'ftf(..

FESN

£ COMPUTERWARE‘”

Microcomputer Sales and Software

o

Color EASIC

Compiler

o e 3t ~. as, California 92024

"~ THE COLOR COMPI|LER™

SECTION

v

Vi

Vit

m O O W >

The Color Compilier™

Verslion 2.0

Table of Contents

TITLE

License and Werranty Information
Introdictlon s « « » o o o s »
How to use the Color Compller®™ .
ReStrictions « « ¢ o« ¢ o o o o
Legend for Instructlions
Instructions allowed « « o« o « &
Additional Information « « o o &
Tips and TrickS. « « ¢« ¢« ¢ o o
Lii vl me>sages ST IR TR
Sample ruUNS .« o« o o o o« o o o o
Using the Demo Programs . . .
Appendixes

Color Compller™ Subroutines . &
Variable IIst . . « o o ¢ o o &
Subroutine Package Polinters ; °
How the Color Compiler™ Works .

How to add your own Instructions

PAGE

MR
« e+ 3
v 5 u b
c o o 5
PR |
e . 11
s .18
x5 15
. o 16
. o 17
. . 18
. o 20
% s 21
« s 25
. o 26

s MHITEDNARE

THE COLOR COMPILER®™

PREFACE:

Computerware® |s making & large Investment In the software future
of the Color Computer. We are workling on softwere products at
both the essembly and. Basic Language level, as well as both
serious and entertalinment orilented. Tc =eachleve +hls goal, we
need your support... One of <the problems that developers of
software have Is that It tekes a |ot of Initial time and money to
'create' the product before eny revenue from Its sale Js
generated. All too often when |t Is finished, customers who are
not famillar wilth <the development cycle for software products,
see a cassette or disk and 2 manual end "percelve that <that 1Is
what the product cost. NOT TRUE!!

To be able to recover the development costs on Inexpensive
software, the manufacturer has to be able to sell a large number
of copies. This Is where you, the customer, can help by not
glving eway (or accepting from others) copyrighted software =
actually any software product that is being offered for sale.

We have a lot of customers who tell us that they actively support
us because they want our support In the years to come. When you
think about <that fact It makes sense. If we can't make enough
--.vo because people are stealing coples of our products we will
not continue +to put our efforts Into developling those products.
So the bottom line Is simply +this: respect the copyright of
software and do your part by not glving away or accepting coples
of software that Is offered for sale.

Thank You, Computerware®
LICENSE:

Computerwere® Color Complier™, In all machine readable formats,
and the written documentation accompanying them esre copyrighted.
The purchase of Computerware® Color Complilier™ conveys to the
purchaser a Ilcense to use Computerware® Color Compllier™ for
his/her own use, and not for sale or free distribution to others.
No other llcense, expressed or implied Is granted.

WARRANTY INFORMATION:

The llcense to use Computerware® Color Compller™ is sold AS 1S
without warranty. This warranty 1Is In Ileu of all other
warranties expressed or Implled. Computerware® does not warrant
the sultability of the Color Compllier™ for any particular user
application and will not be responsible for damages Incldental to
Its wuse In a user system. |f this product should feall to load
during the first 90 days of use, simply return the ORIGINAL disk
ciong wlth @ copy of the recelpt for a free replacement. After
90 days please Innciude $8.00 to cover shipping and handlling.

= o - {C} 1984 CrMPIITFRWARF

THE COLOR COMPILER®

Computerware's Color BASIC Com;llor V2.0
Program and Manuel by Warren Ulrich 111

iIf you have ever written a BASIC program only to find that
It runs too slow to provide any action and haven't had <+he
courege to learn eassembler, <then the Color, Compiier™ Is the
answer to your problem. The Color Compller™ lets you write vyour
program In easy BASIC &and then converts It Into fast machine
language. After you run your complled program, you may find It
necessary to add some delays because the Color Compller™ will
make your program run an average of 42 <times faster. Some
functions will run as much as 60 to 70 times faster!

The Color Compller™ features a toteal of 55 Instructions and
functions. Most of these are a subset of Extended Color BASIC.
Almost all of the graphics and sound functions are supported.
This makes +the Color Complier™ ideal for writing graphics games
and educatlional software which would run too slowly in Extended
BASIC. Except for a few restrictions &and non-Implemented
commands, you can program In BASIC and assume that ANYTHING Is
legal and +the Color Compller™ wllil wunderstand. The Color
R~=~tle-™ was designed to run on & Color Computer with 32K of
memory and at (east one disk drive. The Color Compller™ leaves
epproximately 16K of memory for your machine language program.
The Color Compller™ was made to be modular so Instructions you
mey use frequently can be added to Its vocabulary.

ithe Color Compller™ generates position Independent code so
that you may put the compliled code anywhere In memory, Including
Into a8 ROM-pack! It Is extremely simple to pass varlables back
and forth between a BASIC driver program and +the complled
program. Verslon 2.x allows string handling inside the compiled
program to make your compiled code more versatile. A speclel
feature of the Color Compiler™ allows machine -language code to be
embedded Into the compliled program so you can do +things <that
BASIC cen't,

NOTE: Before you do anything else with your Color Compller™ disk,
MAKE A BACKUP COPY. This wmll save you 8 fot of time If you
should acclidentally delete 2 file or a8 whole disk., We ask that
you respect the copyright that accompanles this software and not
glve away or sell coples. By doing this, we will be able +to
continue to provide good software at reasonable prices.

The subroutine package that Is Included In every complled
program Is copyrighted. However, there Is no additional fee to
distribute a program written wlith <the compller. You must,
however, Include In the program and any documentation the words:

Thls program was created using the Color BASIC Compller
(C)1984 Computerware

If yov write a useful progrem with the compller, please send
& copy to Compuierware for possible marketing.

(C) 1954 CuxBuT: % RE -2 '

N

THE COLOR COMPILER™

SECTION I = HOW TO USE THE COLOR COMPILER:

1.

SAVE the program to be complled on eny disk In any drive. DO
NOT USE ASCI! FORMAT. The Color Complier™ resds the BASIC
program directiy from +the disk and compllies It Into memory.
Make sure that the program uses only the Instructions allowed
by the Color Compilier®™ and <that It follows all <the -
restrictions described in section-|l, -

Put your Color Complier™ diskette In drive O eand type
RUN"COMPILER". The Color Compller will automatically execute a
PCLEAR 0 to free up the maximum amount of memory possible. |f
the compliler does execute a PLEAR 0, It will reload Itself.
Be sure to PLEAR the number of graphlcs pages you wlll need
efter the compliler 1Is done, otherwise you will get some

.unpredicable results when you execute the new program.

Enter the address (In HEXIDECIMAL) where your machine code 1Is
to be stored. This will be the EXEC address of the resulting
r--5ram (unless ROM Is selected). NOTE: The Color Compllier®
uses hexidecimal for all numbers. ‘

Enter the name of the program you saved in step 1. Make sure
g« <&uwier the name the same way you saved it, even the drive
number. The complier will assume the flle has the extenslon
/BAS @and that 1t Is on drive 0 If you don't tell It something
else. For example, 1f you enter 'MAZE', <+he <compller will
eassume you meant "MAZE/BAS:0°¢. .

Enter 'S' (or Just press ENTER) for screen output or !'P' for
printer output. The compiler will display the starting
eaddress of each BASIC ilne compllied. It will also display the
CLEAR, START, END &and EXEC addresses of the finished code.
See section VY for an explanation of these addresses.

Enter 'M' (or Just press ENTER) for memory resident code or
enter 'R' for code that Is ROM-pack compatible. The ROMable
code can be relocated into the &HCOOO area and the arrays and
strings (which normally exist Just below the compllied program)
will stay 1In RAM. The first three bytes of the ROMable code
ere a BRAnch to the beglinning of your program so that when
relocated to &HCO00, a call to &HCOO0O will start the program
{ihis Is necessary for normal ROM-pack start wup). Finally,
the ROMable code has a JMP to BASIC's cold start routine at
the end of the code. It 1Is NOT Intended to be used es
subroutine for a BASIC program.

If you are passlng‘va!uus 2ith ‘the USR routine, enter a 'Y',
Otherwise, enter 2 "N* 'ar Just p-iss FNTER).

3 “&) 1984 COMPUTERWARE

THE COLOR COMP|LER®™

SECTION | - HOW TO USE THE COLOR COMPILER (cont.)

8.

The Color Compliler™ wlil now complle vyour program at the
address glven In step 3. Thls process may take » few mlnutes
tor longer progreams. Just keep Tninking hcw much faster it
will run when the Color Compiler™ is done with 1t}

When the compiler Is finished, If there were no errors, USRO
will be set to the starting address glven In step 3. For more
Informetion on <the USR function, see chapter 15 of your
Extended BASIC manual.

SECTION 1l - RESTRICTIONS:

1.

(ol

Maximum program length Is 200 Ilnes. Thls can be changed by
setting +the varlable PL in Ilne 0 to whatever value you need.
if you try to make It too blg, you will get an OM error (Out
o1 Memory). Remember to re-SAVE the program If you make eny
changes that you want to keep.

Maximum number of Ilne number references (GOTO's, GOSUB's,
etc.) is 100. This can be changed by setting the varlable LB
In line 0 to whatever value you need. As with number 1 above,
you are |Imited by memory avalilable.

Variable names can only be single letter from A to Z and
string variables from A$ to Z§. '

All strings must be DIMensioned to the meximum length you will
need. Strings can be from 0 to 255 characters.

Arrays can only be one dimenslion and single fetter from A to
Z. (These are seperate from simple varlables). String arrays
are NOT supported. :

Only Integers from =32768 to +32767 are allowed. The Color
Compllier™ does not understand decimal numbers (|lke 3.1415,
etc.). '

All DATA statements must be the LAST statements (except for
REMarks) In your program. All string DATA must be enclesed Ip
quotes.

~

1002 AAMDNTEDWADT V]

THE COLOR COMPILER™
SECTION 11 = RESTRICTIONS (cont.)

8. All programs must have an END statement. The END statement
mey appear anywhere In your program except after DATA lines.

e

9. Only Instructions ilsted In section IV and functions |listed In
section Ill ere allowed. These must follow +the syntax
described In those sections. You will notice that some of the
Instructlons syntax are different than that of BASIC's.

SECTION 111 = LEGEND FOR THE INSTRUCTIONS: .

Sectlion IV contains a Iist of all the Instructions the Color
Compiler™ wunderstands. This legend should help you understand
the syntax of each of these.

IE = an Integer Expression (Equation) <that may have any
"~mblnation of the followlng: o '

The erithmetic operators: + = # / § () < = >

The logical operators: AND OR NOT

Decimal Constants from =32768 to +32767

L. Linstants from 8HO to &HFFFF

Single letter variables A to 2

Array varlables A(n) to Z(n)

String comparisons < = >

Any of the functions listed below:
ABS(n): Returns the absolute value of n
ASC(n$): Returns the ASCI| code of n$
JOYSTK(n): Returns the value of Joystick n
LEN(n$): Returns the length of n$
PEEK(n): Returns the byte value et address n
"PEEK#(n): Returns the word value at address n
PPOINT(x,y): Returns the color of the pixel at (x,y)
RND(n): Returns e random number between 1 and n
SGN(n): Returns the sign of n
SQR(n): Returns the nearest Integer square root
TIMER: Returns the value of the timer
VAL(nS$): Returns the numeric value of n$

IC = Integer Constant

<
L]

Simple Varlable
AY = Array Yarlable
LN

Line Number

-3 - (C) 1984 COMPUTERWARE

(

. THE COLOR COMPILER"®™

SECTION 111l = LEGEND FOR THE INSTRUCTIONS kconf.)

SE = String Expression (Equafion) fhaf may have any combination
of the followling:

String Addition: + k .

String constants contalined within quotes

Single letter string variables A$ to Z§

Any of the .functlions listed below: . _
CHRS$(n): Returns a character with the ASCII code n
INKEY$: Returns a character from the keyboard
MIDS(n$,n,n): Returns & string portion (same as BASIC)
STR$(n): Returns the string equlivalent of n

SC = String Constant. These must be enclosed In quotes. For
example, "This Is & string constant®, '

SV = String Varlable ‘ .

ccrTiAM |y = [NSTRUCTIONS ALLOWED:

With a few exceptions, all Instructions have the same format
and options @es In Extended Color BASIC. Some exceptions eare
detalled with <the commands. These modiflcations should not
S ~zanmlng but should In fact, make It easler.

¢ -

R C HW S E
CIRCLE(IE, IE),IE, IE,IE, IE,IE

For the H/W ratlio, use 0 to 1024, Instead of 0 to 4, where
256 equals a perfect circle (128 would equal .5). For S end
E (Starting and Ending points), use 0 to 64 Instead of 0 to
1 (32 would equal .5). This change Is needed since the
Color Compiler™ does not understand decimals.

CLS IE
COLOR 1E, IE

DATA IC,IC,®"SC", ...
Note: All DATA must come at the end of your program.
All string DATA must be enclosed In quotes. String
constants and numeric constants may be mwmixed on +the
same [Iine, but should be separated for clarlty.

~

(C) 1984 COMPUTERWARE -6 -

THE COLOR COMPILER®™

DIM AV(IC), AV(IC) SV(lC) oo '
Note: Only lnfeger Constants mey be usod.

String veriables must be DIMensioned for the maximum

length they will contain (0 to 255).

END | 4 y
Note: Every program must have an END statement.

The .END statement tells the compiler where you want to

Jump back to BASIC,

EXEC IE
Note: Exec causes & JSR to the address speclfied by IE.

FOﬁ V= |E TO IE STEP IE

GET(IE,IE)=(IE,I1E),AY (All optlions are supported)
G0SuUB LN

GOTO LN

v e snciv LN ELSE LN
Note: Only line Numbers may be used.

LET end Implied Let:
V= IE or AV = |E or TIMER = |E or SY = SE

LINECIE,IE)=-(IE,IE),PSET (All optlons are supported)

MOTOR ON or OFF

NEXT V,V, ... (All options are supported)

THE COLOR COMPILER®
N
ON IE GOSUB LN,LN, ...
ON IE GOTO LN,LN,...
PAINT(IE,IE), IE, IE
PCLS IE
PCOPY IE TO [E
PMODE IE, IE
POKE IE, IE (Pokes single bytes)
POKE# IE,IE (Pokes two byte words)

PRESET(IE, IE)

PRINT IF 1F. A~ PRINT @ IE, or PRINT SE;IE , etc.
Note: Any combination Is valid.

PSET(IE,IE,IE)
PUTCIE,IE)=-CIE,IE),AV (All optlions are supported)

READ V,V,AV,8¥, ...
Note: Any combinatlon Is vallid.

REM or ¢
RESTORE

RETURN

£\

THE COLOR COMPILER™
SCREEN IE, IE
SOUND IE, IE

USR; HC;HC;HC... (HC 1s a2 hex constant) T

This Instruction allows the user to add machine Ilanguage
Instructions within <the compllied progrem. All of the numbers
must be In hexldecimal and must be seperated by semicolons. As
an example:

10 USR;BS;O;O;BO;1F§26;FC;86;4F;BD;A2;82

Represents:

830000 LDX #3$0000
301F WAIT LEAX =1,X
26FC BNE WAIT
864F LDA #34F
BDA282 JSR >8A282

This command wlll be useful to assembly language programmers

suv want Yo embed machine code directly Into thelr complled
programs, ’

&

" THE COLOR COMPILER™

SECTION V = ADDITIONAL INFORMATION:

1. Passing simple varlables from BASIC:

L

When you set up @ program Yo be complled and you wish to
pass a varlable from a BASIC driver program, simply leave that
varieble wundeflned at the BEGINNING of +the program to be
compiled. EXAMPLE: B=A#24 where the varlable A has not been
defined before 1In the compiled program. You should set all
variables used by the complilied program (not passed from BASIC)
to zero at the beginning of the program.

Passing the USR value from BASIC:

After answering 'Y' to the quesfloh In step 6 In sectlion
|, the variable 'U' will automatically contain the USR value
at the start of your compliled program.

Passing the USR value back to BASIC:

After answering 'Y'! to the question In step 6 In sectlon
|, assign the varlable 'U' equal to the velue you wilsh <o
return. This will be passed back to the calllng program.

Obtaining the remainder from a divide:

By using the § slgnllnMEDlATELY after a divide, you can
obtain the remainder. EXAMPLE: A=B/C+% or A=B/C:B=§

What the CLEAR, START, END, and EXEC addresses are:

When the Color Compiler™ 1Is finished working on your
progrem, It will display four addresses. You can save the
compiled program to disk by typing:

SAVEM"F | LENAME"™ ,&H(START) ,8H(END) ,8H(EXEC)

where START, END and EXEC are the eaddresses printed by the

compliler. Before executing +the program, you should CLEAR
memory withs

CLEAR (STRING SPACE),&H(CLEAR)

where CLEAR Is the CLEAR address printed by the compliler and
STRING SPACE 1is the amount of memory to reserve for strings
used by BASIC. This will Insure the proper location of <the
stack pointer. Also, since the compiled code cannot execute
the proper PCLEAR statement, you must be sure that elther vou
or the calling BASIC program does so. (f you don't, you wili
get unpredictable results ranging from a 2FC ERROR +o e
crashed computer.

HOA SAMDNTEDWADE am

THE COLOR COMPILER"™

-

SECTION V - ADDITIONALuINFORMATION (Cont.)

€.

All errays have random values sfter the DIM statements and
should therefor be cleared at the beginning of <the program.
Strings are &ll set to null.

- . -

All machine code generated by the Color Compllier®™ Is
completely Trelocatable. WARNING: The compller generates code
that uses some of <+the routines In EXTENDED COLOR BASIC.
Therefore, most complled programs wlll not work on a
non-extended computer.

The following 1Is & memory map showlng how your progrem Is
compiled Into memory:

tececcccccccnca- + FFFFH

+ ROMS <

+ & <+

+ 1/0 +
teccccncccccccea + 8000H
tecmcnrncccncae- + END Address
+ +

+ COMPILED +

- FROGRAM +

+ : + :
oo o e o e + EXEC Address
+SUBROUTINE PKG.+

frmocrrnss e + START Address
+ ARRAYS +

+ & STRINGS +
tecrnrcnecnccocnens + CLEAR Address’
+ +

+ +

+ BASIC PROGRAM +

+ (IF PRESENT) +

+ +

+ £
tecccccccccccens + 0600H

+ VIDEO RAM +
tecmccccncccccea + 0400H
toccccccnccnce-- + 0333H i
+ STRING BUFFER +
temccccccccccca- + 0233H

+ VARIABLES +
teccccnrccccccaa + 0200H

+ DIRECT PAGE +

F e o o o + 0000H

- 11 - (C) 1984 COMPITERWARE

THE COLOR COMP|LER™

SECTION VI - TIPS & TRICKS:
1. To calculate the erray slzes for GET end PUT Instructions:

H = rectangle height W = rectangle width

e
For PMODE O : ARRAY SIZE = H#W/32+4 -
1 3 ARRAY SIZE = H*W/16+4
2 : ARRAY SIZE = H*W/16+4
3 s ARRAY SIZE = H*N/8+4
4 ': ARRAY SIZE = H*W/8+4

H and W are figured using standard 256 X 192 coordlinates, and
not by counting the number of actual picture elements.,

2. Do not be afrald of using GOSUB's or ON n GOSUB/GOTO's. These
Instructions will save lots of memory and are extremely fast,

3. The SQR function Is desligned to handle unsigned amounts from 0
to 65535 (0 to FFFFH) and glve the closest Integer result.

4. If you wish +o make good sound effects, use 0 (zero) as the

length In the SOUND instruction. Color BASIC does not accept

& 2zero but the compller will, By using zero as the length, a

very short duration 1Is sounded. By mixing different
«vyuenclies, you can meke a2 lot of different sounds.

5. If you need to add some deleys to your progrem, try using the
TIMER Instead of a FOR/NEXT loop. It will glve you more
predictable results and smoother animation, The timer
tiuciemeils sixty times per second so you can get accurate
delays from a2 sixtieth of & second +o many mlinutes. For
example, to get a X second delay call thls subroutine:

1000 REM DELAY FOR X SECONDS

1010 TIMER=0 -

1020 IF TIMER<X*60 THEN 1020

1030 RETURN .

6. You may have many subroutines compiled at once by putting them
all Into the same program to be compiled followed with an END.
While the complilier Is working, write down the address of <the
first |llne of each subroutine. You may simply EXEC to these
eddresses to access any part of the program. Be careful not
to EXEC 1Into the mlddie of a FOR=-NEXT loop In the compiled
program. :

(C) 1984 COMPUTERWARE w g =

~ THE COLOR COMPILER™

SECTION VI = TIPS & TRICKS (cont.)

b 7. The followling subroutine wiil Input a string Into AS

length L:

10 DIM AS$(255),18(1) ' *

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100

AS$="":[=32)
I1$=INKEYS:IF 1$="" THEN 1010
IF 1$=CHR$(13) THEN 1100

IF 1$=CHR$(8) THEN 1080

IF ASC(1$)<32 THEN 1010

IF LEN(AS)=L THEN 1010
AS=AS+1S

PRINT 18;:G0T0 1010

IF LEN(AS)=0 THEN 1010
A$=MIDS$(AS,1,LEN(AS)=-1):6G0TO 1070
PRINT:RETURN

- 13 - (C) 1984 COMPUTERW:\RF

wilth

THE COLOR COMPILER™
SECTION VIl = ERROR MESSAGES:

If the Color Compiler™ cannot complie 8 IIne of the source
program, I+ wlll stop and print an error message. . These are
simllar to BASIC's errors, however you can teil +them apart
because the complier does not precede the error message with a
question mark. Below Is a Ilst of possible error messages and
thelr llkely causes:

ERROR POSSIBLE CAUSE

DD Double Dimensloned array. _
=An array varlable was DIMensloned more than once.
=A string variable was DiMensioned more than once.

ME Missing End
-The END statement was left out of the program.
=All programs must have an END statement,

NE Name does not Exlst.

-The program name you gave the compllier does not
exist on the disk. Check the DiRectory.,

0Ss Out of Space.
=The program complled beyond the 7FFFH IiImlt,
-There were too many program llnes.
=lhere were too many [ine number references.
=A string became larger than 255 characters.

SN Syntax.
-A typlcal typing error.
-A decimal point In a constant.
=An lllegal iInstruction.)
=An Instruction (other than REMarks) efter DATA.
=An Instruction Instead of & |lne number In
an IF/THEN statement.
=A two letter verlable.
=An array with more than one dimension.

™ Type Mismatch
=String and numerlc were mixed In the same
formula.
UA Undeflined Array.

=All earrays must be DIMensloned even |f you
ere using 10 or less cells.

L) Undefined Line number reference.
=The number gliven In thls case Is not the line
where the error occurred, but the line number
the Color Compller™ cannot find.

us Undefined String.
=All strings must have a DIMenslion length.

(C) 1984 COMPUTERWARE = 14 =

THE COLOR COMPILER"™

SECTION VIIl = SAMPLE RUNS:

The followling program was run with .each of the different
. The timings for both the compiled and BASIC

ilne 30's and +imed

verslions are listed below.

10 PMODE4,1:A=88:B=20:TIMER=0

20 FOR N=1 TO 10000

30 #
40 NEXT N:U=TIMER:END

LINE 30 COMPILED(sec.) BASIC(sec.) SPEED DIFF.
* REM .68 32.27 4731
* C=A .82 42.68 52:1
® CzA+B 1.07 55.67 5231
C=A-B 1.32 57.10 43:1
% Cu=AMB 2.83 58.33 21:1
* r=2/m 6.57 88.57 13:1
% C=ABS(A) 1.05 51.97 49:1
® C=JOYSTK(0) 5.00 102.58 21:1
* C=PEEK(N) .95 59,33 62:1
® C=PPOINT(A,B) 3.23 75.65 2331
® C=RND(A) 9.42 131.72 1421
C=SGN(A) 1.00 55.07 55:1
¢ C=SQR(A) 9.58 631.07 66:1
® C=TIMER .82 45.62 56:1
* GOSUB50/50RETURN .85 47.93 5611
* IFA<B THEN4D 1.18 58.53 5031
IFA>B THEN40 1.22 61.60 50:1
% POKE A,B 1.02 54,55 5331
* PRESET(A,B) 3.80 63.15 1721
% PSET(A,B) 3.80 61.66 16:1
% RESTORE:READA 1.48 105.20 71:1
“AVERAGE SPEED INCREASE IS 42:1

- 15 - (C) 1984 COMPUTERWARE

THE COLOR COMPILER™
SECTION IX = USING THE DEMO PROGRAMS:

(. Your Color Compllier™ disk contalins the following flles:

COMPILER.BAS <= The packed version of .the Ccmpliler®
COMPILER.REM <= The REMarked verslon of the Complier™
SUBPACKG.BIN <= The subroutine package

SUBPACKG.TXT <= The subroutine package source code
MAZE «.BAS <= A demo program

BEAM «.BAS <= A demo program !

FUNSOUND.BAS <= A demo program (NOT to be compliled)
BEEP .+BAS <= Used by FUNSOUND

BEEP .BIN <= Compiled version of above

COUNTER .BAS <= A demo program

.FUNPLOT .BAS <= A demo program

DUMP «.BAS <= A demo program

SUBPACKG.BIN and SUBPACKG.TXT are the subroutine package that 1Is
added to the beginning of every compiled program. This Is a
position Independent flie and must remaln that way [If you make
»nv rhanges to It.

MAZE.BAS Is an excellent example of the speed difference created

by the Color Compiler™. Complle the program at &H7800 and then

type 'CLEAR 200,8H6680:A=USR(0)'. This program runs about 40
= *imes £rcde- nnce It has been complled.

BEAM.BAS Is a game that resembles the Tron ITght cycles. It was
written only to be complled (you can't run the source code).
Compile I+ at &H7700. The object Is to surround your opponent
with your +trail and make him crash into a wall. The Joystick
button controls the speed of your cycle.

FUNSOUND.BAS calls BEEP.BIN to demonstrate the sound function
with a duration of 0. You can change the wvariable | <to get
different . sorts of sound effects. Thls also shows the USR value
belng passed to the compiled program,

COUNTER.BAS is a subroutine that displays numbers on the PMODE 1
screen. |t Is set up to rapidly displey the numbers 1 +o 500,
but can be easily modiflied to listen to a BASIC driver program.

FUNPLOT.BAS plots JOYSTK(0) vs. time with sound. . This was the
filrst program we wrote to go with our Blo-Detector™. It shows
how fast you can do graphics with a compllied program.

DUMP.BAS dumps the ASCI| equlivalent of 2 range of memory to the

screen. At the 'START:' prompt, enter the flrst address to dump

(In hex). Enter the last address to dump at the 'END :' prompt.

While the screen I[s scrolling, nress any key to pause 1It. Any

key (other than 'Q') will re: .me the llsting. If you press 'Q',

(‘ the program will start nver, - you enter '0000' for both the
: start and end addresses. le rougram wlil! axit to BASIC.

(C) 1984 cC! F e

. VHE COLOR COMP|LER"™

SECTION X - TECHNICAL INFORMATION:

The followlng few pages ere - provided for advanced
programmers who may want to modlfy the Color Compiler™ <to add
edditional commands or change the way existing ones work. Keep
In mind that once you have modifled <the program, ‘Computerware
cannot help you wlth eny problems that may arises :

A. SUBROUTINES:

The following Is a Iist of the majJor subroutines used by the
Color Compliler™. This will be helpful If you iIntend <to0 add
additional Instructions. NOTE: The |lne numbers here are for the
REMarked version of the program. We suggest that you make any
changes to this version and after testing, remove the REMarks and
renumber the modifled version. Make sure that, If you do make
8ny changes and save <the program, you change the name In |Ine
1430 (RUN"COMPILER/REM") 4o match the name you used to save <the
hew version, Otherwlse, when the compliler has to reload itself
after a PCLEAR 0, it will load the old verslon.

GFT NEXT CHARACTER LINEf# 60

Al

ENTRY CONDITIONS: none.

EXIT CONDITIONS: Next character Is returned In C. CC
points to the current character.

GET PREVIOUS CHARACTER LINE# 80

ENTRY CONDITIONS: none.
EXIT CONDITIONS: CC points to the previous character.
COSUB 60 to obtaln C. WARNING: This routline Is only

for obtainling the last character again. GOSUB 60 must
be called between GOSUB 80°'s. ’

DECIMAL NUMBER DECODE LINE# 130
ENTRY CONDITIONS: CC polnts to the first diglt.
EXIT CONDITIONS: N contalns the velue. CC polnts to
the last diglt. '

HEX NUMBER DECODE LINEf 150
ENTRY CONDITIONS: CC points to the first digit of <the
number to decode (not &H).

. EXIT CONDITIONS: N contalns the valve. CC polnts +to
the last diglt. =

- 17 - tC) 1286 COMP' " VT 2WARE

(7'\

THE COLOR

COMPILER"™

A. SUBROUTINES (cont.)

POKE

POKE

FIND

BYTE LINE# 180

ENTRY CONDITIONS: P contalns the value to poke.
EXIT CONDITIONS: M 1Is Incremented by one to the next
byte. : oo)

WORD LINE#190

ENTRY CONDITIONS: P contalns the 16 bit value to poke.
EXIT CONDITIONS: M 1Is incremented by 2 to the next
word.

VARIABLE ADDRESS LINE# 250

ENTRY CONDITIONS: V contalns the ASCI| code mlinus 65.
WO contains 0 for simple variables, 1 for arrays, or 2
for strings.

EXIT CONDITIONS: V contalns the address or base address
for arreays and strings.

EXPRESSION DECODE LINE# 330,340

ENTRY CONDITIONS: CC points +to the character Just
before the expression. G0oSUB 330 for numerlc
expressions, GOSUB340 for string expresslions. ™
error check 1Is at 1390 for strings 1400 for numeric.
The error Is automatically checked If 330 end 340 are
called. ' ’

EXIT CONDITIONS: The expression value wlill be
calculated Into the D reglister for numerlc. For
strings the X reglster points to the beginning and the
B reglister contalns the length. CC points to the next
cheracter after the expression,

(C) 1984 COMPUTERWARE - 18 -~

LN

THE COLOR COMPILER™

B. VARIABLE DEFINITIONS:

VARIABLE MEAN ING ' o)
A Miscellaneous use.
AA Current array address polnter. _
AD Memory poke address (doubl¢ byte).®
c Next character In ASCII,
cC Current character polnter.
Cce Current granule number.
Cs Current sector number.
Cv Current variable address.
DE . Output device number.
DF Data flag.
DR Disk drive number,
E End statement flag.
EF End of program flag.
FL Disk read flag.
GP Line number table polinter.
LB MaxImum number of llne references.
LM Don't skip spaces flag.
LN Current llne number.
LP Line reference table polnter.
- Top of line number table address.]
M Current memory poke address. '
MF Lowest save address.
MS Execute address.
N Constant value/Error trap value.
i iwext granule.
NS Next sector flag.
OK Error type flag.
P Poke value.
PL Maximum number of program llnes.
RF ROM-Pack flag.
S5F String flag/expression type. ,
SP Length of the Subroutine Package.
TP Line number table polnter.
v Verleble name (ASCI!-65).
WO K Var. type/ O=simple,l=array,2=string.
W=-W9 Working storage. »

ARRAY VARIABLE DEFINITIONS:

A(n) Line number reference table.
AA(n) Array variasble address table.
LT(n) Line number table.

SA(n) String varleble address table.
VA(n) Simple varleble address table.

STRING VARIABLE DEFINITIONS:

AS First half of sector contents.
BS Second half of sector contents.
EXS Extension name.

F$ Program name.

M3 USR value flag.

NS Number constant.

- 19 - (C) 1984 COMPLTERWARE

r

THE COLOR COMPILER™

C. SUBROUTINE PACKAGE POINTERS:

VARIABLE

AC

Co

DA

ET

IK

JA

SUBROUTINE AND CONDITIONS

DESCRIPTION: Polints to <+he array subscript check
routine. This routine calculates the" array polnter,
checks 1Its value against the dimensioned slze, and
leaves the polnter on the top of the stack.

ENTRY CONDITIONS: The array base address must be the
first value on the stack (besldes the return
address). The subscript value must be In D.

EXIT CONDITIONS: The polnter to the errey value 1is
left on the +top of the stack. To obtaln the array
value use the following Instruction: LDD [,5++] or
equliv, .

DESCRIPTION: Prints spaces to the next comma fleld.
ENTRY CONDITIONS: none ,
EXIT CONDITIONS: none

DESCRIPTION: Divide routine. Divides two signed 16
bit values.

ENTRY CONDITIONS: The dlvidend (first value) must be
In X. The divisor (second value) must be In D.

EXIT CONDITIONS: The quotient Is returned In D, end
the remalnder Is stored In addresses $5C/$5D.

veSURIPTION: Read data routine. Reads one 16 bit
data item Into D and Increments the polnter, .
ENTRY CONDITIONS: none.

EXIT CONDITIONS: Returns a valiue In D.

DESCRIPTION: Prints YENTER! ASCIl !l Code
ENTRY CONDITIONS: none
EXIT CONDITIONS: none

DESCRIPTION: Scans the keyboard for e pressed key.
This routine Is the same as INKEY$ In BASIC.

ENTRY CONDITIONS: none EXIT CONDITIONS: The X
register points to <the string buffer where <the
character Is stored and the B reglster contains the
length (0 or 1),

DESCRIPTION: Read Joystick routine. Reads - one
Joystick value &t a <time Instead of all four llke
Color BASIC.

ENTRY CONDITIONS: D should contaln the value of which
Joystick to read. N -

EXIT CONDITIONS: Returns the Joystick value In
address $51.

(C) 1984 COMPUTERYARE - 20 »

THE COLOR COMPILER"™

C. SUBROUTINE PACKAGE POINTERS (Cont.):

VARIABLE
MA

NA

NO

PA

SUBROUTINE AND CONDITIONS

DESCRIPTION: Multiply routine. Multiplies two signed
16 blt values. ’

ENTRY CONDITIONS: The tirst value must be In X. The
second velue must be In D. '

EXIT CONDITIONS: The value of the multiply Is
returned In D. - '

DESCRIPTION: MIDS function. Thls routlne returns a
portion of a string. ENTRY CONDIT}ONS: The stack

‘must be In the following order:

LOW memory: Return address for the subroutine Jump.,
Return string length. FFFFH = balance.
Starting polnt In string.
String total length.,

HIGH memory: String eddress. :

EXIT CONDITIONS: The X reglster points to the string
portion. B equals the new string length.

DESCRIPTION: Polnts ‘to the NEXT routine. Thls
routine Increments the variable glven 1In the FOR
Instruction by <the STEP value and checks 1t agalnst
the lImit., |f the value Is outside of the Ilmit, the
rouTine Jumps out of the FOR/NEXT loop.

ENTRY CONDITIONS: The stack must be In the followling
order:

LOW memory: Return address from +the subroutine Jump.
STEP value (16 bit).
Jump address to the start of the loop.
Limit value (16 bit).’

HIGH memory: Polnter to the FOR/NEXT variable.

EXIT CONDITIONS: none

DESCRIPTION: Prints a number on the screen.
ENTRY CONDITIONS: Number to print must be In D.
EXIT CONDITIONS: none

DESCRIPTION: PPOINT routine. Gets the color at the
X/Y point on the screen (same as Extended Color
BAS'C)- '

ENTRY CONDITIONS: The X coordinate must be stored at
$BD/SBE. The Y coordinate must be stored at $BF/$CO.
EXIT CONDITIONS: The polnt color value Is returned In
D.

- 21 - (C) 1984 COMPUTERWARE

4

" THE COLOR COMPI|LER™

C. SUBROUTINE PACKAGE POINTERS (Cont.)s:

VARIABLE
RA

RS

SA

SR

SC

SD

SUBROUTINE AND CONDITIONS

DESCRIPTION: Random number generator. This routine
calculates 2 random number, using the TIMER, between
one and the value of the argument. ° :

ENTRY CONDITIONS: The maximum value must be In D.
EXIT CONDITIONS: A random number Is returned in D.

DESCRIPTION: Read String routine. This routine
reads a string Into @& variable and Increments <the
polinter to the next data Item.

ENTRY CONDITIONS: The U register must contaln the
pointer to the variable.

EXIT CONDITIONS: The varlable wlil automatically
contaln the 'string date only 1f there was no size
confllct.

DESCRIPTION: Square root routline. This routline
calculates the square root for any number (unsigned)
between 0 and 65535 (0 to FFFF Hex).

ENTRY CONDITIONS: The number to find the square root
of must be In D. , .

EXIT CONDITIONS: The nearest integer square root s
returned In D.

NESCRIPTION: String append routine. This routline
adades one string to another creating one long string.
ENTRY CONDITIONS: The first string's polinter and
length must be on the stack. The second string's
pointer must be In X and Its length in B.

EXIT CONDITIONS: The X reglster contalns the polnter
to the beglinning of the string buffer and the B
register contains the string's length.

DESCRIPTION: String compare routine. This routine
compares two strings and returns a2 flag <that
Indicates the result of the comparison.

ENTRY CONDITIONS: The first string's polnter and
length must be on the stack. The second string's
pointer must be In X and Its length In B.

EXIT CONDITIONS: The B register contalns a flag and
the CC register refects the contents of B. The
following Is a list of what the flags mean:

B Meaning
SFF The 1st string < 2nd string.
0 The 1st string = 2nd string.
1 - The 1st string > 2nd string.

DESCRIPTION: STR$ function. Thls routine changes a
16 bit Integer Into an ASCII string.

ENTRY CONDITIONS: The C i._ ister musi contaln the
number. .. _

EXIT CONDITIONS: The X reglister points to the
beginning of the string and B contalns the length.

(C) 1984 COMPUTERMARE - 22 =

- THE COLOR COMP|LER"™

.
-

C. SUBROUTINE PACKAGE POINTERS (cont.)

VARIABLE
SO

ST

VA

SUBROUTINE AND CONDITIONS

DESCRIPTION: String outpnt routlne. Thls reoutline
outputs a string of characters, ~ =« :

ENTRY CONDITIONS: The X reglster must contaln a
pointer to <the beglinning of the ~string. The B
register contains the string length. ‘

EXIT CONDITIONS: none

DESCRIPTION: String transfer routine. This routine
treansfers a string of characters Into a8 string
variable. '
ENTRY CONDITIONS: The U reglister must polnt to the
string variesble. The X and B reglsters must contaln
the polnter and length of the string to transfer.
EXIT CONDITIONS: Reglisters U, X, and B are all
modifled.

DESCRIPTION: VAL functlon. This routine returns the
signed numerical value of a string.

ENTRY CONDITIONS: The X reglster must polnt %o the
beglnning of +the string and the B reglster must
contaln Its length. '

EXIT CONDITIONS: The D register contalns the signed
Integer value of the string.

- 23 - (C) 1984 COMPUTERWARE

THE COLOR COMPILER™

D. HOW THE COLOR COMPILER WORKS:

Iin order to fully understand how the Color Compller™ works,
you wlil heve to wunderstand how BASIC works and have some
knowledge of machine language programming. Here 1Is - & qulck
overview of what BASIC does when you type In .a program line:

As soon as you press ENTER, BASIC changes your commands and
functlions Into codes «called <tokens. The tokens and the
Information that makes up the rest of the llne, Including a code
for the Ilne number and a two byte offset to the next line, are
stored in the program at the eppropriate spot. When you SAVE
your program to disk, BASIC does not change thls format (UNLESS
you use ASCII formatl). , C

When you complle your program, the Color Compiler™ finds the
location on the disk where your program Is stored and reads the
Information directly. Here Is what happens:

= First, the Color Compllier™ reads the Ilne offset value,
which Is generally Ignored.

- Second, It saves the [ine number and the location In memory

..re It starts for an update routine later In the program.
= Third, the Color Compliier™ gets &an Instruction, In +oken
form, and decodes [t according to Its syntax.

- Fourth, eafter decoding the Instruction and poking the
machine language equlivalent into memory, the compliler™ looks
ivt <« «viv, which Is the end of the IIne, or the code for a
colon which means more Instructions. I|f It Is a zero the
compller returns to the first step. |f the code Is a colon,
the compiler returns to the third step.

- Fifth, the process contlinues until the end of program flag
Is found (a zero for the offset code).

- Sixth, the Color Compllier™ now updates all the Jumps (GOTO's
and GOSUB's) that were accumulated In the first pass.

= Last, the compiler prints all the Important Information
about the <compiled program end sets USR0O to the start
address. :

Here Is an example of how a program llne looks on the disk:
Your program lline: 10 READ A(N)

What BASIC actually
stores In memory: 27 FF 00 OA 8D 20 41 28 4E 29 00
=A== ==B==C D E F 6 H 1

Is the offset to the next |lne.

is the |lne number.

Is the token for READ.

Is the ASCII code for a space.

Is the ASCI| code for the A.

Is the ASCII code for the (.

is the ASCI| code for the N.

Is the ASCI| code for the). °
Is the end of line flag.

= TXTOTMTMOO®D®>

THE COLOR COMPILER™

E. HOW TO ADD YOUR OWN INSTRUCTIONS:

If you have llttle or no knowledge bf how to program In
machline language, this section will be hard to understand. This
Information Is provided for experienced programmers only.

If you ere golng to 2add en Instructicn or function to the
Color Compliler's vocabulary, It must already be 1In BASIC's
vocabulary. If It Isn't, there will be no token generated by
BASIC and the compller will see It as a variable. As an example,
let's add the AUDIO ON/OFF Instructions.

Add the followling Ilnes to the compller program:

1885 IFC=&4HA1 GOSUB5000 'AUDIO
5000 GOSUB6D

5010 1FC=8H88 THENP=8H5F:G0SUB180:W=8HA99D:G0SUB1280:60TO60
5020 IFC<>&HAA THEN2100

5030 W=2HA974:60SUB1280:G0T060

Line # 1885 tells the compllier +that the decoding routine for
AUDIO Is atlline 5000.

-.2: 2 5000 gets the next character after the AUDIO token.

Line # 5010 checks that character and If 1t Is the token for ON
(&HB8) 1t pokes the code for a CLRB (&H5F), pokes a JSR +o the
AUDIO ON routine In the BASIC ROM (&HA99D), then gets the next
cneiwcies @il F€TUrns to the maln [oop.

Line # 5020 checks that éharac?er and If It Is not the token for
OFF 1t reports a SN (syntax) error. .

Line # 5030 pokes the JSR to the AUDIO OFF routine In the BASIC

ROM (&HA974) and then gets the next character and returns to the
maln loop. '

Keep In mind that In this case most of the work was done In
BASIC's ROM, On the other hand, most edditlions that use more
parameters or equations won't be as simple unless you are good at
programming In machine language. All of the maln subroutines and
some commonly used machine |angueage Instructions ere between
lines 60 and 1410. These will help you cut down on adding & lot
of poke Ilnes (GOSUB180 & 190's). Functions can be added In the
same manor as Instructions between |lnes 720 and 880. See the
next page for a Ilst of Instruction and function tokens. Here Is
what the compllier changes POKE A+1,20 into:

LDD. >$200 The $200 Is Variable A's locatlion.
PSHS A,B Save D on the stack.

LDD #1 Constant 1.

ADDD e S++ Add 1 to A.

PSHS A,B Save poke address.

LDD #3514 $14 1s HEX for 20.

STB [,S5++] .. Stores B at the address on the stack

“end strips the stack.

e 25 = (C) 1884 COMPINTERWARE

THE COLOR COMPILER™

INSTRUCTION TOKENS:

AN 4+ % o

>
AND
AUDIO
BACKUP
CIRCLE
CLEAR
CLOAD
CLOSE
CLS
COLOR
CONT
COPY
CSAVE
NATH
vt

DEL
DIM

=]

DIR
DLOAD
DRAW
DRIVE
DSKI1$
DSKINI
DSKO$
EDIT
ELSE
END
EXEC
FIELD
FILES
FN
FOR
GET
o)

IF
INPUT
KILL
LET
LINE
LIST
LLIST

FUNCTION TOKENS:

(C) 10R4A AOMPHNTERWARE

ABS
ASC
ATN
CHRS
cos
CVYN
EOF
EXP
FIX
FREE
HEXS
INKEYS
INSTR
INT
JOYSTK
LEFTS
LEN
LOC
LOF

LOAD
LSET
MERGE
MOTOR
NEW
NEXT
NOT
OFF
ON
OPEN
OR
PAINT
PCLEAR
PCLS
PCOPY
PLAY
PMODE
POKE
PRESET
PRINT
PSET
PUT
READ
REM

LOG
MEM
MIDS
MKN S
PEEK
POINT
POS
PPOINT
RIGHTS
RND
SGN
SIN
STRINGS
STRS
SQR
TAN
TIMER
USR
YAL
YARPTR

99
93
90
A6
86
91
SA
AD
8F
84
80
85
A1l
88
9B
96
9F
83
89
9D

RENAME
RENUM
RESET

RESTPRE.

RETURN
RSET
RUN .
SAVE
SCREEN
SET
SKIPF
SOUND
STEP

- STOP

SUB

TAB(
THEN

T0

TROFF
TRON
UNLOAD
USING \
VERIFY
WRITE

