

CCLLIIBB//CCLLIIBBTT
LLiibbrraarryy

AApprriill 11999911

by Carl Kreider

Docs: Mark Griffith

__

2 Carl Kreider CLIB/CLIBT OS-9 C library

__

Carl Kreider CLIB/CLIBT OS-9 C Library 3

CLIB/CLIBT …………….……….……...……… xx/xx/90 ……………...……… Carl Kreider
 Mark Griffith
Conversion to DOC …………………………… 05/xx/07 ……………......…… Dean Leiber

Further Enhancement..................................... 04/xx/15Bill Pierce

Foreward

The original CLIB/CLIBT Documentation was converted to a more modern format to facilitate the
use of the C compiler on OS-9/Nitros-9. The basic text and order of the original documentation
was not changed, but there were some alterations made to allow for a common format structure.

The following additions were made to the document:

♦ Addenums/Caveats for Nitros-9 (if any)
♦ The Table of Contents
♦ Appendices

Please note that any addresses fn the Introduction are hopelessly out of date. For
errors/corrections in this document, please contact:

 Dean Leiber (adit@nationsdial.com)

__

4 Carl Kreider CLIB/CLIBT OS-9 C library

Tables of Contents

Kreider OS 9 C Library

__

Carl Kreider CLIB/CLIBT OS-9 C Library 5

INTRODUCTION

Kreider "C" Library Documents

Enclosed are the docs for the full Kreider Library. In December 1987 I released the docs for those
functions that were added to the standard "C" library by Carls library. This archives contains
machine readable copy for all the functions. Each file is formatted for MROFF output, and scripts
are included to allow the user to make printed docs or neat manual pages for online reading.

TO PRINT THE DOCS

Get your printer ready with lots of paper. The docs print on 147 pages. Run the shell script
"printdocs" and get some lunch, and maybe dinner too! You can change the script to redirect
output to a disk file if you like.

TO MAKE MANUAL PAGES

Run the script "make.mans". If you don't have a directory called MAN under the directory where
the mroff source files are, then make one first. Again, go get some shopping done, or clean the
celler/garage.

MROFF CHANGES

A new version of MROFF is included in this archive. Basically, all it does is add a few extra
commands to be slightly more compatible with UNIX nroff. In fact, the mroff source files will print
nicely on a UNIX system using nroff or troff without any changes.

MAN UTILITY

A man utility is included with the archive to enable those without such a beast to have online
manual printing. This is a very basic man utility, written by Pete Lyall and seriously hacked apart
by me. Everything is hardcoded for my system. Sorry. You'll have to change the source and re-
compile to use it.

Along with the man utility are two files, "man.index" and "man.help". Man.index is an index
(really!!?? - grin) of the library manuals. MAN tried to find the page depending on what you give it
on the command line. If it can't, it looks into the index to try and get the right page. It's simple,
fast, and works pretty well. "Man.help" is a simple file to allow you to quickly find the function you
are looking for by giving it a keyword to search for. Again, it is simple, fast, and reasonably useful.

Mark Griffith
DeLand, Fl.

CIS 76070,41
UUCP !uflorida!ki4pv!macs!mdg
 or

__

6 Carl Kreider CLIB/CLIBT OS-9 C library

!uflorida!ki4pv!macs!stetson!rewop!sysop
Internet griffith@stetson.edu
BITNET GRIFFITH@STETSON

__

Carl Kreider CLIB/CLIBT OS-9 C Library 7

ClLIB/CLIBT Reference abort(), abs(), access()

abort() Stop the program and produce a core dump

SYNOPSIS:

abort()

DESCRIPTION:

This call causes a memory image to be written out to the file core in the current directory, and then
the program exits with a status of 1.

abs() Interger absolute value

SYNOPSIS:

abs(i)
int i;

DESCRIPTION:

The abs() function returns the absolute value of its integer operand.

CAVEATS:

Applying the abs() function to the most negative integer generates a result which is the most
negative integer. That is, abs(0x80000000) returns 0x80000000 as a result.

access() Give file accessibility

SYNOPSIS:

#include <modes.h>

access(fname, perm)
char *fname;
int perm;

DESCRIPTION:

Access() returns zero if the access modes specified in perm are correct for the user to access
fname. A -1 is returned if the file cannot be accessed.

The value for perm may be any legal OS-9 mode as used for open() or creat(),or, it may be zero
which then tests whether or not the file exists or the path to it may be searched.

__

8 Carl Kreider CLIB/CLIBT OS-9 C library

Access() is useful to test the existence of a file without actually opening the file as would open()
or fopen(), thereby changing the user permissions.

CAVEATS:

The values for perm are NOT compatible with other non-OS-9 systems.

DIAGNOSTICS:

The returned error number, if a value of -1 is returned from this call, will be found in the global
variable errno, and will indicate the reason that file cannot be accessed.

asetuid() Sets the user ID number

SYNOPSIS:

asetuid(uid)

DESCRIPTION:

Asetuid() sets the user ID number for the current task. Unlike setuid(), this call can be used even
if the user is not the Super User.

SEE ALSO:

setuid(), getuid (Microware Manual)

atof(), atoi(), atoll() Convert ASCII to numbers

SYNOPSIS:

#include <math.h>

double atof(ptr)
char *ptr;

long atoi(ptr)
char *ptr;

int atol(ptr)
char *ptr;

DESCRIPTION:

These functions convert a string pointed to by to double, long, and integer representation
respectively. Any leading whitespace (space, tab, or newline) is ignored. The first unrecognized
character ends the string.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 9

Atof() recognizes (in order), an optional sign, an optional string of spaces, a string of digits
optionally containing a radix character, an optional `e' or `E', and then an optionally signed integer,
as in the example below:

"-1234.5678e+9"

Numbers up to the decimal point are assumed to be the integer portion of the number.

The atoi() and atoll() functions recognize (in order), an optional string of spaces, an optional sign,
then a string of digits.

CAVEATS:

Overflow causes unpredictable results. There are no error indications returned by these functions.

bsearch() Binary search function

SYNOPSIS:

char *bsearch(key, base, nel, width, compar)
char *key, *base;
int nel, width;
int (*compar) ();

DESCRIPTION:

This function performs a binary search on already sorted arrays of strings, finding the string
matching key, in the array of strings, beginning at the memory location pointed to by base. The
array MUST have been previously sorted, in ascending order, according to the comparison
function compar(). The total number of elements in the array is contained in nel, and the width of
each string in the array, which must all be the same length, is held in width.

The function compar() is any user supplied function that will return whether the first argument is
greater than, equal to, or less than, the second argument.

Strcmp() would be a good choice for string variables.

DIAGNOSTICS:

Bsearch() returns a pointer to the matching string upon success, or null.

SEE ALSO:

Strcmp()

__

10 Carl Kreider CLIB/CLIBT OS-9 C library

chain() Load and execute a new program module

SYNOPSIS:

chain(modname, paramsize, paramptr, type, lang, datasize)
char *modname, *paramptr;
int paramsize, type, lang, datasize;

DESCRIPTION:

The action of the F$CHAIN system call is described fully in the OS-9 documentation.

Chain() implements this service request as described there with one important exception: chain
will NEVER return to the caller. If there is an error, the chained process will abort and return to its
parent process. It might be wise, therefore, for the program to check the existence and access
permissions of the module before calling chain. Permissions may be checked by using modlink()
or modload() followed by munlink().

Modname should point to the name of the desired module. Paramsize is the length of the
parameter string (which should be terminated with an '\\n'), and paramptr points to this parameter
string. Type is the module type as found in the module header (normally a 1 for a program
module), and lang should match the language nibble in the module header (C programs have a 1
for machine language). Datasize my be zero, or contain the number of 256 byte pages to give to
the new process as its initial data memory allocation.

CAVEATS:

The variable paramsize should never be zero. If only a carriage return command line terminator
(\\n) is used, paramsize should be set to one.

SEE ALSO:

os9fork(), os9 F$CHAIN system call

chdir(), chxdir() Change directories

SYNOPSIS:

chdir(dirname)
char *dirname;

chxdir(dirname)
char *dirname;

DESCRIPTION:

These calls change the current data and execution directories respectively. This change is only

__

Carl Kreider CLIB/CLIBT OS-9 C Library 11

current as long as the process is running. Dirname is a pointer to the directory pathlist string.

DIAGNOSITCS:

Each call returns zero after a successful call, or -1 if dirname is not a directory or its path is not
searchable.

SEE ALSO:

Shell commands chd and chx (cd, cx)

chmod() Change access permissions of a file

SYNOPSIS:

#include <modes.h>

chmod(fname, perm)
char *fname;
int perm;

DESCRIPTION:

Chmod() changes the permission bits in the path descriptor associated with a file. Fname must
be a pointer to a file name, and perm should contain the desired access mode number.

The allowable access numbers are defined in the file <modes.h> and are as follows:

/* File Modes */

#define S_IFMT 0xff /* mask for file type */
#define S_IFDIR 0x80 /* directory */

/* Permissions */
.sp
#define S_IPRM 0xff /* mask for permission bits */
#define S_IREAD 0x01 /* owner read */
#define S_IWRITE 0x02 /* owner write */
#define S_IEXEC 0x04 /* owner execute */
#define S_IOREAD 0x08 /* public read */
#define S_IOWRITE 0x10 /* public write */
#define S_IOEXEC 0x20 /* public execute */
#define S_ISHARE 0x40 /* sharable */

Only the owner or the super user may change the permissions of a file.

__

12 Carl Kreider CLIB/CLIBT OS-9 C library

 DIAGNOSTICS:

A successful call returns a null. A -1 is returned if the caller is not entitled to change permissions
on that file, or fname cannot be found.

SEE ALSO:

OS-9 command attr

chown() Change the ownership of a file

SYNOPSIS:

chown(fname, ownerid)
char *fname;
int ownerid;

DESCRIPTION:

Chown() changes the ownership of a file by changing the owner ID associated with the file in the
file descriptor. Only the super user has access to this call.

Fname is a pointer to a the file name that is to be changes. Ownerid is the user ID of the new file
owner.

DIAGNOSTICS:

A zero is returned from a successful call. -1 is returned on error.

CLIBT.L Transcentental Math C Library

The following functions are additions to the Kreider CLIB.L functions described earlier, and all the
functions contained in that library are also present here. The purpose of this additional library is to
provide the transcentental math functions. All the remaining functions perform in exactly the same
manner as in the CLIB.L library, but are rewritten here for increased speed in execution, although
resulting in a larger output file.

SYNOPSIS:

rad()

deg()

double acos(x)
double x;

double asin(x)

__

Carl Kreider CLIB/CLIBT OS-9 C Library 13

double x;

double atan(x)
double x;

double cos(x)
double x;

double sin(x)
double x;

double tan(x)
double x;

double acosh(x)
double x;

double asinh(x)
double x;

double atanh(x)
double x;

double cosh(x)
double x;

double sinh(x)
double x;

double tanh(x)
double x;

double pow(x,y)
double x,y;

double exp(x)
double x;

double antilg(x)
double x;

double log10(x)
double x;

double log(x)
double x;

double sqrt(x)
double x;

__

14 Carl Kreider CLIB/CLIBT OS-9 C library

double sqr(x)
double x;

double inv(x)
double x;

double dabs(x)
double x;

double dexp(x,i)
double x;
int i;

DESCRIPTION:

The various transcendental math functions are implemented here using the CORDIC method.
Accuracy is to sixteen (16) decimal places. The four basic math functions are rewritten to optimize
for speed at the expense of output program length. This gives at least a factor of two speed
improvement over the standard Microware C library.

Externally, all number look just like a normal C double, but internally, an extra byte is used to
permit an exponent range of 511.

Rad() changes the trigometric functions to radians.

Deg()changes the trigometric functions to degrees.

Acos() returns the arc cosine of x.

Asin() returns the arc sine of x.

Atan() returns the arc tangent of x.

Cos() returns the cosine of x.

Sin() returns the sine of x.

Tan() returns the tangent of x.

Acosh() returns the arc hyperbolic cosine of x.

Asinh() returns the arc hyperbolic sine of x.

Atanh() returns the arc hyperbolic tangent of x.

Cosh() returns the hyperbolic cosine of x.

Sinh() returns the hyperbolic sine of x.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 15

Tanh() returns the hyperbolic tangent of x.

Pow() returns the value of x taken to the power of y.

Exp() returns E to the x power.

Antilg() returns 10 to the x power.

Log10() returns logarithm base 10 of x.

Log() returns the logarithm base E of x.

Sqrt() returns the square root of x.

Sqr() returns the square of x.

Inv() returns the value of 1 (one) divided by x.

Dabs() returns the absolute value of x.

Dexp() returns the value of x multiplied by 2 to the I power.
 This is a VERY QUICK function.

DIAGNOSTICS:

The following errors are returned by each of the above functions if an error occurs and are placed
in the global variable errno.

These error numbers should be added to ERRNO.H:

 EFPOVR 40 Floating point overflow
 EDIVERR 41 Divide by zero error
 EINTERR 42 Overflow on conversion of a double integer
 EFPUND 43 Floating point underflow (does not abort the program).

 Zero is returned.
 EILLARG 44 Illegal function argument, e.g sqrt(-1)

SEE ALSO:

math()

__

16 Carl Kreider CLIB/CLIBT OS-9 C library

close() Close a file

SYNOPSIS:

close(pn)
int pn;

DESCRIPTION:

Close() closes an already opened file as described by the path number pn, which is the path
number returned from an open(), creat(), create() or dup() call.

Termination of a process always closes all opened files automatically, but it is necessary to close
files where multiple files are opened by the process and it is desired to re-use the path numbers to
avoid exceeding the process or system path number limit.

DIAGNOSTICS:

This call does not return anything.

SEE ALSO:

creat(), create(), open(), dup().

toupper(), tolower(), _toupper() Translate characters
_tolower(), toascii()

SYNOPSIS:

 #include <ctype.h>

 toupper (c)
 int c;

 tolower (c)
 int c;

 _toupper (c)
 int c;

 _tolower (c)
 int c;

 toascii (c)
 int c;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 17

DESCRIPTION:

The functions toupper() and tolower() have as domain the range of getc(), which are the ASCII
characters from -1 through 255. If the argument to toupper() represents a lower case letter, the
result is the corresponding upper case letter. If the argument to tolower() represents an upper
case letter, the result is the corresponding lower case letter.

The macros _toupper() and _tolower() accomplish the same thing as toupper() and tolower(),
except they are faster and are restricted to ASCII characters (for example, -1 to 127). The macro
_toupper() requires a lowercase letter as its argument; its result is the corresponding uppercase
letter. The macro _tolower() requires an uppercase letter as its argument; its result is the
corresponding lowercase letter.

The macro toascii() yields its argument with all bits turned off that are not part of a standard
ASCII character set, i.e., the MSB of that character is set to 0. It is intended for compatibility with
other systems.

CAVEATS:

Any arguments to the macros _touuper(), _tolower(), or toascii() outside the ranges specified
will yield garbage results.

SEE ALSO:

ctype, getc()

crc() compute the cyclic redundancy count of a module

SYNOPSIS:

crc(start, count, accum)
char *start;
int count;
char accum[3];

DESCRIPTION:

This call accumulates a crc into a three byte array at accum[3] for the count bytes starting at
start. All three bytes of accum should be initialized to 0xFF before the first call to CRC.

However, repeated calls can be subsequently made to cover an entire module. If the result is to
be used as an OS-9 module crc, it should have its bytes complemented before insertion at the end
of the module. An example follows:

__

18 Carl Kreider CLIB/CLIBT OS-9 C library

/*
** Calculate a module's CRC and insert it at the end.
**
** The pointer passed in mod_desc is address of
** the beginning of the module already in memory.
*/

#include <module.h>

chg_crc(mod_desc)
char *mod_desc;
{
 int count;
 char accum[3];
 char *old_crc;

 old_crc = (char *) mod_desc + mod_desc->m_size - 3;
 count = mod_desc->msize - 3;

 accum[0] = 0xff;
 accum[1] = 0xff;
 accum[2] = 0xff;

 crc (mod_desc, count, accum);

 *old_crc++ = ~accum[0];
 *old_crc++ = ~accum[1];
 *old_crc = ~accum[2];
}

creat() Create a new file

SYNOPSIS:

#include <modes.h>

creat(fname, perms)
char *fname;
int perms;

DESCRIPTION:

Creat() returns a path number to a new file available for writing, giving it the permissions specified
in the perm variable and making the process user the owner of the file. If, however, fname is the
name of an already existing file, the file is truncated to zero length and the ownership and
permissions remain unchanged. Note, that unlike the OS-9 assembler service request, Creat()
DOES NOT return an error if the file already exists. Access() should be used to establish the
existence of the file if it is important that a file should not be overwritten. It is unnecessary to

__

Carl Kreider CLIB/CLIBT OS-9 C Library 19

specify writing permissions in perm in order to write to the file in the current process.

The following permissions are defined in the include file <modes.h> as follows:

/* File Modes */

#define S_IFMT 0xff /* mask for type of file */
#define S_IFDIR 0x80 /* directory */

/* Permissions */

#define S_IPRM 0xff /* mask for permission bits */
#define S_IREAD 0x01 /* owner read */
#define S_IWRITE 0x02 /* owner write */
#define S_IEXEC 0x04 /* owner execute */
#define S_IOREAD 0x08 /* public read */
#define S_IOWRITE 0x10 /* public write */
#define S_IOEXEC 0x20 /* public execute */
#define S_ISHARE 0x40 /* sharable */

Directories may not be created with this call -- use mknod() instead.

DIAGNOSTICS:

This call returns -1 if there are too many files opened, if the pathname cannot be searched, if
permission to write is denied, or of the file already exists and IS A DIRECTORY.

CAVEATS:

File permissions that specify either owner or public executable files will cause the new file to be
created in the current execution directory. All other permissions will cause the file to be created in
the current data directory. To create an executable file in the current data directory, see create().

SEE ALSO:

create(), write(), close(), chmod()

create() Creates and opens a file

SYNOPSIS:

#include <modes.h>

create(fname, mode, pmode)
char *fname;
int mode, pmode;

__

20 Carl Kreider CLIB/CLIBT OS-9 C library

ocreat(fname, mode, pmode)
char *fname;
int mode, pmode;

DESCRIPTION:

Create() creates and opens the file named fname. This call accepts the file mode and access
permissions in the same function and is useful in setting up user permissions as soon as the file is
opened.

This function returns -1 if the file already exists, or the path number if the file is successfully
created.

Ocreat() performs the same function, except it deletes the old file if it already exists when
Ocreat() is called.

SEE ALSO:

creat(), open(), fopen().

ctime(), localtime(), gmtime() Convert date and time
asctime(), tzset()

SYNOPSIS:

#include <utime.h>

*ctime (clock)
long *clock;

*localtime (clock)
long *clock;

*asctime (tm)
struct tm *tm;

extern long timezone; /* used here for compatibility only */

extern int daylight;

void tzset()

DESCRIPTION:

Ctime() converts a long integer, usually returned from time(), or pointed to by clock, representing
the time in seconds since 00:00:00, January 1, 1970, and returns a pointer to a 26-character string
in the following form:

__

Carl Kreider CLIB/CLIBT OS-9 C Library 21

Sun Sep 16 01:03:52 1973\\n\\0

The time() function is ideally suited to return the long integer time value.

Localtime() returns a pointer to the tm structure.

Asctime() converts a tm structure to a 26-character string, as shown in the above example, and
returns a pointer to the string.

For user convience, declarations of all the functions and the externals, and the tm structure, are
provided in the <utime.h> header file, shown on the next page.

The external long variable timezone is always zero.

EXAMPLE:

To print the current time:

long curr_time;
curr_time = time ((long *)0);
printf ("The time is: %s", ctime(&curr_time));

BUGS:

The return values point to static data whose content is overwritten by each call.

SEE ALSO:

time(), o2utime(), u2otime()

/*
** Utime.h
*/

struct tm {
 int tm_sec; /* seconds (0 - 59) */
 int tm_min; /* minutes (0 - 59) */
 int tm_hour; /* hours (0 - 23) */
 int tm_mday; /* day of month (1 - 31) */
 int tm_mon; /* month of year (0 - 11) */
 int tm_year; /* year (year - 1900) */
 int tm_wday; /* day of week (Sunday = 0) */
 int tm_yday; /* day of year (0 - 365) */
 int tm_isdst; /* NOT USED */
 };

 long time(); /* Same as UNIX */
 struct tm *localtime(); /* Same as UNIX */
 char *asctime(); /* Same as UNIX */

__

22 Carl Kreider CLIB/CLIBT OS-9 C library

 char *ctime(); / * Same as UNIX */

 long o2utime(); /* Convert OS9 style buf to UNIX long */
 /* void */ u2otime(); /* Convert 'tm' to OS9 char *buf */

isalpha(), isupper(), islower() Character classification macros
isdigit(), isalnum(), isspace()
ispunct(), isprint(), iscntrl(), isascii()

SYNOPSIS:

#include <ctype.h>

isalpha(c)

etc....

DESCRIPTION:

These macros classify character-coded integer values according to their ascii value using fast
table look-up.

All macros return non-zero for true and zero for false.

The macro isascii() provides a correct result for all integer values. The rest provide a result for
EOF and values in the character range outlined in the table below, however, the result will be
unpredictable for characters outside the range -1 to 127.

Isalpha() c is a letter

Isupper() c is an uppercase letter

Islower() c is a lowercase letter

isdigit () c is a digit

isalnum() c is an alphanumeric character

isspace() c is a space, tab, carriage return, new line,or formfeed

ispunct() c is a punctuation character (neither control, alphanumeric, nor a space)

isprint() c is a printable character, code 32 (space) through 126 (tilde)

iscntrl() c is a delete character (127) or ordinary control character (less than 32)
 except for space characters

isascii c is an ASCII character, code less than 128

__

Carl Kreider CLIB/CLIBT OS-9 C Library 23

SEE ALSO:

toascii(), toupper(), tolower(), _toupper(), _tolower()

datlink(), dunlink() Data module operations

unlkdata(), lockdata()

SYNOPSIS:

int datlink(name, datptr, space)
char *name, *datptr;
int *space;

int dunlink(datptr)
char *datptr;

int lockdata(datptr)
char *datprt;

int unlkdata(datptr)
char *datptr;

DESCRIPTION:

Datlink() loads (if necessary) and links the file name. Datptr is set to the address of the data
section. Space is set to the free space available. Datlink() returns (-1) if an error, null for a
successful link, and 1 if a load was required. If a 1 is returned, that means you are the first user of
that data module.

Dunlink() unlinks the module belonging to datptr. A (-1) is returned if an error occurs, or a null if
no error.

Lockdata() attempts to lock the data module (datptr is considered to be the lock byte) by
changing the lock byte, which is normally -1, to a null. Lockdata() returns a process stack level on
failure, or a null. Errno is not set.

Unlkdata() unlocks the data module. It returns a (-1) on any attempt to unlock a module that has
not already been locked. A null is returned upon success.

NOTE:

A data module is considered locked when it is loaded. It must be set for use by a call to
Unlkdata() after the original loader is finished with any initialization required. A user can
determine if they are the original owner by the value returned during the datlink() call.

In all cases, datptr points to the lock byte. User free space begins at datptr+ 1.

__

24 Carl Kreider CLIB/CLIBT OS-9 C library

devtyp(), isatty() Check the type of a device

SYNOPSIS:

devtyp(pn)
int pn;

isatty(pn)
int pn;

DESCRIPTION:

Devtyp() returns an integer number corresponding to the device type as defined by OS9. Pn is
the OS9 path number opened to the device to check.

The following are the device types and returned values:

0 = SCF
1 = RBF
2 = PIPE
3 = SBF

Isatty() functions in the same manner as devtype, but returns TRUE if the
device is an SCF type and FALSE if it is not.

NOTE:

FOR COCO USERS:
These functions do not return any different values for a Level II device window since they are
defined as SCF type devices.

opendir(), readdir(), telldir() Directory operations
rewinddir(), seekdir(), closedir()

SYNOPSIS:

#include <dir.h>

*opendir(dirname)
char *dirname;

*readdir(dirp)
DIR *dirp;

telldir(dirp)
DIR *dirp;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 25

rewinddir(dirp)
DIR *dirp;

seekdir(dirp, loc)
DIR *dirp;
long loc;

closedir(dirp)
DIR *dirp;

DESCRIPTION:

Opendir() opens the specified directory and associates a directory stream with it. Opendir()
returns a pointer to be used to identify the directory stream in subsequent operations. The pointer
null is returned if dirname cannot be accessed or of it cannot "malloc" enough memory to hold the
whole thing. Directory sectors are NOT buffered.

Readdir() returns a pointer to a structure containing the next directory entry, unless the entry is a
deleted file in which case the next entry is returned. It returns null upon reaching the end of the
directory or detecting an invalid seekdir() operation.

Telldir() returns the current location associated with the named directory stream. Values returned
by telldir() are valid only for the lifetime of the associated dir pointer. If the directory is closed and
then reopened, the telldir() value may be invalidated. It is safe to use a previous telldir() value
immediately after a call to opendir() and before any calls to readdir().

Rewinddir() resets the position of the named directory stream to the beginning of the directory.

This function is implemented as a macro in <dir.h>.

Seekdir() sets the position of the next readdir() operation in the directory stream. The new
position reverts to the one associated with the directory stream when the telldir() operation was
performed. Closedir() closes the named directory stream and frees the structure associated with
dirp.

NOTE:

For user convenience, function declarations are made in the header <dir.h> below.

/*
** Dir.h
/*

struct direct {
 long d_addr; /* file descriptor address */
 char d_name[30]; /* directory entry name */
 };

__

26 Carl Kreider CLIB/CLIBT OS-9 C library

typedef struct {
 int dd_fd; /* fd for open directory */
 char dd_buf[32]; /* a one entry buffer */
 } DIR;

#define DIRECT struct direct
#define rewinddir(a) seekdir(a, 0L)

extern DIR *opendir();
extern DIRECT *readdir();
extern long telldir();
extern /* void */ seekdir(), closedir();

_dump() Dumps memory to standard output

SYNOPSIS:

void _dump(s, addr, count)
int count;
char *s, *addr;

DESCRIPTION:

_dump() is used mostly as a debugging function. It prints the title s and then, starting at the
memory address pointed to by addr, dumps at the most count bytes to standard output.

NOTE:

Care must be taken to insure the variable count is not too large, else the memory dump will take
a very long time. Also, the dump is formatted similar to the standard OS9 dump utility.

dup() Duplicate an open path number

SYNOPSIS:

dup(pn)
int pn;

DESCRIPTION:

Dup() takes the path number pn as returned from an open(), creat(), or create() call and returns
another path number associated with the same file.

Dup() is often used to duplicate the standard paths (stdin, stdout, stderr) prior to forking a new
process. The new process will then have these paths for its use.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 27

EXAMPLE:

To use dup() to copy the standard paths:

fork (cmd, parms, path)
char *cmd, *parms;
int path;

{
 int i;
 int save[3];

 for (i = 0; i <= 2; i++)
 save[i] = dup (i);

 for (i = 0; i <= 2; i++)
 close (i);

 for (i = 0; i <= 2; i++)
 dup (path);

 close (path);

 os9fork (cmd, strlen(parms), parms, 1, 1, 0);

 for (i = 0; i <= 2; i++) {
 close (i);
 dup (save[i]);
 close (save[i]);
 }

 DIAGNOSTICS:

A -1 is returned if the call fails because there are too many opened files or the path number is
invalid.

SEE ALSO:

open(), creat(), create(), close()

_errmsg() Print an error message

SYNOPSIS:

int _errmsg(nerr, msg[,arg1, arg2, arg3])
int nerr;
char *msg;

__

28 Carl Kreider CLIB/CLIBT OS-9 C library

DESCRIPTION:

This function displays an error message on the standard error path along with the name of the
program. The message string msg is displayed in the following format:

prog: <message text>

Note: Prog is the module name of the program and <message text> is the string passed as msg.

For added flexibility in the message printing, the msg string can be a conversion string suitable for
printf() with up to 3 additional arguments of any type. The argument nerr is returned as the value
of the functions so _errmsg() can be used as a parameter to a function such as exit() or prerr().

EXAMPLE:

Assume the program calling the function is named "foobar":

Call: _errmsg(1,"programmed message\n");
Prints: foobar: programmed message

Call: exit(_errmsg(errno,"unknown option '%c'\n",'q'));
Prints: foobar: unknown option 'q'

Then exits with the error code in errno.

SEE ALSO:

printf(), _prgname().

exit() Terminate a process after flushing any pending output

SYNOPSIS:

exit(status)
int status;

_exit(status)
int status;

DESCRIPTION:

Exit() is the normal means of terminating a task. The exit() function terminates a process after
calling the Standard I/O library function _cleanup(), to flush any buffered output.

The _exit() function performs the same, but DOES NOT flush any file buffers prior to exiting the
task. Neither the exit() or _exit() functions ever return.

A process finishing normally, that is, returning from main(), is equivalent to a call to exit().

__

Carl Kreider CLIB/CLIBT OS-9 C Library 29

The status passed to exit() is available to the parent process if it is executing a wait(). An
example is:

static int stat;
char *status = &stat;
\.
\.
os9fork (cmds, strlen(params), params, 1, 1, 0);
wait (status);
\.
\.

SEE ALSO:

wait()

fclose(), fflush() Close or flush a stream (file)

SYNOPSIS:

#include <stdio.h>

fclose(fp)
FILE *fp;

fflush(fp)
FILE *fp;

DESCRIPTION:

The fclose() routine causes any buffers for the named file pointer fp to be emptied, and the file to
be closed. Buffers allocated by the standard input/output system are freed for use by another
fopen() call. Fclose() should always be called to close access to a file when it is no longer
needed. The fclose() routine is performed automatically upon calling exit(). The fflush() routine
causes any buffered data associated with the named output file pointer fp to be cleared and
written to that file, but only if the file was opened inthe write or update mode. It is not normally
necessary to call fflush(), but it can be useful when, for example, normal output is to stdout, and
it is wished to send something to stderr, which is unbuffered. If fflush() were not used and
stdout was referred to the terminal, the stderr message would appear before large chunks of the
stdout message even though the latter was written first. The file associated with fp remains open
after the call.

DIAGNOSTICS:

These routines return EOF if the file pointer fp is not associated with an output file, or if buffered
data cannot be written to that file. You should always check the returned status of and fclose()
call.

__

30 Carl Kreider CLIB/CLIBT OS-9 C library

CAVEATS:

In cases where fclose() is called as a result of an exit() call, the error may be returned, but no
process is running to receive it. In this case, the data in the buffer will not be written to the file and
the operator will NOT GET an error message.

SEE ALSO:

exit(), close(), fopen(), setbuf()

ferror(), feof() Return status inquiries of files
clearerr(), fileno()

SYNOPSIS:

#include <stdio.h>

feof(fp)
FILE *fp;

ferror(fp)
FILE *fp;

clearerr(fp)
FILE *fp;

fileno(fp)
FILE *fp;

DESCRIPTION:

The ferror() function returns nonzero when an error has occurred reading or writing the file
associated with the file pointer fp has reached its end, otherwise zero is returned. Unless cleared
byCLEARERR, the error indication lasts until the file pointed to by fp
is closed, thus preventing any further access to that file.

The feof() function returns nonzero when end of file is read on the named input fp,
otherwise zero.

The clearer() function resets both the error and EOF indicators on the named file associated with
fp. Note that the file is not "fixed" nor does it prevent the error from occurring again. It just allows
Standard Library functions to at least try to access the file.

The fileno()function returns the integer path descriptor associated with the file pointer fp, for use
with Standard Library calls the use path numbers, such as close(), open(), etc.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 31

CAVEATS:

These functions are implemented as macros in <stdio.h> so they cannot be redeclared.

SEE ALSO:

open(), fopen()

findstr(), findnstr() String search

SYNOPSIS:

findstr(pos, string, pattern)
char *string, *pattern;
int pos;

findnstr(pos, string, pattern, len)
char *string, *pattern;
int pos, len;

DESCRIPTION:

These functions search the string pointed to by string for the first instance of the pattern pointed
to by pattern starting at position pos (where the first position in a string is 1 not 0). The returned
value is the position of the first matched character of the pattern in the string, or zero if a match is
not found.

FIindstr() stops searching the string when a null byte is found.

Findnstr() only stops searching at position pos + len so it may continue past nulls.

CAVEATS:

The current implementation does not use the most efficient algorithm for pattern matching so use
on very long strings is likely to be somewhat slow.

SEE ALSO:

patmatch(), index(), rindex(), strchr(), strrchr()

open(), freopen(), fdopen() Open a file

SYNOPSIS:

#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

__

32 Carl Kreider CLIB/CLIBT OS-9 C library

FILE *freopen (filename, type, stream)
char *filename, *type;
FILE *stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION:

Fopen() opens a file and returns a file pointer to the file structure associated with that file. The
pointer filename points to a character string that contains the name of the file to be opened.

The pointer type is a character string having one of the following values:

"r" - Open for reading

"w" - Truncate or create for writing

"a" - Append; open for writing at end of file, or create for writing

"r+" - Open for reading and writing (update)

"w+" - Truncate or create for reading and writing (update)

"a+" - Append; open or create for reading and writing at end-of-file.

"d" - Open a directory file for reading ONLY

Any of the above types may have a "x" after the initial letter which indicates to fopen() that is
should look in the current execution directory if a full pathname is not given in filename. The "x"
also specifies that the file should have "execute" permissions.

Opening for write will perform a creat() call. If a file with the same name exists when the file is
opened, it will be truncated to zero length. Append means to open for write and position the file
pointer to the end of the file. Writes to the file will then extend the file until fclose() is called. The
file will only be created if it does not already exist. All files created with fopen() will have file
permissions set for user read and write and read only for all others. To set other combinations of
file permissions, use create().

Three file pointers are available and considered open as soon as a program is
run. These are:

stdin - the standard input path (0)
stdout - the standard output path (1)
stderr - the standard error output path (2)

All files are automatically buffered except stderr unless it is made

__

Carl Kreider CLIB/CLIBT OS-9 C Library 33

unbuffered by a call to setbuf().

The freopen() routine substitutes the named file in place of the open stream. The original stream
is closed, regardless of whether the open ultimately succeeds. The freopen() routine returns a
pointer to the file structure associated with pointer stream.

The freopen() routine is typically used to attach the preopened streams associated with stdin,
stdout, and stderr to other files.

The fdopen() routine associates a stream with a path descriptor. Path descriptors are obtained
from open(), dup(), creat(), or create(), which open files but do not return pointers to file
structure. Streams are necessary input for many of the Section 3s library routines. The type of
stream (r,w,a) must agree with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening fseek() or rewind(),
and input may not be directly followed by output without an intervening fseek(), rewind(), or an
input operation which encounters end-of-file.

All output is written at the end of the file and causes the file pointer to be repositioned at the end of
the output regardless of its current position. If two separate processes open the same file for
append, each process may write freely to the file without fear of destroying output being written by
the other. The output from the two processes will be intermixed in the file in the order in which it is
written.

CAVEATS:

The type passed as an argument to fopen() must be a pointer to a string and NOT a character
constant. For example:

fp = fopen("foo", "r"); is correct
fp = fopen("foo", 'r'); is not

DIAGNOSTICS:

Fopen() returns null (0) if the call was not successful.

SEE ALSO:

creat(), create(), dup(), open(), fclose(), fseek()

__

34 Carl Kreider CLIB/CLIBT OS-9 C library

fread(), fwrite() Read/write binary data

SYNOPSIS:

fread(ptr, sizeof(item), nitems, fp)
FILE *fp;

fwrite(ptr, sizeof(item), nitems, fp)
FILE *fp;

DESCRIPTION:

The fread() function reads into a buffer beginning at ptr, nitems of data of the type item from the
input file pointer fp. It returns the number of items actually read.

The fwrite() function writes, at most, nitems of data of the type item
beginning at ptr to the named output file fp. It returns the number of items actually written.

In both cases, the type item refers to either a char, int, or unsigned data type. Care must be taken
to insure the correct values are used. If, for example, 10 bytes of type char are to be written, then
this is the same amount of data going to the output stream as 5 bytes of type int.

DIAGNOSTICS:

Both functions return a null at end of file or if an error occurs. To insure the correct data is read or
written, the returned number of type item should be compared to what was intended. If there is a
difference, an error has occured.

SEE ALSO:

read(), write(), fopen(), getc(), putc(), printf(), scanf()

fseek(), ftell() Reposition a file pointer or report position
rewind()

SYNOPSIS:

#include <stdio.h>

fseek(fp, offset, place)
FILE *fp;
long offset;
int place;

long ftell(fp)
FILE *fp;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 35

rewind(fp)
FILE *fp;

DESCRIPTION:

The fseek() function sets the position of the next input or output operation on the already opened
file pointed to by fp. The new position is at offset bytes from the beginning, the current position, or
the beginning of the file if place has the value 0, the current position if 1, or the end of the file if 2.

The fseek() function undoes any effects of ungetc() and sorts out the problems associated with
buffered I/O.

NOTE:
Using lseek() on a buffered file will produce unpredictable results.

The ftell() function returns the current value of the offset relative to the beginning of the file
associated with the file pointer fp. It is measured in bytes and is the only foolproof way to obtain
an offset for fseek().

The rewind() function is equivalent to fseek(fp, 0L, 0), except that no value is returned. It returns
the file pointer to the beginning of the file.

DIAGNOSTICS:

Fseek() returns a -1 if the call is invalid, otherwise it returns zero.

SEE ALSO:

lseek()

getc(), getchar(), getw() Get character or word from a file

SYNOPSIS:

#include <stdio.h>

getc(fp)
FILE *fp;
getchar()

getw(fp)
FILE *fp;

DESCRIPTION:

The getc() function returns the next character from the named input fp.

The getchar() function is identical to getc(stdin).

__

36 Carl Kreider CLIB/CLIBT OS-9 C library

The getw() function returns the next word from the named input fp. It returns the constant EOF
upon end of file or error, but since that is a good integer value, feof() and ferror() should be used
to check the success of getw().The getw() assumes no special alignment in the file.

CAVEATS:

Because it is implemented as a macro, getc() treats a fp argument with side effects incorrectly. In
particular, 'getc(*f++);' doesn't work as expected.

SPECIAL CONSIDERATIONS:

Under OS-9, there is a choice of system calls to use when reading from a file. Read() will get
characters up to a specified number in the "raw" mode, i.e., no editing will take place on the input
stream and the characters will appear to the program exactly as in the file. Readln() on the other
hand, will honor the various mapping of characters associated with a serial device such as a
terminal and will return as soon as a carriage return is seen on the input.

In the vast majority of cases, it is preferable to use readln() for accessing serial character devices
and read() for any other file input. Getc() uses this strategy and as all file input using the Standard
Library functions is routed through getc(), so do all the other input functions. The choice is made
when the first call to getc() is made after the file has been opened. The system is consulted for
the status of the file and a flag bit is set in the file structure accordingly. The choice may be forced
by the programmer by setting the relevant bit before a call to getc(). The flag bits are defined in
<stdio.h> as _SCF and _RBF and the method used is as follows:

Assuming that the file pointer for the file as returned by fopen() is f, f->_flag |= _SCF will force the
use of readln() on input, and f->flag |= _RBF will force the use of read(). This trick may be played
on the standard input, output, and error files without the need to call fopen() but must be made
before any input is requested from these files.

DIAGNOSTICS:

These functions return the integer constant EOF (-1) at end of file or upon read error.

SEE ALSO:

fopen(), fread(), gets(), putc(), scanf(), ungetc()

getopt() Get an option letter from argument vector

SYNOPSIS:

int getopt (argc, argv, optstring)
int argc;
char **argv, *optstring;
extern char *optarg;
extern int optind, opterr;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 37

DESCRIPTION:

Getopt() returns the next option letter in argv that matches a letter in optstring. Optstring is a
string of recognized option letters; if a letter is followed by a colon, the option is expected to have
an argument that may or may not be separated from it by white space. Optarg is set to point to
the start of the option argument on return from getopt().

Getopt() places in optind the argv index of the next argument to be processed. Because optind
is external, it is normally initialized to zero automatically before the first call to getopt().

When all options have been processed (i.e., up to the first non-option argument), getopt() returns
EOF. The special option -- may be used to delimit the end of the options; EOF will be returned,
and -- will be skipped.

DIAGNOSTICS:

Getopt() prints an error message on the stderr path and returns a question mark (?) when it
encounters an option letter not included in optstring. This error message may be disabled by
setting opterr to a non-zero value.

EXAMPLE:

The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and o, both of which require
arguments:

main (argc, argv)
int argc;
char **argv;
{
 int c;
 extern char *optarg;
 extern int optind;
\&.
\&.
\&.
\&.
while ((c = getopt(argc, argv, "abf:o:")) != EOF)
 switch (c) {
 case 'a':
 if (bflg)
 errflg++;

 else
 aflg++;
 break;
 case 'b':
 if (aflg)

__

38 Carl Kreider CLIB/CLIBT OS-9 C library

 errflg++;
 else
 bproc();
 break;
 case 'f':
 ifile = optarg;
 break;
 case 'o':
 ofile = optarg;
 break;
 case '?':
 errflg++;
}
if (errflg) {
 fprintf(stderr, "Usage: . . . ");
 exit (2);
}
for (; optind < argc; optind++) {
 if (access(argv[optind], 4)) {
\&.
\&.
\&.
}

getpid() Get a process ID

SYNOPSIS:

getpid()

DESCRIPTION:

A number unique to the currently running process is often useful in creating names for temporary
files and many other uses. This call returns the process' system ID number as returned to its
parent by os9fork().

SEE ALSO:

os9fork()

__

Carl Kreider CLIB/CLIBT OS-9 C Library 39

gets(), fgets() Get a string from a file

SYNOPSIS:

#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, fp)
FILE *fp;
char *s;
int n;

DESCRIPTION:

The gets() routine reads a string into s from the standard input path stdin . The string is
terminated by a newline character, which is replaced in s by a null character. The gets() routine
returns its argument.

Fgets() routine reads n-1 characters, or up to a newline character, whichever comes first, from the
file pointed to by fp into the string s. The last character read into s is followed by a null character.
Fgets() routine returns its first argument.

CAVEATS:

The different treatment of the newline ("\\n") character by these functions is retained here for
portability reasons.

DIAGNOSTICS:

Both functions return null on end-of-file or if an error occurs.

SEE ALSO:

ferror(), fread(), getc(), puts(), scanf()

SS_OPT, SS_READY OS-9 get status system calls
SS_SIZE, SS_POS, SS_EOF
SS_DEVNAM, SS_FD

SYNOPSIS:

#include <sgstat.h>

getstat(SS_OPT, filenum, buffer)

__

40 Carl Kreider CLIB/CLIBT OS-9 C library

int code, filenum;
struct sgbuf *buffer;

getstat(SS_READY, filenum)
int code, filenum;

getstat(SS_SIZE, filenum, size)
int code, filenum;
long *size;

getstat(SS_POS, filenum, position)
int code, filenum;
long *position;

getstat(SS_EOF, filenum)
int code, filenum;

getstat(SS_DEVNAM, filenum, buffer)
int code, filenum;
char *buffer;

#include <direct.h>

getstat(SS_FD, filenum, buffer, count)
int code, filenum;
struct fildes *buffer;
int count;

DESCRIPTION:

These calls are the equivalent of the _gs_XXX calls described elsewhere in these documents.
While the_gs_XXX calls are provided for compatibility with source code generated for OSK and
UNIX systems, the calls listed below are those normally used with 6809/OS-9.

The following descriptions do not include the complete syntax of each function
call. See the list above under Synopsis.

Getstat(ss_opt) copies the options section of the path descriptor opened on path into the buffer
pointer to by buffer. The structure sgbuf <sgstata.h> provides a convenient means to access
the individual option values.

Be sure the buffer is large enough to hold all the options. Declaring the buffer as a type struct
sgbuf is perfectly safe as this structure is predefined to be large enough for all the device
descriptor options.

This call works only on RBF devices.

Getstat(ss_ready) checks an SCF device opened on path to see if data is waiting to be read.
Read requests to OS9 will wait until enough bytes have been read to satisfy the bytecount given

__

Carl Kreider CLIB/CLIBT OS-9 C Library 41

thereby suspending the program until the read is finished.

A program can use this function to determine the number of bytes, if any, are waiting to be read,
and then issue a read request for only the number of bytes actually received.

If no data is available to be read, or the device is not an SCF device, a -1 is returned and the
appropriate error code is placed in errno. Otherwise, the number of bytes available to be read is
returned.

This call is effective only on SCF devices. This function is not intended for use with buffered I/O
calls (like getc()), and unpredictable results will likely occur. This call works best with low-level I/O
functions.

Getstat(ss_size) returns the size of the file pointed to in filenum. The size is returned in the long
variable 'size'.

Getstat(ss_pos) returns the value of the file pointer for the file opened on filenum.

If an error occurs, this function returns -1 as its value and the error code is placed in the global
variable errno.

This call works only on RBF devices. It is unique to OS-9 and the only equivalent portable call is
lseek(). DO NOT use this call if buffered I/O is being performed on the path. Use ftell() instead.

Getstat(ss_eof) determines if the file opened is at the end-of-file. If it is, the value 1 is returned --
if not, 0 is returned.

If an error occurs, this function returns -1 as its value and the error code is placed in the global
variable errno.

This function cannot determine the end-of-file on an SCF device. SCF devices return an e$eof
error when the EOF character is read. DO NOT use this call if using buffered I/O on PATH.
Instead, use the function feof().

Getstat(ss_devnam) determines the name of the device opened on a path. The argument
filenum is the OS-9 path number of the opened path and buffer is a pointer to a character array
into which the null-terminated device name will be placed.

If an error occurs, this function returns -1 as its value and the error code is placed in the global
variable errno.

Be sure to reserve at least 32 characters to receive the device name.

Getstat(ss_fd) places a copy of the RBF file descriptor sector of the file opened into the buffer
pointed to by buffer. A maximum of count bytes are copied. The structure FILDES, declared in
<direct.h>, provides a convenient method to access the file descriptor information.

If and error occurs, this function returns -1 as its value and the error code is placed in the global

__

42 Carl Kreider CLIB/CLIBT OS-9 C library

variable errno.

Be sure the buffer is large enough to hold all the options, or at least count bytes. This call is
effective only on RBF devices. Declaring the buffer as type struct fildes is perfectly safe as this
structure is predefined to be large enough to hold all the file descriptor information.

NOTE:

All the above calls require an OS-9 path number for filenum, and NOT a C iob file descriptor
pointer.

SEE ALSO:

I$GetStt system call - Microware Manual, _gs_xxx calls

getuid() Get a user ID

SYNOPSIS:

getuid()

DESCRIPTION:

GETUID returns the real user ID if the currently executing process as maintained in the password
file /dd/sys/password.

SEE ALSO:

setuid(), asetuid()

_gs_devn() Get device name

SYNOPSIS:

int _gs_devn(path, buffer)
int path;
char *buffer;

DESCRIPTION:

This function determines the name of the device opened on a path. The argument path is the OS-
9 path number of the opened path and buffer is a pointer to a character array into which the null-
terminated device name will be placed.

The device name returned is in "OS9 format", that is, the last byte of the name will have the high
bit set. Also, there is no NULL terminator on the string. The best method to handle this returned
value is:

__

Carl Kreider CLIB/CLIBT OS-9 C Library 43

 _gs_devn(path, buffer);
 strhcpy(newbuff, buffer);

If path is invalid, this function returns -1 as its value and the error code is placed in the global
variable errno.

NOTE:

Be sure to reserve at least 32 characters to receive the device name.

SEE ALSO:

I$GetStt system call - Microware Manual, fopen(), open().

_gs_eof() Get end-of-file status

SYNOPSIS:

int _gs_eof(path)
int path;

DESCRIPTION:

This function determines if the file opened on path is at the end-of-file. If it is, the value 1 is
returned -- if not, 0 is returned.

If path is invalid, a -1 is returned and the appropriate error code is placed in the global variable
errno.

NOTE:

This function cannot determine the end-of-file on an SCF device. SCF devices return an E$EOF
error when the EOF character is read. DO NOT use this call if using buffered I/O on PATH.
Instead, use the function feof().

SEE ALSO:

I$GetStt system call - Microware Manual, feof().

_gs_gfd() Get file descriptor

SYNOPSIS:

#include <direct.h>

int _gs_gfd(path, buffer, count)
int path;
struct fildes *buffer;

__

44 Carl Kreider CLIB/CLIBT OS-9 C library

int count;

DESCRIPTION:

This function will place a copy of the RBF file descriptor sector of the file opened on PATH into the
buffer pointed to by buffer. A maximum of count bytes are copied. The structure fildes, declared
in <direct.h>, provides a convenient method to access the file descriptor information.

If and error occurs, this function returns -1 as its value and the error code is placed in the global
variable errno.

NOTE:

Be sure the buffer is large enough to hold all the options, or at least count bytes. This call is
effective only on RBF devices. Declaring the buffer as type "struct fildes" is perfectly safe as this
structure is predefined to be large enough to hold all the file descriptor information.

SEE ALSO:

I$GetStt system call - Microware Manual, _ss_pfd().

_gs_opt() Get file descriptor options

SYNOPSIS:

#include <sgstat.h>

int _gs_opt(path, buffer)
int path;
struct sgbuf *buffer;

DESCRIPTION:

This function copies the options section of the path descriptor opened on path into the buffer
pointer to by buffer. The structure sgbuf in <sgstat.h> provides a convenient means to access
the individual option values.

If path is invalid, this function returns -1 as its value and the error code is placed in the global
variable errno.

NOTE:

Be sure the buffer is large enough to hold all the options. Declaring the buffer as a type "struct
sgbuf" is perfectly safe as this structure is predefined to be large enough for all the device
descriptor options.

SEE ALSO:
I$GetStt system call - Microware Manual, getstat(), _ss_opt().

__

Carl Kreider CLIB/CLIBT OS-9 C Library 45

_gs_pos () Get file position pointer

SYNOPSIS:

long _gs_pos(path)
int path;

DESCRIPTION:

This function returns the value of the file pointer for the file opened on path.

If path is invalid, this function returns -1 as its value and the error code is placed in the global
variable errno.

NOTE:

This call works only on RBF devices. It is unique to OS-9 and the only equivalent portable call is
lseek(). DO NOT use this call if buffered I/O is being performed on the path. Use ftell() instead.

SEE ALSO:

I$GetStt system call - Microware Manual, lseek(), ftell()

_gs_rdy() Get path status

SYNOPSIS:

int _gs_rdy(path)
int path;

DESCRIPTION:

This function checks an SCF device opened on path to see if data is waiting to be read. Read
requests to OS9 will wait until enough bytes have been read to satisfy the bytecount given,
thereby suspending the program until the read is finished.

A program can use this function to determine the numbers of bytes, if any, are waiting to be read,
and then issue a read request for only the number of bytes actually received.

If path is invalid, no data is available to be read, or the device is not an SCF device, a -1 is
returned and the appropriate error code is placed in errno. Otherwise, the number of bytes
available to be read is returned.

NOTE:

This call is effective only on SCF devices. This function is not intended for use with buffered I/O
calls (like getc()), and unpredictable results will likely occur. This call works best with low-level I/O

__

46 Carl Kreider CLIB/CLIBT OS-9 C library

functions.

SEE ALSO:

I$GetStt system call - Microware Manual, getstat(), read(), readln().

_gs_size() Get file size

SYNOPSIS:

long _gs_size(path)
int path;

DESCRIPTION:

This function is used to determine the current size of the file opened on path, and returns this
value to the calling function.

If path is invalid, this function returns -1 as its value and the error code is placed in the global
variable errno.

NOTE:

This call works only on RBF devices.

SEE ALSO:

I$GetStt system call - Microware Manual, getstat()

htoi(), htol(), itoa() Type conversions
utoa(), ltoa()

SYNOPSIS:

int htoi(s)
char *s;

long htol(s)
char *s;

char *itoa(n, s)
int n;
char *s,

char utoa(n, s)
int n;
char *s;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 47

char *ltoa(n, s)
long n;
char *s;

DESCRIPTION:

Htoi() converts a string representing a hexadecimal number into an integer.

Htol() converts a string representing a hexadecimal number into a long integer.

Itoa() converts an integer number n to the corresponding ASCII characters and returns a pointer
to the string s.

Utoa() converts an unsigned integer number n to the corresponding ASCII characters and returns
a pointer to the string s.

Ltoa() converts a long number n to the corresponding ASCII characters and returns a pointer to
the string s.

NOTE:

These functions are extensions to the atof(), atol(), and atoi() functions. They perform in the
same manner, except for the type of conversion.

SEE ALSO:

atof(), atoi(), atol()

intercept() Set a function for interrupt processing

SYNOPSIS:

intercept(func)
int (*func)();

DESCRIPTION:

Intercept() instructs OS-9 to pass control of the process to the function func when an interrupt
(signal) is received. If the interrupt processing function has an argument, it will contain the value of
the signal received. On return from func, the process resumes at the point in the program where
it was interrupted by the signal. Intercept() is an alternate to the use of signal() to process
interrupts.

As an example, suppose we wish to ensure that a partially completed output file is deleted if an
interrupt is received. The body of the program might include:

__

48 Carl Kreider CLIB/CLIBT OS-9 C library

char *temp_file = "temp";
int pn = 0;
int intrupt();

intercept(intrupt);
pn = creat(temp_file, 3);
write(pn, string, count);
close(pn);
pn = 0;

The interrupt routine might be:

intrupt(sig)
{
 if (pn) {
 close(pn);
 unlink(temp_file);
 }
 exit(sig);
}

CAVEATS:

Intercept() and signal() are mutually incompatible so that calls to both must not appear in the
same program. The linker guards against this by giving an "entry name clash - sigint" error if it is
attempted.

kill() Send an interrupt to a process

SYNOPSIS:

#include <signal.h>

kill(tid, interrupt)
int tid, interrupt;

DESCRIPTION:

Kill() sends the signal type interrupt to the process with id tid. Both tasks, sender and receiver,
must have the same user ID unless the users or sender is the super user.

The include file contains definitions of the defined signals as follows:

#define SIGKILL 0 /* system abort cannot be */
 /* caught or ignored */

#define SIGWAKE 1 /* wake up signal */
#define SIGQUIT 2 /* keyboard abort signal */

__

Carl Kreider CLIB/CLIBT OS-9 C Library 49

#define SIGINT 3 /* keyboard interrupt signal */

Other user-define signals my also be sent.

DIAGNOSTICS:

Kill() returns 0 from a successful call and -1 if the process does not exist, the effective user IDs do
not match, or the user is not the super user.

SEE ALSO:

signal(), OS-9 Shell command "kill"

l3tol(), ltol3() Convert between 3-byte integers and long integers

SYNOPSIS:

void l3tol (lp, cp, n)
long *lp;
char *cp;
int n;

void ltol3 (cp, lp, n)
char *cp;
long *lp;
int n;

DESCRIPTION:

The I3tol() subroutine converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp .

The Itol3() performs the reverse conversion from long integers lp to three-byte integers cp.

These functions are useful for file-system maintenance where the block numbers are three bytes
long. Certain disc addresses are maintained in three-byte form rather than four-bytes.

CAVEATS:

Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent.

__

50 Carl Kreider CLIB/CLIBT OS-9 C library

lseek() seek to a position within a file

SYNOPSIS:

long lseek(pn, position, type)
int pn;
long position;
int type;

DESCRIPTION:

The read or write pointer for the opened file with the path number pn is positioned by lseek() to
the specified place in the file. The type indicates from where position is to be measured: if 0,
from the beginning of the file, if 1, from the current pointer location, and if 2, from the end of the
file.

Seeking to a location beyond the end of a file opened for writing and then writing to it creates a
"hole" in the file which appears to be filled with zeros from the previous end to the position
desired.

The returned value is the resulting position in the file unless there is an error, so to find the current
position use:

lseek (pn, 0l, 1);

CAVEATS:

The argument position MUST be a long integer. Constants should be explicitly made long by
appending an "l" (el - lower case L), as above, any other type should be converted using a cast:

lseek (pn, (long)pos, 1);

Notice also that the returned value from lseek() is itself a long integer.

DIAGNOSTICS:

A -1 is returned if pn is a bad path number, or attempting to seek to a position before the
beginning of the file.

SEE ALSO:

open(), creat(), create(), fseek()

__

Carl Kreider CLIB/CLIBT OS-9 C Library 51

malloc(), free() Memory allocation
realloc(), calloc()

SYNOPSIS:

char *malloc(size)
unsigned size;

free(ptr)
char *ptr;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION:

The malloc() and free() subroutines provide a simple general-purpose memory allocation
package. The malloc() subroutine returns a pointer to a block of at least size bytes beginning on
a word boundary.

The argument to free() is a pointer to a block previously allocated by malloc(). This space is
made available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc() is overrun or if some
random number is handed to free().

The malloc() subroutine maintains multiple lists of free blocks according to size, allocating space
from the appropriate list. It calls sbrk to get more memory from the system when there is no
suitable space already free. For further information, see brk().

The realloc() subroutine changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (possibly moved) block. The contents will be unchanged up to the lesser of the
new and old sizes.

If the pointer argument ptr is zero, then realloc() degenerates into a malloc().

In order to be compatible with older versions, realloc() also works if ptr points to a block freed
since the last call of malloc(), realloc(), or calloc(). Sequences of free(), malloc(), and realloc()
were previously used to attempt storage compaction. This procedure is no longer recommended.

The calloc() subroutine allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

__

52 Carl Kreider CLIB/CLIBT OS-9 C library

CAVEATS:

When realloc() returns 0, the block pointed to by ptr may be destroyed.

DIAGNOSTICS:

Malloc(), free(), and calloc() return a null. if no free memory can be found, or if there was an
error.

rand(), srand(), unmin() Math functions
unmax(), max(), min()

SYNOPSIS:

long rand()

/* void */ srand(n)
unsigned n;

int max(v1, v2)
int min(v1, v2)
int v1, v2;

int unmax(v1, v2)
int unmin(v1, v2)
unsigned v1, v2;

DESCRIPTION:

Rand() returns a random number in the range of 0 -> 32767. Srand() seeds the random number
generator and returns nothing. Srand() uses the dual table method proposed by Knuth.

Max() and min() select either the larger of the smaller of variables v1 and v2. Unmax() and
unmin() perform the same function, but on unsigned numbers. Each of these functions returns a
type INTEGER number.

EXAMPLE:

To seed the random number generator, use the value returned from time():

 long time();

 srand ((unsigned) time(0));

SEE ALSO:

clibt.l Transentental Math library.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 53

memccpy(), memchr(), memcmp() Memory operations

memcpy(), memset()

SYNOPSIS:

#include <memory.h>

char *memccpy (s1, s2, c, n)
char *s1, *s2;
int c, n;

char *memchr (s, c, n)
char *s;
int c, n;

int memcmp (s1, s2, n)
char *s1, *s2;
int n;

char *memcpy (s1, s2, n)
char *s1, *s2;
int n;

char *memset (s, c, n)
char *s;
int c, n;

DESCRIPTION:

These functions operate as efficiently as possible on memory areas (arrays of characters bounded
by a count, not terminated by a null character). They do not check for the overflow of any receiving
memory area.

Memccpy() copies characters from memory area s2 into s1, stopping after the first occurrence of
character c has been copied, or after n characters have been copied, whichever comes first. It
returns a pointer to the character after the copy of c in s1, or a null pointer if c was not found in
the first n characters of s2.

Memchr() returns a pointer to the first occurrence of character c in the first n characters of
memory area s, or a null pointer if c does not occur.

Memcmp() compares its arguments, looking at the first n characters only, and returns an integer
less than, equal to, or greater than 0, according as s1 is lexicographically less than, equal to, or
greater than s2.

Memcpy() copies n characters from memory area s2 to s1. It returns s1.

Memset() sets the first n characters in memory area s to the value of character c. It returns s.

__

54 Carl Kreider CLIB/CLIBT OS-9 C library

NOTE:

For user convenience, all these functions are declared in the optional <memory.h> header file.

BUGS:

Memcmp() uses native character comparison, which is unsigned on some machines. Thus, the
sign of the value returned when one of the characters has its high order bit set is implementation-
dependent.

Character movement is performed differently in different implementations. Thus, overlapping
moves may yield surprises.

mknod() Create a directory

SYNOPSIS:

#include <modes.h>

mknod(fname, desc)
char *fname;
int desc;

DESCRIPTION:

Mknod() may be used to create a new directory. Fname should be a pointer to a string containing
the desired directory name. Desc is a descriptor specifying the desired modes (file type) and the
permissions of the new file.

The include file defines possible values for desc as follows:

/* permissions */

#define S_IREAD 0x01 /* owner read */
#define S_IWRITE 0x02 /* owner write */
#define S_IEXEC 0x04 /* owner execute */
#define S_IOREAD 0x08 /* public read */
#define S_IOWRITE 0x10 /* public write */
#define S_IOEXEC 0x20 /* public execute */
#define S_ISHARE 0x40 /* sharable */

DIAGNOSTICS:

Zero is returned if the directory has been successfully made, -1 if the file already exists.

SEE ALSO:
OS-9 command "makdir"

__

Carl Kreider CLIB/CLIBT OS-9 C Library 55

mktemp() Make a unique file name

SYNOPSIS:

char *mktemp(name)
char *name;

DESCRIPTION:

The MKTEMP subroutine replaces name by a unique file name, and returns the address of the
name. The name should look like a file name with five trailing X's, which will be replaced with the
current process ID.

EXAMPLE:

If instance, if name points to "foo.XXXXX", and the process ID is 351, the returned value points at
the same place as name, but it is now "foo.351".

SEE ALSO:

getpid()

modload(), modlink() Return a pointer to a module structure

SYNOPSIS:

#include <module.h>

mod_exec *modload(filename, type, language)
char *filename
int type, language;

mod_exec *modlink(modname, type, language)
char *modname;
int type, language;

DESCRIPTION:

Each of these calls returns a pointer to an OS-9 memory module.

Modload() will open a file which has the pathlist specified by filename and loads modules from
the file adding them to the module directory. The returned value is a pointer to the first module
loaded.

Modlink() will search the module directory for a module with the same name as modname and, if
found, increment its link count.

__

56 Carl Kreider CLIB/CLIBT OS-9 C library

In the synopsis above, each call is shown as returning a pointer to an executable module, but it
will return a pointer to whatever type of module is found.

DIAGNOSTICS:

A -1 is returned on any error.

SEE ALSO:

munlink()

munlink() Unlink a memory module

SYNOPSIS:

#include <module.h>

munlink(mod)
mod_exec *mod;

DESCRIPTION:

This call informs the system that the memory module pointed to by mod is no longer required by
the current process. Its link count is decremented, and the module is removed from the module
directory if the link count reaches zero.

SEE ALSO:

modlink(), modload()

open() Open a file for read/write access

SYNOPSIS:

open(fname, mode)
char *fname;
int mode;

DESCRIPTION:

Open() opens an already existing file for reading if mode is 1, for writing if mode is 2, or reading
and writing if mode is 3.

NOTE that these values are OS-9 specific and are not compatible with other systems Fname
should point to a string representing the pathname of the file to be opened.

Open() returns an integer as the "path number" which should be used by I/O system calls
referring to the file.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 57

The position where reads or writes start is at the beginning of the file.

DIAGNOSTICS:

A -1 is returned if the file does not exist, if the pathname cannot be searched, if too many files are
already open, or if the file permissions deny the requested mode.

SEE ALSO:

creat(), create(), read(), write(), dup(), close()

_os9() System call interface from C programs

SYNOPSIS:

#include <os9.h>

_os9(code, reg)
char code;
struct registers *reg;

DESCRIPTION:

_Os9() enables the programmer to access virtually any OS-9 system call directly from a C
program without having to resort to assembly language routines.

Code is one of the codes that are define in <os9.h>. <os9.h> contains codes for the F$ and I$
function/service requests, and also contains getstt, setstt, and error codes.

The input registers (reg) for the system calls are accessed by the following structure that is
defined in os9.h:

struct registers {
 char rg_cc, rg_a, rg_b, rg_dp;
 unsigned rg_x, rg_y, rg_u;
};

An example program that uses _os9 is presented on the following page.

DIAGNOSTICS:

A -1 is returned if the OS-9 call fails. 0 (zero) is returned on success.

Program example:

#include <os9.h>
#include <modes.h>

__

58 Carl Kreider CLIB/CLIBT OS-9 C library

/* This program does an I$GETSTT call to get file size */
main (argc, argv)
int argc;
char **argv;
{
 struct registers reg;
 int path;
/* Tell linker we need longs */
 pflinit();
/* low level open - filename is first command line param */
 path = open (*++argv, S_IREAD);
/* set up regs for call to OS-9 */
 reg.rg_a = path;
 reg.rg_b = SS_SIZE;
 if (_os9(I_GETSTT, ®) == 0)
 printf ("filesize = %1x\n",
 (long) (reg.rg_x << 16) + reg.rg_u);
 else
 printf (OS9 error #%d\n, reg.rg_b & 0xff);
 dumpregs (®);
}
dumpregs(r)
register struct registers *r;
{
 printf("cc = %02x\n", r->rg_cc &0xff);
 printf(" a = %02x\n", r->rg_a &0xff);
 printf(" b = %02x\n", r->rg_b &0xff);
 printf("dp = %04x\n", r->rg_dp &0xff);
 printf(" x = %04x\n", r->rg_x);
 printf(" y = %04x\n", r->rg_y);
 printf(" u = %04x\n", r->rg_u);
}

os9fork() Create a new process

SYNOPSIS:

os9fork(modname, paramsize, parmamptr, type, lang, datasize)
char *modname, paramptr;
int paramsize, type, lang, datasize;

DESCRIPTION:

The action of F$FORK, the assembler equivalent of os9fork()is fully described in the OS-9
System manual. Os9fork() will create a process that runs concurrently with the calling process.
When the forked process terminates, it will return to the calling process and pass back its exit
status.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 59

Modname should point to the name of the desired module. Paramsize is the length of the
parameter string which should always be terminated with a '\\n', and paramptr points to the
parameter string itself. Type is the module type as found in the program header (normally a 1 for
"program"), and lang should match the language nibble in the module header (C programs have a
1 for "6809 machine language"). Datasize may be zero or it may contain the number of 256 byte
pages to give to the new process as its initial memory allocation. If it is zero, the new process'
memory allocation will be the amount specified in the program header.

DIAGNOSTICS:

A -1 will be returned on an error, or the ID number of the child process will
be returned upon success.

EXAMPLE:

An example of typical usage would be:

static int stat;
char *status = &stat;

fork(module, params)
char *module, *params;
{
 os9fork (module, strlen(params), params, 1, 1, 0);
 wait (status);
}

*getpwent(), *getpwuid() Password file operations
*getpwnam(), setpwent()
endpwent(), getpwdlm()

SYNOPSIS:

#include <password.h>

PWENT *getpwent()

PWENT *getpwuid(uid)
int uid;

PWENT *getpwnam(name)
char *name;

void setpwent()

void endpwent()

__

60 Carl Kreider CLIB/CLIBT OS-9 C library

int getpwdlm()

DESCRIPTION:

Each of the functions described below perform some operation on the PASSWORD
file maintained in /DD/SYS. Notice also that three of the functions are declared as pointer
functions, and two are of type VOID.

Getpwent() returns a pointer to a structure containing the broken down password entry.It
searches for the file /DD/SYS/PASSWORD, opens it on the first call, and reads the first password
entry. Any subsequent calls will overwrite the data contained in the structure PWENT defined in
<password.h>, so that data must be copied out before the next call is made to preserve it.

This function returns a null upon reaching the end of the password file, and a -1 if an error occurs.

Getpwuid() performs the same function as getpwent() above, but it searches the password file
until a given user ID, as defined by UID, is found.

Getpwnam() again performs the same as getpwent(), but searches the password file until the
entry defined my name is found. The search for name is not case sensitive.

Setpwent() rewinds the password file pointer so additional reads can be made after the end of the
file is reached.

Endpwent() terminates access and closes the password file.

Getpwslm() returns the current password file delimiter character. In an OS9 password file, the
field delimiting character is a comma, while in other password utilities and files, a semi-colon is
used for the delimiter character. This function is provided as a means to check the current type.

NOTE:

For user convenience, function declarations are made in the header file <password.h> provided
below.

/*
** Password.h
**
** Definitions for accessing the OS9 password file.
** Two different delimiters are accepted, ',' and ':'.
** In the second (Unix like) case, an extra field is
** defined for comments (ugcos).
*/

#ifdef TEST
#define PASSWORD "/dd/sys/massword"
#else
#define PASSWORD "/dd/sys/password"
#endif

__

Carl Kreider CLIB/CLIBT OS-9 C Library 61

#define PWEMAX 64 /* maximum lines in password file */
#define PWSIZ 132 /* maximim size of password file line */
#define PWNSIZ 32 /* maximum size of user's name */
#define PWPSIZ 32 /* maximum size of user's password */
#define UNXDLM ':' /* Unix style password file delim */
#define OS9DLM ',' /* OS9 style password file delim */

typedef struct {
 char *unam,
 *upw,
 *uid,
 *upri,
 *ugcos,
 *ucmd,
 *udat,
 ujob; / field pointers */
 } PWENT;

/* returns a pointer to broken down password entry */
PWENT *getpwent();

/* same, but for the given int uid */
PWENT *getpwuid();

/* same, but for the given char *name */
PWENT *getpwnam();

/* rewinds the password file for another scan */
/*void*/ setpwent();

/* terminates password file access (closes) file */
/*void*/ endpwent();

/* returns the current password entry delimiter */
/*void*/ getpwdlm();

patmatch() Tests one string with another for a match

SYNOPSIS:

patmatch(pat, s, flag)
char *pat, *s
int flag

__

62 Carl Kreider CLIB/CLIBT OS-9 C library

DESCRIPTION:

Patmatch() searches the string s for the pattern in pat and returns true if there is a match. The
pattern pat must contain wildcard characters of '*' and '?', where '*' denotes a string of characters
of any type and length, and '?' denotes a single character of any type. Expansion of wildcards is
performed within the function.

If no match is found, false is returned.

If flag is set as true, patmatch() will ignore the case of both strings buy calling the function
toupper() to make both the pattern and the string all uppercase characters prior to matching.
Otherwise, an exact match is required.

EXAMPLE:

if (patmatch("*.ar", dir_string, TRUE) == TRUE)
 puts("A match has been found");
else
 puts("No match was found");

pause() Halt and wait for an interrupt/signal

SYNOPSIS:

pause()

DESCRIPTION:

Pause() may be used to halt a process until an interrupt or signal is received from kill(). An
equivalent function is tsleep(0).

DIAGNOSTICS:

 PAUSE always returns a -1.

SEE ALSO:

kill(), signal(), tsleep()

prerr() Print an error message

SYNOPSIS:

prerr(filnum, errcode)
int filnum, errcode;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 63

DESCRIPTION:

Prerr() prints an error message on the output path specified by filenum, which must be the path
number of an already opened file. The message depends on errcode which will normally be a
standard OS-9 error code. Filenum may also be the standard output or standard error paths
which are always opened at program start.

SEE ALSO:

errmsg()

_prgname() Get a module name

SYNOPSIS:

char *_prgname()

DESCRIPTION:

This function returns a pointer to the name of the module being executed. Normally, argv[0]
points to the same string, but when argv[] is not available, this function serves the purpose well.

SEE ALSO:

_errmsg().

printf(), fprintf(), sprintf() Formatted output conversion

SYNOPSIS:

#include <stdio.h>

printf(format [,arg] ...)
char *format;

fprintf(fp, format [,arg] ...)
FILE *fp;
char *format;

sprintf(s, format [,arg] ...)
char *s, *format;

DESCRIPTION:

These three functions are used to place numbers and strings in the output into formatted, human
readable form.

The printf() subroutine places output on the standard output stream stdout. The fprintf()

__

64 Carl Kreider CLIB/CLIBT OS-9 C library

subroutine places output on the named output fp. Note that the file pointer fp may be 0, 1, or 2
corresponding to stdin, stdout, and stderr or any valid pointer as returned by fopen(), creat(),
create(), or dup(). The sprintf() subroutine places output in the string s, followed by the character
`\\0' (NULL).
 NOTE: It is the programmers responsibility to insure that string s is large enough to hold the
output of sprintf().

Each of these functions converts, formats, and prints its arguments after the first under control of
the format argument. The format argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications. Each of these cause conversion and printing of the next successive arg.

Following is the order in which a printf() conversion specification is presented:

% [-] [field_width] [.] [num_to_print] [len] conv_char

This order must be followed. Any of the optional (enclosed in brackets) conversion specifications
may be omitted but, the order must remain the same. A period must appear before the "nbr of
chars to print" or printf() will interpret the number to be the field width specification.

Each conversion specification is introduced by the percent sign character (%).
Following the %, there may be:

Zero or more flags, which modify the meaning of the conversion specification. If the character
following the '%' is not a conversion character, that character is printed literally. The first
uninterpretable character ends the conversion string.

An optional minus sign (-) which specifies left adjustment of the converted value in the indicated
field.

An optional digit string specifying a field width. The field will be at least this wide and may be
wider if the conversion requires it. If the converted value has fewer characters than the field width,
it is blank-padded on the left (or right, if the left-adjustment indicator has been given) to make up
the field width. If the field width digit string begins with a zero, zero-padding occurs instead of
blank-padding.

An optional period (.) which serves to separate the field width from the next digit string.

An optional digit string specifying a precision which specifies the number of digits to appear after
the radix character, for e and f conversions, or the maximum number of characters to be printed
from a string.

The character l (lowercase 'l' (ell)) specifying that a following d, o, x, X, or u corresponds to a long
integer arg.

A character which indicates the type of conversion to be applied.

A field width or precision may be an asterisk (*) instead of a digit string. In this case an integer arg
supplies the field width or precision.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 65

The flag characters and their meanings are:

- : The result of the conversion is left-justified within the field.

+ : The result of a signed conversion always begins with a sign (+ or -).

blank : If the first character of a signed conversion is not a sign, a blank is prepended to the result.
This implies that if the blank and plus sign (+) flags both appear, the blank flag is ignored.

: The value is to be converted to an alternative form. For c, d, s, and u conversions, the flag
has no effect. For o conversions, it increases the precision to force the first digit of the result to be
a zero. For x or X conversions, a non-zero result has 0x or 0X prepended to it. For e, E, f, g, and
G conversions, the result always contains a decimal point, even if no digits follow the point. A
decimal point usually appears in the result of these conversions only if a digit follows it. For g and
G conversions, trailing zeroes are not removed from the result.

The conversion characters and their meanings are

d, o, x - The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f - The float or double arg is converted to decimal notation in the style `[-]ddd.ddd' where the
number of d's after the decimal point is equal to the precision specification for the argument. If the
precision is missing, 6 digits are given; if the precision is explicitly 0, no decimal point and
following characters are printed.

e, E - The float or double arg is converted in the style `[-]d.ddde(+-)dd' where there is one digit
before the decimal point and the number after is equal to the precision specification for the
argument; when the precision is missing, 6 digits are produced. When the argument is E, the
results are printed in uppercase characters.

g, G - The float or double arg is printed in style d, in style f, or in style e. The style used depends
on the value converted and the shortest is printed. Style e is used only if the exponent resulting
from the conversion is less than 4 or greater than the precision. Trailing zeroes are removed from
the result. A decimal point appears onlyif it is followed by a digit. If the G form is used, the output
is printed in uppercase characters.

c - The character arg is printed.

s - The arg is taken to be a string (character pointer) and characters from the string are printed
until a null character or the number of characters indicated by the precision specification is
reached; however if the precision is 0 or missing all characters up to a null are printed.

u - The unsigned integer arg is converted to decimal and printed. The result is in the range 0
through 65535 (for 6809/OS-9 only) or whatever the maximum integer
size is on the system.

% - Print a `%'; no argument is converted.

__

66 Carl Kreider CLIB/CLIBT OS-9 C library

A non-existent or small field width never causes truncation of a field. Padding takes place only if
the specified field width exceeds the actual width. Characters generated by printf() are printed
by putc().

In the case of double or float conversions, the last digit printed is rounded.

CAVEATS:

In the ULTRIX-32 environment, printf() and fprintf() return 0 for success and EOF for failure. The
sprintf() subroutine returns its first argument for success and EOF for failure.

In the System V environment, printf(), fprintf(), and sprintf() subroutines return the number of
characters transmitted, not including the \\0 in the case of sprintf() or a negative value if an output
error was encountered.

Within the OS-9 environment, in order to print long integers, the statement pflinit() must occur
somewhere in the source code in order for the routines to print longs to be linked from the
standard library. In addition, to print floats or double integers, the statement pffinit() must occur
somewhere in the source code. Normally, either one or both of these statements are placed at
the start of the source code file where printing of longs, floats, or doubles is required.

SEE ALSO:

putc(), scanf()

putc(), putchar(), putw() Put character or word on a stream

SYNOPSIS:

#include <stdio.h>

char putc(c, fp)
char c;
FILE *fp;

char putchar(c)

putw(w, fp)
FILE *fp;

DESCRIPTION:

The putc() routine appends the character c to the named output fp. It returns the character
written.

The putchar(c) routine is defined as a macro in the header file <stdio.h> and is the same as
putc(c, stdout).

__

Carl Kreider CLIB/CLIBT OS-9 C Library 67

The putw() routine appends word (that is, a two byte word, such as int), w to the output fp. It
returns the word written. The putw() routine neither assumes nor causes special alignment in the
file.

Output via putc() is normally buffered except when buffering is disabled with setbuf() or when the
standard error output path is used.

CAVEATS:

Because it is implemented as a macro, putchar() treats its argument with side effects incorrectly.
In particular, `putchar(*c++);' doesn't work as expected.

DIAGNOSTICS:

Putc() and putchar() return the character argument from a successful call or EOF upon error or
end-of-file. Since EOF is a good integer, ferror() should be used to detect putw() errors.

SEE ALSO:

fclose(), fopen(), fread(), getc(), printf(), puts()

puts(), fputs() Put a string on an output stream

SYNOPSIS:

#include <stdio.h>

puts(s)
char *s;

fputs(s, fp)
char *s;
FILE *fp;

DESCRIPTION:

The puts() subroutine copies the null-terminated string s to the standard output stream stdout
and appends a new line character.

The fputs() subroutine copies the null-terminated string s to the named output fp.

Neither routine copies the terminal null character.

CAVEATS:

The puts() subroutine appends a new line, while fputs() does not. This inconsistency of the new-
line being appended by puts() and not by fputs() is dictated by history and the desire for
compatibility.

__

68 Carl Kreider CLIB/CLIBT OS-9 C library

SEE ALSO:

fopen(), gets(), putc(), printf(), ferror() fread()

qsort() Quick sort

SYNOPSIS:

qsort(base, nel, size, compar)
char *base;
int (*compar)();

DESCRIPTION:

The qsort() subroutine is an implementation of the quick-sort algorithm. The first argument is a
pointer to the base of the data; the second is the number of elements; the third is the size of an
element in bytes; the last is the name of the comparison routine to be called with two arguments
which are pointers to the elements being compared. The compar() routine must return an integer
less than, equal to, or greater than 0 according as the first argument is to be considered less than,
equal to, or greater than the second.

read(), readln() Rread from a file

SYNOPSIS:

read(pn, buffer, count)
char *buffer;
int pn, count;

readln(pn, buffer, count)
char *buffer;
int pn, count;

DESCRIPTION:

The path number pn is an integer which is one of the standard path number 0, 1, or 2, or the path
number returned from a successful call to open(), creat(), create(), or dup(). Buffer is a pointer to
memory space with at least count bytes of memory into which read() and readln() will put the
data from the file.

It is guaranteed that at most count bytes will be read from the file, but often less will be, either
because, for readln(), the file represents a terminal and input stops at the end of a line, or for
both, the end-of-file marker has been reached.

Readln() causes "line editing" such as echoing to take place and returns once the first '\\n' is
encountered in the input stream, or the number of bytes requested in count has been reached.
Readln() is the preferred call for reading from the user's terminal.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 69

Read() does not cause any line editing. See the OS-9 manual for a fuller description of the actions
of these call.

DIAGNOSTICS:

Read() and readln() return the number of bytes actually read (0 at EOF), or -1 for a physical I/O
error, a bad path number, or a ridiculous count. The actual error (physical I/O or otherwise) can
be determined by examining the global variable
errno.

NOTE:

EOF is not considered an error, and no error indication is returned. Zero is returned on EOF.

SEE ALSO:

open(), creat(), create(), dup()

realloc() Changes memory allocated by malloc()

SYNOPSIS:

char realloc(p, size)
char *p;
int size;

DESCRIPTION:

Realloc() takes a pointer such as that returned by malloc() and changes the size of the object. If
the pointer argument is null, Realloc() degenerates into a malloc().

SEE ALSO:

malloc() (Microware Manual)

sbrk(), ibrk() Request additional working memory

SYNOPSIS:

char *sbrk(increase)
char *ibrk(increase)

int increase;

DESCRIPTION:

Sbrk() requests an allocation from free memory and returns a pointer to its base, if successful.

__

70 Carl Kreider CLIB/CLIBT OS-9 C library

Sbrk() requests the system to allocate "new" memory from outside the initial allocation.

Ibrk() requests memory from inside the initial memory allocation.

Users should read the Memory Management section of the "C" programming
Manual for a fuller explanation of the arrangement.

DIAGNOSTICS:

Sbrk() and ibrk() return a -1 if the requested amount of contiguous memory is not available

scanf(), fscanf(), sscanf() Convert formatted input

SYNOPSIS:

#include <stdio.h>

int scanf (format [, pointer...])
char *format;

int fscanf (fp, format [, pointer...])
FILE *fp;
char *format;

int sscanf (s, format [, pointer...])
char *s, *format;

DESCRIPTION:

The scanf() subroutine reads from the standard input stream stdin. The fscanf() subroutine reads
from the named input fp. The sscanf() subroutine reads from the character string s. Each function
reads characters, interprets them according to a format, and stores the results in its arguments.
Each expects, as arguments, a control string format described below, and a set of pointer
arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to direct
interpretation of input sequences. The control string may contain:

White-space characters which, except in two cases described later, cause input to be read up to
the next non-white-space character.

An ordinary character (not %), which must match the next character of the input stream.

Conversion specifications, consisting of the character % , an optional assignment suppressing
character \(** , an optional numerical maximum field width, an optional l " (ell) or " h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the

__

Carl Kreider CLIB/CLIBT OS-9 C Library 71

variable pointed to by the corresponding argument, unless assignment suppression was indicated
by \(**. The suppression of assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field
width, if specified, is exhausted. For all descriptors except left-bracket ([) and c,
white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field. The corresponding pointer
argument must usually be a restricted type. For a suppressed field, a pointer argument is not
given. The following conversion codes are legal:

%
A single % is expected in the input at this point; no assignment is done.

d
A decimal integer is expected; the corresponding argument should be an integer pointer.

u
An unsigned decimal integer is expected; the corresponding argument should be an unsigned
integer pointer.

o
An octal integer is expected; the corresponding argument should be an integer pointer.

x
A hexadecimal integer is expected; the corresponding argument should be an integer pointer.

\\f3e\\fP,\\f3f\fP,\\f3g\\fP
A floating point number is expected; the next field is converted accordingly and stored through the
corresponding argument, which should be a pointer to a float . The input format for floating point
numbers is an optionally signed string of digits, possibly containing a radix character, followed by
an optional exponent field consisting of an E or an e, followed by an optional \(pl, \-, or space,
followed by an integer.

s
A character string is expected; the corresponding argument should be a character pointer pointing
to an array of characters large enough to accept the string and a terminating \e0 , which is added
automatically. The input field is terminated by a white-space character.

c
A character is expected; the corresponding argument should be a character pointer. The normal
skip over white space is suppressed in this case; to read the next non-space character, use %1s .
If a field width is given, the corresponding argument should refer to a character array; the
indicated number of characters is read.

[
Indicates string data and the normal skip over leading white space is suppressed. The left bracket
is followed by a set of characters, which can be called the scanset, and a right bracket. The input
field is the maximal sequence of input characters consisting entirely of characters in the scanset.

__

72 Carl Kreider CLIB/CLIBT OS-9 C library

The circumflex \^, when it appears as the first character in the scanset, serves as a complement
operator and redefines the scanset as the set of all characters not contained in the remainder of
the scanset string. There are some conventions used in the construction of the scanset. A range
of characters may be represented by the construct first\-last , thus [0123456789] may be
expressed [0\-9].

Using this convention, first must be lexically less than or equal to last , or else the dash stands for
itself. The dash also stands for itself whenever it is the first or the last character in the scanset. To
include the right square bracket as an element of the scanset, it must appear as the first character
(possibly preceded by a circumflex) of the scanset, and in this case it is not syntactically
interpreted as the closing bracket. The corresponding argument must point to a character array
large enough to hold the data field and the terminating \fB\\0\fR, which is added automatically. At
least one character must match for this conversion to be considered successful.

The conversion characters d, u, o, and x may be capitalized or preceded by l or h to indicate that
a pointer to long or to short, rather than to int, is in the argument list. Similarly, the conversion
characters e, f, and g may be capitalized or preceded by l to indicate that a pointer to double,
rather than to float, is in the argument list. The "l" or "h" modifier is ignored for other conversion
characters.

The scanf() subroutine conversion terminates at EOF, at the end of the control string, or when an
input character conflicts with the control string. In the latter case, the offending character is left
unread in the input stream.

The scanf() subroutine returns the number of successfully matched and assigned input items.
This number can be zero in the event of an early conflict between an input character and the
control string. If the input ends before the first conflict or conversion, EOF is returned.

EXAMPLE:

The call:

int i, n; float x; char name[50];

n = scanf("%d%f%s", &i, &x, name);

with the input line: 25 54.32E\-1 thompson

assigns to n the value 3, to i the value 25, to x the value 5.432,
and name will contain thompson.

Or:

int i; float x; char name[50];

scanf("%2d%f%\ %[0\-9]", &i, &x, name);

with input: 56789 0123 56a72 will assign 56 to i, 789.0 to x, skip 0123, and place the string 560 in
name .

__

Carl Kreider CLIB/CLIBT OS-9 C Library 73

The next call to getchar() will return a .For further information, see getc() .

CAVEATS:

The success of literal matches and suppressed assignments is not directly determinable.

Trailing white space (including a new-line) is left unread unless matched in the control string.

DIAGNOSTICS:

These functions return EOF on end of input and a short count for missing or illegal data items.

SEE ALSO:

atof(), getc(), printf()

setbuf() Fix file buffer

SYNOPSIS:

#include <stdio.h>

setbuf (fp, buffer)
FILE *fp;
char buffer;

DESCRIPTION:

When the first character is written to or read from a file after it has been opened by fopen(), a
buffer is obtained from the system, if required, and assigned to the file pointer fp. Setbuf() may be
used to forestall this automatic buffer assignment by assigning a user buffer to the file.

Setbuf() must be used after the file has been opened and before any I/O has taken place.

The buffer must be of sufficient size and a value for a manifest constant, BUFSIZ, is defined in the
header file for use in declaration.

If the buffer argument is NULL (0), the file stream becomes unbuffered and characters are read or
written singly.

NOTE that the standard error output defaults to unbuffered while the standard output default to
buffered output.

SEE ALSO:

fopen(), getc(), putc()

__

74 Carl Kreider CLIB/CLIBT OS-9 C library

setime(), getime() Set and get system time

SYNOPSIS:

#include <time.h>

setime(buffer)
getime(buffer)

struct sgtbuf *buffer; /* defined in time.h */

DESCRIPTION:

Setime() sets the system time depending on the values in the structure buffer as defined in
<time.h>. These values must be set prior to calling setime() or the system time will be set to an
unknown state.

Getime() reads the system time and returns the information in the structure buffer. Reading the
structure elements will then yield the desired values.

An example to read the time structure might be:

struct sgtbuf timepacket;

getime(timepacket);
printf("The year is: %d\n", timepacket.t_year);
printf("The day is: %d\n", timepacket.t_day);

SEE ALSO:

time(), ctime(), time(), o2utime(), u2otime()

setjmp(), longjmp() Nonlocal goto another function

SYNOPSIS:

#include <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION:

These routines are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 75

Goto in C has a scope only in the function in which it is used; i.e., the label which is the object of
the goto may only be in the same function. Control can only be transferred elsewhere by means
of the function call, which, fo course, returns to the caller. In certain abnormal situations a
programmer would perfer to be able to start some section of code again, but this would mean
returning up a ladder of function calls with error indications all the way.

Setjmp() is used to "mark" a point in the program where a subsequent longjmp() can reach. It
places in the buffer, defined in the header file <setjmp.h>, enough information for the longjmp()
to restore the environment to that existing at the time setjmp() is called.

The setjmp() subroutine saves its stack environment in env for later use by longjmp(). It returns
value 0.

The longjmp() subroutine restores the environment saved by the last call of setjmp(). It then
returns in such a way that execution continues as if the call of setjmp() had just returned the value
val to the function that invoked setjmp(), which must not itself have returned in the interim.
However, longjmp() cannot cause setjmp() to return the value 0. If longjmp() is invoked with a
val of 0, setjmp() will return 1. All accessible data have values as of the time longjmp() was
called.

CAVEATS:

The setjmp() subroutine does not save current notion of whether the process is executing as a
result of a signal. The result is that a LONGJMP to some place as a result of a signal leaves the
signal state incorrect.

In addition, the variable env MUST be globally declared.

DIAGNOSTICS:

Setjmp() returns a zero (0) if the call is the the first made in the current program run. If a one (1) is
returned, then it must be a longjmp() returning from some deeper level in the program.

SEE ALSO:

signal(), intercept()

setmem() Fills memory with a character

SYNOPSIS:

setmem(start, count, fill)
char *start
int count
char fill

__

76 Carl Kreider CLIB/CLIBT OS-9 C library

DESCRIPTION:

Setmem() fills count bytes of memory beginning at the location pointed to by start with the ASCII
character contained in fill.

No value is returned making this a type VOID function.

EXAMPLE:

/* Initialize an 80 character string to all NULLS */

count = 80;
fill = '0x00'

setmem(start, count, fill)

SEE ALSO:

memset()

setpr() Set process priority

SYNOPSIS:

setpr(pid, priority)
int pid, priority;

DESCRIPTION:

Setpr() sets the process identified by pid (process ID) to have a priority of priority. The lowest
priority is 0 and the highest is 255.

A currently running process cannot change the priority of another running process if the two
process' do not share ownership. In addition, a process, if not owned by the super user, cannot
upgrade its priority to a level higher than the parent process that created it with the OS-9 system
call. However, a process owned by the super user, or any system process, can change the priority
of any other running process to any level.

DIAGNOSTICS:

A -1 will be returned if the process does not have the same user ID as the
calling process.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 77

allocset(), addc2set(), adds2set() Dupset Set operations
rmfmset(), smember(), union()
sintersect(), sdifference(), copyset()

SYNOPSIS:

char *allocset(s, c)
char *s, *p;

char *addc2set(s, c)
char *s c;

char *adds2set(s, p)
char *s p;

char *rmfrmset(s, c)
char *s, c;

smember(s, c)
char *s, c;

char *sunion(s1, s2)
char s1[], s2[];

char *sintersect(s1, s2)
char s1[], s2[];

char *sdifference(s1, s2)
char s1[], s2[];

char *copyset(s1, s2)
char s1[], s2[];

char *dupset(s)
char s[];

DESCRIPTION:

Allocset() allocates memory for a set consisting of an array of 32 bytes (256 bits). If successful, it
returns a pointer to the set, or null if not successful. This array is then operated on with the
following functions.

Add2set() adds the character c to the set s. No error is possible. Adding a single character or any
value in the range 0 - 255 decimal is the same as ORing the bit that corresponds to the numeric
value of that character, i.e., adding a character 'A' to the set will set bit number $41, 65 decimal.

Add2set() adds the string p to the set s. No error is possible. The string p is added to the set in

__

78 Carl Kreider CLIB/CLIBT OS-9 C library

that same manner as add2set() above, but the entire string of bits is added in a bit-by-bit
progression.

Rmfrmset() removes character c from the set s. Again, no error is possible. Removing a
character from the set amounts to ANDing the bit at the position corresponding to the numeric
value of the character as in add2set() above, but is the reverse procedure.

Smember() returns TRUE if character c is a member of set s, or returns FALSE if it is not a
member.

Sunion() merges a second set s2 into the first set s1.

Sintersect() returns any elements that only exist in both sets s1 and s2.

Sdifference() returns unigue elements of both sets that are in the first set, s1.

Copyset() duplicates the second set, s2, into the first set, s1.

Dupset() allocates memory for a new set, and then copies set s into that memory area.

setstat() OS-9 set status system calls

SYNOPSIS:

#include <os9.h>
#include <sgstat.h>

setstat(SS_OPT, filenum, buffer)
int code, filenum;
struct sgbuf *buffer;

setstat(SS_SIZE, filenum, size)
int code, filenum;
long *size;

setstat(SS_RESET, filenum, code)
int code, filenum, code;

setstat(SS_WTRK, filenum, buffer, track_number, side/density)
int code, filenum;
char *buffer;
int track_number, side/density;

setstat(SS_FRZ, filenum)
int code, filenum;

setstat(SS_SQD, filenum)
int code, filenum;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 79

setstat(SS_DCMD, code, filenum, parm1, parm2, parm3)
int code, code, filenum, parm1, parm2, parm3;

#include <direct.h>
setstat(SS_FD, filenum, buffer)
int code, filenum;
struct fildes *buffer;

setstat(SS_TICK, filenum, count)
int code, filenum, count;

setstat(SS_LOCK, filenum, position)
int code, filenum;
long position;

setstat(SS_RELEA, filenum)
int code, filenum;

setstat(SS_BLKRD, filenum, buffer, track_sector, track_den)
int code, filenum;
char *buffer;
int track_sector, track_den/side/density;

setstat(SS_BLKWR, filenum, buffer, track_sector, track_den)
int code, filenum;
char *buffer;
int track_sector, track_den/side/density;

setstat(SS_SSIG, filenum, code)
int code, filenum, code;

DESCRIPTION:

Most of these calls are equivalent to the _ss_XXX calls described elsewhere in these documents.
While the _ss_XXX calls are provided for compatibility with source code generated for OSK
systems, the calls listed below are those normally used with 6809/OS-9.

The following descriptions do not include the full syntax for each function call. See the list above
under Synopsis.

Setstat(SS_OPT) copies the buffer pointed to be buffer into the options section of the path
descriptor opened.

Generally, a program will fetch the options with the getstat(SS_OPT) function, change the desired
values, and then update the path options with the setstat(SS_OPT) function. The structures
SGBUF declared in <sgstat.h> provides a convenient means to access the individual option
values.

__

80 Carl Kreider CLIB/CLIBT OS-9 C library

If an error occurs, a -1 is returned and the appropriate error code is placed in errno.

It is a common practice to preserve a copy of the original path descriptor options so a program
can restore them prior to exiting. The option changes take effect on the currently open path and
any path created with the I$DUP system call.

SETSTAT(SS_SIZE) is used to change the size of a file opened on filenum. The size change is
immediate.

If the size of the file is decreased, the freed sectors are returned to the system. If the size is
increased, sectors are added to the file with the contents of those sectors being undefined.

If an error occurs, this function returns the value -1 and the error code is placed in the global
variable errno.

This function works only on RBF devices.

Getstat(SS_RESET) restores the disk drive head to Track 00 in preparation for formatting and
error recovery.

If an error occurs, this function returns -1 as its value and the error code
is placed in the global variable errno.

This call works only on RBF devices.

Setstat(SS_WRTK) performs a write-track operation on a disk drive. It is essentially a direct hook
into the driver's write-track entry point. track_number is the desired track number to write, and
side/density is the desired side of the disk upon which to write. When the write is performed, the
image contained in and pointed to by buffer is written out to the disk.

If an error occurs, the value -1 is returned and the error code is placed in the global variable
errno.

This function works only on RBF devices. Additional information on how it works can be obtained
from examining the FORMAT utility or a device driver.

WARNING! If track_number is set to zero when this function is called, the entire disk, floppy or
hard disk, will be formatted.

Setstat(SS_FRZ) inhibits the reading of LSN 0 variables which define the disk format. This
enables the reading of non-standard disks.

This is a very little used function that has been deleted from most new documentation and, in fact,
is not supported by Microware any more. It is included in this library solely for compatibility with
older programs that may call it. Consult your manuals for an explanation of its use.

Setstat(SS_SPT) sets a different number of tracks so that non-standard disks can be read. This is
not an often used call, as with SS_FRZ above. Consult your manual for more details.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 81

This call does not return any information.

Setstat(SS_SQD) starts the power down sequence for hard drives that have this feature. Since
this sequence is hardware dependent, consult your user documents for more details. The device
that is opened with filenum will be the device the sequence works on.

This call does not return any information.

Setstat(SS_DCMD) sends direct commands to the disk controller for specific instructions. Since
parameters and commands are also hardware dependent, consult your disk controller's
documentation and the specifications for the disk controller chip.

The exit conditions of this call vary depending on the hardware device.

Setstat(SS_FD) places a copy of the RBF file descriptor sector of the file opened into the buffer
pointed to by buffer. A maximum of count bytes are copied. The structure fildes, declared in
<direct.h>, provides a convenient method to access the file descriptor information.

If and error occurs, this function returns -1 as its value and the error code
is placed in the global variable errno.

Be sure the buffer is large enough to hold all the options, or at least count bytes. This call is
effective only on RBF devices. Declaring the buffer as type "struct fildes" is perfectly safe as this
structure is predefined to be large enough to hold all the file descriptor information.

Setstat(SS_TICK) may be used to cause an error (E$LOCK) to be returned to the process if the
conflict still exists after a specific number of clock ticks have
elapsed.

The argument count specifies the number of ticks to wait if the record-lock conflict occurs with the
file open on path. A tick count of zero (the default on RBF devices), causes a sleep until the
record is released. A tick count of one means if the record is not released immediately, an error is
to be returned.

If an error occurs, the value -1 is returned and the error code is placed in the global variable
errno.

Setstat(SS_LOCK) locks out a file open on filenum at the offset from the file beginning at offset
position, so another process cannot read past that point.

If an error occurs, the function returns the value -1 and the error code is
placed in the global variable errno.

Setstat(SS_RELEA) releases a file that was locked using SS_LOCK above.

Setstat(SS_BLKRD) reads one block of data from a disk file opened on filenum. The parameters
passed determine the actual sector number and side of the disk. The data is read into a buffer
pointed to by buffer.

__

82 Carl Kreider CLIB/CLIBT OS-9 C library

This function is VERY hardware dependent and the user should know the size of a disk block on
his/her system before using it. Typically, on an 8-bit machine, the block size will be 256 bytes
while a 16-bit machine will usually have a block size of 512 bytes. UNIX hardware has a block size
of 1024 bytes. In addition, not all device drivers support this call. Again, be sure before you use it.

Consult your hardware documentation for more details.

Setstat(SS_BLKWR) is the reverse of SS_BLKRD above, writing out one block of data.

Setstat(SS_SSIG) sets up a signal to be sent to the calling process when an interactive device
has data ready. When data is received on the device indicates byfilenum, the signal code is sent
to the calling process.

SS_SSIG must be called each time the signal is sent if it is to be used again.

The device is considered busy, and will return an error, if any read request arrives before the
signal is sent. Write requests are allowed to the device while in this state.

If an error occurs, the function returns the value -1 and the error code is placed in the global
variable errno.

NOTE:

All the above calls require an OS-9 path number for filenum, and NOT a C iob file descriptor
pointer.

SEE ALSO:

I$GetStt system call - Microware Manual, _gs_xxx calls

setuid() Set user ID

SYNOPSIS:

setuid(uid)
int uid;

DESCRIPTION:

This call is used to set the user ID for the current process.

Setuid() only works if the caller is the super user.

DIAGNOSTICS:

A zero is returned from a successful call, and -1 on error.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 83

SEE ALSO:

getuid()

signal() Catch or ignore interrupts

SYNOPSIS:

#include <signal.h>

(*signal(interrupt, address))()
(*address)();

DESCRIPTION:

This call is a comprehensive method of catching or ignoring signals sent to the current process.
Notice that kill() does the sending of signals and signal() does the catching.

Normally, a signal sent to a process causes it to terminate with the status of the signal. If, in
advance of the signal, this system call is used, the program has the choise of ignoring the signal
or designating a function to be executed when the signal is received. Different functions may be
designated for different signals.

The values for address have the following meanings:

0 = reset to the default, i.e., abort when received
1 = ignore - this applies until reset to another value

Otherwise: taken to be the address of a C function which is to be executed upon receipt of the
signal.

If the latter case is chosen, when the signal is received by the process the address is reset to 0,
the default, before the function is executed. This means that is the next signal received should be
caught then another call to Signal() must be made immediately. This is normally the first action
taken by the Interrupt function. The function may access the signal number which caused its
execution by looking at its argument. On completion fo this function the program resumes
execution at the point where it was interrupted by the signal.

EXAMPLE:

Suppose a program needs to create a temporary file which should be deleted before exiting. The
body of the program might contain fragments like this:

pn = creat("temp",3);
signal(2,intrupt);
signal(3,intrupt);
write(pn,string,count);
close(pn);

__

Carl Kreider CLIB/CLIBT OS-9 C Library 85

 unlink("temp");
 exit(sig);
}

In this case, as the function will be exiting before another signal is receive, it is unnecessary to call
signal() again to reset its pointer. Note that either the function intrupt() should appear in the
source code before the call to signal(), or it should be pre-declared.

The signals used by OS-9 are define in the header file <signal.h> as follows:

/* OS-9 Signals

#define SIGKILL 0
#define SIGWAKE 1
#define SIGQUIT 2
#define SIGINT 3

/* special addresses */

#define SIG_DFL 0
#define SIG_IGN 1

Please note that there is another method of trapping signals, namely intercept(). However, since
signal() and intercept() are mutually incompatible, calls to both of them must not appear in the
same program. The linker will prevent the creation of an executable program in which both are
called by aborting with an entry name clash error for _sigint.

SEE ALSO:

intercept(), kill(), OS-9 Shell command "kill"

skipbl() Skips spaces and tabs within a string

SYNOPSIS:

char *skipbl(s)
char *s

__

86 Carl Kreider CLIB/CLIBT OS-9 C library

DESCRIPTION:

Skipbl() skips over all spaces (0x20) and tabs (0x09) in a string and returns an updated pointer to
the next non-blank character.

Since the function returns a pointer, is must be declared prior to calling as a type CHAR function.

.EXAMPLE:

Before entering, the pointer is positioned as:

 Now is the time
 ^

skipbl("Now is the time")

returns the pointer as:

 Now is the time
 ^

 SEE ALSO:

skipwd()

skipwd() Skips words within a string

SYNOPSIS:

char *skipwd(s)
char *s

DESCRIPTION:

Skipwd() skips over all non-blank characters in a string and returns an updated pointer to the next
space (0x20) found

Since the function returns a pointer, is must be declared prior to calling as a type CHAR function.

EXAMPLE:

Before entering, the pointer is positioned as:

 Now is the time
 ^
skipwd("Now is the time")

returns the pointer as:

__

Carl Kreider CLIB/CLIBT OS-9 C Library 87

 Now is the time
 ^
SEE ALSO:

skipbl()

_ss_attr() Set file attributes

SYNOPSIS:

#include <modes.h>

int _ss_attr(path, attr)
int path;
short attr;

DESCRIPTION:

_ss_attr() changes a disk file's attributes. The current attributes of a file can be determined with
the _gs_gfd() function. The attributes of a file can be changed only by the owner of the file or the
super user.

The attributes as selected in the word attr are set in the file opened on path. The header file
<modes.h> defines the valid mode values used in attr.

NOTE:

This function is effective even if the owner or super user does not have write permission to the file.
It is not permitted to set the directory bit of a non-directory file, or to clear the directory bit of a
directory that is not empty.

DIAGNOSTICS:

If an error occurs, the function returns the value -1 and the error code is placed in the global
variable errno.

SEE ALSO:

I$SetStt system call, Microware manual.

_ss_lock() Set file lock status

SYNOPSIS:

int _ss_lock(path, locksize)
int path;
long locksize;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 87

DESCRIPTION:

_ss_lock locks out a section of a file open on path from the current file position up to the number
of bytes specified by locksize.

If the locksize is zero, all locks (record lock, EOF lock, and file lock) are removed. If a locksize of
0xFFFFFFFF is requested, the entire file is locked regardless of where in the file the file pointer is.
This is a special type of file lock that remains in effect until released by _ss_lock(path,0), a read
or write of zero or more bytes, or the file is closed.

DIAGNOSTICS:

If an error occurs, the function returns the value -1 and the error code is placed in the global
variable errno.

SEE ALSO:

I$SetStt system call, Microware manual.

_ss_opt() Set file descriptor options

SYNOPSIS:

#include <sgstat.h>

int _ss_opt(path, buffer)
int path;
struct sgbuf *buffer;

DESCRIPTION:

_ss_opt() copies the buffer pointed to be buffer into the options section of the path descriptor
opened on path.

Generally, a program will fetch the options with the _gs_opt() function, change the desired values,
and then update the path options with the _ss_opt() function. The structure sgbuf declared in
<sgstat.h> provides a convenient means to access the individual option values.

NOTE:

It is a common practice to preserve a copy of the original path descriptor options so a program
can restore them prior to exiting. The option changes take effect on the currently open path and
any path created with the I$DUP system call.

DIAGNOSTICS:

If the path is invalid, _ss_opt() returns -1 and the appropriate error code is placed in errno.

__

88 Carl Kreider CLIB/CLIBT OS-9 C library

SEE ALSO:

I$SetStt system call - Microware Manual, _gs_opt().

_ss_pfd() Set and write file descriptor

SYNOPSIS:

#include <direct.h>

int _ss_pfd(path, buffer)
int path;
struct fildes *buffer;

DESCRIPTION:

_ss_pfd() will copy certain bytes from the buffer pointed to by buffer into the file descriptor sector
of the file opened on path. The buffer is usually obtained from the _gs_gfd() function. Only the
owner ID, the modification date, and the creation date is changed.

The structure FILDES declared in <direct.h> provides a convenient means to access the file
descriptor information.

NOTE:

The buffer must be at least 16 bytes long or garbage could be written into the file descriptor
sector. The owner ID field can be changed only by the super-user. It is impossible to change the
file attributes with the call. Instead, use the _ss_attr() function.

SEE ALSO:

I$SetStt system call, Microware Manual, _gs_pfd().

_ss_rel() Release a pending signal

SYNOPSIS:

int _ss_rel(path)
int path;

DESCRIPTION:

_ss_rel() cancels the signal to be sent from a device on data ready. The function _ss_ssig()
enables a device to send a signal to a process when data is available on the device.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 89

DIAGNOSTICS:

If an error occurs, the function returns the value -1 and the appropriate error value is placed in the
global variable errno.

NOTE:

The signal request is also canceled when the issuing process dies or closes the path to the
device. This feature exists only on SCF devices.

SEE ALSO:

I$SetStt system call, Microware manual, _ss_ssig().

_ss_rest() Restore disk drive head to track zero

SYNOPSIS:

int _ss_rest(path)
int path;

DESCRIPTION:

_ss_rest() causes an RBF device to restore the disk head to track zero. It is usually used prior to
disk formatting and for error recovery.

DIAGNOSTICS:

If an error occurs, the function returns -1 and the appropriate error code is placed in the global
variable errno.

SEE ALSO:

I$SetStt system call - Microware manual.

_ss_ssig() Set a signal

SYNOPSIS:

int _ss_ssig(path, sigcode)
int path;
short sigcode;

DESCRIPTION:

_ss_ssig() sets up a signal to be sent to the calling process when an interactive device has data
ready. When data is received on the device indicates by path, the signal sigcode is sent to the
calling process.

__

90 Carl Kreider CLIB/CLIBT OS-9 C library

_ss_ssig() must be called each time the signal is sent if it is to be used again.

The device is considered busy, and will return an error, if any read request arrives before the
signal is sent. Write requests are allowed to the device while in this state.

NOTE:

This feature exists only on SCF devices.

DIAGNOSTICS:

If an error occurs, the function returns the value -1 and the error code is placed in the global
variable errno.

SEE ALSO:

I$SetStt system call, Microware manual, _ss_rel().

_ss_size() Change file size

SYNOPSIS:

int _ss_size(path, size)
int path;
long size;

DESCRIPTION:

_ss_size() is used to change the size of a file opened on path. The size change is immediate.

If the size of the file is decreased, the freed sectors are returned to the system. If the size is
increased, sectors are added to the file with the contents of those sectors being undefined.

If an error occurs, _ss_size() returns the value -1 and the error code is placed in the global
variable errno.

NOTE:

This function works only on RBF devices.

SEE ALSO:

I$SetStt system call, Microware manual.

_ss_tiks() Set timeout tick count

SYNOPSIS:

__

Carl Kreider CLIB/CLIBT OS-9 C Library 91

int _ss_tiks(path, tickcnt)
int path;
int tickcnt;

DESCRIPTION:

If a read or write request is made for a part of a file that is locked out by another user, RBF
normally sleeps indefinitely until the conflict is removed. _ss_tiks() may be used to cause an error
(E$Lock) to be returned to the process if the conflict still exists after a specific number of clock
ticks have elapsed.

The argument tickcnt specifies the number of ticks to wait if the record-lock conflict occurs with
the file open on path. A tick count of zero (the default on RBF devices), causes a sleep until the
record is released. A tick count of one means if the record is not released immediately, an error is
to be returned.

If an error occurs, _ss_tiks() returns the value -1 and the error code is placed in the global
variable errno.

NOTE:

This feature exists only on RBF devices.

SEE ALSO:

I$SetStt system call, Microware manual, _ss_rel().

_ss_wtrk() Write a disk drive track

SYNOPSIS:

int _ss_wtrk(path, trkno, siden, trkbuf)
int path;
int trkno, siden
char *trkbuf

DESCRIPTION:

_ss_wrtk() performs a write-track operation on a disk drive. It is essentially a direct hook into the
driver's write-track entry point.

The argument path is the path on which the device is opened. Trkno is the desired track number
to write, and siden is the desired side of the disk on which to write. When the write is performed,
the image contained in and pointed to by trkbuf is written out to the disk.

If an error occurs, _ss_wtrk() returns the value -1 and the error code is placed in the global
variable errno.

__

92 Carl Kreider CLIB/CLIBT OS-9 C library

NOTE:

This function works only on RBF devices. Additional information on how it works can be obtained
from examining the FORMAT utility or a device driver. Also, note there is a difference in the
syntax of this call from that used in OSK systems.

>>>> W A R N I N G <<<<

If the variable trkno is set to zero when this function is called, the ENTIRE disk, floppy or hard
disk, will be formatted. Care should be taken to insure that trkno has a non-zero value prior to
entering this function.

SEE ALSO:

I$SetStt system call, Microware manual.

stacksize(), freemem() Get stack reservation size

SYNOPSIS:

stacksize()
freemem()

DESCRIPTION:

The stack area is the currently reserved memory for exclusive use of the stack. As each C
function is entered, a routine in the system interface is called to reserve enough stack space for
the use of the function with an additional 64 bytes. The 64 bytes are for the use of user-written
assembly language code functions and/or the system interface and/or arithmetic routines. A
record is kept of the lowest address so far granted for the stack. If the area requested would not
bring this lower, then the C function allowed to proceed. If the new lower limit would mean that
the stack area would overlap the data area, then the program stops with the message

**** STACK OVERFLOW ****

on the standard error outpath. Otherwise, the new lower limit is set, and the C function resumes
as before.

If the stack check code is in effect, then a call to stacksize() will return the maximum number of
bytes of stack used at the time of the call. This call can be used to determine the stack size
required by the program.

Freemem() will return the number of bytes of the stack that has not been used.

CAVEATS:

Of course, all this depends on if the program was compiled with stack checking enabled. If stack

__

Carl Kreider CLIB/CLIBT OS-9 C Library 93

checking was disabled (cc -s code.c), then no stack checking occurs.

SEE ALSO:

ibrk(), sbrk(), variables memend and value end.

strass() Byte by byte copy

SYNOPSIS:

_strass(s1, s2, count)
char *s1, *s2;
int count;

DESCRIPTION:

Until such time as the compiler can deal with structure assignment, this function is useful for
copying one structure to another.

Count bytes are copied from memory location s2 to memory location s1 regardless of the
contents.

strcat(), strucat(), strncat() String operations
strcmp(), strucmp(), strncmp(), strnucmp(),
strcpy(), strucpy(), strncpy(), strlen()
strchr(), strrchr(), strpbrk(), strspn()
strcspn(), strtok(), strclr(), strend()
reverse(), pwcryp(), index(), rindex()

SYNOPSIS:

#include <string.h>

char *strcat (s1, s2)
char *s1, *s2;

char *strucat (s1, s2, n)
char *s1, *s2;
int n;

char *strncat (s1, s2, n)
char *s1, *s2
int n;

int strcmp (s1, s2)
char *s1, *s2;

__

94 Carl Kreider CLIB/CLIBT OS-9 C library

int strucmp (s1, s2)
char *s1, *s2;

int strncmp (s1, s2, n)
char *s1, *s2;
int n;

int strnucmp (s1, s2, n)
char *s1, s2;
int n;

char *strcpy (s1, s2)
char *s1, *s2;

char *strucpy (s1, s2)
char *s1, s2;

char *strncpy (s1, s2, n)
char *s1, *s2;
int n;

int strlen (s)
char *s;

char *strchr (s, c) /* aka index() */
char *s1;
int c;

char *strrchr (s, c) /* aka rindex() */
char *s1;
int c;

char *strpbrk (s1, s2)
char *s1, *s2;

int strspn (s1, s2)
char *s1, *s2;

int strcspn (s1, s2)
char *s1, *s2;

char *strtok (s1, s2)
char *s1, *s2;

char *strclr (s, c)
char *s;
int c;

__

Carl Kreider CLIB/CLIBT OS-9 C Library 95

char *strend (s)
char *s;

char *reverse (s)
char *s;

char *pwcryp (s)
char *s;

char *index(s, ch)
char *s, ch;

char *rindex(s, ch)
char *s, ch;

DESCRIPTION:

The arguments s1, s2, and s point to strings (arrays of characters terminated by a NULL
character). The functions strcat(), strucat(), strncat(), strcpy(), strucpy() and strncpy() all alter
s1. These functions do not check for overflow of the array pointed to by s1.

Strcat() appends a copy of string s2 to the end of string s1. Strcat() appends at most n
characters. Strucat() is the same as strcat() but makes all characters uppercase. Each returns a
pointer to the null-terminated result.

Strcmp() compares its arguments and returns an integer less than, equal to, or greater than 0,
according as s1 is lexicographically less than, equal to, or greater than s2. Strucmp() functions in
the same way but makes all characters uppercase before comparing. Strncmp() makes the same
comparison but looks at at most n characters. Strnucmp() is the same except it makes all
characters uppercase prior to the comparison.

Strcpy() copies string s2 s1, stopping after the null character has been copied. Strucpy()
performs the same except all characters are made uppercase. Strncpy() copies exactly n
characters, truncating s2 or adding null characters to s1 as necessary. The result will not be null-
terminated if the length of s2 is n or more. Each function returns s1.

Strlen() returns the number of characters in s, not including the terminating null characters.

Strchr() (strrchr()) returns a pointer to the first (last) occurrence of character c in string s, or a
null pointer if c does not occur in the string. The null character terminating a string is considered to
be part of the string.

Strpbrk() returns a pointer to the first occurrence in string s1 of any character from s2, or a null
pointer if no character from s2 exists in s1.

Strspn() (strcspn()) returns the length of the initial segment of string s1 which consists entirely of
characters from (or not from) string s2.

Strtok() considers the string s1 to consist of a sequence of zero or more text tokens separated by

__

96 Carl Kreider CLIB/CLIBT OS-9 C library

spans of one or more characters from the separator string s2. The first call (with pointer s1
specified) returns a pointer to the first character of the first token, and will have written a null
character into s1 immediately following the returned token. the function keeps track of its position
in the string between separate calls, so that subsequent calls (which must be made with the first
argument a NULL pointer) will work through the string s1 immediately following that token. In this
way, subsequent calls will work through the string s1 until no tokens remain. The separator string
s2 may be different from call to call. When no token remains in s1, a null pointer is returned.

Strclr() sets at the most c characters in string s, but not including the null-terminator, to SPACES
(Ox20).

Strend() returns a pointer to the end of string s.

Reverse() reverses the characters of string s in memory and then returns s.

Pwcryp() encrypts and returns string s.

Index() returns a pointer to the first occurance of ch in s or null if not found. Index() is functionally
the same as STRCHR except ch is of type CHAR.

Rindex() returns a pointer to the last occurance of ch in s or NULL if not found. Rindex() is
functionally the same as strrchr() except ch is of type CHAR.

Both index() and rindex() are maintained for backward compatibility with older UNIX System V
releases.

NOTE:

For user convenience, all these functions are declared in the optional <string.h> header file.

BUGS:

Strcmp() and strncmp() use native character comparison, which is unsigned on some machines.
Thus, the sign of the value returned when one of the characters has its high order bit set is
implementation-dependent.

Character movement is performed differently in different implementations.
Thus, overlapping moves may yield surprises.

CAVEATS:

Strcat() and strcpy() have no means of checking that the space provided is large enough. It is
the user's responsibility to ensure that string space does not overflow.

SEE ALSO:

findstr()

__

Carl Kreider CLIB/CLIBT OS-9 C Library 97

time() Get the time

SYNOPSIS:

long time ((char *) 0)
long time (tloc)
long *tloc;

DESCRIPTION:

Time() returns the value of time in seconds since 00:00:00 GMT, January 1, 1970.

If tloc (taken as an integer) is non-zero, the return value is also stored in the location to which tloc
points.

Upon successful completion, time() returns the value of time. No error is possible here as time()
always returns a value.

The value returned is suited for use with the ctime() function.

EXAMPLES:

To get the system time value:

long curr_time;
curr_time = time ((char *)0);

or

long curr_time;
time (&curr_time);

SEE ALSO:

ctime(), o2utime(), u2otime().

tsleep() Put process to sleep

SYNOPSIS:

tsleep(ticks)
int ticks;

DESCRIPTION:

Tsleep() deactivates the calling process for a specified number of system clock ticks or if ticks is
zero indefinitely. A tick is system dependent, but is usually 100ms for most OS-9 systems except
the Color Computer where it is 1/60th of a second.

__

98 Carl Kreider CLIB/CLIBT OS-9 C library

SEE ALSO:

sleep()

unbrk() Returns memory

SYNOPSIS:

unbrk(pnt)
char *pnt;

DESCRIPTION:

Unbrk() returns memory that was allocated using sbrk(). Sbrk() requests the system to allocate
more memory than was originally allocated. Unbrk() simply returns that additional allocation.

DIAGNOSTICS:

This function returns -1 if an error occurs and 0 upon success.

SEE ALSO:

sbrk()

ungetc() Put a character back into the input buffer

SYNOPSIS:

#include <stdio.h>

ungetc (ch, fp)
char ch;
FILE *fp;

DESCRIPTION:

This function alters the state of the input file buffer such that the next call of getc() returns the
character ch.

Only one character may be puched back, and at least one character must have been read from
the file before a call to ungetc() is made.

Fseek() erases and characters pushed back.

DIAGNOSTICS:

Ungetc() returns its character argument unless no pushback could occur, in which case EOF is

__

Carl Kreider CLIB/CLIBT OS-9 C Library 99

returned.

SEE ALSO:

getc(), fseek()

o2utime(), u2otime() Converts date and time from
 OS9 to UNIX format

SYNOPSIS:

#include <utime.h>
#include <time.h>

long o2utime(tp)
struct sgtbuf *tp;

u2otime(tp,tmp)
struct sgtbuf *tp;
struct tm *tmp;

DESCRIPTION:

O2utime() converts a six character OS9 time into a UNIX style long as in the time() function.

U2otime() copies a broken down UNIX style time from structure tmp into the OS9 style sgtbuf
structure.

SEE ALSO:

time(), ctime()

unlink() Remove a directory entry

SYNOPSIS:

unlink(fname)
char *fname;

DESCRIPTION:

Unlink() deletes the directory entry whose name is pointed to by fname. If the entry was the last
link to the file, then the file itself is deleted and the disc space occupied made available for re-use.
If, however, the file is open or in any active task, the deletion of the actual file is delayed until the
file is closed.

__

100 Carl Kreider CLIB/CLIBT OS-9 C library

DIAGNOSTICS:

Zero is returned from a successful call, -1 if the file does not exist, if its directory is write-protected,
the pathname cannot be searched or if the file itself is a non-empty directory or a device.

SEE ALSO:

unlinkx() OS-9 "kill" command

unlinkx - deletes a directory entry

SYNOPSIS:

unlinkx (fname, mode)
char *fname, mode;

DESCRIPTION:

Unlinkx() performs essentially the same function as unlink(). However, if the attribute of the file to
remove from the directory, as described by mode, is an executable file, then the current execution
directory is used. If the mode is not executable, then the current data directory is used.

DIAGNOSTICS:

This function returns -1 if an error occurs and 0 upon success.

SEE ALSO:

unlink()

wait() Wait for a process termination

SYNOPSIS:

wait(status)
int *status;

wait(0)

DESCRIPTION:

Wait() is used to halt the current process until a child process has terminated.

Wait() returns the process ID of the terminating process and places the status of that process in
the integer pointed to by status unless status is zero. A wait() must be executed for each child
process spawned.

__

Carl Kreider CLIB/CLIBT OS-9 C Library 101

The status of the terminating child process will contain the argument of the exit() or _exit() call if
the child process or the signal number if it was interrupted. A normally terminating C program with
no call to exit() or _exit() has an implied call of exit(0).

CAVEATS:

NOTE that the status is the OS-9 status code and is not compatible with codes from other
operating systems.

DIAGNOSTICS:

A -1 is returned if there is no child to be waited for.

SEE ALSO:

os9fork(), signal(), exit(), _exit()

write(), writeln() Write to a file or device

SYNOPSIS:

write(pn, buffer, count)
char *buffer;
int pn, count;

writeln(pn, buffer, count)
char *buffer
int pn, count;

DESCRIPTION:

Write() and Writeln() write to the path number pn which must be a value returned by open(),
create(), creat(), or dup(), or should be 0 (stdin), 1 (stdout), or 2 (stderr).

Buffer should point to an area of memory from which count bytes are to be written. Write returns
the actual number of bytes written and if this is different from count,
an error has occured.

Writes in multiples of 256 bytes to a file offset boundries of 256 bytes are the most efficient.

Write() causes no "line-editing" to occur on the output. WRITELN causes line-editing and only
writes up to the first "\\n" (newline) in the buffer if this is found before count is exhausted. For a
full description of the actions of these calls, the reader is referred to the OS-9 documentation.

DIAGNOSTICS:

A -1 is returned if pn is a bad path number, if count is ridiculous, or upon a physical I/O error.

__

102 Carl Kreider CLIB/CLIBT OS-9 C library

SEE ALSO:

create(), creat(), dup(), open()

	CLIIB//CLIIBT Liibrary
	Forward
	Tables of Contents
	Introduction
	ClLIB/CLIBT Reference
	abort()
	abs()
	access()
	asetuid()
	atof()
	atoi()
	atoll()
	bsearch()
	chain()
	chdir()
	chxdir()
	chmod()
	chown()
	CLIBT.L
	Rad()
	Deg()
	Acos()
	Asin()
	Atan()
	Cos()
	Sin()
	Tan()
	Acosh()
	Asinh()
	Atanh()
	Cosh()
	Sinh()
	Tanh()
	Pow()
	Exp()
	Antilg()
	Log10()
	Log()
	Sqrt()
	Sqr()
	Inv()
	Dabs()
	Dexp()

	close()
	toupper()
	tolower()
	_toupper()
	_tolower()
	toascii()
	crc()
	creat()
	create()
	ctime()
	localtime()
	gmtime()
	asctime()
	tzset()
	isalpha()
	isupper()
	islower()
	isdigit()
	isalnum()
	isspace()
	ispunct()
	isprint()
	iscntrl()
	isascii()
	datlink()
	dunlink()
	unlkdata()
	lockdata()
	devtyp()
	isatty()
	opendir()
	readdir()
	telldir()
	rewinddir()
	seekdir()
	closedir()
	_dump()
	dup()
	_errmsg()
	exit()
	fclose()
	fflush()
	ferror()
	feof()
	clearerr()
	fileno()
	findstr()
	findnstr()
	open()
	freopen()
	fdopen()
	fread()
	fwrite()
	fseek()
	ftell()
	rewind()
	getc()
	getchar()
	getw()
	getopt()
	getpid()
	gets()
	fgets()
	getstat()
	SS_OPT
	SS_READY
	SS_SIZE
	SS_POS
	SS_EOF
	SS_DEVNAM
	SS_FD

	getuid()
	_gs_devn()
	_gs_eof()
	_gs_gfd()
	_gs_opt()
	_gs_pos ()
	_gs_rdy()
	_gs_size()
	htoi()
	htol()
	itoa()
	utoa()
	ltoa()
	intercept()
	kill()
	l3tol()
	ltol3()
	lseek()
	malloc()
	free()
	realloc()
	calloc()
	rand()
	srand()
	unmin()
	unmax()
	max()
	min()
	memccpy()
	memchr()
	memcmp()
	memcpy()
	memset()
	mknod()
	mktemp()
	modload()
	modlink()
	munlink()
	open()
	_os9()
	os9fork()
	*getpwent()
	*getpwuid()
	*getpwnam()
	setpwent()
	endpwent()
	getpwdlm()
	patmatch()
	pause()
	prerr()
	_prgname()
	printf()
	fprintf()
	sprintf()
	putc()
	putchar()
	putw()
	puts()
	fputs()
	qsort()
	read()
	readln()
	realloc()
	sbrk()
	ibrk()
	scanf()
	fscanf()
	sscanf()
	setbuf()
	setime()
	getime()
	setjmp()
	longjmp()
	setmem()
	setpr()
	allocset()
	addc2set()
	adds2set()
	rmfmset()
	smember()
	sunion()
	sintersect()
	sdifference()
	copyset()
	setstat()
	Setstat(SS_OPT)
	SetStat(SS_SIZE)
	Getstat(SS_RESET)
	Setstat(SS_WRTK)
	Setstat(SS_FRZ)
	Setstat(SS_SPT)
	Setstat(SS_SQD)
	Setstat(SS_DCMD)
	Setstat(SS_FD)
	Setstat(SS_TICK)
	Setstat(SS_LOCK)
	Setstat(SS_RELEA)
	Setstat(SS_BLKRD)
	Setstat(SS_BLKWR)
	Setstat(SS_SSIG)

	setuid()
	signal()
	skipbl()
	skipwd()
	_ss_attr()
	_ss_lock()
	_ss_opt()
	_ss_pfd()
	_ss_rel()
	_ss_rest()
	_ss_ssig()
	_ss_size()
	_ss_tiks()
	_ss_wtrk()
	stacksize()
	freemem()
	strass()
	strcat()
	strucat()
	strncat()
	strcmp()
	strucmp()
	strncmp()
	strnucmp()
	strcpy()
	strucpy()
	strncpy()
	strlen()
	strchr()
	strrchr()
	strpbrk()
	strspn()
	strcspn()
	strtok()
	strclr()
	strend()
	reverse()
	pwcryp()
	index()
	rindex()
	time()
	tsleep()
	unbrk()
	ungetc()
	o2utime()
	u2otime()
	unlink()
	unlinkx()
	wait()
	write()
	writeln()

