User's Guide

6809/6309 CROSS ASSEMBLER FOR WINDOWS
COPYRIGHT (C) 2002-2004 BY ROGER TAYLOR SOFTWARE
ALL RIGHTS RESERVED

Distributed by:
WWW.CO0C03.com
The Tandy Color Computer Resource Site

Contents

INErOdUCHION e as 1
Beginners
Experts
Summary of FEAtUIreS ...ivii i e 2
Terms Used In This GUIAEviiiiiiii i rnree e nanne s 2
(@fo] a0 o g T=] Lo J©] 0] e o = 3
The CPU REQGISTEIS ..t e e s e e eneaees 4

6809 & 6309 Registers
6309-Only Registers

1Yo 181 ol @le Y LI e 5 8 = | v 5
Source Code Lines
Labels and Symbols ... e 6

Standard Labels
Local Labels
Branch Points

Psuedo-0Ops and DireClivVes ...ccuviiiiiiiii i i e 8
Conditional Assembly

N = 10 1 ot 10

(@] 0] or=1 o [« E= PP 15

g] =177 Lo] o 1 17

Structures, Unions, and NamesSpacCesciviiiiiiiiiiiiiiiieiiineeesnannens 19

INStruction EXampPlesvviieii i e e s e e 21
Sample Program

File FOrmats oo e e e 25

6809 OPCOde SUMMAINY .vviiiiiiiiie it nnn e anaeeannes 27

Hexidecimal, Binary, and Decimal Conversionsccocvviiiiivviiinne. 30

Introduction

CCASM is a Windows-based 6809/6309 machine language cross-assembler created
with TRS-80 Color Computer users in mind. The command is issuable from any
console prompt, batch file, another program, etc. Specifying a source code file and
some optional parameters, your programs can be quickly assembled and ready to
run on any 6809 or 6309-based computer. For CoCo users, most Tandy EDTASM
source code can be assembled without any modifications.

Beginners

If you've never worked with assembly, many examples are given in this guide and
the included source code files for helping you learn how to accomplish common
tasks. Once you start building small routines and programs, there's no limit to
what can be created. Learn the language first, and your programming style will
build over time. Ofcourse, there's no certain style required to create great ML
programs.

Experts
You're definately not limited to assembling just EDTASM-compatible source code.
Many other powerful psuedo-ops, directives, and instructions are available which

will help you create programs that can be bigger, faster, and easier to build.

As CCASM advances, more options, features, and high-level structures will be
added making it one of the most powerful 6809/6309 assemblers available.

Summary of Features

program type: 32-bit Windows command prompt

target systems for assembled code: Tandy CoCo 1,2,3; Vectrex, and any 6809
or 6309-based computer

assembled files: 'LOADM' record format, ROM and ROM-like images

accepted source code formats: Tandy EDTASM and variants

source code file compatibility: CoCo text editors, PC text editors, various LF/CR
support

maximum source code lines: 32,768

maximum nested include levels: virtually unlimited

assembly passes: 2

conditional assembly: yes

expression evaluator: unlimited nesting, logical operations

structures: yes

Terms Used In This Guide

white space (TABs or SPACEs between source code line fields)
symbol/label (alpha-numeric name that translates into a value or address)
mnemonic (CPU instruction not including any operand)

operand (data used by the mnemonic to form the instruction)

conditional assembly (code segments assembled only if a case is true or false)
PC (the CPU's program counter register)

reg. (CPU register/accumulator/pointer)

expression (a way of specifying a simplified or mathematical value)

void (reserved but uninitialized memory)

word (2-byte/16-bit data)

dword (4-byte/32-bit data)

MSB (most-significant byte, leftmost as in MSB/LSB, lower memory address)
LSB (least-significant byte, rightmost as in MSB/LSB, higher memory address)
MSBit (most-significant bit, leftmost as in bbbbbbbb)

LSBit (least-significant bit, rightmost as in bbbbbbbb)

Boolean (0 means False and <>0 means True)

data structure (related group of elements)

Command Options

-1 [dump assembly listing]

-S [dump symbols]

-sa [dump symbols, including automatic & local labels]

-0= [override default filename for binary output]

-bin [assemble as Tandy CoCo 'LOADM/EXEC' file (default)]

-Sr [assemble as single-record file having only one origin]

-nr [assemble with no origin records]

-rom{=} [assemble as ROM image of 2k,4k,{8k},16,32,64,128,256]
-h [show help messages along with any errors]

-d [show debug messages]

-z [internal debug listing]

Example of the -0 option

cm array -o=array.sys
(assemble array.asm to array.sys)

Examples of the -rom option

cm mygame -rom
(assemble mygame.asm to mygame.rom of exactly 8192 bytes)

cm newbasic -rom=32k
(assemble newbasic.asm to newbasic.rom of exactly 32768 bytes)

ROM image files are pure data and are compatible with all or most EPROM-burning
software, even if you need to rename the files so they will load into your utility.

Example of the -l option

cm mygame -l >listing.txt
(assemble mygame.asm to mygame.bin and send a listing to the file "listing.txt")

Example of the -s option

cm pacman -s
(assemble pacman.asm to pacman.bin and dump the symbol table to the screen)

The CPU Registers

6809 & 6309 Registers

a [8-bit accumulator]

b [8-bit accumulator]

d [16-bit concatenated register of a/b]

X [16-bit pointer]

\Y [16-bit pointer]

u [User Stack or 16-bit pointer]

s [System Stack or 16-bit pointer]

dp [Direct-Page Register]

pc [16-bit Program Counter]

cc [8-bit CPU condition-code register {E-F-H-I-N-Z-V-C}]
cc flags:

[Entire State on stack - determines RTI action]

[Fast Interrupt mask - set to enable FIRQ-to-CPU]

[Half Carry - carry out of bit 3 of arithmetic data]

[IRQ interrupt mask - set to enable IRQ-to-CPU]

[Negative Code - automatically set if result is negative]

[Zero Code - set if result is zero]

[Overflow Code - set for arithmetic overflow]

[Carry Code - set for math carries and borrows]

N< Nz ITTm

6309-Only Registers

The 6309 CPU has all of the 6809 registers, plus:

[8-bit accumulator]

[8-bit accumulator]

[16-bit concatenated reg. of e/f]
[32-bit concatentated reg. of a/b/e/f]
[16-bit accumulator] *

[Zero reg.] *

[alternate Zero reg.] **

md [Mode/Error reg.]

QO<Qg™0
Q

Note that register names are case-insensitive, meaning a is the same as A, and x
is the same as X, etc.

* used by inter-register instructions only

** there are two Zero registers in the 6309 CPU

4

Source Code Format

A variety of white space methods may be used in your source code. An intelligent
parsing routine is used for breaking source code lines down into the fields used to
build each instruction. CCASM will generate an error if the required line format is
not met or if the combined fields do not form a valid function.

Source code lines:

1) are separated into fields by SPACEs or TABs

2) can optionally have a line number in the first field

3) can optionally have a label in the first field (second field if a line humber is
present)

4) must have a SPACE or TAB before all mnemonics, psuedo-ops, and trailing
comments.

The following examples show the typical layout of any given source code line. The
'-' character represents a SPACE or TAB used to separate fields.

Label-Mnemonic-Operand-Comment
Label-Mnemonic--Comment

Label-Mnemonic

-Mnemonic-Operand

-Mnemonic--Comment
LineNumber-Label-Mnemonic-Operand-Comment
LineNumber--Mnemonic-Operand-Comment

A TAB-formatted line might look like this:

start jsr subroutine thisis a comment
Or, since line numbers are supported:

00010 start jsr subroutine this is a comment

A SPACE-formatted line might look like this:

00010 start jsr subroutine ;this is a comment

Labels and Symbols

Label and symbol names:

1)should generally be kept under 32 character long

2) should not be named the same as any reserved symbol

3) should not contain any mathematical characters or names used by the
expression evaluator

Although the CCASM preference is to use lowercase-oriented source code, capitol
letters are welcome if that is what you prefer. However, symbol names are case-
sensitive. In other words, the symbol "color" is not the same as the symbol
"Color".

Automatic Symbols

The following symbols and their values are automatically set by the assembler.
* [returns the address of the Program Counter]

: [returns the offset into the operand]

sizeof{struct} [returns the size of a data structure]

Standard Labels:

jmp label
bsr some_routine

Local Labels:

Local labels are resusable labels containing at least one '@' character or '?'
character and generally kept short. Local labels may be used to save symbol table
space or to avoid having to think of many unique label hames in large programs.

You can reuse the same local label nhame many times as long as a blank line
separates them. This scheme can be pictured as local blocks of source code, each
possibly containing local labels used in other blocks. Local blocks cannot access
local labels used in other blocks.

Ibra a@
bra ?b
jmp @@exit

Branch Points:

Branch Points are very similar to local labels but they are much more efficient and
easier to type. They can also save you lots of time thinking of named labels.

Using the single-character label called 'V, you can branch forward and backward in
your source code to the nearest Branch Point. Debugging your programs can be
more difficult if you use too many Branch Points; therefore, they are best for short
code segments.

bra < branch backward to nearest Branch Point label
bra > branch forward to nearest Branch Point label

example:

! Ida ,x+ grab a byte from table

bne < branch upwards to last *!” label
bra > branch downwards to next “!” label
nop

! rts exit

Psuedo-Ops and Directives

The following list of assembler commands are used in the mnemonic/operand fields
just like regular instructions, only they generate data or perform special assembler
functions; they do not automatically create CPU instructions.

title {string} [set the title of the source code]

org {address} [set/change program origin address]

include {filename[.asm]} [insert/include another source file at the current line]
includebin {filename/.bin]} [insert any file into the codestream]
namespace {label} [causes {label} to prefix to all subsequent labels]
endnamespace [end all namespaces in effect]

struct [start a data structure containing fields]

endstruct [end a structure]

union [start a union structure where the PC doesn't advance per object]
endunion [end a union structure]

page [inject a FORM-FEED character into the assembly listing]

setdp {0-255} [inform the assembler of the Direct Page register value]
{label} equ {expression} [assign a value to a label, becoming a symbol]
{label} = {expression} [assign a value to a label, becoming a symbol]
{label} set {expression} [reassign a value to a label, becoming a symbol]
even [align the PC on an even address]

odd [align the PC on an odd address]

align [align the PC on any boundary]

fcc {"string"} [form constant character string]

fcn {"string"} [form null-terminated string, adds (0) to end]

fcs {"string"} [form sign-terminated string, sets bit 7 of last character]
fcr {"string"} [form carriage-return/null-terminated string, adds 13,0 to end]
fcb {value,expression...} [form constant byte, 8-bit data]

fdb {value,expression...} [form double-byte/word/16-bit data]

fgqb {value,expression...} [form quad-byte/dword/32-bit data]

fzb/rzb {number of cleared bytes} [form # of initialized byte(s)]

fzd/rzd {number of cleared words} [form # of initialized double-byte(s)]
fzq/rzq {number of cleared dwords} [form # of initialized quad-byte(s)]
rmb {number of voided bytes} [reserved memory, creates void]

rmd {number of voided words} [reserved memory, creates void]

rmq {number of voided dwords} [reserved memory, creates void]

end {address} [marks the end of assembly, used only once in master source
file]

Conditional Assembly

Source lines between a condition test and an end condition statement are
assembled only if the condition is true.

if {boolean expression} [start conditional assembly segment if condition=true]
ifeq [assemble segment if expression evaluates to zero]

ifne [assemble segment if expression evaluates to nonzero]

iflt [assemble segment if expression yields a negative result]

ifgt [assemble segment if expression yields a positive result]

ifle [assemble segment if expression yields a negative or zero result]

ifge [assemble segment if expression yields a positive or zero result]

cond {boolean expression} [start conditional assembly segment if result=true]
ifpl [assemble source segment only if in assembly pass #1]

ifp2 [assemble source segment only if in assembly pass #2]

endif {end an if conditional assembly segment]

endc [end a cond conditional assembly segment]

endp [end an ifpl/ifp2 conditional assembly segment]

Important note: Make sure all symbols to be used in conditional assembly
expressions are predefined. Forward references are not supported within
conditional assembly expressions.

Mnemonics

All legal 6809 mnemonics are supported by the 6309 CPU. Mnemonics and
registers in italics are supported only by the 6309 CPU.

Loading & Moving Data Around

Id{a,b,d,x,y,u,s,e,f,w,qg md} {memory,value} [load data into a reg.]
st{a,b,d,x,y,u,s,e,f,q,w} {memory} [store reg. contents to mem.]

Idbt {a,b} , {source bit} , {dest. bit} , {DP mem.} [transfer mem. bit into reg.
bit]

stbt {a,b} , {source bit} , {dest. bit} , {DP mem.} [transfer reg. bit into mem.
bit]

band {a,b} , {source bit} , {dest. bit} , {DP mem.} [AND mem. bit into reg.]
biand {a,b} , {source bit} , {dest. bit} , {DP mem.} [AND complimented mem.
bit into reg.]

bor {a,b} , {source bit} , {dest. bit} , {DP mem.} [OR mem. bit into reg.]
bior {a,b} , {source bit} , {dest. bit} , {DP mem.} [OR complimented mem. bit
into reg.]

beor {a,b} , {source bit} , {dest. bit} , {DP mem.} [EOR mem. bit into reg.]
bieor {a,b} , {source bit} , {dest. bit} , {DP mem.} [EOR complimented mem.
bit into reg.]

copy {source reg.,destination reg.} [copy block of memory to another address]
copy- {source reg.,destination reg.} [copy block of memory in reverse]

imp {source reg.,destination reg.} [implode block of memory into one address]
exp {source reg.,destination reg.} [expand target into block of memory]

tfrp [same as copy] *

tfrm [same as copy-] *

tfrs [same as imp] *

tfrr [same as exp] *

* Used by the "EDTASM6309" assembler created by Robert Gault.

** The HD63BO9EP Reference Guide by Chet Simpson and Alan Dekok mentions a
single mnemonic not used in CCASM, called "TFM" for doing memory block
operations. TFM R,R+ translates into exp r,r; TFM R+,R translates into imp r,r;
TFM R-,R- translates into copy- r,r; and TFM R+,R+ translates into copy r,r.

10

Saving And Restoring Registers On The Stacks

pshs {register list} [push registers onto System stack}
puls {register list} [pull registers from System stack}
pshu {register list} [push registers onto User stack}
pulu {register list} [pull registers from User stack}
pshsw [push reg. w onto System Stack]

pulsw [pull reg. w register from System stack]
pshuw [push reg. w onto User stack]

puluw [pull reg. w from User stack]

Doing Arithmetic

abx [add reg. b to reg. x]

add{a,b,d,e,f,w} {memory,value} [add memory to reg.]
sub{a,b,d,e f,w} {memory,value} [subtract target from reg.]
adc{a,b,d} {memory,value} [add memory plus carry to reg.]
sbc{a,b,d} {memory,value} [subtract target & carry from reg.]
daa [decimal-adjust contents of reg. a]

mul [multiply reg. a by reg. b, becoming reg. d]

muld {memory,value} [multiply d * operand, becoming d]
divd {memory,value} [divide register d by target, becoming d]
divq [divide register g by target]

inc{a,b,d,e,f,w} [increment (add 1) to req.]

inc {memory} [increment memory]

dec{a,b,d,e,f,w} [decrement (subtract 1 from) reg.]

dec {memory} [decrement byte at memory location]
neg{a,b,d} [negate (2's complement) a reg.]

neg {memory} [negate the target]

sexw [sign-extend reg. w (bit 15) into reqg. d]

sex [sign-extend reg. b (bit 7) into reg. a]

asr{a,b,d} [shift reg. bits to the right, retaining sign bit]

asr {memory} [shift memory bits to the right, retaining sign bit]
asl{a,b,d} [shift reg. bits to the left, filling LSBit with zero]

asl {memory} [shift memory bits to the left, filling LSBit with zero]

11

Comparing, Testing, And Clearing

clr{a,b,d,e,f,w} [clear register]

clr {memory,index} [clear byte at memory location]
tst{a,b,d, e, f,w} [test the target reg., setting reg. cc]

tst {memory} [test the target memory, setting reg. cc]
bit{a,b,d,md} {memory,value} [test target bits with bits of a reg.]
cmp{a,b,d,x,y,u,s,e,f,w} [compare a reg. with memory data]

Doing Bit-Based Operations

com{a,b,d,e f,w} [1's-compliment a CPU reg.]

com {memory} [1l's-compliment a byte of memory]

and{a,b,cc,d} {memory,value} [logical AND of memory bits with a reg.]
or{a,b,cc,d} {memory,value} [OR the bits of the target byte into a reg.]
eor{a,b,d} {memory,value} [exclusive OR of target memory bits with reg.}
rol{a,b,d,w} [rotate reg. bits to the left, filling LSBit with Carry]

rol {memory} [rotate memory bits to the left, filling LSBit with Carry]
ror{a,b,d,w} [rotate reg. bits to the right, filling MSBit with Carry]

ror {memory} [rotate memory bits to the right, filling MSBit with Carry]
Isl{a,b,d} [logical shift reg. bits to the left, filling LSBit with zero]

Isl {memory} [logical shift memory bits to the left, filling LSBit with zero]
Isr{a,b,d,w} [logical shift reg. bits to the right, filling MSBit with zero]

Isr {memory} [logical shift memory bits to the right, filling MSBit with zero]

aim {value;memory} [AND the bits of the value with the bits of the memory byte]
eim {value;memory} [EOR/XOR the bits of the value with the bits of the memory
byte]

oim {value;memory} [OR the bits of the value with the bits of the memory byte]
tim {value;memory} [TEST the bits of the value with the bits of the memory
byte]

12

Operating Between Two Registers

exg {reg.,reg.} [exchange contents of two registers]

tfr {src. reg.,dest. reg.} [transfer src. reg. into dest. reg.]

lea{x,y,u,s} {offset,pointer} [load effective address]

adcr {source reg,destination reg} [add source reg. plus carry to destination reg.]
addr {source reg,destination reg} [add source reg. to destination reg.]

andr {source reg,destination reg} [AND of source reg. with the destination reg.]
cmpr {source reg,destination reg} [compare source reg. with destination reg.]
eorr {source reg,destination reg} [Exclusive OR of source reg. with destination
reg.]

orr {source reg,destination reg} [OR of source reg. with destination reg.]

sbcr {source reg,destination reg} [subtract source reg. and carry from dest. reg.]
subr {source reg,destination reg} [subtract source reg. from destination reg.]

Handling Interrupts

cwai {#byte} [clear and wait for interrupt]

swi{2,3} [software (manual) interrupt types 2 and 3]
swi [software interrupt type 1]

sync [synchronize to interrupt]

Moving Around Within Your Programs

jmp {memory} [jmp to a direct/indirect address]

jsr {memory} [jump to a direct/indirect subroutine]

rts [return from subroutine (jsr or bsr); same as puls pc]
rti [return from interrupt (CPU- or swi-generated interrupt]
nop [no operation, code that does nothing]

unconditional relative branches (always performed)
bra {address} [branch]

Ibra {address} [long branch]

brn {address} [branch never]

Ibrn {address} [long branch never]

bsr {address} [branch to a subroutine]

Ibsr {address} [long branch to a subroutine]

13

conditional relative branches based on (reg. cc) flags

blt {address} [branch if less than (N XOR V=1)] sighed values
Iblt {address} [long branch if less than] s

ble {address} [branch if less than or equal (Z=1 or N XOR V=1)] s
Ible {address} [long branch if less than or equal] s

bgt {address} [branch if greater than (N XOR V=0)] s

Ibgt {address} [long branch if greater than] s

bge {address} [branch if greater than or equal (Z=1 or N XOR V=0)] s
Ibge {address} [long branch if greater than or equal to] s

bhs {address} [branch if higher or same (C=0)] unsigned values
Ibhs {address} [long branch if higher or same] u

blo {address} [branch if lower (C=1)] u

Iblo {address} [long branch if lower] u

bhi {address} [branch if higher] u

Ibhi {address} [long branch if higher] u

bls {address} [branch if less than or same] u

Ibls {address} [long branch if less than or same] u

bne {address} [branch if not equal (Z=0)] s u

Ibne {address} [long branch if not equal] s u

beq {address} [branch if equal (Z=1)] s u

Ibeq {address} [long branch if equal] s u

bcc {address} [branch if carry is clear (C=0)]

Ibcc {address} [long branch if carry is clear]

bcs {address} [branch if carry is set (C=1)]

Ibcs {address} [long branch if carry is set]

bmi {address} [branch if minus]

Ibmi {address} [long branch if minus]

bpl {address} [branch if plus]

Ibpl {address} [long branch if plus]

bvc {address} [branch if no overflow]

Ibvc {address}

bvs {address} [branch if overflow]

Ibvs {address}

14

Operands

When a direct value is expected by an instruction

#%010101 [binary value]

#100 [decimal value]

#$7F [hexidecimal value]
#symbol_name [use symbol's equate]
#expression

When memory access is expected

%oaddress [binary address]

$address [hexidecimal address]
symbol_name [use symbol's equate]

address [decimal address]

<address [LSB of address, reg. dp is the MSB]
>address [full 16-bit address]

Indexed memory

HAX,y,u,s,pc,w} (access memory pointed to by reg.)
[,{x,y,u,s,pc,w}] (indirect access)

{a,b,d,e,f,w},{xy,u,s,pc,w}

[address] (indirect address)

offset,{x,y,u,s,pc,w} (use 5-bit offset from pointer if possible)
<offset,{x,y,u,s,pc,w} (force 8-bit offset from pointer if possible)
>offset,{x,y,u,s,pc,w} (force 16-bit offset from pointer if possible)

15

typical examples of indexed memory access:

X
a, X
Y
a,y
u
au
'S
a,s
W
[,x]
[a,x]
B2
[a,y]
[,u]
[a,u]
[,s]
[a,s]
[,w]

offset,x
b,x
offset,y
b,y
offset,u
b,u
offset,s
b,s
offset,w
[offset,x]
[b,x]
[offset,y]
[b,y]
[offset,u]
[b,u]
[offset,s]
[b,s]
[offset,w]

X+

d, x
Yt
dy
,u+
d,u
,S+
d,s
W+
[, x++]
[d,x]
[y++]

[d,y]
[,u++]

[d,u]
[,s++]
[d,s]
[,w++]

X+ +
e, X
Y++
ey
,u++
e,u
,S++
e,s
;W
[,“X]
[e,x]
[I__Y]
[e,y]
[I__u]
[e,u]
[I__S]
[e,s]
[I--W]

16

[F,x]
[fy]
[f,u]

[f,s]
[,pc]

D ¢
w,X
=Y
w,y
,~-u
w,u
,~-S
w,s
offset,pc

[w,X]
[w,y]
[w,u]

[w,s]
[offset,pc]

Expressions

Values, offsets, addresses, and any other type of parameter may be defined as
simple or complex mathematical expressions.

Operators

[multiply]

[divide]

[modulas]

[add] (also unary)

[subtract] (also unary)

[1's compliment, logical NOT] (also unary)
[logical AND]

[logical OR]

[logical OR]

[logical Exclusive OR]

2@ >+ QN x

Comparisons

The result of these operations will be of the Boolean type (either O for False or 1
for True). You compare mathematical expressions on either side of the operation,
and get a True or False result.

= [is equal to]

< [is less than]

> [is greater than]

< [is less than or equal to]

> [is greater than or equal to]
<> [is not equal to]

Order Of Operations

1) parenthesis (innermost (first))

2) unaries (like '=', '+', and 'A")

2) multiplies and divides (*, /, %)

3) adds and subtracts (+, =)

4) logical operations (&, !, ~,)

5) comparisons (=, <, >, <>, <=, >=)

You can always use parenthesis to control the order or to enhance the clarity of an
expression.

17

Expression Examples

-64

+101

100+5
-symbol_5
$2000+$100
$3120-%$ab
-255<=254

timercount>3600

symbol=anothersymbol

label<>anotherlabel

A 255

label _c+~5

Asymbol [return 1's compliment of "symbol"]
portlenableDAC [return both values OR'ed into one value]
sample&%11111100 [mask out the lower 2 bits of "sample"]
%11111%%1000 [1% binary value modulas the 2" binary value)
50%*4/2

14+2*(3+4)+5 ; notice the order of operations (1 + 2*7 + 5 = 20)
(1024+32)*15+31

(52-2)*2

+-5

-(+5)

-100/5*2 ; automatically orders as -(100/(5*2))
100+-100/10

apple+200/2 ; return ("apple" plus 100)

1*¥2+3*4+4+5%6

-254<=255

1000>-1000

-2000>2000

true&true ; returns true if both cases are true

true&false

false&true

false&false

trueltrue ; returns true if either case is true

truelfalse

falseltrue

falselfalse

See the file "test.asm" for many more examples of CCASM's powerful expression
evaluator.

18

Structures, Unions, and Namespaces
Structures

A CCASM structure is a segment of data or code separated into fields or offsets
from the structure beginning. By using the format "structurename.structurefield"
you can access any field of any structure. These fields translate into their own
offset from the beginning of the structure.

An example of a simple structure is:

color struct
red rmb O
greenrmb 0
blue rmb 0
endstruct

To access the "green" field, you would reference the symbol "color.green".

Database applications can rely heavily on structures. Using pointers to objects,
you can access records by name and field fairly easily in a large table or database.
Because each structure field is an offset, it can be used as the offset for indexed
memory instructions or anywhere else an offset is expected.

Idx #colors start of database memory
Idy #256 records in database
a@ Ida color.green,x load "green" field of this record
Idb color.blue,x load "blue" field of this record
Ide color.red,x load "red" field of this record
jsr plot
leax 3,X point to next record (skip structure size)
leay -1,y
bne a@

To automatically compute the size of a structure, use the following automatic
symbol:

sizeof{structure}
example:

Idy #sizeof{color}

19

Unions

A union structure allows overlapping objects or data fields. The program counter
does not advance inside of a union structure. The total size of a union is the size
of the largest object in the union. Ending a union causes the Program Counter to
advance by the size of the union (the largest object inside the union).

It's beyond the scope of this document to go into detail about all of the uses for
union structures, but several uses will be mentioned briefly.

1) allows variable name aliasing

2) allows the reuse of variable memory by placing all union symbols at the same
PC address

3) allows different data types to exist at the same location

Namespaces

Using the namespace directive, a constant prefix label will be assigned to all
subsequent labels; thus, allowing composite labels to be formed. This feature
might come in handy more when you are attempting to merge or include foreign
source code into your programs.

color namespace set namespace to "color"

red rmb 1 becomes "color.red"

grn rmb 1 becomes "color.grn"

blu rmb 1 becomes "color.blu"
endnamespace cancel namespace
Ida color.grn access composite symbol

20

Instruction Examples

6809 & 6309 Examples

orcc #80 [disable IRQ and FIRQ interrupts]

andcc #175 [enable IRQ and FIRQ interrupts]

orcc #%00000001 [manually set the Carry conditon code]

andcc #%11111110 [manually clear the Carry condition code]
pshs x,d [push reg. x, reg. b, and reg. a onto S stack]

puls d,x,pc [pull regs. from stack then simulate an rts]

leay -1,y [subtract 1 from reg. y]

leau 2,x [load reg.x + 2 into reg.u]

leax d,x [reg. x = reg. x + reg. d]

leax table,pc [load relative address of "table" into reg. x]

here equ * ['*' translates into the address where "here" is or will be]
fdb 1024,. ['.' translates into the address of the 2nd operand value]
fcc "this is a basic ASCII string"

fcn "this string automatically gets a NULL added to it!"

fcs "this is a bit7-terminated ASCII string"

fcr "this string automatically gets a CR+NULL added to it"

fcb 1,2,3,4,5 [store 5 8-bit values]

fdb 10,20,30 [store 3 16-bit values]

fqb 5,10,15,20 [store 4 32-bit values]

rmb 200 [reserve/void 200 bytes of memory, for use at run-time]
Ida ,x [get data at address pointed to by reg. x]

Ida [,x] [get data at address pointed to by address in reg. x]

Ida -5,u [get data at 5 bytes above address in reg. u]

adca #0 [add Carry result (0 or 1) into reg. a]

adcb #10 [add Carry result plus 10 into reg. b]

asrb [divide the signed contents of reg. b by 2]

Isrb [divide the unsigned contents of reg. a by 2]

rora [done consecutively, 9-bit right rotation is possible]

rola [9-bit left rotation through the Carry condition code]

21

6309-Only Examples

Idmd #1 [enable full 6309 CPU operation mode]

sexw [converts signed reg. w into signed reg. q]

oim 64;1024 [OR the value 64 into address 1024]

oim 128;,u [OR the value 128 into the memory pointed to by reg. u]
aim 254;2,u [AND the value 254 into offsetted mem. pointed to by reg. u]
aim 191;1024 [AND the value 191 into address 1024]

tim $80;65280 [TEST bit #7 of address 65280]

tim °%11;[1000] [TEST bits #0&1 of indirect address 1000]

eim 85;255 [XOR the value 85 into address 255]

bor a,1,7,255 [OR bit #1 in reg. a with bit #7 from address 255]
Idbt a,2,6,200 [load bit #2 in reg. a with bit #6 from address 200]
Idq #98765 [load reg. g with a 32-bit integer]

Idqg #$A4B2C3D9 [load reg. g with a 32-bit hex. value]

Idq #%10110010110000111010100011101011 [32-bit binary value]

22

Sample Program

This program prints a message to your Color BASIC screen:

org 16384 run at this address
start leax msg, pcr point to our message
! lda , X+ get ASCII byte in msg
beg done stop at null byte
jsr [40962] print using BASIC ROM's STDOUT
bra < loop back to "!"
done rts return to BASIC
msg fcn "HELLO WORLD"
end start set BASIC "EXEC" address

This program echos your keystrokes to the Color BASIC screen
(hit <BREAK> to exit):

org 16384 run at this address
getkey Jsr [40960] get key from BASIC ROM's STDIN
tsta is it a NULL character?
beqg getkey yes, ignore it
cmpa #3 is it the BREAK key?
beqg done? yes, so exit
jsr [40962] no, so print the char to STDOUT
bra getkey keep checking keys
done? rts return to BASIC
end getkey set BASIC "EXEC" address

This program clears the Color BASIC screen:

org 16384 run at this address

filler equ $6060 "filler = $6060"

cls 1dx #1024 point to top of screen
1dy #512 set # of bytes to clear
1ldd #tfiller use 2 bytes of $60

! std , X++ clear the 2 characters
leay -2,¥ subtract them from count
bne < count not 0, so repeat
rts return to BASIC
end cls

23

This example combines the above routines into one program:

start

getkey

done
msg

org
ldx
1dy
1dd
std
leay
bne
leax
lda
beg
jsr
bra
jsr
tsta
beg
cmpa
beg
jsr
bra
rts
fcr
end

16384
#1024
#512
#56060
, X++
_2Iy

<

msg, pcr
, X+
getkey
[40962]
<
[40960]

getkey
#3
done
[40962]
getkey

run at this address

point to top of screen

set # of bytes to clear

use 2 blank characters

clear the 2 characters
subtract them from count

go back to "!" until count=0
point to our message

get ASCII byte in msg

stop at null byte

print using BASIC ROM

loop back to ™!I"

get keystroke using BASIC ROM
is it a NULL character?

yes, ignore it

is it the BREAK key?

yes, so exit

no, so print the character
keep checking keys

return to BASIC

"HELLO WORLD OF ASSEMBLY"

start

24

File Formats

Multi-record files:

1) are created automatically based on the structure of your source code

2) can be LOADMed by Disk BASIC or similar loaders

3) have a beginning ORG record defining where the code should loading into RAM
4) have subsequent ORG records causing the loader to jump somewhere else

5) have an END record signifying there are no more records

This type of file can contain sub origins and any mix of voided memory, etc. An
example of a multi-record file would be one that has the ability to load 3 different
programs into 3 different locations of RAM, all done by the loader based on
information found in the embedded records. Another example would be a program
that automatically executes after being loaded, by embedding a small segment of
code that overwrites a system area of Disk BASIC.

Single-record files:

1) are created automatically based on the structure of your source code

2) can be LOADMed by Disk BASIC or similar loaders

3) have a beginning LOAD record defining where the code should loading into RAM
4) have an END record signifying there are no more records

An example of a single-record binary file would be a file created by BASIC after
typing SAVEM "SCREEN",1024,1535,0. The resulting file would 522 bytes long
because a 5-byte LOAD record begins, then 512 bytes of screen data, then a 5-
byte END record.

You can also force a single-record file output (-sr option) which has an additional
effect of translating any RMB statements in your source into initialized data (rather
than voided memory).

Because of the translation of voided memory areas into initialized data, a
continuous stream of code is generated from the first ORG statement to the END
statement of your source code. No other embedded ORG statements should be
used in your source code that will be assembled in single-record format.

25

No-records files:

1) must be force-assembled using the -nr option
2) are similar to ROM images

3) have no beginning or subsequent ORG records
4) have no END record

This type of file can be viewed as a variable-sized ROM image where the file
consists of only program opcode or data and no loader control structures. Such
ROM-like files must be structured correctly before assembly. Multiple ORG
statements are allowed in the source code, but should be used very carefully. No
opcode or initialized data should be placed after any RMB statement in a program
to be assembled in no-records format. In other words, voided memory is not
assembled, because a record is not generated to tell the loader to advance past or
load around any voided memory.

Multiple ORG statments followed by sets of RMBs are generally used for
enumerating variable addresses, etc. Large buffers and uninitialized tables and
can also be reserved this way so long as no opcode or data appears after any RMB
statements. Doing so would cause those stray opcodes to be loaded into
unintended locations in RAM.

26

6809 Opcode Summary

| ABX
|ADCa
| ADDa
| ADDD
| ANDa
| ANDCC
|ASL
|ASLa
|ASR
|ASRa
|BCC
|BCS
| BEQ
| BGE

| BGT
|BHI
|BHS
|BITa
| BLE
|BLO
|BLS
|BLT
| BMI
| BNE
|BPL
| BRA
| BRN
|BSR
|BVC
|BVS
|CLR
|CLRa
| CMPa
| CMPD
| CMPS
| CMPU
|CMP1i
| COM
| COMa
| CWAI
| DAA
| DEC
| DECa
| EORa
|EXG r,
| INC
| INCa

d|7F|--0100|
|4F|--01001X

s |Bl | __****l
s |B3 | __****|
s |BC|__****|
s |B3 | __****|

S|BC|——*%%x* |
dl73|-=-**01|
[43|--**01|X

|19|__~k~k** |X

d|TA|-—***—|
| 4R | —=***—|X
s|B8|--**0-|
r|1E|-—---- | X
d|7C|—=***—|

| 4C | ——***—|X

XXX X|7|Clear
|2|Clear a
XXXXX|5|Compare
XXX*X|8|Compare
XXX*X|8|Compare
XXX*X|8|Compare
XXX*X|7|Compare

ccumulator

Double acc.
Stack pointer

User stack ptr|U-s

XXX X|2]|Complement

| 7| Complement accumulator|a=~a
|K|AND CCR, Wait for int.|CC=CC&n,E=1

X

| 2| Decimal

XXX X|7|Decreme
| 2 | Decreme
XXXXX|5|Logical

| 8 | Exchange

XXX X|7|Increme
|2] Increme

Adjust Acc.

nt

nt accumulator

Exclusive OR
(rl size=r2)

nt

nt accumulator

|d=0

|a=0

la-s

|D-s (10H)

|S-s (11H)
(11H)

|i-s (Y ~s=8)

| d=~d

t~

|A=BCD forma
|d=d-1
|la=a-1
|a=axs
|rl<->r2

| d=d+1
|la=a+1l

|[Mnemon. |Op | IHNZVC | IEXD#R|~|Description |Notes |

R - e o —— |

|3A | ——=———— | X |3|Add to Index Register |X=X+B |

S|BO| —*****| XXXXX|5|Add with Carry |a=a+s+C |
S|BB|=*****| XXXXX|5|Add |a=a+s

S|F3|=****x*| XXX*X|7|Add to Double acc. | D=D+s |

S|B4|-—**0-] XXXXX|5|Logical AND |la=aé&s |

s|1C|?2?2?2?2?1] X |3|Logical AND with CCR |CC=CCé&s |

d|78|==****| XXX X|7|Arithmetic Shift Left |d=d*2 |

[48| —=****|X |2|Arithmetic Shift Left |a=a*2 |

d|77|-=****| XXX X|7|Arithmetic Shift Right|d=d/2 |

[47| —=****|X |2 |Arithmetic Shift Rightl|a=a/2 |

m|24|-———-- | x|3|Branch if Carry Clear |If C=0 |

m|25|-=———- | x|3|Branch if Carry Set |Tf C=1 |

m|27|-———-- | x|3|Branch if Equal | Tf z=1 |

m|2C|-—-———- | x|3|Branch if Great/Equal |If NxV=0 |

m|28|-———-- | x|3|Branch if Greater Than|If Zv{NxV}=0|

m|22|-=———- | x|3|Branch if Higher | If CvZz=0 |

m|24|----—- | x|3|Branch if Higher/Same |If C=0 |

SIB5|-=**0-] XXXXX|5|Bit Test accumulator |aé&s |

m|2F|-—————- | x|3|Branch if Less/Equal | Tf Zv{NxV}=1|

m|25|-=———- | x|3|Branch if Lower |Tf C=1 |

m|23|-—--——- | x|3|Branch if Lower/Same |If CvZ=1 |

m|2D|-=-———- | x|3|Branch if Less Than |Tf NxV=1 |

m|2B|-———-- | x|3|Branch if Minus |ITf N=1 |

m|26|-—————- | x|3|Branch if Not Equal |If Z=0 |

m|2A|-—————- | x|3|Branch if Plus |Tf N=0 |

m|20|-==———- | x|3|Branch Always | PC=m |

m|21l|-———-- | x|3|Branch Never | NOP |

m|8D|-=———- | x|7|Branch to Subroutine |-[S]=PC,BRA |

m|28|-———-—- | x|3|Branch if Overflow Clr|If V=0 |

m|29|-———-- | x|3|Branch if Overflow Set|If V=1 |

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| TMP

S|TE|-==--- |

XXX X |4 |Jump

| PC=EAs

6809 Opcode Summary (cont.)

| STU d|FF|--**0-| XXX X|6]|Store User stack ptr |U=a
| STi d|IBF|--**0-] XXX X|6|Store index register |i=a (Y ~s=7)

|[Mnemon. |Op| IHNZVC | IEXD#R|~|Description |Notes |
| ——————— -t - e o —— |
JSR s	BD	—-————-	XXX X	8	Jump to Subroutine	-[S]=PC,JMP
LBcc nn	10	—-==—--	x	5	Long cond. Branch(~=6)	If cc LBRA
LBRA nn	l6	—-———=---	x	5	Long Branch Always	PC=nn
LBSR nn	17	-—-——--	x	9	Long Branch Subroutine	-[S]=PC,LBRA]
LDa S	B6	—-=**0-	XXXXX	5	Load accumulator	a=s
LDD S	FC	-=**0-	XXX*X	6	Load Double acc.	D=s
LDS S	FE	-=**0-] XXX*X	7	Load Stack pointer	S=s (10H)	
LDU S	FE	-=**0-] XXX*X	6	Load User stack ptr	U=s	
LD1i S	IBE	-=**0-] XXX*X	6]	Load index register	i=s (Y ~s=7)	
[LEAp s	3X	---1i--	xX X	4	Load Effective Address	p=EAs (X=0-3)
LSL dl78	--0***] XXX X	7	Logical Shift Left	d={C,d, 0}<-		
LSLa	48	—=0***	X	2	Logical Shift Left la={C,a, 0}<-	
LSR d	74	--0***	XXX X	7	Logical Shift Right	d=->{C,d, 0}
LSRa	44 -=0***	X	2	Logical Shift Right	d=->{C,d, 0}	
MUL	3D]	——=*=-*	X	B	Multiply	D=A*B
INEG d]70	=2*x***	XXX X	7	Negate	d=-d	
INEGa [40	—2**x**	X	2	Negate accumulator la=-a		
NOP	12]	—==——-	X	2	No Operation	
ORa S	BA	-=**0-] XXXXX	5	Logical inclusive OR	a=avs	
[ORCC n	l1A	?2?2?27?2?2°? X	3]Inclusive OR CCR	CC=CCvn		
PSHS «r	34	--—-——-	X	2	Push reg(s) (not S)	[=[S]1={x, ...}
PSHU «r	36	—-—————-	X	2	Push reg(s) (not U)	- [Ul={x,...}
PULS «r	35]?2?2?2?2?2?	X	2	Pull reg(s) (not S) [{r,...}=[S]+]		
[PULU 3722?27?22	X	2	Pull reg(s) (not U) [{r, ... }=[U]+]			
ROL d	79	—-=****] XXX X	7	Rotate Left	d={C,d}<-	
ROLa	49	—=****	X	2 Rotate Left acc. la={C,a}<-		
ROR dl76	——****] XXX X	7	Rotate Right	d=->{C, d}		
RORa	46	—=****	X	2	Rotate Right acc. la=->{C, a}	
IRTI	3B	—***x**	X	6	Return from Interrupt	{regs}=[S]+
RTS	39	——=———-	X	5	Return from Subroutine	PC=[S]+
SBCa s	B2	——****	XXXXX	5	Subtract with Carry	la=a-s-C
SEX	[1D	—-—-**-——	X	2	Sign Extend	D=B
STa d	B7	--**0-] XXX X	5	Store accumultor	d=a	
STD d	FD	--**0-] XXX X	6	Store Double acc.	D=a	
STS d	IFF	--**0-] XXX X	7	Store Stack pointer	S=a (10H)	
SUBa s	BO	—=****	XXXXX	5	Subtract	la=a-s
SUBD s	B3	-—****	XXX*X	7	Subtract Double acc.	D=D-s
SWI	3F	1-———-	X	J	Software Interrupt 1	-[S]={regs}
SWIZ2	3F	BE=—————	X	K	Software Interrupt 2	SWI (10H)
SWI3	3F	E=———-	X	K	Software Interrupt 3	SWI (11H)
SYNC [13	—===—-	X	2]Sync. to interrupt	(min ~s=2)		
TFR r,r	1F	-———-—-	X	6	Transfer (rl size<=r2)	r2=rl
TST s	7D	==**0-] XXX X	7]	Test	's	
TSTa	4D	-=**0—-	X	2	Test accumulator	a

28

6809 Opcode Summary (cont.)

CCR [-*017?			Unaffect/affected/reset/set/unknown	
B	E			Entire flag (Bit 7, if set RTI~s=F)
F I	T			FIRQ/IRQ interrupt mask (Bit 6/4)
H	H			Half carry (Bit 5)
N	N			Negative (Bit 3)

|z | Z | | |Zero (Bit 2)

| Vv | AV | |Overflow (Bit 1)

| C | C| | |Carry/borrow (Bit 0) |
| —m e N —— o |
a	T		Inherent (a=A,0p=4XH, a=B,0p=5XH)
nn,E	E		Extended (Op=E, ~s=e)
[nn]	x		Extended indirect
xx,p!	X		Indexed (Op=E-10H, ~s=e-1)
[xx,p!]	X		Indexed indirect (p!=p++,--p only)
n,D	D		Direct (Op=E-20H, ~s=e-1)
#n	#		Immediate (8-bit, Op=E-30H, ~s=e-3)
#nn	*		Immediate (16-bit)
m	x		Relative (PC=PC+2+o0ffset)
[m]	R		Relative indirect (ditto)
-—— = t-—————— e			
DIRECT	Direct addressing mode		
EXTEND	Extended addressing mode		

| FCB n | Form Constant Byte

| FCC 'string' | Form Constant Characters |
| FDB nn | Form Double Byte

| RMB nn | Reserve Memory Bytes

|-—— === o e |
A B	Accumulators (8-bit)
CC	Condition Code register (8-bit)
D	A and B (l6-bit, A high, B low)
DP	Direct Page register (8-bit)
PC	Program Counter (16-bit)
S U	System/User stack pointer (16-bit)
X Y	Index registers (1l6-bit)
-—— === o e	
a	Acc A or B (a=A,0Op=BXH, a=B,0Op=FXH)
d s EA	Destination/source/effective addr.
1 p r	Regs X,Y/regs X,Y,S,U/any register
m	Relative address (=126 to +129)
n nn	8/16-bit expression(0 to 255/65535)
xx p!	A,B,D,nn/p+, -p,p++,——p (indexed)
+ - * /	Add/subtract/multiply/divide

& ~ Vv X	AND/NOT/inclusive OR/exclusive OR
<- -=> <>	Rotate left/rotate right/exchange
[] [1+ - 1	Indirect address/increment/decr.
{ }	Combination of operands
{regs}	If E {PC,U/S,Y,X,DP,B,A,CC}/{PC,CC}
(10H) (11H)	Hex opcode to precede main opcode

29

Hexidecimal, Binary, and Decimal Conversions

Use this chart to translate values between the different humber types accepted by
CCASM. You can use any humber base system you prefer when writing software --
hexidecimal (base 16), binary (base 2), or decimal (base 10).

= 00000000 =
= 00000001 =
= %00000010 =
= %$00000011 =

00000100
00000101

= %00000110 =
= $00000111 =
= %00001000 =
= 500001001 =

00001010
500001011

= %00001100 =
= $00001101 =
= %00001110 =
= $00001111 =

00010000
500010001

= %00010010 =
= %$00010011 =
= %00010100 =
= 500010101 =

00010110
500010111

= %00011000 =
= 500011001 =
= %00011010 =
= %$00011011 =

00011100
00011101

= %00011110 =
= %00011111 =

R Ooo-Jdo bk WNEFE O
(@]

WWNNNONNNNONNNNDN R PR R e
PO WO JoOuUudh WNDRFHRPROWOWOJIOYUud WwNE

= =255

-254
-253
-252
-251
-250
-249
-248
-247
-246
-245

-244 =

-243
-242
-241
-240
-239
-238
-237
-236
-235
-234
-233
-232
-231
-230
=229
-228
=227
-226

= =225

30

= Bell

Backspace
TAB

= Line Feed

Form Feed/Clear

= Carriage Return

$20
s21
$22
S23
$24
$25
$26
S27
$28
$29
S22
S2B
$2C
S2D
S2FE
S2F
$30
$31
$32
$33
$34
$35
$36
$37
$38
$39
S3A
$3B
$3C
$3D
$3E
S3F
$40
$41
$42
S43
$44
S45
$46
$47
$48

00100000 =

00100001

00100010 =
500100011 =
00100100 =
500100101 =

00100110
500100111

500101000 =
500101001 =
500101010 =
500101011 =

500101100
500101101

500101110 =
500101111 =
500110000 =
500110001 =

500110010
00110011

500110100 =
500110101 =
00110110 =
500110111 =

500111000
00111001

500111010 =
500111011 =
500111100 =
500111101 =

00111110
00111111

01000000 =
501000001 =
01000010 =
501000011 =

501000100
501000101

501000110 =
501000111 =
501001000 =

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
04
65
66
67
68
69
70
71
12

= =224 =

-223
=222
-221
=220
-219
-218
-217
-216
-215
-214
-213
-212
-211
-210
-209
-208
-207
-206
-205
-204
-203
-202
-201
-200
-199
-198
-197
-196
-195
-194
-193
-192
-191
-190
-189
-188
-187
-186
-185

= -184

31

o®

. + =~ =

$49
S4A
S4B
S4C
$4D
S4E
S4F
$50
$51
$52
$53
$54
$55
$56
$57
$58
$59
S5A
$5B
$5C
$5D
S5E
S5F
$60
$61
$62
$63
$64
$65
$66
S67
$68
$69
S6A
S6B
$6C
$6D
S6E
S6F
S70
$71

501001001 =

501001010

501001011 =
501001100 =
501001101 =
501001110 =

501001111
501010000

501010001 =
501010010 =
501010011 =
501010100 =

01010101
501010110

501010111 =
501011000 =
01011001 =
501011010 =

01011011
01011100

01011101 =
501011110 =
501011111 =
501100000 =

501100001
501100010

501100011 =
501100100 =
501100101 =
501100110 =

01100111
501101000

501101001 =
501101010 =
501101011 =
501101100 =

01101101
01101110

501101111 =
501110000 =
501110001 =

13
74
75
76
17
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113 =

= -183
-182
-181
-180
-179
-178
=177
-176
-175
-174
-173
-172
-171
-170
-169
-168
-167
-166
-165
-164
-163
-162
-161
-160
-159
-158
-157
-156
-155
-154
-153
-152
-151
-150
-149
-148
-147
-146
-145
-144
-143

32

‘|

O OB 8 HPFURETQHD OO O W

$72
S73
$74
S75
$76
$77
$78
S79
STA
S7TB
$7C
S7D
STE
STF
$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
S8A
$8B
$8C
$8D
S8E
S8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
SOA

501110010 =

01110011

501110100 =
501110101 =
01110110 =
501110111 =

01111000
01111001

01111010 =
501111011 =
01111100 =
501111101 =

01111110
01111111

10000000 =
10000001 =
10000010 =
510000011 =

10000100
10000101

10000110 =
510000111 =
10001000 =
10001001 =

10001010
10001011

10001100 =
510001101 =
10001110 =
$10001111 =

510010000
10010001

10010010 =
510010011 =
10010100 =
510010101 =

10010110
10010111

10011000 =
510011001 =
10011010 =

114 =

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154 =

-141
-140
-139
-138
-137
-136
-135
-134
-133
-132
-131
-130
-129
-128
=127
-126
-125
-124
-123
-122
-121
-120
-119
-118
-117
-116
-115
-114
-113
-112
-111
-110
-109
-108
-107
-106
-105
-104
-103
-102

33

-142 =

P NN XS 4 oK

SOB
$9C
$9D
SOE
SOF
SAQD
SAL
SA2
SA3
SA4
SA5
SA6
SA7
SAS8
SA9
SAA
SAB
SAC
SAD
SAE
SAF
SBO
S$SB1
SB2
$SB3
SB4
$SB5
SB6
SB7
SBS
$SBO
SBA
SBB
SBC
S$SBD
$SBE
SBF
$CO
$C1
SC2
SC3

10011011 =

10011100

10011101 =
$10011110 =
10011111 =
10100000 =

510100001
10100010

10100011 =
10100100 =
10100101 =
510100110 =

10100111
10101000

10101001 =
10101010 =
10101011 =
10101100 =

10101101
10101110

10101111 =
10110000 =
10110001 =
510110010 =

10110011
10110100

10110101 =
$10110110 =
10110111 =
10111000 =

10111001
10111010

10111011 =
$10111100 =
10111101 =
$10111110 =

10111111
11000000

11000001 =
11000010 =
11000011 =

155 =

156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195 =

-101
-100
-99
-98
-97
-96
-95
-94
-93
-92
-91
-90
-89
-88
-87
-86
-85
-84
-83
-82
-81
-80
=79
-78
=77
-76
-75
-74
-73
=72
-71
-70
-69
-68
-67
-66
-65
-64
-63
-62
-6l

34

SC4
$C5
SC6
$C7
SC8
$SCO9
SCA
SCB
SCC
SCD
SCE
SCF
$DO
SD1
$D2
SD3
$D4
SD5
$D6
SD7
$D8
SD9
SDA
$DB
$DC
$DD
SDE
S$SDF
SEO
SE1
SE2
SE3
SE4
SES
SE6
SE7
SES8
SEO9
SEA
SEB
SEC

11000100 =

11000101

11000110 =
$11000111 =
11001000 =
11001001 =

11001010
11001011

11001100 =
$11001101 =
11001110 =
$11001111 =

511010000
11010001

11010010 =
$11010011 =
11010100 =
$11010101 =

11010110
11010111

11011000 =
11011001 =
11011010 =
$11011011 =

11011100
11011101

11011110 =
11011111 =
11100000 =
11100001 =

11100010
$11100011

11100100 =
$11100101 =
11100110 =
$11100111 =

11101000
11101001

11101010 =
$11101011 =
11101100 =

196 =

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
2277
228
229
230
231
232
233
234
235

236 =

-60
-59
-58
-57
-56
-55
-54
-53
-52
-51
-50
-49
-48
=47
-46
-45
-44
-43
-42
-41
-40
-39
-38
=37
-36
-35
-34
-33
-32
-31
-30
-29
-28
=27
-26
-25
-24
-23
=22
-21
-20

35

SED
SEE
SEF
SFO
SF1
SF2
SF3
SF4
SF5
SFo6
SE7
SF8
SF9
SFA
SFB
SFC
SFD
SFE
SFF

11101101 =

$11101110

11101111 =
11110000 =
11110001 =
$11110010 =

11110011
11110100

11110101 =
$11110110 =
11110111 =
$11111000 =

11111001
$11111010

11111011 =
$11111100 =
11111101 =
$11111110 =
11111111 =

237 =

238
239
240
241
242
243
244
245
246
2477
248
249
250
251
252
253
254

255 =

