASFUN%0

ADDD #0%3
PASFUN%0 EQU *

ENDM

The above example generates a postion-independent call sequcnee
to a Pascal function, The funcilion requires lwo parameters whose
addresses are loaded into the Y and X registers respectively. The D
register is always loaded with a given base value. The PSHS sets up
the stack with the U] register push used only to reserve space for the
value returned by the function.

On return, the macro cleans up the stack aund gels the returned
valuc in the Dregister vig a LDD rather than a PULS in order toset
the CC register. A check then follows which adds a third maero
parameter o the result if 4 nun-zero was relurned by the funetion.
Note that the third macro parameter is optional in that if il is not
present, a zero is added to the result. This macro also makes use of
the macro expansion counter to ereate an ientifer for the macro's
QW use.

KNuole that the macroe definition itself does not result in any code
generation. Neither does the assembler try (o parse the lemplate so
assembly crrors may occur when the maero is invoked.

5.3 Macro Invoecation

A macero is invoked by using ite name in the opeode ficld of a source
line that follows the definition, Up 10 9 parameters may be ineluded
in the vperand ficld scparated with commas. Not all paramelers
need he included in a given invocation. All parameters following the

20 Background

last one specified, as well as those that are explicitly not included via
placcholder commas, are assigned a null valuc.

The previous macro defintion is then included at this point in the
program. The parameters included (or not included as the case may
be)on the invacation line are substituted throughaout thesource lines
a3 defined in the templaie. These lines are then assembled and
optionally listed.

An example Invoeation of the macro defined ahove follows:
PASFUN STRING,COUNT,7

+ LDD STATICBASE,PCR
+ LEAY STRING,PCR

+ LEAX COUNT,PCR

+ PSHS U,Y.X,D

+ LBSR PASFUN

+ LEAS 6,5

+ LDD S+

+ BEQ PASFUN1

+ ADDD #07

+PASFUN1 EQU *

In the above example, the three arguments are substituted where
Lhe %1, %2 and %3 are found in the templale. The macro expansion
eount is 1 and is substituted where %0 is found in the template. The
following cxample shows a second invocation of the same macero:

PASFUN STRING1,COUNT+2

+ LbD STATICBASE,PCR
+ LEAY STRING1,PCR

+ LEAX COUNT+2,PCR

+ PSHS U,Y.X.D

+ LBSR PASFUN

+ LEAS &S

+ iLDD vt

+ BEQ PASFUN2

+ ADDD #0

+PASFUN2 EQU *

Notice that the third parameter was not included on the invoceation
line. Since the macro was constructed wilth 4 leading zero before the
%3 in the ADDD line, its presence is not required for an errvor-free
assembly, In addition, %0 was substituted with a 2 instead of a 1
providing a unigue label Tor both macre expansions. Note that in

Backpground 21

this macro a unique label is not absotutely required since the length
of the branch is always the same and could be indicated by *+5,

22 Background

6 Linkage Directives

DEFT Macro/6809 provides directives that allow the object code
produced by one assembly to be combined with thai of others. The
primary uses of this separate assembly facility are:

& A very large program can be divided into managable pieces
which are then individually coded and assembled.

e A frequently used routine or set of routines can he written and
lested onee. Any programs thatsubsequently need these routines
can merely reference them and then include them with the
DEFT Linker.

e Assembly language programs can be casily combined with
PASCAL programs,

When talking about separate assembly the term module is used to
refer to the code that is zssembled wia one exeeution of the
assernbler. Linking these modules together is accomplished by
declaring 4 given identifier as public in the module in which it is
defincd. Other modules which wish to use the routine or data area
defined with this identifier declare it as external. DEFT Linker
then inserts the correct absolute address or of fset into the code when
{he final hinary imagoe is created.

6.1 PUBLIC

The public directive is used to declare an identifier us public. The
identifier must be defined elsewhere in the same module. The
pperand field contains the identifier that iz to be declared public.
Example:

PUBLIC MYSUER

MYSUBR PSHS Y, X,D Save Registers

As with any vther reference to an identifer, a public direclive can
come either before or after the identifier is defined. Note that an
identifier which is defined as ext or exta cannul be given the publie
attribute.

Hackground 23

6.2 EXT and EXTA

The exf and exin directives are used to deline an identifier and to
declare it as exfernal to this module. Ext defincs a relative
identifier. Exte defines an absolute identifier. The distinetion does
not affect the code thal is generated by the assembler, but it does
allow the assembler to correctly flag PIC and non-PIC code. The
identifier 1o be defined is in the label field. Example:

YOURSUBR EXT
YOQURCONST EXTA

LDD #YOURCONST
LBSR YOURSUBR

6.3 STACK

This directive allows you to specify how much stack space this
module will require at execution time. This is eonvenient when
linking assembly language with DEFT Pascal so that a total stack
requirement can be determined bv DEFT Linker. 11 this directive
is not present, the assembler agsumes a zery stack requirement. The
absolute expression in the operand field is the amount. Example:

STACK 320

24 Background

7 Listing Control Directives

This section describes the assermnbler directives available to control
the source listing produced by the assembler. Although these
directives control the sourece listing, they are not included in the
listing themselves,

7.1 EJECT

The assembler normally prints 55 source lines on a page before
starting a new page. This directive specifies thal the next source
line should begin at the top of a page. There is no operand field.
Example:

EJECT

7.2 LIST

This eauses the assembler {3s? level Lo be incremented hy one. The
list fevel is avaluethat starts at zero and determines whether source
lines should be included in the list file. When this value is greater
than or equal to zero, lines are included. When it iz negative, source
lines are not incladed. If a previous NOLIST (see below) made the
list level go negative, then this directive will cause the listing to be
turned back on. If the 1ist level is already zeru, this LIST will cancel
the next following NOLIST. Thisdirective has no operand. Example:

LIST
7.3 NOLIST

This causes the assembler lisf level to be decremented by one. See
LIST for a description of the list level. Its general purpose is W
prevent source lines from being listed. This directive has no
operand. Kxample:

NOLIST
7.4 MLST

This directive causes macra expansions to be listed. Unlike the

on or off. This directive has no operand. Example:
MLST

Background 25

.
¥’
=
s
=
;.
>
=

7

7.5 NOMLST

This directive suppresses macro expansions from beinglisted. This
directive has no operand. Example:

NOMLST
7.6 SKIP

This directive causzes 1 or more hlank lines to he included in the
source listing. The number of blank lines ineluded is the absolute
expression in the eperard field. If the operand ficld is net presentor
lhe expression is less than 1, then a value of 1 is used. Example:

SKIP 2
SKIP

7.7 STITLE

This directive specifies the string that is to be the subtitle string
printed at the top of the listing starting with the next page. The
string found in the operand field is used. This directive does an
implicit ESJECT. Example:

STITLE /Important Subroutine Name/

7.8 TITLE

This directive specifies the string thatis to be the title string printed
atthe top of thelisting starting with the next page. The string found
in the operand field is used. This directive does an implicit FJECT.
Fxample:

TITLE /Important Program Name/

26 Background

8 Error Messages

The DEFT Macro/6809 Assembler generales error messages in
the source listing at those points where it detects either syntax
errors or encounters [0 errors while processing asource file, Error
messages are distinguished by the *** EEROR - al the beginning of
the line and follow the line thal they are refercneing. Following are
the error messages and a short explanation of each.

ADDR MODE

An invalid addressing mode was used.

BAD OPCODE

An unknown opcode or macro was used,

BAD RMB

An RMT instruction must have a positive ahsolute expression foran
operand.

COPY NEST

A copied file may not have a COPY instruction in it.

DUPL MACRO

There is already a macro defined with this name.

DUPL SYMBL
There is already a symbal defined with this name.

PUBLC->EXT
An external symbol is being declarced as public. This is illegal.

EXPRESSION

An illegal expression has heen detected.

LABEL RQ'D)

This npeode requires a symbol in the label field and there is none.

Background 27

MAC SPACE

This macroe definition exhausts all the available macro space and sa
is rejected.

MACRO NEST @

You cannot invoke a macro from within a macro.

OPRND RQ'D

This opeode reguires an operand and there is none.

OPRND SIZE

This opcode requires an 8 bit eperand and the one that is present
requires 16 bits.

PHASE

This label is being assigned a different value on the assernbler’s
second pass than it recieved on the first pass. This is usually due to
using a symbol in an RMB statement before the symbol is defined.

REGISTER o

An unknown or illegal register has been specified.

UNDEF SYM

An unknown or illegal symbol has been nused.

i
x
-
-
-
L)
:
e
E
=

=

28 Rackground

Advanced Pascal Language Extensions

TIntroduction ... innn i e e

2 R N s L e e
2.1 Blring ASSIZNMENTS vttt it e
2.2 String RHelationso e .
23 8STRINGCOPY Procedure,

26 STRINGPOS Fanetion ... i
ST ENCODE Function
28 ENCODERBAL Function ... e
29DECODE Procedureo iiie i iinaens
210 DECODEREAL Procedure oci...
2ZI1THEX Procedure ..o e e e

JType Extensions i i e
3.1 Type Converslond o vttt e e e e e
3.2 Pointer/lnteger Conversions e e

B A TS ot e

4 Absolute Memory Aceess
41 BYTE and WORD Arrays oo
4.2 Absolute Addresz Operator (@) ... 0o
4.3 CALL Function ... s

5 Static Variable Allocation
A LETATIC Albribute . e
2.2 PUBLIC Attribute ..o i inanss
2.3 EXTERNAT. Attribute e

G Separate Compilationl
6.1 Rationale ... it e
6.2 MO Block . e
8.3 PUBLIC Procedures and Functions
8.4 EXTERNAL Procedures and Funetions
6.5 PUBLIC and EXTERNAL Variables
6.6 INTHREFACE Block ..o
87 Use Of INTERFACLE BIOCK vvvvivieir e iiierinnnn,

T Assembler Interface ..o oo
7.1 Code Generation Strategy ..o
7.2 Pracedure Frame Strueture
T Lnkage e
TAInMIalization ... e
ToPICand ROM ... i e e e

1o

12
12
13

14
14
15
17
17
18
L8
14

22
22

1 Introduction

Thig section describes a number of facilities ih the DEFT Pascal
Compiler which are not found in stundard Pascal. These facilities
provide the prograrnmer with significant additional capabilitics
which allow easier texi proeessing, ROM and absolute memory
access, and separate compilation with both DEFT Pascal and
DEFT Macro/6809 azsembly language.

Before deciding whether to usc these facilities, the purpose of the
program to be wrillen must he considered. 1f portability is cssential
then only thosc facilities deseribed in Pascal should be used. If the
program is o run only nn the Color Computer and you wish to take
maximum advantage of the machine's capabilities, then by all
means nse the Advanced Poscal features.

Note that even when using these advanced fealures the resulting
program may still be moved to other machines sinee many other
Paseals have corresponding features, Thig is especially true in the
“areasof slring handling, separate compilation and compiler controls.

Background 1

2 Strings

[n standard Pasecal, a string is little more than an array of char,
DEFT Pascal allows you to treat a string in exactly the same way.,
However, a string 18 not exactly thesame as an arroayaf chur inthat
you can also treat this type as 4 truc variable length structure. This
allows vou Lo aceess individual elements of the string by including a
subscript or aceess the enlire structure by not ineluding a subscript.
Note that since array of string 1s allowed, the number of subscripts
determine the t¥pe of the resulting factor.

A string, in DEFT IMascal, contains 4 string length in element 0.
The remaining elements are thestring itself. The default maximum
length of a stringis 80. Other maximums can be declared (up to 255)
by ineluding a constant in parentheses following the type identifier
STRIN(. Sce Lhe section oh Type Eaxtensions for a complete
explanation.

Note that this structure is maintained in string constanis as well as
string variables.
2.1 String Assignmenis

The assignment statement not only allows vou to assign 4 string
variahle or constant to a string, butalso a general slring ex pressgion,
The syntax of a string assignment statement is as follows:

-<Zstring variable>- :— <giring term>> + ... + -Istring term_>

Where <string variable> is a simple variable, record member,
array clement or dereferenced poinwer variable with a hase type of
string. <Zstring term> is any of the following:

& A sting variable

® A siveng constant

® A char type expression

The result of the assignment is to set the <string variable> on the
left of the assipnment sign to the ordered concatenation of the
<string term>>s on the right side, Sormne examples:

StringVar := OtherString + * suflix string’;

StringVar := 'First line’ + CHR{13) + ‘Second line’;

StringVar ;= StringVar + ‘A’

The lastexample shows how to append <Zstring lerm>s to the end of
an existing value in a <Zslring variable>,

2 Background

2.2 String Relations

As mentioned in Prscad, strings may be combined with relational
operators in boolean expressions. When comparing Lwo strings,
DEFT Pascal generates code thal compares the strings on a
character by character basis [rom left to right. When two characters
thal are notegaal, or the end of a siring is eneounterer! the compare
stops. If unequal eharuacters arc found, the hinary value of the
corresponding characters determines the resull. If the end of 3
string is encountered, the longer siring is considered greater. Only
if the current length and all correspond ing charactersare equal are
the strings themselves considered equal.

2.3 STRINGCOPY PProcedure

This predeflined procedure is used to copy a portionof one string into
another. The procedure deelaration is:

PROCEDURE STRINGCOPY (VAR SOURCE : STRING:
INDEX, LENGTH : INTEGER;
VAR DESTINATION : STRING);

The string variable DESTINATION isset to the stringcontained in
SOURCE starting with IN[}<Xth character and continuing for
LENGTH characters, If thelengthof SOURCE isless than INDK X
then DESTINATION will be null. If the length of SOURCTE is less
than INDTX+LENGTH-1 then the length of DESTIN ATION will
he the length of SOURCE les: INDEX-1.

24 STRINGDELETE Procedure

This predefined procedure is used to delele a portion of a sfring
variable. The procedure declaration is:

PROCEDURE STRINGDELETE {VAR SOURCE : STRING;
INDEX, LENGTH : INTEGER]);

The string variable SOURCE has the shring startingat the INDE X th
character and continuing for LENGTH characters removed from
it. If the length of SOURCE iz less than INDEX then no change is
maide. [f the lengih of SOURCE is less than INDEX+LENGTH 1
then all the characters in SOURCE following the INDKXth
character will be deleted and the new strimg length will be
INDEX-1.

Background 3

2.5 STRINGINSERT Procedure

This predefined procedure is used to insert one string into into
another at a specified puint. The procedure deeclaration is:

PROCEDURE STRINGINSERT {VAR SOURCE : STRING;
VAR DESTINATION : STRING;
INDEX : INTEGER),

The strirg variable SOURCE is inserted into the string
DESTINATION starting in frontof the INDEXth character. If the
length of DESTINATION is less than INDEX then SOURCE is
appended to DESTINATION.

2.6 STRINGPOS Funetion

This predefined function is used to find the location of one striny
within another, The function declaration is:

FUNCTION STRINGPOS (VAR IMAGE, TARGET : STRING) : INTEGER;

A searchof string TARGET is made to try to find sfring IMAGE. If
IMAGE is found in TARGET then STRINGPOS returns the
character position in TARGET where IMAGE was found. If
IMAGE is not found in TARGET, STRINGPOS returns a zero.

2.7 ENCODE Function

This predefined function is used to convert a string containing an
Integer eonstant Lo an integer. The function declaration is:

FUNCTION ENCODE {VAR ASCIl : STRING) : INTEGER,;

The string ASCII is scanned and the binary representation of the
ASCII characters is returned. The following rules are used during
the scan:

1. Leading blanks are ignored
2. A leading +or - sign i3 allowed

3. The scan stops when the end of the stwing or a non-numeric
character is encountered

If no numeric characlers are encountered hefore the sean stops,
ENCODE returns zero.

4 Background

2 S ENCODEREAL Function

This predefined function is used to eanvert a string containing a real
gonstant to a real. The function declaralion is:

FUNCTION ENCODEREAL (VAR ASCH : STRING) : REAL:

The siring ASCII is scanned and the binary representation of the
ASCII characters is returned. The following rules are used during
the scan:

1. Leading blanks are ignored
2. A leading + or - sign is allowed

4. The first set of digits are the mantissa and may contaln an
imhedded decimal poinl.

4. Theletter £ may follow the mantissa lo indiecate that an cxponent
follows.

The exponent may have a leading sign but cannot have an
imbedded decimal point.

[k

6. The scaun stops when the end of the string or a non-numeric
character is encountered

If ne numerie characters are encountered before the scan stops,
ENCODEREAL returns zero,

2.9 DECODE Procedure

'This predefined procedure is nsed to construct a stiring containing
the exlerna! represcntation (base 10) of an integer. The procedure
deelaration is:

PROCEDURE DECODE {(NUMBER, SIZE : INTEGER;
VAR ASCII : STRING);

The string ASCIT is constructed. NUMBER is the binary value to
use during the conversion and S17F is the resulting strming length of
ASCIL The external (base 10) representation of NUMBER is right
nstified in ASCIL. If SIZE is larger than required, leading blanks
are appended on the left. If SIZE is too small, the leftmosl
characters are Lruncated.

Background 5

2.10 DECODEREAL Procedure

‘This predefined procedure is used to construet a strimy conluining
the external ASCII representation (decimal or seientific) of 4 real
The procedure declaration is;

PROCEDURE DECODEREAL (NUMBER : REAL:
SIZE, FRACTION : INTEGER;
VAR ASCI : STRING);

The string ASCTI is constructed. NUUMBER is the binary value to
use during the conversion, SIZK is the resulting total string length
of ASCII and FRACTION is the numbher of fractionul digits to the
richt of the decimal point. The external (base 10) representation of
NUMBER is right justified in ASCIL If SIZE is larger thun
required. leading blanks are appended on the left. If SIZE is too
small, the string is filled with asterizks. If FRACTION isnegative,
then scientific notation is used, olherwise a decimal display is used.

2.11 HEX Procedure

Thiz predeflined procedure is used to construct a siring containing
the ASCII hex representation of 4 specified area of memory. The
procedure declaration is:

PROCEDURE HEX (ADDRESS : INTEGER;
BYTECQUNT : INTEGER;
VAR ASCII : STRING);

The memory area beginning at ADDRESS and eontinuing for
BY THECOUNT bytes is converted to a hex string which is placed in
ASCII The hex representation is a pair of hex digits followed by a
blank for cachbyteexcepl the lust. The resulting length of ASCIT is
{(BYTECOIINT*3)-1,

6 Background

3 'I'vpe Extensions

A strongly typed language like Pascal can help a programmer gain
and maintain control of his program. Ilc can ensure that variables
of different types are not inadvertantly combined in an expression
or the wrong type expression is passed a8 a parameter to a procedure

. or function,

However, there are occasions when a programmer wants to treat
some datum as usually of one type and semetines to treat it as
another Lype. The extensions pertaining to type found in DEFT
Paseal provide a sorely needed ty pe breaking function that is only
partially [ound in standard Pascal.

3.1 Type Conversions

Provided in standard Puscal are the type conversion functions chr,
add and ord. DEFT Paseal supports these funetions, but also
provides a more regular type breaking capability. This capabihty is
implemented with implieit builtin funection definitions based on
ordinal type definitions.

When any ordinal type is defined, DEFT Paseal also implicitly
defines a converzion function with the same name as the type. This
function has a value parameter which is of any ordinal type. It

. returns (in the same way that chr and ord do) the equivalent value
with a type equal ta the named type identifier. For example:

TYPE Color — (Red, Green, yellow);
Fruil = (Apple, Lime, Lemon};
VAR ColorVar : Color;
FrultVar : Fruit;

FruitVar := Fruit {ColorVar);

. In the above example, Colorvar produces an expression of type
(i, This expression is used as a parameter Lo the finetion Frut
(implicitly declared in the type definition) which converts it lo a

Background 7

Fruat type expression. Operation of the assignment statement is to
set FruitVar equal to the fruit whose eorresponding color is in
Color Var.

Note that as a result of thisextension, the builtin function integer is
equivalent to ord and char is equivalent to chr. :

3.2 Pointler/Integer Conversions

In order to allow full use of the addressing capability of the 6809,
DEFT Pascal provides the abilily Lo convert between integer and
poinder bypes. The builtin function pér will convertan integer lype to
a pointer type. In addition, a pointer can be converted to an integer
via the ord and integer buillin [unctions. These facilities make it
possible to manipulate pointers arithmetically. For example:

TYPE BigRecord = RECORD ... END;
VAR BigPir : - BigRecord;

BEGIN
BigPtr := PTR (ORD (BigPtr) + SIZEOF (BigRecord));

In the above example, {29FPtr is incremented 1o point to the next
BigRecord in memory.

3.3 Arrays

Instandard Pascal an array type definition includes both the upper
and lower bounds of the array as well as the element #ype. This of
course is also truc with DEFT Paseal. However, when using a
previously defined array fype identifier, vou may specify a different
upper bound than the default contained in the original type
declaration, Fxample:

TYPE MyArray = ARRAY[1..200) OF Integer;
VAR Amay1 : MyArray;
Array2 : MyArray(150);

In the abave example, Array! and Array? are equivalent Lypes,
However, Array! has 200 clements and Arrayp? has 150 elements.
This variable size capability i= useful when creating procedures and
Junetzons which process mrrays of a given fype hut with varying
sizes. However, for all arrays exeept strings, the new upper bound

8 Background

must be less than or egual to the upper bound of the original array.
Standard Pascal has a confermant arroy facility which provides an
cquivalent capability when used in procedures and functions,

Note that since the tvpe string can be used as an arvay of chur type,

. you van also speeify an upper bound (up to 295) when declaring
strings. This upper hound will determine the amount of memaory
rescrved for the siring variable and the maximum length string
value that can be stored.

Background Y

4 Absolute Memory Access

This section describes the DEFT Pascal Compiler’s facilities for
accessing zpecific arcas of the 6809 address space, In additionta the
facilities shown here, specific areas of memory ean he aceossed in
DEFT Macro/6809 assembly language via the Seprrate
Compilation facilities and the Assembler Inteviuce. However, the
facilities deseribed in thisseclion can be used entirely within Pascal
and results in position tndependent code (IPTC).

4.1 BYTE and WORD Arrays

Absolute memory can he accessed as BY'I'Fis ar WORDs by using
the corresponding pre-defined array. BYTE is
ARRAY[$0000. . $FFT'F] OF 0..256 and WORD ig
ARRAY[$00LEFFEER] OF INTEGKER. The subscript used
represents the actual memory address that is used. Example;

IF BYTE[1024] ~ $41 THEN BYTE[1024] := $42;
WORD[$7FFE] := $FFFF

4.2 Absolule Address Operator (@)

The absolute integer address of any variable can obtained with the
unary operator @, Example:

WORD[@I] :- 5;
=9 -
The abave two statements are equivalenl. This Maeility can be

combined with the pf» builtin funetion to put the address of any
variable into a pointer type variable.

4.3 CALL Function

The predefined function CALL provides the ahilily o invoke the
machine language funclions and subroutines typically found in the
Color Computer's ROM. The Funetion definition is:

TYPE ROMAddress = Integer;
AReqgister = 0..255;

FUNCTION CALL (RtnAddress : ROMAddress;
Parm : ARegister) : Aregister
When using the CALL function, the first parameter is the absolute

memory address of the subroutine to be invoked. The second
parameter is Lhe value be passed in the A register. The value

10 RBackground

returned by the function is the value that the subroutine returned in
the 4 register. Kxample:

REPEAT Key := CALL (WORD[$A000],0) UNTIL Key <> 0

. The above examplc invokes the ROM subroutine whose address 1s

located at absolute memory WORD $A000 (POLCAT). A verois

passed to thisroutine in the A register and the value returned by the

subroutine is glored in the variabie Key. The effeet of the repeat

statement is towait until a keystroke is entered at the keyboard and

to store the keystroke in Key. NOTE: In order w access ROM
routines, vou will have to run your program in 32K maode,

Backpground 11

5 Static Variable Allocation

In the section Veriables in the Pascal Language Summary, the
standard automatie allocation schemc of Pascal is deseribed. This is
the default variable allacation incorporated into DEFT Paseal.
However, it is also possible lo staficelly allocate a variable.

When a variable is statically allocated, memory 18 reserved at
compile time. This means that every time the variable is accessed,
the surne memory ares 1s secessed even if the block that Lhevariable is
defined in has been deactivated and then reactivated.

This allows you to store 2 value inlo a statically allocaled variable
thatisloeal toa procedure, before exiting from the procedure. Then
when the procedure is subsequently invoked, be able to aceess that
variable and retrieve the previously stored value. This can’t be done
with automatically allocated variables zince the specific memory
location occupied hy the variable may change on each allocation.

5.1 STATIC Attribute

Variables are statically allocated when one of several nitribuies are
added to the varstatementin which they aredefined. An attribute is
a keyword which Immediately Tollows the »ur keyword., The
simplest of these attributes is the keyword static. The only result of
this attribute is to cause all variables defined in the current var
statemnent to be statically allocated. Example:

VAR A : Char;

VAR STATIC B, C: Integer;
D : Char;

VAR E, F: Integer;
G : Char;

In the above example, variables B, € and D are all statically
allocated, Variables 4, £, 7 and & arce all dynamically allocated,
The scope of all the variables is the same.

5.2 PUBLIC Attribute

The public atiribute, like the stadic allribule, causes all the
variables defined in the corresponding ver statement to be statically
allocated. However, the puflic attribute can only be used in var
statements at the PROGEAM or MODULE (seo Sepurule
Compilation) level and may not be used in zar statements in
procedures or funciions,

12 Background

Inaddition tacausing a variableto be statically allocated, the pudiic
attribute extends the seope of the affected variables to other
seprwlely compided guwodules, These other modules reference these
public variables by declaring the same variables using the emternal
attribute (see below), Example:

VAR PUBLIC A, B:Char;
C : Infeger,;

Intheaboveexample all three variables are statically allocated and
made public. See The section on Seprrate Compilation for more
information.

5.3 EXTERNAL Attribute

T'he arternal attribute is the complementary attribute to the public
attribute. All variables defined ina var stalement with the exterral
attribute are not actually allocated by thatl ear slatemenl. This
slalement causes the slalic alloeation performed by the var publie
statement Lo be used. Example:

VAR EXTERNAL A, B: Char;
C : Integer;

In1he ahove example the variables 4, B and { have heen declared
public in another module where memory [or them has been
allocated. All references to A, [and € in the module with the
erternal attribute will aceess the publicly defined variables. See the
section on Sepurate Comprlation for more information.

Background 13

6 Separate Compilation

This section details a facility in the DEFT Paseal Compiler that
allows a programmer to hreak up a large program into a number of
staller programs. These smaller programs (known generically as
wodwles) can then be compiled and (usually) tested independently.
One of the primary advanlages of separale compilation is the
additional level of identifier scoping that is provided.

6.1 Rationale

[n general, identifiers (constants, types, variables, procedures and
functions) defined within 1 module are known only within that
module. These identificrs are thought of as wrivate and arc not
known to other modules. Of course if 2l the identifiers are private
then there is no way for the module to be used. For Lthis reason some
identifiers are always made public so that controflled access to the
madule is assured.

IFor example, o complete set of routines to handle high-resolution
graphice could be a madule, Some of these routines would be called
from outside the module and would ¢onsitute the inderfies Lo your
graphies package. These routines would be deelared wublic,

(Other routines would be utilities whose expregs purpose 15 Lo
perform funetions common to several of the public routines. Thege
utility routines would remain private so that they would notl be
inadvertantly invoked by othermodwles, Thisalsoensuresthattheir
names would not conflict with other names used in other modules.

The variables used by this graphics module are also divided into
public and private. The public variables may provide a means to
pass data to or from several of the procedures in the module or may
be used Lo specily operalional modes. The private variahles woulid
be ugsed to store temporary or intermediate resulis.

A special DEFT Pascal language construet, called an inteifoce
module, could be used o provide the compile time linkage hbetween
the graphies medule and those other modules that use it. This
tnlerfaes module would be included at the beginning of the other
modules and would provide all the external deelarations for the
publie procedures, functions and variables, In addition, it would
include consi and Lype statements in order to define any special
constants or types required by the graphies module.

14 Background

6.2 MODULE Block

Instandard PPageal, a complete program is a self-contained unit. Kor
many smaller programs this is qnite adequate and provides a
simple enviranment in which o develop them. However, when you
wish lo divide your program into several relatively independent
pieces; you have a problem if these pieces do not map, ene-to-one,
into proceduresar funetions. s this problem thal DEFT Paseal's
wnotfiele solve,

A module 15 a DEFT Pascal construet thal allows vou to groupaset
of procedures, functions and variables into a sort of aself-contained
subprogram which is compiled by itself. This Pascal module can
then he combined with other Pascal modules, DEFT Macro/6809
Assembler modides and to only one Paseal program, via DEFT
Linker, ¢ create a complete program.

The synlax of a MODULE is as follows:

Background 15

MODULE -<<mo<ule name>>,

CONST <Cidentilier>> = <constant’=;

TYPE <identifier>> = <{type definition >;
VAR <identifier> : <type definition>>;

PROCEDURE <identifier> < parameter definition™>;
<hlock>>;

FUNCTION <identifier=> <parameter definition>;
< block>>, .

END.

Ax you can see, this is almost the same us a program. In facl, with
DEFT Pascal, a program is mercly a special type of modile. A
program is the only wmodule which contains its own BEGIN
<executable statements> END. It is with these <executable
slaternents>> in the final binary program that execution begins.

One other difference between a progrom and a module 1s veriable
alloeation. In a program, the default allocation is aufomatic. In a
module, the default type of allocation is static. Since there is no way

of explicitly specifying automatic alloeation, a module’s variable
{ypes are all static. The primary reason lor this is that there is no
frame structure, (see Assembler Interface), for a moduls in which to .
automatically allocate & variable.

16 Bachkaround

Linkage between maodules and the program 13 provided via the
public and exlernal altribules deseribed below.

6.3 PUBLIC Procedures and Functions

Public procedures and funetions are declared at the outer most
block level of a program or madwle, and contain a public attribule
mmmediately following the procedure or function statement.
Procedures and functions which are nested within other procednres
or funclions may not have the public attribute. The syntax of a
pubbie procedure 1s as follows:

PROCEDURE -Zidentifier>> <Zformal parameter definition=>;
PUBLIC;
<_declaration statements>>

BEGIN
< axecutable stalements’-
END

The only difference between this and o standard procedure {(or
function)is the public attribute immediately following the proeediire
or fuepction statement.

Once a procedure or function has been declared pubdic, iL may be
invoked from other modules which have deelared the same procedure
or function ag exlerrel (see KXTRRENA L Procedures aod Frunctions),
Note: vou may not use the same identifier o declare a procedure,
function or variahle as pudlic in more than one modude, 1lowever,
once it 1s declared as publie, vou may deelare it as erternaf in as
many modules (or the program) as vou wish., An identifier cannotbe
declared as both pubiie and externalin the same modwieor program.

6.4 EXTERNAL Procedures and Functions

An erternal declaration allows a puhic procedure or function to be
know n and invoked in any siedule or jrrogrem inwhich it s declared
ag external. A procedure or function is declared as evternal by
following the procedure or function statement with only the
external stalemenl, The synlax is as follows:

PROCEDURE <lidentifier> <“formal parameler definition’>;
EXTERNAL

Background 17

This tvpe of procedurc or funclion does not have a <block>
associated with it. However, it mast have a corresponding public
procedure or function deelared in another module whose procedure
or function statement is identicel to the one used with the external
statement. Note Lhallike the pubiie statement, the external statement
can he used only with procedures and funetions which are declared
at the outer most block level of a modide or program.

6.5 PUBLIC and EXTERNAL Variables

The public and external attributes, in the VAR statement, cause
static memory allocations to be made, as desceribed in the section on
Static Variable Allocation. Public variables (like public procedures)
arethose variables whose seope has been explicitly extended bevond
the enclosing modide or progrom. Rrteraal variables are those
variables which actually existin other modfnles (OR the program) as
public variables, but whosze scope has been extended into this
module or program.

As mentioned in the section on public procedures, you may not use
the same identifier to declare a procedure, function or variahle as
publie in more than one wmoduie, llowever, once it is declared as
public, you may declarc it as erternaf in as many medules (or the

program) as you wish. Any identifier cannol be declared as both
pubiie and edfernel in the same module or prograim.

6.6 INTERFACE Block

An tnlecfuce Rlock iz a special DEFT Pascal Compiler construet
which is used in conjunection wilh a progrem. or sudede. 1ts purpose
is to simplify the compile time module linkage {which would
normally oeeur via erteraal attributes and statements).

The interface block is an oplional eonstruet which may be included 1
or more times before the module or program glatement. The syntax
is as follows:

INTERFACE <interface name>>;
< special declaraiion statemenis’>
END

The <special declaration statemenis> arc gencrally the same as
<ldeelaration slalements>> with the exeeption that all procedure,
function and VAR staternents are asswwmed o be externod. That iz,

1% Rackground

procedure and function statements don’t have pubfic, FORWARD
or external staterments following them. Nor do they have <-block >«
following them. They are assumed to be external, since they are
fournd in the interface Block,

VAR statements also eannot have public. externnd or STATIC
attributes associated with them since they arc assumed to be
externnl.

6.7 Use Of INTERFACE Block

In general, vou will ereate an inferfoce block for each module that
you ereate. The module will contain all the publie definitions and
will be compiled to create an objeet module that contains those
procedures, functions and variahles. The inlerfaee module will exist
only in the form of Pascal source code and contain the external (by
defanit} deflinitions that are then used in all the other modules (or the
wprogram) that reference this modude.

In gur graphics example, we might have the following module:

Background 19

MODULE HiResolution;
CONST ScreenSize = $1800;

TYPE ScreenByte = -128..127; (* 1 Byte Integer *)
Screen = ARRAY] 1..ScreenSize] OF ScreenByle;
GraphTypes = (GTalpa, GTsemid, GTsemi§, ...);

VAR PUBLIC
GraphMode : GraphTypes;

PROCEDURE MapScreen (VAR ScreenVar : Screen);
PUBLIC;

(* procedure block *)

PROCEDURE ClearScreen (VAR ScreenVar : Screen);
PUBLIC;

{* procedure block *}

(* other public and private procedures .
and functions required for package *}

END.

This module contains a number of pubiic interfaces including
procedures, functions and at least one variable. Another module
which i responsible for crealing pie-charts may reference this
module as follows:

20 Background

INTERFACE HiResolution;
CONST ScreenSize = $1800;

TYPE ScreenByle — -128..127; (* 1 Byte Integer *}
Screen = ARRAY[1..ScreenSize] OF ScreenByte;
GraphTypes = (GTalpa, GTsemi4, GTsemib, ...);

VAR GraphMode: GraphTypes;
PROCEDURE MapScreen (VAR ScreenVar : Screen);
PROCEDURE ClearScreen (VAR ScreenVar : Screen);

END;

MODUILE PieCharls;

END.

The module PieCharts uses the module HiBesotution and sees its
interface to fliResolution in terms of the tnderface block. Note that
in general, the source code comprising the iuterface block will be in
an independent file which is eopied at compile time via the eompiler
% dircetive.

One final note, the file PASCALIB/EXT 1s actually an snterfoce
block with a %N at the beginning and a %L at the end which is
automatically copicd by DEFT Pascal at the beginning of every
compilation. You can foree ittobe listed by including an f. directive
in the direetive prompt on the compiler startup sereen.

Backpground 21

7 Assembler Interface

One of the primary advanlages Lo using both DEFT Paseal and
DEF'T Bench is the ability to easily mix Pascal and assembler
language ag appropriate in the development of a program. Thig
section provides the informalion on using variables, procedures and
funetions from assembler and inlurn ereating variablos, procedures
und functions in assembler for use from Pascal, with DEFT Paseal.

A pre-requizsite required for this seclion 18 4 familiarity with the
Motorola 6809 Azsembler Language, and the DEFT Macro/6809
Assembler. Information on hnking ebject files produced by Lhe
DEFT Pascal Compiler and the DEFT Macro/6809 Azsembler
can be found 1n the seetion on the DEFT Linker.

7.1 Code Generation Strategy

The DEFT Pascal compiler is a single-pass, recursive descent,
compiler which directly produces 6809 ohjecl code suitable for
linking by DEFT Linker. In order to produce this object code, a
vode generofion strotegy is requived so that the state of the machine
can he predieted from statement to statement. This strategy defines
how code, data and stack memory arcas are organized az well as
how the 6309 registers are used, In addilion, the aetual memory
organization of atl the various Paseal types should be understood.

Variahle Sizes and the Stack

As can be guessed by the ardinal and pointer &ypes available with
DEFT Pascal, the language is 16 hitoriented. I'o a large extent Lhis
is due Lo the registers and functions available on the 6808. By
keeping to a 16 bit organizalion, Lthe resulting compiler is hoth
amaller and more afficient.

In general, all instructions generated by the compiler are oriented
around the program slack. As factors are encountered in an
expession, they are pushed on the stack. Operators then operate on
the lop of the stack or combine the top two elements of the stuck to
form a result which is lefl on the top of the stack,

The number of bytes of data pushed on the stack depends on the rype
of the expression. The following table shows the number of bytes for
each fype:

22 Background

ordinal type 2 bytes

pointer type 2 bytes

real type 7 bytes*

sel type 32 bytes

file type 286 bytes + type size
string type string size + 1 bytes

array and record types sum of componenis

Although real types have a size of 6 bytes, when areal type is pushed
onh the stack, an additional byte is added in order to limit loss of
precision during arithmetic operations. The symbol table printed at
the end of cach block shows the size of all the variables and types
delined within that bleck.

Anytime parametersare passed toa procedure or function, they are
first pushed onto the stack. Values returned by funetions are lefion
the stack when the [unclion returns.

Memory Organization

The general memory organization of a Pascal program 1s shown in
Lhe [ollowing diagram:

High Memory Addresses

Stack & Dynamic
Dala Area
Code & Static

| Data Area

Low Memary Addresses

As can be seen from the above dingram, the eode and static data
ilems are allocated in low memory and the stack with its associated
dynumic data items are allocaled in high memory.

The code and static data items are inlerspersed in the order in
which they were encountered by the compiler. The code und static
data area is built from low addeeszes {o high addresses by the
compiler. Theresulting arcais whatis linked by DEFT Linkerand
eventually loaded via the LOADM command. Because DEFT
Linker eszentially handles all the code and statie data linkage, the
actual organmization of memory is of little coneern ta the
programmer.

Background 23

The stack and dynamie data area is organized by the compiler but
not actually allocated until execution of the resulting program. Asa
result the actual memory addresses cannul be predicted. The
organization of this stack area is the key to interfacing Pascal and
Asgsembler.

Register Usage

The use of the registers is oriented around the stack. The following
lists the 6809 registers and summarizes their use:

® The § register is the program stack register. It always paints to
the youngest element on the stack. This stack always grows or
shrinks by the size of the fype begin pushed or popped. Elements
are added by decrementing the S register and are removed by
incrementing the S regrister.

® The D registeris the primary accumlator, and so is considered to
be the top of stack Tor most operations, This iz done by placing
data in the I repister before actually pushing it on the stack.
Data is popped from the stack into the D register. By considering
the I? register to be the fop of stack, vperaling on the top stack
element is easy with the 6809 inscruction set.

® The U regisieris the frawne poinler, which identifies that group af
data on the stack which is associated with the most recent
procedure activation. Sce the scetion on Procedwre Frome
Structure for a complete description.

® The X register 15 used as a secondary frawme pointer, when
traversing the static frame links in order to access an identifier
which is globoa! o a procedure. See the seclion on Proceuyre
Frame Structure for a complete description. It is also used for
array indexing and variable addressing.

® The ¥ register iz used for temporary slorage, loop counting and
compare operations.

On return from a procedure or function, enly the t/, S and HF
registers will be preserved. All other registers may have been
modified.

24 Background

7.2 Procedurc Frame Structure

A frome i3 & contiguous portion of the stack that contains all the

dynamic information relating to a specific procedure activation.

Anytime a procedure or function is invoked, a frame is pushed ontn
. the stack. The structure of a frame is:

High Memory Addresses

FUNCTION return value
(present only il this is a
FUNCTION activation)

Parameters Passed to the
procedure (if any).

u-> 16 bit Static Link

16 bit Return Address

. 16 bit Dynamic Link

Local Dynamicaliy
Allocated Variahles

Temporary Expressgion
Values

S _“}. L. -
Low Memory Addresses

The base of the frame is the static fink. The U register always
containg the base address of the most recently active frame (1astone
pushed on the stack). The following notes apply to the individual
fields of the frame:

. 1. Thefunclion return valuc isonly present on a funciion activation
and can be considered to he the “zeroth” parameter.

Background 25

2. The parameters are pushed on the stack in the order in which
they oceur in the <parameter list>>, That is, the first parameter
has the highest memory address and the last parameter has the
lowest memary address. Each occupies the amount of memory
specified in the section on Variable Memory Reguirements.

3. Thestatie fink contains the base address of the most recent frame
activation for the immediately enclosing procedure. Thizs address
18 used when referencing variables which are global to the
current proeedure,

4, The 16 bit return address is the lagl element of the frame that is
created by the enlling procedure with a JSE or BSR instruclion.
The rafled procedure creates the remainder of the frame before
executing its first statement.

5. The 16 bit dynamic lnk is the base address of the vel{ing
procedwre’s frame. It is placed on lhe stack by the eailed
proceduie via a PSHS U instruction. The U register is then
immediately reset to the currcent frame's base address via a
LEAT 4,3 insiruction.

6. The local, dynamically allocated variahles are then allocated via
an LEAS -ns instruction which onfy allocates and does not
nitialize,

1. As<executablestaternent>s are executed additional stack space
is used for temporary, intermediate expression values.

Returning from a procedurc 15 easily accomplished with the
following two instructions: LEAS -4, U and PULS 1. PG, The
codling procedure is then responsible for removing the parameters
fromn the stack and using the function return value (if there is one),

The reason for having separate stalic and dynamic links is to
provide for the ability to handle recursive procedure (or funetion)
activation. Thestatic iink provides cxceution time identifier scoping,
regardless of the number of times the current procedure has
activated itself. The dynamic link provides the ahility to return to
the frame that activated the current procedure (or function).

As can be seen, as long us the assembly langnage program vheys
Lhese rules, iLean either invoke a Pascal procedure or function or be
imvoked as if the assembly language procedure or function was
written in Paseal.

26 Background

7.3 Linkage

Linkage between Pascal modules is implemented via public and
srternal attributes and statements as described in previous sections.
Linkage to assembly language modules i exactly the same.

Y ou can declare your own Pascal eallable routine as public in your
assemnbly Janguage program so that it is visible to DEFT Linker,
You then use the same name to declare the corresponding external
procedure or funetion in the Pascal windulefs} from which it is to be
called. The same is true of shared, static variables which would be
deelared as public in your assembly language modv es and external
in the appropriale Pascal module.

Alternatively, you can ereate a Pascal interface that corresponds to
your assembly language module in order to provide a more formal
interface. All Pascal modules that reference any of your assembly
language procedures, functions or variables would then %(the
snterface module to the beginning of their code. Language identifiers
that are declared ezternaf in Pascal must be declared ag public in
vour assembly lunguage program.

Any Pasecal procedures, functions or variables you wish to access
from assembly language, must be declared as publre n the
corresponding Pascal modale or program. The identifiers are then
declared as externel (via the EXT directive) in your assembly
language program,

7.4 Initialization

All programs produced by DEFT Linker have a first instruction.
For Pascal programs produced with the DEFT Paseal Compiler,
this is in the runtime support module named PASBOOT. This isthe
module thut determines the amount of memory in your system, sets
the stack pointer appropriately, sets up all interrupt vectors [or Lhe
device drivers, setups the initial frame on the stack and then calls
the main pascal progrant,

7.5 PIC and ROM

The code produced by the DEFT Pasecal Compiler is generally
position independent and non-selfmodifying (ean be placed in Read
Only Memory-ROM). There are certain conditions under which this
1% not true;

Background 27

1.

28

Any presence of siafie or public variables within a Paseal
program will result in a module that is self-modifving.

Any procedure, function or variable that is declared as external
in a4 Paseal program, and whose actual address is an absolute
memory location, will result in a module that is not pesition
independent. Absolute memory access can be accomplished in
DEFT Pascal via the BYTE, WORD and CALL language
elements so that the resulting module will be
position-independent.

Background

Index

* uperalor Debug 16, Pascal 28, 32,
Aumlung 4

+ operator Debug 15, Puscal 29, 32,
AsmLang 4

- gperator Debuy 15, Puscal 29, 32,
AsmLang 4

! operator Dchog 15, Pascal 29,
AsmLang 4

A2K operation Intro 1, 9-11, 14, Link
1, Pascal 1, Adv 11

64K operation Intro 10-11, Link 10,
Pascal 1

6809 Instruetion Summary
Asmlang 7

< Operator Pazcal 33

<= perator Pascal 33

<> {Iperator Pascal I3

={Iperator ['ascal 33

= (perator Pascal 33

»= Operator Pasval 33

A

ABS Pascal 55
Absolute Address Operator (@) Adv
10
Absolute Memory Access Adv 10
actual parameter Pascal 24
ADD ORJECT FILE: Lib 3
Adding a Library Flle Lib 4
Adding an Ohject File Lib 3
Additional Mark Funetiong Edit 15
ADDR MODEK AsmLang 27
Addressing Modes Asmlang b
AN} operator Pazscal 30, 33
Appending The Saved Text Edit 14
ARCTAN Pascal 53
Arithmetic Operators Paseal 29
Arithmetic Precedence Pasesl 31
ARRAY Compile 1,4, Debug 7, Pascal
13.16-17,20-21, 28-29, 40, 43,
60, 64-65, Adv 2, 5-10, 24
ARRAY element referenee Paseal
28

Assembier Execution Asm 3
Aszzembler Interface Adv 22
Assembler Listing Control Compile &
Asgipnment Siatement Pascal 34
Auto-Repeat Edit 8

Automatic Allocation Pasecal 22

B

BADOPCODE AsmLang 27

BAD RMB AszmLang 27

BEGIN Pascal 2-8, 23, 36-87, Adv 16,
24

BEGIN Statement Pascal 86

BINARY FILE I/ ERROR Link &

BINARY FILE: Link 3

Blinking Square Tdit 2

Block Struciure ’ascal 2

Blue Square Edit 2

Boolean Kxpresslong Paseal 33

Builtin Procedures gnd Functions
Pascal 55

BYTE and WORD Arrays Adv 10

C

CALL Funection Adv 10

CARBE Pascal 18, 40

CASE Statement Pascal 40

Changing Text Patterns Edit 12

CHAR Pascal 14, 17, 20, 45, 47-35, 60,
Adv2 89

Characier Constant Pagcal 10

Checking Program Siate Debug 4

CIIR Pascal AT, 55, Ardv 7-8

Clear Breakpoints (CEB) Debug 9

CLOSE Statement Pazcal 4%

Code Generation Strategy Adv 22

Commands Debuy 5

Comments Pascal 11, AsmLang 2

Compiler Contrels Compile 8

Cempiler Execution Compile 3

Compeund and Conirol Staiements
Paseal 36

CONST Pascal 11-12, Adv 14

Constant Identifiers Pascal 11

Constants Decbug 12, Paseal 4,
AsmLang 3

Copy Compile % AsmLang 16

COPY NEST Asmlang 27

COI'Yy NESTING TOO DEEP
Pascal 62

Copying and Moving Text Edit 14

OB Pascal 55

CPU Intro &, 1'ascal 1

CURSOR Pascal 56

Cursor Positioning Kdil b

D

Debug Sereen Debug 2

DEBUG?: Compile 3
DEBUGGER/LIB Intro 13 Link 4, &
DEBUGGER? (Y) Link 3

Decimal Integer Constant laseal 8§
Deelaration Statements Pascal 3
DECODE Procedure Adv b
DECODEREAT. Procedure Ardv 6
DEFT Bench [ixer 1, Link 1, Adv 22
DEFT vs. Standard Fascal 1’ascal 60
DELETE SECTION: Lib 3
Dalating Characters Edit 8
Deleting Lines Edit

Tresipm Exer 2

DIRECTIVE: Compile 3

Directives AsmLang 168

Display Byte (DB} Debug 8

Digplay Floating Point (DF) Debug d
Dizplay Hex (DH) Debup 7

Display Next (DN) Debug 7

Display Register (DR) Debug &
Display String {(D8) Debug 6
Display Variable {DV) Dehug 6

Ihsplay Word {DW) Debug 5

DIV aperator Pascal 29

D0 Pascal 87-38, 42

Document Divisions Intro 4

DOWNTO Pascal 38-39

DUPL MACRO Asmlang 27

DUPL SYMBL AsmLang 27

DUPLICATE - .. IN ... Link 8

DUPLICATE MAIN IGNORED
Link &

DUPLICATE SYMBOL Pascal 62

E

Fdit Intro 1, 7. 13, Exer 2-3, Edit 1-2,
#-%, 10-12, 14, Compile 1,
Asm 1, Paseal 1

EJECT AzmLung 25

ELSE Pascul 36, 40

ENCODE Function Adv 4

ENCODEREAL Function Adv 3

END Pascal 17, 36, AsmLanyg 16

EXNTER Key Edit 4

Enumerated Pascal 14

EGF Funetion Paseal 4%

EOLN Function Pascal 48

EQU AsmLang 18

Error Messawges Link 8, Lib 5, Pascul
B2, AsmLang 27

Evaluate (EV) Dicbug 9

Execulable Statements Pascal 6

Exceuting Your Program Debug 3

EXIT Statement Pascal 41

Exiling Edit 11

EXP Pascal b6

EXPECTING ... Pasual 62

exponent Pascal 14, Adv 5

EXPR TYPYE ERROL 'ascal G2

Expressions Debhug 12, Asm|ang 4

Hxprersions and Assipnments Pazcal
28

KX'l'and EX'TA Asmlang 24

extended Intro1,Y4,11, 14, Link 1, Adv .

1R, Aemlang b

EXTERNAL Attrihute Adv 13

FEXTERNAL PProcedures and
Functians Adv 17

1‘1

factor Paszcal 28-29, 52-32, 63, Adv 2

FCR Asmlang 17

FCC Asm)ang 16

FIM3 Asmlang 17

[File Errors 1dit 11

FILE 15 NOT OBJECT OR
LIBRARY Lib 5

File Names Pascal 44

FTLE OPEN ERROR Pascal 62

File Variables Pascal 45

FILEERROR Pascal 49

filename Intro 12, Debug 14, Lib 3.
Fuscal 44, 48, 50-31

files Intro 1-2, 7-9, 11-14, Exer 1,3-5. 7.
Edit L, 7, 10, Compile 1, &,
Link 1-2, 4, 9-10, Lib 1-3,
FPuseal 7, 20, 44, 46, 48,51-53,
60-61, Adv 22, AsmLany 1-2,
1%

Finding a Text Pattern Edit 12

FOR Statemeni Pascal 38

formal parameler Pascal 232

FORWARD Refercnees Paseal 27

FUNCTION Declaration Pagcal 25

Function Invecation Pascal 26

Funetions Edit 7

G

GET Statement Paseal 49
Geiting A File Edit 10

Go {G0) Debug 140

GOTO Statement Pascal 41

H

. heap Pascal 56-55, 60

HEX Procedure Adv 6

HEX WORD PARM MISSING IN
OBJECT RECORD Link

hexadecimal Compile 4, Asm 4, Link
06, Debug 5, 89, 12, [axcal
9-14, 12, AsmLang 3

Hexadecimal Integer Constant Pascal
9

I

I/0 ERROR ON NEW LIBRARY
Lib

;O ERROR ON OBRJLIB FILE Lib
h

L'OERRORONGLD LIBRARY Lib
5

Identifiers Pascal B, AsmLung 2

IF Statement Paseal 36

immediate AsinLang b

IN Operator Pascal 33

indexed AsmlLang 5

indirection Debug L3

inherent AsmLang 5

Initialization Adv 27

inline sel cunstanly Paseal 29

INPUT and OUTPUT Filc Variables
Pascal 45

Input/Output Pascal 44

integar Paseal 4,810, 12-15,29-11_34,
49, 5954, 55-39, 61, 63 Adv
4.5, 8, 10

Integar/Real Expresgions Pascal 30

INTERFACE Block Adv 15

Interrupting Program Execution
Debug 3

INVALID CONSTANT Pascal 62

INYALID DEBUG MODULE Link

8
INVALID FACTOR Pascal 63
INVALID IDENTIFIER Pascal 63
INVALID MARKER Link §
INVALID OBJECT RECORD Link
9
INVALID ORDINAL TYPE Pascal

63

INVALID SIGNED TERM Paseal
63

INVALID STATEMENT Pascal 63

INVALID TYPE DECLARATION
Paseal 62

INVALID TYPE IDENTIFIER
Pascal 63

INVALIDVARIABLERFFEREN(EH
Pascal B

K

keybourd Intre 12, Edil 3, 5, 8, 11,
Debug 4, Pasceal 20, 44-48 51,
60, Adv 11

L

label Pascal 9, 41, 63, 65, AsmLang 2,
16, 20-22, 24, 27-28

LABEL ERROR Pascal 63

LABEL RQ'D AsmLang 27

Labelz Pascal U

Language Elements Pascal 8

Language Synlax AsmLang 2

Lazy Keyboard Inpui Paseal 47

library Intro 2, 8, 13. Link 1, 3-4,
Debug 14, Lib 1-5

Limitations Link 10

Line Format Asmlang 2

Link Exer 7

Linkage Adv 27

Linkage Directives Asml.ang 23

Linker Map Link 5

Linking in DEFT Debugger Debug
2

LIST AsmlLunyg 25

LIST FILE: Asm 2, Link 3

LIST: Compile 2

listing Exer 5-7, Compile 1.2, 46,8 9,
Asm 1-5, Link 5-6, Paseal 1,
14, 62, 65, AsmLang 2. 25-27

Listing Control Direclives Compile 8,
AsmLang 25

LN FPasecal 56

Load Module Development Intro §

Loeation Counter AsmLang 3

LSL operatar Paseal 30 .

LSR sperator Pascal 30

M

MAC SPACE AsmLang 28

Macero Definition AsmLang 19

Macro Invocation AsmLang 20

MACRO NEST AsrnLung 28

Macros Asmlang 19

MAIN AsmLang 17

Major Cursaer Positioning Edit 7

mantissa Paseal 14, Adv 5

MARK I"aseal 56

Marking and Saving Text Edit 14

MEMAVYAIL Paseal 56)

Memory Qrganization Adyv 23

MLST Asmlang 25

MOI) operatar faseal 29

Modify Byle {(MR) Debug &

Modify Floating Point { MF) Debug 8

Modify Register (MIL) Debug 7

Modify String (M3) Dahup 9

Modify Variable (MV) Debug 9

Modify Word (MW) Debug 8

module Intro 2, 7-8. L1, 13, Exer 1, b,
Compile 2-8, b, Asm 2, Link
1-8,5-6,8-9, Dehug 1 2,4, 10,
13 14, Lib 1, Adv 1221, 27-
28, AsmLang 23-24

MODULE Block Adv 15

MODULE T3 BIG Link 9

multi-register Asmlang

N

NEW Pascal 20, b7
NEWLIERARY: Lib 2
N} MAIN ENTRY Link ¢
NOLIST AsmLang 25

NOMLST AsmLang 26
non-terminator Paseal 2
NOT Operator Pascal 34

0O

ORJ 10 FRROR Fascal 64

(Bd NAMES FILE: Link 4

(hjecl Code Development Intro 7

OBJECT FILE Iy ERROR Link 9

GRJILECT FILE: Asm 2, Link 4

OBJKCT: Compile 2

ODI) 'aseal 57

G 'aseal 40

LD LIBRARY: Lib 2

opcode Asm 4, Paseal 22, AsmLang
2-3, 5-7, 1920, 27-2¥%

OPEN ERROR: n Lib

vperand AsmLang 2-2, 6, 16-20, 23-23

OPRND RQ'D AsmLanyg 28

OPRND SI1ZE AsmLanyg 23

OR vperalor Puscul 30, 33

Orange Square EdiL 3

QORI Puscal 37

ordinal Pascal 13-17, 29, 33, 38-41, 27-
59,63, Adv 7,22

ORIGIN Link 2

OTHERWISE Pascal 40

OUT OF RANGE Fasceal 64

| o

PACKEL Types Pascal 21

PAGE Pascul 50

parentheses Debug b, Pageal 7, 31-82,
34, Adv 2

PASCALY (Y) Link 3

Pattern Processing Edit 12

PHARF Asmlang 28

PHASE ERROR Link 9

PIC and ROM Ad. 27

pointer Kdit 8, Compiie 1, Paseal 14,
18-20, 29, 43, 15, 56-58, 64,

65, Adv 2, 8, 10, 22, 24, 27
Puinter/Integer Conversions Adv §
pointer type Pagcal 19
PRED Puscal 58
printer Iniro 12, Exer 4-8, Edit 1, 10-

11, 15, Compile 1-2, Asm 3,

Lib 5, Puseal 20, 44, 46-50, 52
Procedure Frame Struclure Adv 25
Procedure Invoeation Fascal 24
Pracedures and Punctions Pascal 23
Program Design Development Intro

6
Program Statement Pascal 7
PUBLC->EXT AsmLang 27
PUBLIC AsmLang 23
PUBLIC and EXTERNAL Variahles

Adv 18
PLURBLIC Attribute Adv 12
PUBLIC Procedares and Functions

Adv 17
PUT Statement Fascal 50

Q

Quit (QU) Debug 11
Quitting and Reentering Edit 10

R

READ Statement Paseal 51

Beading from a FILE OF Char Pascal
bl

Reading from a Typed File Pascal 51

READLN Statement Pascal 52

real Debug 6. 8, Lib L, Paseal 10-14,
29-30, 51,53, 55-56_ 58-5%,63,
Adv 56, 21

Real Constant ascal 10

RECQORD field reference Pazcal 29

Records Pascal 17

recursion Pascal 22

reference parameter Pazcal 24-25

REGISTER AsmLang 28

—
—
—
o
~
“

Regisier Usage Adv 24

register-register AsmLang 6

registers Debug 2-5, 7, 9-10

Registers Debuy 12

registers Debug 15, Adv 22, 24,
AsmLang |

Registers AsmLang 4

registery AsmlLang 20

relative BEdit 2, Compile b, Asm 4,
Link 5, Asmlang 2-h, 24

RELEASE Pascal 38

BREPEAT Statement [‘ascal 38

Replace/Insert Modes Bdit 2

Reserved Words Pascal B

RESET and REWRITE Statements
Pascal 50

RMB AzsmLang 17

ROUND Pascal BB

S

seope Debug 15

Scope Paseal 3

seope Pascal 24, 42, Adv 12-13, 18

sereen Intro 1, 12, Exer 4, 6, 8. Edit
2-3, o-7. 12, 14, Compile 2-3,
8, Asmn 2-8 Link 2, Debug 1-
5, 7. 9. Paseal 20, 44-48, 50,
52, 58, 62, Adv 21

Serolling Edit &

Saparate Compilation Adv 14

set difference Puscal 32

Set Expressions Pascal 32

set intersection Paxes] 32

set union Puscsl 32

SETDP AymLang 18

Sels Pageul 16

Setiing Breakpoints Debug 3

SHIFT-0 Keys l4dit 4

SIN Paseal 53R

Single IMsk Drive Gperalion Intro 14

SIZEQOF Puscal b9

SKIP AsmLang 26

SKIPPING T<¥, Pascal 64

Software Develuvpment [ntro 6

Source Code Develapment Intro 7

SOURCE FILE: Asm &

SOURCE IO ERROR Pascal 64

Source Listing Compile 4. Asm 4

SOURCE: Compile 2

Special Operators *aseal 11

SQR Pascal 59

SQRT Paszcal 54

stack Intre 1. Compile 5. Link 6,
Debug 4, 14, 15, Adv 22-27,
Asm Lang 5, 20, 24

STATIC Attribute Adv 12

Statie Variable Allocation Adv 12

Status Line Edit

Step (87) Debug 11

STITLE AsmLang 26

String Assignmenty Adv 2

String Constani Pascal 10

STRING CONSTANT TOO BIG
Paacul 64

String Relations Adv 3

STRINGCOPY Procedure Adv 3

STRINGDELETE: Procedure Adv 8

STRINGINSERT Procedure Adv 4

STRINGPQS Function Adv 4

Sirings Adv 2, AsmLang 4

Subrange Puscal 15

subseript Compile b, ['ascal 24, 40,
Adv 2 10

SUCC Pascal 59

SYMRBOIL. MISSING IN OBJECT
RECORD Link 9

SYMROL TABLE FULL Pascal 64

SYMH(. TABLE FULL - ... IN _.
Link 9

Symbols Debug 13

SYNTAX ERROR Pazcal 64

T

term Debug 15, Pascal 14, 63, Adv 2,
AsmLang 23

terminator Pascal 2

Terms and Indirection Debug 15

Text File Pascal 14, 20

Text Screen FEdit 2

The CLEAR Key Edit 7

The Pascal Program Paseal 2

THEN Paseal 36

TITLE AsmLang 26

Title and Subtitle Compile 9

TITLE: Asm 2

TO Paseal 38-39

Top of Page Compile 8

Trace (TR) Debug 140

TRUNC Pascal 59

Type Conversians Adv T

Type Extensions Adv 7

Tvpe ldentifier Pascal 13

Tvpes I*ascal 13

U

UNDEF 8YM AsmLang 28

+ UNDEFINED ** Pascal 65
UNDEFINED-..IN .. Link 9
UNDEFINED 8YMR(M. Pascat €5
UNEXPECTEIY ENIY I'aseal 65
UNEXPECTEELD EOF Paseal 65
LINTII. Paseal ##

[Ip Arrow Character Entry Edit 8
up-arrow Pascal 29

Uze Of INTERFACE Block Adv 19
[Jzer Sereen (US) Debug 9

V

value parametar ’ascal 24-25

VAR Declaration Pascal 24

VAR Parameter Pascal 24

Variable Sizes and the Stack Adv 22
Variahles Pascal 22

variant Pascal 17-19

w

WHILE Statement Pascal 37

WITH ERROR Pascal 65

WITH Statement Pazcal 42

WRITE Statement I'ascal 52

WRITELN Statement 'ascal 54

Writing A File Edil 10

Writing To a File of Char (Text)
Pascal 53

Writing to a Typed File Puscul 52

X

XOR operatar Pascal 30

