Turns ICode into source Code

AiMajile

D MWM

DCom User Manual Contents
Section Page
Contents 2
Title 3
Disclaimer 3
Notice to Programmers 4
Disk Contents 5
Using DCom 6
DCom Usage 7
Functions 8
Remark Lines 8
Line Numbers 10
Variables 10
Type Statements M
Instruction Statements 12
Real Number Generator 13
~ DRPN and Acknoweledgements 12

DCom® 1991 Ly Waspe Camplell AriMagih Pradections

DCom - Basic09 |-Code De-Compiier

Version 03.10.00
Copyright (O 1991,1992,1993
by Wayne Campbell

All Rights Reserved

DISCLAIMER NOTICE

DCom and its related modules are copyrighted and are not to be
distributed as freeware or shareware in any manner or in any form.
The contents of this disk and of this document are also protected, and
may not be distributed in any fashion without prior written consent of
the author, and then ONLY to the person(s) named in the written au-
thorization.

The author accepts NO liability for ANY damage to hardware or
software, the cause of which is the MISUSE of this program. DCom Is
sold on an AS-IS basis with NO allowance for refund or exchange. DCom
is believed to be free of programming faults, except as outlined In this
document, and therefore, no responsibliity is assumed by the author
for defects. Every attempt will be made by the author to rectify any
problems with the use of DCom relating to the inabliity of the software
to run on a given system, to the extent that it can be determined
whether or not the system Is the cause of the problem.

DCon® 1991 Ly Wagme Camplell AriMaich Productions
NOTICE TO PROGRAMMERS

DCom has been written in such a way as to dis-allow the de-compilation
of itself. DCom will only work on Basic09 I-Code files. It will NOT work on 6809
OBJECT flles, Pascal P-Code files, or C or Pascal derived OBJECT files.

The ‘protect’ feature allows authors of Basic09 programs for the Color
Computer 6809 0S9 Level 1 & 2 to protect thelr commercial programs from
de-compilation by DCom. Programmers may inquire about this by contacting
the retailer from whom they have purchased DCom.

Purchasers will receive a registration card with their purchase of DCom.
This registration card, when filled out and returned to the retailer from whom
the purchaser purchased DCom, will entitle the pur chaser to receive upgrades
to DCom up to and including v ersion 3.10.00 at no extra cost.

My design goals were to make DCom as USER FRIENDLY as possible, and to
make DCom as COMPLETE as possible. | believe | have accomplished these
goals.

Before deciding to try and market DCom, | was writing it soley for the
purpose of recovering my own lost source code. After | had written the first
revision, | decided that others may be in need of an I-Code de-compiler. This
led to the decision to market it. As a result, | am hereby obligated to state
that the purpose of this program is as a programming tool, designed to allow
Basic09 programmers the abllity to recover lost source code. It is NOT in-
tended to allow general users to de-compile ocop yrighted software. Any such
use of this program constitutes piracy, as well as copyright infringement, and
Is in NO WAY condoned or supported by the author.

Feedback may be sent to:
Wayne Campbell
c/0 AniMajik Productions
4650 Cahuenga Bivd, Ste #7
Toluca Lake, CA 91602

(818) 761-4135

DCon® 1991 £y Waspue Camplell AriMafih Prodections

DISK CONTENTS

This Disk Includes:

-DCom - Packed Basic09 I-Code Module(s) (The Program)
-DCPM - Packed Basic09 I-Code Module(s) (The Program)
-DCP2 - Packed Basic09 I-Code Module(s) (The Program)
-DCP3 - Packed Basic09 I-Code Module(s) (The Program)
-DCP4 - Packed Basic09 I-Code Module(s) (The Program)
- DCom.DOC - This File

-Split - Packed Basic09 I-Code Module (Sample Program)
- Split.SRC - Source Code B Split

- SplitB09 - DCom Output Flle ® Split (Comparison File)

NOTE ABOUT SPLIT:

I've included the Split program as a sample. Compare the B09
source with the SRC file to see the differences between the original
source and DCom’'s output Also, you may use the I-Code module to
test-run DCom to be sure it will run on your system. Split is a program
that allows you to split a text file into smaller files, and to specify the
number of lines per file. Output files default to ‘x**, where ** = aa thru
7? (aa-az, ba-bz, etc), but an alternate name may be assigned, in which
case, if you assigh a name of ‘temp’, the output files will be named
‘temp.aa’ - ‘temp.??’.

DCon® 1991 ‘y W"W“ W AmMArl‘ Prodction,

usinG pcov

DCom first checks to see if your page pause Is currently set as ON.
If it Is, DCom turns the pause off while processing.

DCom will de-compile single module fles, as well as merged files.
With merged modules, each module Is written to a separate .B09 flle
(in normal decompile).

DCom must perform multiple passes on each module, for the pur-
pose of Line Number Reference and Variable Identification, as well as
Complex Variable, Multiple - Dimension Array Variable, String Variable,
and Paramater Variable identification and Definition. On larger mod-
ules, this can become a lengthy process.

DCom Is TOTALLY disk-intensive. | suggest that floppy users use a
ram-disk, as this will speed the de-compile up by at least 30%. | use
one myself and it works flawlessly My ram-disk is setup to be 140K. |
usually put the module to be de-compiled in the am-drive, and CD to
the ram for de-complle. This way, DCom is reading the source-flle and

bullding/using its work flles all on the ram, allowing faster de-com-
plies.

DCom generates working files during execution,and automatically
cleans up after Itself when done.

DCom® 1491 Ly Wigme Campleld AviMafik Productions

DCOM - USAGE

Required Modules:

-RunB - RunTime Module

- SysCall - System Call Sub-Routine
-Tmode - 0S9 Module

-Load - 0S9 Module

- Unlink - 0S9 Module

Syntax For Use:
Std. Shell: dcom (“pathname”"opt1)
Shell+ : dcom pathname lop ti
Where:

pathname = filename or /path/fllename to I-Code to be De-Compiled
And opt (Optional):

-v = Bulld Output File, Dupe Output to StdOut
-0 = Suppress Output Flle, Output to StdOut only

DComIENTERI = Print buiit-In help

DCom -IENTERI (or DCom (“-MIENTERI) = Print built-in help
DCom ?IENTERI (or DCom (“?)IENTERI) = Print bulit-in help
DCom -?IENTERI (or DCom (*-2)IENTERI) = Print built-in help

DCom pathnamelENTER! (or DCom ("pathname”ENTER!) = Build Output File Only

DCom uses the current data directory for its work files, and for the output
filets). The -0’ option may be used to redirect the output to ano ther directory
as follows:

dcom /dd/cmds/junkfile -0 »/d1/JunkFile.B09
will redirect the output of DCom to a flle named JunkFile.B09 on /D1.

NOTE: Using this method will cause merged modules to be decompiled to
a single file instead of separate flles for each module. This output INCLUDES
the printed display of the function line: ‘Bullding Work Fles. 'as described
later in this documentation. (In other words, you'll see no thing on your screen
except a waiting cursor until DCom comple tes decompilation o f the module(s)
specified.)

Bullding Work Files: ...
Building imodulename:.B09

While writing DCom, | found that waiting for up to an hour to begin
seeing printed results was unacceptable (BORING Is the word)d. | de-
cided to Indude the above statement because | couldn’t really tell where
the program was In its execution. It Is output to Stdout so the use
may tell about how far through the execution DCom is.

For merged flles, the above two (2) lines will be repeated for each
module found In the I-Code fle. The ‘B09’ file will reflect the name of
the current procedure being de-compiled.

The line for building the ‘B09’ flle will be suppressed If the -0’ op-
tion Is specified. Also, Version 3 de-compiles much faster than Version
1 did, but the above output lines are still included, as it can still take
some time to begin to see output

REVARK LINES 1B

The output code generated by DCom Is begun with a series of re-
mark lines displaying the numbers corresponding to the total of the
item(s) identified, or a function being executed. | chose to use thi:

method of output due to the fact that longer modules can take time
to de-compile.

This display is as follows:

PROCEDURE sokoban

¢ == DCOM I-CODE DE-COMPILER ====wm= ¥
(* Total identified Variables : 140 %
(* Total Mirror Variables - 42
(* Total Un-identified Variables i+ 09
(* Total Complex Type vVariables : + 3"
(* Total Sub-Routines 1+ 3%
. -
(* Total Program Variables i- 104 %
¢ *)
(* Total Complex Variables : 45 %)
(* Total Line Numbers : 20"

* "

DCon® 1991 ly WW Canplell AMW Production,

It appears that Basic09 doesn't concemn Itself with unused vari-
ables, beyond allocating the storage for them. Because of this, DCom
will NEVER be able to correctly identify unused variables in a Complex
Type, although, DCom is now able to correctly identify the NUMBER of
variables a TYPE statement was created with, as well as the SIZE (in
BYTEs) of the TYPE. Immediately following the variable remark lines,
this information Is printed as follows:

(* TYPE:TP1 Total Variables:x Wpe Size: x
(* TYPE:TP2 Total Variables: x Wpe Size: x
* TYPE:TP3 Total Variables:x Wpe Size: x
etc.

Immediately following the above remark lines, DCom informs you
that Statement Construction begins with TYPE DIM and PARAM State-
ments:

* *)
(* TYPE DIM and PARAM Statement Construction %
* ")

Following the TYPE DIM and PARAM Statements, DCom informs you
that Instruction Statement construction begins:

¢ b

(* Instruction Statement Construction *
¢ 9

After the Instruction Statements have been constructed, DCom
reports that the current module has been completed:

(t

END sokoban ")

If there are more modules in the specified file, DCom begins again
with the next module.

DCon® 1991 by Wagne Camplet! AriMagsh Prodections

Line Numbers are identified from GOTO/GOSUB statements, ON vari-
able GOTO/GOSUB statements, ON ERROR GOTO statements, RESTORE
line statements, and IF / THEN line statements. What this means Is, if
you have included line numbers in your program that are only used as
a convenlent way to get to some portion of the program quickly, with
NO other references, DCom will NOT identify them, as Basic09 uses an
integer value that is the offset location relative to the execution offset
of the program for branching, and there is no way to know where
branches occur, except by branch statements.

This also means that, if you have set some line numbers for sub-
routines that you haven’'t yet included the GOSUB references to, they
will NOT get identified. You will have subroutines (ending with RETURN)
with no line number at the beginning of the routine.

DCom may still, on occasion, identify an invalid reference, but it
also handies this in the instruction statement routine, so that the in-
valid references are skipped. As a result, if DCom identifles a false line
number reference at, say, line #20, the printed source will show a jump
from line #10 to line #30. The false line number iIs skipped, and output
is unaffected.

VARIABLES

There will be times that DCom will identify a variable that is false.
This poses no real problem, as the only place this variable will show up
Is In the DIM statements. Often, this will not be noticable at first, as the
variable will be of the type BYTE, INTEGER or REAL. Sometimes a false
BOOLEAN wWill occur. The noticable false variables will be STRINGs, usu-
ally showing a dimensioned size greater than 20,000 bytes In length.
Again, no problem. it will only show up in the DIM statements, and can
be easily removed by your favorite word processor (or deleting the
reference from within Basic09).

(===) \ARIABLE NAMES (===)

The most simple way | found of naming variables was by number-
ing them. In order to establish a difference between variables in a
complex type, paramaters, and other variables was to use a letter be-
fore the number (the letter also comes before the nhumber because

Page 10

DCon® 1991 ly WW C'Amflca AMMM Proddtion,

Basic09 won't allow variable names to begin with a numben. The wef-
erencing is established as follows:

TYPE Statement Variable: TPx

ATOMIC TYPE: BYTE INTEGER REAL BOOLEAN STRING COMPLEX

“TYPE Variables: box 1o NoooX XXX 10000 Booa
PARAM & DIM Variables: Bxooox oot RXXXX LYo S0 o

*In the TYPE statements, the variables are shown as oo, hooox but
in the instruction statements, the same variables are shown as .hooo in
conjunction with the Complex variable. (le: T0024.i0001)

Itis up to the user to rename the variables in his/her program to
those suitable to them.

NOTE: Any REAL or STRING variables used that were defined by use
rather than by DIMension statement will be DiMed in the de-compile.
Therefore, any STRINGS deflned in your program by using the form var$
will show up as DIM var:STRING, and any REAIS defined by the form
var== (or var=) will show up as DIM varREAL Also, | followed convention
with STRING length, in that, just as Basic09 assigns a default length of
32 to those strings DIMed as VarsSTRING, so also does DCom. When it
finds a string with a defined length of 32 characters, it builds the DIM
statement as varSTRING instead of VarsSTRINGI32I.

TYPE STATEMENTS

'When DCom encounters a TYPE statement with fewer variables iden-
tified than were originally included in the TYPE statement, it detects
the places within the TYPE where the unidentified variables were lo-
cated. As itis impossible to determine the ATOMIC TYPE or SIZE of any
individual variable within this gap, DCom uses a Hdimensional array as
a means to “fill-in’ the gap.

EXAMPLE:

Original TYPE:

TYPE FRT=orange apple:BYTE: banana,peariINTEGER
DIM fruitFRT

Page 11

DCon® 1991 ly WAW W A*«MA’J‘ Productions

Let's say that apple and pear were used, but orange and banana
were not.

DCom TYPE:

TYPE TP1=g000(1):BYTE; bOO00:BYTE; g001(2):BYTE; i0001:INTEGER
DIM TO002:TP1

All ‘gap’ identifiers use a 3-digit number Instead of a 4-digit num-
ber as used on identified variables. While the incrementing of these
variables Is done the same as the other variables, they are Incremented
separately. As a result, you may see variable numbering such as:

i0025,i0026:INTEGER; g003(12):BYTE; r0027:REAL

DCom also detects the occurance of a variable DIMed to a TYPE for
which there was no TYPE statement constructed. In this case, it cre-
ates a TYPE statement that defines the entire TYPE as a 1-dimensional
BYTE array, as follows:

TYPE TP4=g007(221):BYTE
DIM TO028:TP4

NOTE: DCom still has major problems with complex types. The
construction of TYPE statements, and identification of the variables
DiMed or PARAMed to them, is mostly a hit-and-miss operation at best.
Continued effort to resolve this problem is currently being addressed,
and It Is hoped that a solution will be found. However, due to the
complexity of (and the lack of information found in) the I-Code, this
problem may NEVER be solved.

INSTRUCTION STATEMENTS

Line numbers are inserted in the Instruction Statements in incre-
ments of 10. This means that the 1st line number will be ‘0, the 10th
line number will be “100’, etc.

There is one area that will be affected in the de-complle. This is the
area of muitiple instructions in a single instruction statement, using
the ‘' to separate instructions.

The use of the '\’ Is a carryover from the RSDOS Basic instruction *
which allows the ‘stacking’ of instructions. Most of those who use Ba-
sic09 that | know, refrain from using this as much as possible, and when
they do, only stack a maximum of 2 or 3 instructions in one line.

Page 12

DCom® 1991 £y Waspne Camplell AriMaiih Prodictions

In Version 1 | followed this convention, in that if there are more
than two instructions stacked in a line, DCom would start a new line
with the 2nd ‘' and begin counting ‘\'s again. (ie: 4 \'s in one line would
result in 3 lines of code in the de-compile, 2 lines with 2 instructions,
and 1 line with 1 instruction) In Version 2 | have done away with this
for ONE main reason. If you have a line of code such as:

x=15\ (* This is a remark

Basic09 will remove the remark line, but NOT the ‘V'. If the next line
is the beginning of a FOR loop or some other construct, the printout in
de-compile may be confusing. As a result, ALL ‘\' characters are treated
as terminators. So, if you have:

PRINT \ PRINT
it will show up as:

PRINT
PRINT

Also, the character ‘~ has many uses in Basic09, including assignment
of variables. Basic09 also allows the use of ‘~ in assignment of variables.
Therefore, | have chosen to use the ‘=~ as the assighment operator in
DCom. Whenever DCom encounters an = in an assignment role it auto-
matically uses the ‘~ instead, reserving =~ for conditionals.

REAL NUMBER GENERATOR

DReal was written by Paul Fitch and Rodney Hamilton for the pur-
pose of generating real number values from the 5-byte storage code
used by Basic09. | include the copyright notice here, and the same
restrictions that apply to DCom apply to DReal & well.

DReal - DCom Real Number Genertor

Copyright (©) 1992
by Paul Fitch and Rodney Hamilton

All Rights Reserved

The Real Number Generator does NOT round the values determined.
Test loads of source output show that Basic09 won't round them ei-
ther. Basic09 assumes that the value Indicated in the source file was
specified by the programmer. For this reason, you may encounter places
in the source where you will have to perform manual rounding.

EXAMPLE: 65000. may show up as 65000.0001 in the output.

Page 13

DCon® 1491 ly WA,M Camplell AMHM Prodidtion:

ACKNOWELEDGEMENTS

Version 03.00.00 of DCom no longer requires (or uses) the external
DRPN program, as DRPN Is now internal. However, to preserve continu-

Ity with the previous versions, | have included the copyright notice for
DRPN here.

DRPN - DCom Output Parser

Version 01.0700
Copyright () 1992
by Paul Fitch

Version 02.00.00
Copyright (O 1992, 1993
by Paul Fitch and Wayne Campbell

All Rights Reserved

DRPN was written by Paul Fitch for use with DCom as a means to
Create useable source code that can be loaded into Basic09. Itis copy-
righted, and the same restrictions that apply to DCom apply to DRPN
as well.

Thank you for purchasing this product. It REALLY is APPRECIATED!
Wayne Campbell - Author
ACKNOWLEGEMENTS:

My heartfeit thanks go, In no particular order, to:
Melissa Dolash - for her patience and understanding, and her
concemn when things get rough
Paul Fitch and Rodney Hamiiton - for their help with the real
number generator and the precedence ordering operations

Paul Pollock and
Alan Sheltra - for their patience and endurance with the
answers to a million questions

Page 14

DCon® 1991 by Waype Camplell AniMaiik Prodections
A MM/‘M .

p WM&M

Page 15

AniMajil
Prodiction,

Available from FAT CAT Publicationse....

Special reprints of the The 0SKer Magazine (Now out of print.
The entire 6 issue set is now available and comb-cound (so
pages lay flat). This is over 160 pages of 0S9 and OSK enjoymen
for only $15.00 (S&H included in price)

Back Issue of The "International” 0S9 Undergrounde
Magazine are available at the cover price.
Please write or call for prices and issue info.

Subscriptions to The Underground are still $18.00/yr.
(12 issues, US) ($22. Canada, $27. Overseas)

Call (818) 761-4135 for more info or write to:
Fat Cat Publications*
4650 Cahuenga Blvd., Ste #7
Toluca Lake, CA 91602

Fat Cat Publications is a subsidiary of AniMajik Productions

	DCOM - Basic09 Decompiler
	User Manual Contents
	Version
	Disclaimer Notice
	Notice to Programmers
	Disk Contents
	Note About Split
	Using DCOM
	DCOM Usage
	Functions
	Remark Lines
	Line Numbers
	Variables
	Type Statements
	Instruction Statements
	Real Number Generator
	Acknowledgements
	Back Cover

