

A.

B.

D.

C.

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND SOFTWARE PURCHASED

FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND RADIO SHACK FRANCHISEES

OR DEALERS AT THEIR AUTHORIZED LOCATIONS

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. 	 CUSTOMER assumes full responsibility that this compuler hardware purchased (the "Equipment"), and any copies of software included with the
Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER.

B. 	 CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software are to
function, and for its installation.

II. 	 LIMITED WARRANTIES AND CONDITIONS OF SALE

A. 	 For a period of ninety (90) calendar days from the date of lhe Radio Shack sales document received upon purchase of the Equipment. RADIO SHACK
warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects. This
warranty is only applicable to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer centers, retail
stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is void if the Equipment's case or cabinet has been
opened, or if the Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated
warranty period, the defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack
franchisee or a participating Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole
and exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO
SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair expendable items.

B. 	 RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this paragraph.
Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software manufacturing
defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the Software.
The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or Radio
Shack dealer along with the sales document.

C. 	 Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf of RADIO
SHACK.

D. 	 EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF MERCHANTABILITY DR
FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION TD THE DURATION OF THE WRITIEN LIMITED WARRANTIES SET FORTH
HEREIN.

E. 	 Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

Ill. 	 LIMITATION OF LIABILITY

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TD CUSTOMER OR ANY OTHER PERSON OR ENTITY
WITH RESPECT TD ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TD BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR
"SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE,
LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE "EQUIPMENT"
OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE,
LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE."
NOTW ITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER
OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE" INVOLVED.

C.
RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.
No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years after the cause
of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever first
occurs.
Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not apply to
CUSTOMER.

IV. 	 SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer, subject to the following provisions:
A. 	 Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. 	 Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to the

Software.
CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this function.

D. 	 CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically provided in this
Software License. Customer is expressly prohibited from disassembling the Software.

E. 	 CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in the
operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for TRSDDS Software,
CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.

F. 	 CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one sold or
distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from CUSTOMER.

G. 	 All copyright notices shall be retained on all copies of the Software.

V. 	 APPLICABILITY OF WARRANTY

A. 	 The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or Software
License to CUSTOMER or to a transaction whereby Radio Shack sells or conveys such Equipment to a third party for lease to CUSTOMER.

B. 	 The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and or licensor of the Software
and any manufacturer of the Equipment sold by Radio Shack.

VI. 	 STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from state to
state.

12184

D.L. LOGO

D.L. LOGO Program:
© 1985, Tandy Corporation.

All Rights Reserved.

All portions of this software are copyrighted and are the proprie­
tary and trade secret information of Tandy Corporation and/or its
licensor. Use, reproduction or publication of any portion of this
material without the prior written authorization by Tandy Corpo­
ration is strictly prohibited.

D.L. LOGO Program Manual:
© 1985, Tandy Corporation.

All Rights Reserved.

Reproduction or use, without express written permission from
Tandy Corporation and/or its licensor, of any portion of this man­
ual is prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy Corpora­
tion assumes no liability resulting from any errors or omissions in
this manual, or from the use of the information contained herein.

10 9 8 7 6 5 4 3 2 1

Tandy is a registered trademark of Tandy Corporation.

CONTENTS

INTRODUCTION TO DL LOGO . 1

System Requirements (equipment you need) 3.

Backing Up Diskettes . 4

.Starting the D .L . LOGO Program .
5
LOGO in Action (a demonstration program) . 6

The LOGO Philosophy . 8

About this Manual . 10

A Look at LOGO (color plates of LOGO screen displays) 1 1

1/ SIGHTSEEING (introductory graphics) 21
.

The Keyboard (keyboard functions with LOGO) 22
.

LOGO and the Primitives (LOGO commands) 25
.

Proceeding (multiple commands) 28
.

Abbreviations and Directions 30
.

Play it Again (repeating commands) 32
.

Bye (exiting LOGO) 34.

2/ TECHNICOLOR TURTLE (using colors) 39
.

Turtle Shows Its True Colors (selecting pencolors) 40
.

Background Colors 42
.

Calculating Colors 43
.

Housekeeping (clearing the graphics and text screens) .
45

3/ RUNNING ERRANDS (procedures for your Turtle) 53
.

Writing Procedures (a look at the edit mode) 54
.

About Editing (changing procedures) .
57

Direct Wire (information from the keyboard) 64.

CONTENTS

4/ MEMORIES, MEMORIES 73.

Saving and Loading (using diskette storage) 74.

.Making Room (deleting files) . .
 78
A Vanishing Act (erasing and restoring files) 80.

Printing Procedures 84.

5/ COMPLETING THE TOUR (more Turtle graphics) 91
.

More Geography (advanced graphic commands) . 92
.

.More Turtle Maneuvers .
95

Building Fences and Roaming Free (Turtle screen control) 100 .

6/ YOU SING, TURTLE PLAYS (Turtle music) .
 107

Technical Talk 108.

Getting Started 1 1 1.

Everybody Sing (music in 4 voices) 122.

71 VARIETY: THE SPICE OF LIFE (using variables) 133
.

Making Things: Creating Words and Lists 134
.

Handling Data (what a variable is) 138
.

Counting on Variables (number variables) 144
.

Variables at Home and Abroad (local and global variables) .
148
Ins and Outs of LOGO (output) 150.

8/ TURTLE'S JUGGLING ACT (more about variables) 157
.

Words, Numbers, and Lists 158
.

Making a List 160
.

Talking in Sentences (using SENTENCE) 162
.

The First Shall Be Last (manipulating variables) 163
.

Running Away with Lists 175
.

Turtle Swallowed a Clock (using the time function) 177
.

9/ A CALCULATING TURTLE (working with numbers) .
185

The Numbers Game 186.

Turtle Figures .
 188
Comparing Figures and Facts 201.

Calculating with Precision 205.

. .
Making Rearrangements (random, shuffling, sorting)

ii

206

CONTENTS

101 LOGIC AND LOOPS (loops and conditional logic) 221.

Testing, Testing, 1, 2, 3 . 222

A Loop Is a Loop Is a Loop Is a . 230

A Recursive Turtle . 236

111 TALKING BACK . 245

You Write the Speech (using speech) . 246

A Sound Procedure (LOGO's SOUND primitive) . 250

121 TURTLE ON A LEASH (joystick and X-Pad control) 259
.

Reading the Joysticks . 260

Padding about, Turtle Style (using the X-Pad) . 266

Remote Control . 270

131 CHASING AFTER BUGS (f inding and handling errors) 275
.

To Err is Human (what errors are) . 276

Debug (finding errors) . 277

T he Catch (using errors) . 280

Trace-How To Follow a Procedure . 285

Error Code Reference . 287

141 TURTLE IN THE DRIVER'S SEAT (files, OS-9, screen format) 295
.

Breaking Out (file handling procedures) . 296

Fine Tuning File Control . 301

Calling on OS-9 . 306

Turtle on T he Textscreen (text screen formatting) . 307

15/ EDITING: THE FULL STORY . 319
.

Editing Features (advanced editing) . 310

T he Search (search and replace) . 326

Edit Commands Reference . 328

APPENDIX Al Glossary of Terms for D. L. LOGO 335
.
;

APPENDIX Bl Sample D.L. LOGO Programs 347
.

APPENDIX Cl Primitive Reference . 373
. .
;

APPENDIX DI Starting OS-9 from BASIC 391
.

.Index .
;
393

iii

I NTRODUCTION TO

D.L. LOGO

I nformation about LOGO

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

Section 7

Section 8

System Requirements: information about the equipment you
need to use D.L. LOGO.

Setting Up Your System: information about organizing your
equipment to use D.L. LOGO.

Backing Up Diskettes: information about backing up D.L.
LOGO diskettes.

Starting the D.L. LOGO Program: information about booting
(starting) D.L. LOGO.

LOGO in Action: a demonstration program to introduce D.L.
LOGO.

The LOGO Philosophy: the purpose and use of LOGO.

About This Manual: the philosophy and organization of your
D.L. LOGO manual.

A Look at LOGO: color plates of LOGO-created display
screens.

1

Introduction

LOGO is an exciting computer language designed to help
students of any age explore structural and logical
concepts. It employs what is often known as turtle
graphics . The character that flashes around your video
screen, drawing designs at your command, is called a
turtle.

The reason for the name goes back to the early days of
computer development when technicians directed an
actual mechanical device moving at slow speed around
laboratory floors.

Although the use of computers in education is still in its
infant stage, major advancements have already been
made in applying this revolutionary medium for learning
activities. The LOGO language is one noteworthy
application.

D .L. LOGO, running under the OS-9 operating system,
is an advanced version of this special graphics language. It
incorporates such features as:

• 	 A graphics mode that lets you enter commands and see
immediate execution

• A total of 16 background and 16 foreground screen
colors

• 	 The capability of interfacing with external devices, such
as a robot, an external turtle, or a plotter

• 	 Sophisticated speech, music, and sound capabilities

• 	 Joystick, X-Pad, and printer interfacing

• 	 The ability to accept variable input and to transfer
variables between. procedures

• 	 The ability to access and use OS-9 commands and
capabilities

• 	 Advanced arithmetic, trigonometric, and logic functions

• 	 Extremely high precision math capabilities

• 	 Advanced sentence, word, and list manipulation

• 	 Sound and speech capabilities

. . . . About Turtle Talk

Throughout this manual are
special notes in the margins.
These notes provide capsules of
LOGO concepts or extra
information to guide you
through D.L . LOGO.

2

Section 1 Introduction

. . . . About Colors

Because D .L . Logo's graphics'
capabilities make extensive use

of colors, a black and white
television displays some designs

poorly and may be
unsatisfactory for some

applications .

Section 1
System Requ i rements

MINIMUM EQUIPMENT

To use D.L . LOGO, you need:

• 	 A 64K Color Computer
• 	 One disk drive
• 	 A television set
• 	 The D.L. LOGO program diskette

OPTIMAL EQUIPMENT

To use all D.L . LOGO functions, you need :

• 	 A 64K Color Computer
• 	 Two disk drives
• 	 A color television
• 	 T he D.L . LOGO program diskette
• 	 A Multi-Pak Interface
• 	 A Color Computer Speech/Sound Cartridge
• 	 An X-Pad Graphics Tablet
• 	 Two Color Computer Joysticks
• 	 A printer. Excellent choices are a dot matrix printer,

such as the Tandy DMP 410, or an ink jet printer, such
as the Tandy CGP-220

To give speech capabilities to D .L . LOGO, you need both
the Multi-Pak Interface and the Speech/Sound Cartridge.
The Speech/Sound Car tridge generates speech . The
Multi-Pak Interface lets you connect both the disk drive(s)
and the Speech/Sound Cartridge to your computer . To
use the X-Pad Graphics Tablet, you also need the Multi­
Pak Interface . Insert the Color Computer Disk Controller
into Slot 4 of the Multi-Pak. T he Sound/Speech Cartridge
and the X-Pad Cartridge can then be inserted in any of
the remaining s lots . Set the Multi-Pak slot se lection
switch to 4 to access your disk drive cartridge . You do not
need to change the selection switch to use other car­
tridges with D .L . LOGO.

3

Introduction Section 2

WRITE·PAOTECT NOTCH Section 2
Backi ng Up Diskettes

You need to make 1 or more backup copies of D.L.
LOGO before using your program diskette . You can make
copies of any D .L . LOGO diskette in either of 2 ways.

If you do not have the OS-9 operating system, you can
back up diskettes using the normal Color Computer Disk
BASIC, DSKINI, and BACKUP commands. Follow exactly
the same backup procedures as outlined in your Disk Sys­
tem Owner's Manual.

Because D.L . LOGO operates under the OS-9 operating
system, all of OS-9's features and commands are avail­
able. Using OS-9 commands, you can back up diskettes,
make copies of files, or change directories . You can do
these and other OS-9 operations either before you enter
D .L . LOGO or from the LOGO program. Refer to your
05-9 Commands manual and Chapter 14 of this manual for
information on using system commands.

I
•·

I

�--TAB

. . . . About Backup

Often the content of a diskette
represents many hours of work.
Losing this data can be
discouraging . We suggest you
make frequent copies of all your
diskettes as you investigate and
use D .L . LOGO. The process
only takes a few minutes. Before
making copies of your D .L .
LOGO diskette, place a tab over
the write-protect notch . When
the backups are finished, store
the original diskette in a safe
place.

4

OS-9

I 1.

I I

I I

Section 3 Introduction

LEYEL OltE

RS \IERSIOU 01.01.01

COPYRIGHT 1930 BY f10TOROLA ltlC.
AHD HICROUAPE SYSTEHS CORP.

REPRODUCED UHDER LICEHSE
TO TAHDY CORP.

ALL RIGHTS RESERYED.

YV/HH/DD HH :HH: SS

TIH[? LOGOI

[I L l OGO
YE R'3 I OU 0 I . Э)0. 00
COPYRIGHT 1965

DALE LEAR SOFTllARE,, IHC.

REPRODUCED UttDER LlCEtlSE

TO TAHDY CORP.

ALL R IGHTS RESERVED

Section 3
Start ing the D.L. LOGO
Prog ra m

Use the OS-9 boot procedure that you are accustomed to
using. If you do not have a standard OS-9 boot proce­
dure, see Appendix D in this manual .

After starting up your system, the OS-9 BOOT and copy­
right messages are displayed on the screen. The following
prompts appear:

Y Y / M M / D D
T I M E ?

H H : M M : S S

1 . Enter the date in the year/month/day format, press the
space bar, then enter the time as shown, and press
ENTER

Note: Entering the time is optional. To bypass it, press

ENTER after entering the date .

2. When the 0 S - 9 : prompt appears on the screen, type:

L O G O ENTER

3. The D.L . Logo copyright appears on the screen. You
are in the immediate, or single command mode and
can begin entering commands.

5

http:01.01.01

I I

I I

I 1.

[J,

I I,

[SHIFT I,

Introduction

Section 4
LOGO i n Action

One o f the best things about owning a new product is to
see it working well. To let D .L . LOGO show off, leave
your backup diskette in Drive 0, and type the following
as your first command:

L O A D " D E M O ENTER

The blue cursor disappears, and Drive Q) runs for a few About Filenames
moments. When the blue cursor reappears on the screen
(your screen shows a question mark (?) followed by a blue Some of the filenames on your
block), type: D.L . LOGO diskette end with

the letters "TEXT". These files
D E M O ENTER are text files rather than

procedure files . You can load
If you have a Speech/Sound cartridge installed, the dem­ them into the D.L . LOGO
onstration program greets you audibly, as well as on the workspace to examine or edit
screen display, and speaks to you throughout the demon­ them, but you cannot execute or
stration. Sit back and enjoy the display. When the pro­ them.run

To stop the program, pressgram ends, it repeats itself.
BREAK

All the programs used in the demonstration are on your
D.L . LOGO diskette. Following is a complete list or direc­
tory of all the programs provided with D.L. LOGO.

D.L. LOGO Directory

A N I M A L * A N I M A L S S O N G S *
H E X * T R E E * F L A G *
C L O C K * S O R T * F A C T O R I A L *
D E M O F O R T R E S S A I T E X T
S T A R S * S O U N D T E X T G R A P H T E X T
I N T R O T E X T M A T H T E X T E X I T T E X T
D E M O S O N G D O O D L E *

Programs not marked with an asterisk are part of the

Section 4

. . . . About Keys

When you see a word enclosed
in a box, such as ENTER press
the key on your keyboard that
matches the enclosed word.
When you see ENTER press
the ENTER key on your
keyboard. When you see

press the SHIFT key .

6

I J

I J.

I J:

I I

Section 4 Introduction

. . . . About Procedures and
Programs

Procedures are a series of
commands that direct LOGO to

accomplish a task. Often, you
use several procedures together

to achieve a particular goal .
Procedures used together make

up a program.

r• L LOGI)
YERSIOll 01.00.00
COPYRIGHT 1985

DALE LEAR SOfTllARE, llOC.
REPRODUCED Ul[DER LICEllS£

TO TAtlD'f CORP.
ALL RIGHTS RESERVED

, LOAD • TRH I

demonstration program and do not function properly
alone. Programs marked with an asterisk can be loaded
and executed individually. To load and execute a pro­
gram, follow the same procedure as you did for the dem­
onstration program. Type:

L 0 AD " f i 1 en am e ENTER

Where filename is the name of the program you wish to
load . For instance, to load the program TREE, type
LOAD "TREE ENTER

To execute the program, type its name and press

T R E E ENTER

Some of the programs on your D .L . LOGO diskette re­
quire more than 1 word to execute. Appendix B contains
listings and instructions for all the programs. There are
also programs in Appendix B that are not included on
the D.L . LOGO diskette. To use these programs, type
them into D .L . LOGO's memory. As you learn more
about LOGO, you may wish to re-examine these listings.

Now it is your turn to put D .L . LOGO through its paces.
Try the concepts in this manual, and learn as you go .

When you finish, you can create programs even more ex­
citing and interesting. Relax, have fun, and enjoy the lan­
guage of D. L. LOGO.

ENTER

7

Introduction Section 5

Section 5
The LOGO Ph i losophy

LOGO is a language for learning. Children and adults
have a natural fascination for LOGO's screen graphics ca­
pabilities . Add the functions of math, logic, speech, mu­
sic, and sound, and LOGO becomes an exciting method
for exploring new concepts at multiple levels.

LOGO is for play . You can weave shapes, colors, relation­
ships, music, and sound in infinite patterns. Users unfa­
miliar with LOGO' s language and concepts can begin
with the simplest of structures. Later, they can increase
intricacies and variety.

LOGO is a challenge for both adults and children. LOGO
handles Boolean logic and advanced trigonometry as
readily as simple arithmetic.

LOGO is for experimentation. Goals are important, but
more important are the paths you explore in questing a
goal. A square becomes an elaborate geometric design. A
mistake in logic introduces a new adventure or, possibly,
a new logic.

A Word to Adu lts

Although LOGO is an excellent educational tool for chil­
dren, it can also stretch an adult's logic and conceptual
abilities to the limit. Use LOGO to transform geometric
and trigonometric concepts into immediate visual displays
or to doodle, explore, and enjoy the fascination of unex­
pected results.

Wielding the techniques you learn in this manual, you
can introduce toddlers and teenagers alike to the wonder
of computer graphics and the excitement of having a ma­
chine respond to them.

. . . . About Logo

The philosophy of Logo as an
educational tool was first
advocated by Seymour Papert at
the Massachusetts Institute of
Technology. Papert suggested
that Logo could provide a means
whereby an individual could
gain control over his educational
progress. Rather than being
taught by the computer, the
student could teach the
computer. Logo makes the
computer a tool, "an object to
think with, " Papert said, rather
than a master.

. . . . About Logo and Adults

Due to its graphics capabilities
and ease of use, Logo was first
considered to be a computer
language for children . However,
Logo has since developed and
expanded . Newer versions of
Logo have capabilities previously
associated only with more
sophisticated languages . At the
same time, Logo graphic
capabilities have improved. All
this has been accomplished
without loss of the basic
simplicity of the Logo language.
Because of these features, D.L .
Logo is an ideal way for both
children and adults to begin
computer programming. The
concepts you learn in this book
are applicable in all other
computer languages .

8

Section 5 Introduction

D.L. LOGO is far from being just another graphics pro­
gram. This version of LOGO is a sophisticated computer
language, capable of creating and manipulating data
structures and files, performing advanced calculations,
and interfacing with several peripheral devices.

A Word to Students

LOGO enables you to do some very special things on
your computer. Don't let the length or size of your D .L .
LOGO manual discourage you. LOGO i s as easy or as
hard to use as you want it to be.

If you want LOGO to be simple and fun to use, it is . If
you want LOGO to challenge and test your mind, it does.

This book is full of examples and ways to use LOGO.
Feel free to skip through it and find the things that inter­
est you. Explore, experiment, have fun, and, above all,
don't expect LOGO to be work.

9

Introduction Section 6

Section 6
About This Manua l

This manual guides you through D .L . LOGO. It begins
with those concepts that are easiest to understand. More
challenging concepts and projects come in later pages.

Similarly, to make the manual useful to all ages, most
chapters progress from easy to more difficult program­
ming examples. If you find a chapter is getting too com­
plicated, move on to the next. As you learn more about
LOGO, you can come back to the difficult sections.

However, because many LOGO concepts interact, a strict
progress from easy to hard is not always possible . Pursue
those areas that most interest you. Learning one concept
often helps you learn others.

Examples of procedures and programs illustrate LOGO
concepts . Most of these examples are short and simple .
They are easy to type and understand. Occasionally, the
manual includes longer procedures and programs to dem­
onstrate more fully the power of LOGO.

End-of-chapter summaries and suggested projects help
you remember the ideas presented in each chapter. Using
LOGO immediately is the quickest way to learn.

10

Section 7 Introduction

Section 7
A Look At Logo
The following photographs show D . L. LOGO in use.

1 1

Introduction Section 7

12

Section 7 Introduction

13

Introduction Section 7

14

Section 7 Introduction

15

Introduction Section 7

16

Section 7 Introduction

17

18

Introduction Section 7

Section 7 Introduction

19

Introduction Section 7

20

Again:
command

SIGHTSEEING

I ntroductory Graphics

1

Section 1

Section 2

Section 3

Section 4

Section 5

Section 6

T he K eyboard: special keyboard keys and functions .

LOGO and the Primitives: FORWARD, BACK, RIGH T, LEF T,
and HOME.

Proceeding On: multiple commands to instruct your Turtle in a
task.

Abbreviations and Directions : short forms of primitives and the
graphics screen layout.

Play it how to use the REPEAT primitive to execute a
any number of times.

Bye: how to exit the LOGO program when you finish.

21

I I

[ENTER I.

[IUJ, [l(I],
I II I .

Chapter 1

Section 1
The Keyboa rd
Because the keyboard on your Color Computer is similar
to the keyboard on a conventional typewriter, you are
probably already familiar with most of its functions. You
need to be aware of several differences, however. The fol­
lowing chart describes the functions of several keys that
are important to D . L. LOGO.

Key or Keys Function

Several keys on your keyboard have 2
characters. For example, all the number
keys have alternate punctuation and
character symbols . To produce the top
character on any key showing 2 charac­
ters, hold down SHIFT and press the
desired character key .

Completes primitive or command en­
tries. To execute a primitive or com­
mand line, press

Stops execution of a procedure . Note:
there may be a delay while the current
command completes its operation.

Completes primitive or command en­
tries in the immediate, or single com­
mand, mode. In the edit mode, 8
moves the cursor 4 spaces to the right.
See Chapter 15 for information on key­
board functions in the edit mode.

Section 1
The Keyboard

. . . . About the Keyboard

The result generated by several
of your computer keys may not
be familiar to you . Now is a
good time to experiment with
these keys . A number of the
keypress sequences are required
frequently in D.L . LOGO, such
as CTR L CTRL
SHIFT BREAK

and
There is no

danger in experimenting with
any of the keys, you cannot
damage your computer or D .L .
LOGO.

. . . . About Keyboard Entries

In this manual, and on the
video screen, a question mark
(?Ƙprecedes the data you enter
from the keyboard . Characters
not preceded by a question mark
are computer output in response
to your keyboard entry.

22

I JI I

I J

I CTRL J (and
I CTRL) .)

I I

I J

I I

I 10

Section 1
The Keyboard

. . . . About Active Keys

You have noticed that certain
keys cause an immediate action

when pressed. Such keys are
called active keys. The

CTRL BREAK keypress sequence
is an often used example of

active keys . You have a number
of such active keys when

working in D .L LOGO's edit
mode. Active keys do not
require the ENTER key to

complete their function .

Key or Keys

CTRL [I]

Chapter 1

Function

Completes primitive or command en­
tries in the immediate, or single com­
mand, mode.

Moves the cursor 1 space to the left. If
you make a typing mistake, you can
use the left arrow to move backward to
the mistake, and then type the correct
entry.

[]] causes the
computer to produce lowercase (green
on black) letters. To return to upper­
case letters, press CTRL []] again.
Note: D.L. LOGO requires uppercase
characters in primitive names.

Toggles uppercase and lowercase.
When you first turn on your computer,
the keyboard types

CTRL
in uppercase let­

ters. Pressing

Produces the corresponding square
bracket [or] .

Produces a repetition of the last key­
board entry if you are in the immedi­
ate (s ingle command) mode o r the
graphics mode. You can use this fea­
ture to reexecute a command . In other
words, you don't have to type the com­
mand again.

Produces an up arrow (t) . The up ar­
row in D .L . LOGO is the arithmetic
power symbol . For example , to pro­
duce 82, type: 8 CTRL 2.

23

I CTRL 10

I CTRL I 0

I J
[) .
[), I CLEAR) .

Chapter 1

Key or Keys Function

Changes screen modes. The 3 modes
are the immediate (single command)
mo de , the FULLSCREEN graphics
mode, and the SPLITSCREEN graphics
mode . You can change modes even
while a LOGO program is running.

Produces a backward slash (\). When
this symbol is used before certain spe­
cial characters in D. L. LOGO, those
characters are treated in the same
manner as normal keyboard characters .

Produces a reverse (green on black) up
arrow symbol .

Produces a left arrow symbol (..) .

Produces a reverse (green on black) left
bracket symbol ([) .

Produces a reverse (green on black)
right bracket symbol (]) .

Some Color Computers use
rather than

CLEAR
CTRL
CTRL

If your computer
does not have use

Section 1
The Keyboard

. . . . About Modes

You can think of modes as
rooms. For instance, you have a
kitchen where you prepare food
and a bedroom where you sleep.
In D.L . LOGO you have 3
modes: (1) the edit mode in
which you write and edit
procedures (2) the immediate,
or single command, mode in
which you view previous entries
and issue housekeeping
commands to accomplish such
tasks as erasing procedures and
(3) the graphics mode in which
you see the computer execu te
graphics commands .

24

i ENTER J

I J,
I I I J

!ENTER)

I) .

Section 2
Chapter 1Logo and the Primitives

. . . . About Syntax

Logo commands require a space
between primitives and their

arguments . LOGO accepts
FORWARD 5f/J as a command,
but FORWARD5f/J produces an

error.

. . . . About Steps

When the manual refers to
steps, it refers to the distance

your TL1rtle moves in units of 1 .
For instance, the distance across
your screen from side to side is

256 steps . The distance from
top to bottom is 1 92 steps . The

command FORWARD 6f/J
directs the TL1rtle to move

forward 6f/J steps .

Section 2
Logo and the Pri m it ives
A primitive is a built-in instruction to LOGO that causes it
to perform some action. This manual refers to a primitive
that is joined with its arguments, or parameters, as a
command. For instance, FORWARD is a primitive; FOR­
WARD 50 is a command. A group of commands is called
a procedure .

When you first start LOGO, you are in the immediate,or
single command mode, and can begin instructing your
Turtle. To do so, type:

? C L E A R S C R E E N

You are now in the graphics mode and can type primi­
tives that cause immediate visual results .

You can return to the immediate mode in 2 ways. From
the graphics mode, you can type TEXTSCREEN ENTER
or you can press SH IFT and BREAK simultaneously until
the immediate mode screen reappears.

Forward

To see a graphics primitive in operation, type:

? F O R W A R D 30

Your Turtle, which initially resides in the middle of the
screen, moves up 30 steps, leaving a trail behind it . This
line is Turtle Graphics .

Enter all LOGO commands in a manner similar to the
FORWARD command . Type a command or command
line, and press ENTER

25

I I

I I

j ENTER J

I ENTER I

j ENTER J

I I

Chapter 1

Back

Try another command, this time, the BACK primitive .
Type:

? B A c K 3 0 ENTER

ENTERBe sure to press after typing this command. Your
Turtle then returns home to the center of the screen. It
draws a path each time, but, because it travels on the
same path, only 1 line appears.

Turn Right

A Turtle with only 2 directions is rather limited. To pro­
vide more variety, type:

? R I G H T 9 0

Watch the screen to see the Turtle spin 90 degrees. It
now points to the right. To draw a line at right angles to
the first, type:

? F O R W A R D 3 0

Turn Left

Tum the Turtle left in the same manner as you turn it
right. For example, to cause the Turtle to turn left a full
180 degrees and race forward 60 steps, type:

? L E F T 1 8 0 F O R W A R D 6 0

Use BACK to accomplish almost the same maneuver.
Type:

? B A C K 6 0 ENTER

Section 2
Logo and the Primitives

. . . . About Commands

Issuing commands in LOGO is
very similar to issuing
commands in English . This
feature makes LOGO easy to
learn . You type FORWARD 50,
and Turtle moves ahead 50
steps . You type RIGHT 90, and
Turtle turns right 90 degrees.
In fact, all of LOGO's
primitives relate directly to
English words.

. . . . About Errors

If you make a mistake in
commands you execute, LOGO
provides an error message to
help you see what you have
done wrong . For example, if you
mistype FORWARD as
FORWAD, the error message is
UNDEFINED PROCEDURE.
Because LOGO doesn't
recognize FORWAD as a
primitive, it thinks FORWAD
is a procedure name. When it
can 't find a procedure defined
as FORWAD, it tells you this .

26

I I

I I

Section 2
Chapter 1Logo and the Primitives

. . . . About D irections

This manual refers to the
following directions throughout.

Up indicates the direction
toward the tap of the screen .

Down indicates the direction
toward the bottom of the screen .

Right indicates the direction
toward your right as you face
the screen . Left indicates the
direction toward your left as

you face the screen . Home
position indicates that the

Turtle is in the center of the
screen pointing toward the tap

of the screen .

. . . . About the Turtle

D.L . Logo's Turtle is
represented by a box-shaped

figure, with one end pointed.
The direction this tip points is
called the heading. Changing

the heading causes the Ti1rtle to
point in the indicated direction .
The Turtle always draws in the

direction indicated by the
heading until it encounters a

command that changes that
heading.

The Turtle moves back to the right end of the line with­
out making a turn . However, it is still pointing left.

Give turn commands to your Turtle in degrees. Use 360
degrees to cause the Turtle to spin in a complete circle
(for example: RIGHT 360). Turning the Turtle from an up
direction to a left direction requires a LEFT turn of 90 de­
grees. An about-face is 180 degrees. Your Turtle can even
turn fractions of 1 degree but, unless it does so repeat­
edly, you do not notice the change.

And Home

The HOME primitive brings your Turtle to the center of
the screen from any location. To see the effect of this
command, type:

? H O M E ENTER

Not only does the Turtle come home, but it returns to its
original position pointing toward the top of the screen.

To complete a cross on the screen, type:

? B A c K 3 0 ENTER

27

I I

I I

I I

Section 3
Chapter 1 Proceeding

Section 3
Proceed i ng
A procedure is a method you use to accomplish a particu­
lar task. It can be as simple as 1 command or as complex
as 100 or more commands. Keeping procedures as simple
as possible works best. Later chapters teach you to com­
bine procedures to accomplish large tasks.

If you want to use procedures more than 1 time, either
retype and reenter the procedure commands or use
CTRL 0 as described in Section 1 . In Chapter 3, you

learn how to write procedures in LOGO's workspace that
you can use as many times as you wish. In effect, these
procedures become primitives, and you manage them in
exactly the same way. Keep this in mind as you work
through the manual. By creating and saving procedures,
you write your own customized computer language .

To write your first procedure, type:

? L E F T 9 0 F O R W A R D 3 0 R I G H T 9 0
F O R W A R D 6 0 R I G H T 9 0 F O R W A R D 6 0
R I G H T 9 0 F O R W A R D 6 0 R I G H T 9 0
F 0 R w A R D 3 0 ENTER

If LOGO displays an error message, carefully type the
command again, and be sure it is exactly as above . Re­
member, if you make a mistake while typing a command,
you can use G to back up to the mistake and type over
the incorrect character.

Following the typed instructions, the Turtle makes its first
trip around the block, enclosing the previously created
cross in a box.

Later, you must give every procedure a name. For in­
stance, you can name the preceding procedure BLOCK.
(See Chapter 3 to learn how to name a procedure .)

. . . . About Wraparound

Many commands you type are
longer than the 32 column
width of your display screen .
When the command line reaches
the right hand edge of the
screen , D .L . LOGO
automatically causes a
linefeed. (The cursor drops one
line and returns to the left edge
of the screen .) Do not be
concerned with this, but
continue typing. D . L . LOGO
executes command lines
properly, whether they occupy 1
or several lines . D .L . LOGO
has no trouble recognizing
primitives or other words which
are split between two lines. To
make program lines easier to
read, the manual splits long
lines between words .

. . . . About Listings

The procedure listing on this
page must be typed as one,
long, continuous line. Although
the listing is shown as 4
separate lines, this is due to the
size limitations of the page . Do
not press ENTER until the
entire procedure is typed.

28

[ENTER [

[ENTER [

Section 3
Chapter 1Proceeding

Making It Clear

To proceed, clear your screen and type:

? C L E A R S C R E E N

The display graphics disappear, and the Turtle returns to
its home position. To clear the text on the screen, type :

? C L E A R T E X T

Whenever the graphics or text screens become cluttered,
use CLEARSCREEN and CLEARTEXT to provide a fresh
slate.

29

I I

Section 4
Chapter 1 Abbreviations and Directions

Section 4
Abbreviations and
Di rections
By now, you are probably tired of typing long Turtle
primitives. There is often a better way. Many LOGO
primitives have acceptable abbreviations. For instance, the
abbreviation for FORWARD is FD. Try typing:

? F D 8 0 ENTER

Your Turtle scoots up 80 steps. It likes the FD primitive
just as much as the longer FORWARD primitive.

Most of the primitives introduced earl ier have
abbreviations:

FORWARD FD LEFT LT
BACK BK CLEARSCREEN cs
RIGHT RT

There are no abbreviations for the HOME and CLEAR­
TEXT primitives.

You encounter other primitive abbreviations as you go
through the manual.

Making Your Move

The Turtle's HOME position in the center of the screen
has the coordinates 0,0 . To move the Turtle from this po­
sition toward the top of the screen, you instruct it to
move forward any number of steps, for instance, FD 40 .
To move to the right, instruct the Turtle to tum right be­
fore moving forward. Moving down and moving left re­
quires negative numbers. Therefore, if the Turtle moves
10 steps to the left and 10 steps down, its location is
- 10, - 10 .

. . . . About Arguments

The term argument is used
extensively to refer to data or
values upon which a primitive
acts. For instance, in the
command RIGHT 9(/), RIGHT
is the command and 90 is the
argument. Some primitives do
not require any arguments,
such as CLEARSCREEN, while
other primitives can accept 1 or
more arguments.

If you type FORWARD/1, the
error message is SYNTAX
ERROR. LOGO doesn't
recognize FORWARD/1 as a
command, procedure, or any
other function in its repertoire.
It tells you that you have made
a mistake in typing. See
Chapter 12 for a list of error
messages .

30

[ENTER)
I I

I I
I I

I I
I I

I I
I I

I I
I I

Section 4
Chapter 1Abbreviations and Directions

. . . . About Graphics

This manual uses the word
graphics to refer to the pattern

your Turtle draws on the
display screen. Your computer is

capable of 3 display screens: a
text display, a graphics display,

and a combined text-graphics
display. A text display is a

display of characters, such as
letters and numbers . A graphics

display is any display other
than a text display. A combined
text-graphics display consists of
a specified number of text lines

at the bottom of a graphics
display. You learn how to set

the number of graphics text
lines in the next chapter.

Readers familiar with geometry notice that the Turtle
uses the Cartesian coordinate grid system. It may be
helpful to picture the grid as a city block system. North
and East are represented by positive numbers; South and
West are represented by negative numbers .

From home position, you move your Turtle to the corner
of 10 and 10 by commanding it to move forward 10 steps,
turn right, and again move forward 10 steps (FD 10 RT 90
FD 10) . To put the Turtle on the corner of 10 and - 10,
send it back 10 and right 10 (BK 10 RT 90 FD 10) . A later
chapter teaches you how to teleport the Turtle to any posi­
tion on the grid system without leaving a trail behind .

To explore the bounds of your graphics screen, type the
following commands.

? H O M E
? F D 9 6 ENTER
? H O M E ENTER
? B K 9 5 ENTER
? H O M E ENTER
? R T 9 0 ENTER
? F D 1 2 7 ENTER
? H O M E ENTER
? L T 9 0 ENTER
? F D 1 2 8 ENTER

As you see, the graphics screen is 192 units high by 256
units wide. The coordinates range: top to bottom = 96 to
- 95; left side to right side = - 128 to 127.

31

[) [) , [))

[ENTER)

I I

[ENTER)

Section 5
Chapter 1 Play it Again

Section 5
Play it Aga i n
Turtles have perfect memories; at least, your LOGO Tur­
tle does. Once you teach it a task, Turtle can repeat it
perfectly. You only need to tell Turtle what the task is
and how many times to do it.

The REPEAT primitive for multiple executions of a com­
mand, or series of commands, is a powerful LOGO
primitive .

Before using REPEAT, you need to recall how to create
square brackets ([]) . To type these characters, hold down
CTRL (if your computer does not have CTRL use CLEAR

and press either the left or right parenthesis to generate
either the left or right square bracket.

Now, to test the REPEAT primitive, type:

? C S R E P E A T 4 [F D 3 0 RT 9 0 J

Turtle clears the screen and then creates a box by draw­
ing a line and making a right turn, 4 times. To get a pre­
view of the real power of the REPEAT primitive, type:

? c s ENTER
? R E P E A T 9 [R T 4 0 R E P E A T 4 [F D
3 0 R T 9 0 J J

This produces a design that looks like the accompanying
picture. If not, type the command again, and be sure it
matches the example. The REPEAT primitive is the key to
creating many procedures .

To see how Turtle accomplishes its trick, study each of
the series of commands from right to left.

. . . . About Negative
Numbers

D.L . Logo can handle negative
numbers as arguments as well

as it can handle positive
numbers. When used with a

command, such as FORWARD,
a negative number has a reverse

effect. For instance, the
command FD 5(f) causes the -

Turtle to go backward 5(f) steps .
The command RT 9(f) causes -

the Turtle to turn left 9(f)
degrees . This can be a handy

feature when using the results
of calculations as arguments in

comma nds .

32

33

Section 5
Chapter 1Play it Again

FD 3(/) RT 9(/) sends the Turtle forward 3 steps and turns
it right 90 degrees . If you're not sure how this works,
clear your screen and execute this portion of the com­
mand again.

REPEAT 4 repeats the draw line, turn right activity 4
times, creating a box . The Turtle returns to home position
after completing the last side of the box.

RT 4(/) turns the Turtle 40 degrees from home position .

REPEAT 9 repeats the procedure of drawing a square
and turning 40 degrees 9 times. This completes a full 360
degree turn (9 times 40), with Turtle drawing a box at
each turn. Turtle finishes in home position .

I I

Section 6
Chapter 1 Bye

Section 6
Bye
Later chapters include information about saving and load­
ing procedures, programs, and files . As you do not yet
need to save your procedures on a diskette, exit LOGO
by typing:

? B y E ENTER

You are now in the OS-9 operating system. When you
finish using the computer, take any diskettes out of your
drive(s), turn off the computer, and then turn off all
other equipment.

Chapter Ends

This page completes the first chapter of instructions. The
next few pages consist of a chapter summary and a sug­
gested project. The summary is both a review of the
chapter and a reference for the future . Try the suggested
project to demonstrate how well you understand the
chapter. If you have trouble, check the summary for
help. If you need further help, review the chapter section
that deals with the primitive with which you are having
trouble. The last page of the chapter provides 1 possible
solution to the suggested project. Your solution may be
different and better. Most of the chapters in this manual
include similar summaries and projects.

. . . About Chapter
References

Each chapter in this manual
ends with a chapter summary
that includes a quick reference
to the primitives introduced in
that chapter. You may find it
helpful to use this reference
often as you learn about new
procedures .

34

Chapter Summary Chapter 1

Chapter Summary
PRIMITIVE Abbrev. Purpose

FORWARD FD Moves Turtle forward a
specified number of steps .

BACK BK Moves Turtle backward a
specified number of steps .

RIGHT RT Turns Turtle right a
specified number of
degrees in the range 0 to
360 .

LEFT LT Turns Turtle left a specified
number of degrees in the
range 0 to 360.

HOME Brings Turtle back to home
position (to the center of
the screen pointed up) .

CLEARSCREEN CS Clears the graphics screens
and returns Turtle to the
home position.

CLEARTEXT Clears the text screens.

REPEAT Causes Turtle to repeat
commands a specified
number of times.

BYE Causes D.L. LOGO to exit
to OS-9.

35

I ENTER) .

I CTRL)
I) , I CLEAR)) CTRL

Chapter 1

Turtle Facts

• You must:

Separate primitives from parameters with a space.

Separate commands from other commands with a
space.

Execute commands by pressing

• Turn the Turtle by specifying degrees; 360 i s a full
turn.

• 	 Control the Turtle with either full or abbreviated primi­
tive names.

• Create square brackets ([]) by holding down (if
you computer does not have use and
pressing either the right or left parenthesis.

• 	The graphics screen is 256 steps, side to side, and 192
steps, top to bottom. The coordinates for the center po­
sition of the screen grid are 0,0 .

Suggested Project

Write the commands to draw a cube as shown in the ac­
companying picture. You can write the procedure as 1
command line or as a series of separate commands. If
you have trouble, review the preceding summary. If you
still have trouble, review the section of the chapter that
deals with the primitive that is causing you problems.
See the next page for a possible solution.

Chapter Summary

36

· �
;

I I

Chapter Summary Chapter 1

Suggested Project Solution

R E P E A T 4 C F D 5 0 R T 9 0]

L T 4 5 F D 5 0 R T 4 5

R E P E A T 4 C F D 5 0 R T 9 0]

F D 5 0 R T 1 3 5 F D 5 0 L T 4 5

F D 5 0 L T 1 3 5 F D 5 0

L T 1 3 5 F D 5 0 L T 4 5 F D 5 0 ENTER

37

b
.

.

.

Calculating
calculations.

[ENTER [

2
TECH N ICOLOR TU RTLE

Discovering Turtle's Many Colors

Section 1 Turtle Shows Its True Colors : selecting pen color.

Section 2 Setting Background Colors: selecting screen colors.

Section 3 Colors : using PENCOLOR and BACKGROUNDCO­
LOR in

Section 4 Housekeeping: clearing the screen and defining screen formats .

Section 5 About the Textscreen: writing commands and procedures in
the immediate mode .

T he sample procedures in this chapter assume that LOGO is in the default back­
ground color of 12 and pen color of 3. If you have changed these settings, you
may wish to reset the background and pen colors to match the manual. To do so,
type the following command while in either the immediate mode or the graphics
mode .

S E T B G 1 2 S E T P C 3

39

I I

I I

I I
I I

I I

Section 1
Chapter 2 Turtle Shows Its True Colors

Section 1
Turtle Shows Its True Colors
Until now, you saw your Turtle drawing only buff lines
on a black screen. Many other options are available .

To tell the Turtle to use another pen color, issue the SET­
PENCOLOR primitive . You can abbreviate this primitive
to SETPC. To switch pens from 3 to 1 , type:

? s E T p c 1

The Turtle puts its buff pen in its pocket and replaces it
with a cyan pen. To be sure Turtle has done this, draw a
line in the new color by typing:

? F D 3 0 ENTER

You can select 1 of 4 pen colors (0-3) . With each of the 16
possible background colors, you have an option of 4 pen
colors. To see all of the current options, type:

? c s
? S E T P C

ENTER

ENTER
0 ENTER

4

ENTER
? R E P E A T [F D 5 0 R T 9 0 S E T P C
p c + 1]

Your screen now displays a 3-sided box, with each side a
different color. Why does the box have only 3 sides when
the command asks for 4 lines? Color (!) does not show be­
cause SETPC (!) sets the pen color to the same color as the
screen. On the unseen fourth side of the box, the Turtle
draws a black line on a black screen. The 3 colors show­
ing are green, red, and buff. Other combinations of fore­
ground and background colors cause different sides of the
box to be invisible, depending on which side of the box
matches the background color.

. . . . About Screen Colors

The colors on your television
screen may not always seem to
match the colors described in
this manual. The color shades
depend on your television and
how you have set its tint, color,
contrast, and brightness .

40

[ENTER [

I I

Section 1
Chapter 2Turtle Shows Its True Colors

Although this shape is simple and easy to construct, you
can create a more complex and attractive design by add­
ing more commands. Try this:

? C S

? R E P E A T 1 0 [R T 3 6 S E T P C 0

R E P E A T 4 [F D 5 0 R T 9 0 S E T P C

p c + 1 l l ENTER

Experiment with other values as well.

41

Section 2
Chapter 2 Background Colors

Section 2
Backg round Colors
By changing the screen background color, you can select
other pen colors . Both pen and background have a total
of 16 colors. You select the background colors with the
primitive SETBACKGROUND or SETBG . To select an or­
ange screen, type:

? S E T B G 7 C S

The portion of the screen reserved for graphics changes
to orange . To see the possible pen colors, reenter the pre­
vious command that draws a square with colored sides.

A chart showing all possible background and pen colors
follows .

Background and Pen colors

Background Pen Color
0 1 2 3

0 green green yellow blue red
1 yellow green yellow blue red
2 blue green yellow blue red
3 red green yellow blue red

4 buff buff cyan magenta orange
5
6

cyan
magenta

buff
buff

cyan
cyan

magenta
magenta

orange
orange

7 orange buff cyan magenta orange

8 black black dark green medium green light green
9 dark green

10 medium green
black
black

dark green
dark green

medium green
medium green

light green
light green

11 light green black dark green medium green light green

12 black black green• red* buff
13 green• black green• red* buff
14 red* black green• red* buff
15 buff black green• red* buff

*Red and green
may be reversed.

42

I J.

i ENTER J

I I

I I
I I

I I

I J

Section 3
Calcula ting Colors

. . . . About Color Settings

Although there are only 4 pen
colors ((/)-3), D .L . LOGO still

lets you set the pencolor to 4 or
higher. This is because the

colors repeat if you exceed their
normal settings. A pencolor of 4

is the same as a pencolor of (/) .
A pencolor of 5 is the same as a

pencolor of 1 . The background
colors behave in exactly the

same way, and a background
setting of 1 7 is the same as a
background setting of (/) . This

repetition will continue to a
maximum value of 32767, after

which D .L. LOGO will
generate a NUMBER OUT OF

RANGE error.

Chapter 2

Section 3
Ca lcu lati ng Colors
The design created at the end of Section 1 used an unfa­
miliar command. The command SETPC PC + 1 is possible
because the primitive PC always contains the current
pencolor value.

For example, if you type SETPC 1 to set the pen color to
1, typing PC displays 1 on the screen. The command
SETPC PC + 1 sets the pen color to 2, and the primitive
PC displays 2 .

The SETBACKGROUND primitive works i n the same
way, with BG containing the last value established by
SETBG . To see the current background color, type BG
ENTER You can now add 1 to the background color by

typing:

? S E T B G B G + 1

Test this by again typing:

? BG ENTER

To see all the possible background and pen colors avail­
able in D .L . LOGO, enter the following program:

? S E T B G 0 ENTER
? c s ENTER
? R E P E A T 1 6 [R E P E A T 4 [R E P E A T
1 0 [F D 5 0 R T 9 0 F D 1 R T 9 0 F D
5 0 L T 9 0 F D 1 L T 9 0 l S E T P C
P C + 1 l C S S E T P C 0 S E T B G B G + 1
c s l ENTER

If you make a mistake when typing long procedures, re­
member you can use CLEAR (]] to repeat the line . Then
backup to the mistake, correct it, and retype the rest of
the program.

43

Section 3
Chapter 2 Calculating Colors

This procedure draws 4 solid boxes and shows all the
possible pen colors on each of the 16 background colors .
One of the 4 boxes is the same color as the background
and is invisible .

44

I I

! ENTER)

I I

I I

! ENTER)

Section 4
Chapter 2Housekeeping

Section 4
Housekeeping
Issuing the CS or CLEARSCREEN primitive introduced in
Chapter 1 sends the Turtle back home . The CLEAN prim­
itive also clears the screen but leaves the Turtle where it
is. To test it, type and enter the following procedure:

? S E T P C 3 ENTER
? R E P E A T 4 [R E P E A T 4 [F D 4 0 R T

This procedure draws a box in 4 different screen posi­
tions, as illustrated. Press CTRL CK] to reenter the same
command. Then, use G to back up the cursor and
change the command by replacing the CLEAN primitive

9 0 l F D 1 0 C L E A N l

with the CS primitive :

ENTER
R E P E A T 4

? c s
? [R E P E A T 4 [F D 4 0 R T
9 0] F D 1 0 C S J

As you can see, the results of the 2 procedures are quite
different. The CS primitive always draws the box in the
same position on the screen. CLEAN causes the box to
appear to move, because the location where the Turtle
stops in drawing a box becomes the starting point for the
next box.

FULLSCREEN and SPLIT
. . . select the view

So far, the Turtle's activities occurred within the available
display area. At times, however, you need to use the en­
tire display screen. The FULLSCREEN primitive is specif­
ically designed to allow this. To draw a triangle on the
screen, type the following procedure:

45

I I
[ENTER !

[ENTER I .

[1 1 I

I I.

I I

Section 4
Chapter 2 Housekeeping

? c s ENTER
? R E P E A T 3 [R T 1 2 0 F D 8 5 l

Part of the triangle you created appears cut off at the bot­
tom. Cure the problem by typing FULLSCREEN
The text part of the screen now disappears, and the
screen displays the full triangle .

When you start LOGO, it reserves 2 lines of text on the
graphics screen . Issuing the FULLSCREEN primitive
clears the text l ines and reserves the full screen for
graphics.

When this happens, the LOGO prompt no longer ap­
pears on the screen, and nothing appears when you
type . LOGO is not ignoring your keystrokes; it is reserv­
ing the whole screen for the Turtle. To see what you are
typing, use

F D 8 5 l ENTER

SH IFT BREAK to toggle to a split screen or to
the text screen in the immediate mode. You can also re­
turn the graphics screen to the normal split screen mode
by issuing the SPLITSCREEN primitive. To do so, type
SPLITSCREEN ENTER The same number of text lines
you previously had reappears, showing the last 2 lines
you typed . You can use the SPLITSCREEN primitive at
the end of any procedure that sets the screen to FULL­
SCREEN. For example, typing:

? F U L L S C R E E N R E P E A T 3 [R T 1 2 0

draws a triangle using the full screen. To restore text lines
to the graphics screen, type SPLITSCREEN.

Split 15 Ways

The SETSPLIT primitive lets you set from 1 to 15 lines of
text on the graphics display. To set 0 lines, use the
FULLSCREEN primitive . For example, typing SETSPLIT
1 0 reserves 10 l ines of the graphics screen for text .
LOGO can also tell you the condition of the graphics

. . . . About Split

Although you can set 15 lines
of the graphics screen for text,
this is normally impractical .
You can do little with only 11
1 6th of the screen for graphics .
However, as graphics commands
operate behind text lines, you
can use SPLITSCREEN to hide
graphics and then reveal them
with the FULLSCREEN
primitive. Note that the use of
the SETSPLIT primitive clears
all graphics from the screen . To
hide graphics in this manner,
use SETSPLIT to set the proper
number of text lines before you
draw the graphics.

46

I J . ENTER

Section 4

Chapter 2Housekeeping

screen. When LOGO initializes, it has a split setting of 2

lines. You can determine this by typing SPLIT

The screen displays 2 .

47

Chapter 2 Summary

Chapter 2

Summary

Summary

PRIMITIVE Abbrev. Purpose

SETPENCOLOR SETPC

SETBACKGROUND SETBG

PENCOLOR PC

BACKGROUND BG

FULLSCREEN

CLEAN

Establishes the current
pen color. There are 4
pen colors for each
background color.

Establishes the current
background or screen
color . There are 16
background colors .

Displays the current pen
color.

Displays the current
background color.

Reserves the entire
graphics screen for
graphics and sets the
number of graphics text
lines to 0 .

Clears the graphics
screen without moving
current Turtle
coordinates .

48

Summary 	 Chapter 2

PRIMITIVE Abbrev. Purpose

SPLITSCREEN

SPLIT

SETSPLIT

TEXTSCREEN

Turtle Facts

Reserves text lines in the
graphics screen mode.

Displays the current
graphics screen split
value .

Sets text lines in the
graphics mode .
SETSPLIT can be in the
range 1 to 15 .

Causes D .L. LOGO to
return from the graphics
mode to the immediate.

• 	 When you initialize LOGO, the background color is set
to 12, and the pencolor is set to 3 .

• 	 Four pen colors are available for each of the 16 back­
ground colors, one of which is always the same as the
background color.

• 	 To get the proper background color, issue a CLEAR­
SCREEN (CS) primitive after setting the color.

• 	 With some background settings, the area reserved for
text is a different color from the background color.

• 	 You can display several LOGO settings and use the set­
t ings in ca lcul a t ions . PENCOLOR (P C) , BACK­
GROUND (BG), and SPLIT are · some.

• 	 CLEARSCREEN (CS) always returns the Turtle to its
home position. CLEAN does not .

49

I J I 1 .

Chapter 2 Summary

BREAK

• When working in the FULLSCREEN graphics mode,
the screen does not display the text you type.

• To view the full graphics screen, issue the FULL­
SCREEN primitive or toggle screens with SHIFT

Suggested Project

Write a procedure that draws a filled circle on the screen.
Use the SETPC primitive to draw the circle 4 times with 4
different colors . Of course, 1 of the colors will be the
background color.

For a greater challenge, expand the program to draw 4
circles in each of the 16 background colors.

50

i ENTER J

I I

I I

I I
I I

i ENTER J

Summary Chapter 2

Suggested Project Solution

To draw a single filled circle

R E P E A T 1 8 0 [F D 8 0 R T 1 7 9)

ENTER

To draw 4 circles

S E T P C 0 ENTER
R E P E A T 4 [R E P E A T 1 8 0 [F D 8 0

R T 1 7 9 J s E T p c p c + 1 J

Note that the first circle is the same color as the back­
ground color and does not show .

To draw circles in 16 background colors

S E T P C 0
SETBG (7)

ENTER
ENTER

R E P E A T 1 6 [R E P E A T 4 [R E P E A T 1 8 0
[F D 8 0 R T 1 7 9) S E T P C P C + 1 J S E T P C
0 S E T B G B G + 1 C S J

51

chapter beginning
T ftat and

3

RU N N I NG

ERRAN DS

Procedures for Your Tu rtle

Section 1 	 Writing Procedures: constructing procedures for multiple use.

Section 2 	 About Editing: what to do when a procedure doesn't work or
needs changing.

Section 3 	 Direct Wire : sending information directly to LOGO procedures
from the keyboard .

T his assumes that you are under the D . L . LOGO startup de­
faults . is, the background color is 12 the pen color is 3 .

53

[ENTER) .

[ENTER)

Chapter 3

Section 1
Writ i ng Procedures
Because of the way LOGO handles procedures, you can
build complex programs from simple commands . The
ability to link and nest procedures provides virtually un­
limited potential to the programmer.

D .L . LOGO's edit mode lets you develop procedures to
their full potential:

• 	 You do not destroy procedures written in the edit
mode when you execute them.

• 	 Procedures can call other procedures to do a part of a
particular task.

• 	 You can save procedures on diskette to use later or as
part of a procedure library .

Working in the Edit Mode

Enter the edit mode either by defining a procedure name
or by typing EDIT from the immediate or graphics mode.
To define a procedure name, type TO procedurename. The
word procedurename is used to represent the actual name
you wish to give your new procedure . You can also enter
the edit mode by typing EDIT When you do this,
you must press ITJ (for insert) before you can begin writ­
ing a procedure.

Although writing a procedure in the edit mode is similar
to writing it in the graphics or immediate mode, there are
2 main differences:

• Pressing does not execute a line .

• 	 Each procedure must begin with a name (preceded by
TO) and end with the primitive END.

Section 1
Writing Procedures

. . . . About Procedure Theory

Logo is considered to be a
procedural programming
language. Procedures are small
programs that collectively build
a larger program . Using small
procedures lets you break a
complex program into a number
of small manageable parts.

. . . . About Procedure Names

You can give a procedure any
name you wish as long as it
doesn't begin with a numeral or
contain any of the following
symbols: ! () * () / . " = -

Although D .L . LOGO accepts
names that include other
symbols, it eliminates the
symbol and any characters that
follow it when you save the
procedure on diskette. If you
save a procedure named
TEST#l and a second
procedure named TEST#2,
D .L . LOGO saves both
procedures as TEST, and the
latter procedure overwrites the
former and destroys it .

54

I ENTER) .

I) ,

I ENTER)

I I

I ENTER) .

Section 1
Chapter 3 Writing Procedures

. . . . About Spaces

A procedure name cannot
contain spaces . You can use

other characters to divide words
in names such as miles-gone,
phone-list, or budget$spent.

Be sure that procedure names
you select are not already

defined as LOGO primitives.

. . . . About Lines

In the edit mode, you can put
as many characters in a line as

you wish. However, in the
immediate mode, you cannot

put more than 255 characters in
a command line.

The First Procedure

Try an old procedure in the new edit mode. From the im­
mediate mode, type TO BOX The display clears,
and the words TO BOX appear at the top of the screen.
The blue cursor is located 1 line below this procedure
name.

You are now in the edit mode and can complete the pro­
cedure. Begin by typing REPEAT 4 [. Remember that the

CTRLsquare bracket is produced by pressing together
with the appropriate parenthesis key . When you com­
plete a line, press before beginning a new line .
Type the remainder of the program to match the follow­
ing listing:

T D B O X
R E P E A T 4 [F D 4 0 R T 9 0]
E N D

When you enter the edit mode by defining a procedure
(TO BOX), you are automatically in the insert mode;
LOGO inserts the text you type into the procedure. In
this case, the procedure was empty; therefore, what you
insert is the procedure .

To return to the immediate mode, press BREAK twice:
once to exit the insert mode, and once to exit the edit
mode. From the immediate mode you can execute your
new procedure. To do so, type BOX

55

I ENTER) .
[SH IFT)

I)

I BREAK)

I ENTER) .

Section 1
Chapter 3 Writing Procedures

Bui ld ing a Program

After you define and write a procedure, you can use it as
part of a larger program. To see how this works, return

ENTER

to the edit mode by typing EDIT Now add a new
procedure . First, hold down and press []] to place
the cursor after the BOX procedure. Now press [] to en­
ter the insert mode and press to leave a blank line
between the BOX procedure and your new procedure. To
create the second procedure, type:

TD R O T A T E
R E P E A T 3 6 [B O X R T 1 0 J
E N D

When the procedure is complete, press twice to
exit the edit mode. Execute ROTATE by typing ROTATE

The Turtle draws the same box but, this time, it
repeats the pattern 36 times, rotating 10 degrees between
each box.

. . . . About Choosing Names

Although procedure names can
be as long as you like, short
names that describe the
procedures they represent save
time and simplify
programming. For example, use
the name BOX or SQUARE for
a procedure that draws a square
shape. If you create a routine
that draws several boxes, name
it MOREBOX. Call a procedure
that draws a circle CIR.

Remember that the word TO
always precedes a procedure
name when you are writing a
procedure. When you execute
the procedure, do not include
TO.

56

I J.
I J.

I I

[ENTER J.
[J .

Section 2
Abou t Editing

. . . . About Order in the
Workspace

It does not matter in what order
procedures are arranged in

LOGO's workspace. Procedures
called by another procedure can

be either before or after the
calling procedure .

. . . About Procedure Format

A procedure consists of a
heading (the procedure name
preceded by the word TO), a

body (a series of LOGO
statements), and an ENO

statement. The style in which
you format procedures is a

personal choice. You can write
the REC procedure with the

procedure statements all as 1
continuous line, if you wish.

For clarity, this manual
separates commands and uses

indention . Because the manual
breaks lines between words,

rather than in words, the
manual listings may look
different from your screen

displays . This format makes it
easier for you to follow the logic

and flow of procedures .

Chapter 3

Section 2
About Ed it ing
Another advantage to writing programs in the edit mode
is D. L. LOGO' s sophisticated editor. Before you consider
more procedures, learn how the D . L . L O G O editor
works. Once you learn how to insert and delete in the
edit mode, writing and changing procedures is easier.

The Editing Options

Fortunately D .L. LOGO's editing features are easy to un­
derstand and use. You may, however, wish to learn only
the fundamentals of the editor program now and then
study it later when you have more experience with
LOGO. This section shows you simple ways to delete, in­
sert, and change text. All of D. L. LOGO' s edit features
are explained in Chapter 15.

To enter the edit mode from the immediate mode or the
graphics mode, type EDIT ENTER To exit the edit mode,
press BREAK Another way to enter the edit mode is to
define a procedure by preceding the procedure name
with the primitive TO, such as:

T O J O E ENTER

Editing Sample Session

To create a procedure for the sample editing session, en­
ter the edit mode from the immediate or graphics mode
by typing TO REC Now, type the following pro­
cedure. End each line by pressing ENTER

T O R E C
F D 4 0 R T 9 0
F D 5 R T 9 0
F D 4 0 R T 1 9 0
E N D

57

[BREAK I
I ENTER [.

I [.

I I
I [.

I I [BREAK I
I ENTER [.

I J .

[SH IFT J

Section 2
Chapter 3 About Editing

To see what your program does, press twice and,
in the immediate mode, type CS REC

Your screen shows a 3-sided rectangular figure . To create
something a little more impressive, reenter the edit mode
by typing EDIT ENTER

I f your cursor i s not already below the previously entered

ENTER
SHI FT

procedure, move it to the end of the listing by pressing
[[). To begin a new procedure and enter the insert

mode, press [I]

Type the second procedure:

T O S P I N
S E T S P L I T 1
P U F D 2 0 P D
R E P E A T 3 6 [R E C J
E N D

This completes the sample program. Before making any
changes, execute tI1e program. Type BREAK SPIN

A Change of Scenery

Now, change the program so that it executes in different
ways. For example, try alternating the color of the design.
To do so, enter the edit mode by typing EDIT ENTER

Use the arrow keys to position the cursor a t the begin­
ning of the first line of the SPIN procedure . The under­
line (-) represents the blue cursor and, in this case,
covers the initial S of SETSPLIT:

T O S P I N
E T S P L I T

Press GJ to move the cursor to the end of the line:

S E T S P L I T

. . . . About PU and PD

The PU and PD primitives used
in this procedure are
abbreviations of the PENUP
and PENDOWN commands.
You learn about these commands
later.

58

I I

I I

I I I J.

[ENTER J I I

I I

Section 2
Abou t Editing

. . . . About Procedure Lines

When referring to lines in a
program, the manual begins
counting at the procedure's

name line (the primitive TO
followed by the procedure
name) . Thus in the SPIN

procedure, Line 1 is TO SPIN,
and Line 2 begins SETPC 1 .

. . . . About Spacing

Procedures co-existing in the
D .L . LOGO workspace must be

separated by at least 1 blank
line .

. . . . About Vocabulary

Whenever you define a new
procedure, the name you give
the procedu re becomes part of

LOGO's vocabulary. Thus, the
procedure you define can be

used in exactly the same
manner as a primitive name, as

long as the procedure is in the
workspace.

Chapter 3

Press I SPACEBAR

BREAK

and enter the new command:

S E T P C 1

The procedure should now look like this:

TO S P I N
S E T S P L I T 1 S E T P C
P U F D 2 0 P D
R E P E A T 36 [R E C J
E N D

Press BREAK again, and then type CS SPIN ENTER Your
design appears in blue instead of buff.

Type EDIT to return to the edit mode . To erase the line
you just entered and replace it, use the arrow keys to po­
sition the cursor on the new line . Type W W to delete
the entire line

To replace the line, use the insert command . From the
same cursor position, type:

BREAK

BREAK

[] S E T S P L I T 1 S E T P C 2

Pressing eliminates the gap that the insert com­
mand opens . To see the design in a new color, exit the
edit mode, and execute the program as before .

To create the same graphics design in a third color, enter
the edit mode, and use the arrow keys to position the
cursor over the number 2. Now type:

[]]3

59

[ENTER) .

[SH IFT)

I I

[)

Section 2
Chapter 3 About Editing

Use 8 to move the cursor and confirm the change. Exe­
cute the program, if you wish, and then reenter the edit
mode .

To make the program neater, split the current line into 2
lines. Move the cursor to the space between 1 and SET­
SPLIT 1 :

T O S P I N
S E T P C 1 S E T S P L I T 3

P U F D 2 0 P D
R E P E A T 3 6 [R E C J
E N D

Replace the space with a carriage return by pressing []],
and then press

You can also change or replace a block of text. Position
the cursor on Line 2 of the REC procedure :

T O R E C
D 4 0 R T 9 0

Now press []] . You are in the change mode and
can replace as many characters in the line as you wish.
Type:

BK 3 0 BREAK

Pressing BREAK exits the change mode and lets you see
the new line. Move the cursor to the beginning of Line 4:

T D R E C
B K 3 0 R T 9 0
F D 5 R T 9 0

D 4 0 R T 1 9 0

To enter the change mode and replace FD with BK, type:

. . . . About the Workspace

D.L . LOGO's workspace is the
part of your computer's memory
that is allocated for the
temporary storage of procedures.
You can manipulate procedures
and lines in the workspace
much like moving and
manipulating the files in a file
drawer. Procedures, lines, and
characters can be moved,
changed, or replaced at will,
using D.L . LOGO's editing
commands.

60

[SH I FT)

[BREAK) .

[ENTER) [BREAK) .

Section 2
Chapter 3 About Editing

Pressing [[] causes any character you type to re­
place the character under the cursor. You remain in the
replace mode until you press I f you continue to
type characters beyond the current line or procedure,
D. L. LOGO continues replacing characters into any sub­
sequent lines or procedures.

If you like, exit the edit mode and try the new program.

Other Changes To Make

As you can see, changing a program is easy. Other sug­
gestions for using the ed it ing commands you have
learned are:

• 	 Have your turtle draw the design in 3 colors without
having to stop and edit the program. Hint: add a RE­
PEAT 3 line before SETPC and replace the SETPC 2 line
with SETPC PC + 1 . Set the pencolor to 1 before you
execute the program.

• 	 Change the size of your design by changing the value
of FD 5 in the REC procedure . Try several different
values.

• 	 Change the FD 40 values in the REC procedure .

• 	 Try unequal values in the 2 FD 40 commands.

Looking Neat

To write procedures that are easy to read, indent lines us­
ing [�]. For example, to clarify a loop, indent all the lines
associated with the loop. Use the SPIN procedure to illus­
trate this. First, add some new lines to make the proce­
dure more complex. To add the new lines, position the
cursor where you wish to insert a line, and press [I].
Type the new line, followed by Insert the
necessary lines to change SPIN as shown:

61

I I

I I

I J).

I J

Section 2
About Editing

. . . . About Using ENTER

At times a line you are typing
in the edit mode ends at the
extreme right of your display
screen . When this occurs, the
cursor automatically drops 1

Even though
the cursor is at the beginning of
a new line on the display, you

ENTERmust also press

line and moves to the left of the
screen (as though you had

ENTERpressed

before
beginning a new line or an
error may result when the
procedure is executed.

Chapter 3

T O S P I N
S E T S P L I T 1
P U F D 2 0 P D
S E T P C 3
R E P E A T 4
R E P E A T 3 6 [R E C J
S E T P C P C - 1 l
E N D

Now, position your cursor at the beginning of the second
line:

S E T S P L I T 1

and type [I] G BREAK

This indents the line 4 spaces. Do the same for the next 3
lines. On lines 6 and 7, press G twice to indent the
lines 8 spaces. Leave the last line flush left. Your proce­
dure now looks like this:

T O S P I N
S E T S P L I T 1 S E T P C 3
P U F D 2 0 P D
S E T P C 3
R E P E A T 4 [

R E P E A T 3 6 [R E C J
S E T P C P C - 1 l

E N D

You can use G to indent lines as you write the proce­
dure . The indention does not affect the procedure's oper­
ation in any way; instead, it makes the procedure easier
to understand. This method of entering procedures is op­
tional. The rest of this manual uses indention where
applicable .

62

Section 2
Chapter 3 About Editing

. . . . About Comments

Comments are especially
desirable in procedures or

programs that you might want
to adapt for other uses or that

you wish to share with friends .
Although the logic of a

procedure seems clear at the
moment, several months from

now it can become obscure and
difficult to interpret . Comments
in programs you give to others
can help them understand how

the procedures might be adapted
to their needs .

Although the editing procedures in this section let you
make any changes to your programs or procedures, we
suggest you also look over the editing procedures in
Chapter 15. As you write larger and more complex proce­
dures and programs, the many other editing features of
D .L. LOGO are useful and timesaving.

Using Comments

To create procedures that are easy to understand, it is
often desirable to include comments at key points. You
can include comments in a procedure that will be ignored
by D.L . LOGO by preceding them with semicolons (;) .
Following is a procedure that is commented:

T O S W I R L
S E T P C 3
C S H T P U
R E P E A T 3 6 [R T 1 0 ; M A K E A

F U L L C I R C L E
R E P E A T 7 2 [F D 4 R T 5 D O T

X C O R
Y C O R l l ; M A K E A C I R C L E O F

D O T S
E N D

63

I ENTER)

I ENTER)

I)

- £ 11[1 ED

' I

Section 3
Chapter 3 Direct Wire

Section 3
Di rect Wi re
LOGO has 2 primitives that cause a program to pause
and wait for keyboard input. The READCHARACTER, or
RC, primitive reads a single character from the keyboard.
You need not press to register the character input.
The following procedure demonstrates a READCHARAC­
TER input:

TO R E A D I T
S T P D
R E P E A T 1 0 [
M A K E " C H A R A C T E R R C
P R I N T [Y O U P R E S S E D T H E J

: C H A R A C T E R [K E Y J J
E N D

To execute the procedure, type READIT from the
immediate mode. You type a total of 10 keys, and each
time the procedure tells you which key you pressed.

To see how you can use the RC primitive in a graphics
procedure, type and execute

ENTER
the following procedure .

Note that you must press after completing each
line, even if the cursor has already dropped to the next
line because it reached the end of the screen.

T O M O V E
C L E A N
S E T S P L I T 2
P R I N T [H O W F A R D D Y O U W A N T T H E J
P R I N T 1 [T U R T L E T O M O V E ? 1 - 9 l
F D R C

E N D

The PRINTl primitive in Line 3 of this procedure causes
the RC prompt to appear on the same line as the pre­
vious text. Every time you execute the program, you can

- I T

? R E A D l T
YOU P R E S S E D T H E A K E Y
V O U P R E S S E D T H E B K E Y
V O U P R E S S E D T H E C P E Y
VOU PRESSED T H E D K E Y
YOU PRESSED T H E E K E Y
YOU P R E S S E D T H E G K E V
Y O U P R E S S E D T H E H K E V
Y O U P R E S S E D T H E I K E Y
Y O U P R E S S E D T H E K K E Y
V O U P R E S S E D T H E H K E Y

64

tllhm·1111m.wa.1111;

I J.

! ENTER)

I I .

Section 3
Chapter 3 Direct Wire

type in a number in the range 1-9, and the Turtle moves
that many steps on the graphics screen.

Making Requests

You can use REQUEST, or RQ, in a procedure to enter
any number of characters from the keyboard . To tell
LOGO when you have completed your entry, press
ENTER The following short procedure lets you enter a

command or procedure from the keyboard and immedi­
ately see its execution:

TO M O V E M O R E
R U N R Q
M O V E M O R E

E N D

After you execute the procedure, try typing various com­
mands such as:

R E P E A T 3 [F D 5 0 RT 1 2 0]

Because the last line reexecutes the procedure, you can
continue typing commands as long as you wish.

BREAK
To exit

the procedure, press

The fol lowing procedure uses REQUEST to let you
change the graphics screen background and foreground
colors. It then prints a graphics design to show off your
new colors.

T O C H A N G E
P R I N T 1 [F O R E G R O U N D C O L O R . . . l
S E T P C F I R S T R Q
P R I N T 1 [B A C K G R O U N D C O L O R . . . l
S E T B G F I R S T R Q
c s
R E P E A T 7 2 C F D 4 0 B K 4 2 R T S J
C H A N G E

E N D

65

-rnD E D l l

O K ?

Section 3
Chapter 3 Direct Wire

Both the READCHARACTER and the REQUEST primi­
tives have many applications. They are used again and
again in this manual and are essential to many programs.

Cleaning U p the Keyboard

At times you need to be sure that no data remains in the
keyboard input buffer before you enter new data. The
CLEARINPUT procedure accomplishes this. For instance,
if you write a procedure to delete unwanted files from
your storage diskette, use the CLEARINPUT primitive to
be sure that LOGO understands what you want and does
not destroy a valuable file . The following procedure dem­
onstrates this:

TD K I L L
P R I N T 1 [N A M E O F F I L E T D

D E L E T E ? . . l
M A K E " F I L E F I R S T R Q
P R I N T [! A M D E L E T I N G J : F I L E
P R I N T 1 [J S T H I S D K ? l
C L E A R I N P U T
I F R Q = [Y E S J [E R A S E F I L E : F I L E
P R I N T : F I L E [I S E R A S E D l l

E L S E [P R I N T : F I L E [N O T
E R A S E D l l

K I L L
E N D

Using CLEARINPUT before requesting new keyboard in­
put frees the keyboard buffer from any previous input
that may cause problems.

Waiting for the Key

If your only concern is whether you pressed a key, and
not what key you pressed, use the KEY? primitive. The
KEY? primitive performs a true/false evaluation. The fol­
lowing procedure demonstrates how KEY? functions:

. . . . About the Keyboard
Buffer

Characters representing the keys
you type are stored in a portion
of your computer's memory
called a keyboard buffer.
D.L. LOGO constantly scans
this buffer for keyboard input.
You observe the keyboard buffer
in use if you type when LOGO
is busy with a job that does not
let it check the buffer. The keys
you type do not appear on the
screen until LOGO finishes the
job and is free to read the
buffer.

? K I L L
HAHE o r F I L E T O D E L E T E ? . . . TEST
I A H D E L E T I HG T E S T
I S T H I S

66

Section 3
Chapter 3 Direct Wire

TD K E
I F K E Y ? C E N D J
R T 4 5 F D 9 0 R T 1 8 4 F D 9 0 L T 1 8 0
K E

E N D

This procedure continues to execute until you press a
key . In effect, Line 1 of the procedure reads: If a key is
pressed, end the procedure.

67

Chapter 3 Summary

Chapter 3

Summary

PRIMITIVE Abbrev. Purpose

TO

END

EDIT

PRINT

PRINTI

READCHARACTER RC

REQUEST RQ

CLEARINPUT

KEY?

Specifies a procedure
name .

Indicates the conclusion
of a procedure .

Causes LOGO to enter
the edit mode.

Prints specified text
characters on the text
screen, followed by a
carriage return.

Prints specified text
characters on the screen
but does not produce a
carriage return.

Accepts 1-key input
from the keyboard.

Accepts multiple-key
input from the
keyboard.

Clears the keyboard
buffer of all previous
characters.

Determines if a key is
pressed.

68

[ENTER I

Summary 	 Chapter 3

Turtle Facts

• 	 Executing procedures written in the edit mode does
not destroy them. You can execute them as often as
you wish.

• 	 You must define procedure names with the primitive
TO .

• Pressing ends a procedure line .

• Procedure names can be as long as you wish .

• 	 D.L. LOGO ignores any text in a procedure that is pre­
ceded by a semicolon (;) .

69

I I

I J.

I J .

Chapter 3 Summary

Editing Keys

Keys

OJ

[]]character

CD OJG G

Purpose

Exits the insert and change modes.
Pressing BREAK again exits the edit
mode.

Ends input of a procedure line. Posi­
tions the cursor at the beginning of
a new line.

Moves the cursor to the beginning of
the workspace.

Moves the cursor to the end of text
in the workspace.

Enters the insert mode. You remain
in the insert mode until you press
BREAK

Replaces the character under the
cursor wi th the new character
character.

Deletes the character under the
cursor.

Enters the change mode. You remain

BREAK
in the change mode until you press

Tabs the cursor over 4 spaces to the
right.

Deletes one screen line of text from
a procedure.

Move s the cur sor a round the
workspace.

70

Summary Chapter 3

Suggested Project

Use the primitives and techniques you have learned to
create a flower similar to the accompanying illustration.
Remember, it is easier to break a program into small,
simple procedures. In this case, you can break the assign­
ment into 2 tasks: (1) to draw a petal and (2) to repeat the
process enough times to create a flower. A suggested so­
lution appears on the next page .

71

Chapter 3 Summary

Suggested Project Solution

TO P E T A L
R T 6 9 F D 4 0

R E P E A T 3 0 [
F D 3 R T B l

F D 4 0
E N D

T D F L O W E R
F U L L S C R E E N
c s

H T

R E P E A T 7 [P E T A L J
E N D

72

M EMORI ES,
M EMORIES

Procedu res i n Memory, on
Diskette, or on Paper

4

Section 1
Section 2
Section 3

Section 4

Saving and Loading: storing your work on diskette.

Making Room: gaining more diskette space.

A Vanishing Act: erasing, restoring, and manipulating proce­
dures in the workspace.

Printing Procedures: listing procedures and procedure names
on the screen and to a printer.

73

Section 1
Chapter 4 Saving and Loading Procedures

Section 1
Savi ng and Loading
Procedu res
You can save your D .L . LOGO work in 3 ways: storing it
in the computer's memory, placing it on diskette, and
making a paper copy with a printer. Procedures you type
into the workspace are automatically saved in your com­
puter's memory until you erase them, load other proce­
dures f rom d i ske t t e , or turn of f your computer .
Procedures you save on diskette can be transferred to
D .L . LOGO's workspace whenever you wish. Also, pro­
cedures stored on diskette are not erased when you turn
off your computer.

Diskette Saving

To learn how to save your work, type the following 2 pro­
cedures. Execute them if you wish to see what they do.

T D R E C
F D 4 0 R T 9 0
F D 5 R T 9 0
F D 4 0 R T 1 9 0

E N D

T D S P I N
c s
H T
S E T S P L I T
P U F D 2 0 P D
S E T P C 3
R E P E A T 3 [
R E P E A T 3 6 [R E C J
S E T P C P C - 1]

E N D

74

I J ,

[ENTER [

[ENTER J .

[ENTER J .

[ENTER J .

Section 1

Chapter 4 Saving and Loading Procedures

. . . . About Saving
Procedures

Whenever you save any
procedure from LOGO' s

workspace to diskette, you
automatically save all

procedures in LOGO' s
workspace. For instance, if you

have created 3 procedures,
named PROONE, PROTWO,

and PROTHREE, and you type
SAVE "PROTWO ENTER

PROONE and PROTHREE are
saved with PROTWO under the

filename PROTWO.

If you have only 1 disk drive and wish to save your pro­
grams and procedures on a diskette in Drive 00 (Drive
0), type:

? S A V E " n a m e "

name represents the actual name you give the procedure
or program you are saving.

If you have a second drive, save the program or proce­
dure on a diskette in Drive Dl (Drive 1) by typing SAVE
"/Dllname. For this example, name your program SPIN
and save it on Drive 00 by typing SAVE "SPIN

To save the program on Drive 0 1 , type SAVE "/Dl/SPIN
To restore the SPIN program from the Drive 00

diskette to D.L . LOGO's workspace, type LOAD "SPIN
You can now edit, execute, o r view the SPIN pro­

cedure in the normal manner.

D .L . LOGO follows the OS-9 convention of allowing the
storage space on a diskette to be divided into any number
of directories . Unless you indicate otherwise, D. L. LOGO
saves files in the root directory. You can use OS-9 com­
mands to create other directories on a diskette if you
wish, but doing so is not necessary to fully utilize D .L .
LOGO' s capabilities.

If you do create other directories, you can use the CHO
primitive to tell D .L . LOGO which directory is to be the
current one. For example:

C H O " T U R T L E D I R

Changes the current directory to a directory named TUR­
TLEDIR. If TURTLEDIR does not exist, an error message
is displayed. See the OS-9 Commands manual for infor­
mation on creating directories .

75

I J.

[ENTER J.

[SPACE I

I I

I I
I I

CA T A L O G f l l t.5
1 'iT1Ti1

0

. . .•

l H K < (I

T H R E E t 3

r o u R 1
f ! V E 2
f l Y E -

T H R E E 4

f l Y E I

" C A T ENTER
ENTER

Section 1
Chapter 4 Saving and Loading Procedures

u rReading the Catalog
Tllv I T U O I 1

T H R E E .? T H R E E 3

T H R E E 5To ensure you saved the
 program
 correctly, type the
 T H R E E 6 T H R ((l

T H R E E S T H R E E T H R E E K

primitive CATALOG
 ENTER T H R E E I 0 T H R E E 1 l T H R E E 1 2 The screen displays all of

T H R E E l 4 T H R E E 1 5

F O U R 2 f O U R Jthe programs or procedures saved on the current direc­
 f O U R S F O U R 6

f IY E 3tory of the diskette in Drive D0. To see the contents of
 f l YE 4
S E Y E U ;? S E V E tH

ENTER? S A V E " C A T

To use the program, type:

the current directory of a diskette in Drive Dl, type CAT­
ALOG "/Dl If you have other directories on your
diskette, you can view the contents of these by using
quotation marks with the CATALOG primitive, such as
(CATALOG "/D0/GRAPHICS).

If you have a large number of files on your diskette, you
find that CATALOG causes some to scroll off the screen
before you can read them. Because CATALOG can be an
input to a variable (you learn about variables in Chapter
7), you can create a program to display diskette files. The
CAT program in Appendix B of the manual is such a pro­
gram. It gives you the options of displaying D.L . LOGO's
file directory on the screen, or on the screen and to a
printer . It prompts you for the drive number of the
diskette you wish to display, then displays the files a
screen full at a time. Press BAR to display subse­
quent files . If you select the printer option, turn the
printer on before pressing Y at the prompt.

Many of the primitives and commands in this program
are unfamiliar at this time. However, you may wish to
add the program to your D .L . LOGO library for your
convenience in examining the contents of D.L . LOGO's
disk directory.

When you have typed CAT, save it on diskette by typing:

SE V(ns S E Y E t1 6 S E V E t1 7
(V (IU3 S E Y E U' J SE •/ (11 1 Q

P R E 'iS A K E Y

? L O A D
? C A T

76

I J

I J.

I J.

I I

I I

Section 1
Chapter 4 Saving and Loading Procedures

. . . About Picture Files

Be careful that you do not save
picture files using the same

name as you used for program
files . If you do, the picture files

overwrite the program files,
destroying them .

Then answer the prompts for the disk drive number and
whether you wish a printer copy, as they appear on the
screen.

Photo on a Disk

Not only can D.L. LOGO save procedures and programs,
it can also save the graphics you create. After you save
these pictures, you can restore them on the graphics
screen or reproduce them on a printer with graphics ca­
pabilities . Although D . L . LOGO does not reproduce
graphics screens on a printer, you can use Tandy's OS-9
High Res Screen Dump for this purpose. The screen
dump manual tells you how to produce a printer copy of
graphics screen files.

You can save a graphics screen from either the immediate
or the graphics mode. To do so, type:

? S A V E P I CT 1 1 n a m e ENTER

name represents the actual name you gave the graphics
picture. You must use the same name to reload the file.
To save the design created by SPIN and REC, type SAV­
EPICT "WHEELPIC ENTER To load the file back into
LOGO's workspace, type LOADPICT "WHEELPIC
ENTER The design reappears on the graphics screen.

Then you can use any LOGO graphics procedures to
modify the graphics design and resave it to diskette .

If you have a second drive and wish to save the graphics
screen on a diskette in Drive Dl, type:

? s Av E p I c T I I I D 1 I w H E E L p I c T ENTER

To restore the file on the graphics screen, type:

? L 0 AD p I c T II I D 1 I w H E E L p I c T ENTER

77

I I .

' ' '

H E X

I

. . m

.

Section 2
Chapter 4 Making Room

Section 2
Maki ng Room

Checking Diskette Space

As you save the demonstration procedures and programs
in this manual, as well as some of your own, you may be
getting short of space on your diskette . Using the CATA­
LOG primitive, you can check to see if there are any files
that you no longer need. Then you can delete such files
from your diskette, using D .L . LOGO's ERASEFILE
primitive .

For instance, you may wish to erase some of the D.L .
LOGO demonstration files. Using the CAT program from
Appendix B, you can see the names of the files on the
screen:

A N I M A L A N I M A L S S O N G S
H E X T R E E F L A G
C L O C K S O R T F A C T O R I A L
D E M O F O R T R E S S A ! T E X T
S T A R S S O U N D T E X T G R A P H T E X T
I N T R O T E X T M A T H T E X T E D I T T E X T
D E M O S O N G D O O D L E

Caution: D o not erase files from your D.L . LOGO mas­
ter diskette . It is always best to keep several backups of
this diskette . Use the backup diskettes when running
programs, copying, or deleting files.

To delete the first demonstration file, type ERASEFILE
"ANIMAL ENTER

Drive 0 starts, and after a short time, the LOGO cursor
reappears. This tells you that the file has been erased.
Follow the same procedure for as many files as you wish,
but be careful . Once erased, a file cannot be retrieved. To

C A T A L O G OF F I L E S
' 1 ' ' • ; ; ; I

i i -t: 1" • I ; ; I I ; I

All I H A L AH I H A L S SOllGS
T R E E F L A G

CL OCK S O R T F A C TOR I rt L
D E H O F O R T R E S S A I TEX T GRAPH T E X T S T A R S S O U !I D T E X T
I U T R O T E X T M A T H T E X T E X I T T E XT
D O O D L E D E f10S O H G $ E E K

()$9R l\ D E'tWIJ C H D S 'S T A R T IJP
T £ ti P C A TЫllRG(L OG O U R I T E D H T Ь

P R E S S A K [Y .

78

I ENTER I

Section 2
Making Room Chapter 4

erase files on other drives, specify the drive number. For
instance:

? E R A s E F I L E II I D 1 I s 0 N G s

If you plan to remove more than 1 or 2 files, a purge pro­
gram is provided in Appendix B to make such a task
easier.

Another Method of Erasing F i les

Another way to remove an unwanted file is to save a new
file under the existing name . Anytime you save a file, us­
ing a file name that already exists, the new file replaces
the old file . Be careful not to use the name of an existing
file you wish to keep when you save programs or proce­
dures on your diskette.

79

I I

I J,

Section 3
Chapter 4 A Vanishing Act

Section 3
A Va nish i ng Act
As well as erasing and manipulating files on diskettes,
you can also erase and manipulate procedures in the
LOGO workspace . The ERASE and ERALL primitives re­
move a file or clear the entire workspace. If you have 4
procedures in the workspace named PICTURE, FRAME,
STEM and FLOWER, and you decide you no longer need
the FRAME procedure, type:

? E R A s E I I F R A M E ENTER

The ERASE primitive removes FRAME from the work­
space, leaving FLOWER and STEM.

Should you decide that you need FRAME after all, you
can enter the edit mode by typing EDIT and
press []] to undo the last edit command. Pressing

ENTER[]] re­
verses the previous ERASE primitive and restores
FRAME. This undo function only operates on the last
command you use in the edit mode. If you press any
other keys before pressing []], the undo function does not
work on the erased files .

Test this process by entering the following procedures:

T D F R A M E
S E T B G 1 2
S E T P C 2
P U B K 5 0 L T 9 0 F D 5 0
R T 9 0 P D
R E P E A T 4 [F D 9 5 R T 9 0)
R T 4 5 F D 1 6 L T 4 5
R E P E A T 4 [F D 7 2 L T 4 5 F D 1 6

B K 1 6 R T 1 3 5 1
P U F D 6 R T 9 0 F D 4 0 L T 9 0 P D
S T E M

E N D

80

I J.

I I

[ENTER J.

I J .

I J,

I J

5 J

Section 3
Chapter 4 A Vanishing Act

T D S T E M
S E T P C 3
F D 1 0
R E P E A T 1 0 [F D 5 R T 8]
L T 6 8
R E P E A T 1 6 [R T 8 B K
R T 1 2 2
R E P E A T 8 [B K 5 R T 8 1
R T 3 8 F D 2 0
F L O W E R

E N D

T D F L O W E R
S E T P C
L T 8 4
R E P E A T 1 5 [R T 1 0 F D 1 5

B K 1 5 J
E N D

Save the program to diskette then execute it by typing
FRAME ENTER When the program is complete, remove
the FRAME procedure by typing:

? E R A s E II F R A M E ENTER

Now try to execute the FRAME program. Type FRAME
D.L . LOGO displays an error message telling you

that FRAME is an undefined procedure, You can run the

STEM and FLOWER procedures by typing CS STEM
ENTER

To restore the FRAME procedure to the workspace, enter
ENTERthe edit mode by typing EDIT then press (]].

The cursor moves to the top of the workspace, and the
FRAME procedure reappears.

The Total Erase

The ERALL primitive removes all files from the work­
space. Typing EDIT ENTER after using the ERALL primi­
tive displays a blank screen. However, you can restore

81

[ENTER J .

[ENTER J .

[ENTER J.
[ENTER J.

[ENTER J.
[ENTER J

Section 3
Chapter 4 A Vanishing Act

the erased primitives by pressing []] when in the edit
mode . This is only possible if you have typed nothing
else in the edit mode. After you type any other entry, it
becomes the last edit input that []] can affect and the
erased files are lost.

Adding On

D.L . LOGO's APPEND primitive lets you load proce­
dures into your workspace to the capacity of your com­
puter's memory. Using this feature, you can maintain a
library of procedures for use in any program, or write
programs in modules that can be combined. To see how
this works, load the previously saved SPIN program into
the workspace by typing LOAD "SPIN

When the ? prompt appears, type ERASE "SPIN

Using the ERASE procedure eliminates the SPIN proce­
dure from LOGO's workspace . Because the SPIN pro­
gram consists of 2 procedures, REC and SPIN, you can
save the remaining procedure under its name REC.

Again load SPIN . This time, delete the REC procedure by
typing ERASE "REC Save the remaining SPIN
procedure by typing SAVE "SPIN Doing this
causes the new SPIN procedure to overwrite the previous
SPIN file.

From the immediate mode, type ERALL This
erases all text from the workspace. Type EDIT to
reenter the edit mode, and then type the following
procedure:

TD S P I N 2
S E T P C
R E P E A T 4 [

H O M E
S P I N
S E T P C P C + 1 l

E N D

. . . . About a Library

A comprehensive disk library of
procedures can save a
programmer a great deal of
time. If you write a program
which contains one or more
procedures you think you can
use in future tasks, follow these
steps to add it to a library
diskette.
• If you do not already have a

library diskette, format a
diskette to use.

• Save your program to your
working diskette.

• Insert the library diskette.
• Erase all procedures except

the one you wish to save from
the workspace.

• Save the procedure .

82

I I

I I
I I

I I I I

I J.

Section 3

Chapter 4 A Vanishing Act

To save the procedure, type:

? s Av E II s p I N 2 ENTER

You now have 3 separate procedures that can act together
to create a program. To join the parts, type the following
commands:

? E R A L L ENTER
? L 0 A D II s p I N ENTER
? A P P E N D " R E C ENTER
? A p p E N D " s p I N 2 ENTER

Enter the edit mode to ensure that all the procedures are
in the workspace. Exit the edit mode and execute the
program by typing SPIN2 ENTER The 3 appended proce­
dures work together to produce a new design.

83

Section 4
Chapter 4 Printing Procedures

Section 4
Printi ng Procedures
It is not necessary to enter the edit mode to examine pro­
cedures. The PRINTOUT, POALL, and POTS primitives
display procedures and names of procedures on the im­
mediate mode screen. To examine a particular procedure,
use the abbreviated form of PRINTOUT. If you have the
procedure REC in the workspace, type PO "REC and the
screen shows:

TO R E C
F D 4 0 R T 9 0
F D 5 R T 9 0
F D 4 0 R T 1 9 0

E N D

Printing Names

To see the names of all the procedures currently in the
workspace, use the POTS primitive . If you have several
procedures in the workspace, the POTS primitive pro­
vides a printout resembling the following:

? P O T S

R E C

S P I N 1

S P I N 2

B E E P

N O I S E

Q U I T

L O W

The Whole Show

The POALL primitive lets you view the entire contents of
the workspace. This primitive sends procedure names
and listings to the display screen. If you have more text

84

I I
I I

I I

I I
I I

I I

Section 4

Printing Procedures Chapter 4

in the workspace than 1 screen can display, text scrolls
off the screen until the end of the workspace is reached.

Using A Printer

If you connect a printer to your computer, you can use
the printout functions already mentioned in conjunction
with the COPYON primitive . COPYON sends all screen
displays to the printer. In this manner, you can make
hard copies of procedure listings, names of procedures,
or the entire workspace . The following examples show
how to do this:

COMMANDS RESULT

? COPYON ENTER
-prints the e nt ire

? POALL ENTER
? COPYOFF ENTER

workspace

? COPYON PO "DRAW -prints the DRAW
COPYOFF ENTER procedure

? COPYON POTS ENTER -prints the names of a l l
? COPYOFF ENTER procedures resident in the

workspace

You can combine the various printer and printout com­
mands on 1 line or you can use separate lines as demon­
strated in the preceding chart .

Printout from Procedures

You can also send data produced by procedures to a
printer . If a command generates an output, such as
PRINT :A + :B, you can use CO PYON to send the data to
a printer as well as to the display screen. The following
example shows this:

85

86

Section 4
Chapter 4 Printing Procedures

T D S E N D
C O P Y O N
D D [
M A K E " S R Q

W H I L E : S < > [E N D J
C D P Y D F F

E N D

Each line you type goes to both the screen and the
printer until you type "END" . At this time, the COP­
YOFF primitive is activated and the procedure ends.

Summary Chapter 4

Chapter Su mmary

Primitive Abbrev. Purpose

SAVE Copies a program or
procedure to diskette.

LOAD Copies a program or
procedure from diskette
to LOGO's workspace .

CATALOG Displays all diskette files .

CHO Changes the current
directory.

SAVEPICT Copies the contents of a
graphics screen to
diskette as a picture file .

Displays a picture file
from diskette on the
graphics screen.

LOAD PICT

Removes a specified file
from a diskette .

ERASE FILE

Removes a specified
procedure from the
workspace.

ERASE

Removes all current
procedures from the
workspace .

ERALL

87

Chapter 4 	 Summary

Primitive Abbrev. Purpose

Loads the specified APPEND
diskette file below the
procedure or procedures
currently in the
workspace.

PRINTOUT PO Displays all lines of the

POALL

POTS

CO PYON

COPYOFF

Turtle Facts

specified procedure .

Displays the lines of all
procedures currently in
the workspace.

Displays the names of all
procedures currently in
the workspace.

Causes a dual output of
all screen display to the
printer.

Turns off COPYON.

• 	 You can save D .L . LOGO work with 3 devices: the
computer's memory, diskettes, and a printer.

• 	 You can save files on D .L . LOGO diskettes, or on any
OS-9 formatted diskettes .

• 	 You can save graphics displays on a diskette and use a
special screen dump utility to reproduce them on a
printer equipped with graphics capabilities.

• 	 If you save a new file using the name of a file currently
on diskette, the old file is destroyed.

88

Summary 	 Chapter 4

• 	 You can save individual procedures in a program with
the SAVE, LOAD, and ERASE primitives.

• 	 You can make hard copy listings of procedures using
the COPYON primitive.

89

5
COM PLETI NG
TH E TOU R

More Tu rtle Graphics

Section 1 	 More Geography : advanced primitives for directing the Turtle .

Section 2 	 More Turtle Maneuvers : directing the Turtle, controlling the
pen, using dots, and hiding the Turtle .

Section 3 	 Building Fences and Roaming Free: restricting the Turtle to the
borders of the screen, wrapping it around the edges, or send­
ing it beyond the visible boundaries .

91

I 1 1 BREAK) .
I ENTER) .

I ENTER) .

·x I I I I 1·1 I I I I I x

-v

Section 1
Chapter 5 More Geography

Section 1
More Geog raphy
Now that you are familiar with the process of writing,
saving, and printing procedures, you can create graphics
routines for your Turtle with greater confidence. Once a
procedure is working well, save it on diskette, and then
try modifications and experiments. If you have a printer,
make hardcapies of procedures so that you can more easily
spot routines that need correcting or changing. Knowing
that you will not destroy or erase the original procedure
gives you more confidence to explore and test LOGO' s
capabilities . This chapter completes the introduction of
the D .L . LOGO graphics capabilities begun in Chapter 1 .
Now, however, you need not lose the procedures and
programs you create.

Teleporting Turtle

D.L . LOGO has a number of primitives to help your Tur­
tle find its way around the graphics screen. As men­
tioned in Chapter 1 , your Turtle is familiar with the
Cartesian coordinate grid system. Using this system, you
can instantly teleport the Turtle to any point on the grid.

If you have a procedure requiring the Turtle to start at
the top left corner of the graphics screen, you can easily
plot the necessary coordinates as -128 96 . To send the
Turtle to

SH IFT
that point, first enter the graphics mode by

pressing Then, set the new Turtle location
by typing SETXY -128 96 The Turtle immediately
jumps to the top left corner of the screen.

You need not set both the X and Y coordinates at the
same time . To move the Turtle to the top middle of the
screen, set only the X coordinate by typing SETX 0

92

. . . . About the Grid

The above illustration shows the
layout of the Cartesian Grid
System . The grid is divided into
4 quadrants by a horizontal X
line and a vertical Y line. The
X and Y lines are divided in
two, at point (}). On the X line,
values to the left of zero are
negative and values to the right
of zero are positive. On the Y
line, values above zero are
positive and values below zero
are negative. To find any
coordinate, draw an imaginary
perpendicular line from the
desired locations on the X and
Y lines. The coordinate location
is where the 2 lines cross .

. . . . About Screen Locations

A point on the graphics screen
is defined as an ordered pair of
numbers . The first number
indicates the horizontal position
(X) and the second number
indicates the vertical position
(Y) . Both numbers are required
to identify the point.

I I

[J .

I I
[ENTER J.

93

Section 1
More Geography Chapter 5

. . . . About Teleporting

When you send the Turtle to the
coordinates at - 128 96, the
Turtle image disappears from

the screen . This is because the
Turtle is at the exact corner of

the display, the image is off
screen . To cause the Turtle

image to show, type:

R T 1 3 5

The Turtle now points
diagonally towards the bottom
right corner of the screen and

most of the image is visible.

. . . . About the Turtle
Position

When you send the Ii1rtle to a

particular grid coordinate, it

appears centered 1 step from

that coordinate, in the direction
of its heading. For instance, if
the Ii1rtle is facing up, LOGO

centers it immediately above the
current grid coordinate. If it is

facing down, LOGO centers it

immediately below the current

grid coordinate, and so on . To

test this, send the Turtle to
some coordinate, and then

display a dot at that coordinate.
For instance, type:

? S E T X Y 1 0 1 0 D O T 1 0
1 0

ENTER

Now reset the Y coordinate back at the HOME position
by typing SETY 0 ENTER

Calculating Coordinates

You can establish the location of the Turtle using the
XCOR and YCOR primitives. For instance, if a procedure
moves the Turtle around the screen, and you want to
know when it reaches a certain point, you can use XCOR
and YCOR to provide that information . Type and execute
the following procedure to see how this works:

TO T A T T L E
S E T S P L I T 5
S E T X Y - 1 2 8 9 6
R E P E A T 1 0 [

S E T X Y X C O R + 1 0 Y C D R - 1 0
P R I N T [T U R T L E I S A T J X C D R

Y C O R J
E N D

Press BREAK twice to exit the edit mode . Execute the
procedure by typing TATTLE The Turtle takes
stairlike steps down the screen, telling you its location at
each step. XCOR always gives the Turtle's X coordinate,
and YCOR always gives its Y coordinate .

Turtle as an Author

Although you have been giving commands to the Turtle,
so far it has not communicated with you. Your Turtle can
communicate in several ways, one of which is in writing.
Although the Turtle isn't a creative writer (you have to
tell it what to write), it can display messages on the
graphics screen. Your Turtle can:

• Label elements of a graph

• Write messages for your family and friends

Section 1
Chapter 5 More Geography

• Tell you what it is doing while it executes a procedure

• Give instructions during a game

• Give prompts and verify answers

• Label demonstrations

To create text on the graphics screen, use the TURTLE­
TEXT primitive. To see how this works, execute the pre­
vious TATTLE procedure with one change:

T O T A T T L E
S E T S P L I T 5
S E T X Y - 1 2 8 9 6
R E P E A T 1 0 [

S E T X Y X C O R + 1 0 Y C O R - 1 0
T U R T L E T E X T [I A M A T . . • J

X C O R Y C O R J
E N D

The TURTLETEXT primitive displays a message at the
current Turtle position on the screen.

. . . . About TURTLETEXT

When you use TURTLETEXT
to display a message on the
graphics screen, the message is
placed with the upper left corner
of the first letter on the specified
grid coordinate. To test this,
execu te this command:

S E T X Y 5 0 5 0 D O T 5 0 5 0
T U R T L E T E X T [H E R E I
A M J

I A" AT . . , -118 86
I A" AT . , , -108 16

I A" AT . . . -·$ 66
I A" AT . , . -88 56

I A" AT , . . -?8 46
I A" AT . . . -68 36

l A" AT , . . -58 26
I A" A T , . . -48 16

I A" AT . . . -38 6
I A" AT . . . -28 -4

CS TATTLE

94

Section 2
Chapter 5More Turtle Maneuvers

. . . . About Powers

In 0. L . LOGO, the up arrow
(r) indicates powers . For

instance 4 T 2 is interpreted as 4
to the power of 2 . You learn

about 0. L. LOGO math
functions in Chapter 9 .

Section 2
More Turtle Maneuvers

Heading Out

D.L . LOGO has 2 commands that let your Turtle reach
any point by the most direct route. For instance, if your
Turtle is at home but you wish it to draw a line straight
to coordinates 50 50, use the TOWARDS and SETHEAD­
ING primitives. Try the following procedure:

T D T R I
c s
F D 5 0
R T 9 0
F D 5 0
S E T H E A D I N G T O W A R D S 0 0
F D S Q R T C 5 0 t 2 + 5 0 t 2 >

E N D

This procedure first draws 2 sides of a triangle and then
uses the TOWARDS primitive to provide the direction for
the SETHEADING primitive. Because the Turtle begins at
coordinates 0 0, it ends there to complete the job.

The last line in the procedure uses a version of the for­
mula C T 2 A t 2 + B t 2 to calculate the distance from =

the second side of the triangle to home.

Try this procedure to see the power of the TOWARDS
and SETHEADING primitives.

T D R A D
c s

F U L L S C R E E N

S E T X Y 5 0 5 0

R E P E A T 5 4 [

95

I I .

Section 2
Chapter 5 More Turtle Maneuvers

S E T H E A D I N G T O W A R D S 0 0
F D 7 1 E K 7 1
R T 8 6
F D 8 . 2 J

E N D

There are easier and quicker ways to draw radiating lines
in a circle, but this procedure illustrates the Turtle's abil­
ity to always find its way to an exact coordinate, regard­
less of its current position on the screen.

The HEADING primitive lets you check the Turtle's cur­
rent heading at any time. When the previous procedure
ends, type HEADING ENTER The screen shows a value
of 321 . This gives you another method of creating radi­
ating lines. Try this procedure:

T D S U N
F U L L S C R E E N
c s
R E P E A T 4 5 [F D 7 1 E K 7 1
S E T H E A D I N G H E A D I N G + 8 J

E N D

This time the Turtle uses coordinates 0 0 as home base
and uses SETHEADING to increment the value HEAD­
ING returns. Heading sets are similar to degrees on a
compass; directly up is heading 0. Heading values incre­
ment clockwise to 360 degrees, as illustrated:

To Pen or NOT to Pen

Although your Turtle's pen never runs out of ink, at
times you may want to move the Turtle without leaving a
trail. You can do this with the PENUP primitive. Later,
when you want the Turtle to draw again, use the PEN­
DOWN primitive . To test these primitives, change the
previous RAD procedure by adding these lines:

. . . . About Headings

Turtle headings directly relate to
compass headings . For instance,
to cause the Turtle to face right,
set the heading to 9(]) . To cause
the Turtle to face left, set the
heading to 27(]), and so on .

96

? l I

I I
! ENTER !

[ENTER !
[ENTER !
! ENTER !

Section 2
Chapter 5 More Turtle Maneuvers

T D R A D
c s
F U L L S C R E E N
S E T X Y 5 0 5 0
R E P E A T 5 4
[S E T H E A D I N G T O W A R D S 0 0
F D 7 1 B K 7 1
R T 8 6
P E N U P
F D 8 . 2
P E N D D W N J

E N D

By lifting the pen when the Turtle goes around the circle
and putting it down for the radiating lines, you can cre­
ate a design that looks like the SUN design.

You qm also check the condition of the pen. To see if the
pen is down, use the PENDOWN? primitive. If the pen is
down, the screen displays TRUE; if the pen is up, the
screen displays FALSE. For example:

? P E N D O W N

T R U E

ENTER

DOT Marks the Spot

LOGO also lets you mark locations on the screen without
your Turtle leaving home . The DOT primitive produces a
dot at a specified location on the grid. To see this, type:

? H O M E ENTER
? D D T 1 0 1 0
? D D T - 1 0 - 1 0
? D O T - 1 0 1 0
? D D T 1 0 - 1 0

If you now type PRINT XCOR YCOR, you see that, de­
spite the new dots on the screen, Turtle is resting at
home.

97

Section 2
Chapter 5 More Turtle Maneuvers

A Disappearing Act

Sometimes your Turtle gets in the way of a graphics de­
sign or graphics text. You can tell it to disappear with the
HIDETURTLE or HT primitive. Type and execute the fol­
lowing procedure:

T O S P O T
H I D E T U R T L E
P E N U P
R E P E A T 5 [

R E P E A T 2 0 [D O T X C D R Y C D R
F D 2 J

R T 1 4 4]
S H D W T U R T L E

E N D

You have probably guessed that SHOWTURTLE is the
primitive that gets the Turtle out of hiding. Both primi­
tives appear in their long forms in this procedure, but HT
and ST work too. In this procedure, the FD primitive
moves the Turtle, and the XCOR and YCOR primitives tell
the DOT primitive where to execute its function.

Efficiency is another reason to use the HIDETURTLE
command when you execute graphics procedures. To dis­
play the Turtle during the execution of a procedure, D .L .
LOGO constantly redraws the Turtle shape on the screen.
If you hide the Turtle, LOGO has more time to operate
your procedure and functions much faster. To see the ex­
tra speed HIDETURTLE gives, execute the following pro­
cedure twice, once with the Turtle showing and once
with it hidden:

TD B A R
C S P D
R E P E A T 3 0

[F D 8 0 R T 9 0 F D 1 R T 9 0
F D 8 0 L T 9 0 F D 1 L T 9 0 J

E N D

98

I I.
I ENTER) .

I I .

I I.

Section 2
Chapter 5More Turtle Maneuvers

To execute the procedure with the Turtle, type CS ST
BAR ENTER Time the procedure if you like. Now type
CS HT BAR The second execution runs approxi­
mately one-third faster. Restore the Turtle on the graph­
ics screen by typing ST ENTER

If you are in the immediate mode and want to know
whether the Turtle is hidden or not, you can use the
SHOWN? primitive to tell you the Turtle's state . Type
SHOWN? If the Turtle is visible, TRUE appears; ENTER
if the Turtle is hidden, FALSE appears on the screen. You
can also use SHOWN? from within procedures to test the
Turtle state.

99

I I

[ENTER [

Section 3
Chapter 5 Building Fences and Roaming Free

Section 3
Bu i ld i ng Fences and
Roa m i ng Free
D.L . LOGO can fence your Turtle within the borders of
the graphics screen, let it wrap around the edges, or give
it freedom to wander beyond visible bounds. The 3 primi­
tives that do this are FENCE, WRAP, and WINDOW,
respectively.

When you first load D .L . LOGO, WINDOW is active. If
you issue a command to send the Turtle beyond the bor­
der of the screen, you lose sight of it. You can do this
when the Turtle is in the HOME position by issuing the
command:

? F D 2 0 0 ENTER

The Turtle disappears from the top of the screen. As long
as it is on the screen, you can see the trail left by the Tur­
tle. Once off the screen, however, the trail continues into
oblivion, and the Turtle seems lost. To return the Turtle
to the screen, use a command such as HOME or CLEAR­
SCREEN; establish new XY coordinates; or issue a WRAP
primitive.

WRAP, in effect, connects 1 edge of your screen to the
opposite edge. Thus, when your Turtle goes off the edge
at the top, it immediately reappears at the bottom. Or, if
it goes off the edge at the right side, it reappears at the
opposite edge of the left side. To see this, issue the FD
200 command again, but before you do, use the WRAP
primitive:

? C S W R A P F D 2 0 0

This time the Turtle trail goes to the top of the screen and
reappears at the bottom. The Turtle completes its mission
slightly above the center of the screen.

100

Section 3
Chapter 5Building Fences and Roaming Free

For a striking illustration of the WRAP primitive, execute
this procedure:

T D W E A V E
F U L L S C R E E N
c s
W R A P
R E P E A T 1 0

[S E T P C
R T 4 5
F D 1 0 9 0
S E T P C 2
R T 9 0
F D 1 0 9 0
S E T H E A D I N G 9 0
P U F D 4 P D
L T 9 0]

E N D

By turning the Turtle right 45 degrees and sending it for­
ward 109(/) steps, you create an effect similar to winding
tape down a stick. Of course, this works only if the
WRAP primitive is active. If you wonder what the proce­
dure does without the WRAP primitive, replace it with
WINDOW and reexecute the procedure.

To prevent the Turtle from leaving the screen boundaries,
use FENCE. When you implement the FENCE command
and the Turtle reaches an edge of the screen, the current
procedure stops and an error message says, ** ERROR:
TURTLE OUT OF BOUNDS .

101

Chapter 5

Chapter Summary

PRIMITIVE Abbrev. Purpose

Summary

SETXY

SETX

SETY

XCOR

YCOR

TURTLETEXT

TOWARDS

SETHEADING

HEADING

Establishes graphics
screen X and Y
coordinates.

Establishes the graphics
screen X coordinate.

Establishes the graphics
screen Y coordinate .

Returns the current
graphics screen X
coordinate.

Returns the current
graphics screen Y
coordinate .

Displays a message on
the graphics screen at
the current x/y grid
coordinates.

Provides the degree
heading from Turtle's
current position to a
specified position.

Sets the heading of the
Turtle in the range of 0-
360 degrees.

Gives the Turtle's
current heading.

102

Summary Chapter 5

PRIMITIVE Abbrev. Purpose

PENUP PU Disables the Turtle pen.

PEND OWN PD Enables the Turtle pen.

PENDOWN? Returns the condition of
the pen. Down =

TRUE, Up = FALSE .

DOT Displays a dot on the
graphics screen at
specified coordinates .

HIDETURTLE HT Causes the image of the
Turtle to disappear from
the graphics screen.

SHOWTURTLE ST Causes the image of the
Turtle to reappear on the
graphics screen.

SHOWN? Returns TRUE if the
Turtle is visible, FALSE if
it is hiding.

FENCE Causes a procedure to
halt and display an error
message if the Turtle
attempts to go beyond
the graphics screen
boundaries .

WRAP Ca uses graphics to
reappear on the
opposite side of the
screen when they go
beyond a screen
boundary.

103

Chapter 5 	 Summary

PRIMITIVE Abbrev. Purpose

Disables FENCE and
WRAP. Displays only
on-screen points.

WINDOW

Turtle Facts

• 	 LOGO locates the Turtle headings in degrees, in the
range of (i) to 360, with straight up being (i) degrees .

• Headings increment clockwise.

• 	 The middle of the Turtle's back is always centered on
its current grid coordinates, regardless of its heading.

• 	 Graphics procedures run dramatically faster when the
HIDETURTLE primitive is active .

• 	 When you implement WINDOW, any Turtle graphics
beyond the parameters of the graphics screen are not
visible .

Suggested Project

Write a program to:

1 . 	Arrange 4 dots in a square, each with an equal dis­
tance from the center of the screen.

2 . Create a box by connecting the corners.

3. 	Use SETHEADING and TOWARDS to connect opposite
corners and form an X in the box, similar to a ballot
box.

Hint: the formula for calculating the length of the third
side of a triangle is SIDE3 r 2 SIDEl r 2 + SIDE2 r 2.=

104

Summary Chapter 5

Suggested Project Solution

T O B A L L O T
c s
F U L L S C R E E N

C O R N E R

B O X
C R O S S

E N D

T D C O R N E R
D O T 5 0 5 0
D D T - 5 0 - 5 0
D O T 5 0 - 5 0
D D T - 5 0 5 0

E N D

T D B O X
S E T X Y - 5 0 5 0
R E P E A T 4

[R T 9 0 F D 1 0 0 J
E N D

T D C R O S S
S E T X Y 5 0 5 0
S E T H E A D I N G T O W A R D S - 5 0 - 5 0
F D S Q R T C 1 0 0 i 2 + 1 0 0 i 2)
S E T X Y - 5 0 5 0
S E T H E A D I N G T O W A R D S 5 0 - 5 0
F D S Q R T C 1 0 0 i 2 + 1 0 0 i 2)

E N D

105

6

YOU SI NG,
TU RTLE PLA VS

Tu rtle M usic

Section 1 Technical Talk: introducing Turtle's musical talent.

Section 2 Getting Started: how Turtle makes music.

Section 3 Everybody Sing: using all 4 voices.

107

Chapter 6

Section 1
Technica l Ta l k
Your Turtle is a versatile musician . Whether you want
"Home on the Range" or Wagner's "Ride of the Val­
kyrie," Turtle can oblige. But . . . you must enter the
notes in a form that D .L . LOGO understands.

You don' t need special equipment to produce O . L .
LOGO music . Music generated by circuitry in your com­
puter plays through your television speaker-and in 4­
part harmony if you choose .

You can make music with D.L . LOGO even if you know
very little about music. This chapter includes instructions
that tell you how to convert musical notes to D.L . LOGO
code.

Pitch, Octaves, and Rhythm

The musical scale consists of the notes C, 0, E, F, G, A,
and B, and each can be followed by a sharp (#) or a flat

(b) .

Musical Score

In D .L . LOGO you use the pound symbol (#) to indicate
a sharp, and you use the apostrophe (') to indicate a flat.
To show that a voice is resting, use the letter X. Use the
ampersand (&) to indicate that a specified voice is the
same as its previous setting.

Section 1
Technical Talk

108

I I

(ENTER)

Section 1
Technical Talk Chapter 6

l T 3 6 0
ENTER

D.L. LOGO identifies octaves as beginning and ending
on C. The octave beginning on middle C is the default
oc tave . That is , unless you specify otherwise, D . L .
LOGO uses the octave beginning a t middle C when play­
ing a note . You specify octaves higher or lower than the
default octave by preceding a note designation with 1 or
more H's or L's.

For example, LLLC tells D .L . LOGO that you want to
play C that is 3 octaves below middle C . HC tells D .L .
LOGO that you want to play C that i s 1 octave above
middle C.

Type the following line and listen to the sounds D .L .
LOGO produces:

M U S I C L L L C L L C L C C H C H H C
H H H C l

You must tell D .L . LOGO the number of beats to hold
each note . You do so by preceding the name of the note
with a number-1 tells D .L . LOGO to hold the note 1
beat, 2 to hold the note 2 beats, and so on.

You must also specify the tempo, or the number of beats
per minute. To do so, type Tn (n is the number of beats) .
For example, to indicate 120 beats per minute, type T120.

In D. L. LOGO a note-word consists of from 1 to 4 notes
that are sounded simultaneously. For example, a G minor
chord (G B-flat D) consists of 3 notes sounded simultane­
ously and is therefore a note-word . In D .L . LOGO code
the note-word is GB'HD, beginning on the G above mid­
dle C. Notice that D is preceded by an H, which tells
D .L . LOGO that you want the D in the second octave
above middle C. To hear this chord, type:

M U S I C l G B ' H D J

Following are the same notes shown as notes on a staff.

109

Section 1
Chapter 6 Technical Talk

Musical Score

0

Do-Re-Me

Now, to hear some real music, enter the following lines
from the edit mode:

T D D O R E M E
M U S I C C T 3 6 0 3 C D 3 E C 2 E 2 C 4 E

3 D
E F F E D B F 3 E F 3G E

2 G
2 E 4 G 3 F G A A G F B A

3 G
C D E F G B A 3 A D E F #

G A
B 8 3 8 E F # G # A 8 6 H C

H C 8
2 A 2 F 2 8 2 G S H C 4 X C D

E F
G A 8 H C X G X C J

E N D

I f all i s well, you hear D .L . LOGO's rendition of "Do-Re­
Me." If it doesn't sound quite right, check your typing
with the listing and correct any errors.

110

Section 2
Getting S tarted Chapter 6

Section 2
Getti ng Sta rted
If you read music, the preceding information is probably
all you need to to play jazz, pops, rock, blues, classical,
or country and western in D .L. LOGO. If you don't read
music, you can still tickle D .L . LOGO's ivories by using
the guidelines that follow.

Following is a sample worksheet. On the left is a series of
chords in two measures. On the right is the D .L . LOGO
code (one "box" with a sum line for each measure in the
score) . Reading the top row of notes across, you have C
C B B. Converting these notes to D .L . LOGO code pro­
duces lHC lHC 1B lB . The second row of notes corre­
sponds to the second row of code, as do the third and
fourth rows. The bottom line of D .L . LOGO code is a
sum line, or, in other words, the note-word. The note­
word contains the 4 notes that sound simultaneously.

Musical Score

HC HC B B
E F F D

LG LF LF LG
LC LLA LLA LLG

HCELGLC HCFLFLLA BFLFLLA BOLGLLG

HC HC HC HC
E E E E

LG LG LG LG
LC LC LC LC

4HCELGLC

To hear this chord progression, you type in the sum lines
as shown below each box of code . Because the last mea­
sure consists of whole notes, it can be entered as one
noteword. You learn more about this later in the chapter.
For now, type:

1 1 1

[ENTER)

Chapter 6

M U S I C [T 3 6 0 H C E L G L C H C F L F L L A B F L F L L G
B D L G L L G H C E L G L C J

At the end of the chapter is a worksheet that you can use
to help you convert musical scores to D.L . LOGO code.
At the top left is a grand staff showing the default octave
and the octaves immediately above and below. If you
don't read music, you can use this chart to determine the
names of the notes and their values. You can use the
blanks below the grand staff to insert the corresponding
D.L . LOGO code. Enter the codes in the appropriate
squares, and then compile them into note-words . If you
are writing your own music, use a pencil and eraser and
experiment as you go .

Feel free to copy or reproduce this worksheet in any
manner you like . Copyright laws forbid the copying of
other portions of the manual.

A Bit of Music Background

If you are not familiar with music terminology, the fol­
lowing definitions will help you.

Term 	 Definition

Note 	 A symbol representing both a value
and a duration . For example, a
whole note represents a duration of
4 quarter notes . Its pitch is deter­
mined by its position on the staff.

Staff 	 The l ines and spaces on which
notes are placed. The grand staff
consists of the treble clef staff and
the bass clef staff.

Section 2
Getting Started

1 12

Section 2
Chapter 6Getting S tarted

Term Definition

Pitch

Treble clef

Bass clef

Octave

The tonal value o f a note . The
higher a note is placed on the staff,
the higher i t s tona l value . The
lower its placement, the lower its
tonal value.

The upper staff. A treble clef staff
is indicated by the treble clef sym­
bol (�) .

The lower staff. The bass clef staff
is represented by the b a s s c lef
symbol ('}) .

A range of 8 notes .

Blow The Man Down

When you tell O .L . LOGO to make music, you must
specify the value of each note (whether it is a whole note
or a half note or a quarter note, and so on) and what let­
ter represents its pitch. You must also designate any
notes that are sharped or flatted.

You can use the following version of "Blow the Man
Down" to practice making music with D .L . LOGO.

1 13

Section 2
Chapter 6 Getting Started

Blow the Man Down

1 14

Section 2
Getting Started Chapter 6

This musical score has 2 treble clef staves and 1 bass clef
staff. The top staff is the vocal line . For this rehearsal,
convert only the vocal line to D .L . LOGO code. Later,
you can enter the full score.

LOGO in Three-Qua rter Time

The time signature in a piece of music i s always indicated
at the beginning of the piece by numbers that look like a
fraction. The time signature for "Blow the Man Down" is
3/4.

This means that each measure (a measure consists of the
notes between 2 vertical lines that intersect the staff) con­
tains 3 beats and that a quarter note (J) gets 1 beat. Look
through the lines of music, and you'll see that each mea­
sure contains a total note value of 3 quarter notes. To in­
terpret this piece of music for D. L . LOGO, break each
measure into its smal lest component s . L o ok again
through the piece. The smallest component is an eighth
note (./'), which becomes the basic unit of time for this ex­
ample . The worksheet for "Blow the Man Down" has 6
blanks for each measure-1 blank for each eighth-note
value .

The Music

The first note in "Blow the Man Down" is a pickup quar­
ter-note . (The measure does not have the full 3 quarter­
note value.) To keep your chart in perspective, write this
note in Line 1 below blanks 5 and 6. Although G is a
quarter note, enter it as 2 eighth-notes to indicate each
beat.

The first full measure consists of a dotted quarter-note B,
an eighth-note C, and a quarter-note B. A dot after a
note indicates that the note is extended 1/2 its original
value; thus, the dotted quarter note has the same value
as 3 eighth-notes. Enter the measure on Line 2 of the
chart as 3 eighth notes on B, an eighth note on C, and 2

115

Section 2
Chapter 6 Getting Started

eighth notes on B. C is preceded by an H, because this C
is 1 octave higher than the default octave .

The key signature (an arrangement of sharps or flats fol­
lowing the clef sign) shows that this piece has one
sharp-F. This means that all the F's in "Blow the Man
Down" are sharped. Be sure to include the D.L . LOGO
sharp sign (#) for all F's that you convert to code.

Complete the code for the first measure by combining the
notes according to their values. For example, the 2 pickup
G's are played as 1 note, and D.L . LOGO needs to know
this. Immediately above the 2 G notes, write 2G. The
first 3 B's are also played as 1 note; write 3B above these
notes . The fourth note (an eighth-note C) is separate; so
write lHC above this note . Write 2B above the last 2
notes . When entered into D .L . LOGO, the code looks
like this:

2 G
3 8 1 H C 2 8

You can see that the note values of the first full measure
add up to 6 eighth-notes, or the 3/4 value required for a
measure. When only 1 beat is indicated, as in lHC, you
do not need to include the number 1 . The following ex­
amples include the number 1 because later code changes
require the inclusion of 1 before all 1-beat notes.

Because you are converting only the vocal line to code,
the following worksheet shows only 1 line for each mea­
sure. Later examples include the 5 lines indicated on the
original worksheet. Each line is numbered on the work­
sheet, and each measure is numbered on the score. This
numbering is not usual on musical scores, but we have
done it, and you can do it, to facilitate the conversion
process .

1

2

G G

B B B HC B B

1 16

Section 2
Getting S tarted Chapter 6

10

1 1

12

13

15

17

23

24

27

G

B

G

B

HC

A

F#

A

D

G

B

HD

HD

B

HE

HC

A

HE

A

A

HE

HD

HF#

HD

G

G D

B B

G G

B B

HC HC

A A

F# F#

A F#

D D

G G

B B

HD HD

HD HD

B B

HE HE

HC HC

A A

HE A

A A

A A

HE HE

HD HD

HF# HF#

HD HD

G G

D G G

HC B B

G D G

B B B

HC HC HC

G# A A

F# HC HC

F# E E

D D D

G G G

B B B

HE HD HD

HD HD HD

B B B

HE HE HE

B HC HC

A A A

A A A

A A A

A A A

HE HE HE

HD HD HD

HF# HE HE

B B B

G G G

3

4

5

6

7

8

9

14

16

18

19

20

21

22

25

26

After you transfer the score to worksheets, combine the
measures into note-words . The completed score, entered
into D .L . LOGO, looks like this:

1 17

I I
I J .

Section 2
Getting Started

. . . . About Code Lines

You need not put each
measure's code on a separate
line. You can arrange the code
in any manner, including 1
long, continuous line. In this
manual, we arrange the code
with 1 measure per line to make
checking and editing easier.

Chapter 6

T D B L O W
M U S I C [T 3 6 0
2 G
3 8 1 H C 2 8
2 G 2 D 2 G
3 8 1 H C 2 8
4 G 1 D 1 G
6 8
6 H C
3 A 1 G # 2 A
4 F # 2 H C
2 A 2 F # 2 E
2 D 2 D 2 D
3 G 1 G 2 G
6 8
3 H D 1 H E 2 H D
4 8 1 8 1 8
6 H D
6 H E
3 H C 1 8 2 H C

6 A

2 H E 2 A 2 A

2 A 2 A 2 A

2 A 2 A 2 A

6 H E

2 H D 2 H D 2 H D

4 H F # 2 H E

3 H D 1 8 2 8

6 G J

E N D

To hear the tune, press BREAK twice to exit the edit
mode and then type BLOW ENTER

Refin ing the Score

You may have noticed that some notes blend into 1 long

note. This is because D.L. LOGO plays adjacent notes as

118

I I

G[I

Section 2
Getting S tarted Chapter 6

1 long note when there is not a value change between
notes . You can correct this by inserting very short pauses
between each note . An eighth-note pause is too long; the
solution is to increase the number of beats per measure
without changing the length of time each note is played .
Because you can use any value for D .L . LOGO's tempo,
you can multiply both the tempo value and the note val­
ues by 10 and set the tempo to 1200 (T1200) . Now 10
beats are required to produce notes of the same duration
as a setting of T120.

A pause in music is known as a rest, and it can be of the
same duration as any note . Inserting the D .L . LOGO rest
symbol (X) between note-words creates a rest. If you use
X without a number prefix, the default value is 1 . A du­
ration of 1 with a tempo of 1200 produces a very slight,
but distinct pause.

Search and Replace

You can use D .L . LOGO's global search and replace fea­
ture to insert pause symbols and change beat values .
From the edit mode, begin the insertions by typing:

I G I G x I G ENTER

The first slash indicates a search. The following G is the
character to find. G and X are the replacement characters,
and the final /G tells D .L . LOGO to do a global (all inclu­
sive) search and replace.

Every G in the tune is now followed by space X (X) . G#
poses a special problem because the X is inserted in the
wrong place. To put the X in proper relationship to this
note, first delete the added space X. Now use global
search and replace to add a space X after each sharp sym­
bol. Type:

I # I # x I ENTER

1 19

/ va l u e / va l u e 0 / GI ENTER J

I J.

Chapter 6

This also inserts the proper pause after all F sharps. Use
the global search and replace method to insert pauses
after A, B, C, D, and E. Insert an additional 0 after T360
(T3600) .

Using global search and replace, add a 0 after each 1, 2,
3, 4, and 6 . To do so, use the following command:

ENTER
value is the number change . For example, to add a 0 to all
l's, type 11/10/G Using the global search and re­
place function causes some problems . The procedure
name (TO BLOW) and the MUSIC and END primitives
have some extra X characters. As well, the tempo (T3600)
now reads T306000. Delete these extra characters and you
are ready to hear your revised version of "Blow the Man
Down. "

The revised score looks like this:

T O B L O W
M U S I C E T 3 6 0 0
2 0 G x
3 0 8 x 1 0 H C X 2 0 8 x
2 0 G x 2 0 D X 2 0 G X
3 0 8 x 1 0 H C X 2 0 8 X
4 0 G x 1 0 D X 1 0 G X
6 0 8 x
6 0 H C X
3 0 A X 1 0 G # X 2 0 A x
4 0 F # X 2 0 H C X
2 0 A X 2 0 F # X 2 0 E X
2 0 D X 2 0 D X 2 0 D X
3 0 G X 1 0 G X 2 0 G X
6 0 8 x
3 0 H D X 1 0 H E X 2 0 H D X
4 0 8 x 1 0 8 x 1 0 8 x
6 0 H D X
6 0 H E X
3 0 H C X 1 0 8 X 2 0 H C X

Section 2
Getting Started

120

Section 2

Chapter 6Getting S tarted

6 0 A X

2 0 H E X 2 0 A X 2 0 A X

2 0 A X 2 0 A X 2 0 A X

2 0 A X 2 0 A X 2 0 A X

6 0 H E X

2 0 H D X 2 0 H D X 2 0 H D X

4 0 H F # X 2 0 H E X

3 0 H D X 1 0 8 X 2 0 8 X

6 0 G l

E N D

121

of

the

and

Section 3
Chapter 6 Everybody Sing

Section 3
Everybody Sing
So far you have heard only the vocal line, or melody,
"Blow the Man Down." It's time to add the harmony.

The first measure, consisting of a pickup note, remains
the same. You begin adding voices in the next measure.
Your worksheet looks like this:

1 .

B B B HC B B

LG LG G G

LLG LLG D D

20BLGLLG 10BGD 10HCGD 208

The B in the treble staff is a dotted quarter-note and re­
quires 3 beats. Below this first note is a rest, which indi­
cates that no note is played and need not be included on
the chart.

In the bass staff are 2 G's. The first is 1 octave below
default octave (LG), and the second is 2 octaves below the
default (LLG) . These notes are quarter notes and require
2 eighth-note beats.

Two quarter-notes (G and D) begin on the second beat in
the treble staff. Both require 2 beats; the first in conjunc­
tion with the third beat of the dotted quarter-note B,
the second in conjunction with HC. The last note is a
quarter-note B and is played alone for 2 beats. The notes
are combined into note-words of the proper value at the
bottom of the chart.

Continue coding the rest of the measures. Be sure to in­
clude the sharp sign for all F's. To check the accuracy of
your entries, compare them with the following chart.

122

Section 3
Chapter 6Everybody Sing

G G

B B B HC B B

LG LG G G

LLG LLG D D

1 .

2.

3.

4.

20G

20BLGLLG

20GLDLLD

20BLGLLG

20GLDLLD

10BGD 10HCGD 20B

20DLB 20G

10BGD 10HCGD 20B

20GDLB 10D 10G

G G D D G G

LO LO LB LB

LLG LLD

B B B HC B B

LG LG G G

LLG LLG D D

G G G G D G

LO LO D D

LLD LLD LB LB

123

Section 3
Chapter 6 Everybody Sing

B B

5 .

LG LG

LLG LLG

B B B B

G G G G

LG LG LG LG

LLG LLG LLG LLG

21iJBLGLLG

HC HC

6.

LA LA

LLA LLA

21iJHCLALLA

A A

7.

LF# LF#

21iJALF#

F# F#

8 .

LO LO

21iJF#LD

A A

9 .

LF# LF#

LLF# LLF#

21iJALF#LLF#

21iJBGLGLLG 21iJBGLGLLG

HC HC HC HC

0 0 0 0

LA LA LA LA

LLA LLA LLA LLA

21iJHCDLALLA 21iJHCDLALLA

A G# A A

0 0

c c

LF# LE# LF# LF#

lliJADCLF# lOG#DCLE# 21iJALF#

F# F# HC HC

0 0

c c

LO LO LO LO

21iJF#DCLD 21iJHCLD

F# F# E E

c c c c

LA LA LA LA

LF# LF# LF# LF#

21iJF#CLALF# 21iJECLALF#

124

Section 3
Chapter 6Everybody Sing

10 .

1 1 .

12.

13 .

14 .

D D

LF# LF#

LLF# LLF#

D D D D

c c c c

LA LA LA LA

LF# LF# LF# LF#

G G

LG LG

LLG LLG

G G G G

D D D D

LB LB LB LB

LG LG LG LG

20DLF#LLF# 20DCLALF# 20DCLALF#

20GLGLLG

20BLGLLG

20HDLB

20GDLBLG 20GDLBLG

20BDLGLLG 20BDLGLLG

10HDBGLB 10HEBGC 20HDLB

B B B B B B

D D D D

LG

LLG

LG

LLG

LG

LLG

LG

LLG

LG

LLG

LG

LLG

HD HD HD HE HD HD

B B

G G

LB LB LB c LB LB

B B B B B B

G G

D D

LG LG LG LG LG LG

20BLG 20BGDLG 20BLG

125

Section 3
Chapter 6 Everybody Sing

15 .

16 .

20HEC

17 .

20HCLA

18 .

20ALF#

19.

HD HD

LB LB

20HDLB

HD HD HD

G G G

D D D

LB LB LB

20HEGEC 20HEGEC

10BF#DLG#
10HCF#DLA 20HCLA

20ADCLF# 20ADCLF#

20AF#LALLA 20F#LALLA

HD

G

D

LB

HE HE

c c

HC HC

LA LA

A A

LF# LF#

HE HE

LA LA

LLA LLA

20HDGDLB 20HDGDLB

HE HE HE

G G G

E E E

c c c

HC B HC

F F

D D

LA LG LA

A A A

D D D

c c c

LF# LF# LF#

A A A

F# F# F#

LA LA LA

LLA LLA LLA

HE

G

E

c

HC

LA

A

D

c

LF#

A

F#

LA

LLA

20HELALLA

126

Section 3
Chapter 6Everybody S ing

A A

LF# LF#

LLF# LLF#

A A A A

D D D D

LF# LF# LF# LF#

LLF# LLF# LLF# LLF#

20ADLF#LLF# 20ADLF#LLF#20ALF#LLF#

20.

A A

LD LD

LLD LLD

A A A A

F# F# F# F#

LD LD LD LD

LLD LLD LLD LLD

21 .

20ALDLLD 20AF#LDLLD 20AF#LDLLD

HE HE

LF# LF#

LLF# LLF#

HE HE HE HE

HC HC HC HC

LF# LF# LF# LF#

LLF# LLF# LLF# LLF#

20HELF#LLF# 20HEHCLF#LLF# 20HEHCLF#LLF#

22.

23.

HD HD

LA LA

LLA LLA

HD HD HD HD

F# F# F# F#

LA LA LA LA

LLA LLA LLA LLA

20HDLALLA 20HDF#LALLA 20HDF#LALLA

HF# HF# HF# HF# HE HE

A A F# F#

LD LD LD LD LD LD

LLD LLD LLD LLD LLD LLD

24.

20HF#LDLLD 20HF#ALDLLD 20HEF#LDLLD

127

Section 3
Chapter 6 Everybody Sing

25 .

20HDLGLLG 10HDBLGLLG 10BDLGLLG 20BDLGLLG

26 .

HD HD HD B B B

B D D D

LG LG LG LG LG LG

LLG LLG LLG LLG LLG LLG

G G G G G G

D D D D D D

LB LB LB LB LB LB#

LLD LLD LLD LLD LLD LLD

60GDLBLLD

This is how your D.L . LOGO score looks:

T D B L O W
M U S I C [T 3 6 0 0

2 0 G X
2 0 B L G L L G x 1 0 B G D x

1 0 H C G D x 2 0 8
2 0 G L D L L D x 2 0 D L B x 2 0 G

x
2 0 8 L G L L G x 1 0 8 G D x

1 0 H C G D x 2 0 8 x
2 0 G L D L L D x 2 0 G D L B 1 0 D x

1 0 G X
2 0 B L G L L G x 2 0 B G L G L L G X

2 0 B G L G L L G X
2 0 H C L A L L A X 2 0 H C D L A L L A

X 2 0 H C D L A L L A
2 0 A L F # X 1 0 A D C L F #

1 0 G # DC E # X 2 0 A F # X
2 0 F # L D X 2 0 F # D C L D l X

2 0 H C L D X
2 0 A L F # L L F # X 2 0 F # C L A L F #

X 2 0 E C L A L F # X
2 0 D L F # L L F # X 2 0 D C L A L F #

X 2 0 D C L A L F # X

128

Section 3
Chapter 6Everybody Sing

2 0 G L G L L G X 2 0 G D L B L G X
2 0 G D L B L G X

2 0 B L G L L G X 2 0 B D L G L L G X
2 0 B D L G L L G X

2 0 H D L B X 1 0 H D B G L B X
1 0 H E B G C X 2 0 H D L B X

2 0 B L G X 2 0 B G D L G X 2 0 B L G
x

2 0 H D L B X 2 0 H D G D L B X
2 0 H D G D L B X

2 0 H E C X 2 0 H E G E C X
2 0 H E G E C X

2 0 H C L A X 1 0 H C F # D L A
1 0 B F # D L G # X 2 0 H C L A X

2 0 A L F # X 2 0 A D C L F # X
2 0 A D C L F # X

2 0 H E L A L L A X 2 0 A F # L A L L A
X 2 0 A F # L A L L A X

2 0 A L F # L L F # X
2 0 A D L F # L L F # X
2 0 A D L F # L L F # X

2 0 A L D L L D X 2 0 A F # L D L L D X
2 0 A F # L D L L D X

2 0 H E L F # L L F #
2 0 H E H C F # L L F #
2 0 H E H C F # L L F # X

2 0 H D L A L L A X 2 0 H D F # L A L L A
X 2 0 H D F # L A L L A X

2 0 H F # L D L L D X
2 0 H F # A L D L L D X
2 0 H E F # L D L L D X

2 0 H D L G L L G X 1 0 B D L G L L G X
1 0 B D L G L L G X 2 0 B L L G L L G
x

6 0 G D L B L L D J
E N D

129

rearrange

Section 3
Chapter 6 Everybody Sing

A Note Entry Shortcut

You can use the ampersand (&) to code scores more eas­
ily. You use the ampersand to repeat a note in the same
position in a previous note-word. However, the amper­
sand only represents pitch; you must still indicate the du­
ration of the note. The following example shows Line 7 of
"Blow the Man Down"; first, without ampersands, and
then, with ampersands.

2 0 H C L A L L A X 2 0 H C D L A L L A X 2 0 H C D L A L L A

2 0 H C L A L L A X 2 0 & D & & X 2 0 & & & &

Going On

There are, of course, many scores more or less compli­
cated than "Blow the Man Down. " To enter musical
scores that have more than the 4 voices, you must deter­
mine which voices are essential to the music or
the score.

A good policy is to pick out music that matches your ex­
pertise. If you know little about music but are interested
in some more D.L . LOGO transcriptions, you can find a
wide selection of easy-to-play scores in music stores and
community libraries. If you have advanced training in
music, you can make the necessary changes to compli­
cated pieces.

In either case, experiment. If a particular line gives you
trouble, enter it as a separate piece . Then, change it until
you get the results you want. Use D. L. LOGO' s editing
features to insert the final version. Much of the enjoy­
ment of D. L. LOGO comes from knowing there is no
right or wrong way to write a procedure. The best way is
the way that sounds or looks best to you.

130

Summary 	 Chapter 6

Chapter Summary

PRIMITIVE Abbrev. Purpose

MUSIC Produces musical tones.

Turtle Facts

• 	 Pitch specifications are C, 0, E, F, G, A, B, and C, fol­
lowed by an optional sharp or flat designation (# or ')

• The character X indicates a voice is resting

• 	 The ampersand (&) indicates that a pitch remains the
same as in the previous setting

• 	 You indicate octave switches with H for higher or L for
lower

• 	 You indicate tempo se ttings with T followed by a
value-for example, T120

• 	 D . L . L O G O mus i c c a n p r o d u c e 4 vo i c e s ,
simultaneously

• 	 You can use all D .L . LOGO editing procedures with
music codes

Now, try D.L . LOGO's many music features with your
own pieces. Invite the neighbors over and have a sing-a­
long.

131

F
D

c (9
A (9
0 G

c
A

: E

G G
(9 F

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

I I I I I I I I I

Chapter 6 Summary

Musical Score

0
B 0

G

-9- B

0

0
E0

NOTE VALUE

0 Wholet:J Half
J Quarter
J Eighth

j
Sixteenth
Thirty-second

. . . . About Octaves

The treble and bass staves at the
top of the worksheet have a
shaded section that represents
the default octave. If the note
falls above or below this octave,
tell D. L. LOGO by using the
letters L for lower and H for
higher.

A note can be several octaves
above or below the default
octave. In this case, you need to
indicate each octave by L or H.
For example, LLLB indicates
the B that is 3 octaves below the
default octave. HHD indicates
the D that is 2 octaves above
the default octave.

132

133

7
VARI ETY:
TH E SPICE OF LI FE

Storing Va l ues i n Va riables

Section 1 Making T hings: Creating words and lists .

Section 2 Handling Data: what a variable is and how you make one .

Section 3 Counting on Variables: using numeric variables .

Section 4 Variables a t Home and Abroad: local and global variables .

Section 5 Ins and Outs of LOGO: using OU T PU T in procedures .

h Things :

front

I), I TAB) ,
I ENTER) .

mark,

only

I I

I J .

Section 1
C apter 7 Making Creating words and lists

Section 1
Maki ng Thi ngs: Creating
words and l ists
LOGO is attractive because it relates to real life . For in­
stance, a word in LOGO is exactly what you expect, a
string of characters. You let LOGO know when a string of
characters is a word by placing a quotation mark in
of the first character. For instance, PRINT "HELLO tells
LOGO to display the word HELLO.

To indicate the end of a word, press SPACEBAR or
Therefore, the command PRINT "HELLO

"FRIEND is acceptable to LOGO but PRINT "HELLO
FRIEND is not. Because a space separates HELLO and
FRIEND, and FRIEND has no beginning quotation
LOGO accepts HELLO as a word but interprets FRIEND
as a procedure name.

Making Variables

Typing PRINT "HELLO displays the word HELLO
temporarily. If you want to display the word HELLO a
number of times, you must store it as a variable. The
primitive MAKE creates variables in which you can store
words or lists.

A variable resembles a box; it can contain objects, or val­
ues. For instance, to create a variable (or container) for the
word HELLO, type:

? M A K E II w II H E L L 0

The letter W (which is the variable name) now contains
the word HELLO. To test this, type PRINT :W
The screen displays the word HELLO. The colon before
the variable name tells LOGO that the following name (in

ENTER

ENTER

. . . . About Make

If you are familiar with algebra,
the MAKE command is similar
to the term let. While in
algebra you say, "let X equal
the distance travelled, " in
LOGO you say "MAKE X
equal the distanced travelled . "
Both let and MAKE are used to
assign a value to a name .

. . . . About Colons

In LOGO, colons before variable
names are called dots. Thus,
you read the variable
:WINTERCLOTHES as dots
WINTER CLOTHES.

134

[ENTER)

I I
[ENTER)

I I

WI I

Section 1
Chapter 7 Making Things: Creating words and lists

. . . . About Words

The following characters can be
used in forming words:

A-Z, a-z, @-9, # $ % &
@ _ [\] ? , . !

Some examples of words are:
"HELLO,

"$AMOUNT _OWED,

123 . 456, "#54, "99%,

"JACK&JILL, "one___a_iiay,

"Billy_the_Kid

this case W) is a variable . In LOGO, the colon before a
variable name is referred to as dots, and the preceding
variable name is pronounced dots W.

Numeric words are an exception to the rule that words
must be defined by preceding quotation marks . You can
create a numeric word variable, containing the number of
days in a year, by typing MAKE "YEAR 365. To create a
variable containing the number of days in a week, type
MAKE "WEEK 7. To view the results, type:

? P R I N T : Y E A R : W E E K
3 6 5 7

Making Quotes

In place of quotation marks (") , you can also use the
primitive QUOTE to define a word. For instance, the fol­
lowing 2 command lines produce the same results:

P R I N T " G R E E T I N G S
P R I N T Q U O T E G R E E T I N G S

ENTER

Combining Words

You can combine several words into a word variable.
When you do so, all the words combine into 1 longer
word, without spaces . The following commands show
how words can be combined . First, create a new word
value for W by typing:

? MA K E II w II 0 N E ENTER

Display the word by typing:

? : ENTER
O N E

135

h Things :

I I
I I

word

\ ENTER J

I I

\ ENTER J

C apter 7 Making

To create a longer word, type:

? M A K E " C O M B O W O R D : W " T W O " T H R E E
" F O U R ENTER
? : C O M B O ENTER
O N E T W O T H R E E F O U R

The WORD primitive combines the variable W with the
words TWO, THREE, and FOUR and creates the
ONETWOTHREEFOUR. You can use WORD at any time
to make 1 word of several words or word variables.

Types of Variables

Variables can be either data variables or numeric vari­
ables. Either of these can be words or lists. A quotation
mark defines a word variable, and square brackets define
a list variable. For instance, to create a data list of your
winter clothes, type:

? M A K E " W I N T E R C L O T H E S [P A R K A M I T T S
B O O T S S O C K S T O Q U E
L O N G J O H N S M U F F S]

To create a numeric word variable that represents the
number of clothes in the WINTERCLOTHES variable,
type:

? M A K E " N U M B E R C L O T H E S 7 ENTER

These 2 commands make the WINTERCLOTHES variable
into a list and the NUMBERCLOTHES variable into a
word. You can see the kind and number of clothes at any
time by typing:

? P R I N T : W I N T E R C L O T H E S
: N U M B E R C L O T H E S
P A R K A M I T T S B O O T S S O C K S T O Q U E

L O N G J O H N S M U F F S 7

Section 1
Creating words and lists

. . . About Variables

Think of variables as containers
that have no fixed value or
contents. A suitcase is a
variable container; it can hold
your clothes or your friend's
clothes or your aunt's clothes,
all in varying amounts . The
same is true with a LOGO
variable. You can put any value
you like in a variable and give
it any name you like. A variable
named CUP can have a value of
WATER, or APPLE JUICE, or
ROOT BEER, or any
combination of the 3 .

Although variables can change,
it is not always necessary . CUP
can contain the value WATER
throughout the course of a
program . The fact that it is a
variable means that it can
change.

136

I I

[ENTER [

[ENTER J

Section 1
Making Things: Creating words and lists Chapter 7

. . . . About Lists

A list is defined by enclosing
words or other lists within

square brackets. Words within a
list do not require leading

quotation marks. Some examples
of lists are:

[H O W A R E Y O U J
[Y O U R B I L L I S

$ 4 4 . 9 0)

[1 0 1 1 0 2 1 0 3 1 0 4)
[[1 0 T O T H E P O W E R

O F 2 H I S 1 0 0 J J

Empty Boxes

You can also have empty variables. An empty variable is
available for storage, but has nothing in it. To create an
empty word, use a quotation mark without any following
characters, such as:

M A K E I I B 0 0 K I I ENTER

To create an empty list, use 2 square brackets without
characters between them, such as:

M A K E " B O X [J

It may seem odd to create empty variables, but they can
be useful tools . When you PRINT an empty variable, the
screen displays a blank line as shown below:

? P R I N T : B O O K

?

To see how an empty list variable is stored, use the
SHOW primitive . Type:

? S H O W : B O X
[J

SHOW displays a variable with all its associated brackets.

137

i ENTER J

i ENTER J

I ENTER J

[ENTER J

Chapter 7

Section 2
Hand l i ng Data

Lists Inside Lists

You already have a list of your winter clothes neatly
stored in the variable WINTERCLOTHES . Use the same
procedure to make a record of all your clothes :

? M A K E " S U M M E R C L O T H E S [S H I R T S [S W I M
S U I T J J O G G E R S S H O R T S]
? M A K E " S P R I N G C L O T H E S
R A I N C O A T B O O T S S W E A T E R]

[J A C K E T

Notice that SUMMERCLOfHES contains a list within a
list. Use separate brackets to enclose SWIM SUIT and
prevent LOGO from treating SWIM and SUIT as 2 sepa­
rate elements in the list.

To take inventory of all your clothes without typing WIN­
TERCLOTHES, SUMMERCLOTHES and SPRING­
CLOfHES separately, you can combine the 3 lists:

? M A K E " C L O T H E S S E : W I N T E R C L O T H E S
: S U M M E R C L O T H E S : S P R I N G C L O T H E S

In this case the primitive SENTENCE (abbreviated SE)
precedes the 3 lists to indicate that they are 1 long list.
Otherwise, LOGO does not include the other 2 lists in
the new variable. To see the value of CLOTHES, type:

? : C L O T H E S
[P A R K A M I T T S B O O T S S O C K S T O Q U E
L O N G J O H N S M U F F S S H I R T S [S W I M S U I T J
J O G G E R S S H O R T S J A C K E T R A I N C O A T B O O T S
S W E A T E R]

Section 2
Handling Data

138

I ENTER J
I ENTER J

I I
I ENTER J

I I

Section 2
Handling Data Chapter 7

The colon (:) before a name tells LOGO you are referring
to a variable, not a procedure name. Using dots before a
variable name causes LOGO to produce the contents of
the variable. Because dots only precede variables, you can
use primitive names as variable names.

Instead of SENTENCE, you can also use the primitive
LIST to combine lists, but the result is different. To see
the difference, use the LIST primitive to create another
CLOTHES list:

? M A K E " C L O T H E S L I S T : W I N T E R C L O T H E S
: S U M M E R C L O T H E S : S P R I N G C L O T H E S
? : C L O T H E S
[[P A R K A M I T T S B O O T S S O C K S T O Q U E
L O N G J O H N S M U F F S J [S H I R T S
[S W I M S U I T J J O G G E R S S H O R T S] [J A C K E T
R A I N C O A T B O O T S
S W E A T E R J J

Using the SENTENCE primitive strips 1 level of brackets
from the final list, but LIST leaves all brackets intact.

Another way to produce the contents of a variable is to
use the primitive THING. Using THING has the same ef­
fect as preceding a variable with dots. For instance:

? M A K E I I J A R I I c 0 0 K I E s ENTER
? P R I N T : J A R
C O O K I E S
? P R I N T T H I N G " J A R ENTER
C O O K I E S

THING can also display an additional variable level. For
instance, create a third level by typing MAKE "COOK­
IES "GRANDMAS. Now try the following:

? P R I N T T H I N G : J A R

G R A N D M A S

139

I ENTER J

I I

I I

Section 2
Chapter 7 Handling Data

By using both THING and dots, the screen displays
GRANDMAS rather than COOKIES.

You have already been introduced to the SHOW primi­
tive . SHOW's main function is to aid you in uncovering
problems in procedures. When you wish to display the
contents of a variable, you normally use PRINT. But, if
the contents do not display correctly, use SHOW to dis­
play the complete variable . For example, suppose you
wished to display a variable list named DOGS, as:

D O B E R M A N
G R E A T D A N E
H U S K Y

However, when you display the list, it shows:

D O B E R M A N
G R E A T
D A N E
H U S K Y

To see what is wrong, use the SHOW primitive . Type:

? S H O W : D O G S
[D O B E R M A N G R E A T D A N E H U S K Y l

You can see that GREAT DANE is two separate elements
in the list. To correct the problem, change the DOGS list
by typing:

M A K E [D O B E R M A N [G R E A T D A N E J
H u s K y l

Linking Variables

You can link variables into chains of any length to keep
track of related data. For instance, create a variable by
typing:

" D O G S
ENTER

? M A K E " W A L L E T " M O N E Y ENTER

140

I I
I I

I I

I I

I I

I I

Section 2
Handling Data Chapter 7

Now, every time you type :WALLET, your screen dis­
plays MONEY. You can interpret this l inking several
ways:

W A L L E T i s t h e n a m e o f M O N E Y
M O N E Y i s t h e v a l u e o f W A L L E T
M O N E Y i s t h e t h i n g o f W A L L E T
M O N E Y i s t h e c o n t e n t s o f W A L L E T

As you study the LOGO language, you may see variables
described in any of these ways.

Create a longer chain by typing:

? M A K E II M 0 N E y II 1 2 • 4 5 ENTER
? M A K E I I 1 2 • 4 5 I I M I N E ENTER

To review the chain you have created, type:

? : W A L L E T

M O N E Y

? : M 0 N E y
1 2 . 4 5
? : 1 2 . 4 5

M I N E

ENTER

ENTER

ENTER

You can also use the primitive THING? to discover
whether a variable has an object value. To see if the
WALLET has an object linked to it, type:

? TH I N G ? : W A L L E T

T R U E

ENTER

Data in Storage

The following program uses the linking concept to store
related data:

TO L I N K
P R I N T 1 [E N T E R T H E O B J E C T

N A M E . . . J

141

[\

f R O H A S E E D C O H E S A T R E E
fROH A T R E E C O tt E S A BUD
fROH A BUD C O H E S A F L OU E R
fROtt A F L OU E R C O M E S A SEED

Chapter 7 Section 2

Handling Data

I N P U T
(I A TA 0 11 . . . S E E D

M A K E " N A M E : I
R E P E A T 3 [

M A K E " J : I ? II
P R I N T 1 : I [\ L I N K S T O . . J
I N P U T
M A K E T H I N G 1 1 J : I J

M A K E T H I N G " I : N A M E
U N L I N K : N A M E

E N D

T D I N P U T
I IM A K E " I

W H I L E N O T M E M B E R ? C H A R 1 3 : I
[M A K E 1 1 I W O R D : I R C
P R I N T 1 L A S T : I J

II IM A K E B U T L A S T : I
E N D

T D U N L I N K : N A M E
C L E A R T E X T
P R I N T [D A T A O N . . . J : N A M E
P R I N T

I I IM A K E : N A M E
R E P E A T 4 [

P R I N T 1 [F R O M A \ l : I

M A K E
C O M E S A \]

I I I T H I N G : I
P R I N T : I J

E N D

Many features of this program may not be familiar to you
at this time. You learn about these new commands and
features in later chapters. For now, the following infor­
mation shows you what the 2 procedures accomplish in
linking and displaying linked variables .

A sample session of the program might look like this
(user input appears in lowercase to distinguish it from
the program display):

142

[ENTER [
[I

[ENTER I
[ENTER [

I I

Section 2
Chapter 7Handling Data

E N T E R T H E O B J E C T N A M E . . . s e e d

S E E D L I N K S T 0 • • p l a n t

P L A N T L I N K S T D . . b u d
B U D L I N K S T O . . f l o w e r

ENTER

D A T A O N . . . S E E D

F R O M A S E E D C O M E S A P L A N T

F R O M A P L A N T C O M E S A B U D

F R O M A B U D C O M E S A F L O W E R

F R O M A F L O W E R C O M E S A S E E D

Enter and execute the program. Using the CONTENTS
primitive, you can see how the data you input is linked:

? C O N T E N T S

F L O W E R = S E E D

B U D = F L D W E R

P L A N T = B U D

S E E D = P L A N T

J = B U D
N A M E = S E E D
I = S E E D

Except for the last 3 variables on the list, you can see that
each item entered is linked to the next item, like ele­
phants walking in single file, holding each other's tails.
By knowing the name of the initial variable (in this case,
SEED), you can extract all other data .

ENTER

143

I I

I I

Section 3
Chapter 7 Counting on Variables

Section 3
Counti ng on Variables
The most common use of variables is in arithmetic opera­
tions, and especially in Turtle graphics routines. For in­
stance, suppose you want to create a number of squares
of different sizes. The procedure to produce 1 square
might look like this:

TO B O X
R E P E A T 4 [F D 5 0 R T 9 0 J

E N D

To draw squares of different scales, replace the number
50 with a variable name; for instance, STEPS. To select
the size of the square, you must change the procedure to
include a variable input. Change it to look like this:

TO B O X : S T E P S
R E P E A T 4 [F D : S T E P S R T 9 0 J

E N D

When you include a variable a s part o f a procedure
name, you must precede the variable with dots. Then,
when you execute the procedure, you must include an ar­
gument, or input value, for each variable included in the
name. For instance, to execute the preceding procedure,
type:

? B 0 x 9 0 ENTER

The variable STEPS now contains a value of 90, and the
BOX procedure draws a square with sides 90 steps long.

Create another square by typing:

? B 0 x 5 0 ENTER

144

-··---=-·
·-·-·-

·-- ----

I �l

Section 3
Counting on Variables Chapter

This time the Turtle draws a square with sides 50 steps
long.

You can display any number and size of squares . To re­
duce the size of the square at a set rate, manipulate
STEPS by decreasing the variable each time the Turtle
completes a square. The following program does this:

TO B O X : S T E P S

R E P E A T 9

R E P E A T 4

F D : S T E P S R T 9 0 l
M A K E " S T E P S : S T E P S - 5 l

E N D

Now, the value you give to STEPS decreases 5 each time
1 of 9 squares is drawn .

More Appeal

Make your BOX procedure more attractive by editing it to
match the following:

T O B O X
c s

F U L L S C R E E N

R E P E A T 4 [M A K E " S T E P S " 9 0
R E P E A T 1 8 [R E P E A T 4

[F D : S T E P S R T 9 0 l
M A K E " S T E P S : S T E P S - 5 l
R T 9 0 l

E N D

More Varying Variables

Suppose you are creating a program that uses numerous
right turn commands . You can either create separate com­
mand lines for each turn, or you can use 1 turn com­
mand with a variable that specifies the degree of turn.

145

Chapter 7

The following spiral procedure illustrates another way to
use variables. To create a spiral, you must constantly
change the distance traveled or the degree of turn or
both. This procedure creates a spiral by decreasing the
amount of forward movement before each turn . By
changing the value of TURN and MOVE, you can alter
the distance between the lines of the spiral.

T O S P I R A L
c s
F U L L S C R E E N
S E T Y - 8 0 L T 9 0
M A K E " T U R N 2
M A K E " M O V E 3
R E P E A T 1 4 [

M A K E " M O V E : M O V E - . 1 * : T U R N
R E P E A T 1 0 0

[F D : M O V E R T : T U R N J J
E N D

Going in Circles

A similar method creates concentric circles by using the
variables TURN and JUMP. TURN is the number of de­
grees that the Turtle turns after each forward step. JUMP
is the distance from the center of the screen that the Tur­
tle jumps before it draws the next circle .

In the following procedure, TURN increases 1 . 5 times its
former value to create progressively smaller circles .
JUMP, which is initially set to 50, is decreased by 29 and
divided by the value of TURN, after each circle is drawn.
Consequently, the beginning of each circle is closer to the
center of the screen.

Explanations for some primitives in these programs that
you do not yet recognize appear later in the manual. For
now, study the operations of the . variables to see how

Section 3
Counting on Variables

146

Section 3
Chapter 7Counting on Variables

you can use them to reduce the number of commands
needed to complete a particular task.

T O B U L L

c s

M A K E " J U M P 5 0

H O M E

M A K E " T U R N

R E P E A T 5 [

H O M E
P U L T 9 0 F D : J U M P R T 9 0

P D
C I R C L E
M A K E " T U R N : T U R N +

. S * : T U R N
M A K E " J U M P : J U M P - 2 9 / : T U R N

E N D

T O C I R C L E
R E P E A T 3 6 0 / : T U R N [

F D 1 R T : T U R N J
E N D

147

I J.
I J

Section 4
Chapter 7 Variables at Home and Abroad

Section 4
Variables at Home and
Abroad
Most of the variables discussed in the preceding sections
are global variables; they automatically pass from proce­
dure to procedure . There are also local variables that are
restricted to the procedure that created them or to any
procedure called by the procedure that created them .

With local variables, you can use the same variable name
in more than 1 procedure without causing conflicts. To il­
lustrate this capacity, type the following procedure:

TO V A R I : T
I F : T > 1 0 0 [S T O P l
P R I N T : T
M A K E " T : T + 1 0
V A R I : T

E N D

Execute it from the immediate mode by typing VARI and
ENTERa number, such as VARI 10

ENTER
Type CONTENTS

after the program ends to see that D.L. LOGO
did not store any global values, even though you give T
an initial value. This happens because you lose the values
of local variables once a procedure ends. Any variable in­
put provided as an argument (transferred through the
use of a variable in a procedure name) is local to the pro­
cedure that receives it.

Notice that the line before END is VARI :T. This com­
mand causes the procedure to reexecute itself until the
value of T exceeds 100. Every time the program executes
itself, it establishes a new local variable T. To see that the
variable T is indeed created numerous times to store mul­
tiple values, add 1 more line to the procedure:

148

I J .

Section 4
Chapter 7 Variables at Home and Abroad

. . . . Arguments in Procedure
Names

LOGO uses variable names in
procedure names to pass data

between procedures. The
following example shows how

this is done:

T O M O T O R : D I S T A N C E

When you execute the MOTOR
procedure, or it is called by

another procedure, a value for
DISTANCE must be provided,

such as MOTOR 5(/). An
example of such a

procedure is:

T D M O T O R : D I S T A N C E
M A K E " G A L L O N S

3 4
M A K E

" C O N S U M P T I O N
: D I S T A N C E /
: G A L L O N S

P R I N T [Y O U
U S E D J
: C O N S U M P T I O N
[G A L L O N S O F
G A S O L I N E]

E N D

To create a procedure that
accepts more than one argument,

separate the selected variable
names by a space, for instance:

T D G O : D I S T : G A S

T D V A R I : T
I F : T > 1 0 0 [S T O P J
P R I N T : T
M A K E " T : T + 1 0
V A R I : T C O N T E N T S

E N D

Now LOGO displays the contents of all variables before
the procedure concludes. In this case, T has 55 separate
values that LOGO keeps in perspective.

You can also establish local variables by defining them
with the primitive LOCAL. Once you define a variable as
a local, it can be used by only the procedure in which it
is created, or by a procedure called by the parent proce­
dure . However, the same procedure name can also be
used in a higher procedure. The two variables have no re­
lationship, even though they bear the same name. Test
the LOCAL primitive with this procedure:

T D H I G H E R
M A K E " T 5 5
V A R I

E N D

T D V A R I
L O C A L " T
M A K E " T 1 0

I I sM A K E 1 0
E N D

After you execute the program, type CONTENTS ENTER
Although T was defined twice as a variable name, i t has
only 1 value, the global value set in the first procedure.
The local variable T, created in the VARI procedure, has
no effect on the global variable T and loses its value when
VARI ends. The variable S, that was also created in the
VARI procedure as a global variable, retains its value after
the procedure ends.

149

11 OALC

Section 5
Chapter 7 The Ins and Outs of LOGO

Section 5
The Ins and Outs of LOGO

Putting Out

In some instances, the purpose of a primitive is to pro­
duce an output. Such is the case with XCOR and YCOR,
which output the current Turtle's location . Many of the
procedures you write produce input to other procedures.

So far in this manual, procedures have used variables to
transfer data between procedures. The OUTPUT primi­
tive transfers values without using variables . The follow­
ing procedure uses OUTPUT in a calculator program.

T O C A L C
P R I N T 1 [T Y P E T W O N U M B E R S :]
M A K E I I N R Q
M A K E 1 1 N 1 F I R S T : N
M A K E " N 2 L A S T : N
P R I N T [T Y P E T H E S Y M B O L F O R T H E l

-P R I N T [O P E R A T I O N Y O U W I S H \
\ + \ * \ t \ / l

1 1 sM A K E R C
II :P R I N T : N 1 : S : N 2 G I V E

P R I N T C A L C
E N D

T O G I V E
S E L E C T

: S I I + [O U T P U T : N 1 + : N 2 l
: S I I - [O U T P U T : N 1 - : N 2 l
: S
: S

I I *
" I

[O U T P U T
[O U T P U T

: N 1
: N 1

*
i

: N 2 l
: N 2 l

: S I I I [O U T P U T : N 1 I : N 2 l l
E N D

. . . . About Special
Characters

All LOGO arithmetic and
comparative operators are
considered special characters by
LOGO, and are treated
differently than other characters .
To include an arithmetic or
comparative operator in a word,
you must precede it with a
backslash (MAKE "W
"2 \ + 3), or use the WORD
primitive (MAKE "W WORD
"2 " + "3). To include an
arithmetic or comparative
operator in a list, use a
backslash (MAKE "L [2 \ + 3]).
Chapter 9 contains a list of all
arithmetic and comparative
operators.

TYP(T llO IWN 8 E RS . , . 1 0 4 4

TYPE T H E SYHBOL f O R THE

OPERA T I ON YOU ll l S H + - Ъ , t

1 0 .. 44 ::s <1 4 9

TYP£ TÓO HUHB£RS . . •

150

Section 5
Chapter 7The Ins and Outs of LOGO

. . . . About Recursion

"A computer is a machine that
computes . " This is not a very

good definition for a dictionary
because the definition is

circular - it repeats itself.
However, in Logo, such a

repetitive process is not only
acceptable, but is an excellent

programming device. Causing a
procedure to use itself is called

recursion, and recursion is a
very powerful Logo function .

. . . . About Input Variables

Procedures can be defined to
include any number of input

variables . You do this by adding
variable names to the procedure

name, such as:

T D A D D : A : B : C : D
M A K E " T O T A L : A
+ : B + : C + : D

E N D

To use the program type:

? A D D 5 1 0 1 5 2 0

Line 9 uses output from the procedure GIVE as the an­
swer to a calculation. In effect, OUTPUT lets you use a
procedure as though it were a variable . The procedure
GIVE is used in place of a number or variable value for
the PRINT primitive . To understand this better, try the
following example :

T D D E M O
P R I N T B

E N D

T O B
O U T P U T " H E L L O

E N D

In this example, the procedure B outputs a value, or an
argument, for the PRINT primitive in DEMO, and the
word HELLO is displayed .

Recursive Outputs

As previously demonstrated in the VARI procedure, pro­
cedures can output values to themselves. When this oc­
curs, the procedure is called recursive. A procedure that
calculates factorials is a good example of recursion.

The factorial of a number is the product of all positive in­
tegers from 1 to that number. For instance, the factorial
of 4 is 1 x 2 x 3 x 4 = 24. To find the factorial of a large
number, say 51, you need not type each number from 1
to 51 . Instead, you can use a procedure such as the
following:

T O F A C T : N
I F : N = 1 [O U T P U T : N J
O U T P U T : N * F A C T : N - 1

E N D

5 0

151

I I

r A •� T

Section 5
Chapter 7 The Ins and Outs of LOGO

The asterisk is used in LOGO to indicate multiplication .
The variable N is multiplied by the next result of the
FACT procedure. To use this procedure for finding the
factorial of 4, type :

? F A c T 4 ENTER
2 4

Using OUTPUT lets you recycle the result of each opera­
tion through the procedure again and again, decreasing
the local variable :N until it reaches 1 . The value of the
global variable :N (the completed factorial) then appears
as output on the screen.

Using this procedure, you can find the factorial of 51 in
approximately 2 seconds. Calculating the factorial of 100,
a 158 digit number, takes about 8 seconds.

Recursive procedures and the OUTPUT primitive can pro­
vide fascinating opportunities for experimentation . Look
for more information in Chapter 10 .

., 2 3
2sssa o 1 6 738Ss497 6 6 4 0 o o o
? I

152

Sum mary 	 Chapter 7

Chapter Summary

PRIMITIVE Abbrev. Purpose

MAKE

QUOTE

THING

LOCAL

OUTPUT

Establishes variables and
their values .

Defines a word .

Indicates that a word is a
variable name. The same as
a colon or dots .

Establishes a variable as a
local.

Terminates the action of
a procedure and returns
ts data to the calling
procedure.

Turtle Facts

• 	 A variable is the name or label you give to an object.

• 	 An object is a word, list, or sentence.

• 	 Create global variables with the primitive MAKE.

• 	 A local variable is only valid in the procedure that cre­
ates it or in a procedure called by the originating
procedure.

• 	 A global variable can pass between any number of pro­
cedures without losing its value. It also retains its value
after a program concludes .

• 	 You create local variables when you pass arguments, or
inputs, through a procedure name or when you use

153

Chapter 7 	 Summary

the LOCAL primitive . A local variable cannot be
passed to a higher procedure, and its value is lost
when its originating procedure ends.

• You can combine several variables into 1 variable .

• Variables can link, such as: ONE TWO, TWO=

THREE, THREE FOUR.=

• 	 When using a variable in LOGO, a colon (:), called
dots, must precede the variable.

• 	 All arithmetic and comparative operations function
with variables.

Suggested Project

Using the manipulation of variables and primitives, write
a program that stacks blocks in a pyramid fashion, simi­
lar to the accompanying illustration. Use the SETX, SETY,
XCOR, and YCOR primitives.

154

-:-:-:-:-:-:-:-:-:

..

Summary Chapter 7

Possible Solution
" " " " " " " "

" " " " " " " " "
..
.

T D S T A C K..
.. .. " u .. " .. "
..
II IO U U U U ti II U U II •t U ti ti

..

..

.

M A K E " A 0
.

• M n n •t o1 u n u u o n n n u u n n •1 U
'" " " '' " '' " " '' '' " " " n u n n u u • n

. " ..
. .. " " " " " " '" " '' '" " " '"

• • • • u n u n n • u u o n n n u u n u to n n •

.
.

.

.
.

..:-:-:-:..:-:-:-:..:..:-: .. :-:-:-:-:-:-:-:-:·

c s
S E T X Y 0 9 0
B O X
S E T Y Y C D R - 5
R E P E A T 3 0 [

M A K E " X X C D R - 4
M A K E " A : A + 4
F O R II I : x A 8:

[S E T X : I B D X l
S E T X Y : X Y C O R - 5 1

E N D

T D B O X
R E P E A T 4
C F D 2 R T 9 0 1

E N D

155

8
TU RTLE'S
J UGGLI NG ACT

Hand l i ng Text, Ed it ing, Time

Section 1
Section 2
Section 3
Section 4

Section 5
Section 6

Words, Numbers, and Lists : how to handle them .

Making a List: the difference between lists and words.

Talking in Sentences: what you can do with a sentence .

T he First Shall Be Last: how to manipulate words, lists, and
sentences .

Running Away With Lists: using RUN to execute lists .

Turtle Swallowed a Clock: using the built-in date and time
function.

157

I I
I I I I

I I

I I
j ENTER)

j ENTER)

I I

Section. I
Chapter 8 Words, Numbers, and Lists

Section 1
Words, Numbers, and Lists
The ability to handle words and lists is the basis for LO­
GO' s power. This section shows you how to juggle vari­
ables and their contents to create new variables or
rearrange old ones .

Adding Numbers

LOGO treats numbers as words, but quotation marks are
not required . For instance, the following 3 examples pro­
duce the same result.

? M A K E II N w 0 R D I I 1 II 2 II 3 I I 4 ENTER
? M A K E II N (w 0 R D 1 2 3 4) ENTER
? M A K E 1 1 N W O R D 1 2 3 4 ENTER

You can also use arithmetic operators with words . For
example:

? p R I N T (w 0 R D 1 + 3) ENTER
4

sameSimilarly, the following 3 commands produce the
sum of 24.

? p R I N T II 1 2 + II 1 2 ENTER
? P R I N T 1 2 + 1 2
? P R I N T 1 2 + 1 2

To display the numbers and the arithmetic sign without
doing the addition, use the following command:

? p R I N T I I 1 2 I I + I I 1 2 ENTER
1 2 + 1 2

. . . . About Words

There are two kinds of words in
D.L . LOGO: procedure names
and objects. Procedure names
are words that tell D .L . LOGO
to perform an action, primitives
or procedure names . Objects are
words that D .L . LOGO doesn't
know how to do. They are just
things that Logo can
manipulate in different ways,
such as print or combine with
other words .

. . . . About Parentheses

You use parentheses in
command statements to clarify
the order of operations. The
procedure, as well as the
argument, must be enclosed
within the parentheses .
Following is an example of a
statement with, and without
parentheses:

MAKE "R (RANDOM
11) + 1

MAKE "R RANDOM
1 1 + 1

The first statement creates a
random number in the range 1 -
1 1 . The second statement
creates a random number in the
range IJJ-1 1 .

It isn't possible to list all the ways in which you can use
numbers as words . Experiment and see how numeric

158

Section 1
Chapter 8 Words, Numbers, and Lists

words behave under various command syntax. Some pos­
sible combinations you can try are:

P R I N T W O R D 1 2 3 + C W O R D 1)
P R I N T C W O R D 1 2 3) + < W O R D 1 2 3)
P R I N T C W O R D 1 2 3) I 2
P R I N T W O R D 1 2 3 + W O R D 1 2 3
P R I N T W O R D 1 + 1 + 1 + 1 I 2
P R I N T < W O R D 1 + 1 + 1 + 1) I 2

159

I I

I I

I I

I I

[ENTER [

[ENTER [

[ENTER [

Section 2
Chapter 8 Making a List

Section 2
Maki ng a List
It is important that you understand the difference be­
tween words and lists and that you know how to recog­
nize each. Several LOGO primitives operate only on
words, and several operate only on lists. Often, the re­
sults of operations on words and lists look the same. For
example, type the following 2 command lines, and type
JOHN in response to the RQ prompts :

? M A K E II I N P U T 1 R Q ENTER
J O H N
? M A K E I I I N P U T 2 F I R S T R Q ENTER
J O H N

To observe the results, type:

ENTER

ENTER

? : I N p u T 1
[J O H N J
? : I N P U T 2
J O H N

The contents of INPUTl is displayed with square brackets
because it is a list, but the contents of INPUT2 is a word
and is not enclosed in brackets. However, if you use
PRINT to display the contents of the two variables, the
values will appear identical:

? P R I N T : I N P U T 1
J O H N
? P R I N T : I N P U T 2

J O H N

Another way to check whether the value stored in a vari­
able is a word or a list is with SHOW, as described in
previous chapters. For example:

? S H O W : I N P U T 1
[J O H N J

160

I I

I ENTER I

I ENTER I

I I

I ENTER I

Section 2
Chapter 8 Making a List

. . . . About SHOW

LOGO recognizes the primitive
SHOW by displaying the

specified variable or data on the
screen . In the immediate mode,

however, SHOW is always
implied. For instance:

SHOW "HELLO
and

"HELLO

both produce the same result:
they display the word HELLO.
Similarly, both SHOW "L and
:L display the the variable L on

the screen .

? S H O W : I N P U T 2 ENTER

J O H N

The primitives LIST? and WORD? also tes t l ists and
words . Type:

? P R I N T W O R D ? : I N P U T 1
F A L S E
? P R I N T L I S T ? : I N P U T 1
T R U E
? P R I N T W O R D ? : I N P U T 2
T R U E
? P R I N T L I S T ? : I N P U T 2

ENTER

F A L S E

If the variable is a word, WORD? displays TRUE. If it is
not a word, FALSE is displayed . LIST? works in the same
manner.

161

I I
[ENTER [

I I
I I

I I

I I

I I
I I

Section 3
Chapter 8 Talking In Sentences

Section 3
Ta l ki ng I n Sentences
The SENTENCE primitive assembles words and lists into
single lists. For instance, type the following:

? M A K E II L I N E 1 [R 0 s E s A R E]
? M A K E " L I N E 2 [V I O L E T S

? M A K E " L I N E 3 [I s S W E E T]

? M A K E II L I N E 4 [A N D s 0 A R E]

ENTER
A R E J

ENTER .
ENTER

? M A K E " P O E M S E N T E N C E : L I N E 1 " R E D
: L I N E 2

ENTER
[B L U E S U G A R J : L I N E 3

: L I N E 4 I I y 0 u

? : P O E M ENTER

The screen shows:

[R O S E S A R E R E D V I O L E T S A R E B L U E
S U G A R I S S W E E T A N D S O A R E Y O U J

To see the result created when LIST is used with the
same words and lists, type:

? M A K E " P O E M 1 L I ST : L I N E 1 " R E D
: L I N E 2 : L I N E 3
: L I N E 4

? : p 0 E M 1
[[R O S E S [V I O L E T S A R E l

[B L U E S U G A R J [I S S W E E T J [A N D S O
A R E l Y O U J

Because SENTENCE removes one level 0. vrackets, it
combines all the members into 1 long list; LIST keeps the
original groupings of the various members.

[B L U E S U G A R J
I I y 0 u ENTER
ENTER

A R E J R E D

162

Section 4
Chapter 8 The First Shall Be Last

. . . . About Sentences, Words,
and Lists

This manual refers to the
contents of sentences, words,

and lists as members or
elements. For instance, the

members of the word HELLO
are the characters H, E, L, L,

and 0. The members of the list
[ONE TWO THREE] are the

words ONE, TWO, and
THREE.

Section 4
The F i rst Sha l l Be Last
Now that you know how to make words, lists, and sen­
tences, you are ready to see the power of the LOGO
primitives that manipulate data. ·

The key primitives for manipulating the contents of
words and lists are:

PRIMITIVE FUNCTION

FIRST extracts the first element of a variable .

LAST extracts the last element of a variable.

BUTFIRST extracts all but the first element of a
variable .

BUTLAST extracts all but the last element of a
variable .

FPUT adds a specified element to the front of
a variable.

LPUT adds a specified element to the end of
a variable.

ITEM extracts a specified element from a
variable .

MEMBER? tests whether a specified element is in-
eluded in a variable.

PIECE extracts a specified number of elements
from a variable .

These primitives operate on words, lists, or sentences to
extract, insert, count, or pinpoint data. You can select a
character or word by its position in a word, list, or sen­
tence. For instance, to see how you might use this tech­
nique for a countdown, type the following program:

163

" W D R D 1

from

Section 4
Chapter 8 The First Shall Be Last

T D C O U N T D O W N
M A K E " W D R D 1 1 2 3 4 5 6 7 8 9
L A B E L " C O U N T I N G
M A K E " C O U N T L A S T : W D R D 1
M A K E B U T L A S T : W D R D 1
P R I N T : C O U N T
I F : C O U N T = 1 [S T O P J
G O " C O U N T I N G

E N D

This program operates as follows:

• 	Line 2 establishes WORDl as the numeric sequence
123456789.

• 	 Line 4 uses the LAST primitive to set the variable
COUNT equal to the position of the last element of
WORDl .

• 	 Line 5 uses the BUTLAST primitive to redefine the
value of WORDl as all of WORDl, minus the last
element.

• Line 6 displays the value of COUNT on the screen.

• 	 Line 7 tests to see if the countdown reached the last
element (1) , and stops the procedure if it did.

• 	 Line 8 loops the program back to get the next element
in the word.

The countdown does not include the number 10 because
extracting a 2-digit number a word requires further
steps. If you write the procedure using a list rather than
a word, including the 10 is easy, as shown in the follow­
ing procedure . This time the procedure counts from first
to last, rather than last to first:

T O C O U N T D O W N
M A K E " L I S T 1 [1 0 9 8 7 6 5 4

3 	 2 1 J

. . . . About Spaces

Because spaces mark the end
of a word, you cannot
include them in a word. The
command: PRINT (WORD
"HI 11 " THERE) results in
the contents of : W being
HITHERE rather than HI
THERE. You can , however,
force spaces into words by
using the backslash character
(\) before a space. For
instance, the following
example displays a word
with a space:

? PRINT "HI\ THERE
HI THERE

164

I I

Section 4
The First Shall Be Last Chapter 8

L A B E L " C O U N T I N G
M A K E " C O U N T F I R S T : L I S T 1
M A K E " L I S T 1 B U T F I R S T : L I S T 1
P R I N T : C O U N T
I F : C O U N T = 1 [S T O P J

G O " C O U N T I N G
E N D

There are times when spaces do not sufficiently divide
the members of a list, such as LETTUCE, CORN, PEAS,
GREEN BEANS, CARROTS, HORSE RADISH. Fortunately,
LOGO lets you place lists within lists . To demonstrate
this, type the following:

M A K E " L I S T 1 [L E T T U C E C O R N P E A S
G R E E N B E A N S J C A R R O T S [H O R S E
R A D I s H]] ENTER

You can see how these lists within lists are handled by
changing the COUNTDOWN procedure to match the
following:

TD C O U N T D O W N
M A K E " L I S T 1 [L E T T U C E C O R N

P E A S [G R E E N B E A N S J C A R R O T S
[H O R S E R A D I S H J J

L A B E L " C O U N T I N G
I F E M P T Y ? : L I S T 1 [S T O P J
M A K E " C O U N T F I R S T : L I S T 1
M A K E " L I S T 1 B U T F I R S T : L I S T 1
P R I N T : C O U N T
G O " C O U N T I N G

E N D

This procedure introduces the EMPTY? primitive in Line
5. EMPTY? determines when a list or word contains 0
elements.

FIRST, BUTFIRST, LAST, and BUTLAST can be combined
in a command. To demonstrate this, type the following
command:

165

I ENTER J

[ENTER J

I I

I I

" S L ! S T
ENTER

Section 4
Chapter 8 The First Shall Be Last

? P R I N T F I R S T B U T F I R S T [O N E T W O
T H R E E F O U R F I V E J

LOGO displays the word TWO. To follow the command's
logic, read the primitives in the command from right to
left. BUTFIRST refers to all of the list except the first ele­
ment. FIRST refers to the first element of the remainder,
which is TWO.

Even the command:

? P R I N T F I R S T B U T F I R S T B U T F I R S T
B U T F I R S T B U T F I R S T [O N E T W O T H R E E
F O U R F I V E J

is valid and produces the word FIVE. Of course it is eas­
ier to issue a LAST primitive to accomplish the same
thing.

Adding On

The primitives FPUT and LPUT let you easily add data to
lists. FPUT inserts an item at the beginning (first) of a
list. LPUT inserts an item at the end (last) of a list. These
insertions, however, only temporarily append the new
item to the list. To append them permanently, use the
MAKE primitive .

Create the following shopping list by typing:

? M A K E [B A C O N E G G S M I L K B R E A D
B U T T E R]

To display HONEY at the end of the list:

? L P U T " H O N E Y : S L I S T ENTER

The screen shows:

[B A C O N E G G S M I L K B R E A D B U T T E R H O N E Y J

166

I I

I I

Section 4
The First Shall Be Last Chapter 8

? M A K E
ENTER

However, HONEY is not permanent unless you type a
command like :

" S L I S T L P U T " H O N E Y : S L I S T

If this looks confusing, you might find the command eas­
ier to understand if you use parentheses, such as this :

? M A K E " S L I S T < L P U T " H O N E Y : S L I S T >

To add HONEY to the front of the list, you keep the com­
mand syntax exactly the same, except you type FPUT in­
stead of LPUT.

Item by Item

As noted earlier, you can use multiple BUTFIRST and
BUTLAST commands to access members buried in a list,
a sentence, or a word. When more than 3 or 4 members
are involved, this procedure becomes awkward . Remem­
ber the following command line?

P R I N T F I R S T B U T F I R S T B U T F I R S T
B U T F I R S T B U T F I R S T [O N E T W O T H R E E
F O U R F I V E J

The ITEM primitive provides a way to extract members
with greater ease. The ITEM format is:

Parameter 1 - the number of the element to extract
Parameter 2 the object (word, list, or sentence)-

from which you wish to extract an
element

To display the fifth element or character from the word
ABCDEFG, type:

? I T E M 5 " A B D E F G ENTER
F

167

I I

I I

I I

Section 4
Chapter 8

To display the third element from the list ONE TWO
THREE FOUR FIVE, type:

ENTER
? I T E M 3 [O N E T W O T H R E E F O U R F I V E J

T H R E E

The COUNT

Use the primitive COUNT to find the length of a word,
list, or sentence . COUNT returns the number of members
in an object. For instance, type:

? C O U N T [O N E T W O T H R E E F O U R
F I v E l ENTER
5

or

? C O U N T " 1 2 3 4 5 6 7 8 ENTER
8

The first instance counts the members of the defined list
and returns the number 5. The second instance counts
the members of the defined word and displays 8.

COUNT can be used to display any item in a list by refer­
encing its relative position (its position relative to the first
or last items). Suppose that the variable LOT contains the
list [ONE TWO THREE FOUR FIVE SIX] . To display the
third from the last item, type:

? I T E M < C O U N T : L O T > - 2 : L D T

The screen displays FOUR.

The First Shall Be Last

168

\ ENTER)

\ ENTER)

\ ENTER)

Section 4
The First Shall Be Last Chapter 8

A PIECE of the Action

The PIECE primitive provides a function similar to ITEM,
but lets you extract any number of members from an ob­
ject. The format for PIECE is :

-Parameter 1 the number of the first element to
extract

Parameter 2 the number of the end element to-

extract
Parameter 3 the list from which you wish to-

extract

To extract element 5 from the list [ONE TWO THREE
FOUR FIVE SIX], type:

? P R I N T P I E C E 5 5 C O N E T W O T H R E E
F O U R F I V E S ! X l

FIVE appears on the screen . If you wish to extract both
the fourth and fifth members, type:

? P R I N T P I E C E 4 5 C O N E T W O T H R E E
F O U R F I V E S ! X l

The screen displays FOUR and FIVE .

With PIECE you can create new lists or sentences from
other lists or sentences . For instance, to create a new list
named EXTRACT, type:

? M A K E " E X T R A C T P I E C E 4 5 C O N E T W O
T H R E E F O U R F I V E S ! X l

The variable EXTRACT now contains FOUR FIVE.

PIECE operates in the same manner to extract members
of words. To extract the third through seventh elements
of the word MISTAKEN, type :

? P R I N T P I E C E 3 7 " M I S T A K E N
S T A K E

169

I I

I I

I I

I I

I I

Section 4
Chapter 8 The First Shall Be Last

Cal l ing Rol l

To test whether a particular element is part of a word,
list, or sentence, use the MEMBER? primitive. For in­
stance, if you have the list [ONE TWO THREE FOUR
FIVE SIX] named LOT, and want to see if that list con­
tains the element FOUR, type:

? ME MB E R ? I I F 0 u R : L 0 T ENTER

LOGO displays the word TRUE to let you know that
FOUR is in the list. If you type:

? M E M B E R ? II s E v E N : L 0 T ENTER

LOGO displays the word FALSE. You can use the same
command syntax with words and sentences.

WHERE is the Action?

Once you know whether or not an element exists in an
object, you can find where it exists. WHERE, used with
MEMBER?, pinpoints the position of an element. For in­
stance, use the same list as in the previous example, but
type:

ENTER? M E M B E R ? " F O U R : L O T
T R U E
? W H E R E ENTER
4

MEMBER? tells you if an element exists as an element of
an object, and WHERE pinpoints the location of the spec­
ified element. You can use WHERE with logic operations,
for instance:

? M E M B E R ? " F O U R : L O T ENTER
T R U E

170

! ENTER)

Section 4
The First Shall Be Last Chapter 8

? I F W H E R E = 4 [P R I N T [F O U R I S W H E R E
I T S H O U L D B E J J
F O U R I S W H E R E I T S H O U L D B E

You learn more about logic operations, including IF, in
the next chapter.

The following 2 procedures demonstrate list manipulation
in action. The first procedure deletes a specified element
from the list named LOT. The second procedure inserts a
new element at a specified location in the list named
LOT.

Delete Procedure

After you type the following routine into LOGO's work­
space, you can use it to remove an element from a list:

TD R E M O V E : O B J E C T : E L E M E N T
I F M E M B E R ? : E L E M E N T : O B J E C T
[M A K E " P L A C E W H E R E
M A K E " C O U N T C O U N T : O B J E C T

S E L E C T [
: P L A C E = 1 [M A K E " O B J E C T

B U T F I R S T : O B J E C T J
: P L A C E = C O U N T : O B J E C T [M A K E

" O B J E C T B U T L A S T : O B J E C T J
: P L A C E > 1 [M A K E " O B J E C T S E

C P I E C E 1 : P L A C E - 1 : O B J E C T >
< P I E C E : P L A C E + 1 C O U N T
: O B J E C T : O B J E C T) J J J

E L S E [P R I N T : E L E M E N T [I S N O T A
M E M B E R O F J J

P R I N T : O B J E C T
E N D

To use this procedure, first create a list variable, using
any name you wish. An example is:

171

! ENTER J

Section 4
Chapter 8 The First Shall Be Last

? M A K E " M Y L I S T [O N E T W O T H R E E F O U R
F I V E S I X S E V E N J

Now execute the procedure by typing: REMOVE :MY­
LIST "THREE. REMOVE displays the new list ONE TWO
FOUR FIVE SIX SEVEN. The element THREE is removed .
When you execute this procedure, the list you input to
the procedure (in this example, MYLIST) is transferred to
the variable OBJECT. The word you input to the proce­
dure (THREE) is transferred to the variable ELEMENT.
The MEMBER? primitive in Line 2 determines whether
ELEMENT is a member of the list. If it is, the location of
ELEMENT is calculated by WHERE and placed in the
variable PLACE.

The SELECT primitive selects an operation to perform,
according to the value of PLACE.

• 	 If PLACE is 1 , the procedure removes the first element
from the list you specified .

• 	 If PLACE equals COUNT, the element you specified is
the last one in the list, and the procedure removes the
last element.

• 	 If PLACE points to neither the first nor the last element
and is not 0, the procedure calls PIECE into action.
First, PIECE selects all the items up to the one you
want removed. Then it selects all the items after the
one you want removed. Last, it joins these 2 lists to
form the new l i s t , with the appropriate element
deleted.

The last SELECT line is quite confusing but, if you break
it into its separate elements, it is not hard to understand:

PIECE 1 :PLACE-1 :OBJECT
Selects all elements, from the beginning of the list to the
e lement immediately before the one specified for
deletion.

. . . . About Quotes

You can use several quotation
marks in a line you want to
display. However, because
LOGO expects a word to follow
a quotation mark, it only
displays every other one.
PRINT

" " I I I I I I"QUOTES" I I

results in:

QUOTES " " "

172

I I

Section 4
Chapter 8 The First Shall Be Last

PIECE :PLACE + 1 COUNT :OBJECT
Selects all the element's that follow the word you specified
for deletion.

MAKE "OBJECT SE
creates a new sentence of the 2 selections that now ex­
cludes the word you specified for deletion .

Insert Procedure

The following procedure operates in the same manner as
REMOVE except it inserts, rather than extracts, an ele­
ment from a list. If PLACE is 1, then the procedure in­
serts a new element at the beginning of the list . If PLACE
is greater than COUNT (the last element in the list), then
the procedure adds a new element.

If PLACE falls between the beginning and the end of the
list, then PIECE selects all the members before the insert
position and adds a new element. PIECE then selects all
the members following the insert position and appends
them.

You can use this routine to insert the new element TEST
at Position 3 in the list MYLIST by typing:

I N s E R T : M y L I s T II T E s T 3 ENTER

The routine for INSERT follows:

T D I N S E R T : O B J E C T : E L E M E N T : P L A C E
S E L E C T [

: P L A C E = 1 [M A K E " O B J E C T
C F P U T : E L E M E N T : O B J E C T > J

: P L A C E = C O U N T : O B J E C T [M A K E
" O B J E C T C L P U T : E L E M E N T
: O B J E C T > J

1 73

Section 4
Chapter 8 The First Shall Be Last

: P L A C E > 1 [M A K E " O B J E C T
S E N T E N C E C P I E C E 1 : P L A C E - 1
: O B J E C T > : E L E M E N T < P I E C E
: P L A C E C O U N T : O B J E C T
: O B J E C T > l l

P R I N T : O B J E C T
E N D

174

Section 5
Running Away With Lists Chapter 8

Section 5
Running Away With Lists
The primitive RUN can be used to execute 1 procedure
from within another procedure . For instance, if your
workspace contains the procedures ADD, SUB, MULT,
and DIV, you can make a list of these names and use
RUN to execute any of them. To do so, use list-manipula­
tion primitives to extract the name of the procedure you
wish to execute . The following procedure demonstrates
this technique :

T O M E N U

C L E A R T E X T

P R I N T [* * * * * * M E N U * *
* * * * l

P R I N T
P R I N T [1 . A D D I T I D N J
P R I N T [2 . S U B T R A C T I O N]
P R I N T [3 . M U L T I P L I C A T I O N]
P R I N T [4 . D I V I S I O N J
P R I N T
P R I N T 1 [P R E S S N U M B E R O F

C H O I C E . . .]
M A K E " C H O I C E R C
P R I N T : C H O I C E
R U N L I S T I T E M : C H O I C E [A D D S U B

M U L T D I V J
E N D

T D A D D
P R I N T [T H I S C O U L D B E T H E

A D D I T I O N R O U T I N E J

E N D

T D S U B
P R I N T [T H I S C O U L D B E T H E

S U B T R A C T I O N R O U T I N E]
E N D

175

Section 5
Chapter 8 Running Away With Lists

T O M U L T
P R I N T [T H I S C O U L D B E T H E

M U L T I P L I C A T I O N R O U T I N E J
E N D

T O D I V
P R I N T [T H I S C O U L D B E T H E

D I V I S I O N R O U T I N E J
E N D

Line 12 in the MENU routine uses ITEM and LIST to sep­
arate the operation you chose from all the operations
available . The RUN primitive then executes your selec­
tion. Using RUN with the name of a procedure is the
same as executing a procedure by typing its name. Sup­
pose you select item 3 from the sample menu. Line 12, in
effect, then reads: RUN [MULT] .

176

DRY

I I

Section 6
Chapter 8The Turtle Swallowed A Clock

: 3 1
ltOll T H : 0 7
Y E A R : 85
T H E T I H E I S 1 6 , 5 0 , 0 4

Section 6
The Tu rtle Swa l lowed A
Clock
D.L . LOGO can take advantage of the built-in OS-9 time
and date function. The primitive DATE returns the date
and time in the following format: MM/DD/YY hh:mm:ss.

If the present time and date is 12:45:30, May 28, 1985,
typing DATE ENTER displays:

0 5 / 2 8 / 8 5 1 2 : 4 5 : 3 0

Using the PIECE primitive, you can extract any element
of the time and create a clock for your Turtle . The follow­
ing procedure does this:

TD T I M E
C L E A R T E X T
L A B E L " S T A R T
S E T C U R S O R 0 0
P R I N T C D A Y : J P I E C E 4 5 D A T E
P R I N T C M O N T H : l P I E C E 1 2 D A T E
P R I N T C Y E A R : l P I E C E 7 8 D A T E
P R I N T C T H E T I M E I S : l P I E C E 1 0

1 7 D A T E
G O " S T A R T

E N D

The procedure extracts all elements of the date and time
and displays them on the text screen. The procedure
then uses a GO-LABEL loop to continuously update the
time . However, if you do not enter the correct date and
time when you initialize D .L . LOGO, the date and time
created by this procedure is not correct.

In addition to creating a very expensive watch, the date
and time feature serves many other purposes . You can
use the time values to create greater "randomness" in the

177

178

Section 6
Chapter 8 The Turtle Swallowed A Clock

RANDOM primitive . For instance, the following proce­
dure makes a predictable random sequence unlikely:

? M A K E " X C R A N D D M 1 0 > * C P I E C E 1 6 1 7
D A T E >

Because the seconds' value is constantly changing, they
add another unpredictable element to the random
function.

You can also use the values representing minutes and
seconds to time games or quizzes . You can work time val­
ues into graphics displays to create graphics time images
such as the following:

T O T I M E L D D P
R E P E A T 1 5 0 0 [M A K E " T P I E C E 1 6

1 7 D A T E
F D : T / 2 0 R T 2 J

E N D

---Щ

Summary Chapter 8

. . . . About Parentheses

You use parentheses in
command statements to clarify

the order of operations . The
procedure, as well as the

argument, must be enclosed
within the parentheses .

Following is an example of a
statement with, and without

parentheses:

MAKE "R (RANDOM

1 1) + 1

MAKE "R RANDOM
1 1 + 1

The first statement creates a
random number in the range 1 -

1 1 . The second statement
creates a random number in the

range (/)-1 1 .

Chapter Summary

PRIMITIVE Abbrev. Purpose

WORD combines words to create
1 word.

LIST creates lists from other
lists, words, or sentences.

WORD? determines whether an
object is a word.

determines whether an
object is a list.

LIST?

extracts the first element
of an object.

FIRST

extracts the last element
of an object.

LAST

extracts all but the first
element of an object.

BUTFIRST

extracts all but the last
element of an object.

BUTLAST

inserts an element at the
front of an object.

FPUT

inserts an element at the
end of an object.

LPUT

extracts a specified
element from a specified
location in a word or list.

ITEM

179

Chapter 8 	 Sum mary

PRIMITIVE Abbrev. Purpose

PIECE 	 extracts a specified
number of elements from
a specified location in a
word or list.

COUNT 	 returns the number of
members in a word or
list.

MEMBER? 	 determines whether a
specified element is a
member (is included) in
an object.

WHERE 	 locates the position of an
element in a word or list.

EMPTY? 	 determines if an object
has 0 members.

RUN 	 executes a procedure
name contained in a list.

DATE 	 returns the current date
and time.

Turtle Facts

• 	 A word is a string (group) of 1 or more characters .

• 	 A list is a string of 1 or more words.

• 	 A sentence combines words and lists into a single list.

• 	 A word, list, or sentence can have as few as 0 elements
or a s many elements as your computer's memory
allows.

. . . . About a Library

Because you can use the
procedures you create in exactly
the same manner as a LOGO
primitive, you can begin to
establish your own LOGO
library. This manual has many
procedures that you can use
over and over in various
programs. As you study and
write many of your own
procedures, you might want to
format a separate diskette for
your own library. Every time
you create or come across a
useful procedure, give it an
appropriate name and save it on
your Library diskette. If your
diskette becomes full, begin a
new one. When you need a
specific program, you can
bypass much of the work by
using the APPEND primitive to
link library procedures .

180

Summary 	 Chapter 8

BOOKS H E llU

8 . B E G l tl F I L E
V . V I E ll r ! L E S
E . EllD S E SS ! Otl

S (l £ C T 1 0 11 : 8 1 Y OR E 1

• 	 Quotation marks or the primitive QUOTE indicate a
word . A space indicates the end of a word.

• 	 An empty word or list is a word or list that has 0
members .

• 	 Numbers are words .

• 	 Square brackets ([]) indicate lists .

• 	 You can include lists inside of lists.

Suggested Project

Use the word and list manipulating techniques you have
learned to create a filing program for a book library. Have
the program provide 3 fields of data, the book name, the
author, and the subject. Do not worry about saving your
files on diskette at this stage .

181

I I.

I I

Chapter 8 Summary

Suggested Solution

T D B O O K S
M A K E " N A M E [B O O K F I L E S]
M A K E " C T 0
M E N U

E N D

T O M E N U
C L E A R T E X T
S E T C U R S O R 3 5
P R I N T [B O O K S M E N U l
S E T C U R S O R 4 5
P R I N T [= = = = = = l
S E T C U R S O R 6 5
P R I N T [8 , B E G I N F I L E l
S E T C U R S O R 7 5
P R I N T [V . V I E W F I L E S l
S E T C U R S O R 8 5
P R I N T [E . E N D S E S S I O N]
S E T C U R S O R 9 5
p 2
P R I N T 1 [S E L E C T I O N : B V O R E ? : l
C L E A R I N P U T
M A K E " C H O I C E R C

S E L E C T [

: C H O I C E " B [I N P U T J
: C H O I C E " V [V I E W J
: C H O I C E " E [Q U I T l l

E N D

T D I N P U T
C L E A R T E X T
P R I N T [f i 1 e n o . l : C T + 1
p 1
P R I N T [b o o k n a m e :
p 1
P R I N T [a u t h o r : l
p 1
P R I N T [s u b j e c t : l

R E T U R Ô or T H E H E D I

. . . . About Books

When this program is typed,
execute it by typing from the
immediate mode, BOOKS
ENTER A menu is displayed.

Choose the B option to begin a
new file. When files are created,
choose the V option to view
them . The E option causes the
program to finish . When you
begin a file, BOOKS prompts
you to type a book name and
the author's name and to define
the subject. Press ENTER after
each of the items you type. To
quit making entries, type END
instead of a bookname, and the
menu reappears .

182

IWlll1W l

R.£ir,u1w
,-

Sum mary Chapter 8

BOOK F I L E S

BOOK I 0-r. THE H E D I
A U T H O R 1 J . S . Sl

'
O tJ E

S U B J E C T f! E !)>! Cl)t -
PR ESS A K E Y ȋ·

S E T C U R S O R 2 1 2

M A K E " B O O K N A M E R Q

I F : B O O K N A M E = [E N D J [M E N U J
S E T C U R S O R 4 9
M A K E " A U T H O R R Q
S E T C U R S O R 6 1 0
M A K E " S U B J E C T R Q
M A K E " C T : C T + 1
C O M B I N E

E N D

T O C O M B I N E
M A K E C W O R D " F I L E : C T > L I S T : B O O K N A M E

: A U T H O R : S U B J E C T
I N P U T

E N D

T D V I E W
M A K E " C 0
L A B E L " N E X T
M A K E " C : C + 1
I F : C > : C T [E N D V I E W J
M A K E " S H O W C W O R D " F I L E : C >
C L E A R T E X T
P R I N T : N A M E
P 3
P R I N T (f i l e n u m b e r] : C
P 1
P R I N T [B O O K : l F I R S T T H I N G : S H O W
P R I N T [A U T H O R : J I T E M 2 T H I N G : S H O W
P R I N T [S U B J E C T :] L A S T T H I N G : S H O W
P 1
P R I N T 1 [P R E S S A K E Y -
M A K E " N U L R C
G O " N E X T

E N D

183

Chapter 8 Summary

T O E N D V I E W
S E T C U R S O R 1 2 0
P R I N T 1 [E N D O F F I L E S . . . J
M A K E " N U L R C
M E N U

E N D

T O Q U I T
C L E A R T E X T
S E T C U R S O R 7 8
P R I N T [S E S S I O N O V E R . . . l
T O P L E V E L

E N D

T O P : T
R E P E A T : T [P R I N T J

E N D

. . . . About Objects

A Logo procedure can require a
specified number and kind of
inputs to perform its task.
These inputs, called objects
can be one or more words, lists,
or numbers .

184

Ö)4_5_7_5
e : M c2

5

9
A CALCU LATI NG
TU RTLE

Working with Numbers

Section 1 	 The Numbers Game : a look at what Turtle can do w i th
numbers .

Section 2 Turtle Figures: how the Turtle does its arithmetic.

Section 3 Comparing Figures and Facts: comparing data .

Section 4 C a l culat ing with Pre c i s i o n : from integers to 1 0 0 - pl a c e

calculations .

Section 5 	 Making Rearrangements : random numbers, shuffling, and
sorting.

185

Section 1
Chapter 9 	 The Numbers Game

Section 1
The Numbers Game
You have seen numerous examples of how the Turtle can
handle calculations. D .L . LOGO is equipped to do much
more . Other calculating features let you:

• 	 Set the precision of operations to a maximum of 100
places

• 	 Add, subtract, divide, multiply, and exponentiate

• 	 Test for equal, greater than, less than as well as create
random numbers and shuffle elements in lists

• 	 Find sums, products, quotients, and remainders

• 	 Calculate logarithms, exponents, sines, cosines, tan­
gents, arctangents, square roots, and absolute values

• 	 Round off, create integers, and remove integer portions

• 	 Use logical AND, OR, NOT, and ELSE functions on
true/false statements

• 	 Determine the ASCII code for a character

• 	 Determine the character for a given ASCII code

• 	 Determine whether a word is a number

• 	 Accomplish nearly any logical, mathematic, or compar­
ative operation by using D.L . LOGO's built in arithme­
tic operations

This chapter contains information that is essential to a
comprehensive understanding of D.L . LOGO. Take your
time to study the explanations, try the examples, and ex­
periment with the various concepts . The mathematic,
comparative, and logical concepts you learn are needed in

186

Section 1
The Numbers Game
 Chapter 9

most procedures and programs you write. Understanding
these concepts makes programming in LOGO easier.

At the same time, remember that you can do a great deal
of programming and experimentation with simple mathe­
matic and logical concepts . If some of the material seems
too difficult, pass over it now. As you gain more experi­
ence, you can come back and better understand the more
difficult concepts.

187

Multiplication

Section 2
Chapter 9 Turtle Figures

Section 2
Turtle F igures
The following table lists D.L . LOGO's arithmetic and
comparative operators, along with their functions and the
objects they accept.

All operators require 2 objects, and they all return 1 ob­
ject, the result of the operation (for instance 2 + 3 6).=

The arithmetic operators return a number, and the com­
parison operators return TRUE or FALSE.

Symbol and Operation Example Object accepted

Arithmetic Operators

+ Addition 2 + 2 Numbers
- Subtraction 2-2 Numbers
* 2*2 Numbers

I Division 2/2 Numbers
t Raise to a power * 22 Numbers

188

equal Anv Obiects**

greater Any

Any

equal

I I

I I

Section 2

Chapter 9 Turtle Figures

Symbol and Operation Example Object accepted

Comparative Operators

= Test for :A = 65
> Test for than BILL> SAM Words**
< Test for less than A<:B Words**
> = Test greater than or :A< = 0 Any Words**

< = Test for less than or :A< = :B Any Words**
equal

* Pressing CTRL and 7 simultaneously creates i .
** D .L . LOGO compares numbers numerically; it

compares objects that are not numbers
alphabetically .

A Turtle Calculator - Standard
Equ ipment

Because your Turtle has a built-in calculator, stumping it
with a tough math question is nearly impossible . For in­
stance, if you wish to draw a 12-sided figure on the
screen but don't know the necessary angle to accomplish
this, enter the immediate mode and type:

? 36 0 I 1 2 ENTER

The screen displays 3(j).

D.L . LOGO in the immediate mode can handle very sim­
ple or very complicated computations . This question is
quite simple, but feel free to try to stump your Turtle
with a really tough query. Once you know how to ask
your Turtle to calculate square roots, you might ask for
the square root of 4567112349 .41299 divided by 44. Your
pocket calculator can't handle that calculation very easily,
but D.L . LOGO can. This chapter tells you how you can
ask your Turtle tough quest ions and get the right
answers.

189

i
I I

I I

ENTER

Operation Result

3 + 4 7

4 * 3 12

4/ 2 2

4 t 2 16

Section 2
Chapter 9 Turtle Figures

By the way, Turtle says the answ1=r to the preceding ques­
tion is 1535 . 909 . Continue reading for more ways to get
this kind of information from the Turtle.

Using Proper Syntax

Although D .L . LOGO's basic arithmetic operations are
clear, it is important to understand how syntax can affect
an expression. The rules are logical and easy to follow.

To use an arithmetic operator on 2 numbers, separate the
numbers with the operator. For instance, in the immedi­
ate mode you cq.n type:

? 1 2 + 1 2
2 4

Or you can type:

? 1 2 + 1 2 ENTER
2 4

You can include or omit spaces. They do not affect the
operation.

Because the minus sign (-) can indicate either a negative
number or a subtractive operator, special rules govern
this symbol, and spaces do affect its operation . D.L .
LOGO assumes that the minus sign is a subtractive oper­
ator unless a number immediately follows it, but does not
immediately precede it:

. . . . About numbers

LOGO handles numbers in lists
and words in the same manner
as it handles alphabetic
characters . You can use numbers
in variable names and as text.
However, when you include
arithmetic or logic operators (+

- = * I < > IJ in a word,
they cause LOGO to perform
the indicated arithmetic
operation .

Arithmetic operators in lists do
not cause the indicated
operation to be performed .
LOGO treats arithmetic
symbols in lists in the same
manner as other characters
except they are displayed with a
leading space. For example,
PRINT [5*5 is l(!Jj produces 5
*5 is 1(lJ.

190

Section 2
Chapter 9 Turtle Figures

. . . . About Operations

The accompanying references
show examples using numbers,
but LOGO handles variables in

exactly the same manner. For
example, the operation :A + :B

is just as valid as 1 + 2, as
long as both A and B are

defined as numeric variables .

Operation Result

5 - 2 3

5 - 2 5 - 2

5 - 2 3

5 - 2 3

5 + - 2 3

(4 + 1) - 2 3

(4 + 1) - 2 5 - 2

True or False

D.L. LOGO's comparative operations function on both
numbers and alphabetic characters. Numeric operations
compare numeric values . The following table shows the
result of greater-than, less-than, and equal comparisons:

Value 1 Operator Value 2 Result

1 > 2 FALSE
1 < 2 TRUE
5 <> 0 TRUE
5 5 TRUE=

5 > = 1 TRUE
5 < = 1 FALSE
5 < = 5 TRUE

To demonstrate the construction of this type of logic, read
the preceding lines as:

Line 1 : 1 is greater-than 2? FALSE
Line 2: 1 is less-than 2? TRUE
Line 3: 5 is greater-than or less-than 0? TRUE
Line 4: 5 is equal to 5? TRUE
Line 5: 5 is greater-than or equal to 1? TRUE
Line 6: 5 is less-than or equal to 1? FALSE
Line 7: 5 is less-than or equal to 5? TRUE

191

I I
I I

I I

a1

Section 2
Chapter 9 Turtle Figures

A practical application of such logic is an addition quiz:

T D Q U I Z
R E P E A T 1 0

M A K E 1 1 N 1 R A N D O M 1 0
M A K E 1 1 N 2 R A N D O M 1 0
M A K E 1 1 A : N 1 + : N 2
P R I N T 1 [W H A T I S . . . J : N 1 [+]

: N 2 [. . . J
M A K E 1 1 A 1 F I R S T R Q
S E L E C T [

: A = : A 1 [P R I N T [R J G H T J J
: A < > : A 1 [P R I N T [

W R O N G J J J J
P R I N T [T H A T ' S A L L J

E N D

The SELECT primitive compares the correct answer, A, to
your answer, Al . If they are equal (=) , the screen dis­
plays the word "RIGHT." If A is less than or greater than
Al, the screen displays the word "WRONG." The above
procedure asks 10 questions, and then ends by displaying
"THAT'S ALL. I I

ASCI I and the Alphabet

When comparing characters and words, D .L. LOGO com­
pares ASCII values . For instance, the ASCII code for A is
65, and the ASCII code for B is 66. To compare 2 charac­
ters, precede each character with a quotation mark, such
as PRINT "F < "Z . To compare variables, type the vari­
able names preceded by dots: PRINT :MONEY > :LOVE.
Variables must be defined or such a comparison will
cause an UNDEFINED SYMBOL error. For instance:

? M A K E I I M 0 N E y I I $ 1 , 0 0 0 , 0 0 0 . 0 0
 ENTER
ENTER

: M 0 N E y ENTER
? M A K E II L 0 v E II j A N E

? p R I N T : L 0 v E >
T R U E

> (I U I Z
UHA T 1 $. . . 9 + 1 . . . l O

R I GHT

llHAl IS . . . 2 + 8 , . . 1 0
RIGHT
H H A T IS . . . 5 + 0 . . . 5

RIGHT

U H A T JS . . . 9 + 5 . . . 1 3
ltROHG
UHAT 1$. . . 2 + e • . . 4

R I GHT

llHAT I S . , , 3 + 7 . . . 9
llROHG
UHA T I S . . . 1 + 2 . . . 3

R I G H T
llHA t I $. • • 7 • 3 • . .

. . . . About ASCII

ASCll is the abbreviation for
American Standard Code for
Information Interchange. The
code gives a standard numeric
value to computer generated
characters. This allows for the
exchange of characters between
computers and other devices,
such as modems, printers and
plotters. D. L. LOGO uses this
code in comparing the values of
characters .

192

Section 2
Turtle Figures Chapter 9

TH(YALUE o r C H A R i IS 5

PR ESS A KE"Y . . •JI

. . . . About Characters 10
and 13

Character l{j) causes a linefeed
in O.L . LOGO. Character 1 3
causes a linefeed and carriage

return . When the program
attempts to display these

characters, they cause the
display to drop to Line 6, rather
than the normal Line 5 display .

Following is a chart of sample comparisons:

Character Operation Character Result
1 2

A > B FALSE
A < B TRUE
A A TRUE
? < FALSE
B < A FALSE
c <> B TRUE
c > = B TRUE

When comparing words that have more than 1 character,
LOGO looks at the corresponding characters of each
word until it finds a difference. For instance, to compare
PEACH to PEACHES, LOGO sequentially looks at each
letter in each word until it finds an unequal pair . In this
example, PEACH is of lesser value than PEACHES be­
cause it has fewer characters .

In like comparisons, BREAD is of lesser value than BUT­
TER, and HORSE is of greater value than COW. When
LOGO compares alphabetic characters, it gives the least
value to the character that occurs first in the alphabet. To
see all the character values in D . L . LOGO, enter and exe­
cute this program:

T D C H A R A C T E R
C L E A R T E X T

l S E T C U R S D R 5 0F D R " T 1 2 5 5
P R I N T [T H E V A L U E O F

C H A R A C T E R J C H A R : T l ! S J
: T

P R I N T 1 [P R E S S A K E Y . . . J
M A K E " N U L R C J

E N D

A keyboard input provides a practical application of a
word comparison routine . The following procedure pro­
duces a menu of certain functions . LOGO determines

193

I J.

PU T

Section 2
Chapter 9 Turtle Figures

what function you select by comparing the character you

select to a list.

T D I N P U T

P R I N T

P R I N T 1 [A N S W E R Y E S D R N O . . . J
M A K E " ! F I R S T R Q

S E L E C T [
: ! = " Y E S [P R I N T [A R E Y O U

S U R E Y O U M E A N Y E S ? J
I N P U T J

: I = " N O [P R I N T [D O Y O U M E A N
N O ? [I N P U T J

: ! < > " [P R I N T [Y O U M U S T
T Y P E Y E S O R N O Õ l I N P U T l J

E N D

The RQ primitive in Line 3 accepts keyboard entries until
you press ENTER LOGO compares your input, contained
in the variable I, to the words "YES and "NO and to an
empty word.

More Arithmetic

D.L. LOGO handles many other functions in addition to
basic math and comparisons. The following reference
shows these functions, their syntax, special notes or sug­
gestions, and examples of their use.

SUM

Purpose: adds a series of numbers.

Notes:

• 	 You can use only numbers with SUM.

• 	 SUM adds any number of inputs.

• 	 Requesting the SUM of a list of numbers gives the
same result as including a plus sign (+) between each
number.

., I ti

A ll S U E R Y E S OR ttO . . . U O

DO Y O U ttEAU U O ?

AtlSllER Y E S O R 110 • • • Y E S

A R E Y O U S U R E Y O U H E Aii Y E S

AHSllER Y E S O R 110 • • • 110

D O YOU H E A ii 110?

AllSllER Y E S OR HO • • • Y E S

ARC V O U S U R E Y O U tt E A lt Y E S

A H S U E R Y E S O R H O , . . 110
t1Q YOU HEAH H O ?
A H S U C R Y t S O R U O . . · I

. . . . About RQ

The primitive RQ (REQUEST)
returns input in the form of a
list, rather than a word. To
compare an RQ input with a
word, you must either convert
the RQ input to a word or
convert your word to a list . In
the accompanying INPUT
procedure, the FIRST primitive
is used to convert the input into
a word. FIRST extracts the first
element (a word) from the RQ
list .

194

Section 2
Turtle Figures Chapter 9

Example: SUM 1 2 3 4 5
Result: 15

PRODUCT

Purpose: multiplies a series of numbers.

Notes:

• You can use only numbers with PRODUCT.

• PRODUCT multiplies any number of inputs .

• 	 Requesting the PRODUCT of a series of numbers is the
same as placing a multiplication sign between the
numbers .

Example : PRODUCT 1 2 3 4 5
Result: 120

QUOTIENT

Purpose: calculates the whole number result of dividing
one number by another.

Notes:

• 	 QUOTIENT requires 2 inputs, the dividend and the
divisor.

• 	 Each input is rounded to the nearest whole number be­
fore the division takes place . (Numbers with a frac­
tional portion less than 0 .5 are rounded down, and
numbers with a fractional portion of 0 .5 or greater are
rounded up.)

• 	 If the result has a decimal portion, it i s rounded t o the
nearest whole number.

Example : QUOTIENT 6 .3 2 . 1
Result: 3

To understand this operation, read it as: the rounded
value of 6 .3 (6) divided by the rounded value of 2 . 1 (2)

195

Section 2
Chapter 9 Turtle Figures

equals 3 . Three is a whole number and does not need to
be rounded.

Example: QUOTIENT 1 1 .3 3
Result: 4

To understand this operation, read it as: the rounded
value of 1 1 . 3 (11) divided by 3 equals the rounded value
of 3 .77 (4) .

REMAINDER

Purpose: determines the whole number remainder of one
number divided by another.

Notes:

• 	 REMAINDER accepts 2 inputs (the dividend and the
divisor) .

• 	 The function rounds both inputs to whole numbers be­
fore it performs the division. (Numbers with a frac­
tional portion less-than 0 . 5 are rounded down and
numbers with a fractional portion of 0.5 or greater are
rounded up.)

Example: REMAINDER 28 . 6 10
Result: 9

To understand this operation, read it as: the rounded
value of 28.6 (29) divided by 10 equals 2 with a remainder
of 9 .

Example : REMAINDER 44 6 .2
Result: 2

To understand this operation, read it as: 44 divided by
the rounded value of 6.2 (6) equals 7 with a remainder of
2.

ROUND

Purpose: rounds a mixed number (a number containing a
fractional part) to the nearest whole number .

196

Section 2
Chapter 9 Turtle Figures

Notes :

• 	 ROUND accepts 1 input, the number you want to
round .

• 	 The function rounds down numbers with a fractional
portion less than 0 .5 and rounds up numbers with a
fractional portion of 0 .5 or greater.

Example: ROUND 5.4
Result: 5 (the nearest whole number)

Example: ROUND 5 .5
Result: 6 (because fractional values of 0 .5 or greater are

rounded up)

INTEGER

Purpose: reduces a mixed number (a number containing
a fractional part), to the next whole number.

Notes:

• 	 INTEGER accepts 1 input only, the number from
which the integer portion is to be extracted .

Example: INTEGER 3 . 123
Result: 3 (the fractional portion is removed)

Example: INTEGER -22. 7
Re sult : 23 (INTEGER reduces to the next whole-

number.

FIXED

Purpose : removes the fractional p ortion of a mixed
number.

Notes:

• 	 FIXED accepts 1 i npu t on ly , the number to be
rounded.

197

Section 2
Chapter 9 	 Turtle Figures

Example: FIXED 2. 999
Result: 2

Example: FIXED - 22 .7
Result: - 22

FRACTION

Purpose: removes the integer portion of a number.

Notes:

• 	 FRACTION accepts 1 input only, the number from
which the function retains the fraction portion.

Example : FRACTION 3.45
Resu l t : 0 . 45 (the integer por tion of the number is

removed)

LOG

Purpose: computes the natural log of a number.

Note:

• 	 LOG accepts 1 input only, the number from which the
function derives the log.

Example: LOG 2.3
Result: 0 .84

Example: LOG 44/12
Result: 1 . 3

EXP

Purpose : computes e raised to the power of a given
number.

Notes:

• 	 e is 2. 71, the base of the LOG function.

198

Section 2
Chapter 9 Turtle Figures

• 	 EXP accepts 1 input only, the number that serves as
the exponent of e .

Example: EXP 1
Result: 2. 71

ABS

Purpose: returns the absolute value of a given number.

Notes:

• 	 Absolute value is the the value of a number or variable
without regard to its sign (plus or minus) .

• 	 ABS accepts 1 input only, the number for which the
function calculates the absolute value .

Example : ABS 2. 1
Result: 2 . 1

Example: ABS - 2 . 1
Result: 2 . 1

cos

Purpose: calculates the cosine of a specified number.

Note :

• 	 COS accepts 1 input only, the angle (in degrees) from
which the function calculates the cosine .

Example: COS 60
Result: 0.49

SIN

Purpose: calculates the sine of a specified number.

Note :

• 	 SIN accepts 1 input only, the angle (in degrees) from
which the function calculates the sine .

199

Section 2
Chapter 9 	 Turtle Figures

Example : SIN 60
Result: 0 . 86

TAN

Purpose: calculates the tangent of a given number.

Note :

• 	 TAN accepts 1 input only, the angle (in degrees) from
which the function calculates the tangent.

Example: TAN 44
Result: . 97

ATAN

Purpose: calculates the arctangent of a specified ratio.

Note:

• 	 ATAN accepts 2 inputs, the X component and the Y
component, and returns the arctangent of XIY.

Example : ATAN 0 .5 1
Result: 26.56

SQRT

Purpose : calculates the square root of a specified
number.

Note :

• 	 SQRT accepts 1 input only, the number from which the
function calculates the square root.

Example: SQRT 2
Result: 1 .41

200

Section 3
Comparing Figures and Facts 	 Chapter 9

Section 3
Comparing F igures and
Facts
In addition to arithmetic and trigonometric operations,
D. L. LOGO also performs Boolean logic comparisons.
Following is a list of the functions that it can perform.

ALLOF

Purpose: performs a logical AND operation on a series of
true/false operations or statements .

Notes:

• 	 ALLOF accepts any number of true/false operations or
words.

• 	 If all operations or words are "TRUE," LOGO returns a
result of "TRUE" .

• 	 If 1 or more of the specified operations or words are
"FALSE," LOGO returns a result of "FALSE" .

Example : SHOW (ALLOF "TRUE "TRUE "TRUE "TRUE)
Result: TRUE

Example: SHOW (ALLOF "TRUE "TRUE "FALSE "TRUE)
Result: FALSE

Example : SHOW (ALLOF MEMBER? "Y "YES MEMBER?
"N "NO MEMBER? "B "MAYBE)

Result: TRUE

Example: SHOW (ALLOF MEMBER? "Y "YES MEMBER?
"L "NO MEMBER? "B "MAYBE)

Result: FALSE

ANYOF

Purpose: performs a logical OR on a series of true/false
operations or words .

201

Section 3
Chapter 9 Comparing Figures and Facts

Notes :

• 	 ANYOF accepts any number of operations or words.

• 	 If any of the specified operations or words are "TRUE,"
LOGO returns a result of "TRUE" .

• 	 If all of the specified operations or words are "FALSE,"
LOGO returns a result of "FALSE" .

Example: SHOW (ANYOF "TRUE "FALSE "TRUE)
Result: TRUE

Example: SHOW (ANYOF "FALSE "FALSE "FALSE)
Result: FALSE

Example: SHOW (ANYOF MEMBER? "Y "YES MEMBER?
"L "NO MEMBER? "G "MAYBE)

Result: TRUE

Example: SHOW (ANYOF MEMBER? "B "YES MEMBER?
"L "NO MEMBER? "G "MAYBE)

Result: FALSE

NOT

Purpose: performs a logical complement of an operation
or a word.

Notes:

• 	 NOT accepts 1 input, the operation or word the func­
tion complements.

• 	 If the operation or word is "TRUE," LOGO returns a
result of "FALSE" .

• 	 I f the operation or word i s "FALSE," LOGO returns a
result of "TRUE" .

Example : SHOW NOT "TRUE
Result: FALSE

202

Section 3
Chapter 9 Comparing Figures and Facts

Example : SHOW NOT (MEMBER? "Y "YES)
Result: FALSE

Example: SHOW NOT (MEMBER? "N "YES)
Result: TRUE

Data Comparisons

Use the following LOGO primitives in data comparisons,
generations, and manipulations.

ASCII

Purpose: returns the ASCII code for a specified character.

Notes :

• 	 ASCII accepts 1 input, the character for which to find
the equivalent in ASCII code .

• 	 If a word or series of characters are the input, the func­
tion returns the ASCII code for the first character.

Example: ASCII / 1A
Result: 65

Example : ASCII /1 APPLE
Result: 65

Example : ASCII 11T
Result: 84

CHAR

Purpose : returns the character of the specified ASCII
code.

Note:

• 	 CHAR accepts 1 input, the ASCII code .

Example : CHAR 65
Result: A

203

Chapter 9 Section 3
Comparing Figures and Facts

Example: CHAR 84
Result: T

NUMBER?

Purpose: determines whether a word is a number.

Notes:

• NUMBER? accepts 1 word as an input.

• If the word is a number, the function returns "TRUE" .
I f the word i s not a number, the function returns
"FALSE" .

Example: NUMBER? 1234
Result: TRUE

Example: NUMBER? "H34
Result: FALSE

204

I ENTER) .

[ENTER)

Section 4
Calculating with Precision Chapter 9

Section 4
Ca lculating with Precision
D.L . LOGO provides mathematical precision to a maxi­
mum of 100 places . This means your results can have as
many as 100 decimal places and as few as 0. A number
with 0 precision is an integer.

To establish the precision of calculations, use the SET­
PRECISION primitive . For example, to establish a preci­
sion of 10 places, type SETPRECISION 10 The
square root of 1 1 is a prime candidate for varying preci­
sion. Following are some examples of the calculation of
the square root of 11 , using precisions of 0, 1, 3, 50, and
100 places:

Square root of 11

Precision Result

0 place 3

1 place 3.3

3 place 3 .316

50 place 3.3166247903553998491 149327366706
8668392708854558935

100 place 3.3166247903553998491 149327366706
866839270885455893535970586821461
16484642609043846708843991282906509

When you first load D .L . LOGO, the precision is set at 2
decimal places. You can check the current precision at
any time with the PRECISION primitive:

? P R E C I S I O N

2

205

[ENTER J

Section 5
Chapter 9 	 Making Arrangements

Section 5
Maki ng Arrangements
D. L . LOGO has several operations that simplify the ar­
ranging of data . You can use these operations to produce
random lists or to extract random items from a list.

Making Things Random

Computer-generated random numbers are not really ran­
dom unless an unpredictable element enters into the ran­
domizing operation. For instance, immediately after you
load D .L . LOGO, producing 10 random numbers gives
this result: 1 2 6 1 8 8 9 1 2 8 . You can test this after load­
ing LOGO by typing:

? R E P E A T 1 0 [P R I N T R A N D O M 1 0 l

Because of this predictability, D.L. LOGO has a second
random primitive (RANDOMIZE) that introduces an al­
ternate random element to the sequence. To repeat a ran­
dom sequence, use the RERANDOM primitive .

RANDOM

Purpose: generates a random number.

Notes:

• 	 RANDOM accepts 1 input, the upper limit of the ran­
dom range.

• 	 An input of 5 generates a random number in the range
0-4.

• 	 The allowable range is 32767 to 32767.-

Example: RANDOM 10
Possible result: 6

206

I J

I I

I I
I I

Section 5
Making Arrangements 	 Chapter 9

Example: RANDOM 100
Possible result: 87

RANDOMIZE

Purpose: creates an unpredictable random sequence.

Notes:

• 	 When you first start LOGO and use the RANDOM
procedure, the sequence of generated random numbers
are predictable .

• 	 Using RANDOMIZE generates a random seed to alter
this sequence.

• 	 The procedure requires no input a nd provides no
output.

Example : RANDOMIZE
Result: The operation disrupts the normal sequence of

random numbers

RE RANDOM

Purpose : resets the init ial order of random number
generation.

Notes:

• 	 Use RERANDOM if you wish to repeat D . L . LOGO's
initial sequence of random numbers .

• 	 RERANDOM requires no argument or input values
and provides no output; you type only the primitive
name .

Example: REPEAT 10 [PRINT RANDOM 10]
1 2 6 1 8 8 9 1 2 8
? REPEAT 10 [PRINT RANDOM 10]

ENTER

ENTER
5 0 9 5 2 2 3 7 1 2

? RERANDOM ENTER
? REPEAT 10 [PRINT RANDOM 10]
1 2 6 1 8 8 9 1 2 8

207

ENTER

I I

I J.

, I

Section 5
Chapter 9 Making Arrangements

Shuffling

Although the SHUFFLE primitive is not really an arith­
metic operation, it manipulates both numbers and data .

The following procedure demonstrates how SHUFFLE
works:

? s H u F F L E [1 2 3 4 5 6 7 8 9 J

[3 6 5 1 9 7 8 2 4)

ENTER

You can use the same procedure to shuffle data. For in­
stance, if you wish to create a quiz that randomly selects
questions from a list but doesn't repeat any of the ques­
tions, use SHUFFLE. The following procedure shows how
it works:

T O 	 Q U I Z
M A K E " Q U E S T I D N S L I S T [1 . H O W

M A N Y P E N C O L O R S D O E S L O G O
H A V E ? J [2 . F R O M W H A T L A N G U A G E
I S L O G O D E R I V E D ? J [3 . W H A T I S
T H E L O G O C O M M A N D T O R E S E R V E
A L L O F T H E S C R E E N F D R
G R A P H I C S ? J [4 . W H A T I S T H E
C O M M A N D T O R O T A T E T H E
T U R T L E ? J [5 . W H A T I S T H E
C O M M A N D T D D I S P L A Y TH E
C O N T E N T S O F A N O B J E C T ? J

M A K E " A S K S H U F F L E : Q U E S T I O N S
F O R " T 1 5 1 [P R I N T I T E M : T

: A S K J
E N D

From the immediate mode, type QUIZ ENTER The result
might look like this:

4 . 	W H A T I S T H E C O M M A N D TD R O T A T E T H E
T U R T L E ?

, O U I Z
" · llH A T I S T H E C O /llHHl[I T O R l) Tfl f (

T H (T U R T L E ?

5 . U H A T I S T H E C O I H h H l D T O D I SP L l't
V T H E C O ll T E tl T S O f A ll O B J E C T ?

3 . IJHAT I S T H E L OG O C O H H A l l D T O P

E S E R Y E A L L Of T H E S C R H ll f O R G P •

PHlC S ?

I . HOii HAllY P E ii C O L ORS D O E S L O G O

HAY E ?
2 . r R o H l l H A T L A tlG U A G E 1 $ L O G O D C

& ! Y E O ,

208

SUKT CuUE FOUR

?.

I J .

Section 5
Chapter 9 Making Arrangements

T HO T H W E (r1v(3 . W H A T J S T H E L O G O C O M M A N D T O
S I X $(YE ii E I GH T tt J N C T C tl C L E Y E tl
TUCLYE T H I R T E E H l 	 R E S E R V E A L L O F T H E S C R E E N F O R
E I GHT E L E V E H F I V E F O U R H I HE OHE
SEVEH S I X T E H T H I R T E EH THREE TM(G R A P H I C S ?
LYE TMO

1 . 	H O W M A N Y P E N C O L O R S D O E S L O G O
H A V E ?

5 . 	W H A T J S T H E C O M M A N D T D D I S P L A Y
T H E C O N T E N T S O F A N O B J E C T ?

2 . 	F R O M W H A T L A N G U A G E J S L O G O
D E R I V E D ?

Sorting It Out

Below is a program that sorts a list alphabetically. This
simple, slow operation repeatedly extracts the smallest
element from a list and adds it to a new list until the old
list is empty. The following program requires that you in­
put a list of objects before you execute it, such as SORT
[PEACHES PEARS APPLES GRAPES ORANGES PLUMS
FIGS] ENTER

T D S O R T : L
M A K E " M [J
M A K E " C T C O U N T : L
F D R " X 1 : C T

M A K E " P
S M A L L
M A K E " M L P U T : W O R D : M
D E L E T E
M A K E " C T C O U N T : L l

P R I N T : M
E N D

TD S M A L L
M A K E " W O R D I T E M 1 : L
F O R " T 2 : C T 1 [

I F I T E M : T : L < : W O R D
[M A K E " W O R D I T E M : T

: L M A K E " P : T l l

E N D

209

Section 5
Chapter 9 Making Arrangements

T D D E L E T E
S E L E C T

: P = C O U N T : L [M A K E " L
B U T L A S T : L J

: P = 1 [M A K E " L B U TF I R S T
: L l

: P > 1 [M A K E " L S E P I E C E
: P - 1 : L
P I E C E : P + 1 : C T : L l

E N D

The preceding sort program makes use of primitives and
concepts from the last 2 chapters. There is also a sort
program on your D .L . LOGO diskette that is shorter and
quicker, and that uses more advanced concepts .

210

Summary Chapter 9

Chapter Summary

PRIMITIVE Abbrev. Purpose

SUM

PRODUCT

QUOTIENT

REMAINDER

ROUND

INTEGER

FIXED

FRACTION

LOG

Adds a series of
numbers.

Multiplies a series of
numbers .

Divides a number by
another.

Determines the whole
number remainder of a
quotient.

Rounds a number that
contains a fractional
portion to the nearest
whole number.

Reduces a number to the
nearest whole number.

Removes the fractional
portion of a fractional
number.

Removes the integer
portion of a number.

Computes the natural
log of a number.

211

Chapter 9 Summary

PRIMITIVE Abbrev. Purpose

EXP

ABS

cos

SIN

TAN

·ATAN

SQRT

ALLOF

ANYOF

NOT

ASCII

Raises a given number
to the power of its
exponent.

Returns the absolute
value of a given number.

Calculates the cosine of
a specified number.

Calculates the sine of a
specified number.

Calculates the tangent of
a specified number.

Cak;ulates the arctangent
of a specified ratio.

Calculates the square
root of a specified
number.

Performs a logical AND
operation on a series of
true/false operations or
statements .

Performs a logical OR
operation on a series of
true/false operations or
words.

Performs a logical
complement of an
operation or word.

Returns the ASCII code
for a specified character .

212

Summary Chapter 9

PRIMITIVE Abbrev. Purpose

CHAR

NUMBER?

PRECISION

SETPRECISION

RANDOM

RANDOMIZE

RERANDOM

SHUFFLE

Returns the character
whose ASCII value
equals the specified
number.

Determines whether a
word is a number.

Returns the current
precision setting.

Sets the precision of
subsequent operations
from 0 to 100 places .

Generates a random
number.

Generates a random
initialization reference,
or seed, to provide an
alternate random
sequence .

Resets RANDOM to
repeat the initial random
order.

Randomizes a list.

213

[CLEAR I

1,011

1 COH P O S E

' II

I . A D D I T I OH

Chapter 9 	 Sum mary

Turtle Facts

• 	 D.L. LOGO uses the following symbols for arithmetic
operations:

+ Addition 	 .,... Subtraction
* Multiplication I Division

> Greater-than < Less-than

Equal > = Greater-than or equal
< = Less-than or equal t Exponentiate
=

• You create the i by pressing and 7 at the same
time.

* * * M E H U * * *
• LOGO compares numbers numerically and other ob­ 2 . S U B T RACT I Oil

3. HULT I el I C tl.ljects alphabetically.
 4 . 	D I Y I S I OR
5 . 	A L L

• 	 D.L . LOGO assumes that the minus sign (-) is a sub­
tractive operator unless it is immediately followed by a
number and is not immediately preceded by a number.

• 	 Each LOGO character or symbol has an ASCII code.

• 	 LOGO compares nonnumeric objects by their ASCII
values .

• 	 D.L . LOGO has a precision range of 0 to 100 places.

Suggested Project

The new concepts in this chapter are very important. Al­
most every LOGO procedure contains calculations. You
can use the following 3 suggestions to see whether you
have mastered the basics of D .L . LOGO's comprehensive
calculating and comparative operations.

• 	 Write a program to create a sine wave on the graphics
screen.

CHO I cc I - s > I

H E A Y E H PRODUCES DR E AM S o r THE r 1CKLEHESS o r F A T E
? COMPOS£
LOYE S E L D O H I s A C U R E r o R S T I CKV

LOLL Y P O P- S

? COMPOSE
nogK S O ttf T ! H E S.. S E EHS 'TO BE L I K E
I C E IH 11 ¥ S H O E S
'> COMPOSE
S L E E P I HG HAStP T A C H All C E I H TH I t
t I H H Y S H O E S

214

Summary 	 Chapter 9

• 	 Write a quiz that poses problems in addition, subtrac­
tion, multiplication, or division, or that randomly se­
lects from all categories.

• 	 Write a program to generate random sentences from
lists of subjects, verbs, and objects.

If you have trouble with these projects, the next chapter
provides more information and examples using logic,
comparison, and calculations. It specifically uses these
operations in loops.

215

:.

2

: •

4 5

Chapter 9

Suggested Solution No. 1
T O S I N E

F U L L S C R E E N
C S H T W R A P
M A K E " X 1
M A K E " B - 9 6
R E P E A T 3 6 0 [

M A K E " A < S I N : X > * 7 5
D O T : B : A
M A K E 1 1 8 : 8 + 2 . 8 5
M A K E " X : X + 3

E N D

Suggested Solution No. 2

Summary

T O

E N D

T O

M A T H
C L E A R T E X T
R E P E A T 1 0
M A T H

M E N U
D O
C L E A R T E X T

M E N U
[P R O B L E M]

HHAT I S

PLUS

THAT 1$ CORRC C T I
PR(SS C U T C R

llH A T I S

1 1 HES 8

1 4
SORRY - T H E A t1$UCR I S I 'Ji

r>R c s s C ll T C R

S E T C U R S O R
P R I N T [* * * M E N U * * *]
P R I N T [1 . A D D I T I O N J
P R I N T [2 . S U B T R A C T I O N J
P R I N T [3 . M U L T I P L I C A T I O N]
P R I N T [4 . D I V I S I O N J
P R I N T [5 . A L L l
S E T C U R S O R 1 4 3
P R I N T 1 [C H O I C E 1 - 5 > \ J
M A K E " C H F I R S T R Q J
W H I L E < N O T M E M B E R ? : C H " 1 2 3 4 5 >

E N D

216

Summary Chapter 9

T D P R O B L E M
C L E A R T E X T
S E T C U R S O R 4 5
C H O O S E
D I S P L A Y
S E L E C T [

: C < 1 0 [S E T C U R S O R 1 1 1 2 J
: C > 9 [S E T C U R S O R 1 1 1 1 J

M A K E " A N S W E R F I R S T R Q
S E L E C T [

: A N S W E R = : C [S E T C U R S O R 1 3 4
P R I N T [T H A T I S C O R R E C T ż J J

: A N S W E R < > : C [S E T C U R S O R 1 3 4
P R I N T [S O R R Y - T H E A N S W E R
I S J : c]]

S E T C U R S O R 1 5 0
P R I N T 1 [P R E S S E N T E R : J
C L E A R I N P U T
M A K E " Z R C

E N D

T D A D D
M A K E " S Y M B O L " P L U S

I I AM A K E R A N D O M 2 1
M A K E " B R A N D O M 2 1

I IM A K E c : A + : B
E N D

T D S U B
M A K E " S Y M B O L " M I N U S

I I AM A K E R A N D O M 5 1
M A K E " B R A N D O M : A + 1

I IM A K E c : A - : B
E N D

T D M U L T
M A K E
M A K E

" S Y M B O L " T I M E S
I I A R A N D O M 1 1

M A K E
M A K E

" B
I I c

R A N D O M 1 1
: A * : B

E N D

217

Chapter 9 Summary

T O D I V
M A K E " S Y M B O L [D I V I D E D B Y J
M A K E " B < R A N D O M 1 0) + 1
M A K E " C R A N D O M 1 1
M A K E " A : B * : C

E N D

T O O P E R A T I O N
M A K E " R R A N D O M (4) + 1
I F : R 1 [A D D J
I F : R 2 [S U B J

I F : R 3 [M U L T J

I F : R 4 [D ! V J

E N D

T O C H O O S E
I F : C H [A D D J

I F : C H 2 [S U B J

I F : C H 3 [M U L T J

I F : C H 4 [D I V J

I F : C H 5 [O P E R A T I O N J
M A K E " C A C O U N T : A
M A K E " C B C O U N T : B

E N D

T O D I S P L A Y
S E T C U R S O R 5 5

P R I N T [W H A T I S J

S E L E C T [

: C A 2 [S E T C U R S O R 7 1 1 J
: C A [S E T C U R S O R 7 1 2 J J

P R I N T : A

S E T C U R S O R 9 0

P R I N T 1 : S Y M B O L

S E L E C T [
: C B 2 [S E T C U R S O R 9 1 1 J

[S E T C U R S O R 9 1 2 J J : C B
P R I N T : B
S E T C U R S O R 1 0 9
P R I N T [\ - \ - \ - \ - \ - \ - \ - \ - \ - \ -]

E N D

218

Summary Chapter 9

Suggested Solution No. 3
T D C O M P O S E

S U B J E C T
V E R E
D E J E C T
P R I N T : B E G I N : M I D D L E : E N D

E N D

T D S U B J E C T
M A K E " B E G I N F I R S T < S H U F F L E [[

H E A V E N l [A W O M A N l [A M A N l W O R K
S L E E P I N G L D V E J >

E N D

T D V E R E
M A K E " M I D D L E F I R S T < S H U F F L E [[M A K E S

M E T H I N K O F J [S O M E T I M E S S E E M S T D
E E L I K E l [M A K E S M E H A T E l [N E V E R
H E L P S W I T H l [S E L D O M I S A C U R E
F D R J [P R O D U C E S D R E A M S O F J [H A S N ' T
A C H A N C E W I T H l [U S E D T D E E G O O D
F O R J J)

E N D

T D D E J E C T
M A K E " E N D F I R S T < S H U F F L E [[T H E

P O W E R O F L O V E J [T H E F I C K L E N E S S
O F F A T E l [H A P P I N E S S l [C O L D H O T
D O G S l [A E R O K E N H E A R T l [S T I C K Y
L D L L Y P O P S J L O V E [I C E I N M Y
S H D E S J J)

E N D

219

10
LOGIC AN D LOOPS

Tu rt le Log ic is Great to Have Around, and
Around, and Around

Section 1

Section 2

Section 3

Te s ting, Te s t i ng, 1 , 2 , 3 : t e s t ing c o n d i t i o n s a n d making
selections.

A Loop Is a Loop Is a Loop Is a . . . : WHILE, FOR, and GO
loops .

A Recursive Turtle: the amazing recursive loop .

221

Section 1
Chapter 1 0 Testing . . . Testing . . . 1 . . 2 . . . 3.

Section 1
Testing . . . Test ing
1 . . . 2 . . . 3

D.L . LOGO provides a number of powerful loop opera­
tions . By combining loop functions with comparative
logic, you can repeat operations until a condition is true
or not true. You can create loops that automatically in­
crease or decrease. You can create your own error­
handling routines, test keyboard input, or merge lists,
words, or files.

You have already been introduced to some loop and con­
ditional primitives to demonstrate other LOGO functions .
Programming even simple procedures can be difficult
without loops and conditional primitives. With the mate­
rial in this chapter and preceding chapters, you can
tackle almost any programming job that D.L. LOGO can
handle . Section 1 provides more information and exam­
ples for using conditional logic. Section 2 describes ways
to use conditional logic in loops. Section 3 describes the
impressive power of recursive calls .

Testing with I F

The IF primitive can test for specific conditions that must
be either TRUE or FALSE. When you use an IF primitive,
you must follow it with a procedure list - a list of instruc­
tions D . L. LOGO follows if the condition is met. A proce­
dure list is always enclosed in square brackets .

The IF primitive works well as a test for correct answers
to a quiz on addition. If the variable ANSWER contains
the answer, and the numbers to sum are in the variables
A and B, the IF test might look like this:

222

Section 1
Chapter 1 0Testing . . . Testing . . . 1 . . . 2 . . . 3

I F : A N S W E R : A + : B [P R I N T [Y O U A R E
R I G H T ż l l

This statement reads: If ANSWER equals the value of
variable A plus variable B, then display " YOU ARE
RIGHT!" Note that you must set square brackets around
the complete procedure list as well as around the PRINT
argument.

In an addition quiz, the IF primitive can also indicate that
an answer is wrong:

I F : A N S W E R < > : A + : B [P R I N T [S O R R Y ,
Y O U A R E W R O N G J J

If the quiz answer is not equal to A + B, this command
displays "SORRY, YOU ARE WRONG."

An IF statement doesn't limit you to 1 action . In the pre­
ceding example, you can also provide the right answer by
expanding the command to:

I F : A N S W E R < > : A + : B [P R I N T [S O R R Y ,
Y O U A R E W R O N G . . . J P R I N T [T H E R I G H T
A N S W E R I S . . . J : A + : B l

Include any number of commands in the procedure list of
an IF statement.

Although using IF works well in these procedures, other
options are open to the LOGO programmer. The same
operations using the TEST primitive look like this:

T E S T : A N S W E R = : A + : B
I F T R U E [P R I N T [T H A T ' S R I G H T Õ l
I F F A L S E [P R I N T [S O R R Y , Y O U A R E

W R O N G J P R I N T [T H E R I G H T A N S W E R
I S . . . l : A + : B l

223

C u llPA R E

?

Section 1
Chapter 1 0 Testing . . . Testing . . . 1 . . . 2 . . . 3

The IF and TEST primitives can test any statement using
LOGO's comparative operators (greater-than, less-than,
equal, greater-than or equal, and less-than or equal) .

The IFTRUE and IFFALSE primitives are used only with
the TEST primitive, and you must use 1 or both to pro­
vide output from TEST. The following procedure employs
both the TEST and IF primitives in typical applications,
plus the primitive E LSE in conjunction with the IF
statement:

T D C O M P A R E
I I AM A K E F I R S T R Q

M A K E " E F I R S T R Q
=T E S T : A : E

I F T R U E [P R I N T [A A N D E A R E
E Q U A L J S T O P J

I F F A L S E [P R I N T [A A N D E
A R E N O T E Q U A L J J

I F : A > : E
[P R I N T [A I S L A R G E R J J
E L S E [P R I N T [E I S L A R G E R J J

E N D

Lines 1 and 2 of this procedure accept keyboard input
comprising 2 numbers . The procedure then compares
these numbers for equality using the TEST, IFTRUE, and
IFFALSE primitives. Any number of actions contained in
a procedure list can follow both the IFTRUE and IFFALSE
statements. In this case, the procedure list invokes the
PRINT command. If the 2 values are equal, the procedure
tells you A and B are equal. If they are not equal, the IF
and ELSE primitives combine to tell you which is the
larger of the values.

There are no rules about when to use IF or TEST primi­
tives. Anything that one can test, the other can test also .
Using ELSE with the IF statement makes IF a preferable
choice in some instances. ELSE is all inclusive; it includes
every possible condition not met by the IF comparison.
Thus it can save programming lines in some applications .

?
V A L U E F O R A . . . 1 0
Y A L U E r o R B • • . 2 2
A A N D B A R E H O T E Q U A L

& I S L A R G E R

224

Section 1
Testing . . . Testing . . . 1 . . . 2 . . . 3 Chapter 1 0

Feel free to use the primitive with which you feel most
comfortable in any situation.

Making Selections

The SELECT primitive can also match conditions and ac­
tions. It is exceptionally neat and efficient for comparative
programming. The following procedure accomplishes the
same task that the IF, ELSE, TEST, IFTRUE and IFFALSE
primitives perform, but only uses 1 primitive to complete
the task:

T D C O M P A R E

P R I N T 1 [V A L U E F O R A . . . J

I I AM A K E F I R S T R Q

P R I N T 1 [V A L U E F O R B . . . J
M A K E " B F I R S T R Q
S E L E C T [

: A = : B l P R I N T [A A N D B A R E
E Q U A L J J

: A < : B l P R I N T [A A N D B A R E
N O T E Q U A L . . . B I S L A R G E R J J

: A > : B l P R I N T [A A N D B A R E
N O T E Q U A L . . . A I S
L A R G E R J J J

E N D

The SELECT primitive requires that you enclose all possi­
ble selections in square brackets . As well, the procedure
list associated with each selection is enclosed in square
brackets . As the number of brackets required in such an
operation can be confusing, be sure to use an easy-to­
re ad format tha t l e t s you fo l low the l o g i c o f the
procedure.

The SELECT primitive processes only 1 operation. For in­
stance, if A is greater than B, the primitive processes
only the second comparison and its associated procedure
list.

225

Section 1
Chapter 1 0 Testing . . . Testing . . . 1 . . . 2 . . 3.

Testing ALL OR ANY

The primitive ALLOF can test whether all elements of a
list meet specified conditions . ALLOF resembles the logi­
cal AND used with other computer languages. Using
ALLOF, you can test if several conditions are all true at
once. For example, you may wish to test whether a vari­
able contains a certain value at the same time you press a
certain key on the keyboard. The following procedure
tests if you have pressed (]] when the variable R equals
12 .

T E S T C A L L O F : K E Y = " C : R = 1 2)
I F T R U E [P R I N T [R O W C , C O L U M N 1 2 l l

You can include as many conditions in the ALLOF com­
parison as you wish. You can also include other logic
within the ALLOF conditions . To examine a list for a
range of numbers, you can use a procedure similar to the
following:

T E S T < A L L U F : R > 1 0 : R < 2 0)

This command tests the variable R against values in the
range 1 1 to 19 . You can interpret this line to read: Test if
the value of R can be found in the numbers 1 1 to 19. If
you are already familiar with AND and OR logic, you
may find it easier to read ALLOF as AND. You can then
read the line as: Test if R is greater than 10 AND if R is
less than 20 . Because this command uses TEST, it can
precede the IFTRUE and IFFALSE primitives, for instance:

T E S T C A L L O F : R > 1 0 : R < 2 0)
I F T R U E [P R I N T [R I S I N R A N G E l l
I F F A L S E [P R I N T [R I S O U T O F

R A N G E l l

The ALLOF logic can expand further. To test whether a
value lies between 10 and 20 but does not equal 12, use
this format:

226

T R UE

TRUE T RUE TRUE

Section 1
Chapter 1 0Testing . . . Testing . . . 1 . . . 2 . . . 3

? S C A H
S - f A L S £
7 - f ALS£
7 - f A L S£
3 - fALSE
1 5 -
I 4 -· T RUE
I S -
1 6 -
I I -
1 3 - TRUE
, I

T E S T C A L L O F : R > 1 0 : R < 2 0 N O T C : R = 1 2))

The following procedure puts this concept into practice:

TO S C A N
R E P E A T 1 0 [
M A K E " R R A N D O M 2 0
M A K E " M C A L L O F : R > 1 0 : R < 2 0 N O T

C : R = 1 2))
P R I N T : R [- J : M J

E N D

When you execute the procedure, LOGO displays TRUE
for all numbers between 10 and 20, except for the num­
ber 12. Also, you can store the results of comparative op­
erations such as ALLOF in a variable. In this case, the
variable M equals TRUE if the ALLOF conditions are met,
or it equals FALSE if either or both of the conditions are
false.

ANY OF

ANYOF resembles the OR command used in other com­
puter languages. It tests to see if any value in a list meets
its specified condition. For instance:

T E S T C A N Y O F : A = : B : R > 1 2 : M = " T R U E >
I F T R U E [P R I N T [W E ' V E G O T A

M A T C H J l

In this case, if the variable A equals the variable B, or if
the variable R is greater than 12, or if the variable "M
contains the word "TRUE," LOGO displays the phrase
"WE'VE GOT A MATCH." ANYOF can check the Turtle
coordinates in a graphics procedure such as:

T E S T C A N Y O F X C O R > 1 2 5 X C O R < - 1 2 6
Y C O R > 9 5 Y C O R < - 9 4)

I F T R U E [P R I N T [Y O U A R E G O I N G
O U T O F B O U N D S l l

227

Section 1
Chapter 1 0 Testing . . . Testing . . . 1 . . . 2 . . . 3

A practical use of such a procedure is to return the Turtle
to the screen if it goes out of bounds. The following pro­
cedure does this and, as a result, creates a graphics
design:

TO B U M P
H T
c s

F U L L S C R E E N

W I N D O W

R E P E A T 9 1 0

C H E C K
I F : M = " T R U E [R T 1 7 0 S E T P C

p c + 1]
I F P C = 0 [S E T P C 1 J

F D S J
E N D

T O C H E C K

M A K E " M C A N Y O F X C O R > 1 2 4 X C O R < -
1 2 5 Y C O R > 9 4 Y C O R < - 9 3)

E N D

In this program, the CHECK procedure uses ANYOF to
see if the Turtle is at the edge of the screen. If it is, the
variable M holds the value "TRUE . " I f M contains
"TRUE," the Turtle turns right at an angle of 170 degrees
and the pencolor is incremented. Because the pencolor is
reset to 0 if it exceeds 3, Line 8 sets the pencolor to 1
when this happens.

A Note About NOT

In all conditional testing, LOGO also lets you use the
NOT primitive. For instance, in the preceding CHECK
procedure, it is valid to command:

TO C H E C K
M A K E " M N O T C A N Y O F X C D R > 1 2 5
X C O R < - 1 2 6 Y C D R > 9 5 Y C D R < - 9 4)

228

Section 1
Chapter 1 0Testing . . . Testing . . . 1 . . . 2 . . . 3

This makes M equal "FALSE" if the Turtle is at the edge
of the screen . Instead of IF :M = TRUE in Line 8, you
must write IF :M = FALSE.

To check whether the answer in a quiz is wrong, you can
use a command like:

I F N O T : A N S W E R = : A + : B C P R I N T C W R D N G J J

229

Section 2
Chapter 1 0 A Loop is a Loop is a Loop is a . . .

Section 2
A Loop is a Loop is a Loop
is a I I I

Although the REPEAT is an easy and powerful way to
command your Turtle to perform a task any number of
times, it does have its limitations. In many applications, it
is time consuming and difficult, if not impossible, to cal­
culate how many repetitions you need to perform. For in­
stance, in the previous BUMP procedure, the user
calculates the repeat function through trial and error. To
count all the steps between the beginning and the end of
the procedure is a rather odious responsibility.

WHILE Away Some Time

The primitive WHILE also creates loops. WHILE implies
a DO function (WHILE some condition is true or not­
true, DO a task) . The following procedure uses WHILE
to let you move the Turtle around the the screen until you
push the joystick control button. When you push the but­
ton, the Tur tle ' s current coordinates appear on the
screen.

T O M O V E
S T
F U L L S C R E E N
W R A P
W H I L E N O T B U T T O N ? 0 [

S E T X Y X C O R + C J D Y X 0) / 3
Y C O R + C J O Y Y 0) / 3 l

T U R T L E T E X T X C D R Y C O R
E N D

In effect, this procedure says: While the button on joy­
stick 0 is not pressed, increase the X and Y coordinates
toward the joystick position. When the button is pressed,
display the current X and Y positions.

230

Section 2
A Loop is a Loop is a Loop is a Chapter 1 0

This method of using WHILE for loop control is called
top-end loop control because WHILE controls the loop
from the top . D .L . LOGO also has a DO primitive you
can use to control loops from the bottom. The following
bottom-end loop control has the same function as the pre­
vious program:

T O M O V E
S T

F U L L S C R E E N

W R A P

D D E S E T X Y X C O R + C J O Y X 0) / 3
Y C O R + C J D Y Y 0) / 3 l

W H I L E N O T B U T T O N ? 0
T U R T L E T E X T E X C D R Y C D R l

Bottom-end loop control is useful in situations where you
must perform an operation at least once before you test
it.

Turtle Nests

You can nest loops to whatever depth you wish . A nested
loop is a loop within a loop . To illustrate this nesting ca­
pability, the accompanying procedure tests 2 conditons:
the Y coordinate and the Turtle heading.

T O A R C S

C S H T

M A K E " Y - 2 0

W H I L E : Y < 1 0 0

S E T X Y - 3 0 : Y
S E T H E A D I N G 9 0
W H I L E H E A D I N G < 1 7 5 [

F D 5 R T : Y / 9 5 + 8 l
M A K E " Y : Y + 1 0 l

E N D

231

Section 2
Chapter 1 0 A Loop is a Loop is a Loop is a . . .

This procedure draws a series of arcs, each above the
other. The first WHILE loop executes until the variable Y
is greater than 100. The second WHILE loop executes un­
til the Turtle's heading is less than 165.

FOR in a loop

FOR resembles the REPEAT primitive, except i t directly
manipulates a variable. This manual has already shown
several procedures that use a counter in a loop, increas­
ing or decreasing it each time the loop executes. For
example:

T O B D X U P
M A K E " C O U N T 1
R E P E A T 1 0 C R E P E A T 4 [

F D : C O U N T R T 9 0 J
M A K E " C O U N T : C O U N T + 1 0 J

E N D

The FOR primitive can make the procedure much shorter:

T O B D X U P
F D R " C O U N T 1 1 0 0 1 0 [

R E P E A T 4 C F D : C O U N T R T
9 0]]

E N D

The FOR primitive has 5 arguments or parameters:

• The name of the variable that stores the index
• The initial index (variable) value
• The final index (variable) value
• The rate of increment or decrement (the step rate)
• The procedure list to execute

232

Section 2
Chapter 1 0A Loop is a Loop zs a Loop is a . . .

The logic of the preceding procedure is : set COUNT to 1
and increment to 100 using a step rate of 10 . The first
time through the FOR loop, COUNT equals 1; the second
time through the loop, COUNT is 11 , the third time,
COUNT is 21; and so on.

You can also use FOR in decreasing loops . You can pro­
duce the same design us ing FOR in the following
manner:

TD E O X D O W N
F O R " C O U N T 9 1 1 - 1 0 [

R E P E A T 4 [F D : C O U N T R T 9 0]

E N D

In this case, the variable COUNT i s set a t 9 1 and de­
creased by 10 in each loop .

On the Go

At times it is important to be able to repeat a portion of a
procedure. By using the primitives LABEL and GO, you
can select points of execution in any size procedure. For
instance, the following procedure lets you choose a shape
to create without erasing previously created shapes from
the graphics screen or reprinting the initial instructions:

TD S H A P E
c s
C L E A R T E X T
S E T S P L I T 1 2

233

•1.

Chapter 1 0 Section 2
A Loop is a Loop is a Loop is a . . .

P R I N T [T H E F O L L O W I N G P R O G R A M
C R E A T E S J

P R I N T [S H A P E S A T Y O U R C O M M A N D
W H E N J

P R I N T [Y O U S E L E C T O N E O F T H E l
P R I N T [F O L L O W I N G C H O I C E S .]
P R I N T [J
S P L I T S C R E E N
P R I N T [1 . S Q U A R E l
P R I N T [2 . R E C T A N G L E]
P R I N T [3 . T R I A N G L E l
P R I N T [4 . C I R C L E]
P R I N T [J
P R I N T 1 [P R E S S 1 - 4 l

L A B E L " N E X T
M A K E " C H O I C E R C
F U L L S C R E E N
S E L E C T [

: C H O I C E = 1 [S Q U A R E l
: C H O I C E = 2 [R E C T A N G L E l
: C H O I C E = 3 [T R I A N G L E l
: C H O I C E = 4 [C I R C L E l

S E T X Y - 8 0 0
T U R T L E T E X T [P R E S S A K E Y F O R

M E N U J
M A K E " C R C
S E T S P L I T 8
S P L I T S C R E E N

G O " N E X T

E N D

T O S Q U A R E
S E T X Y - 9 5 5 0
R E P E A T 4 [F D 3 0 R T 9 0 l

E N D

T D R E C T A N G L E
S E T X Y 6 0 5 0
R E P E A T 2 [F D 3 0 R T 9 0 F D 5 0 R T

9 0]
E N D

THE F O L L O W I NG PROGRR" N I LL
CREATES SHAPES RT VOUR co"""ЧD
ЦV SELEC T I NG ONE O f T H E
r n l L O N I NG C H O I CE S .

1 . SQUllRE
:> . 	REC T llNGLE
3 . 	TR l llNGLE

C I RC L E

PRESS 1 -4

234

[F D

Section 2
Chapter 1 0A Loop is a Loop is a Loop is a .

T D T R I A N G L E
S E T X Y - 1 1 0 - 8 0
R E P E A T 3 [F D 5 0 R T 1 2 0 J

E N D

T D C I R C L E
S E T X Y 5 0 - 5 0
R E P E A T 1 8 0 1 R T 2 1

E N D

235

[BREAK I

[ENTER [

Section 3
Chapter 1 0 A Recursive Turtle

Section 3
A Recursive Turtle
One way of controlling the duration of a loop is simply to
stop the procedure when it reaches a certain condition .
This method works well in a recursive procedure (a proce­
dure that calls on itself) . A simple recursive procedure is:

TD D I S P L A Y
P R I N T [H E L L O l
D I S P L A Y

E N D

I f you execute this procedure the screen displays
"HELLO" repeatedly until you press or turn off
your computer. To control such a procedure, use the RE­
PEAT primitive or some kind of conditional statement
that stops the procedure when it meets its condition . A
condit ional s ta tement with a variable counter is 1
method:

T O D I S P L A Y : C O U N T
M A K E " C O U N T : C O U N T + 1
I F : C O U N T > 1 f/J [S T O P J

P R I N T [H E L L O J
D I S P L A Y : C O U N T

E N D

To execute this procedure, you must provide a value for
COUNT when you execute the program, such as:

? D I S P L A Y 1

Providing a value of 1 causes DISPLAY to display
"HELLO" 10 times. Although such a procedure is easy to
understand, it is not very useful. Recursive procedures
with conditional control can be more impressive . The fol­
lowing program uses such a recursive technique to pro­
duce a b inary t re e . (Each branch has 2 appending

236

4 5

4 5

Section 3
Chapter 1 0A Recursive Turtle

branches .) After you type and execute the program,
imagine writing it without using any kind of loops .

T D F L A K E
c s
F U L L S C R E E N
T R E E
R T 1 8 0
T R E E

E N D

T D T R E E
B I 1 7
B I 1 0
B I 6

E N D

T D B I : L E N G T H
I F : L E N G T H < 3 . 5 [S T O P l
R T
F D : L E N G T H • 2
B I : L E N G T H • . 7 4
BK : L E N G T H • 2
L T 9 0
F D : L E N G T H • 2
B I : L E N G T H • . 7 4
B K : L E N G T H • 2
R T

E N D

The recursive portion of this program i s in the BI proce­
dure. First, the procedure causes the Turtle to turn right
45 degrees and draw a line. To create a full branch on the
tree the program repeats this procedure, using smaller
branches each time. The BI procedure does this by calling
on itself to create a new twig on the end of the preceding
one, until it reaches a size less than 3 .5 . The STOP primi­
tive ends the recursive loop at this point.

The procedure now begins executing the lines that follow
the command to reexecute itself. It proceeds backward

237

Section 3
Chapter 1 0 A Recursive Turtle

until i t reaches a junction point of a left branch. In this
case, it is the smallest branch. It draws this branch and
then returns to create the next left branch. This operation
continues until the procedure reaches the original starting
point and completes a full branch. Then the procedure
begins on the left side of the original branch and builds it
in a similar manner. The accompanying diagram numbers
each branch in the order it is drawn.

If the recursive concept is difficult to understand in the
previous example, you may find the following procedure
easier:

TD C I R : A M T
F U L L S C R E E N
I F : A M T < 5 E S T O P J
R E P E A T 1 8 0 / : A M T E F D 3 0 / : A M T R T

: A M T J
C I R : A M T * . 7
R E P E A T 1 8 0 / : A MT E F D 3 0 / : A MT R T

: A M T J
E N D

To execute this procedure, you must provide a value for
AMT. If the value is too low, Line 1 of the procedure
causes the operation to stop before anything happens. A
value between 5 and 7 produces a single circle. A value of
8 produces a circle within a circle. A value of 1 1 produces
a circle within a circle within a circle.

The procedure directs the Turtle to draw a circle, a half­
circle at a time. A recursion call is issued after the Turtle
draws the first half-circle. This draws another half circle,
larger than the first. As it draws successive half-circles,
the Turtle spirals outward. When AMT decreases (due to
multiplying by 0 .7) to a value less than 5, the recursive
calls stop . While the Turtle draws each half-circle, D .L .
LOGO stores the portion of the repetitive procedures
that come after the recursive calls in a "last in, first out"
manner. Now that all the initial half-circles are drawn,
the operation recalls the last portion of the commands

238

Section 3
Chapter 1 0A Recursive Turtle

and draws all the second half-circles, causing an inward
spiral that ends when the original circle is complete.

A procedure can use recursive calls more than once . You
can expand the CIR procedure to include 2 recursive
calls:

TO C I R 2 : A M T
I F : A M T < 5 [S T O P J
R E P E A T 1 8 0 / : A M T [F D 2 5 / : A M T R T

: A MT J
C ! R 2 : A MT * . 7
R E P E A T 1 8 0 / : A M T [F D 2 5 / : A M T R T

: A M T J
C I R 2 : A MT * . 7

E N D

This procedure works in the same manner as the pre­
vious CIR procedure; however, the procedure issues 2 re­
cursive calls, and the Turtle draws circles to create an
overlapping mirror-image.

239

Chapter 1 0 Summary

Chapter Summary

PRIMITIVE Abbrev. Purpose

IF

ELSE

TEST

IFTRUE

IFFALSE

SELECT

WHILE

DO

A condition test.
Conditionally executes a
procedure list .

Runs a procedure list if
the preceding IF test fails.

A condition test. Sets a
cond i t i on reg i s t e r for
subsequent IFTRUE or
IFFALSE procedures.

Runs a procedure list if
the condition register (set
by TEST) contains TRUE.

Runs a procedure list if
the condition register (set
by TEST) contains FALSE.

Executes the procedure
list of the first subsequent
TRUE condition.

Establishes a top-end
control loop. Executes a
procedure while a
specified condition is
true.

Establishes a bottom-end
control loop. Repeats the
execution of a procedure
list as long as the
subsequent WHILE
function is TRUE.

240

Summary 	 Chapter 1 0

PRIMITIVE Abbrev. Purpose

FOR

LABEL

GO

Turtle Facts

Performs an automatically
increasing index for loop
control.

Flags a position in a
procedure for the GO
function.

Sends the execution of a
procedure to the
indicated LABEL position.

• 	 Conditional logic and loop primitives extensively work
together in LOGO.

• 	 A procedure list following a conditional command is al­
ways enclosed in square brackets.

• 	 Procedure lists following conditional commands can
contain multiple commands or actions.

• 	 You can nest loops to any depth your computer's mem­
ory can handle.

• 	 You can use recursive calls as many times as you wish
within the limits of your computer's memory.

Suggested Project

Write a program that randomly places 100 dots on the
screen. Then, use the 4 arrow keys to direct a cursor to
hit the dots. Make the game last about 50 seconds and
provide a score of the number of dots hit before the game
ends.

241

Chapter 1 0 Sum mary

Suggested Project Solution

The Game of Seek

T D S E E K
D O C
P L A Y
F I N I S H
S P L I T S C R E E N
P R I N T C D O Y O U W I S H T O P L A Y A G A I N ? l
M A K E " C H O O S E R Q J
W H I L E C A N Y O F : C H O O S E = C Y E S l

: C H O D S E = C Y J : C H O D S E = C D K l : C H O O S E = [
Y E P J >

E N D

T O P L A Y
H T
c s
F U L L S C R E E N
M I N E
W R A P
M A K E " H I T 1
M A K E " C O U N T 0
S E T P C 3
H O M E
I N P U T

E N D

T O I N P U T
W H I L E : C O U N T < 5 0 0 [

M A K E " C O U N T : C O U N T + 1
F D 1
C H E C K
I F K E Y ? C R E A D K E Y J

E N D

242

Summary Chapter 1 0

T D R E A D K E Y
I I KM A K E R C

S E L E C T [
: K = C H A R 1 2 [S E T H 0]
: K = C H A R 9 [S E T H 9 0]
: K = C H A R 1 0 [S E T H 1 8 0 l
: K = C H A R 8 [S E T H 2 7 0]
: K = C H A R 3 C E N D J

E N D

T D C H E C K
M A K E 1 1 T L I S T X C D R Y C D R
I F M E M B E R ? : T : C D R C X X X J

E N D

T D M I N E
S E T P C

I IM A K E 1 1 C O R L I S T

R E P E A T 6 0 [

M A K E " X < R A N D O M 2 5 0) - 1 2 5
M A K E 1 1 Y < R A N D O M 1 9 0) - 9 5
M A K E 1 1 L L I S T : X : Y
M A K E 1 1 C O R S E N T E N C E L P U T : L : C O R
S E T D O T J

E N D

T D S E T D D T
S E T X Y : X - 1 : Y - 1
R E P E A T 4 C F D 1 R T 9 0 l

E N D

T D X X X
T U R T L E T E X T [X J
S A Y C H I T N U M B E R] : H I T
M A K E " H I T : H I T + 1

E N D

243

Chapter 1 0 Summary

T O F I N I S H
S E T S P L I T 8
S P L I T S C R E E N
P R I N T [N U M B E R O F H I T S = l : H I T - 1
S A Y [T H I S G A M E I S O V E R J

E N D

NOTE: If you have the Speech-Sound Cartridge, this
game keeps a verbal tally of the hits you make and in­
forms you when the game ends. Otherwise, the game
does not produce verbal responses.

244

11
TALKI NG BACK

Turtle Ta l k, Chatter, and Other Noise

Section 1 You Write the Speech: telling Turtle what to say.

Section 2 A Sound Procedure: Turtle sounds off.

245

I ENTER J

I I

Section 1
Chapter 1 1 You Write The Speech

Section 1
You Write The Speech
Note: This section is only for those who have the Speech/
Sound Cartridge and the Multi-Pak Interface. You need
both these items to use D . L. LOGO's speech capabilities.
The SOUND primitive, described in Section 2, does not
require the Speech/Sound cartridge.

Setting Up

D . L. LOGO's speech capability is exciting, whether you
are experimenting and writing procedures for yourself or
writing programs for otȎ1ers. The ease in adding speech
to your procedures makes this feature even more
appealing.

Before attempting the examples in this section, be sure
you connect the Multi-Pak Interface to your computer and
correctly insert both the disk and sound/speech cartridges
into the Multi-Pak slots.

SAY, Turtle Can Talk

To make your Turtle talk, use the primitive SAY. For ex­
ample, to have the Turtle say the word HELLO, turn up
the volume on your television set and type:

? S A Y [H E L L O]

D . L . LOGO immediately responds by generating the
word HELLO through your television speaker. Try other
words and sentences . There is no limit to what your Tur­
tle can say. Remember to enclose the words inside the
square brackets. For example, type:

? S A Y A R E Y O U O N T H I S F I N E
D A y ?]

[H O W
ENTER

246

[ENTER)

[ENTER)

[ENTER)

T A L K [I

I) .

Section 1
Chapter 1 1You Write The Speech

A Little Speech Therapy

Some of the words D.L . LOGO pronounces do not sound
quite right. Because of the peculiarities of English pro­
nunciation, it is impossible for the speech/sound cartridge
to correctly pronounce all the words you give it. Some­
times the program needs extra help. To illustrate this, ask
LOGO to say the word COUNTRY by typing:

The word sounds like KOWNTREE .

? S A Y [C O U N T R Y]

Now type:

? S A Y [K U N T R Y J

Many words need phonetic spell ing in order for the
Speech/Sound Cartridge to handle them properly. Often,
several spellings work equally well. For COUNTRY, try:

? S A Y [C U N T R E E K U N T R Y J

The 2 spellings sound the same.

Type and Ta lk

You may want to try other word and sound combinations
without typing the primitive SAY each time . To do this,
type the following procedure:

TO T A L K
W H I L E " T R U E [S A Y R Q J

E N D

Now, exit the Edit mode and type:

? ENTER

Type any words or sentences, and then press ENTER
D.L . LOGO says whatever you type. Use this program to

247

I J .

Section 1
Chapter 1 1 You Write The Speech

try different spellings, and make notes of your results for
future reference . To exit the procedure, press BREAK

Turtle Teaches Spel l ing

You can use a talking Turtle in many ways. The following
demonstration program shows how this talking ability
can teach spelling.

Many computer-aided spelling programs require students
to choose correct spellings from lists of correctly and in­
correctly spelled words. Rather than reinforcing proper
spelling, this often confuses a student by making it hard
to remember which of the several spellings on the screen
is right. Turtle's ability to speak the words that the stu­
dent spells provides positive reinforcement of the correct
spelling.

T D S P E L L
C L E A R T E X T

S E T U P

S E T C U R S D R 2 7

P R I N T [L O G O S P E L L I N G B E E l
P R I N T : D I V
A S K

E N D

T O A S K
F D R " T · 1 C O U N T : W O R D S 1

[M A K E " W O R D I T E M : T : W O R D S
S E T C U R S D R 6 0 8 3 2
P R I N T [L I S T E N F D R N E X T

W D R D l
W A I T 1 0 0
S E T C U R S D R 5 2 8 2 9
S A Y [H O W D D Y O U S P E L L l

: W O R D
S E T C U R S D R 7 0 8 3 2
S E T C U R S D R 6 0
P R I N T 1 [T Y P E W O R D H E R E . . . l

LOGO S P E L L I NG B E E

TVPE U O R D H E R E • • • B A T 'IJI

248

Section 1
Chapter 1 1You Write The Speech

B 1 0 C H E C K J

S E T C U R S D R 1 0 4

P R I N T C T H A T I S A L L . . . l

E N D

T O S E T U P
M A K E " W O R D S [C A T B O O K H A T K E Y

W A T E R M I L K P A P E R B I R D H E L P
B A T H R A I N J

M A K E " B L K I I \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \

M A K E " D I V " i x i x i x i x i x i x i x
i x i x i x i x i x i x i x i x i x

E N D

T D C H E C K
M A K E " A N S W E R F I R S T R Q
S E L E C T [

: A N S W E R = : W O R D [
S A Y C T H A T I S C D R R E C T J J

: A N S W E R < > : W O R D [
S A Y C Y O U A R E W R O N G J
P R I N T 1 [T H E R I G H T

S P E L L I N G I S . . . \ J
: W O R D

E N D

T O B

E N D

: S P A C E
M A K E " B L A N K P I E C E
M A K E " L L I N E
M A K E " C C O L U M N
P R I N T 1 : B L A N K
S E T C U R S D R : L : C

1 : S P A C E : B L K

249

Section 2
Chapter 1 1 A Sound Procedure

Section 2
A Sound Procedure
The SOUND primitive rounds out an extremely varied
repertoire of audio responses. With speech, music, and
sound at your command, you can expand D.L . LOGO's
programming to the limits of your imagination . With
these capabilities, you can:

• 	 Write games with sound, speech, and a musical
introduction

• 	 Instruct your Turtle to tell you where it is on the
screen, what it is doing, and how long it is taking

• 	 Create sounds for musical instruments or turn your
computer keyboard into a music keyboard

• 	 Create a talking alarm clock

• 	 Write instructional programs

These are only a few of the many possibilities that sound,
music, and speech offer D .L . LOGO. Although there is
only 1 new primitive to learn in this section, take your
time and experiment with SOUND. D.L . LOGO makes
coaxing fascinating sounds from microcomputer chips
easy and fun.

Making Sound

The SOUND primitive requires 2 arguments: pitch and
duration. The pitch is represented in cycles per second,
and the duration is represented in milliseconds . If this
means nothing to you, don't worry. You can create excit­
ing sounds through experimentation without knowing
anything about cycles or milliseconds. Although the cycle
argument has a range of 32767 to 32767, not everything -

in this range is practical to use. For instance, the negative

250

Section 2
Chapter 1 1A Sound Procedure

range produces the same results as the positive range.
Also the values between 7000 and 26000 give poor re­
sults . The following program demonstrates how notes
sound in all the ranges .

T O R A N G E
F O R " ! - 3 2 7 6 7 3 2 7 6 7 1 0 0 [

S O U N D : I 5 0 J
E N D

The procedure uses a FOR loop, adding increments of
100 cycles to each step, to demonstrate sounds through­
out the SOUND range. Notice that the direction of the
pitch changes several times during the demonstration and
that most of the midsection of the negative and positive
ranges is inaudible. You can, in fact, hear all the possible
pitches by using values between 1 00 and 7000 .

It is easy to calculate the length of a specified duration
value. Because there are 1000 milliseconds in a second, a
duration of 1000 lasts approximately 1 second.

Using Repeat

You can use several methods to create different types of
sounds. One way is to use REPEAT to produce a sound
in rapid succession . The following procedure demon­
strates this:

TO B O M P A
R E P E A T 3 0 [S O U N D 3 5 0 1 0 J

E N D

A short "bomp" sound is produced. What sounds can
you make by stringing several "bomp" sounds together?
Try it with:

T O B O M P A B O M P
R E P E A T 1 0 [8 0 M P A W A I T 1 0 J

E N D

251

Section 2
Chapter 1 1 A Sound Procedure

Perhaps you can create some different "bomp" sounds .
Try the following:

T D B D M P 1
R E P E A T 1 2 [S O U N D 3 5 0 7 J

E N D

T O B D M P 2
R E P E A T 2 0 [S O U N D 3 5 0 9 J

E N D

T D B D M P 3
R E P E A T 1 0 [S O U N D 3 5 0 B J

E N D

T D B D M P 4
R E P E A T 4 0 [S O U N D 3 5 0 1 2 J

E N D

Produce different sounds by slightly changing the pitch
and duration values. If you like a "bomp" rhythm, try
this:

T O B D M P
B D M P 1
W A I T 2
B D M P 1
W A I T 2
B D M P 1
W A I T 5
B D M P 2
W A I T 8
B O M P 3
W A I T 5
B D M P 4

E N D

Or, add some new "bomp" values and try another
rhythm:

T O B D M P 5
R E P E A T 3 0 [S O U N D 3 5 0 1 2 J

252

Section 2
Chapter 1 1A Sound Procedure

E N D

T O B O M P 6
R E P E A T 8 [S O U N D 3 5 0 1 5 J

E N D

T O B O M P 7
R E P E A T 1 5 [S O U N D 3 5 0 1 0 J

E N D

TO B O M P 8
R E P E A T 3 0 [S O U N D 3 5 0 1 0 J

E N D

T O B O M P 9
R E P E A T 2 5 [S O U N D 3 5 0 6 J

E N D

T O T W O B O M P
B O M P 5
W A I T 2 0
B O M P 6
W A I T 5
B O M P 7
W A I T 3 0

B O M P 6

W A I T 5

B O M P 7
W A I T 1 5
B O M P 8
W A I T 3
B O M P 9
W A I T 1 7
B O M P 6

E N D

The following program uses the REPEAT procedure to
create the sound of a ringing phone:

253

Section 2
Chapter 1 1 A Sound Procedure

T D P H O N E
R E P E A T 3 [

R E P E A T 7 0 [S O U N D 1 0 0 0 1 0 l
W A I T 1 5 0 l

R E P E A T 3 [S O U N D 1 0 0 0 1 0 W A I T 5 l
S O U N D 8 0 0 5 S O U N D 7 5 0 5 5 0
R E P E A T 1 0 [S O U N D 7 5 0 2 5 0 W A I T

2 0 l
E N D

For Making Sound

The FOR loop is also an efficient way to create modulated
sounds. The following SOUND procedures all use FOR
loops .

T D L A Z E R
I I IF O R 5 0 0 0 2 0 0 - 1 0 0

[S O U N D : I 3 l
E N D

T O Z A P
I I IF D R 1 0 0 0 6 0 0 0 1 0 0

[S O U N D : I 1 l
E N D

T D S P A C E
R E P E A T 1 0

I I IC F O R 5 0 0 0 1 0 0 0 - 1 0 0 0 [
S O U N D : I 2 0 l l

R E P E A T 4
C F O R 1 1 I 1 0 0 0 1 0 0 0 0 5 0 0 [

S O U N D : I 1 0 l l
E N D

Sounding Off with Math

Although you can include calculations in your sound rou­

tines, they often slow the process too much to create the

kind of sound you want. You can bypass this problem by

254

Section 2
Chapter 1 1A Sound Procedure

creating a list of calculation results and then playing the
list. For instance, the following procedure creates a list of
values produced by the TAN function . The ITEM primi­
tive selects 1 value at a time for the SOUND primitive.
Because this method is much faster than including the
calculations in the SOUND routine, the sound resembles
a buzzing fly .

T D F L Y
I I IM A K E []

I I NF O R 0 8 1 [P R I N T : N
I I IM A K E L P U T

5 0 0 0 + 4 0 0 0 * C T A N : N) : I J
I I x L A B E L

M A K E I I X 1 R C
I I NF O R 1 8 2 1

S O U N D I T E M : N : I 5]
I I x G O

E N D

The procedure counts the items as it builds the list.
When it finishes counting, it waits for you to press a key .
Then, it demonstrates the sound. You can replay the
sound any number of times by pressing a key again . For
a different sound, use FPUT rather than LPUT.

On Your Own

Don't be content with the sounds demonstrated in this
manual . Strike out on your own and create different
sounds in different ways. Make a library of procedures
you can use in later applications . You can also use D . L .
LOGO's music capabilities, described i n Chapter 6, to
create unusual sounds.

Sound Speech

If you have the Speech/Sound Cartridge, you can also use
speech to create unusual sounds with ease. To demon­
strate this, type and execute the following lines:

255

i ENTER J

i ENTER J

i ENTER J
I ENTER J

i ENTER J

! ENTER)

I I

I ENTER J

Section 2
Chapter 1 1 A Sound Procedure

? 	 S A Y [LJ U
U U U U U U U U U L U U U U J

? 	 S A Y [S
S S S S S S S S S S S S S S J

? 	 S A Y [S H S H S H S H S H S H S H S H S H S H S H S H
S H S H S H S H S H S H S H S H S J

? 	 S A Y [8 Z Z Z J
? 	 S A Y [R S R S R S R S R S R S R S R S R S R S R S R S

R S R S R S R S S J
? 	 S A Y [S Y S Y S Y S Y S Y S Y S Y S Y S Y S Y S Y S Y

S Y S Y S Y S Y S Y S Y S S J
? 	 S A Y [O P O P O P O P O P D P O P O P O P O P D P O P

0 p 0 p 0 p 0 p] ENTER
? 	 S A Y [Q

Q Q Q Q Q Q Q Q Q Q Q Q J
? S A Y [M N M N M N M N M N M N M N M N J

Try other letters and combinations. Turtle has a voice
with many talents .

256

Chapter Summary
Chapter 1 1A Sound Procedure

Cha pter Summary

PRIMITIVE Abbrev. Purpose

SAY 	 Causes D .L . LOGO to say
(s p e a k) t h e s p e c i f i e d
words o r numbers .

SOUND 	 C r e a t e s a s o u n d f rom
spe cif ied valu e s repre­
s e n t i ng p i t c h a nd
duration.

Turtle Facts

• 	 You must have a Speech/Sound Cartridge and a Multi­
Pak Interface to use D .L . LOGO's speech ability

• 	 You need to spell some words phonetically in order for
the Speech/Sound Cartr idge to pronounce them
correctly

• 	 Using the SOUND primitive, pitch is expressed in
cycle s per second and durat ion is expressed in
milliseconds

Suggested Project

Write a short, educational program about a subject that is
familiar to you. Our sample program is the DEMO pro­
gram that is included on your D .L . LOGO diskette .

257

12
TU RTLE
ON A LEASH

· . · . ·.

Joystick a nd X-Pad Controls

Section 1 Reading the Joysticks : put a handle on Turtle .

Section 2 Padding About Turtle Style : using the X-Pad graphics tablet.

Section 3 Remote Control : information on controlling remote devices .

259

Section 1
Chapter 12 Reading the Joysticks

Section 1
Reading the Joysticks
The fun of 0 . L . LOGO doesn't end with impressive
screen displays. Your Turtle can respond to input from
sources other than the keyboard, such as joysticks or an
X-Pad. Through D .L . LOGO, you can control external de­
vices, such as a mechanical turtle, a robot, or a plotter.

These options create numerous new possibilities for
LOGO. For instance, if you were to write an educational
program for young children, you can let them make
choices using the joystick instead of keyboard characters .
You can create art and music programs using an X-Pad.
You can send graphics designs to a plotter or printer to
create pictures or posters.

The joystick and X-Pad controls are built into D.L . LOGO
and are easy to use . In order to use the X-Pad with D.L .
LOGO, however, you must have the Multi-Pak Interface.

To control external devices, such as a robot or plotter, you
must have a control module created specifically for that
device. Section 4 provides the information necessary for
creating such a machine-language module and is only of
value to advanced machine-language or assembly­
language programmers .

Taking Control

D . L. LOGO uses numbers to represent the left and right
joysticks . To read the screen location of the right joystick,
use this command syntax:

J O Y X 0 J O Y Y 0 .

To check on how this primitive works, be sure you have a
joystick plugged into the right joystick port and type:

260

[ENTER [

Section 1
Reading the Joysticks Chapter 12

? P R I N T J O Y X 0 J O Y Y 0

Depending on the position of the joystick handle, the
-screen shows 2 values ranging between 32 and + 32.

Refer to the information in Chapters 1 and 4 to refresh
your memory on how the graphics screen is divided into
coordinates.

JOYX Ql returns the X coordinate of the right joystick.
JOYY Ql returns the Y coordinate of the right joystick.
Similarly, JOYX 1 and JOYY 1 represent the X and Y coor­
dinates of the left joystick. The value of the joystick X
and Y readings range from 32 to 31 . -

The following procedure reads the joystick coordinates
and displays a dot on the screen in that location. It con­
tinues doing so until you press the red fire button on
your joystick.

T D J O Y
W H I L E N O T B U T T O N ? 0
[D O T J O Y X 0 J O Y Y 0 J

E N D

When you move the joystick handle the screen displays a
dot that corresponds to the position of the handle. The
dot's range, however, is restricted to an area within 32
steps in any direction from the center of the screen.

Use the following procedure to view the actual values as
you manipulate the joystick:

TD J O Y 2
W H I L E N O T B U T T O N ? 0 [

P R I N T J O Y X 0 J O Y Y 0 J
E N D

For most graphics applications, a range of only 64 steps

in any direction is unsatisfactory. To expand the range of

261

[ENTER J .

Section 1
Chapter 12 Reading the Joysticks

your Tu r t le o n a l e a s h , a d d t h e s e s teps to your
procedure:

T D J D Y 3
F U L L S C R E E N

W H I L E N O T B U T T O N ? 0
[D O T C J O Y X 0) * 4 C J D Y Y

0) * 3]
E N D

Now you can create dots 4 steps apart on the X axis and
3 steps apart on the Y axis over the entire screen. In
some applications this is satisfactory . To create dots at all
points, however, use a procedure such as this:

TO J O Y 4
F U L L S C R E E N

W H I L E N O T B U T T O N ? 0 [
S E T X Y X C O R + C J O Y X 0) / 5

Y C O R + C J O Y Y 0) / 5
D D T X C O R Y C D R l

E N D

In this procedure, the joystick controls the direction of in­
crement. Thus, if you position the joystick in the positive
portion of the X axis, the screen displays dots toward the
right. If you position the joystick in the negative portion
of the X axis, the screen displays dots toward the left.
The same process holds true for the position of dots
along the Y axis . In effect, the dots follow the direction of
the joystick handle.

Now the Turtle can move anywhere on or off the screen.
To make the Turtle reappear on the opposite side of the
screen when it goes off one edge, type WRAP

262

Section 1
Chapter 12Reading the Joysticks

Joystick Answers

The following procedure shows how you can use the joy­
stick in a quiz program:

TO Q U I Z

W R A P

M A K E " I 0

Q U E

F U L L S C R E E N

A S K

E N D

T O A S K
W H I L E N O T E M P T Y ? : Q U E S T I O N S
[C S

G E T
M A K E " I : I + 1
S H O W Q U E S
T & F
J O Y
R E A D A N S
S E T X Y - 4 0 - 6 0
H T
T E L L A N S
W A I T 1 0 0
S T J

E N D

T O B O X
R E P E A T 4 [F D 1 2 R T 9 0 J
S E T H 9 0 P U F D 2 0 P D

E N D

T O D E L E T E
M A K E " Q U E S T I O N S B U T F I R S T

: Q U E S T I O N S

E N D

263

Section 1
Chapter 12 Reading the Joysticks

T D J O Y
W H I L E N O T B U T T O N ? 0 [
S E T X Y X C O R + C J O Y X 0) / 5

Y C O R + C J D Y Y 0) / 5 J
E N D

T O Q U E
M A K E " Q U E S T I O N S [[A J D Y S T I C K I S

H A P P Y G L U E J [J [F A L S E J [A
P R I M I T I V E I S A N J C O U T O F S T Y L E
L O G O C O M M A N D J C F A L S E J [A
P R O C E D U R E I S A N J C A C C E P T A E L E
W A Y T D G E T A D A T E J [F A L S E J [J O Y X
I S A C O O R D I N A T E J C P D S I T I O N J [
T R U E l l

E N D

T O G E T
M A K E " Q F I R S T : Q U E S T I O N S D E L E T E
M A K E " Q 1 F I R S T : Q U E S T I O N S

D E L E T E
M A K E " A F I R S T : Q U E S T I O N S D E L E T E

E N D

T D S H O W Q U E S
S E T X Y - 8 0 8 0
T U R T L E T E X T C T U R T L E

Q U I Z l
S E T X Y - 1 2 2 Y C D R - 2 0 T U R T L E T E X T

N O . J : I : Q
S E T Y Y C D R - 1 0 T U R T L E T E X T : Q 1

E N D

T D R E A D A N S
S E L E C T

Y C O R > 0 [M A K E " A N [T R U E l l
Y C O R < 0 [M A K E " A N [F A L S E J l

E N D

264

Section 1
Reading the Joysticks Chapter 12

T O T E L L A N S
S E L E C T

: A N = : A [T U R T L E T E X T [Y O U
A R E R I G H T Õ l l

: A N < > : A [T U R T L E T E X T [Y O U
A R E W R O N G Õ J J J

E N D

T O T & F
S E T X Y 2 0 5 B O X
S E T Y 1 1 T U R T L E T E X T [T R U E J
S E T X Y 2 0 - 2 1 B O X
S E T Y - 2 6 T U R T L E T E X T [F A L S E J

E N D

In this program, the JOY procedure lets you position the
Turtle over the appropriate TRUE or FALSE prompt and
press the joystick button to register your response.

Buttoning Up the Joystick
Commands

The previous joystick examples familiarized you with the
BUTTON? primitive. The BUTTON? primitive determines
if you press the joystick button. As with the JOYX and
JOYY primitives, you need to tell BUTTON? what joystick
to examine. Again, use the number 0 for the right joy­
stick and the number 1 for the left joystick.

This procedure demonstrates another way to use the
BUTTON? primitive:

T O B U T T I N
c s
S E T X Y - 1 0 0 0
T U R T L E T E X T [P L E A S E P U S H M Y

B U T T O N J
W H I L E B U T T O N ? 0 [T U R T L E T E X T

O U C H Õ N O T S O H A R D Õ l l
B U T T I N

E N D

265

Section 2
Chapter 12 Padding About - Turtle Style

Section 2
Padding About - Turtle Style
Using an X-Pad Graphic Tablet requires only 3 primitives:
PADX, PADY, and PADPENDOWN? . You can use these
primitives with other D . L. LOGO functions to create nu­
merous uses for the X-Pad. You use the X-Pad most often
for drawing, and a simple program lets you create car­
toons, schematics, designs, or whatever you wish. The
possibilities for the X-Pad are limitless. For instance, you
can use your knowledge to program:

• 	 A talking clock-use the X-Pad to set a time, and D.L .
LOGO speaks the hour and minute

• 	 A music board-play notes by touching corresponding
keys drawn on the X-Pad

• 	 A moving dot game-try to catch a dot on the screen
using the pen on the X-Pad

• 	 A noise board-produce various sounds by touching
various points on the X-Pad.

• 	 A battleship game-sink the enemy ship by guessing
where it is on the X-Pad grid

Of course, this versatile peripheral provides many other
options. Children, in particular, like the control and in­
stant response that an X-Pad gives.

Pen Control

Plug the X-Pad into any port of the Multi-Pak Interface.
D . L. LOGO sets the X-PAD grid to match your screen
grid . Therefore, the position of the pen on the X-PAD al­
ways matches a corresponding position on the screen.
The X coordinates are in the range 96 to 95, and the Y -

266

Section 2
Chapter 1 2 Padding About - Turtle Style

coordinates are in the range - 192 to 191 . Read the posi­
tion of the X-Pad pen by using the PADX and PADY
primitives.

Programming for the X-Pad is similar to programming for
the joysticks. Anything you can do with a joystick, you
can do with the X-Pad. However, because the X-Pad grid
is larger and the X-Pad board provides a flat surface, you
can accomplish detailed tasks easier than you can with a
joystick.

To see how you control the X-Pad, try this procedure:

TO D R A W
c s
W H I L E " T R U E [
W H I L E P A D P E N D O W N ?

[S E T X Y P A D X P A D Y F D 1 l l
E N D

Now you can draw on the X-Pad and create correspond­
ing graphics on the display screen. To round out the pro­
gram and provide additional features, use the template
holes for establishing pen position coordinates . Then use
these template holes to call certain functions. To deter­
mine the pen coordinates of the various template posi­
tions, use the following procedure:

TO P O S I T I O N
L A B E L " A G A I N
T E S T P A D P E N D O W N ?

I F T R U E [P R I N T P A D X P A D Y l
G O " A G A I N

E N D

Now, whenever you press the pen down, the screen dis­
plays its current position and you can record the coordi­
nates you wish to use in a program. Be sure you do not
have the FULLSCREEN option set when you use this
procedure.

267

Section 2
Chapter 12 Padding About - Turtle Style

Using The Template

The following program uses some of the template posi­
tions to add features to the DRAW procedure. To operate
it, place a sheet of paper on the X-Pad and use the over­
lay template . The X-Pad reproduces the drawings on the
paper onto the screen.

T O P A D

F U L L S C R E E N

H T

L A B E L " P A D D
W H I L E P A D P E N D O W N ? [S E T X Y

P A D X P A D Y F D 1 l
I F C A L L O F P A D X > 1 1 6 P A D Y > 9 3 > [C S

H T l
I F C A L L O F P A D X > 1 1 2 P A D X < 1 1 6

P A D Y > 8 6) [S O U N D 6 0 0 1 0 0]
I F C A L L O F P A D X > - 6 P A D X < 3 P A D Y

> 9 4 > [S E T P C 0 S T J
I F < A L L O F P A D X < - 5 5 P A D X > - 6 2

P A D Y > 9 4 > [S E T P C 3 H T J
I F < A L L O F P A D X < - 1 1 4 P A D Y > 8 5

P A D Y < 9 4 > [S E T P C 0 B O X J
I F C A L L O F P A D X < - 1 1 4 P A D Y > 6 8

P A D Y < 7 5 > [S E T P C 1 B O X J
I F < A L L O F P A D X < - 1 1 4 P A D Y > 4 8

P A D Y < 5 8) [S E T P C 2 B O X J
I F < A L L O F P A D X < - 1 1 4 P A D Y > 3 0

P A D Y < 3 8) [S E T P C 3 B O X J
G O " P A D D

E N D

T O B O X
S E T X Y 1 2 4 9 3
R E P E A T 4 [F D 1 R T 9 0 l

E N D

268

Section 2
Chapter 12Padding About - Turtle Style

This program provides the following functions:

1 . 	Draws when the pen is down

2. 	Changes pen color by touching the pen at template
positions 0, 1, 2, or 3

3. 	 Clears the screen by touching the pen at template po­
sition CLEAR

4. 	Provides an erase feature, with the Turtle visible, by
touching template position ERASE

5. 	Shows the current pen color by providing a spot of
color in the top right corner of the screen.

6 . 	Produces a sound when the pen touches template po­
sition a.

You can easily expand this program to recognize many
other features, such as the ability to: draw predetermined
shapes, change background colors, create various sound
effects, display text on the screen, and more .

269

Section 3
Chapter 12 Remote Control

Section 3
Remote Control
This section i s for machine-language or assembly­
language programmers. It provides the necessary infor­
mation for creating a special module that transfers Turtle
commands to an external device. If you are not an ad­
vanced machine-language or assembly-language program­
mer, this section is not useful to you.

Creating An Interface Module

D.L . LOGO has a special hook that can intercept Turtle's
graphics commands and use them to control such devices
a s an external Turtle, plotter, or robot . I f a module
named "Turtle" is loaded into OS-9 memory before
LOGO is executed, Turtle' s graphics commands are
routed through that module as a subroutine instead of
moving the turtle on the screen. The module must relay
each instruction to the auxiliary device and return to
LOGO using an RTS instruction.

When you enter the subroutine, the A register holds the
command code and the X and U registers hold any pa­
rameters associated with the command. Upon exiting the
subroutine, commands that return data (shown in the fol­
lowing table) use the X and U registers.

270

Section 3

Chapter 12Remote Control

Entry
Command A x
INITIALIZE 0 -

FORWARD 1 steps'
BACK 2 steps'

RIGHT 3 degrees'

LEFT 4 degrees'
Set X coordinate 5 X coord'
Set Y coordinate 6 Y coord'
Set Heading 7 degrees'
Set Pen Pas . 8 0 = up

1 = down

Set Turtle State 9 0 = hidden
1 = shows

Set Background 1 0 color code

Set Pen Color 1 1 color code

Clean Screen 1 2 -

Dot 13 X coord
Set Text Pointer to 14 -

Turtle position
Put Character 15 character

Read X coordinate 1 6 -

Read Y coordinate 1 7 -

Read Heading 1 8 -

Read Pen Position 1 9 -

Read Turtle State 20 -

Read Background 21 -

Read Pen Color 22 -

• - Integer portion only
" - Fractional portion times 65536 (e . g . :

Registers
Exit

u x u
- - -

steps" - -

steps" - -

degrees" - -

degrees" - -

X coord" - -

Y coord" - -

degrees" - -

- - -

- - -

- - -

- - -

- - -

Y coord - -

- - -

- - -

- X coord' X coord"
- Y coord' Y coord"
- degrees' degrees"
- © = up 0

1 = down
- 0 = hidden 0

1 = shown
- color code 0
- color code 0

0.5 = 32768)

271

Chapter 12 	 Summary

Cha pter Summary

PRIMITIVE Abbrev. Purpose

JOYX

JOYY

BUTTON?

PADX

PADY

PAD PEND OWN?

Turtle Facts

Reads the X coordinate
position of a specified
joystick.

Reads the Y coordinate
position of a specified
joystick.

Determines if you press
the specified joystick
button.

Reads the X coordinate
position of the X-Pad
pen.

Reads the Y coordinate
position of the X-Pad
pen.

Determines if you press
down the X-Pad pen.

• 	 D . L. LOGO uses numbers to represent the 2 joysticks.
The right joystick is number 0, and the left joystick is
number 1 .

• 	 The joysticks produce X and Y coordinates in the range
- 32 to 31 .

• The X-Pad produces X coordinates in the range - 128
to 127 and Y coordinates in the range 96 to 95 . -

272

	¸s

� I I I U:J : I I§
�---·--------'

Summary 	 Chapter 1 2

• 	 To use remote devices with D . L . LOGO you must
write a machine language module for that device .

Suggested Project

Draw a musical keyboard on a piece of paper on your X­
Pad, and then write a program to play corresponding
notes when you touch a key with the X-Pad pen.

273

Chapter Summary
Chapter 12 Remote Control

Suggested Solution

T D P L A Y
L A B E L " P
W H I L E N O T P A D P E N D O W N ? [J
I F P A D Y > 6 0

[M U S I C L I S T " T 3 6 0 I T E M
P A D X / 3 2 + 5 [C D E F G A B
H C J

W H I L E P A D P E N D O W N ? [J
G O " P

E N D

274

1 3 � q;
CHASI NG AFTER BUGS

What Errors Are Good For

Section 1
Section 2
Section 3
Section 4

To Err Is Human: what are errors and how to avoid them.

Debug: what to do when an error occurs .

The Catch : how to catch errors and tame them .

Error Code Reference .

275

Section 1
Chapter 13 To Err Is Human

Section 1
To Err Is H uman
Errors are the bane o f every programmer . Everyone
makes mistakes when writing computer programs. Often,
tracing and correcting these mistakes, or bugs, takes
longer than writing the program.

This chapter deals with errors caused by faulty program­
ming and errors caused purposefully. (Yes, errors can be
useful in programming.) To aid in finding and correcting
unwanted errors, D .L . LOGO's descriptive error mes­
sages tell you exactly what caused your problem. D .L .
LOGO also shows you where an error occurs. Your task
is to rewrite that part of the procedure so it can do its
job .

Whenever an error occurs, LOGO stops the execution of
the current procedure and displays an error message on
the screen. When a procedure halts because of an error,
you must find and correct the error before you can pro­
ceed. In short procedures, errors are much easier to find
and correct than in long, complicated procedures. This is
an important reason to keep your procedures short and
simple .

When LOGO stops a procedure because of an error, it
positions the editor where the error has occurred in the
procedure. To see the line and position of the error, enter
the edit mode. However, if you need to check the value
of your variables, you must do so before entering the edit
mode. Once in the edit mode, all variables are reset. The
means for checking variables is discussed in more detail
later in this chapter.

* * TURTLE
OUT OF

276

I)

Section 2
Chapter 13 Debug

Section 2
Debug
Some errors are easy to spot and correct. For instance, if
you make a typing error while entering the name of a
primitive, LOGO stops the execution of the procedure
and displays an error message such as:

* * E R R O R : U N D E F I N E D P R O C E D U R E

This means LOGO does not recognize your entry as a
primitive name or a procedure name . To enter the edit
mode and correct this error, type EDIT ENTER . The cur­
sor is positioned at the location of the error. Suppose
your procedure includes the primitive FORWARD mis­
spelled as FOWARD. The line might look like this (the
underline symbol represents the blue cursor):

RT 9 0 F _ W A R D 5 0

You only need to insert the letter R in FOWARD to cor­
rect the error; then reexecute the procedure.

If you exit the edit mode without closing an opening
bracket, LOGO immediately displays this error message:

* * E R R O R : M I S S I N G "] "

In some cases, the cause of an error might not be so ob­
vious. To demonstrate this, look at the following pro­
gram. When you execute the procedure RING, an error is
likely to halt the graphics display.

TD S P O K E
W I N D O W
M A K E " M R A N D O M 1 0 0
M A K E " L R A N D O M 3
M A K E " R : M I : L
F D : R R T 9 0
F D 5 R T 9 0

277

i ENTER J

Section 2
Chapter 13 Debug

F D : R R T 1 9 0

E N D

T D R I N G

c s

S E T Y - 1 0

F U L L S C R E E N

P U F D 2 0 P D
R E P E A T 3 6 [S P O K E l

E N D

Enter the program and execute it by typing:

? R I N G

The screen displays a circle of random-length, radiating
rectangles . Before the circle is complete, LOGO displays
the message:

* * E R R O R : D I V I D E BY Z E R O

When you enter the edit mode, the cursor is positioned
on the variable L to locate the error. The cause of the er­
ror is in Line 3 of SPOKE. RANDOM 3 sometimes re­
turns a 0, that gives L the value 0. You cannot divide a
number by 0, as Line 4 is doing, and LOGO displays an
error message .

There is a debugging aid that gives you a clue to this
problem immediately . Execute the previous example
again. When it stops with the divide by f/J error, type:

? C O N T E N T S

The screen looks similar to this:

? C O N T E N T S

R = 2 2

L = 0
M = 4 5

278

Section 2
Chapter 1 3 Debug

This i s a list of all the variables in the program and their
values. Since the variable M (45) is divided by the vari­
able L (0), the cause of the error is easy to detect .

You can correct the problem by changing Line 4 in this
fashion:

M A K E " R : M I C : L + 1)

Now L can never contain a value less than 1 . The last
section in this chapter describes all D . L. LOGO's error
messages.

279

M A K E

Section 3 Chapter 13 The Catch

Section 3
The Catch
Sometimes D .L . LOGO's error-handling capabilities are
helpful for programming. For instance, the FENCE primi­
tive causes an error if the Turtle attempts to go beyond
the video screen boundaries .

Suppose you are writing a program that requires the user
to direct the Turtle around the screen, using a joystick. If
you wish the turtle to stop at the edge of the video
screen without creating an error message, use the primi­
tive CATCH to intercept the error. To do this, first limit
the Turtle to the screen boundaries using the FENCE
primitive. If the Turtle tries to go beyond the screen
boundaries , the message "ERROR: TURTLE OUT OF
BOUNDS" is generated. Look up the error code reference
at the back of this chapter; you see that the error number
is 21 .

The following procedure demonstrates a way to use
CATCH.

T O J O Y
c s
F E N C E
H T
S E T P C 3

1 1 X 0
M A K E 1 1 Y 0
A H E A D

E N D

T D A H E A D
C A T C H 2 1 [O O P S J
W H I L E N O T B U T T O N ? 0

IIM A K E x I N T : x + C J O Y X 0) /
1 5

I I y : yM A K E I N T + C J O Y Y 0) /
1 5

280

Section 3
Chapter 1 3The Catch

D D T : X : Y J
E N D

T D O O P S
T U R T L E T E X T [O O P S Õ J
M A K E " X 0 M A K E " Y 0
W A I T 2 0
c s
A H E A D

E N D

Whenever the Turtle attempts t o go out o f bounds,
CATCH causes program execution to go to the OOPS
procedure. Instead of displaying the error TURTLE OUT
OF BOUNDS, the word "OOPS" appears in the middle
of the screen, the screen pauses, and the joystick posi­
tions reset to the center of the screen.

You can intercept any LOGO errors to provide an alter­
nate error message, to reset values or conditions, or to di­
rect program execution to another point. You cannot,
however, return execution to the point where the error
occurred.

Time Out

Using the PAUSE primitive is another way to examine
program conditions . Insert PAUSE at any point in an er­
rant procedure to halt execution while you examine cur­
rent procedure conditions or change variable values . Then
use CONTINUE to restart the procedure immediately fol­
lowing PAUSE. The following example uses PAUSE in con­
junction with the CATCH primitive to stop the Turtle
whenever it attempts to go beyond the screen boundaries .

T D J O Y
c s
F E N C E
H T
S E T P C 3

281

Section 3Chapter 13
The Catch

I I x M A K E 0
I I y M A K E 0

A H E A D
E N D

T O A H E A D
C A T C H 2 1 [P A W S J
W H I L E N O T B U T T O N ? 0

I I x : xM A K E I N T + C J O Y X 0) /
1 5

I I y yM A K E I N T : + (J O Y Y 0 > I
1 5

: y]D D T : X
E N D

T O P A W S
P A U S E
A H E A D

E N D

Now, when the Turtle goes out of bounds, the program
halts and the cursor returns on the screen. When this
happens, type CONTENTS. The screen shows the value
of all variables:

Y = 6 4
X = 1 2 8

Now type:

? M A K E 1 1 X 0 M A K E 1 1 Y 0
? C O N T I N U E

The line of dots starts again at the center .he screen.
PAUSE can be useful in debugging difficult programs. It
lets you examine the conditions of a program, make
changes to values if you wish, and continue execution at
the point where the program stopped (or at some other
point .) If you find that a program continuously crashes at
a certain place, insert a CATCH-PAUSE routine to exam­
ine what is happening.

282

I I

Section 3
The Catch

. . . . About Common Errors

Although there are a number of
errors D.L . LOGO recognizes,
several are much more common
than others . If you have trouble

determining the cause of an
error message, check these

possibilities first:

• Did you use dots instead of
quotation marks in
creating a variable 1

• Did you use quotation marks
to indicate a variable name

instead of dots?
• Did you type a procedure

name incorrectly?
• In the edit mode, did a line

end at the extreme right of
the screen, causing you to
forget to press ENTER to

complete the line?
• Did you forget to define a

variable, using MAKE,
before you used it as a
value in a procedure !

• Do you have the same number
of opening and closing

parenthesis and brackets in a
procedure I

Chapter 13

Some other uses o f the CATCH primitive are:

• 	 Catching the error if too few arguments are provided
for a procedure or primitive. The operator could be
asked to input more argument values .

• 	 Informing you when your diskette i s full while using a
filing program.

• 	 Telling you if a file cannot be found in the current
directory.

• 	 Directing a procedure to an alternate operation if an
object becomes empty.

• 	 Telling you if a number you are entering is out of range
for its function .

Creating Errors

Not only does D .L . LOGO help you catch inadvertent er­
rors, it also lets you simulate error conditions. Use the
ERROR primitive to test error traps you created in your
programs. To do so, set up an error trapping routine,
then insert an ERROR command . For instance, you can
use ERROR in the JOY program to test the CATCH 21
routine, without waiting until the Turtle reaches the edge
of the screen . Add this line to the program:

T D A H E A D
C A T C H 2 1 [P A W S J
E R R O R 2 1
W H I L E N O T C B U T T O N ? 0) [

I t x M A K E I N T : X + C J O Y X 0) / 1 5
I t xM A K E I N T : Y + C J O Y Y 0) / 1 5

D O T : x : y l l
E N D

283

Section 3
Chapter 13 The Catch

T D P A W S
P R I N T [Y O U C A U G H T M E J
P A U S E
A H E A D

E N D

A simulated ERROR 21 is created as soon as the TURTLE
begins to move, and the program executes the PAWS pro­
cedure . Such a process can save considerable testing
time .

ERROR can be used either from within a procedure or
from the immediate, or single command, mode.

284

[ENTER J .
[ENTER [.

3 5

Section 4
Trace - How To Follow a Procedure Chapter 13

Section 4
Trace - How To Fol low a
Procedu re
Sometimes errors seem impossible to find. When discov­
ered, they are often simple mistakes, and you wonder
how you missed such an obvious bug. At other times, an
error is devious, and only persistent digging can uncover
it.

The solution is knowing what a program is doing at all
times. The TRACE primitive provides this information .
Use the SPOKE and RING procedures in Section 2 to cre­
ate the divide by zero error again . Before executing the
program, enter the immediate mode, and type TRACE 10

Now execute the program by typing RING

This time, a s the program runs, the screen displays each
step of the procedure, 10 steps at a time . After each set
of 10 steps is executed, press the space bar to continue
the procedure. When :L is set to 0 in Line 2, the error in
Line 4 causes the program to halt. At this point, the
TRACE display resembles the following:

M

R A N D O M

1 0 0

3 5

M A K E

L

R A N D O M

3

0
M A K E

R

0
* * E R R O R : D I V I D E B Y Z E R O

285

I I.

Section 4
Chapter 13 Trace - How To Follow a Procedure

ENTER

Each step of the procedure and each variable are dis­
played as the program runs . By looking at the TRACE list
you see that the value of L is 0 and the value of R is 35 .
LOGO cannot divide by 0; thus, the error occurs. To turn
the TRACE function off, type NOTRACE You can
set the step rate of the TRACE function to a maximum
value of 255 . If no argument is used, TRACE does not
cause the program to pause during execution.

If you have a printer, you can use the COPYON primitive
to print the entire TRACE list . Doing so provides a hard
copy of the entire program execution to the point of the
error. Use COPYOFF to stop screen output from echoing
to your printer.

286

Section 5
Chapter 13Error Code Reference

Section 5
Error Code Reference

CODE # MESSAGE DESCRIPTION

1 MUST BE A
WORD

A list was supplied as an
argument to a procedure
requiring a word.

2 MUST BE A
NUMBER

An object other than a number
was supplied as an argument
to a procedure requiring a
number.

3 NOT TRUE/
FALSE

A primitive, designed to
determine TRUE/FALSE
conditions, was supplied in an
argument that could not be
established as either TRUE or
FALSE.

4 MUST BE A
LIST

A word was supplied as an
argument to a procedure that
requires a list .

5 EMPTY
OBJECT

An empty object was passed to
a FIRST BUTFIRST LAST or
BUTLAST primitive.

6 NUMBER
OUT OF
RANGE

The number supplied to an
operation was too low or too
high for the capabilities of that
operation .

7 MISSING
ARGUMENT

A procedure or function was
supplied fewer arguments than
it requires.

8 DIVIDE BY
ZERO

An attempt was made to divide
a number by 0 .

287

Section 5
Chapter 13 Error Code Reference

CODE # MESSAGE DESCRIPTION

9 UNDEFINED
SYMBOL

10 ISOLATED
OBJECT

11 MUST BE A
PROC LIST

12 SYNTAX
ERROR

13 UNDEFINED
PROCEDURE

14 BAD 'TO'
STATEMENT

15 MEMORY
FULL

16 MISSING ']'

17 MISSING ")"

18 BAD
PROCEDURE
CALL

19 NOT FOUND

The label referenced by THING
or dots (:) was not defined .

An attempt was made to use
an argument (or value) without
an associated procedure .

A word was supplied as an
argument to an operation that
requires a procedure list.

Invalid syntax was used in a
procedure.

A name was used for which no
procedure exists.

A syntax error exists in Line 1
of a procedure.

Ram space allocated to LOGO
has been exhausted.

Either too many or too few
brackets are included in a
procedure .

Either too many or too few
parentheses are included in a
procedure.

A LOGO primitive procedure
is being called improperly. For
example, EDIT is being called
from a user program.

The specified pathname was
not found.

288

20

Section 5
Error Code Reference Chapter 13

CODE # MESSAGE DESCRIPTION

DISK ERROR An OS-9 disk error has
occurred.

21 TURTLE OUT The Turtle attempted to go
OF BOUNDS beyond the screen boundaries

while the FENCE primitive was
active.

22 CAN'T ERASE A disk error occurred while
FILE OS-9 was attempting to delete

a file .

23 CAN'T OPEN OS-9 has returned an error
FILE while attempting to open a file .

24 FILE NOT A file read or write operation
OPEN was called before an

OPENREAD or OPENWRITE
was implemented.

25 DISK FULL Diskette space has been
exhausted.

26 WORD TOO A word was used that exceeds
LONG 255 characters .

27 PROCEDURE A procedure name was used
ALREADY that was either a LOGO
DEFINED primitive name or that was

already defined as a procedure.

28 SQRT OF NEG An attempt was made to
NUMBER calculate the square root of a

negative number.

29 LOG OF NEG An attempt was made to
NUMBER calculate the LOG of a negative

number.

289

Section 5
Chapter 1 3Error Code Reference

CODE # MESSAGE DESCRIPTION

30-32 User definable Machine-language
programmers can use these
codes to create error messages
for an external device. For
more information on
controlling external devices,
see Chapter 1 1 .

290

Summary 	 Chapter 13

Cha pter Summary

PRIMITIVE Abbrev. Purpose

CONTENTS Lists all global variables .

FENCE Causes an error if the
Turtle goes beyond the
video screen boundaries .

CATCH 	 Redirects LOGO' s normal
error function .

ERROR 	 Simulates an error
condition.

TRACE 	 Turns on LOGO' s trace
function, displays
procedure steps .

NOTRACE 	 Turns off LOGO' s trace
function .

Turtle Facts

• 	 Unless CATCH is specified, a procedure error causes a
procedure to halt.

• 	 The CATCH primitive lets you create your own error
messages or select a routine other than normal error
execution .

• 	 LOGO's editor cursor marks the location in a proce­
dure where an error occurs.

• 	 Variable values are lost when you enter the edit mode.

• 	 You can create a permanent trace of a program's execu­
t i o n by u s ing b o th the CO PYON a nd T RAC E
primitives.

291

Chapter 13 Summary

Proposed Project

Write a program to draw bricks diagonally across the
screen. Use the CATCH primitive to: (1) determine when
a row of bricks is completed and (2) cause the procedure
to begin the next row. Finish the project with a border of
your choice by using the CATCH primitive to: (1) deter­
mine when the border has reached the edge of the screen
and (2) cause the procedure to begin the next side of the
border.

292

Summary Chapter 13

Suggested Solution

T O E R I C K S
H T
C A T C H 2 1 C S E T J
F E N C E
F U L L S C R E E N
c s

I IM A K E y 8 6
I I x M A K E - 1 2 8

R O W
E N D

T O S E T
I F : X > 1 2 0 C E D R D E R J
I F : Y > - 8 0 [M A K E 1 1 Y : Y - 1 9 l E L S E

C M A K E 1 1 X : X + 2 2 l
R O W

E N D

T D R O W
S E T X Y : x : y
S E T H 4 5
R E P E A T 1 0 0 C E R I C K J

E N D

T D E R I C K
S E T P C 0 F D 1 5
S E T P C 2 E K 1 5
R E P E A T 6 [

F D 1 5
R T 9 0
F D 1
R T 9 0
F D 1 5
L T 9 0
F D 1
L T 9 0 J

P U L T 9 0 F D 1 1 R T 9 0 F D 1 9 P D
E N D

293

Chapter 13 Summary

T D B O R D E R
S E T P C 2
S E T X Y - 1 2 8 9 6
S E T H 0

I I x M A K E 0
B A N D

E N D

T D B A N D
F E N C E
C A T C H 2 1 [N E X T J
R E P E A T 2 5 7 [

R T 1 8 0
F D 1 2
L T 9 0
F D 1
L T 9 0
F D 1 2 J

E N D

T O N E X T
W I N D O W
L T 9 0
F D 1 2
R T 9 0
B K
M A K E " X : X + 1
I F : X = 4 [T O P L E V E L J
B A N D

E N D

294

Calling
SHELL

14
TU RTLE I N TH E

DRIVER'S SEAT

Ta ki ng Charge of Fi les, 05-9,
and Screen Format

Section 1 	 Breaking Out: introducing the capabilities of D . L . LOGO's file­
handling procedures .

Section 2 Fine Tuning File Control: advanced methods of accessing files .

Section 3 on 05-9: using OS-9 commands, entering the OS-9
from LOGO, and returning to LOG O .

Section 4 Turtle o n the Textscreen: arranging screen displays.

295

Section 1
Chapter 14 Breaking Out

Section 1
Breaking Out
The LOGO language i s well known for its graphics capa­
bilities, but D.L . LOGO also has sophisticated text han­
dling features . This chapter explains how to manipulate
data files on your disk drive, how to access OS-9 com­
mands, and how to format the text screen in the immedi­
ate mode.

D .L. LOGO uses the OPENWRITE primitive to open a
file for storing data. If the file you name with OPEN­
WRITE does not exist, LOGO creates it. If it does exist,
LOGO opens it and appends new data to the previously
stored data . For instance, to open a file named BOOK,
type OPENWRITE "BOOK. You can also use the OPEN­
WRITE primitive with variable names . If the variable
NAME contains the value BOOK, the command OPEN­
FILE :NAME produces exactly the same result as OPEN­
FILE "BOOK.

The following procedure asks you to enter a name for a
file you want to open. If the file already exists, the proce­
dure opens it to receive further input. If the file does not
exist, the OPENWRITE primitive creates a file with the
name you specify and opens it for input. The variable
NAME stores the name you give the file.

The FIRST primitive used in Line 5 causes the variable
NAME to be a word rather than a list. The OPENWRITE
primitive accepts only words as filenames.

T D C R E A T E
C L E A R T E X T
S E T C U R S O R 5 0
P R I N T 1 [N A M E O F F I L E : l
M A K E " N A M E F I R S T R Q
O P E N W R I T E : N A M E
I N P U T

E N D

. . . . About Files

The term files indicates any
data saved on a diskette. This
can include procedures and
programs as well as data from a
procedure or program . For
instance, you can write a
program to keep a record of
your personal library. When
you complete the program, save
it on diskette so that it is
available to index your books .
You might name the file
BOOKS. When you run the
program, it creates a disk file
that contains information about
your books . You can name the
file BOOKINDEX. Although
the 2 files contain different
types of data, to LOGO they
are both files . You can load both
data and procedure files into
LOGO's workspace.

296

[I

[J

Section 1
Breaking Out

R E T UR JW o r T H E H E D I

. . . . About INPUT

This program prompts you to
enter a bookname, the author,

and the subject . Type the
information you wish to use,
then press ENTER after each

input . When you have entered
as many files as you wish, type
END ENTER in response to the

bookname prompt. This will
cause the procedure to end

execution and exit to the
immediate mode. Be sure you
type the following COMBINE
procedure before attempting to

create files with INPUT.

Chapter 14

The preceding procedure opens a file, but you use an­
other procedure to store something in it. The last line of
the CREATE procedure calls the following INPUT proce­
dure, which creates a file of the books in your library. It
asks for the names, authors, and subjects of your books:

TO I N P U T

C L E A R T E X T

P R I N T

P R I N T [b o o k n a m e : l
P R I N T
P R I N T [a u t h o r :]

P R I N T

P R I N T [s u b j e c t : l
S E T C U R S O R 1 1 2
M A K E " B O O K N A M E R Q
I F : B O O K N A M E = [E N D J

[C L O S E W R I T E : N A M E T O P L E V E L l
S E T C U R S O R 3 9
M A K E " A U T H O R R Q
S E T C U R S O R 5 1 0
M A K E " S U B J E C T R Q
C O MB I N E

E N D

This procedure displays 3 fields on the screen: BOOK­
NAME, AUTHOR, and SUBJECT. It places the cursor at
the end of each field name and waits for you to enter
data.

As yet, the program does not save anything on diskette.
The last line of the INPUT procedure, calls the COMBINE
procedure to do this. COMBINE combines the 3 entries
into 1 record and saves it in the newly created file with
the WRITE procedure. After the procedure has written
an entry to diskette, it returns to the INPUT procedure
for another entry.

TO C O MB I N E
M A K E " B O O K L I S T : B O O K N A M E

: A U T H O R : S U B J E C T

297

Section 1
Chapter 14 Breaking Out

W R I T E : N A M E : B O O K
I N P U T

E N D

Now look back at Line 1 1 of the INPUT procedure . This
line makes it possible for you to exit the program when
you finish entering data by typing the word "END" as
the book name. When you do so, the line closes the open
file and causes the program to end.

To record the number of entries you make, add the fol­
lowing as Line 2 in the CREATE procedure:

M A K E " C O U N T 0

Before the last line of the INPUT procedure, insert:

M A K E " C O U N T : C O U N T + 1

To remind you of the current file as you add data, insert
this line as Line 3 of the INPUT procedure:

P R I N T [f i l e n o . J : C O U N T + 1

Then add 1 to the present cursor position in the INPUT
procedure by changing the following lines as shown:

L i n e 1 0 : S E T C U R S O R 2 1 2

L I N E 1 4 : S E T C U R S O R 4 9

L i n e 1 6 : S E T C U R S O R 6 1 0

Reading the Writing on Diskettes

Reading files into D . L . LOGO from diskette is as easy as
writing them. The primitives you use are OPENREAD,
READ and CLOSEREAD. For instance, type:

? O P E N R E A D " B O O K F I L E
? M A K E " B O O K R E A D " B O O.K F I L E

? C L O S E R E A D " B O O K F I L E

. . . . About Records

The term records refers to an
entry into a file . In this section,
the WRITE primitive combines
the fields "BOOKNAME, "
"AUTHOR," and "SUBJECT"
into 1 record, and places it in a
file.

298

1111!

Section 1
Chapter 14Breaking Out

. . . . About Fields

The term field refers to a
keyboard entry. In the examples

used in this section,
"BOOKNAME," "AUTHOR,"

and "SUBJECT," are fields .

B O O K r I L E S
lll.'lliWlli I

BOOK : R E T URtt OХ T H E H E D I

AUTHOR : J . $. S L O ll E

S U B J E C T : H t D I C A L

P R E S S . K E V ""\

These lines open a file named BOOKFILE, read the first
entry, and close the file. To read all the entries in a file,
you use a procedure that places the read entry process in
a loop and determines when it reaches the end of the file .
If you use a variable to store data from a file, you can use
EMPTY? to determine when you reach the end of a file .
For instance, if the variable BOOK stores the elements of
a file, the command PRINT EMPTY? :BOOK produces a
value of TRUE when you reach the end of that file .

The following procedure uses this method as it opens
and reads the files saved by the preceding INPUT proce­
dure . It reads a file, 1 record at a time, divides the record
into its 3 fields, formats the screen, and displays the
fields . When the procedure reaches the end of the file,
BOOK becomes empty and the screen displays the mes­
sage, "END OF FILES" :

T D S H O W F I L E
P R I N T 1 [N A M E O F F I L E . . . J
M A K E " N A M E F I R S T R Q
O P E N R E A D : N A M E
L A B E L " F I L E
M A K E " B O O K R E A D : N A M E
I F N O T E M P T Y ? : B O O K [

M A K E " B O O K N A M E F I R S T : B O O K
M A K E " A U T H O R I T E M 2 : B O O K
M A K E " S U B J E C T L A S T : B O O K
C L E A R T E X T
S E T C U R S D R 5 5
P R I N T [F I L E S F O R J : N A M E
S E T C U R S D R 7 0
P R I N T [B O O K : J : B D D K N A M E
P R I N T [A U T H O R : J : A U T H O R
P R I N T [S U B J E C T : J : S U B J E C T
S E T C U R S D R 1 1 0
P R I N T [P R E S S A K E Y - J
M A K E " N U L R C
G O " F I L E J

P R I N T [E N D O F F I L E S . . . J
C L D S E R E A D : N A M E

E N D

299

Section 1
Chapter 14 Breaking Ou t

Although this procedure seems long, most of it deals
with formatting the screen. The commands that access
the file appear in Lines 2 and 3 and in the last line. Line
2 opens the file for reading, Line 3 reads an item from
the file, and the last line closes the read file . In this pro­
cedure, IF NOT EMPTY? :BOOK determines when the
procedure reaches the end of the file .

300

Section 2
Chapter 1 4Fine Tuning File Control

Section 2

l\
F ine Tuning F i le Control
The primitives WRITEBYTE, READBYTE, FILEPOS, and
SETFILEPOS give you additional control over your filing
needs. The WRITEBYTE and READBYTE primitives let
you write to and read from files, 1 byte rather than 1
item at a time . The FILEPOS and SETFILEPOS primitives
let you determine a file's current position and set new
positions for reading and writing.

Using FILEPOS and SETFILEPOS, you can read any por­
tion of a file without reading through all previous file en­
tries. Using the WRITEBYTE and READBYTE primitives,
you can directly read or change any character in a record
or file.

The following examples show you how to use these prim­
itives using a sample filename TEST:

Action Command

Open a file to store data OPENWRITE "TEST
Write to the file WRITE "TEST [HELLO]
Close the file CLOSEWRITE "TEST

Open a file to read data OPENREAD "TEST
Read data and store in MAKE "DATA READ
variable DATA "TEST

Close the file CLOSEREAD "TEST

Open a file to write a byte OPENWRITE "TEST
Set the file position to SETFILEPOS "TEST 3
write a byte

Write a new byte at file WRITEBYTE "TEST "65
position 3

Close the file CLOSEWRITE "TEST

301

Section 2
Chapter 14 Fine Tuning File Control

Action Command

Open a file to read a byte
Set the file position to read

a byte

OPENREAD "TEST
SETFILEPOS "TEST 2

Read a byte and store in
variable DATA

MAKE "DATA
READBYTE "TEST

CLOSEREAD "TEST Close the file

Not only are these file handling capabilities easy to un­
derstand and use, but they also open data processing ca­
pabilities that few other systems offer. For instance, you
can create an index to keep track of the file position of
each record as you write on the diskette . Using this in­
dex, you can create procedures to sort records and rear­
range the the index, rather than rearranging the records
on a diskette . You can also use the index to provide direct
access to any record, regardless of its position in a file.
The following program shows how to do this.

TO A D D
M A K E " I N D E X [0 J
C L E A R T E X T
D P E N W R I T E " T E S T
F O R I I I 1 9 1 [

C L E A R T E X T
S E T C U R S D R 0 1 4
P R I N T [A D D l
M A K E " D A T A R Q
W R I T E " T E S T : D A T A
M A K E " I N D E X L P U T F I L E P O S
" T E S T : I N D E X l

C L D S E W R I T E " T E S T
D P E N W R I T E " T E S T X
W R I T E " T E S T X : I N O E X
C L O S E W R I T E " T E S T X
S E E

E N D

302

I I
I I

I I
I I
I I

I I
I I
I I

I I

Section 2
Fine Tuning File Control Chapter 14

T D S E E
O P E N R E A D " T E S T X

M A K E " I N D E X R E A D " T E S T X
C L O S E R E A D " T E S T X
O P E N R E A D " T E S T
L A B E L " N E X T
P R I N T 1 [E N T R Y N U M B E R ? . . . J
M A K E " E N T R Y R C
S E T F I L E P O S " T E S T I T E M : E N T R Y
: I N D E X

M A K E " R E C O R D R E A D " T E S T
P R I N T : R E C O R D
G O " N E X T

E N D

This program writes data (whatever you type) into a disk
file called TEST. At the same time it keeps an index of
where each item is stored in the file . This information is
kept in the variable INDEX. When you have typed 10 en­
trie s , the index i s s tored in another disk file , cal led
TESTX.

The SEE procedure, reads this index back into LOGO's
memory and reopens the TEST file . You can press any
key in the range of 1-9 to see the corresponding entry.
When you press a number key, the location of the indi­
cated record is found in the INDEX variable, and the disk
file pointer is set to that location. The indicated record in
the file is then read and displayed.

For instance, i f you type the following 9 entries :

O N E ENTER
T W O ENTER
T H R E E ENTER
F 0 u R ENTER
F I v E ENTER
s I x ENTER
S E V E N ENTER
E I G H T ENTER
N I N E ENTER

303

I I
I I

I I

I I
I I

I I I I

I 1.

Section 2
Chapter 14 Fine Tuning File Control

You can type 6 from the SEE procedure, and the screen
displays SIX. If you type 2, the screen displays TWO.

Get a Bit With BYTE

The READBYTE and WRITEBYTE primitives let you ac­
cess single characters in a file. This feature provides a
number of options for data file management . For in­
stance, you can create a data file that combines into 1 file
both data records and an index to manage those records.
To create a fi le in which to experiment, type the
following:

? O P E N W R I T E
? w R I T E
? c L 0 s E w R I T E

" T E S T ENTER
I I T E s T II 0 1 2 3 4 5 6 7 8 9 ENTER

I I T E s T ENTER

Now, to see if things are where they should be, type:

II T E s T ENTER
R E A D B Y T E II T E s T ENTER

" T E S T ENTER
ENTER

? 0 p E N R E A D
? M A K E II A
? C L O S E R E A D
? p R I N T : A
4 8

Because you haven't told it otherwise, READBYTE reads
the first byte of the TEST file and displays a value of 48 .
But 48 isn't what you stored at byte 0 . Byte 0 should con­
tain 0 . Perhaps it does. Try typing PRINT CHAR :A to
produce an accurate result. The variable A shows a value
of 48 because D . L. LOGO stores the characters you send
to a file as ASCII values (48 is the ASCII value of 0) .
READBYTE returns an ASCII value, and the CHAR prim­
itive produces the original character.

Issuing the READBYTE primitive automatically increases
the counter indicating the file position. To see the second
byte of the file, type MAKE "A READ BYTE "TEST
ENTER

304

Section 2
Chapter 14Fine Tu ning File Control

The variable A now contains the value of the second byte .
Test this by typing PRINT CHAR :A. The screen displays
the number 1 .

Going On

This manual only touches on the techniques and proce­
dures of file management. Determine your special needs
and put D. L. LOGO to the test. You will find it ready to
meet most challenges . D .L . LOGO is as capable of data
processing as it is of producing superb graphics .

305

I I

I CTRL) I BREAK) .

Section 3
Chapter 1 4 Calling On 05-9

Section 3
Ca l l i ng On 05-9
D.L . LOGO runs on the OS-9 disk operating system. If
you have the OS-9 system diskette, all the system com­
mands and utilities are available to you through the D .L .
LOGO SHELL primitive. In OS-9, the SHELL is a com­
mand interpreter. Using the SHELL primitive transfers
commands to the OS-9 SHELL program. You can copy
OS-9 commands a nd ut i l i t ies to your D . L . LOGO
diskette, then use them from LOGO with the SHELL
primitive. For instance, if you copy the DIR command to
your D . L. LOGO diskette, you can use it to view a direc­
tory by typing:

? S H E L L [D I R / D 0 J

See your OS-9 Commands manual for information on
how to copy and use commands and utilities.

An Alternate Method

You can also employ the SHELL primitive to exit D .L .
LOGO and use OS-9 commands directly. After you finish
executing the OS-9 commands you wish to use, a 2-key
process lets you reenter LOGO. To try this process, exit
D . L . LOGO by typing the SHELL primitive with an
empty procedure list:

s H E L L [l ENTER

D.L . LOGO enters the OS-9 SHELL through the SHELL
primitive. Now, you can use an OS-9 system diskette and
execute any commands or utilities you wish. (See your
OS-9 manuals for command and utility information .) To
reenter D .L . LOGO, hold down and press

LOGO's question mark (?) prompt reappears, and you
can again execute LOGO primitives and procedures .

306

Section 4
Turtle on the Text Screen Chapter 14

Section 4
Turtle on the Text Screen
Although D .L . LOGO lets you display text in both the
immediate and graphics modes, several primitives are as­
sociated with text displays that let you format and ar­
range the text as you wish.

The PRINT and PRINTl primitives are used in demon­
stration programs throughout the manual. PRINT causes
an automatic carriage return after the text it displays.
PRINTl does not cause an automatic carriage return. The
following examples demonstrate how PRINT and PRINTl
operate when used in a procedure:

P R I N T [H E L L O l

P R I N T [P A U L]

When the procedure executes these lines , the screen
shows:

H E L L O

P A U L

However , when you u s e the fo l lowing l i n e s i n a
procedure:

P R I N T 1 [H E L L O l

P R I N T [P A U L]

The screen shows:

H E L L O P A U L

By Line and Column

The COLUMN primitive tells you the current column po­
sition of the cursor (from Ql to 31), and the LINE primitive
tells you the current line position (from Ql to 15) . You can

307

A LE QU I Z

Chapter 14

use the COLUMN and LINE primitives with the SETCUR­
SOR primitive to reposition the text screen's cursor after
a print. For instance, the following procedure displays a
line of asterisks diagonally down the text screen:

T D D I A G
S E T C U R S D R 0 0

R E P E A T 1 5 [

P R I N T 1 [* l

S E T C U R S D R L I N E + 1 C O L U M N + 1 l
E N D

The line and column position increases in increments of 1
each time an asterisk is displayed. Because you use the
PRINTl primitive, each print location is dependent on the
SETCURSOR primitive .

The following program creates a simple quiz, showing
how the screen might be formatted:

TO Q U I Z

C L E A R T E X T

G E T S E T

M A K E " B C H A R 3 2
S E T C U R S D R 0 8
P R I N T [A L I T T L E Q U I Z J
S E T C U R S D R 2 0
F O R " T 1 5 1 [

P R I N T 1 T H I N G < W O R D " Q : T >
: B

M A K E " A R Q
C H E C K
S E T C U R S O R L I N E + 1 0 l

E N D

T D C H E C K
I F : A = < T H I N G W O R D " A : T > [

M A K E " R E S P O N S E " R I G H T J
E L S E [M A K E " R E S P O N S E

" W R O N G J

Section 4
Turtle on the Text Screen

L

D A Y S IN A V E A R 3 6 5 R I GH T

D A Y S I ll A l l E E K 7 R I GH T

llE E K S I ll A Y E A R I N llROllG

Y E A R S I ll A D E C A D E 1 0 R I GHT

YE ARS I H A C E H O U R Y 1 00 R I GHT

?

308

Q 5

Section 4
Chapter 14Turtle on the Text Screen

E N D

T D G E T S E T
M A K E
M A K E
M A K E
M A K E

S E T C U R S D R L I N E - 1 2 5 P R I N T 1
: R E S P O N S E

M A K E [Y E A R S I N A C E N T U R Y ?]

Q 1 [D A Y S I N A Y E A R ? J
Q 2 [D A Y S I N A W E E K ? J
Q 3 [W E E K S I N A Y E A R ? l
Q 4 [Y E A R S I N A D E C A D E ? l

M A K E
M A K E
M A K E
M A K E
M A K E

E N D

A 1 [3 6 5]
A 2 [7 l
A 3 [5 2 l
A 4 [1 0 l
A 5 [1 0 0 l

309

Sum maryChapter 14

Chapter Summary

PRIMITIVE Abbrev. Purpose

OPENWRITE

CLOSE WRITE

WRITE

OPENREAD

CLOSEREAD

READ

FILEPOS

SETFILEPOS

READ BYTE

Opens a file for data
input.

Closes a file you opened
using OPENWRITE.

Transfers data to a
specified file .

Opens a file for reading
data.

Closes a file that you
opened using
OPENREAD.

Accesses data in a
specified file .

Provides the current
position of the file
pointer.

Sets the file pointer to a
specified position.

Reads 1 byte of file data
at a file's current
position. The file
position pointer
automatically increases.

310

Summary Chapter 14

PRIMITIVE Abbrev. Purpose

WRITE BYTE Writes 1 byte of file data
to the current file
position. The file's
position pointer
automatically increases.

SHELL Lets you to access OS-9
commands from within
D .L . LOGO.

PRINT Displays specified
characters on the text
screen and ends with an
automatic carriage
return.

PRINTl Displays specified
characters on the text
screen, but does not
cause a carriage return.

COLUMN Returns the current
column position of the
text screen cursor.

Returns the current text
line position.

LINE

Establishes the cursor at
specified line and
column position.

SETCURSOR

Turtle Facts

• D.L . LOGO has sophisticated file and data manage­
ment capabilities .

• Direct access files are possible with D.L. LOGO.

311

Chapter 14 	 Summary

• 	 Always use CLOSEWRITE or CLOSEREAD to close
files when you finish writing or reading them.

• 	 You can move D .L . LOGO's file position pointer at
will.

• 	 Data is stored as ASCII code .

• 	 LOGO lets you access all OS-9 commands without
leaving the LOGO program.

• 	 You can exit from and return to LOGO without losing
data.

• 	 Screen format commands can also format printer
output.

Suggested Project

Use the information and sample procedures in this chap­
ter to write a useful file management program. The fol­
lowing sample program is written as a general purpose
filing program with features to create files, add to exist­
ing files, and delete files . FILEPOS and SETFILEPOS are
used to set a file pointer index that lets you directly ac­
cess any file . These primitives also let you create records
of any length, and with any number of fields. You could
improve this program by using the index for file sorting
or inserting routines .

DA T A P R O
D A T A F I L l lШG S Y S T Cll

H E H U

A . 	 A l) D R E COR D S
E . E XA.11 1 11£ R E C O R D S
D . D E L E T E R E C O R D
O . QU I T S E S S I Oll

E t! T E R CHO I C E. . . •

312

- - - - - - - - - - - - -

; - - - - - - - - - - - - - - - - - - -

Summary Chapter 14

H Y F J L E D O E S N ' T E X I S T
CRE A T E I T < Y / II> ? . . · I

; D A T A F I L I N G S Y S T E M
; - - - - - -

T O D A T A

W H I L E " T R U E [C L E A R T E X T
c 0 1 2
P R I N T E D A T A P R O J
c 1 6
P R I N T [D A T A F I L I N G S Y S T E M J
C 4 1 2 P R I N T [m e n u J
c 6 6
P R I N T [A . A D D R E C O R D S J
c 7 6
P R I N T [E . E X A M I N E R E C O R D S J
c 8 6
P R I N T [D . D E L E T E R E C O R D J
c 9 6
P R I N T [Q . Q U I T S E S S I O N]
c 1 1 5
P R I N T 1 [E N T E R C H O I C E . . . J
M A K E " C H O I C E R C P I C K J

E N D

T D P I C K
S E L E C T

: C H O I C E = " A [A D D J
: C H O I C E = " E [E X A M J
: C H O I C E = " D [D E L E T E J
: C H O I C E = " Q [Q U I T J
" T R U E [P U T [C H O I C E I N V A L I D J J J

E N D

T D A D D
C L E A R T E X T
c 0 0
P R I N T [* * * * * A D D R E C O R D S * * *

* * J
I F G E T F I L E [J N P U T J E L S E
[C L E A R T E X T
c 5 5

313

Summary Chapter 14

E N D

T D

P R I N T : F I L E [D O E S N ' T E X I S T J

c 6 5

P R I N T 1 [C R E A T E I T \ C Y / N \) ? . . . J
I F < F I R S T F I R S T R Q) = " Y

[C R E A T E I N P U T J J

I N P U T
O P E N R E A D : F I L E X
M A K E " I N D E X S E R E A D : F I L E X
C L O S E R E A D : F I L E X
D P E N W R I T E : F I L E
D D 	 [C L E A R T E X T

c 1 5
P R I N T C A D D I N G R E C O R D N O . J

C O U N T : I N D E X + 1
c 2 5
P R I N T [" E N D " = Q U I T J
M A K E " R E C O R D [J
M A K E " N O 0
D D 	 [M A K E " N O : N D + 1

P R I N T
P R I N T 1 " F I E L D : N O [: \
M A K E " R E C O R D L P U T R Q

: R E C D R D J
W H I L E < L A S T : R E C O R D) < > C E N D J

M A K E " I N D E X L P U T F I L E P D S : F I L E
: I N D E X

W R I T E : F I L E B U T L A S T : R E C O R D
C L E A R T E X T
c 0 5
P R I N T 1 [A N O T H E R R E C O R D \ C Y /

N \ l ? . . . J J
W H I L E < F I R S T F I R S T R Q) = " Y

C L O S E W R I T E : F I L E

E R A S E F I L E : F I L E X

D P E N W R I T E : F I L E X

W R I T E . : F I L E X : I N D E X
C L D S E W R I T E : F I L E X

A D D i tlG R E C O R D 11 0 . l

" E tl D " = QU I T

F I EL D I : C H R Y S L E R

F I ELD2 : B L U E

F I EL D 3 : 1 98 5

F I E L D < : EtiDI

E N D

314

IH:tt.!OlrD 110-.

O: • Q U t T•

Summary Chapter 14

I

CHRYSL E R
BLUE
1 985

use ARROIФ KEYS F O R U P A tl n DOlltlS • S E L E C T R E C O R D ,

T O C R E A T E

D P E N W R I T E : F I L E X
W R I T E : F I L E X [J
C L O S E W R I T E : F I L E X
O P E N W R I T E : F I L E
C L D S E W R I T E : F I L E

E N D

T D E X A M
C L E A R T E X T
c 0 0
P R I N T [* * * * E X A M I N E R E C O R D S * *

* *]
I F N O T G E T F I L E

[P U T [F I L E N O T F D U N D J
S T O P J

O P E N R E A D : F I L E X
M A K E " I N D E X R E A D : F I L E X
C L D S E R E A D : F I L E X
O P E N R E A D : F I L E
M A K E " R
D D [

I F : R < 1 [M A K E " R 1 J
I F : R > C C O U N T : I N D E X > [M A K E " R

C O U N T : I N D E X J
S E T F I L E P D S : F I L E I T E M : R

: I N D E X
M A K E " R E C O R D R E A D : F I L E
D I S P L A Y
c 1 4 0
P R I N T [U S E A R R O W K E Y S F D R U P

A N D D O W N J
P R I N T 1 [S \ = S E L E C T R E C O R D ,

Q \ = Q U I T J
D D [M A K E " C H O I C E R C J
W H I L E N O T M E M B E R ? : C H O I C E L I S T

C H A R 1 2 C H A R 1 0 " S " Q
S E L E C T [

: C H D I C E = C H A R 1 2 [M A K E " R
: R - 1 J

315

Summary Chapter 14

t 1- :t t: DE L E T E R E C u R D t. :t- t t: C H D I C E = C H A R 1 0 C M A K E " R
: R + 1 l

HAHE or r [L E • • . H v r I L E
RECORD 110. T O D E L E T E ? . . . 3,1: C H O I C E = " S [S E L C T l l

W H I L E : C H O I C E < > " Q
E N D

T O S E L C T
c 1 4 0
p 6 3
P R I N T [- S E L E C T R E C D R D - l
P R I N T 1 [R E C O R D N U M B E R \ : \
M A K E " R F I R S T R Q

E N D

T O D I S P L A Y
C L E A R T E X T
P R I N T [r e c o r d n o .] : R
c 3 0
F D R " X 1 C O U N T : R E C O R D 1 [

P R I N T I T E M : X : R E C D R D l

E N D

T O D E L E T E
C L E A R T E X T
P R I N T [\ * * * * D E L E T E R E C O R D \ * *

* * l

I F N O T G E T F I L E

C P U T C F I L E N O T F D U N D J

S T O P l

D P E N R E A D : F I L E X
M A K E " I N D E X R E A D : F I L E X
C L O S E R E A D : F I L E X
P R I N T 1 [R E C O R D N O . T O D E L E T E ? . . . l

M A K E " D F I R S T R Q

M A K E " E N D C O U N T : I N D E X
S E L E C T [

: D = 1 [M A K E " I N D E X E U T F I R S T

: I N D E X J

: D = : E N D [M A K E " I N D E X E U T L A S T

: I N D E X l

316

Summary Chapter 14

A L L O F : D > 1 : D < : E N D
[M A K E " I N D E X S E P I E C E 1 : D -

1 : I N D E X P I E C E : D + 1 : E N D
: I N D E X J J

E R A S E F I L E : F I L E X
O P E N W R I T E : F I L E X
W R I T E : F I L E X : I N D E X
M A K E " N C O U N T : I N D E X
c 1 1 0
P U T S E : F I L E " N O W " H A S : N " R E C O R D S

E N D

T D Q U I T
C L E A R T E X T
c 8 5
P R I N T [s e s s i o n e n d e d b y u s e r]
T D P L E V E L

E N D

T D G E T F I L E
c 3 5
P R I N T 1 [N A M E O F F I L E . . . l
M A K E " F I L E F I R S T R Q
M A K E " F I L E X W O R D : F I L E " X
O U T P U T M E M B E R ? : F I L E C A T A L O G

E N D

T D P U T : M E S
c 1 4 0
p 6 3
P R I N T : M E S
P R I N T 1 [\ (P R E S S A N Y K E Y T D

C O N T I N U E . . . \ > l
M A K E " S L U F F R C
c 1 4 0
p 6 3

E N D

317

318

Chapter 14 Summary

T O p : N
M A K E I I L L I N E
M A K E I I c C O L U M N
P R I N T 1 P I E C E 1 : N I I \ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \

c : L : C
E N D

319

15

EDITI NG:
TH E FU LL STORY

Adva nced Ed it ing Techniques

Section 1 	 Editing Features: some of D . L . LOGO's advanced editing fea­
tures and how to use them .

Section 2 	 The Search: searching for and replacing text.

Section 3 	 Edit Commands Reference: a summary of all editing com­
mands and key functions .

Section 1
Chapter 15 Editing Features

Section 1
Edit ing Features
In Chapter 3 you learned D .L . LOGO's basic editing
functions. Many other features make program writing
and editing much easier and quicker . Some of these fea­
tures include the ability to:

• 	 page forward or backward through text

• 	 move the cursor forward and backward one word
at a time

• 	 move the cursor to the beginning or end of a line
or of the entire workspace text

• 	 delete specified numbers of words or characters

• 	 delete to a specified character

• 	 delete blocks of text

• 	 change a character, word, or line

• 	 move and duplicate blocks of text

• 	 repeat edit commands

• 	 unedit changed text

• 	 search text for a specified word, value, or
character

• 	 search and change one or all occurrences of a
specified word, value, or character

It is worth your time to learn about these commands and,
as you write programs and procedure, to refer to this
chapter often . This section describes many advanced
editing commands available. A chart at the end of the
chapter provides a quick reference to al l the editing
commands.

320

[) . [)

[SH IFT)

[SH IFT)

[SH IFT)

[SH IFT)

Section 1
Editing Features Chapter 1 5

Inserting in Text

From the edit mode, you can enter the insert mode in
several ways. Pressing OJ begins an insert at the cursor
position. You continue in the insert mode until you press
BREAK Pressing SH IFT OJ positions the cursor for insert

at the beginning of the l ine in which the cursor is
located.

Pressing CE] begins an insert immediately following the
cursor position. CE] begins an insert at the end of
the line in which the cursor is located .

To begin an insert immediately after the the line in which
the cursor is located, press []]. To begin an insert imme­

the line in which the cursor is located,diately before
press []].

Deleting Text

The delete commands lets you remove characters, words,
lines, or blocks of text from your workspace. To delete a
character, position the cursor over that character and
press [I). You can continue pressing [I) to delete as
many characters as you wish. Typing n[I] deletes the
next n characters (n is the number of characters you wish
to delete) . To delete the character to the left of the cursor,
press [I).

Pressing []] 00 deletes characters from the cursor to the
end of the word on which it is located. Typing n[]] �
deletes n words (n is the number of words you wish to
delete) .

To delete a line of text, press []] twice. To delete a speci­
fied number of lines, type n[]] []] (n is the number of
lines you wish to delete) . Pressing []] from any
position in a line deletes all the line located to the right
of the cursor.

321

I I

I I

[I .

[I

I I

Section 1
Chapter 1 5 Editing Features

Type (ID [}J c to delete all characters up to the character
c, where c is any keyboard character. To delete a marked
block of text, see the "Handling Blocks of Text" in this
section .

Changing Text

Several change commands let you replace a specified
amount of text with any amount of new text. When us­
ing these commands, press BREAK to end the change
procedure.

To replace 1 character with another, position the cursor
over the character to be changed and press (]]. Then
type the replacement character. You can replace more
than 1 character by typing SH IFT (]] together. Then type
the replacement characters. To end the replace session,
press BREAK

Do not use the replace function to replace a block of text
with a greater amount of text. If you continue replacing
characters beyond the original line, the cursor moves to
the next line and continues replacing characters . If you
continue replacements beyond the end of a procedure.
D. L. LOGO continues the replace into the next proce­
dure, if any exists. Press to exit the replace mode. BREAK

Press [IJ 00 to change the word on which the cursor is
located. Typing n[IJ 00 changes n words (n is the num­
ber of words to change) .

To change an entire line, press [IJ []]. To change several
lines, type n[IJ [IJ, (n is the number of lines to change) .
Pressing SH IFT [IJ at any position in a line lets you
change the remainder of that line.

You can also change characters up to a specified charac­
ter. To do this, type [IJ [}Jc (c is the character on which
the change ends) . To change blocks of text, see the block
commands later in this section.

322

I I

I I .

323

Section 1
Chapter 1 5 Editing Features

A Powerful Ya nk

Yank is a n editing feature that can save you a lot o f time .
This function lets you move copies of words or lines to a
new position in your procedure or even to another proce­
dure in the workspace.

To demonstrate the Yank function, type or load the SPIN
procedure used in Chapter 3 :

T O S P I N
S E T S P L I T

E N D

P U F D 2 0 P D
R E P E A T 3 6 [R E C J

Now position the cursor at the beginning of Line 3 :

P U F D 2 0 P D

and type:

[]] 8 S E T P C 3 ENTER
8 R E P E A T 4 [

Pressing []] opens a space to let you insert the 2 new
lines. To exit the insert mode, press BREAK

Move the cursor to the last line of the procedure and po­
sition it over the E in End. Type:

Now move the cursor to the beginning of Line 4:

E T P C 3

and press [TI [fil.

I SH IFT)
I BREAK) .

Chapter 15

There i s n o change to the screen a t this time. Move the
cursor to the blank line you created and type:

The word SETPC appears at the cursor position. Use

and 8 to move the cursor 1 space past the end of

the line and type I PC - 1] The line should look

like this:

S E T P C P C - 1 J

The completed procedure should be the same as the ex­
ample below:

T O S P I N
S E T S P L I T
P U F D 2 0 P D
S E T P C 3
R E P E A T 4 [
R E P E A T 3 6 [R E C J
S E T P C P C - 1]

E N D

To see the results of your changes, use the REC proce­
dure (as demonstrated in Chapter 3) in conjunction with
the SPIN procedure.

The Big Move

As well as letting you move, insert, and delete words and
lines, D .L . LOGO lets you manipulate blocks of program
or procedure text.

First mark the block with the MB, ME, and MM combi­
nation of keys. MB marks the beginning of a block. ME
marks the end of a block. MM moves the marked block.
Try the procedure by moving the cursor to Line 2 in the
SPIN procedure:

Section 1
Editing Features

324

I I

Section 1

Editing Features Chapter 15

TD S P I N
S E T S P L I T

U F D 2 0 P D

Press 00 [I].

Move the cursor to the e nd of L ine 5 of the same
procedure:

T D S P I N
S E T S P L I T
P U F D 2 0 P D
S E T P C 3
R E P E A T 4 [
R E P E A T 3 6 [R E C J

Press 00 ITJ.

Now type SH IFT G to move the cursor to the end of the
program, then type:

The marked text is moved to the new location on the
screen, beginning at the cursor position . You can move or
duplicate blocks of procedures anywhere in the work
space . Experiment with these functions, you can use
them to extract particular routines from 1 procedure for
use in another or to break a large procedure into smaller,
easier-to-handle, procedures.

Because the block move was only for demonstration pur­
poses, type []] to undo the block move .

325

I I

I I

I I

Chapter 1 5

Section 2
The Search
D.L. LOGO's search and replace features aid you in
quickly finding a particular occurrence of a name, list or
character . You can replace any characters with other
characters .

To see how i t works, type some procedure that uses sev­
eral FD commands. Then, from any position in the work­
space, type:

I F D ENTER

The cursor jumps to the first occurrence of the primitive
FD. To find the next occurrence, press:

N

and the cursor jumps to the next FD occurrence . You can
use [[] to repeat any search command.

Making the Change

Replace is accomplished in conjunction with the Search
function. To replace the first FD primitive with the BK
primitive, type:

I F D I BK ENTER

To cause a replacement of the next occurrence of FD,
press [[]. To replace all FD primitives with BK, type:

I F D I B K I G ENTER

When you type /G at the end of a search and replace
command, D.L . LOGO replaces all occurrences of the in­
dicated characters with the replacement text.

Section 2
The Search

. . . . About Special Editing
Features

Many special editing functions
do not save time or effort on
short procedures . Often these
features are not useful unless
you are writing larger and more
complex procedures and
programs.

326

I I

Section 2 Chapter 15
The Search

. . . . About Changes

When making global changes to
a large program or procedure,
make a note of any values you

plan to change or that might be
changed inadvertently . Global
changes often affect more than

you expect .

If your procedure contained occurrences of the number
40, you can replace them with the number 20 by typing:

I 4 0 I 2 0 I G ENTER

Only The Beginning

This section describes only some of D .L . LOGO's ad­
vanced editing features. The following chart describes all
editing operations.

327

I I

I I

I SHIFT) I)

I SH IFT) [SH IFT)

Chapter 15

Section 3
Ed it Commands Reference
Editor Cursor Control

Keys to press Result

Section 3
Edit Commands Reference

. . . . About Editing Files

Although this chapter deals
with editing LOGO procedures,
D .L . LOGO's comprehensive
editor can also be used to edit
data files . If you create a data
management program for
LOGO, make use of this facility
rather than writing an editing
procedure.

OJ or QJ

ITJ or IBJ

8 or ITJ

G or [[]

ITl

OJ

8 or

rn
G or(]]

SH IFT

SHIFT

SH IFT

moves the cursor down 1 line.

moves the cursor up 1 line.

moves the cursor right 1 character.

moves the cursor left 1 character.

moves the cursor back 1 page.

moves the cursor forward 1 page.

moves the cursor to the end of a
line.

moves the cursor to the beginning of
a line .

moves the cursor forward 1 word.

moves the cursor to the first
character after the next space.

moves the cursor to the beginning of
the previous word.

moves the cursor to the previous
word surrounded by spaces.

moves the cursor to the end of the
current or next word .

328

I))

I SH IFT I []

Section 3
Chapter 15Edit Commands Reference

. . . . About Surrounding
Spaces

Some of the editing features
described in this section act

only on words surrounded by
spaces . This distinction is

made because some of the words
you type in a procedure may
not have spaces around them,

such as:

PRINT"HELLO

In this case, functions that
search for a word surrounded by

spaces, will not find the word
HELLO.

Editor Cursor Control

Keys to press Result

moves the cursor to the end of the
current word or the next word
surrounded by spaces .

moves the cursor to the beginning of
the workspace.

moves the cursor to the end of the
workspace.

Insert Commands (insert commands are
terminated by BREAK

Keys to press Result

[] inserts at the cursor position .

inserts at the beginning of the
current line .

inserts after the current cursor
position.

inserts at the end of the current
line .

inserts after the current line.

inserts before the current line.

Delete Commands

Keys to press Result

deletes character under cursor.

n[[) deletes the next n characters.

329

I I

I SHIFT I []]

Section 3
Chapter 15 Edit Commands Reference

Delete Commands

Keys to press Result

[]] [fil
n[[J [fil

[]] SHIFT [fil

[]] []]
n[[J []]

[]] [I]x

deletes the character before the
cursor.

deletes the current word.

deletes the next n words.

deletes the next block of text
surrounded by spaces.

deletes the next block of text
containing n words surrounded by
spaces.

deletes the current line.

deletes the next n lines.

deletes the remainder of the current
line .

deletes to the first occurrence of
character x.

deletes a marked area (see Special
Commands for information on
marking areas of text) .

330

I I

I SH IFT I [[]

I J .

331

Section 3
Chapter 15Edit Commands Reference

[[] [fil

SH IFT

[[] [[]

Change Commands

Keys to press Result

replaces the character currently
under the cursor.

replaces characters until you press
BREAK

replaces the current word.

n [[) [fil replaces the next n words.

[[]
 [fil
 replaces the next word surrounded
by spaces .

replaces the next n words that are
surrounded by spaces.

changes the current line .

changes the next n lines.

changes the remainder of the
current line .

changes the following text to the
next occurrence of character x.

changes the marked area (see
Special Commands for information
on marked areas) .

n [[) [[]

[[] [I)x

I I

I I

CY] CY]

332

Keys to press Result

Section 3
Chapter 15 Edit Commands Reference

Result

yanks the current word .

yanks the next n words.

yanks the next word that is
surrounded by spaces.

Yank Commands

Keys to press

CY] [fil

n[YJ [fil

CY] SHIFT [fil

SH IFT

yanks n words surrounded by
spaces .

yanks the current line.

n[YJ CY] yanks the next n lines.

yanks the remainder of the line. CY]
CY] [I]x

Search and Replace

lxxxx

/xxxx!yyyy

lxxxx!yyyy W

yanks to the next occurrence of the
character x.

searches for the next occurrence of
characters xxxx.

searches for the next occurrence of
xxxx and replaces the characters
with yyyy.

replaces all occurrences of xxxx with
characters yyyy.

repeats last search/change .

00 I SH I FT 1 0

I 1 0

I I

I I

Section 3
Chapter 1 5Edit Commands Reference

Special Commands

Keys to press Result

00 ITJ

00 00

SHIFT

CTRL [I]

SHIFT QJ

ITl

undoes the last change.

repeats the last change.

marks the beginning of a block of
text.

marks the end of a block of text.

moves the marked block of text.

copies the marked block of text.

inserts a copy of the last deleted or
yanked block of text immediately
after the current cursor position.

inserts a copy of the last deleted or
yanked block of text immediately at
the current cursor position.

positions the cursor on the
parenthesis matching the current
parenthesis.

inverts character case .

joins 2 lines.

shows text buffer information.

333

APPEN DIX A

Glossary of Terms

access

append

argument

background color

backup

boot

bottom-end loop
control

To get to information stored in
your computer or other device .

To add a file from diskette to the
existing contents of D .L . LOGO's
workspace.

Data you supply with a primitive
to direct the opera ti o n of that
primitive.

The overall graphics screen color,
se t by the BACKGROUND
primitive.

A copy of a program, a file, or all
the information on a diskette .

To start a disk operating system.
You boot OS-9 before loading D. L .
LOGO.

The control of a loop process by a
command following the loop.

335

Appendix A

bug

byte

Central Processing
Unit

character

code

command

condition test

A program error that causes a
procedure to stop or act differ­
ently than the programmer
intends .

The basic unit of information for
a computer. For example, a byte
can contain the information to
produce a single character on a
video screen or a printer.

The circuits in a computer that
control the execution of
instructions.

A symbol that can be produced
on a video display screen or
printer.

Special characters to which D. L.
LOGO can respond. For instance,
you must convert musical scores
into code for D . L . LOGO .
D . L . LOGO then converts the
code into musical tones.

A sequence of characters (primi­
tives and arguments) that tells
LOGO to take a particular action.
A command can be typed at the
keyboard or can be part of a
procedure.

A programming process that de­
termines whether a condition is
true or false. The result of the
test determines the next program
operation.

Glossary of Terms

336

Glossary of Terms

CPU

current command

current directory

cursor

data

debug

default

direct access

directory

Appendix A

The common abbreviat ion for
Central Processing Unit.

The command presently being
executed.

The diskette area where you are
currently operating . SAV E or
LOAD primitives automatically
select this area unless you specify
a different directory.

A character that indicates the
place that the next typed charac­
ter will appear. In the immediate
mode, the cursor is a blue rectan­
gle . In the graphics text mode,
the cursor is a single underline
character .

Items of information (programs,
procedures, or text) that a com­
puter can generate or process .

To find and eliminate program
errors .

A command or operation value
that is automatically established
by a program but can be
changed.

The ability to read from, or write
to, an element in a file without
reading any preceding elements .

A portion of a diskette set aside
for the storage of files. Each di­
rectory has a name that you use
to access the directory.

337

Appendix A

disk drive

diskette

display

dots

edit

editor

element

erase

error code

error message

The mechanical and electronic as­
sembly that handles the storage
and retrieval of information to
and from a diskette .

The flexible platter, made of a
plastic-like material, on which
your computer magnetically stores
data.

The video screen (TV or monitor) .

The colon symbol (:) preceding a
variable name.

The process of modifying text .
You edit when you add, change,
or delete portions of a procedure.

A program that lets you use spe­
cific commands to modify text.

A unit within a LOGO word, list,
or sentence.

To delete a block of text, a proce­
dure, or a program from D . L .
LOGO' s workspace or a file from
a diskette.

The numeric value given a partic­
ular D. L. LOGO error and error
message.

Text that appears on the screen
and indicates that something is
wrong with the operation of a
procedure, your computer, or a
peripheral .

Glossary of Terms

338

Glossary of Terms

exit

file pointer

file

filename

foreground color

format

global

graphics mode

graphics

Appendix A

To leave a procedure or program.
You can exit to a higher or lower
program, or to the immediate
mode from a procedure or
program.

An index that contains the posi­
tions of data within a file .

A block of information your com­
puter uses for a particular func­
tion . A fi le can conta in a n
operating system (such a s OS-9),
a language (such as D .L . LOGO),
or text.

A name that identifies a block of
data saved to a diskette as a file .

The color used by D . L. LOGO to
create graphics.

To organize a diskette into tracks
and sectors for the s torage of
file s . Also, the visual arrange­
ment of a procedure in the work­
space or of text on the screen.

An all-inclusive operation . For in­
stance, a global search examines all
text in the workspace .

The portion of D .L . LOGO that
displays the results of graphics
commands.

Lines, dots, and shapes produced
on the screen by D .L . LOGO's
primitives .

339

Appendix A

hard copy

home

immediate mode

input

interface

keyboard buffer

language

layout

link

A printer copy of computer data
(text or graphics).

The exact center of the graphics
screen.

An operation in D. L. LOGO that
lets you type commands or arith­
metic functions for immediate
execution.

The flow of data from a device
(such as a disk drive or printer) to
your computer.

1- or 2-way communication be­
tween 2 devices, such as a com­
puter and a disk drive.

A port ion of your computer 's
memory where the values of the
keys you press are stored. These
values are used to produce char­
acters on the screen, or control
D .L . LOGO functions, or both.

A set of instructions (commands)
that your computer interprets to
perform tasks . BASIC and D . L .
LOGO are 2 languages you can
use to control your computer.

The organization of a display
scre e n . The arrangement of
graphics, text, or both.

To cause the execution of a proce­
dure from another procedure .

Glossary of Terms

340

Glossary of Terms

list

load

loop

member

memory

menu

mixed number

mode

nest

operating system

output

Appendix A

A type of variable that consists of
1 or more words, 1 or more lists,
or of a combination of words and
lists.

To transfer a file from diskette
into your computer's workspace.

One or more procedure s ta te­
ments that are succes sively
repeated.

A unit within a LOGO word, list,
or sentence.

The portion of your computer sys­
tem that stores data or values .

A screen display that gives you a
list of options .

A numeric value with a decimal
fractional part.

A part icular funct ion of D . L .
LOGO.

To place 1 or more loops (repeti­
tive processes) within a nother
loop or loops.

A set of associated programs that
d irects your computer ' s
operation .

The flow of data from your com­
puter to another device, such as a
disk drive or a printer.

341

Appendix A Glossary of Terms

parameter

pen color

precision

primitive

procedure list

procedure name

program

prompt

recursion

remote control

replace

Data tha t you supply with a
primitive to direct the operation
of that primitive.

The color currently used to create
graphics.

The accuracy of a calculation . Pre­
cision is defined by the maximum
number of digits calculated after
a decimal point.

A built-in command that causes
LOGO to perform a particular
action.

An action or actions (enclosed in
square brackets) that LOGO exe­
cutes when a defined condition is
met.

The label you give a procedure
when it is created.

A set of instructions that tells a
computer how to perform a task.

A screen display that requires
some action, such as pressing a
key.

A function that causes a proce­
dure to repeat its execution .

To control a device with your
computer.

To replace specified text with
other text using D. L. LOGO' s
editor.

342

Glossary of Terms Appendix A

restore

reverse characters

ROM

save

screen boundary

screen dump

screen page

search

sector

sentence

(1) The process of returning a file
from diskette to D . L . L O G O ' s
workspace. (2) The process o f re­
versing an editing command .

Lowercase characters (displayed
as green characters surrounded
by a black background) .

The common abbreviat ion for
Read Only Memory . Integrated
circuit chips containing data that
your computer can read, but can­
not change.

To transfer data from your com­
puter to diskette .

The visible limits of your TV or
monitor screen.

A program that uses a printer to
reproduce graphic images on
paper.

Text that fills the display screen
from top to bottom (16 lines) .

To look through D . L . LOGO's
works pace fo r occurrences of
specified text using D .L . LOGO's
editor.

One of several units of storage
within a diskette track.

A LOGO list with the first level
of brackets removed.

343

Appendix A Glossary of Term s

SHELL The OS-9 program that reads and
interprets commands.

single command An operation in D.L . LOGO that
mode lets you type commands or arith­

metic functions for immediate ex­
ecut io n . Also referred to as
immediate mode.

split value The number of lines set at the
bottom of the graphics screen for
text displays.

step One unit of movement on the
graphic screen.

string A series of characters .

syntax The form of a command, includ­
ing the order of the arguments
and the way the command must
be stated.

toggle To switch between 2 conditions,
such as on and off.

top-end loop control The control of a loop process by a
command statement preceding
the loop.

track A physical unit of storage on a
diskette.

turtle The graphics character that moves
around the screen. The turtle can
be hidden (invisible) or shown (visi­
ble), and can create graphics as it
moves (in a pendown state) or
move without creating graphics
(in a penup state) .

344

Glossary of Terms Appendix A

variable

voice

word

workspace

wraparound

A port ion of your computer ' s
memory that you es tabl ish to
store data. The contents of a vari­
able can be changed.

Any of the melodic parts of a mu­
sic composition.

A type of variable that consists of
1 or more characters .

An area in your computer's mem­
ory that D .L . LOGO uses to store
procedures and programs.

The action D . L . L O G O take s
when the l ine you are typing
reaches the edge of the screen,
the text automatically continues
one line down, at the left of the
screen.

345

I) .

I) .

I ENTER) .

APPEN DIX B

Sample D.L. LOGO Prog rams

The programs in this appendix provide additional exam­
ples of D.L . LOGO at work. Some are useful in maintain­
ing a D . L . LOGO l ibrary, s ome have education or
business appl icat ions, and s ome are only for your
enjoyment.

To add any of these programs to your LOGO library, en­
ter the edit mode and type the listing as shown. When
finished, enter the immediate mode and save the pro­
gram by typing SAVE "programname ENTER The word
program name is used to represent the actual name of the
program you are saving. For instance, after typing the

ENTER
following CAT program, save it by typing SAVE "CAT

When any of these programs are in the D .L . LOGO
workspace, (typed or loaded from diskette), execute them
by typing programname Again, programname rep­
resents the actual name of the program you wish to
execute.

Information on how to type programs, enter and exit the
edit and immediate modes, and save and load programs
is contained in the first 4 chapters of this manual.

347

I I

348

Appendix B Sample D . L . LOGO Program s

CAT
A Disk Catalog Program

T D C A T
I I I I I I I I I I I I I I I I I IM A K E " B L A N K L I S T

I I

M A K E " C T 0

M A K E " C X 0

C L E A R T E X T

M A K E " T I T L E S E [\ \ \ \ \ \ \

C A T A L O G O F F I L E S J C H A R 1 3 [

0]

P R I N T : T I T L E

S E T C U R S D R 3 0

P R I N T 1 [\ O U T P U T T D P R I N T E R ? Y /

N • • • l

M A K E " P R I N T R C

S E T C U R S O R L I N E + 1 0

P R I N T 1 [\ D R I V E N U M B E R ? . . . l

M A K E " D R I V E R C

. . . . About CAT

The CAT program provides an
easy-to read listing of diskette
directories . When you start the
program, the prompt, OUTPUT
TO PRINTER? YIN . . . ,
appears. Press Y if you wish a
hardcopy (a paper copy from
your printer) or N if you wish
the diskette contents displayed
only to the screen .

The prompt, DRIVE
NUMBER? . . . , then appears.
Put the diskette you wish to
examine in one of your disk
drives and press the number of
that drive. For example, if your
diskette is in 01 (Drive 1) ,
press [[). CAT reads al l the
files from the current directory
and displays them in 3 columns
on the screen . If you have
selected printer output, the files
are also listed in 3 columns on
your printer. When the screen
is full, the display stops and
waits for you to press a key.
Press SPACEBAR to continue
the listing . Use the CHO
command before using CAT to
examine other directories .

or r I LES
I I I I I I I I I I I I I I I I I I 1 I I I 'iTiTiJiTiTifiTi\

f ll lJ l iJ

• . . .

THREE

Sample D . L . LOGO Programs Appendix B

C A T A L u G

T H R E E 2
T H R E E S
T H R E E S
! H R ((l 0
T H RE E 1 3
r D U R I
f O U R S
r 1 YE2
f l Y E S

: H V E ll S
S. C V E H S

P R E S S

HIO l I
T H R E E 3
T H R E E 6
T H R E E
T H R E E 1 1
T H R E (1 4
r O U R 2
r o u R 6f I Y E '3
S E V E U 2

S E Y E 11 6

S E V C U 9

K ['(.

l
T H R E E 4
T HR E E ?
T H R E E 9
T H R E E 1 2
T H R E E 1 5
r o u R 1
F I Y E I
f' I Y E 4
'3 E Y E tl 4

S E Y E ll 7
'S C '/ Ell I •;

I F : P R I N T = " Y [C O P Y O N J E L S E [

C O P Y O F F J

M A K E " C C A T A L O G W O R D " \ / D : D R I V E

M A K E " E N D C O U N T : C

C L E A R T E X T

P R I N T 1 : T I T L E

P R I N T

D D [N E X T J

W H I L E : C T < : E N D

C D P Y D F F

P R I N T

P R I N T 1 [P R E S S A K E Y . . . J

M A K E " N U M R C

C A T

E N D

T D N E X T

M A K E " C T : C T + 1

M A K E " C X : C X + 1

S E L E C T [

: C X < 3

M A K E " L E N G T H 1 2 - C D U N T

I T E M : C T : C

P R I N T 1 I T E M : C T : C

P R I N T 1 P I E C E : L E N G T H : B L A N K J

: C X = 3 [

P R I N T 1 I T E M : C T : C

M A K E " C X 0 P R I N T J J

I F L I N E = 1 4 [

C O P Y O F F

S E T C U R S D R 1 5 5

349

P U R G C U A U D C R 2 . . . V / U , • • Y
P U R G C 11 A t1 D C R 3 . . . Y / U . . .

Appendix B Sample D. L . LOGO Program s

P R I N T 1 [P R E S S A K E Y . . . l

M A K E " N U L R C

C L E A R T E X T

P R I N T 1 : T I T L E

P R I N T l

I F : P R I N T = " Y [C O P Y O N J

E N D

PURGE
To Delete F i les

T O P U R G E

C L E A R T E X T

M A K E " P U R G E L I S T [J

S E T C U R S O R 0 5

P R I N T [F I L E P U R G E U T I L I T Y]

" x P R I N T

. . . . About the Purge
Program

This program reads all the
filenames from the current
directory, displays each
filename, and asks you if you
wish to delete it . To cause a file
to be deleted, press [IJ at the
prompt. If you do not wish a
file to be deleted, press ill].
After you answer Y or N for
each file, PURGE displays the
names of the files it erases .

PURGC P U R G E . . . Y /H • • • II

PURGE SU I RL . . . Y /II . • • 11

PURGE L O G OUR I T E . . . Y / 11 • • . Y

PURGE P A T H S • . • Y , H • • , y

PURGE R E Y E R • . • Y / H , , . Y

PURGE HO I SE S . . , V , H . . . H

PURGE R O O T . . , Y / ll . , , Y

P U R G E

P U R G C

PUR GC

D A T A . . . Y / H , , . H

M A H D £ R t . , . Y / H . . . H
llAH D E R . • . v u . . .x x x x x x x x x x x 11

S E T C U R S O R 3 0

M A K E " F I L E S C A T A L O G

M A K E " E N D C O U N T : F I L E S

F O R " I 1 : E N D 1

P R I N T 1 [P U R G E \ l I T E M : I

: F I L E S [. . . Y \ / N . . . l

M A K E " C H E C K R C

I F : C H E C K = " Y [M A K E " P U R G E L I S T

C L P U T I T E M : I : F I L E S

: P U R G E L I S T > l

P R I N T J

M A K E " E N D C O U N T : P U R G E L I S T

350

351

Sample D . L . LOGO Programs Appendix B

F O R " ! 1 : E N D 1 [

P R I N T [E R A S I N G] I T E M : I

: P U R G E L I S T

E R A S E F I L E I T E M : I : P U R G E L I S T J

E N D

GRAPHICS

T D S W I R L

F U L L S C R E E N

C S H T P E N U P

R E P E A T 3 6 [R T 1 0

R E P E A T 7 2 [F D 4 R T 5 D D T X C D R

Y C D R l l

S P L I T S C R E E N

E N D

LOGO LETTERS

T D L O G O W R I T E

C S H T

S E T X Y X C O R - 6 5 Y C O R - 1 0

L

S E T X X C O R + 4 5

0

S E T X Y X C O R + 1 9 Y C O R + S

S E T H 0

G

S E T X Y X C O R + 1 1 Y C O R - 1 1

0

E N D

3 1

4 5

Appendix B Sample D. L . LOGO Programs

TO L

S E R I F

F D 2 5

S E R I F

R T 9 0 F D 1 0 R T 9 0

S E R I F

F D 2 0 L T 9 0 F D 1 5

S E R I F

R T 9 0 F D 7 R T 9 0 F D 2 7

E N D

T O 0

R E P E A T 9 1 [F D 1 R T 3 . 9 5 6]

P U

R T 9 0 F D 9 L T 9 0

P D

R E P E A T 3 6 [F D 1 R T 1 0 l

E N D

T O G

R E P E A T [F D 1 R T 3 . 9 5 6]

P U

R E P E A T 1 5 [F D 1 R T 3 . 9 5 6]

P D

R E P E A T [F D 1 R T 3 . 9 5 6]

P U

R E P E A T 4 5 [F D R T 3 . 9 5 6]

P D

R T 9 0 F D 1 5

L T 9 0 F D 3 L T 9 0 F D 4

352

Sample D . L . LOGO Programs Appendix B

R T 9 0 F D 3 R T 9 0 F D 3

R E P E A T 1 0 [F D 1 R T 1 2 J

R E P E A T 1 5 [F D 1 R T 7 J

L T 1 3 0 F D 8

E N D

T D S E R I F

L T 9 0 F D 2 R T 9 0 F D 2 R T 9 0 F D 2 L T

9 0

E N D

TWISTING TRIANGLE

T D P A T H S

F U L L S C R E E N

C S M A K E " X 0

R E P E A T 5 3 [S E T P C 1

R E P E A T 3 [F D : x R T 1 2 1

I F P C < 3 [S E T P C P C + 1 J
I I xM A K E : X + 3 J J

S P L I T S C R E E N

E N D

353

RDS

Appendix B Sample D. L . LOGO Programs

REVERSE A WORD

T O R E V E R

C L E A R T E X T

S E T C U R S O R 3 8

P R I N T [r e v e r s e a w o r d]

P R I N T " X X X X X X X X X X X X X X X X X

x x x x x x x x x x x x x x x

S E T C U R S O R 5 2

P R I N T [T H I S P R O G R A M R E V E R S E S W O R D S J

P R I N T " X X X X X X X X X X X X X X X X X

x x x x x x x x x x x x x x x

S E T C U R S O R 8 2

P R I N T 1 [T Y P E A W O R D . . . l

M A K E " W F I R S T R Q

M A K E " C C O U N T : W

F O R " X : C 1 - 1 [

P R I N T 1 < I T E M : X : W) J

P R I N T

P R I N T

P R I N T 1 [p r e s s a k e y . . .]

M A K E " N U L L R C

R E V E R

E N D

T Y P E A llORD • • • T E ll E P H O H E
EHOHP E L E T

liJ 1111 · . .

354

Sample D . L . LOGO Programs Appendix B

NOISES

T D

E N D

T O

E N D

T O

E N D

T O

F A L L

F O R " I 4 0 0 0 1 0 0 - 5 0

[S O U N D : I 4 0 l

S O U N D 4 0 0 1 0 0

F D R " ! 8 0 0 4 0 0 - 1 0 0 [S O U N D : I 1 0 l

S O U N D 2 0 0 2 0 0

M A K E " T 4 0 0

R E P E A T 1 0 [S O U N D : T 1

M A K E " T : T - 4 0 l

Z A P : L

F D R " I 1 0 0 0 6 0 0 0 1 0 0

[S O U N D : I : L l

F D R : I 5 0 0 0 1 0 0 0 - 1 0 0

[S O U N D : I : L I 1 0 l

B O M B E R

W H I L E " T R U E

[S O U N D 7 0 0 2 l

T H U M P

M A K E " T 2 0 0

R E P E A T 5 0 [

S O U N D : T 1 0 0

M A K E " T : T - . 1 l

E N D

355

I 1 .

- 3 5

Appendix B Sample D. L . LOGO Programs

ROOTS

TD R O O T : N : H I : L O

E N D

M A K E " T C : H I + : L 0) / 2

I F : T[D 3 > : N + . 0 1 [O U T P U T

: L D J

I F : T[D 3 < : N - . 0 1 [O U T P U T

: T J

O U T P U T : T

R O O T

R O O T

: N

: N

: T

: H I

WANDERING TURTLE

T O P A T H

c s F U L L S C R E E N

. . . . About Root

ROOT determines the cube root
of a number to an accuracy of
plus or minus (/) .(/Jl . You can set
a higher or lower accuracy by
using different values in place of
. (/)1 in lines 3 and 4 . A lower
value (for instance . (/)(/)1) gives
higher accuracy but takes longer
to calculate. A higher value (for
instance . 1) gives less accuracy,
but the calculation is quicker.
You can also change the
program to calculate other root
values by changing the 3 in
Lines 3 and 4 to the root you
wish to calculate.

S E T X Y 4 8

R E P E A T 4 [D O O D L E 1 4 0 L T 9 0 J

E N D

T O D O O D L E : N

I F : N < 4 [S T O P J

D O O D L E : N / 4

R T 9 0 F D 4

D O O D L E : N / 4

L T 9 0 F D 4

D O O D L E : N / 3

L T 9 0 F D 4

D O O D L E : N / 3

R T 9 0 F D 4

D O O D L E : N / 4

E N D

To use the program, type the

procedure name, the number for
which you wish to find the cube
root, a high guess, and a low
guess. The closer your high and
low guesses come to the actual
cube root, the faster the
calculation is performed . For
instance, to calculate the cube
root of 1(/)(/) you might determine
that 5'3 is 125 and 4'3 is 64.
The cubed root of l(f)(f) must be
between 4 and 5 . Thus, to
perform the calculation, type

ENTERROOT 5 4

356

i K U U T

? II
3

Sample D . L . LOGO Programs Appendix B

2 7 2 4 TRIANGULAR RING

T D T R I R I N G

S E T B G 1 2 S E T P C 1 C S

R E P E A T 7 2 [S E T P C P C + 1

R E P E A T 3 [F D 8 0 R T 1 2 0 S E T P C P C + 1 J

R T 5 S E T P C 0 J

E N D

OCTAGONS

TD O C T

C S H T

F U L L S C R E E N

S E T P C 1

S E T X Y - 1 4 9 9 0

R E P E A T 1 4 [R O W

S E T X Y - 1 4 6 Y C O R - 1 5

S E T P C P C + 1

I F P C = 0 [S E T P C 1 J J

E N D

T D R O W

R E P E A T 2 0 [S E T X X C O R + 1 3 D R A W J

E N D

T D D R A W

R E P E A T 6 [F D 1 5 R T 6 0]

E N D

357

Appendix B Sample D. L . LOGO Programs

RING OF FLOWERS

T O W R E A T H

c s

F U L L S C R E E N

S E T X Y - 6 0 5 5

R E P E A T 8 [R E P P U R T 2 4 9 F D 8 0 P D l

E N D

T O R E P

H T

S E T P C 1

R E P E A T 5 [P E T A L]

S E T P C 3

R E P E A T 1 1 [B K 4 R T 7 l

R E P E A T 3 [F D 4 L T 7 l

R T 1 0

L E A F L E A F

E N D

T D L E A F

R E P E A T 1 0 [F D 3 R T 4 l

R T 1 2 5

R E P E A T 1 0 [F D 3 R T 7 l

E N D

T O P E T A L

R T 8 4 F D 1 0

R E P E A T 1 0 [R T 2 0 F D 1 l

F D 1 0

E N D

358

Sample D . L . LOGO Programs Appendix B

SPIDER'S WEB

T D W E E

C S R E P E A T 1 0 0 C Z I G J

E N D

T D Z I G

R T 2 5 F D 2 5 0 R T 1 5 0 F D 2 5 0

E N D

COLORED RIBBONS

T D R I E E O N

C S M A K E " F 0

R E P E A T 3 C S E T P C 0

R E P E A T 3 [S E T P C P C + 1

H O M E

M A K E " F : F + 5 F D : F S P I R J J

E N D

T D S P I R

F U L L S C R E E N

M A K E " R 5

R E P E A T 4 0 0 [F D : R * . 0 7 R T 5

M A K E " R : R + . 4 8 J

E N D

359

Appendix B Sample D. L . LOGO Programs

SPIRAL

T D S P I R

C S S E T B G 1 2 C S

F U L L S C R E E N

M A K E " R 5

R E P E A T 1 0 0 0 [F D : R * . 0 7 R T 1 2 M A K E

" R : R + . 4 8 J

R E P E A T 1 0 [R E P E A T 1 6 E S E T B G B G + 1

W A I T 3 J

S E T B G 0 J

S E T B G 1 2

E N D

GRAPH

T D G R A P H

S E T C U R S D R 3 1

M A K E " V A L U E S [J

M A K E " C T 0

M A K E " F A C T O R

I N P U T

B A R

B O X

E N D

T D I N P U T

C L E A R T E X T

L A B E L " S T A R T

P R I N T 1 E N U M B E R O F E L E M E N T S . . . J

M A K E " E L E M F I R S T R Q

I F : E L E M > 1 7 [

. . . . About GRAPH

This program creates a bar
graph from the data you supply.
When you execute the program,
it prompts you for the number
of elements you wish to place in
the graph (the number of bars
that are produced) . Type any
number in the range of 1-17 .
You are asked for a title and
then asked for a value
(percentage) to assign each
element of the graph . After you
answer all the prompts, the
program draws the graph,
according to your specifications .
If any of the values you give the
elements are too large to fit the
screen, the graph is
automatically scaled down.

360

361

Sample D . L . LOGO Programs Appendix B

P R I N T E S D R R Y , T D D M A N Y

E L E M E N T S J

G O " S T A R T J

P R I N T 1 E T I T L E O F G R A P H . . . J

M A K E " T I T L E R Q

R E P E A T : E L E M E

M A K E " C T : C T + 1

P R I N T 1 E V A L U E O F E L E M E N T N O . J

: C T E . . . J

M A K E " V A L F I R S T R Q

I F : F A C T O R < I N T C : V A L / 6 0) E M A K E

" F A C T O R I N T : V A L / 6 0 J

M A K E " V A L U E S L P U T : V A L

: V A L U E S J

E N D

Appendix B Sample D. L . LOGO Programs

T D B A R

H T

c s

M A K E " C O L O R 0

S E T X Y - 1 1 0 - 7 0

M A K E " T E M P : V A L U E S

R E P E A T : E L E M [

M A K E " C O L O R : C O L O R + 1

I F : C O L O R > 3 [M A K E " C O L O R 1 J

S E T P C : C O L O R

M A K E " H E I G H T F I R S T : T E M P

R E P E A T 4 [F D : H E I G H T R T 9 0 F D 1 R T

9 0 F D : H E I G H T L T 9 0 F D 1 L T 9 0]

R T 9 0 F D 5 L T 9 0

M A K E " T E M P B U T F I R S T : T E M P J

E N D

T D B O X

F D 1 3 5 L T 9 0

F D < : E L E M * 5) + C : E L E M * 8) + 5

L T 9 0 F D 1 3 5 L T 9 0 F D 5

S E T X Y - 1 0 0 8 3

T U R T L E T E X T : T I T L E

E N D

362

Sample D . L . LOGO Programs Appendix B

. . . . About PIE

This program draws a pie graph
with as many elements as you

wish . It asks you how many
elements (percentages) you wish

to enter and the value of each
element . After you give the

required values, a pie chart is
drawn in alternating red,

white, and blue colors .

PIE

T D P I E

C L E A R T E X T

M A K E " I T E M (J

M A K E " C T 1

P R I N T 1 [N U M B E R O F E N T R I E S . . . l

M A K E " N U M B E R F I R S T R Q

I N P U T

D R A W

E N D

T D I N P U T

R E P E A T : N U M B E R [

P R I N T 1 [N O . . l : C T [\ P E R C E N T . . .]

M A K E " Q U A N T I T Y F I R S T R Q

M A K E " I T E M S E L P U T : Q U A N T I T Y

: I T E M

M A K E " C T : C T + 1 l

E N D

363

Appendix B Sample D. L . LOGO Program s

T D D R A W

F U L L S C R E E N

c s

S E T P C 1

R E P E A T : N U M B E R [

M A K E " A M O U N T F I R S T : I T E M

S E T P C P C + 1

R E P E A T : A M D U N T * 3 . 6 [F D 8 0 B K

8 0 R T 1 l

I F P C = 3 [S E T P C fil l

M A K E I I I T E M B U T F I R S T : I T E M l

E N D

BULL'S EYE

T D B U L L

c s

F U L L S C R E E N

R E P E A T 3 6 0 [S E T P C 4

R E P E A T 8 [F D 1 0 S E T P C P C - 1

I F P C < fil [S E T P C 3 l l

R E P E A T 8 [S E T P C P C + 1 P U B K 1 0 P D

I F P C < 3 [S E T P C fil l l

R T 1 l

E N D

364

Sample D . L . LOGO Programs Appendix B

. . . . About GUESS

GUESS is a version of a
popular memory game. The

program draws 1 2 boxes on the
screen and each has a randomly

selected name that matches 1
other box .

To view the name of a box you
type its number. Then, if you

can type the number of the
corresponding box, a match is
recorded . If you guess wrong,

the names of the 2 boxes are
erased. When all 6 matches are

successfully made, the game
ends, and your number of tries

are displayed .

DONUT

T D D O N U T

C S S E T P C 1

S E T X Y 3 0 - 6 0

R E P E A T 3 C R E P E A T 1 2 0 [

F D 7 0 R T 1 B K 7 0 . 5]

S E T P C p c + 1 l

E N D

A GUESS

TD G U E S S

S E T B G 1 4

C A T C H 6 C E R R l C A T C H 5 C E R R l C A T C H 2

[E R R l

H T S E T S P L I T 5 C L E A R T E X T

M A K E " G O T 0

M A K E " C H O I C E S [J

M A K E " T R Y S 0

C S G R I D S E T U P N U M B E R P I C K

E N D

365

'1
7
10

SELECT

GUT
2:

s (,

·

A

Appendix B Sample D. L . LOGO Programs

TD GR I D

S E T P C 1

S E T X Y - 1 0 5 - 3 0

R E P E A T 4 [R T 9 0 F D 2 1 0

L T 9 0 F D 2 0 L T 9 0

R E P E A T 3 [F D 7 0 R T 9 0 B K 2 0 F D

2 0 L T 9 0 J

R T 9 0 J

S E T P C 3

E N D

T D S E T U P

M A K E " P O S [[- 1 0 2 4 3 H - 3 2 4 2] [4 0 4 2 l

[- 1 0 2 2 2] [- 3 2 2 2] [4 0 2 2] [- 1 0 2 0 2]

[- 3 2 0 2] [4 0 0 2] [- 1 0 2 - 1 8] [- 3 2 - 1 8]

[4 0 - 1 8]]

M A K E " C H O I C E S S H U F F L E [$ 1 0 0 $ 1 0 0

C A R C A R B O A T B O A T $ 5 $ 5 P E N P E N

H O U S E H O U S E J

F D R " I 1 1 2 1 [M A K E I T E M : I

: C H O I C E S " B L A N K l

E N D

"

1

" TURTLE GUESS " "

YDU' UE 1
HOUSE

HOUSE
1 1 1 2!

tfU"BER TD ll l EN . , , _

366

Sample D . L . LOGO Programs Appendix B

T O N U M B E R

F D R " I 1 1 2 1 [M A K E " X F I R S T I T E M

: I : P O S

M A K E " Y L A S T I T E M : I : P O S

S E T X Y : X : Y

I F C T H I N G I T E M : I

: C H O I C E S > < > " G O T I T [T U R T L E T E X T

: I " \ \ \ J J

E N D

367

Appendix B Sample D. L . LOGO Programs

T D P I C K

M A K E " T R Y S : T R Y S + 1

C L E A R T E X T

C L E A R

G E T O N E

I F C T H I N G I T E M : N U M 1

: C H O I C E S > = " G O T I T [E R R J

C H E C K

T U R T L E T E X T : V I E W

M A K E " O N E : V I E W

C L E A R T E X T

G E T T W O

I F < T H I N G I T E M : N U M 2

: C H O I C E S > = " G O T I T [E R R J

C H E C K

T U R T L E T E X T : V I E W

M A K E " T W O : V I E W

I F : O N E = : T W O l D E L E T E J

W A I T 1 0 0

N U M B E R

P I C K

E N D

368

Sample D . L . LOGO Programs Appendix B

T D D E L E T E

S E T X Y - 3 0 6 0

M A K E I T E M : N U M 1 : C H O I C E S " G O T I T

M A K E I T E M : N U M 2 : C H O I C E S " G O T I T

M A K E " G O T : G O T + 1

S A Y [Y O U ' V E G A U H T J : G O T

T U R T L E T E X T [Y O U ' V E G A U H T J : G O T

I F : G O T = 6 C F I N I S H J

P I C K

E N D

T D C H E C K

I F C A N Y O F : N U M 1 > 1 2 : N U M 1 < 1 : N U M 2 > 1 2

: N U M 2 < 1 > C E R R O R 6 J

S E T X Y C F I R S T : P L A C E > + 3 L A S T : P L A C E

E N D

T D E R R

S O U N D 3 0 0 2 0 0

S E T X Y - 7 5 8 0

T U R T L E T E X T C E N T R Y N O T R E C O G N I Z E D J

W A I T 5 0

N U M B E R P I C K

E N D

369

Appendix B Sample D. L . LOGO Programs

TD G E T D N E

S O U N D 7 0 0 2 0 0

P R I N T 1 [S E L E C T A N U MB E R T D V I E W . . . l

M A K E " N U M 1 F I R S T R Q

S A Y : N U M 1

M A K E " P L A C E I T E M : N U M 1 : P O S

M A K E " V I E W I T E M : N U M 1 : C H O I C E S

E N D

T D G E T T W O

P R I N T 1 [S E L E C T A N O T H E R N U M B E R . . . l

M A K E " N U M 2 F I R S T R Q

S A Y : N U M 2

M A K E " V I E W I T E M : N U M 2 : C H O I C E S

M A K E " P L A C E I T E M : N U M 2 : P O S

E N D

T D C L E A R

S E T X Y - 7 5 8 0

T U R T L E T E X T [* * T U R T L E G U E S S * * l

M A K E " N U M 1 1

M A K E " N U M 2 1

E N D

370

Sample D . L . LOGO Programs Appendix B

T D F I N I S H

C L E A R T E X T

P R I N T [Y O U G O T T H E M A L L Õ J

P R I N T [N U M B E R O F T R I E S =] : T R Y S

S A Y [Y O U ' V E G A U H T T H E M A L L , T H A T

W A S F U N J

F D R " I 1 1 2 1 [M A K E T H I N G I T E M : I

: C H O I C E S " B L A N K J

P R I N T 1 C P L A Y A G A I N ? Y \ / N . . . J

M A K E " G A M E R C

I F : G A M E = " Y C G U E S S J E L S E C C L E A R T E X T

T E X T S C R E E N P R I N T C T H A N K S J

T O P L E V E L J

E N D

371

APPEN DIX C

Pri m itive Reference

Primitive Abbrev. Function
Chap. Ref. If Any

ABS
Chap. 9

ALLOF
Chap . 9

ANYOF
Chap. 9

APPEND
Chap . 4

Returns the absolute
value of a given number.

Performs a logical AND
operation on a series of
true/false operations or
statements.

Performs a logical OR
operation on a series of
true/false operations or
words.

Loads the specified
diskette file below the
procedure or procedures
currently in the
workspace.

373

Appendix C Primitive Reference

Primitive Abbrev. Function

Chap. Ref. If Any

ASCII Returns the ASCII code
Chap. 9 for a specified character.

ATAN Calculates the arctangent
Chap. 9 of a specified ratio.

BACK BK Moves Turtle backward a
Chap . 1 specified number of

steps.

BACKGROUND BG Displays the current
Chap. 2 background color.

BUTFIRST Extracts all but the first
Chap. 8 element of an object.

BUTLAST Extracts all but the last
Chap. 8 element of an object.

BUTTON? Determines if you press
Chap. 12 the specified joystick

button.

BYE Causes D.L . LOGO to
Chap. 1 exit to OS-9.

CATALOG Displays all diskette
Chap. 4 files.

CATCH Redirects LOGO' s
Chap. 13 normal error function .

CHAR Returns the character
Chap. 9 whose ASCII value

equals the specified
number.

374

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap . Ref. If Any

Changes the current CHO-
LOGO directory to the Chap. 4
specified directory.

Clears the graphics CLEAN
screen without moving Chap. 2
current Turtle
coordinates .

Clears the keyboard CLEARINPUT
Chap. 3 buffer of all previous

characters.

CLEARSCREEN cs Clears the graphics
Chap. 1 screens and returns

Turtle to the home
position.

Clears the text screens. CLEARTEXT
Chap. 1

Closes a file you opened CLOSEREAD
using OPENREAD. Chap . 14

Closes a file you opened CLOSE WRITE
using OPENWRITE. Chap. 14

Returns the current COLUMN
column position of the Chap. 14
text screen cursor.

Lists all global variables . CONTENTS
Chap. 13

Turns off COPYON. COPYOFF
Chap. 4

375

Appendix C Primitive Reference

Primitive Abbrev. Function
Chap. Ref. If Any

CO PYON Causes a dual output of
Chap. 4 all screen display to the

printer.

Calculates the cosine of cos
Chap . 9 a specified number.

COUNT Returns the number of
Chap. 8 members in a word or

list.

DATE Returns the current date
Chap. 8 and time.

DO Establishes a bottom-end
Chap. 10 control loop. Do repeats

the execution of a
procedure list as long as
the subsequent WHILE
function is TRUE.

DOT Displays a dot on the
Chap. 5 graphics screen at

specified coordinates .

EDIT Causes LOGO to enter
Chap. 3 the edit mode.

ELSE Runs a procedure list if
Chap. 10 the preceding IF test

fails .

EMPTY? Determines if an object
Chap. 8 has Ql members .

END Indicates the conclusion
Chap. 3 of a procedure .

376

Primitive Reference 	 Appendix C

Primitive Abbrev. 	 Function
Chap . Ref. If Any

ERA LL Removes all current
Chap . 4 procedures from the

workspace.

ERASE Removes a specified
Chap. 4 procedure from the

workspace .

ERASEFILE Removes a specified file
Chap . 4 from a diskette .

ERROR Simulates an error
Chap. 13 condition.

EXP Raises a given number
Chap. 9 to the power of its

exponent.

FENCE 	 Causes a procedure to
Chap . 13 	 halt and display an error

message if the Turtle
attempts to go beyond
the graphics screen
boundaries.

Provides the current FILEPOS
position of the file
pointer.

Chap. 14

Extracts the first element FIRST
of an object. Chap . 8

Rounds a number to the

Chap. 9 next whole number of
less value .

FIXED

377

Appendix C Primitive Reference

Primitive Abbrev. Function

Chap. Ref. If Any

FOR Performs an
Chap. 10 automatically increasing

index for loop control.

FORWARD FD Moves Turtle forward a
Chap. 1 specified number of

steps.

FPUT Inserts an element at the
Chap. 8 front of an object.

FRACTION Removes the integer
portion of a number.

FULL SCREEN Reserves the entire
Chap. 2 graphics screen for

graphics and sets the
number of graphics text
lines to 0.

GO Sends the execution of a
Chap. 10 procedure to the

indicated LABEL
position.

HEADING Gives the Turtle's
Chap. 5 current heading.

HIDETURTLE HT Causes the image of the
Chap. 5 Turtle to disappear from

the graphics screen.

HOME Brings Turtle back to
Chap. 1 home position (the

center of the screen
pointed up) .

378

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap . Ref. If Any

IF
Chap. lQl

IFFALSE
Chap. 10

IFTRUE
Chap. 10

INTEGER
Chap. 9

ITEM
Chap. 8

JOYX
Chap . 12

JOYY
Chap. 12

KEY?
Chap. 3

LABEL
Chap. lQl

A condition test. IF
conditionally executes a
procedure list.

Runs a procedure list if
the condition register
(set by TEST) contains
FALSE .

Runs a procedure list if
the condition register
(set by TEST) contains
TRUE.

Removes the fractional
portion of a fractional
number .

Extracts a specified
element from a specified
location in a word or
list.

Reads the X coordinate
position of a specified
joystick.

Reads the Y coordinate
position of a specified
joystick.

Determines if a key is
pressed.

Flags a position in a
procedure for the GO
function.

379

Appendix C Primitive Reference

Primitive Abbrev. Function
Chap. Ref. If Any

LAST Extracts the last element
Chap. 8 of an object.

LEFT LT Turns Turtle left a
Chap . 1 specified number of

degrees in the range 0 to
360 .

Returns the current text LINE
Chap. 14 line position.

LIST Creates lists from other
Chap. 8 lists.

LIST? Determines whether an
object is a list.

LOAD Copies a program or
Chap . 4 procedure from diskette

to LOGO's workspace .

LOAD PICT Displays a picture file
Chap. 4 from diskette on the

graphics screen.

LOCAL Establishes a variable as
Chap. 7 a local.

LOG Computes the natural
Chap. 9 log of a number.

LPUT Inserts an element at the
Chap. 8 end of an object.

MAKE Establishes variables and
Chap. 7 their values.

380

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap. Ref. If Any

MEMBER?
Chap . 8

MUSIC
Chap. 6

NOT
Chap . 9

NOTRACE
Chap. 13

NUMBER?
Chap. 9

OPENREAD
Chap. 14

OPENWRITE
Chap . 14

OUTPUT
Chap. 7

PADPENDOWN?
Chap. 12

PADX
Chap. 12

Determines whether a
specified element is a
member (is included in)
an object.

Produces musical tones.

Performs a logical
complement of an
operation or word .

Turns off LOGO' s trace
function .

Determines whether a
word is a number.

Opens a file for reading
data .

Opens a file for data
input.

Terminates the action of
a procedure and returns
its data to the calling
procedure .

Determines if you press
down the X-Pad pen.

Reads the X coordinate
position of the X-Pad
pen.

381

Appendix C Primitive Reference

Primitive Abbrev. Function
Chap. Ref. If Any

PADY Reads the Y coordinate
Chap . 12 position of the X-Pad

pen.

PENCOLOR PC Displays the current pen
Chap. 2 color.

PEND OWN PD Enables the Turtle pen.
Chap. 5

PEND OWN? Returns the condition
Chap. 5 of the pen. Down =

TRUE; UP = FALSE.

PENUP PU Disables the Turtle pen.
Chap. 5

PIECE Extracts a specified
Chap. 8 number of elements

from a specified location
in a word or list.

POALL Displays the lines of all
Chap. 4 procedures currently in

the workspace.

POTS Displays the names of
Chap. 4 all procedures currently

in the workspace.

PRECISION Returns the current
Chap. 9 precision setting.

PRINT Displays specified
Chap. 14 characters on the text

screen and ends with an
automatic carriage
return.

382

PO

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap. Ref. If Any

PRINTl Prints specified text
Chap . 14 characters on the screen

but does not produce a
carriage return.

PRINTOUT
 Displays all lines of the
specified procedure. Chap. 4

PRODUCT

quotation marks . Chap. 7

Divides 1 number by QUOTIENT
another.Chap . 9

Generates a random RANDOM
number . Chap. 9

Generates a random RANDOMIZE
initialization reference or Chap. 9
seed to provide an
alternate random
sequence .

Accesses data in a READ
specified file. Chap . 14

Reads 1 byte of file data READ BYTE
Chap . 14 at a file's current

position . The file
position pointer
automatically increases .

READCHARACTER RC Accepts 1-key input

Chap. 3 from the keyboard.

Multiplies a series of
numbers. Chap . 9

QUOTE Defines a word, replaces

383

Appendix C Primitive Reference

Primitive Abbrev. Function
Chap. Ref. If Any

REMAINDER Determines the whole
Chap. 9 number remainder of a

quotient.

REPEAT Causes Turtle to repeat
Chap. 1 commands a specified

number of times.

REQUEST RQ Accepts multiple-key
Chap . 3 input from the

keyboard .

RERANDOM Resets RANDOM to
Chap. 9 repeat the original

random order.

RIGHT RT Turns Turtle right a
Chap. 1 specified number of

degrees.

ROUND Rounds a number that
Chap. 9 contains a fractional

portion to the nearest
whole number .

RUN Executes a procedure
Chap . 8 name contained in a list.

SAVE Copies a program or
Chap. 4 procedure to diskette.

SAVE PICT Copies the contents of
Chap. 4 a graphics screen to

diskette as a picture file.

SAY Causes D.L . LOGO to
Chap. 11 say (speak) specified

words or numbers.

384

385

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap. Ref. If Any

SELECT Executes the procedure
Chap. 10 list of the first

subsequent TRUE
condition.

SETBACK GROUND SETBG Sets the current
Chap. 2 background or screen

color. There are 16
background colors .

SETCURSOR Establishes the cursor at
Chap. 14 specified line and

column position.

SETFILEPOS Sets the file pointer to a
Chap. 14 specified position.

Sets the heading of the SETHEADING
Chap . 5 Turtle in the range of Ql-

360 degrees.

SETPENCOLOR SETPC Establishes the current
Chap. 2 pen color. There are 4

pen colors for each
background color.

Sets the precision of SETPRECISION
subsequent operations Chap . 9
from (i') to l(i')(i') places.

Sets text lines in the SET SPLIT
graphics mode. Chap. 2
SETSPLIT can be in the
range 1-15 .

Establishes the graphics SETX
Chap. 5 screen X coordinate.

Appendix C
 Primitive Reference

Primitive Abbrev.
Chap. Ref. If Any

SETXY
Chap. 5

SETY
Chap. 5

SHELL
Chap. 14

SHOWN?
Chap . 5

SHOWTURTLE ST
Chap. 5

SHUFFLE
Chap. 9

SIN
Chap. 9

SOUND
Chap. 1 1

SPLIT
Chap. 2

SPLITSCREEN
Chap. 2

Function

Establishes graphics
screen X and Y
coordinates.

Establishes the graphics
screen Y coordinate.

Lets you access OS-9
commands from within
D.L . LOGO.

Returns TRUE if the
Turtle is visible or FALSE
if it is hiding.

Causes the image of the
Turtle to reappear on the
graphics screen.

Randomizes a list.

Calculates the sine of a
specified number.

Creates a sound from
specified values
representing pitch and
duration.

Displays the current
graphics screen split
value.

Reserves text lines in the
graphics screen mode.

386

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap . Ref. If Any

SQRT
Chap . 9

SUM
Chap. 9

TAN
Chap . 9

TEST
Chap. 10

TEXT SCREEN
Chap. 2

THING
Chap. 7

TO
Chap . 3

TOWARDS
Chap. 5

TRACE
Chap. 13

Calculates the square
root of a specified
number.

Adds a series of
numbers.

Calculates the tangent of
a given number.

A condition test. Sets a
condition register for
subsequent IFTRUE or
IFFALSE procedures.

Causes D .L . LOGO to
return from the graphics
mode to the immediate
mode.

Indicates that a word is
a variable name. The
same as a colon or dots.

Specifies a procedure
name .

Provides the degree
heading from Turtle's
current position to a
specified position.

Turns on LOGO' s trace
function and displays
procedure steps .

387

Appendix C Primitive Reference

Primitive Abbrev. Function
Chap. Ref. If Any

TURTLE TEXT
Chap. 5

WHERE
Chap. 8

WHILE
Chap. 10

WINDOW
Chap . 5

WORD
Chap. 8

WORD?
Chap. 8

WRAP
Chap. 5

WRITE
Chap. 14

Displays a message on
the graphics screen at
the current grid
coordinates .

Locates the position of
an element in a word or
list.

Establishes a top-end
control loop. WHILE
executes a procedure
while a specified
condition is true.

Disables the WRAP
condition. WINDOW
displays only on-screen
points.

Combines words to
create 1 word.

Determines whether an
object is a word.

Causes graphics to
reappear on the
opposite side of the
screen when they go
beyond a screen
boundary.

Transfers data to a
specified file .

388

Primitive Reference Appendix C

Primitive Abbrev. Function
Chap . Ref. If Any

WRITE BYTE
Chap. 14

XCOR
Chap. 5

YCOR
Chap . 5

Writes 1 byte of file data
to the current file
position . The file's
position pointer
automatically increases.

Returns the current
graphics screen X
coordinate.

Returns the current
graphics screen Y
coordinate.

389

APPEN DIX D

Sta rti ng OS-9 from BASIC

I f you do not have a Color Computer with BASIC version
1 . 1 or later or if you do not have the OS-9 System, you
can type the following program and use it to start D .L .
LOGO.

Enter this program from Disk Extended BASIC.

1 0 R E M * * * * * * * * * * * * * * * *

2 0 R E M * B O O T O S - 9 F R O M B A S I C
3 0 R E M * * * * * * * * * * * * * * * *

4 0 F D R 1 = 0 T O 7 0
5 0 R E A D A $
6 0 P O K E & H 5 0 0 0 + 1 , V A L C " & H " + A $)
7 0 N E X T I
8 0 C L S : P R I N T " I N S E R T O S 9 D I S K E T T E "
9 0 P R I N T " I N T O D R I V E 0 A N D P R E S S A

K E Y "
1 0 0 A $ = I N K E Y $: I F A $ = " " T H E N 1 0 0
1 1 0 E X E C & H 5 0 0 0
1 2 0 D A T A 8 6 , 2 2 , 8 E , 2 6 , 0 0 , 8 D , 0 D
1 3 0 D A T A F C , 2 6 , 0 0 , 1 0 , 8 3 , 4 F , 5 3
1 4 0 D A T A 2 6 , 0 3 , 7 E , 2 6 , 0 2 , 3 9 , 3 4
1 5 0 D A T A 2 0 , 1 0 , B E , C 0 , 0 6 , A 7 , 2 2

391

I I

I I

I I

Appendix D Starting OS-9 from BASIC

1 6 0 D A T A 8 6 , 0 2 , A 7 , A 4 , 6 F , 2 1 , 6 F
1 7 0 D A T A 2 3 , 6 C , 2 3 , A F , 2 4 , 1 0 , B E
1 8 0 D A T A C 0 , 0 6 , A 6 , 2 3 , 8 1 , 1 3 , 2 7
1 9 0 D A T A 1 2 , A D , 9 F , C 0 , 0 4 , 4 D , 2 7
2 0 0 D A T A 0 6 , 6 C , 2 3 , 6 C , 2 4 , 2 0 , E 9
2 1 0 D A T A 7 F , F F , 4 0 , 3 5 , A 0 , 4 F , 2 0
2 2 0 D A T A F B

Type the following instruction at the 0 K prompt to save
the above program:

S A V E I I * I I ENTER

Type the following command to use this program to start
D.L . LOGO:

R u N I I * I I ENTER

When the prompt appears , insert the D . L . LOGO
diskette and answer the date and time prompts . When
the OS-9 prompt appears, type:

L O G O ENTER

392

I N DEX

Abbreviations, primitives 30

ABS 199, 212, 373

active keys 23

ADD

procedure 217, 313

program 302

adding

items 166

procedures 82

adults, and LOGO 8

AHEAD

procedure 280 - 281 , 282, 283

ALL, testing 226 - 227

ALLOF 201 , 212, 226, 373

ampersand, music symbol 131 .

ANYOF 201 - 202, 212, 227, 373

APPEND 82 - 83, 88, 373

ARCS procedure 232

arguments 153

definition 30

in procedure names 149

arithmetic 186 - 219

operators 188

operations with variables 144 - 147
powers 95

syntax 190

arranging elements, SHUFFLE 208

sorting 209 - 210

arrow keys 22 - 23
editing 58 - 60
left 24

reverse 24

ASCII 192 - 193, 203, 212, 304, 374

code 186

data 312

ASK procedure 248 - 249

ATAN 200, 212, 374

BACK 26, 35, 374

BACKGROUND 48, 374

BACKUP, diskettes 4

background color 2, 40, 49

chart 42

repeating 43

backslash

393

Index

producing 24

special characters 150

BAD 'TO' STATEMENT, error 288

BAD PROCEDURE CALL, error 288

BALLOT program 105

BAND procedure 294

BAR procedure 98

bar graph program 360 - 361

bass clef, definition 113

beats, music 109

BG 43, 48

BI procedure 237

binary tree 237

BK 35

black and white television 3

Blow The Man Down score 113 - 114

BOMBER, sound program 355

BOMP procedures 252 - 253

BOMPA procedure 251

BOOKS program 182 - 184
boot procedures 5

BORDER procedure 294

bounds, graphics screen 31, 100

BOX procedure 55, 105, 144, 145, 155, 268

BOXDOWN procedure 233

boxes, drawing 43 - 44

BOXUP procedure 232

bracket symbols 24

BRICK procedure 293

BRICKS program 293

BULL procedure 147

program 364

BULL'S EYE program 364

BUMP program 228

BUTFIRST 163, 166, 1 79, 374

BUTLAST 163, 179, 374

BUTTIN procedure 265

BUTTON, joystick 265

BUTTON? 272, 374

BYE 35, 374

byte, reading and writing to
diskette 301 - 305

CALC program 150

calculating

CAN'T ERASE FILE, error 289

CAN'T OPEN FILE, error 289

CAT program 76, 348

CATALOG 76, 78, 87, 374

CATCH 291, 374

co-ordinates 93

calculations 186 - 219

in sound procedures 254 - 255
precision 205

use of spaces 190

with negative numbers 32

cartridge, speech/sound 246

catalog, program 348 - 350

commands, editor 331

change

directories 4, 75

text, procedures 60 - 61, 322

procedures 60 - 61, 65

screen modes 24

values 136

chapter summaries 35

CHAR 203 - 204, 213, 304, 374

CHARACTER procedure 193

characters

in procedure names 54

special Logo 150

values, ASCII 192 - 193

chart, pen and background

CHO 75, 87, 375

CHECK procedure 228, 243, 249, 308 - 309

checking Turtle, SHOWN? 99

children, and LOGO 8

CHOOSE procedure 218

choosing procedure names 56

chord progression 1 11

394

___ , __ __

395

Index

CIR procedure 238

CIR2 procedure 239

circle, drawing 50 - 51

CLEAN 45, 48, 375

CLEAR key 24

clearing keyboard buffer 66

CLEARINPUT, 68, 375

CLEARSCREEN 25, 29, 35, 45, 49, 100, 375

CLEARTEXT 29, 35, 375

clock, Logo time 177

CLOSEREAD 310, 375

CLOSEWRITE 310, 375

code lines, music 1 18

colon, variable names 139

color 3, 42

settings 43

invisible 40

colored ribbons program 359

COLUMN 311 , 375

column, text screen 307 - 308

combining words 135 - 136

COMBINE procedure 183, 297 - 298

commands 26

editing 70

entering 5 - 7
in procedures 63

semicolon 69

common errors 283

comparative operations 191

COMPARE procedure 224

comparisons 201 - 204

using IF 223 - 224
using SELECT 225

compass headings 96

complete variable display 140

COMPOSE program 219

computer languages 8

containers, variables 133 - 155
CONTENTS 149, 278, 291 , 375

contents, variable 141

control

editor 328

key 23

coordinates 30, 92 - 94

system 31

copy diskettes 4

COPYOFF 88, 375

COPYON 88, 376

CORNER procedure 105

correcting errors 276

cos 199, 212, 376

COUNT 168, 180, 376

COUNTDOWN procedure 164 - 165

counting members in an object 168

CREATE procedure 296

creating 36 - 37

errors 283

CROSS procedure 105

cs 35, 45, 49

CTRL, keys

cursor, moving with arrow keys 22 - 23

cycles per second, sound 250

data list, variables 136

DATA procedure 313

program 313 - 317

DATE 180, 376

date 177

time 5

debugging aid

CONTENTS 278

PAUSE 281

TRACE 285

debugging programs 275 - 294

decrement, variable values 145

degrees 33

heading 104

delete

files 66

files, PURGE program 350 - 351
text 321 , 329 - 330

Index

elements from an object 171 - 172 deleting text 321

DELETE procedure 316 features, summary 320

DEMO program 151 files 328

demonstration program 6 - 7 functions 319 - 334

descriptions, error codes 287 - 290 inserting text 321

DIAG procedure 308 keys 70

Disk BASIC 4 mode 54, 55, 57

DISK ERROR 289 moving text 324

DISK FULL error 289 options 57

DISPLAY procedure 218, 316 replacing text 326

directions 26, 27, searching text 326

headings 95 using arrow keys 58 - 60
directories, change 4, changing 75 editor

disk directories 76 change commands 331

diskette 88 delete commands 329 - 330

programs 6 insert commands 329

picture files 77 search and replace 332
saving procedures 74 special commands 333

displaying yank command 332
a procedure 84 education 8
complete variable 140 elements
special characters 150 inserting 173 - 17 4

DIV procedure 218 of an object 170
DIVIDE BY ZERO, error 287 ELSE 225, 240, 376
DO 230, 376 EMPTY OBJECT,
DONUT program 365 EMPTY? 165, 180, 299, 376
DOREME procedure 110 END 68, 376
dots, variable names 134 procedure 57
DOT 97, 103, 376 end
DRAW procedure, X-Pad 267 of a word 134
drawing a circle 50 - 51 procedure line 69
DSKINI 4 ENDVIEW procedure 184

ENTER,
ending lines 62

EDIT 56, 68, 376 equipment
Editor, cursor control 328 minimum 3
edge, graphic screen 100 optimal 3
edit 57 - 63 ERALL 81 - 83, 87, 377

changing text 322 ERASE 81 - 82, 87, 377
copying text 323 ERASEFILE 87, 377
cursor 58 - 60 erasing

396

397

Index

files from diskette 78 - 79

files in the workspace 80 - 81

ERROR 283, 291 , 377

errors 275 - 294

codes and messages 287 - 290

messages 28, 287 - 291

syntax 25

typing 277

user defined 290

EXAM procedure 315 - 316

execute

a primitive 22

procedure lines 175 - 176
procedures 55 - 56

exit
D .L. LOGO 34, 306

insert mode 59 - 60

the edit mode 57

EXP 198 - 199, 212, 377

external

devices 260

Turtle 2

extracting items 169

FACT procedure 153

FALL, sound procedure 355

false operations 191

FD 35

FENCE 100, 103, 291 , 377

fields, definition 299

filename 6 - 7, 88

FILE NOT OPEN, error 289

file pointer index 302

FILEPOS 301 , 310, 377

files 296

deleting 66

erasing from diskette 78 - 79
erasing from workspace 80 - 81
opening 296 - 297
reading bytes 304

reading data 298 - 300
writing to 298 - 300

filling a circle 50 - 51
finding

errors 276

items 167

FINISH procedure 244

FIRST 163, 166, 179, 377

FIXED 197 - 198, 21 1 , 377

FLAKE program 237

flat, music 131

FLOWER procedure 71 - 72, 81

FLY procedure 255

FOR, loops 232 - 233, 378

foreground colors 2

format

music 118

procedure 57

text screen 307 - 309

FORWARD 25, 35, 378

FPUT 163, 179, 378

FRACTION 198, 211 , 378

FRAME procedure 80

FULLSCREEN 24, 45, 48, 378

geography 92

GET procedure 264

GETFILE procedure 317

GETSET procedure 309

GIVE procedure 150 - 151

global

variable 148 - 149, 153

search and replace 119 - 120

GO 177, 233 - 235, 378

GRAPH program 360 - 361
graphics

definition 31

display 31

hiding 46

language 2

Index

mode 2

reproducing on a printer 77

saving to diskette 77

setting points 97

screen bounds 31

screen grid 92 -94
using the full screen 45

GRAPHICS program, swirl 351

greater-than operations 191

grid system 31, 92 - 94

GUESS program 365 - 371

harmony, music 122 - 123

HEADING 95, 102, 378

heading

increments 104

procedure 57

hiding graphics 46

HIDETURTLE 10, 98, 378

HIGHER program 149

HOME 27, 35, 100, 378

HT 103, 378

IF 222 - 223, 379

IFFALSE 224, 379

IFTRUE 224, 379

immediate mode 55

indention in procedures 57

index, file pointer 302

INPUT procedure 182 - 183, 194, 242 - 243,

297, 313 - 314

input 297

to procedures 144 - 145, 150 - 154
variables 151

joysticks 260 - 265
keyboard 64 - 66
keyboard 66

insert commands 329

INSERT program 173 - 174

inserting
elements in an object 173 - 174
in procedures 59 - 60
in text, editing 321

ISOLATED OBJECT, error 288

ITEM 163, 167 - 168, 179

INTEGER 197, 211, 379

interfacing 2

invisible Turtle 98

invisible line 40

ITEM 167 - 168, 379

JOY procedure 261 , 264, 281 - 282

JOY2 procedure 261

JOY3 procedure 262

joystick 2

output range 272

reference 272

BUTTON primitive 265, 374

joysticks 260 - 265

JOYX 272, 379

JOYY 272, 379

KEY? 66 - 68, 379

key signature 116

keyboard

buffer, clearing 66

entries 22

input 64 - 66

repeating keys 23

special keys 22 - 24

keypress, wait for 66 - 67
keys

for editing 70

CLEAR 24

CTRL 24

active 23

typing 6

KILL procedure 66 immediate mode 55

398

Index

LABEL 233 - 235, 379

languages 9

LAST 163, 166, 179, 380

LAZER procedure 254

LEFT 26, 35, 380

left arrow 24

legal characters in procedure names 54

length of objects 168

less-than operations 191

let, see MAKE 134

library 180

of procedures 82

LINE 311 , 380

line, text screen 307 - 308

lines, setting text 46 - 47

link procedures 54

LINK program 141 - 142
linking

variables 140 - 141
storing data 141 - 142

LIST 161, 179 - 180, 380

LIST? 179 I 380

list 180

variable 137

listing a procedure 84

lists

manipulation 163 - 174
operating on 160

variables 134 - 135
within lists 138 - 139

LOAD 87, 380

LOADPICT 87, 380

LOCAL 153, 380

local variable 148 - 149, 153

locations on the screen 92

LOG 198, 211 , 380

LOG OF NEG NUMBER, error 289

logic operators 1 89

logical concepts 2

LOGO

letters, graphics program 351 - 353

starting 5

to exit 34

long lines 62

loop operations 222

loops 230 - 244

using FOR 232

logic testing 222

nested 231 - 232

recursion 236 - 239

lowercase characters 23

LPUT 163, 166 - 167, 179, 380

LT 35, 380

MAKE 134, 153, 380

make, variables 134

manipulate

procedures 60

words, lists, sentences 163 - 174

math, arithmetic operators 188

MATH program 216 - 217

mechanical device 2

MEMBER? 163, 180, 381

memory 88

MEMORY FULL, error 288

MENU procedure 182, 216

MENU program 175 - 176

MINE procedure 243

minutes 178

MISSING ')', error 288

MISSING '] ' , error 288

MISSING ARGUMENT, error 287

mistake

typing 23

correcting 26

modes, definition

move cursor, arrow key 22

MOVE procedure 64, 230, 231

MOVEMORE procedure 65

moving text 324

MULT procedure 217

399

Index

Multi-Pak 3

music 107 - 132, 381

editing 131

worksheet 132

score 108

MUST BE A LIST, error 287

MUST BE A NUMBER, error 287

MUST BE A PROC LIST, error 288

MUST BE A WORD, error 287

NEXT procedure 294

NOISES, sound programs 355

NOT 202 - 203, 212, 228 - 229, 381

NOT FOUND, error 288

NOT TRUE/FALSE, error 287

NOTRACE 291, 381

NUMBER 204, 213

NUMBER OUT OF RANGE, error 287

name, variable 141

names

choosing procedure 56

procedure 69

variable 134

neat, making procedures 61 - 63

negative numbers 32

nest procedures 54

nests 231

note, definition 112

note-word 109

notes, LOGO 2

number of inputs to procedures 151

numbers 181, 186 - 219

in lists and words 190

object
definition 153

deleting elements 171 - 172
finding elements in 170

input to procedures 184

OBJECT procedure 219

OCT program 357

octagon program 357

octave 132

switches 131

definition 113

music 108 - 109

OOPS procedure 281

opening files 296

OPENREAD 310, 381

OPENWRITE 296, 310, 381

OPERATION procedure 218

order in the workspace 57

OS-9 2, 4

boot 5

commands 4

format 88

functions 306

starting from BASIC 391 - 392

out of bounds error 281

OUTPUT 153, 381

output

from procedures 150 - 154
recursive 151 - 152

PAD program 268 - 269

PADPENDOWN? 266

PADPENDOWN? 272

PADX 266, 272, 381

PADY 266, 272, 382

parent procedure 149

parentheses 179

PATH program, wandering Turtle 356

PATHS program 353

PAUSE 281

pause, music 118 - 119

PAWS procedure 282, 284

PC 43, 48

PD 103

400

Index

PENCOLOR 48, 382

pen color 40, 49

changing 96 - 97

chart 42

default 49

repeating 43

pen, X-Pad 266

pen control, X-Pad 266 - 267

PENDOWN 96 - 97, 103, 382

PENDOWN? 103, 382

PENUP 96 - 97, 103, 382

PETAL procedure 72

philosophy of LOGO 8

PHONE procedure 254

phonetic spelling 257

PICK procedure 313

picture files 77

pie chart program 363 - 364

PIE program 363 - 364

PIECE 163, 169, 180, 382

pitch 108

selections, music 131

definition 1 13

sound 250 - 251

PLAY procedure 242, 274

plotter 2

PO 84, 88, 383

POALL 84, 382

position of Turtle 93, 104

POSITION procedure 267

POTS 84, 88, 382

power symbol, arithmetic 23, 95

precision 186, calculations 205

PRECISION 213, 382

primitive

abbreviations 30

and procedure names 59

PRINT 68, 311 , 382

PRINTl 64 - 65, 68, 311 , 383

printer 3, 84 - 85, 88

graphic reproduction 77

procedures 84 - 85

PRINTOUT 84, 88, 383

PROBLEM procedure 217

procedures 7, 28, 54 - 56

accepting input 144 - 145

adding comments 63

appending 82 - 83

format 57

indentation 57

input 150 - 154
making neat 61 - 63

number of inputs 151

library 82

line ending 69

lines, inserting 59 - 60

lines, numbering 59

listing 84

names 54, 56, 69

names with arguments 149

names, spaces 55

output 1 50 - 154
saving 7 4 - 75

spacing between 59

storage, workspace 60

style 57

PRODUCT 195, 211 , 383

program 7

building 56

line execution 175 - 176

lines 62

programming for the X-Pad 266

programs 54

diskette 6

producing a cube 36 - 37

sample 348 - 371

prompt, question mark 22 PENCOLOR 48

PURGE program 350 - 351

PUT procedure 317

QUE procedure 264

401

Index

question mark, prompt 22

QUIT procedure 184, 317

QUIZ procedure 192, 208, 263 - 265,

308 - 309

QUOTE 135, 153, 383

quotation marks 181

and variables 134

using 172

QUOTIENT 195, 211 , 383

RAD procedure 95 - 96
RANDOM 177 - 178, 206 - 207, 213, 383

random 206 - 207

RANDOMIZE 207, 213, 383

RANGE procedure 251

RC 64, 68, 383

READ 310, 383

READANS procedure 264

READBYTE 301, 304, 310, 383

READCHARACTER 64, 68, 383

re-enter D. L. LOGO 306

reading files 298 - 300
reading the joystick 260 - 265
READIT procedure 64

rearranging

SHUFFLE 208

sorting 209 - 210

REC procedure 84

records, definition 298

RECTANGLE procedure 57 - 58, 234

recursion 151, 236 - 239

recursive outputs 151 - 152
references, error codes and

messages 287 - 290
repeating

colors 43

keyboard entries 23

recursion 151

REMAINDER 196, 211, 384

REMOVE program 171 - 172

REPEAT 32, 35, 230, 384

replace 119 - 120

text 60, 326

reproducing graphics on a printer 77

REQUEST 65, 68, 384

RERANDOM 207, 213, 384

restricting Turtle movement 100 - 101

REYER program 354

reverse a word program 354

reverse arrow 24

reversing test results, NOT 228 - 229

rhythm 108

RIBBON program 359

RIGHT 26, 35, 384

ring of flowers program 358

RING procedure 278

rotate procedure 56

root program 356

ROOTS, arithmetic

ROUND 196 - 197, 21 1 , 384

ROW procedure 293

RQ 65, 68, 194, 384

RT 35, 384

RUN 175, 180, 384

sample programs, Appendix B 348 - 371

SAVE 75, 87, 384

SAVEPICT 77, 87, 384

saving

files 296

multiple procedures 75

procedures 74 - 75

SAY 246 - 249, 257, 384

screen

colors 40

directions 27

limits 100 - 101

locations 92

mode, changing 24

SEE procedure 303

402

Index

SEEK program 242 - 244
SELCT procedure 315

SELECT 192, 225, 240, 385

SEND procedure 86

SENTENCE 139, 162

SET procedure 293

SETBACKGROUND 43, 48, 385

SETBG 42, 48, 385

SETCURSOR 311 , 385

SETDOT procedure 243

SETFILEPOS 301, 310, 385

SETHEADING 95, 102, 385

SETPC 40 I 43, 48, 385

SETPENCOLOR 48, 385

SETPRECISION 213, 385

SETSPLIT 49, 385

SETUP procedure 249

SETX 102, 385

SETXY 92 - 94, 102, 386

SETY 102, 386

Seymour Papert 8

SHAPE program 233 - 235

SHELL 306, 311 , 386

SHOW 137

implied 161

SHOWFILE procedure 299

SHOWN? 99, 103, 386

SHOWQUES procedure 264

SHOWTURTLE 98, 103, 386

SHUFFLE 208 - 209, 213, 386

SIN 199 - 200, 212, 386

SINE procedure 216

size 25

screen

graphics grid 92 - 94
setting graphics 46

setting points 97

text 307

selecting 46 - 47

search 119 - 120
search and replace, editor 332

search text 326

searching for elements in an object 170 - 171
seconds 178

selecting pieces of an object 169

semicolon 69

sentence 180

manipulation 163 - 174

words, lists 163

setting
color 43

screen lines 46

screen points 97

sharp, music 131

shortcut, note entry in music 130

single command mode 5

size of screen 25

sorting 209 - 210
SOUND 250, 257, 386

sounds, unusual 256

SPACE procedure 254

spaces

between commands 36

between primitives 36

between procedures 59

in calculations 190

in procedure names 55

in words 164

special commands, editor 333

speech 246 - 249

cartridge 246

speed, increasing 104

SPELL program 248 - 249

spelling

program 248 - 249

phonetic 257

spider's web program 359

SPIN 60,

SPIN procedure 325

spin procedure 58 - 60, 325

SPIN2 procedure 82

SPIRAL

403

Index

procedure 146

program 360

SPLIT 46 - 47, 49, 386

split procedure lines 60

SPLITSCREEN 24, 46, 49, 386

SPOKE procedure 277 - 278

square bracket, producing 23, 36

SQRT 200, 212, 387

SQRT OF NEG NUMBER, error 289

SQUARE procedure 234

ST 103, 386

STACK program 155

staff, definition 1 12

starting D.L . LOGO 5

STEM procedure 81

steps, definition 25

stop execution 22

storing

data, linking 141 - 142
procedures on diskette 75

SUB procedure 217

SUBJECT procedure 219

SUM 194, 21 1, 387

SUN procedure 96

SWIRL

procedure 63

program 351

symbol, arithmetic power 23

syntax 25 ST 103

SYNTAX ERROR, error 288

talk 246 - 249
TALK procedure 247

TAN 200, 212, 387

TATTLE procedure 93

teleporting 93

TELLANS procedure 265

template, X-Pad 268 - 269
tempo settings, music 131

TEST 186, 223 - 224, 240, 387

testing
logic operators 189

logical tests in loops 222

using ALLOF 227

using ANYOF 227

text
change 60, 322, 331

copying with yank 323

display 31

delete commands 321, 329 - 330

editor cursor control 328

files 6

handling 296 - 305

insert commands 329

inserting 321

moving 324

replace 60

replacing 326

screen 307, formatting 307 - 309

search and replace 332

searching 326

special editing commands 333

yank command 332

TEXTSCREEN 25, 49, 387

T&F procedure 265

THING 139, 153, 387

THUMP, sound program 355

time 177

date 5

music 115

TIME procedure 177

TIMELOOP procedure 178

TO 55 - 56, 68, 387

TOWARDS 95, 102, 387

TRACE 285, 291 , 387

trace to printer 291

treble clef, definition 1 13

tree, graphic 237

TREE procedure 237

TRIANGLE procedure 235

triangular ring program 357

404

405

Index

TRIRING program 357

true operations 191

turtle shape 27

twisting triangle, program 353

TURTLE OUT OF BOUNDS, error 289

TURTLETEXT 94, 102, 388

Turtle

position 93

writing 93 - 94

checking status 99

hiding 98

types of variables 136

typing errors 23, 277

UNDEFINED SYMBOL, error 288

UNDEFINED PROCEDURE, error 288

unusual sounds 256

uppercase characters 23

user defined errors 290

value,
VARI procedure 149

variable 141

values, variable 136

variable contents 139, 141

display, CONTENTS 278

decrement of

displaying completely 140

global 148 - 149

in arithmetic operations 144 - 147, 191

linking 140 - 141

local 148 - 149
making 134 - 135
name 134, 141, 153

sentence 139

types 136

value 141, losing 291

VERB procedure 219

view diskette directories 76

VIEW procedure 183

vocabulary, procedure names 59

voices, music 131

wait for keypress 66 - 67

wandering Turtle program 356

WEB program 359

WEAVER procedure 101

WHERE 180, 388

WHILE 230 - 231, 240, 388

WINDOW 100 - 101, 104, 388

WORD 161, 179, 388

WORD TOO LONG, error 289

WORD? 179, 388

words 180

combining 135 - 136

manipulation 163 - 174

operating on 160

variables 134 - 135

worksheet, music 132

workspace

computer memory 60

erasing files 80 - 81

order 57

saving to diskette 75

WRAP 100 - 101, 103, 388

WREATH program 358

WRITE 310, 388

WRITEBYTE 301, 304, 311 , 389

writing

to files 298 - 300

Turtle text 93

X character, music 131

X-Pad 2, 3, 266

grid 266

output range 272

XCOR 93, 102, 389

Index

Yank, editor 332

yanking text, copying 323 YCOR 93

YCOR 93, 102, 389

ZAP procedure 254

406

RADIO SHACK, A Division of Tandy Corporation

U.S.A. : FORT WORTH, TEXAS 761 02
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA BELGIUM FRANCE U. K.
91 Kurra1ong Avenue Rue des Pieds d'Alouette, 39 BP 1 47-95022 Bilston Road Wednesbury

Mount Druitt. N . S . W . 2770 5 1 40 Naninne (Namur) Cergy Pontoise Cedex West Midlands WS1 0 ?JN

READ ME FIRST

All computer software is subject to change, correction, or
improvement as the manufacturer receives customer
comments and experiences. Radio Shack has established a
system to keep you immediately informed of any reported
problems with this software, and the solutions. We have a
customer service network including representatives in many
Radio Shack Computer Centers, and a large group in Fort
Worth, Texas, to help with any specific errors you may find in
your use of the programs. We wil l also furnish information on
any improvements or changes that are "cut in" on later
production versions.

To take advantage of these services, you must do three
things:

(1) 	Send in the postage-paid software registration card
included in this manual immediately. (Postage must be
affixed in Canada.)

(2) 	 If you change your address, you must send us a charige
of address card (enclosed), l isting your old address exactly
as it is currently on file with us.

(3) 	 As we furnish updates or "patches", and you update your
software, you must keep an accurate record of the current
version numbers on the logs below. (The version number
will be furnished with each update.)

Keep this card in your manual at all times, and refer to the
current version numbers when requesting information or help
from us. Thank you .

OP. SYSTEM APPLICATIONS SOFTWARE
VERSION LOG VERSION LOG

C

Name ____________________ _

CompanY-����������������-

Address __________________ _

________ > -- - ---

_______ _

Read
Carefu l ly

In order for us to notify you of modifications or updates to this
program you MUST complete this card and return it immediately. This
card gets you information only and is NOT a warranty registration.
Register one software package per card only. The registration card is
postage paid-It costs you nothing to mail.

Two change of address cards have been included so that you may

continue to receive information in the event that you move. Copy all

address Information from the Registration Card onto them prior to

sending the Registration Card. They must show your "old address"

exactly as you originally registered it with us.

Software

Registration 2 6 0 · 3_3__
Cat. No. _

Version 0 1. . 00 . 00 Card

City Phone (
State Zip

1 1 1 1 1 1
 NO POSTAG E
N E C ESSA R Y
I F M A I LED

IN T H E

U N I T E D STATES

B U S I N ESS R E P LY MAIL
FIRST CLASS PERMIT NO. 1 38 FORT WORTH, TEXAS

POSTAG E W I L L B E P A I D BY A D D R E S S E E

Software Reg istration
Data Processing Dept.
P .0. Box 291 O
Fort Worth, Texas 761 1 3-9965

Color Computer Cat. No. 26-3033
64K

DL LOGO (With OS-9 Runtime)

OAlE LEAR 1985. ALL RIGHTS RESERVED. LICENSED TO TANDY CORPORATION

OS-9 RUf'lt!W:-_:::t--­

- __.,;;;,,--=---
Ol LOGO ilWh

..

