CBASIC |11

128/512K COCO-3 DISK
EXTENDED COLOR BASIC COMPILER
&
PROGRAM EDITING SYSTEM

CER-COMP
5566 RICOCHET AVE.
LAS VEGAS, NEVADA 89110
(702) 452-0632

COPYRIGHT (C) 1987
BY
WILLIAM E. VERGONA

ALL RIGHTS RESERVED

Revision A




c CE

CBASIC III Text Editor

Introduction LR T T R TR R T T T IR DR R N R B tiili.llilloolo!li!ll

Scope&&eferences P'l.i-l-l.llil'.ll.ti'.l.'f‘-lz
New Keyboard ChAracters ...ssssssensssonssssasesl

Startup Procedures .evesovessovssresssseonrcns V.
Backup Procedures ........ L R T e PR e 3
Limited License to Users ....... R e s e s
DISCIALMOTY vosvivessiatiandavssie aes s s L. 3 R e,

CBASIC III Editor Command Section

Definitions of Special Characters .............. 5
How to pause the display .cccevsecscccsaccns 5
Editor command abbreviations ......sses504243

LEind -Bntry FOXRAE covereroreoass doblsnessss e 6

Printer Output requests ......ccveeesnncnnccnrns 6

CBABIC III BAitor COMBMBAAE . ..ivive vinrvessnbledssssseessesss

LIST COMMBNAA - vsvvoveaanisssiicnesmesdsessssssasis 7

RENUMBER Program ....««ss. B R P P P PR PP 7

DELETE program lines ....seesvssssssssassosscnsans 7

SEARCH for specified strings .....cscccs0cs000as 8

REPLACE specified strings ......... P R ERERIRR S -

Single LINE BDIT Ji.cedrecssnmbbnsiiossnsrssnneas 8

Automatic EDIT ...cccovnsess voesaaleanesanenusaneas 9

Editing Punction keys .....ccccsnssscssccass sase9

COPY program lines .....ccovveses vessale asiiesss skl

MOVE program lines .....siceevcenscscsccncnnas .10

Automatic Line numbering ...cccecvscsccccccnsss 10

MBNOYY 'BL28  vovesivvvescish 3 F Tl ISP ol R G 11

Printer -Output -COmMENG 0000 e tiee RS LS Baain-vnns 11

BXit 80 BABAC wivivscvevvavsin SRRSO DS sds B ss wiveiss 11

New £ile Command .......diseddvdeioddsansnssss 11

Printes Baud REESE oo v a i el sinte s sls s sa e 12

Printer Line Feeds ...vvcessasvovessonsssonises 12

Automatic Key Repeat ...vccevevsasscscnrscncncns 12

Screen Display Width/Size ....ccvvesvevnnsincas 13

Screen Color Select .....ciccsencsncencncscsasns 13

Color & Monochrome ModeS .....:sesvveasssssascs 13

Text Editor I/0 ComMEnAl .:ccvssssssivicrsssdosacasiassans 14

Disk File Save ..i.iivicevsvssssssssenssssvsanvoe 14

Disk File Load ....... Cesasnsdasb st asa st uanane 14

Disk Pile Append .cvcvscsvovonsns L e 14

Disk Drive default ...... e e e L I £ P P P 2.

Disk Directory Display ..:veoes T .

RELIL DISK PLE® g vvisviesavsaieisne dhilols ns o einaras s 15

Compile CBASIC III Program ........ cesessusesbdenansasannn 16




CBASIC III REFERENCE MANUAL INDEX

CBASIC III Compiler Commands

CBASIC III Program Structure .....:sicssesccssissssscsssss 17
Numeric Operators, Functions and Variables ...............18
HORDEES i aos dvma s el diieatth sraistatarersh: o eialsis es 18
NUNEriC VAriablaB ... .« coeiinme o siain sisble s o068 19
Arithmetic Operators ........ Fala et aakale s e s le o s 20
Arithmetic Functions ......... T T !
BB S U Y a i o aiieem 0 ek o SR TR A R TR 0B DOL N ¢
NP )G Seeiatss i d Bt vdi ST ERED s v ve s a2
N B e I S o T T e e R TR A
PRERE NI D G s Dl iavite due el S8 o e Dasi s vs a 2%
DERBEIN) Yad ol lis ofd. dormas S Cols. ons v s e sl
POS Janiaalfe veasialil Satiamicire aldare piate e e i ae s oeine 21
BOSE (S iiiuiiiesrsnedlladls e atisie didalale s v seiae 21
BWARLLL. . o osin s Gt umiite: CaR i S i B loe o v v 4ove 21
BENEDY) o adealsis P B S S e e (PSSP 5 8
TINMER. . ¢ consnnse yees Sistonsetl Seid el £ 2. poiil
A58 WS T o I G I G | B0 L e Pt o sy A et
OVEREM o sinnesises i fhoys A SR 21
ATIEhMetic BOEOrs . dvddas alaiaestre SIe saltihe s/ s oo 64 b 21
Multiple Precision Arithmetic (....ssueecccces . 022
Extended and Decimal Addition/Subtraction ..... 22
Decimal Addition Sample program
BUTPORCEY oo 00 o vini o 0ot arjaceo: at th ahors: sl o sslad <l kit s »i o &7/aa s 24
AOYSTEEIN) casos s o C R e Ml g S e o o aiel 6 24
Numeric and String SWITCH variables .........cecevvncannns 25
Strings, String Operations, Functions and Expressions ......
String . Literalstelciciacie aeieds N T T s e 26
RELING VAT TEDIBE | o o oae)n socane elabe)s WRTARTR e 418 nd nis)n 26
StYing Concatenatlon iicih i cvdaeie dsialiinaate s aes saad T
BUll SELANGE (o v svnvnasestinsteios s S |
String Functions - string results ...iseeosees.27
EERSERY cmime v snnes AREB0. Lhl, @ad g lo, o o . o 27
LERTSLES 5N . wavive ore sodidiele aneesis: srealare gbbe o onel /s o s o0 1
BIDS(ES NM) Lo caindaiteiviats 4 st osraiaae oo oo it 27
NIOS (XS N MY G b o S i1 foale R hts e 4 0o 27
RIGHTS (X s ) o oa v itetatd diace datidniote. sarascinie s o0 8 45 28
- R O N e W 28
STRTIHGSEN /M) L aiesinnsainies Deaiemsmae Sh e sade s 4 28
PRMSETSY cas s i s B b e d ot e s s s 2B
b e T G SRR R S ale e e e R e el e e 28

SHERTS e ciaise sis s ie ClEBRnds Gl i e MRl e wonsieeon
String Functions - numeric results ............28
BRSCLRS) - s wos v St Ve e N SR e s e B
ERMLASY st mahnn wasy sin v ae Bod e S E A £ M aln 0w iimelD
INSTRIN,X5,¥5) csivacis i TR BEEE e nd st D
VALIES) s ennnassenmassssivsesassesnesssessstd
String Operations on the I/0 Buffer .........+.29

SWARS  SEREAMERE. S e i e e el e e e AT sl 30
SEring EXPressions ..cscossscssscevsnsscnsss ss 30
SEXING COMPATIEONE o5 slv et culs olbv bie s s eine slseerenee 30

R



Compiler Directives ...... R e e e T e e
Origin, Base and DPSET R D T o b o 31
PCIEAR StALOMENE : oo i el o na e s e s biw i e alnvin s anmea s 33
Pinension SCALGMBNL .scvrn s vbshs e i dosss oseiwns 33
Numeric Arrays ......ccssssesccsssssccssncns 33
String Arrays .ciscosvescssssssenssssnsosnsesdd
Declaring Simple Variables ...seeecesvsvcsns 34
ROmATk SCACEMBNE - i IR IR e o st nield's oin uelenias sms an St
TRACE -BtAtamMent sicaseantaenssssan ST e e L £
HIRES SEaEQmMARE . i . it e e sy ie s s da sy assvesdP
MODULE Statement ..c..csccesssas ol E TN A S B L
I70 Btructure ChBNGES iisiiisissacisnnwissnsnsssdsassns sl
UNLINK Statement ....ccc.cssess Ll e T e o |
CBLINK Statement isiccivosvassssnssvsosacssssiss 36
Assignment Statements ............c0000000 G R P
Arithmetic Assignment ....ccceceeercvccsssncnsse 37
POKE AsSSignment ....ccccessossscssosasssssacnass 37
DPOKE ABSIgNMENt .icccvecvssosssossssssscssnnns 37
String Aesignment ....ceesvenrsassrsssnassessans 37
BATA - SEACAMERE  iiisivediasesandns iswemtesssess s
READ Statement .:cccosveswnss Ayl A L | L R
RESTORE SEAtement ocauvso e eals ve o vwd o aia s siainaa 39
Program Control Statements ....... P T o d o R R T R e
EXRE  SEATOMENE: i oy iwsadienias aie s ............40
CALL Statement ....c.ccssses - Rl e Aot - AR
FOR/NEXT Statement .....coceces L L N G
GOSUB/RETURN Statement ..vcescsnsanasssssisss .42
IF/THEN/ELSE Statement .....ccsuvees e,
ON ERROR GOTO Statement ....csssescessssccscsas 43
ON BREAK/BRK GOTO Statement .....ceecensnnsnssns 44
ON-GOTO/ON-GOSUB Statement ...ciesessessssacsns 44
STOP & END Statements ..cssnsssssassannssanssssid
RUN SEALSNANE  cocidiasiadhes s nsmae ¢ 0h e e sre edaes 44
Bystem Contro]l BEALRMANER ' dovcacn s ainansseamnsbessseseess
GENERATE ‘BLALeNONt .cocodennv oy batiedubisssesees®d
CEEBAR CSEBRERMBRY « v i s idd i s et e b e e e e e s 45
ON RESET GOTO Statement . ..:scsssassssnsassssesesssdd
STACK Assignment Statement ........ R P PURCRERPE 46
PAUSE STALEMONE ‘s vvvinvassnssasnsetasonssssesss 46
SIGN ‘SEALOMBNE ro v vwes s ienr s aiairs g b enaae s 46
Interrupt Processing Statements ...........cc00r00000022+.47
ON KEBDIRQ GOTO Statement .isesvrvssssssnsnssnsne 47
ON SERIRQ GOTO Statement ...cscscssinacccsnsnsch?
ON TMRIRQ GOTO Statement ........ B e e e s T
0N IRD ‘GOTO ‘Statement v.scivee sviasswsassssnse sl
IRG -STALONGNED v ovisdvrevbvsavis s o vy b iessas .o 49
Other ON INTERRUPT Statements ..:cececeecscsacsss 50
RETURN from INTERRUPT Statement ...cicsceseaaaab0
INTERRUPT SIMULATION Statements ...:::ce002:2: .50
Extended Memory Management Statements .............c00000n 51
LPORE Statement ..ccsvenscssssssnns AT R et - |
DLPOKE SCAtENMENt .ivivcssivrtasvsastsssessss > son ¥l
LPEEEK Statement ......cicscasnssasdsssnaassasees 51
DLPEER Stateament . .viceovesosssssssasss e e

- iif -



c IC III REF

REAMOAR. Statement 55 s it ie v iams i si@irdde s s s e 52

RAM ON/OFF Statement
LPCOPY Statement ...

Hi-Res Text Screen Statements

WIDTH Statement ....

LOCATE Statement ....

ATTRibutes Statement

HSTATus Statement ...
Low Resolution Graphics & Sound

CLS Statement ......
SET Statement ......

RESET Statement ....cesss4a i

POINT Statement ....

® % 8w

SOUND Statement ....c.eoc. “oen
Medium Resolution Graphics & Play .

PMODE Statement ....
COLOR Statement ....
SCREEN Statement ...
PSET Statement .....
PRESET Statement ...
PPOINT Statement ...
PCLS Statement .....

LINE S aEBmEenY o ns e s nans e e SR s

PCOPY Statement ....
PAINT Statement ....
CIRCLE Statement ...
DRAW Statement .....
GET/PUT Statements .
PLAY Statement .....

High Resolution Graphics ......

Screen,

HMODE Statement ....
HCOLOR Statement ...

HSCREEN Statement ...

HSET Statement .....
HRESET Statement ...
HPOINT Statement ...
HCLS Statement .....
HLINE Statement ....

HPAINT Statement .......... .

HCIRCLE Statement ..
HPRINT Statement ...
HDRAW Statement ....
HGET/HPUT Statements
HBUFF Statement ....
BORDER Statement ...

PALETTE/CMP/RGB Statements ...:seeesonossesesss 78
Printer & RS-232 I/0 Statements
INPUT Statement o. iidcdanieics

LINE INPUT Statement

PRINT Statement «.cssesees

CRC

. a

INKEY Statement L T T I T T e S T
RS_232 P‘ort DEUICE Support R R T T R T T T T I T T I ]
Printer & RS-232 Baud rate Statements ....... :

Position € Statement

IR B R O
% 8 8 & B & A
C IR I T I Y
R T R T



Character I/O Commands .........0... B e S PSR s P S S T

. PUTCHAR Statement .......ceess T M Ny
GETCHAR Statament. .. oii s vsssnbsdsesaasssans 84

Disk & Tape I/O BLatements .......cccvsvsorcsvsssinscsnans 85

= FILER BEEAENMORIE e o siainieie oo e n sisin sla: avas acn:ubin scnrie O
B DT S R BB e i as s i ninis somian &ien et g e ) e B 86

12 L) RSl 1 (Ve o el e 4 sy e it M U R 86

= CEEN SEBTENBTIT o s e sonis nie s o oia sl ok bt aos ese hes s 87
1o Ut L e Y T 11T ¢ o el P TN e o o SR R S EeE T PRS- 88

g o R ) o o R b Ry o S 89

1)U g A ey | Lok iR By i s el SRR SRS 90

BOF FUBACEEDD o aii s oo s scinme s v ens T 1 1 O sl 91

CLOSE SR EEBYIE . i v s sie e aie 46 bs o asssneesane 91

ERR & BRND FUHCEIONS lcissonsasnsnsessesesensss 92

- ERL & ERLIN FUNCTIONS ooias pomsa et assaessensass 92
ON ERROR & ON ERR GOTO Statements ...sessessssa92

FIELD Statement .....sssecacse Eiahara e e a: & s e e e

REE L L ST R R s s s e s b vsie s s e se crses 94

(et T s o 5 7Y i s olisl e S .95

CHRAIN STCAEGMEBNT ol aaaiale u s son ks hd diacn iaae s s hials e 96

KILL 'BEATGMONE "« .. co et bmita R B O S e T 96

= RENAME Statement .....svees. e R T RS N e e e 97
DSERARCH TTUNCELON s a icineie e sie oo s tie e nne s s sy Iy

DEIVE SERARSIMEIE .o aniin e o eriie i em o oese s s sess s 97

NE R TRy BUATOIETIE. i s e nn o e b o s a e, ¢ e ha il soathisia e 98

DSKIS & DEROS StHAC&Nents ". . .vccssssnssssssvsnssdD

CLOADM & LOADM Statements ....scescecccasnccnas 100

CSAVEM & SAVEM Statements ....ccesssccssassaessl00

B TADE S DR FRERELRE S o th aaeinin s ot an R e s v e el e & aih
PRER - -FUACT IO 2 ice 4rn ain i b s e b i 8 i = e S SEREE 101

EOC  PHNCELION  vixis on's voninnisvs A e B T B S 101

EDESPARGCESON: i toe v v e e h r b s ia o hep b b ar e s SiEaTn) s 101

o 1T ey S T e e P S T L S TR 102

CNN FOTICE EOR ol il seie aitie s alslnre e wm v sl wonlg e n el sisin sl 102



CBASIC III REFERENCE MANUAL INDEX

APPENDX
CBASIC III Differences & other Helpful Hints .........000. Al
REMARK Statements ....<.cssceeeasscsanssssssAl
GRAPHICS Statements .....ccescssscsccscass A2
USING SUBROUTINES .ccecesssasnnsssnnanssseshl
DATA & GENERATE Statements ....... ssvsnenshA3
FOR/NEXT loops & Timing ....ceescncsnsnnns Ad
Get to know your Color Computeér ..........Ad
Debugging Compiled Programs ...... ssssssssAD
Errors during Compilation ...:.vceceess .« A5
Converting Color Basic Programs ..........Af
Variable Initialization ....iavsas + s +Ab
DIMENSION Statements & Strings ..... .Ab
String Variables ...sceee Ak e vae oY
Graphics GET & PUT AITEYS5 sssssssnnss A7
CBASIC III Language SUMMALY ...ccccveeaonsssansss U Bl
CBASIC III Run-Time Error Codes ......covvvsnrsocncsssnns .C1
HIRES Text Package Function Codes .....cevvvvnossnsnnsesnns D1
HIRES Function Code SUMMAIY «scsvsrssonsss D1
Control Code Use ..ccavses “o.r e0.enessenses s Bl
Escape Character segquence Commands .......D2
Changing Characters per line ........ D3
Clearing Special functions ....e¢s....D3
Changing Screen Formats .....ssesscss00s .. D4
Changing Monochrome or Color modes ....... D4
Character Highlighting Functions ....... ..D5
Additional Screen Functions ....sceeseecess D5
Effects on Basic Screen Commands .....c... D6
Sample Program LIsStings .......cccccesccscccacssnsnsecssns El
Disk Directory Program 1listing ....c.eeceeecess El
Disk Copy Program listing .sseececccssssonnsnns E2
Disk Menu Program 1isting ..ceeceesccsscccasces E3
Graphics Print Program listing ........ E4 thru E6

S



CBASICIIII
INTRODUCTION

Introduction

CBASIC-3 is a complete programming system designed for use on
a 128/512K Color Computer 3 with at least one Disk drive. It is
completely written in fast efficient Machine Language to take full
advantage of the power and flexibility of the 6809E Micro
Proccessor and the GIME (Graphics Interrupt Memory Enhancement)
chip in the Color Computer 3. It will take full advantage of the
512K of address space available in the Color Computer if 512K is
installed, during program Creation, Editing and Compilation. It
also provides the user with options to make full use of the 512K
available during program run-time.

The Editor contained in CBASIC-3 is used to Create and/or
Edit programs for the CBASIC-3 compiler. It is a full featured
editor, with functions designed specifically for writing and
editing Basic programs. It has built in block Move and Copy
functions with automatic program renumbering, easy to use commands
for inserting, deleting and overtyping on existing program lines.
It is also used for Loading, Saving, Appending and Killing disk
files, as well as displaying a disk Directory. Once a program is
ready to be compiled, the Editor is issued a command to compile
the program, it then calls the compiler portion of the program.

The CBASIC-3 compiler is an optomizing two-pass Basic
compiler which converts programs written in Basic to pure 6809
Machine Language programs which are written directly to disk in a
LOADM compatible format.

The compiler generated program can be run as a stand-alone
RAM based program which may be used without any run-time package.
A built in linker/editor automatically selects subroutines from
the internal run-time library and inserts one and only one copy of
subrountines required directly into the object program. This
eliminates the need for cumbersome "run-time" packages that must
be loaded separately and usually contain many extra functions not
required by the run-time program.

Depending on the specific program, CBASIC-3 can produce
programs which may reflect a 5 to 1000 times speed improvement
over an interpreter. Since CBASIC-3 also contains statements for
supporting Disk and Tape I/0, Hi-Res Graphics and Enhanced Screen
formats, it is well suited for a wide range of system programming
applications.

NOTE: This entire document was created, edited and printed using a
Color Computer III and the TEXTPRO IV - Text Editor & Word
Processor, "The Professional Word Processing System".

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
1=



SCOPE AND REFERENCES

This manual is written to aguaint the user with the features
of the CBASIC-3 Editor/Compiler. It should be noted by the user
that this is a complex operating system and cannot be fully
understood with a single reading. It will require the user many
hours of study, usage and experimentation to fully understand the
power of this invaluable tool.

It is assumed that the user has a previous knowledge of the
Basic Programming Language, as well as a basic understanding of
the Tape & Disk Systems of the Color Computer. If this is not the
case, you may wish to read the manuals listed below prior to using

this manual. This manual is intended as a reference, and is
concerned only with describing the  additional functions,
statements and capabilities provided by the CBASIC-3

Editor/Compiler. It is not the intent or within the scope of this
manual to teach the user how to write programs in the Basic or
Assembly language.

Radio Shack: "Color Computer 3 EXTENDED Basic"

Radio Shack: "Color Computer Disk System: Owners Manual..

Radio Shack: "TRS-80 Color Computer Assembly Language Programming"

Additional manuals are available from Radio Shack and other
sources which describe the Basic Programming Language in general.

Additional Keyboard Characters

CBASIC-3 has several keyboard characters that are not

normally available on the CoCo. Some of the additional keys
generate the same characters as the arrow & shift keys did
previously. The reason for this is, when editing, which uses the

arrow and clear keys, you can still generate these key codes if
necessary.

New Keyboard Characters

Clear/0 = \ (S$5C shift/clear) Clear/l1 = | ($7C *n/a)
Clear/2 = ~ ($S7E *n/a) Clear/3 = [ ($5B shift/down)
Clear/4 = ] ($5D shift/right) Clear/5 = * (S5E up/arrow)
Clear/6 = _ (S5F shift/up) Clear/7 = * ($60 *n/a)
Clear/8 = { (S$7B *n/a) Clear/9 = } ($7D *n/a)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-



CBASIC III

INTRODUCTION
STARTUP PROCEDURES

CBASIC-3 1is a 6809 machine language program written for use
on a Color Computer III with at least 128K of RAM. To Execute the
program, place the original disk in vyour disk drive and enter
LOADM"CBASIC3"<enter>. This will cause the program to be loaded
into the computers memory and automatically executed. The program
will then display an introduction message followed by the amount
of free memory available and the "READY" prompt. You are now
ready to load a program or enter commands to the CBASIC-3 Text
Editor. If an error should occur while trying to load the
program, check the disk directory to make sure you are using the
same file name as listed in the disk directory. Also make sure
you are using the Original disk and not a backup copy.

BACKUP PROCEDURES

Make a backup copy using the "BACKUP" command and put the
backup disk in a safe place. Always use the Original disk to LOAD
and Execute the program. Should the original disk £fail, wuse the
"Backup Disk" you created to restore the original disk. The
original disk comes recorded on both sides for your added
protection against a disk failure. The only way the original disk
should be written to is with a "BACKUP" command using the backup
disk you created to restore the original.

If you are unable to restore the Original disk due to
physical damage etc., return the Original disk only, to Cer-Comp
with a check or M.0O in the amount of $2.50. We will replace the
disk and ship it back to you within 1 working day.

RAMDISK & 512K

If your COCO-3 has 512K of memory installed, CBASIC-3 will
automatically install 2 RAMDISKs as drives 2 & 3. These RAMDISKs
can be used the same as normal disk drives only they are much
faster. You can use then to: save temporary files or Compile
programs to just like a normal disk drive. The RAMDISK storage
format is compatible with our own RAMDISK program available
separately for only $19.95. When using our RAMDISK, files stored
in them will be available when you enter or leave CBASIC-3 as well
as any of our disk programs.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=



LIMITED LICENSE TO USERS

Cer-Comp grants you, the owner and original purchaser of
CBASIC-3, a limited license for incorporating CBASIC-3 to create
your own marketed software products as long as they do not include
the use of the HIRES Screen package generated by the compiler
using the "HIRES" command. If you wish to use this Proprietary
driver in a marketed software product, the author must agree to
abide by all of the following conditions:

1. No reproduction of this documentation is permitted.

2. Author or publisher must supply Cer-Comp with a complete copy
of the finished software package within 30 days of first
publication.

3is The Author or publisher must pay a royality of Five-Dollars
($5.00) for each copy of the program produced, to be paid on a
quarterly basis (three month).

Failure to comply with all of the preceeding conditions set
forth will result in immediate revocation of limited license and
production shall be ceased until all conditions are met to the
satisfaction of Cer-Comp. Cer-Comp would, of course appreciate
the opportunity to publish any program you develope which
incorporates the CBASIC-3 compiler.

DISCLAIMER

A great deal of time and effort was used in the creation of
this program, and great care was taken to insure that this program
will perform and operate as advertised. If you find a "bug" or
problem with this program, please notify us. We will do our best
to correct it, but we do not guarantee to do so. Cer-Comp does
not warrant the suitability or functioning of its products for any
particular user and will not be responsible for damages incidental
to its use or misuse. This warranty is in lieu of all other
warranties either expressed or implied. Cer-Comp assumes no
responsibility for the consequences of the use or misuse of this
or any other software and documentation.

Cer-Comp reserves the right to make changes and improvements
without prior notice. New revisions will be made available on an
exchange ©basis for a fee of $15.00 to cover the cost of
reproduction, manual updates (if required) and return postage.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

e o



CBASIC III

TEXT EDITING COMMANDS
DISK TEXT EDITOR
DEFINITIONS:

ol o - is the character displayed when the SHIFT & "@" keys are
depressed as a delimiter for the 'SEARCH' & 'REPLACE
commands. Also see editor command summary.

5 1 - items enclosed within these characters are required by
that command to perform correctly.

= 151 T - Jitems enclosed within these characters are considered as
optional, when used they must be in the required order.

i B - items enclosed within these characters are comments.

Enter 1is used to denote an "ENTER" character and is wused to
signify the completion of a line entry.

M - "Dash" is used as a delimiter between line numbers.
(=" - Left arrow is recognized as a Backspace.
"BREAK - is used for Break control at any time to return to

"READY’'. 1If BREAK is depressed during a 1line entry or
edit, any changes or entries will be ignored.

Any key can be used to stop the present output and it will be
resumed upon entry of any key but "BREAK".

All commands can be abbreviated by using the first two
characters of the command followed by its normal parameters.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

A



CBASIC I1I
TEXT EDITING COMMANDS

LINE ENTRY:

Enter a line number, followed by a space and text ending with
the “Enter" key.

The line buffer is preset to 255 characters and the cursor
will not advance past the last character position, nor will it
backspace beyond the first character position. Ten characters
before the end of 1line a medium tone beep will be heard and a
higher tone beep will be heard at the end of the line. Any time
during line entry if an invalid control character key is entered a
double low tone beep will be heard.

Entry of a line number over four digits will result in only
the last four digits being accepted.

Entry of a line number followed by "Enter" will delete the
line previously entered using that line number.

Entry of a new line using a previously entered line number
will cause that line to be replaced with the new line.

Entry of a line with a line number between two previously
entered line numbers will insert the new line between them.

Printer Requests:

Any time the printer is requested for an operation the status
of the printer is checked for ready. If the printer is found to
be in a "NOT READY CONDITION", a message to that effect will be
displayed and the program will wait for any key on the keyboard to
be pressed, except the "BREAK" key. IF the "BREAK" key is
depressed the printer output will be aborted. This will allow
those users not having a printer to abort an accidental printer
request and not hang up the system.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-6-



CBASICIIII

TEXT EDITING COMMANDS
LIST COMMAND
SYNTAX: LIST [line number] (-) [line number)

Entry without line numbers will list the entire file. Entry
with a single line number will list only that line. Entry of two
line numbers will list from the first line number to the second
one. This is very similar the the "Basic" list function.

Example: LIST 100-300<ENTER>

RENUMBER COMMAND
Syntax: RENUMBER [ 1 digit increment ] [starting line #]

Causes the Basic file to be renumbered, if no lncrement is
specified a value of 10 is used. If a starting line # 1is not
specified the increment value is used. If the line #s esceed 9999
before the end of file is reached, the increment wvalue is
automatically decreased. The resequence is repeated until a
workable value is reached.

Example: RESEQUENCE 5 100
Re-sequence the line numbers in the file begin with '100' and
increment each line number by ‘5°.

DELETE COMMAND:
Syntax: DELETE <begin line#>-<end line#>

The delete function allows large segments of the text buffer
to be removed without having to enter each line number to be
deleted. If no line specifications are entered the user will be
prompted as to whether the entire contents of the buffer are to be
deleted. This is mainly to prevent the accidental deletion of the
text buffer contents.

Example: DELETE 100-199 <Enter>

Remove all the lines in the text buffer between and including
lines 100 thru 199.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

s 1



CBASIC III
TEXT EDITING COMMANDS

SEARCH STRING COMMAND:
Syntax: SEARCH [line #](-)[line #)\[string]\

Searches for all occurrences of the string between the
delimiters (Shift &). All the lines containing the specified
string will be displayed. 1If the optional start & stop lines is
omitted the search will begin at the beginning of the file to the
end of the file. If only the starting line# is specified it will
search to the end of file.

Example: SEARCH 100-199 \TEST\
List all the lines containing the string ’'TEXT’ between lines
- 100 thru 199.

REPLACE STRING COMMAND:
Syntax: RPLACE [line #](-)[line #] \[string]\[string]\

This function will replace all occurrences of the first
string between delimiters (SHIFT @) with the second string. If
the optional line #'s are not specified the entire file will be
used, if only the starting line # is specified only from there to
the end of file will be used, and if both start & end 1line #’'s
are specified only the lines including them will be used.

Example: RPLACE 100-999 \TEST\TESTER\

This would tell the editor to replace all occurrences of
'TEST' between lines 100 and 999 with ‘TESTER'.

LINE EDIT COMMARD:

Syntax: LEDIT [line #]

Causes the line number specified to be displayed and the
cursor to be positioned under the first character of the line. The
EDIT mode is then entered, see edit functions under ‘AEDIT’.

Example: LEDIT 110 <Enter>
Edit line number 100 using the edit functions.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-8-



CBASIC III
TEXT EDITING COMMANDS

AUTO EDIT COMMAND:
Syntax: AEDIT [line #)

Causes the automatic edit mode to be entered, if the starting
line # is specified the edit function will continue from that line
until the end or a cancel edit operation character is entered. All
the edit commands are the same as LEDIT (line edit). If no change
is required on a line press the Down-Arrow key and the next line
will be brought up for editing. If the line is to be deleted just
enter Shift"Clear”.

Example: AEDIT 100 <Enter>
Begin automatic line editing starting at line 100.

EDIT FUNCTION KEYS

FUNCTION DEPRESS
MOVE CURSOR RIGHT Right arrow key
MOVE CURSOR RIGHT 1 WORD Clear key
MOVE CURSOR LEFT (backspace) Left arrow key
INSERT SINGLE SPACE Shift & Up arrow keys
MULTIPLE CHARACTER INSERT on/off Shift & € keys
DELETE CHARACTER Shift & Down arrow keys
MOVE CURSOR TO END OF LINE Shift & Right arrow keys
MOVE CURSOR TO BEGIN OF LINE Shift & Left arrow keys
GOTO NEXT SEQUENTIAL LINE Down arrow key
GOTO PREVIOUS LINE Up arrow key
END LINE AT CURSOR POSITION Shift & Clear keys
REPLACE OLD LINE WITH NEW Enter key
EXIT FROM EDIT MODE Break key

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
=G




CBASIC III
TEXT EDITING COMMANDS

COPY LINES COMMAND:
Syntax: COPY (from line#)-(to line#) (new location line#)

The copy function allows portion of the current text buffer
to be copied to another portion of the file. The 1lines included
in the specifications 'from’ and ’'to’ are copied to the new
location line following the destination line. The portion of the
file copied is left intact and the file is automatically
renumbered upon completion of the copy.

Example: COPY 1100-1345 100
This would place a copy of the lines from 1100 thru 1345
following line 100 .

MOVE & DELETE LINES COMMAND:
Syntax: MOVE (from line#)-(to line#) (new location line#)

The MOVE command works almost exactly the same as the 'COPY’
function only the original lines ’'from-to’ are removed from the
file after they are copied to the new location. The file is
renumbered the same as in the copy function.

Example: MOVE 1100-1345 100
This would move the lines from 1100 thru 1345 to the next
line following line 100.

AUTOMATIC LINE NUMBER COMMAND:
Syntax: AUTO [ 1 digit increment value ] [ line # ]

Causes the computer to type segquential line numbers
incremented by the specified 1 digit value. If not specified the
line # will be incremented by 10. Also an optional starting line #
can be specified. This is used for entering sequential text lines
without having to specify line numbers, they will automatically
be typed after each line is entered.

Example: AUTO 100

Enter auto line typing beginning with 1line ‘100’ with a
default increment wvalue of '10'.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

—10=



CBASICIII
TEXT EDITING COMMANDS

MEMORY SIZE COMMAND:
Syntax: SIZE <Enter>

Displays the amount of memory in use, followed by the amount
of memory remaining in the text buffer.

PRINTER OUTPUT COMMAND:
Syntax: PRINTER [command line]

Specifies that the next output operation will be output to
the printer. Another command may follow the PRINTER command for
ease of use. If you want a printed listing of the compiled
program, this command must be used prior to the CBASIC-3 command,
ex: PR CBASIC-3

Example: PRINTER NLINE LIST<ENTER>

This would tell the editor to list the file to the printer
with no line numbers.

EXIT TO BASIC COMMAND:
Syntax: EXIT <Enter>
Causes control to return tc 'BASIC’. Once CBASIC-3 is exited

you cannot return or re-execute the program, it must be re-loaded
from disk.

NEW FILE COMMAND:

Syntax: NEW <Enter>

Causes the memory file buffer to be cleared and all pointers
reset to the cold start condition. All previously entered
information will be lost. You will be prompted with the message

"ARE YOU SURE?", if you enter any character other than a "Y" the
command will be ignored.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

9=



CBASIC 11
TEXT EDITING COMMANDS

PRINTER BAUD RATE COMMAND:
Syntax: BRATE <value> Set Printer baud rate

This command will allow users having printers that run at
baud rates other than 600 baud, to change printer rates while
under CBASIC-3 control. The baud rates are set by entering a
value from zero thru seven (0-6) to represent the desired rate.
The rate values are as follows: 0=110, 1=300, 2=600, 3=1200,
4=2400, 5=4800, and 6=9600.

Example: >BR 5<enter> Set baud rate to 4800 baud

PRINTER LINE FEED COMMAND:

Syntax: LF<enter> Allow line feed character output

This function is for those users having printers that do not
automatically line feed upon receipt of a carriage return
character. Normally line feed character output is inhibited, once
this command is entered they will be output for each line and
cannot be inhibited once enabled.

AUTOMATIC KEY REPEAT DELAY COMMAND:
Syntax: RDELAY <value>

This command allows the user to program whether or not to
allow the keyboard keys to automatically repeat and if so, how
fast or often it is repeated. If the command is followed by a
value of "0" then automatic repeat will be disabled entirely. If
a value between 1 and 47 follows, that value will Dbe used to
determine how fast the keys will repeat. The smaller the number
the faster the key will repeat. The default value is around 15
which causes a repeat at a reasonable rate. Each individual will
have to set this to their own personal taste. The delay from the
first time a key is pressed until it begins to repeat is
approximately 2 seconds and is not adjustable.

Example: RD 5 <enter> Set Repeat Delay to 5 (fast)
RD 0 <enter> Turn Auto Repeat off

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-12-



CBASIC III

TEXT EDITING COMMANDS
SCREEN WIDTH (Characters per line)
Syntax: SW <value>

The SW command allows the user to set the number of
characters displayed per line on the Screen. This can be varied
from 32 to 80 characters per line in defined steps. The default
display comes up in 80 character mode at program startup time, but
can be changed to one of 8 different formats. The following
values correspond to the number of display characters per line.

1 = 32 (192) 5 = 32 (225)
2 = 40 (192) 6 = 40 (225)
3 = 64 (192) 7 = 64 (225)
4 = B0 (192) 8 = 80 (225)

The numbers in the parenthesis represent the number of
vertical scan lines wused on the display. The 225 mode gives an
extra pixel width between lines so that the decenders on
characters will not appear to touch the tops of the letters on the
line below. If your TV or Monitor can’t handle the extra lines,
select one of the 192 line modes.

Example: SW 8 <enter> Set width to 80 chars/line (225)
SW 3 <enter> Set width to 64 chars/line (192)

SCREEN COLOR SELECT:

Syntax: SCREEN <Foreground> <Background»

This command allows the user to select the Foreground
(character color) and Background colors for the display. The
program defaults to Black characters on a Buff Background (0,63).
You can select any color you like from 0 to 63, see page 297 of
your COCO-3 manual for some sample color values.

Example: SC 63 0 <enter> BUff chars/Black Background
SC 18 0 <enter> Green chars/Black Background

CHANGE COLOR/MONOCHROME MODE:

Syntax: CColor <enter>

This command allows the user to force the computer to supress
the color output to the display or to Enable the color output. By
default the program automatically select Monochrome mode when
first started up.

Example: CC <enter> Change screen color

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=ia=



CBASICIIII
TEXT EDITOR I/0O COMMANDS

DISK FILE SAVE COMMAND:
Syntax: SAVE [file name.extension:disk drive]

The SAVE command writes the file with the specified file name
to disk. If no disk drive/id is entered a default drive of “0" is
assumed. The file extension is assumed to be a "CBA" file 1if not
specified. The entire file is saved from the text buffer. If the
output file is already in use from a previous file that was larger
than the text buffer an error message of 'OUTPUT FILE ALREADY IN
USE’ will be displayed.

Example: SAVE BIOIA.ASM
SAVE BIOIA:3

DISK FILE LOAD COMMAND:
Syntax: LOAD [file name.extension:disk drive]

The LOAD command opens a disk file for input to the text
buffer, if line numbers are not included in the text file they
will be added. If the file is larger than the available text
buffer the user will be prompted for an output file drive and
name. If an output file cannot be opened the input file will be
closed and only that portion of the file will be accessable for
editing. When @ duplicate output file is encountered it is
automatically removed by the R.S disk system so be aware when
specifying file names.

Example: LOAD BIOIA:3

Open the file BIOIA on drive #3 for input and read it into
the available text buffer.

DISK FILE APPEND COMMAND:

Syntax: APPEND [file name.extension:disk drive]

The APPEND command adds the file to the end of the present
memory file. The Disk drive and file extension options are the

same as the’LOAD’ command. If the input file is already in use an
appropriate error message will be displayed.

CER-COMFP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 859110

—=]14-



CBASIC III
TEXT EDITOR I/0O COMMANDS

DISK DRIVE DEFAULT

Syntax: DRIVE <number>

The Drive command allows you to specify a default disk drive
for Disk commands. The value can be in the range of 0 to 65, this

allows Hard Disk users to use up to a 10 Meg. drive.

Example: DRIVE 3

DISK DIRECTORY DISPLAY COMMAND:

Syntax: DIR <drive number?>

The DIR command allows the user to examine the directory on a
specified disk drive. 1If the drive number is not specified a
default drive of "0" is assumed. The disk directory is displayed
the same as if the command had been executed from basic and the
"Shift @" must be used to pause the display during this command.

Example: DIR 2

This would 1list the entire directory from the disk on drive
number two.

KILL DISK FILE COMMAND:

Syntax: KILL [file name.extension:disk drive]

The KILL command allows you to remove unwanted files from the
specified disk. It works basically the same as the Basic "KILL"
command except the file extension will automatically default to a
"CBA" extension. If not specified the disk drive will
automatically default to drive "0". Any errors will be reported
the same as normal disk errors.

Example: KILL BIOIA.TXT:3

Remove the file BIOIA.TXT from the disk on drive number 3.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=15



CBASICIIII
TEXT EDITOR I/0 COMMANDS

CBASIC COMPILER COMMAND:
Syntax: CBASIC [file name.extension:disk drive]

The CBASIC command is used to compile the Basic program in
memory. Optionally a disk file name can be specified for the
compiled object program. If no file name is specified a program
will not be created, this can be usefull for testing a programs
syntax or generating a printed listing only.

Example: PR CBASIC BIOIA:1l
This command string would enable output to the printer (PR)
and then call the CBASIC compiler, the program would be compiled

with the object code file being written to a file labeled "BIOIA"
on drive #1, the extension default would be .BIN.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=16=



CBASICIII

COMPILER COMMANDS
CBASIC-3 PROGRAM STRUCTURE

A CBASIC-3 program consists of a series of "source lines". A
source line consists of a line number followed by one or more
CBASIC-3 Statements. If the source line contains more than one
statement a colon : character is used to separate the statements.
A source line may contain up to 250 characters.

Line numbers are decimal numbers which are up to “four"
digits and positive. These must appear sequentially in a program
and may not be duplicated. When converting a Color Basic program
which has line numbers greater than 9999, renumber the program
¥sing Color Basic before saving the program to disk in ASCII

ormat.

Spaces in CBASIC-3 statements are not required, however they
may be used to improve readability (except when used in string
constants or following variable names that preceed a command).
Unlike interpreters, REMark statements and spaces do not affect
program size or speed and may be used generously to improve
program readability and documentation.

Example of program structure:

100 PRINT "THIS PROGRAM FINDS THE AVERAGE OF A SERIES OF NUMBERS"
110 INPUT "HOW MANY NUMBERS "; N : T=0

120 FORI=1TON: INPUT "NEXT NUMBER";I : T=T+l1 :NEXT I

130 PRINT:PRINT:PRINT "AVERAGE IS";T/N

140 PRINT "DO YOU WANT TO CONTINUE":INPUT AS

150 IF A$="YES" THEN 100 ELSE END

As you can see in the sample program, the syntax of a
CBASIC-3 program is very similar to that of the Color Basic
interpreter. Most of the CBASIC-3 statements are identical in
format to Color Basic. Many programs may be written with the
interpreter for testing and debugging, then saved to disk in ASCII
format, loaded into CBASIC-3 and compiled. Most of the syntax
differences between CBASIC-3 and Color Basic can be used in the
interpreter for testing and debugging. However, there are some
syntax formats in Color Basic that cannot be used in CBASIC-3.
These minor differences will become apparent as you use CBASIC-3,
and should not pose much of a problem in converting existing Color
Basic programs.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=17=



CBASICIIII

Numeric Operators, Functions and Variables
ARITHMETIC OPERATIONS

NUMBERS

CBASIC-3's numeric data type is internally represented as 16
bit two’s compliment integers (2 bytes). This permits an
equivalent decimal number range from +32767 to -32768. This data -
representation is quite natural to the 6809‘s machine instruction
set which allows CBASIC-3 to produce extremely fast and compact
machine code.

Because the compiler supports boolean operations, unsigned 16
bit binary numbers may also be used for many functions. The range
for these are: 0 to +65535. These numbers are used for
referencing memory addresses in many cases.

CBASIC-3 programs may include numeric constants in either o
decimal or hexadecimal notation. In the latter case a dollar sign
($) or the characters "&H" must precede the hex value or a pound
sign (#) to represent the logical compliment (1's compliment or
boolean NOT).
Examples of LEGAL numeric constants:

200 -5000 $100 &H1000 -3000 12345 #1 #$5000 S$FFF0 &HFFDF

Examples of ILLEGAL numbers:
9.99 (fraction not allowed except in CIRCLE statement)
100000 (number too large)
+20 (plus sign not allowed, assumed if not minus)

Because binary numbers are represented in either unsigned or
2's compliment form, as well as the differences between hex and
decimal notation of identical numbers, all the following number

constants have the same binary value.

-1 SFFFF #0 65635 &HFFFF

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=1h



CBASIC 111

Numeric Operators, Functions and Variables
NUMERIC VARIABLES

Legal numeric variable names in CBASIC-3 consist of a one or
two letter name or a single letter and a digit 0-9. Variable
names can be longer than two letters if desired but only the first
two letters or characters are used for the name. The following
are legal variable names:

X N XX 2ZX R2 A0 ZIP (only ZI is used)

If decalared in a DIM statement, numeric variables may be
arrays of one or two dimensions. The maximum subscript size is
32767, therefore the largest one-dimensional array would require
65534 bytes of memory (which is too big to actually be used in
Color Computer). Subscripts begin at 0 (BASE 0 subscripting).

When referencing subscripted variables, the subscripts may be
numeric constants, variables, or expressions as long as the
evaluated results is a positive number from 0 to 32767. CBASIC-3
does not perform run-time subscript error checking for overrange
errors which would cost considerably in terms of program size and
speed. Two dimensional numeric arrays may be defined and used for
a 1 dimensional access which is much faster than a 2 dimension
access. If you had the array A(30,100), you could access it as if
it was A(3000).

References to two dimensional arrays with less than 255
elements or rows will use the internal 8 by 8 bit multiply
instruction for indexing. Numeric arrays with over 255 elements
will use a fast 16 by 16 bit multiply to index into the array.
Obvioulsy the smaller two dimensional and one dimensional array
will have a faster access than a two dimensional array with over
255 elements or rows.

Examples of legal subscription:
N(M) A(1200) 22(CX) 24(N,MZ) H(N*(A/B),X+2) R4(N*AZ+K)
CBASIC-3 considers a simple variable with the same name as an
array to be the first element of an array. For example: if there
is an array A(20,20) using the variable name A without any
subscript is equivelent to using A(0,0).

Each numeric variable or element of an array is assigned two
bytes of RAM for run-time storage.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
S



CBASICIIII

Numeric Operators, Functions and Variables
ARITHMETIC OPERATORS
The five legal operators for arithmetic are:

Add

Subtract
Multiply

Divide

Negative (UNARY)

I~ * 1 +

There are also four boolean operators:

& or AND Logical AND

! “or ‘OR Logical OR
% Exclusive OR
B Compliment (UNARY)

All of the above operators may be mixed in arithmetic
expressions. The boolean operators, operate in a bit-by-bit
manner across all 16 bits of the numeric variable.

The order of operation determines in which order CBASIC-3

processes expressions. The compiler will convert arithmetic
expressions to an internal form during compilation, and rearrange
expressions following the order of operations. In this way

CBASIC-3 may produce machine instructions which are shortest and
fastest. Expressions are evaluated in the following order:

. Numeric Functions

Unary Negative and Not

. Multiplication, Division
Addition, Subtraction

. Relational tests <,>,=,<{=,>=,
Boolean operations AND,OR,&, !

= T8 RS PV S

Parenthesis may be used to alter the normal order of
evaluation where required. Some examples of legal expressions:

A*B(N,M+4) $200+ZX A&B!C*D/F+(H+(J*2)&S$SFF00)

N+A(Z)/VAL("FOUR") (C<>D AND A$=B$) OR (C>D AND AS$=D$)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-20=



CBASIC III

Numeric Operators, Functions and Variables

ARITHMETIC FUNCTIONS

ABS (expr) The Absolute value of the numeric expression (-324
= 324

INT(expr) Convelts the numeric expression to an integer (For
Color Basic testing)

RND(expr) Returns a random integer between 1 and the
specified expression value (1-32767).

PEEK(expr) Returns the contents of the memory location
determined by the results of the numeric
expression.

DPEEK(expr) Returns the 16 bit value from the two consecutive

memory locations determined by the results of the
numeric expression.

POS (expr) Returns the current character position of the
specified device number (0O=screen, 2=printer,
3=RS-232 port).

POS@ Returns the current PRINTE location on the screen.

SWAP (expr) Byte swap of the results of the numeric expression.
High order & low order bytes are exchanged.

SGN (expr) Returns a value indicating whether the expression
is positive (+1), negative (-1) or zero (0).

TIMER Returns the contents or allows setting the timer
0-65535. Ex: TIMER=(expr), Var=TIMER

VARPTR(var) Returns the absolute memory address for a variable.

OVEREM Returns the Overflow results of a multiply or the
Remainder of a Divide function. Valid immediatly

after a multiply or divide only.

ARITHMETIC ERRORS

Arithmetic operations may produce several types of errors
which may be detected and processed. Addition and Subtraction may
result in a carry or borrow condition. Either one will result in
the Carry bit of the MPU's condition code register being set. The
ON OVR and ON NOVR statements may be used to detect this
condition. This also permits addition and subtraction in larger
representation than 16 bits. (See MULTIPLE PRECISION ARITHMETIC)

Multiplication of two 16 bit numbers may result in a product
up to four bytes long. CBASIC-3 will detect this error (See ON

ERROR GOTO) and preserve the high order 16 bits of the correct 2's
compliment result which can be accessed by the OVEREM function.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=91 =



CBASIC 111

Numeric Operators, Functions and Variables

Division attempted with a divisor of zero will also produce
an error which is detected at run-time with the ON ERROR GOTO.
The Remainder of a division may be obtained by the OVEREM
function: A=OVEREM.

MULTIPLE PRECISION ARITHMETIC

Sometimes it is necessary to deal with numbers larger than
the Dbasic 2 byte CBASIC-3 representation. CBASIC-3 allows
addition and subtraction of numbers of multiples of 16 bits by
means of the ON OVR GOTO an ON NOVR GOTO statements. OVR means
overflow (carry or borrow as represented by the MPU C bit) and
NOVR means NOT OVERFLOW.

The example below shows addition and subtraction of 32 bit
integers using the convention that two variables are used to store
each number: Al and A2 are the first number with Al being the most
significant bytes; and Bl and B2 used similarly. To add Al-A2 to
B1-B2 the following subroutine may be used:

100 A2=A2+B2 : ON NOVR GOTO 200: ' ADD L.S. BYTES
150 Al=Al1+1 : ' ADD 1 TO MS BYTES FOR CARRY
200 Al=Al1+B1 : ' ADD MS BYTES

To subtract B1-B2 from Al-A2 a similar routine is used:

100 A2=A2-B2 : ON OVR GOTO 200 : ’'SUB. LS BYTES
150 Al=Al1-Bl : RETURN : ’ SUB MS BYTES & RETURN
200 GOSUB 150 : Al=Al-1 : RETURN : REM BORROW CASE

Extended & Decimal Addition & Subtraction

In many cases it is desirable to use decimal numbers or
numbers larger than +/-32767. Although CBASIC-3 cannot handle
numbers larger than this directly, simple addition and subtraction
of fixed decimal or 1large numbers can be easily handled using
multiple variables. By using multiple variables, each 3 or 4
digits of a large number can be assigned to 1 variable to form a
very large number of 6 or more digits. 1In the following example
we will use 2 variables to represent a decimal number with a fixed
decimal point for a cents value. The Total value for the sum
cannot exceed 32767.99 in this form. This is not the only method
in which decimal numbers can be handled, strings can also be used
to allow a wider range of decimal values to be input and handled.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=29



CBASICIIII

Numeric Operators, Functions and Variables

In this example ten numbers will be input from the keyboard
and added together. The array "V" contains 10 elements each with
two variables V(0) and V(1). In this example the numbers input
from the keyboard are assumed to have a fixed decimal point for
cents and cannot exceed 32767 since they are being input as
numeric variables. If a value of 1000 is entered it is assumed to
be 10.00, 1222 would be 12.22 and 150 would be 1.50. The maximum
input value is thus 327.67 for this example.

100 DIM V(1,10): T0=0: T1=0 :’ DEFINE ARRAY, CLEAR TOTAL
110 FOR I = 1 TO 10 :’' SETUP INPUT LOOP

120 INPUT "ENTER NUMBER TO BE ADDED ";A

130

140 ’ CONVERT NUMBER TO DOLLARS & CENTS

150 *

160 V(0,I)=A/100: ’'ASSIGN DOLLAR VALUE

170 V(1,I)=OVEREM 'ASSIGN CENTS VALUE

180 NEXT I

190 !

200 * NOW ADD UP THE NUMBERS IN THE ARRAY
e

220 FOR I = 1 TO 10

230 T1=V(1,I)+T1 : * ADD THE CENTS TOGETHER

240 TO=V(0,I)+T0+T1/100 :‘ADD THE DOLLARS & CENTS OVER 100
250 T1=OVEREM: ’ CENTS = REMANDER OF DIVIDE

260 NEXT I

270 *

280 ‘ NOW PRINT THE TOTAL FOR THE ARRAY

290 *

300 PRINT "TOTAL = ";

310 * CONVERT DOLLARS TO STRING AS$ WITH $ SIGN

320 A$="$"+STR$(TO)

330 ' CONVERT CENTS TO STRING B$ WITH DECIMAL POINT

340 ' ADD A LEADING ZERO IF ITS VALUE IS LESS THAN 10

350 B$="."+RIGHTS$("00"“+STRS(T1),2):’ ONLY 2 DECIMAL PLACES
360 PRINT A$;BS$: GOTO 100 :’ PRINT & GO DO IT AGAIN

For cases where multiply, divide or even floating point
arithmetic must be used, external subroutines may be used. In
such cases several compiler features and capabilities may be used
to simplify the interface.

1) Use the EXEC or CALL statement to call subroutines.

2) Set up conventions so values are passed to the external
subroutines in certain memory addresses that have been
assigned CBASIC-3 variable names so the CBASIC-3 program may
easily manipulate themn.

3) Use CBASIC-3'S string processing capabilities to full
advantage in handling I/0 and storage of numeric values.
Floating point numbers can be passed as ASCII strings.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
=3



CBASIC III

Numeric Operators, Functions and Variables
BUTTON Statement
Syntax: BUTTON ( expr)

The BUTTON function is used to tell if a selected Joystick
button 1is pressed. If the selected Joystick button is pressed,
the function will return a value of 1. If the button is not
pressed a value of 0 is returned. The expression must evaluate to
a number between 0 and 3 to be valid. The following values will
select the different Joystick buttons:

0 = Right Button 1 (old joystick)

1 = Right Button 2

2 = Left Button 1 (old joystick)

3 = Left Button 2

Example: IF BUTTON(O0) = 1 THEN 200

JOYSTK Statement
Syntax: JOYSTK(expr)

The JOYSTK function is used to get the horizontal or vertical
position of the Left or Right Joystick. It returns a value
between 0 and 63 to represent the position. The expression must
evaluate to a number between 0 and 3 to be valid. The following
values will select the different joystick and their horizontal or
vertical value:

0 = Right joystick horizontal coordinate
1 = Right joystick vertical coordinate

2 = Left joystick horizontal coordinate
3 = Left joystick vertical coordinate
Example: H = JOYSTK(0)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

D=




CBASICIIII

Numeric & String SWITCH variables
Run-Time SWITCH variables

Syntax: SWITCHn = numeric expression
var = SWITCHn
SWITCHS = string expression
var$ = SWITCHS

The SWITCH variables are run time variables that occupy the
first 16 bytes ($00-SOF) on the direct page of memory used by the
CBASIC-3 program. There are eight numeric variable switchs that
can be uses or one 16 byte string variable, SWITCHO-SWITCH7 and
SWITCHS. They both occupy the same memory space and can be used
like any other variables in CBASIC-3. They can be useful for
temporary variable storage or for passing variables to & from
machine language programs or subroutines and CBASIC-3 programs.
Since the SWITCH variables are not initalized by the CBASIC-3
program, they can be useful for passing information to a CBASIC-3
program before it is executed or from one CBASIC-3 program to
another CHAINed CBASIC-3 program that uses the same Direct Page of
memory.

Example: SWITCH1=A
AB(I)=SWITCH3
SWITCHS=AS
AS="HELLO "+SWITCHS

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
-25-



CBASICIIII

String Operations, Functions, Variables & Expressions
STRING OPERATIONS

CBASIC-3 features a complete set of string processing
capabilities which allow CBASIC-3 programs to perform operations
on character oriented data. Character type data is represented in
CBASIC-3 1in ‘"string”" form which is defined as variable length
sequences of characters terminated with a null (00) character.

String Literals

A string 1literal or constant consists of a series of
characters enclosed in quotation marks:
"This is a string literal"

Any character may be included in a string literal except for
the ASCII characters for carriage return or null. A string
literal may include up to 255 characters. If a quote is to be
included as part of the string two are used so the literal:

"An embedded "" Quote"" = AN embedded " Quote
STRING VARIABLES:

CBASIC-3 allows string variables which may be either single
strings or arrays of strings. String variable names consist of
one letter and a digit 0-9 or two letters A-Z followed by a dollar
sign such as AS, AXS, AlS or Z8§.

String variables may be used with or without explicit
declarations. If a string variable is encountered for the first
time in the source program as it is being compiled without having
been previously declared in a DIM statement, the compiler will
assign 32 bytes of storage for the string. The ‘“maximum" number
of characters that may be assigned to the variable. 1If the
assignment statement produces a result which has more characters
than assigned for the wvariable the first N characters will be
stored where N is the length of the variable storage assigned.

A string variable or array may be declared to have a size of
1 to 255 characters in length if, the string is declared by a DIM
statement before it is used (see DIM statement description).

If the string name is declared as an array, the maximum
subscript size is 32767. Legal usage of string arrays require
that only one subscript (which may be an expression) be used:

AS(5) AXS$(x+5) Z1S(A+(N/2)) BBS(X*Y)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

o



CBASIC III

String Operations, Functions, Variables & Expressions
String Concatenation

The string concatenation operator + is used to join strings
to form a new string or string expressions. For example:

“NEW "+"STRING" produces the new string value: "NEW STRING"
Null Strings

Strings which have no characters are represented as the
literal "" which represents an empty string. This is typically
the initial value assigned to a string which is to be “"built up".
The string assignment statement: AS$="" is somewhat analogous to
the arithmetic assignment A=0 in the sense that both cause a
variable to be assigned a defined value of "nothing". This is
important because before a string variable is used in a program it
has a value which is random and meaningless.

String Functions

CBASIC-3 1includes many functions which manipulate strings or

convert strings to or from other types. Some of the functions
whigh include $ in their name produce results which are of the
string type and may be used in string expressions. In the

description of string functions that follow, the notations:

N - refers to a numeric constant, variable or expression.
X$ - refers to a string literal, variable or expression.

The following functions produce STRING results:

CHRS (N) returns a character which is the wvalue of the
number N in ASCII.

LEFTS$(X$,N) returns the N leftmost characters of the string XS$.
For example the function LEFT$("Example®,3) returns
"Exa"

MID$(X$,N,M) returns a string which is that part of the string
X$ beginning with its Nth character and extending
for M characters. For example: the function
MIDS$("Example",3,4) returns "“ampl".

MIDS (X$,N,M)=Y Replace a portion of a string variable "X§"

starting at position N for a length of M, with the
string YS$.

CER~-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=



CBASIC IIII

String Operations, Functions, Variables & Expressions

RIGHTS$(X$,N) returns the N rightmost characters of the string
X$. An example of this function is
RIGHTS ("Example",3) returns "ple".

STRS(N) is a function used to convert a numeric value to a
string of characters which are decimal digits. For
example STR$(1234) returns the ‘“"string" "1234".
This is the opposit of the VAL function.

STRINGS(N,M) is a function which creates a string of N
characters in length specified by the ASCII code M.
For example: STRINGS$(10,49) or STRING(10,"1") both
produce the string "1111111111", however the
numeric form produces almost half as much code as
the string from "1".

TRMS (X$) is a function which removes trailing blanks or
spaces from a string and is typically used after a
gtring is read from input. For example
TRMS ( "Example ") returns "Example".

HEXS(N) is a function which converts the value of a numeric

expression into a string of characters that
represent the hexadecimal equivalent of the
expression. Example HEXS$(255) returns "FF".

INKEYS is a function that returns a single character
string equal to the character value of the key
pressed on the keyboard. If no key is pressed on
the keyboard, a null string "" is returned.

Note on the preceeding functions: if there are not enough
characters in the argument to produce a full result, the
characters returned will be those processed until the function
“ran out" of input, or a null string, whichever is appropriate.
The STR$(N) function will result in a run-time error delectable by
the ON ERROR GOTO function if its argument is not legal or
convertible to a string.

The following functions have string argument(s) and produce a
result which is of numeric type:

ASC(XS) returns a number which is the ASCII wvalue of the
first character of the string. For example
ASC("Example") returns a value of $45 or decimal 53
which is the ASCII code for the character E. This
is the inverse function of CHRS.

LEN(XS) returns the length of a string. LEN("Example")
returns a 7. LEN("") returns a value of 0.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
T



CBASIC IIII

String Operations, Functions, Variables & Expressions

INSTR(N,X$,Y$) is a substring search function which searches the
string X$ beginning at position N, £for the
substring ¥$. If N is omitted the search begins
with the £first character in X$§. If an identical
substring is found the function will return a
number which is the position of the first character
of the substring in the target string. If the
substring is not found the function returns a value
of 0. Ex: INSTR("Example","pl") returns a value of
5. INSTR("Example","NO") returns a value of 0. 1If

¥$="" the value of N is returned.

VAL(X$) converts a string of characters for decimal digits
and optionally a leading minus sign to a numeric
value. This has the inverse effect of STRS. EE

the string argument is not a legal conversion
string (it has too many, non-decimal or not digit
characters 0-9) a run-time error detectable by ON
ERROR GOTO occurs. For example: VAL("123") returns
the numeric value of 123. VAL("THREE") results in
&n ‘error.

String Operations on the I/0 Buffer

Commonly BASICs have limitations because of the input
formatting when reading mixed data types. For example; BASIC
input conventions cause commas which are part of the input data to
break up what are really one long string, etc. CBASIC-3 has a
special string variable, BUF$ which is defined to be the contents
of the run-time I/O buffer which may be used as any other string
variable. BUF$ is 255 bytes in length. Note: the I/0 buffer 1is
not used during Random Disk access GET & PUT functions.

The following I/0 statement forms are legal for filling or
dumping the I/O buffer when used with BUFS$:

INPUT BUFS$ PRINT BUFS$
INPUT #N,BUFS$ WRITE #N,BUFS

Example of using BUFS as a variable:

BUF$=MID$ (BUF$+AS,N,M)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
20



CBASIC I
String Operations, Functions, Variables & Expressions

SWAP String Statement
Syntax: SWAPS(string var,string var)

This command is used to exchange the contents of two string
variables without the need for a temporary variable. It is
equivalent to something like swapping the variables A$ & B§ which
would require code similar to: CS$S=AS:A$=BS$:BS=A$. SWAPS$ performs
the same operation without having to use an intermediate variable,
generates much less code and executes faster. This can be a very
handy function and speedup factor when doing string sorts. String
literals or functions can not be used, only valid string variables
are allowed.

Example: SWAPS (AS,BS)
SWAPS(AS(I),AS(I+1)

String Expressions

String expressions may be created using string variable
names, the concatentation operator and string functioms.
Expressions are evaluated from left to right and the only
precedence of operations involved is the evaluation of function
arguments is performed before concatenation.

At run-time, string operations are performed on data moved to
the *"String Buffer", a compiler-allocated area normally 255 bytes
long. Because this is always the last data storage area allocated
by the compiler (st), any memory available beyond this may be used
to allow automatic buffer expansion if operations on extremely
complex string expressions are involved.

Examples of legal string expressions:
"CAT"
AZS
LEFT$ (BCS,N)
AS+RIGHTS(D1$,XX)+"TH"
MID$(AS$S+BS,N,LEN(AS)-1)
“"AA"+LEFTS (RIGHTS(TRMS(AS)+BS,24) ,X+2)+C$

String Comparisons

Strings may be compared in an IF expression the same as
numeric expressions. Each character in the string is numerically
evaluated by its ASCII character value for relational operations.
Remember that puncuation and numeric characters have values that
are less than normal text characters. Upper case text characters
also have values less than Lower case text characters.

CER-COMP 5566 RICOCHET AVE. LAS VECAS, NEVADA 89110

=3 0—



CBASIC I

Compiler Directives

ORG, BASE and DPSET Statements

Syntax: ORG = address
BASE = address
DPSET = address(MSB only)

These statements are used to control how CBASIC-3 assigns
memory in and for the object program. The ORG statement is used
to assign starting addresses for the object code, and the BASE
statement is used to define the addresses used for variable
storage. The DPSET statement is wused to set the direct page
reference value for variable storage. In most cases these
statements need not be used at all in standard basic program as
the program default values will provide for the optimum program
configuration.

Both the ORG and BASE statements may be used as often as
desired so memory assignments for variables and data storage may
be segmented as desired.

CBASIC-3 uses three internal “"pointers" that control how
run-time memory is allocated. The “object code pointer" always
maintains the address where the next instruction generated by the
compiler will be stored. The ORG statement assigns a value to this
pointer. When CBASIC-3 is first started up, a default value of
31000 is assigned to the pointer to allow space for the Direct
Page (S$SOF). So unless an ORG statement is processed before the
first executable BASIC statement, the programs default starting
address is $1000.

For example, the statement:
ORG=$4000

will cause instructions generated for any following BASIC
statements to begin at address $4000. The ORG statement may be
used to creat “"modules" at different addresses within a single
program. )

The BASE statement is also used to control memory assignment
in a similar manner but it applies to allocation of RAM for
variable storage. An internal "data address pointer" is
maintained by CBASIC-3 to hold the next address available (at
run-time) for variable or temporary storage, in addition to the
BASE address pointer. The internal pointer is initialized by the
compiler to allocate storage immediatly following the compiled
program, and the BASE address pointer is initialized to 0000,
which means that it is not being used currently.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
=31



CBASIC III

Compiler Directives

CBASIC-3 assigns RAM corresponding to BASIC variables the
first time they are encountered in the source program at
compilation time. When a "new" variable name is encountered,
CBASIC-3 assigns the wvariable run-time storage corresponding to
the current value of the internal data address pointer which is
then updated by increasing it by the size of the variable storage
assigned, as long as the BASE address pointer is equal to 0000.
If the BASE address pointer is not zero, then its value will be
used as the next variable storage location and it will be
increased accordingly to point to the next available RAM location.

An important function of the BASE statement is to allow
specific memory assignments for specific or special variable
names. Some of the reasons for this application are as follows:

1. To take advantage of the normally unused upper 32K of ram for
large arrays and variable storage.

24 To assign specific wvariable names and types with memory
addresses which have special functions or values. For example
addresses of PIA’'s, X-Pad, 80 coulmn cards, RS-232 cards or
other interface devices which have control or status
registers, may be given BASIC variable names. A common type
of "trick" is to declare the memory used by video displays or
graphics memory to be declared as a BASIC array.

3. The BASE statement can assign locations to specific variables
without disrupting the normal internal data address pointer,
and then allow normal allocation to resume by assigning a
value of zero to the BASE pointer (BASE=0000). The BASE
statement can also be used for allocating all variable storage
by simply setting the location at the beginning of the program
and using only the BASE pointer for variable allocation.

When using the ORG and BASE statements the programmer must
take care to ensure that there are no conflicts or overlaps
between program and data storage, by using assignments which are
not overlapped. If the BASE statement is not used, the Compiler
will automatically select the correct locations for variable
storage.

Sometimes it is wuseful to declare a variable without
generating code at the time it is declared. 1If the variable is an
array, the DIM statement may be used. If it is a simple type, the
DIM statement declaration with a size of one may be used for a
declaration. For example, to assign the address $FF00 to the
variable KB the following sequence may be used.

BASE=$FF00
DIM KB(1)
BASE=0000
CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

e



CBASIC III

Compiler Directives
PCLEAR Statement
Syntax: PCLEAR # of Graphics pages

The PCLEAR statement is normally associated with Graphics.
In CBASIC-3 the PCLEAR statement is similar to an ORG statement in
that it changes the address where the compiled program will be in
memory. It will also change the Direct Page reference according
to the number of pages to be reserved. The PCLEAR statement must
be used in a CBASIC-3 program before any statements that generate
machine code, otherwise an error will occur. The number of
Graphics pages to clear can be in the range from 0 to 8.

DIM Statement

This statement is used to declare arrays and optionally other
simple variables, Arrays must be declared in a DIM statement and
may be used to declare more than one array. Arrays may not be
redefined in following DIM statements. Array subscripts have a
legal range of 0 to 32767.

Numeric Arrays

Numeric arrays may be declared to have one or two dimensions.
Two dimensional arrays are stored in row-major order. Each
element of a numeric array requires two bytes of storage. A two
dimensional array may be accessed as a one dimensional array, this
is alowed so large one dimension may be used. Examples of numeric
array declaration:

DIM B(2000), CX(10,20), D1($10,520)
String Arrays

String arrays may only be one dimensional, however, the DIM
statement is also used to specify the string size (1 to 255
characters) so the declaration for a one dimensional string will
have two subscripts: the number of strings and the length of each
string. A single string may be declared in the DIM statement with
a length specification only. Examples:

DIM AS$(80) one string of 80 characters
DIM B$(500,72) 500 strings of 72 characters

In the example above, AS$ is used in the program "Without" any
subscripts because it is not an array. BS would be used in the
program with "one" subscript because it is a one-dimensional
array. For example:

AS=BS(N)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
T



CBASIC I

Compiler Directives

Declaring Simple Variables

Because CBASIC-3 allocates memory for variables as they are
encountered for the first time, it is often useful to declare a
single name so it may be assigned storage at a particular point,
but without generating code. This is often the case when it is
desired to assign a variable a certain memory address. CBASIC-3
processes a variable declared as an array but used without
subscripts in the program as the first element of the array by
internally assuming a subscript of (0) for a one dimensional array
or (0,0) for a two dimensional array. Because of this a
declaration of a variable in a DIM statement with a subscript of 0
is legal, but the variable. may be used throughout the program
without a subscript.

Example: Suppose a program is to be used to read from and write
to a Serial RS 232 interface card at address $FF68 - SFF6B and an
X-PAD at address 65376 - 65378 (SFF60-SFF62), and they are to be
assigned variable names. A DIM statement at the beginning of the
program may be used to assign variable names to these devices:

BASE = SFF68 set compiler address pointer

DIM DS(0),CT(0) declare RS232 data/status/command/ctrl regs.
BASE = $FF60 set address pointer to X-Pad

DIM XY(0),XS(0) declare x,y reg. and status req.

BASE = 0000 restore internal data pointer to normal

The program may now refer to either the RS-232 port or the
X-Pad registers thru the variable names RS, XY, or XS. To access
the RS-232 control and command registers:

CT=N to write the command/ctrl regs.
N=DS to read the data & status regs.

or to read the X-Pad x,y coordinates

N=XY read x & Y location regs.

REMARK Statement

The REM statement is used to insert comments in the BASIC
source program. The first three letters must be REM or the first
letter a single quote ‘. All characters following the REM or
quote are considered as comments until an end of line or colon ":"
character is encountered. The REM statement does not affect the
object program size or speed as it does not generate any code.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-34-



CBASIC III

Compiler Directives
TRACE Statement
Syntax: TRACE on/off

The TRACE statement is useful for debugging programs that
cause an "FC" Function Call error at run-time. When the compiler
is instructed to turn the TRACE mode on, it will automatically
generate the code required save the line number of each statement
before it is executed. If an error occurs during the execution of
the statement and ON ERROR is disabled, the program will pass the
line number of the statement in error to Color Basic before the
halt is executed. When TRACE mode is enabled it will increase the
size of the program by 5 bytes for each line of code. The TRACE
mode can be turned ON or OFF at any time within the program.
TRACE must be enabled for the ERL function to operate.

Example: TRACE ON

HIRES Statement

The HIRES statement is used to inform the compiler that you
would like the Hi-Resolution Text Display functions to be included
in your program. The HIRES statement must be used in the
beginning of the BASIC program before any program lines that will
cause code to be generated. If the HIRES option is included in
your program, it will increase the size of it by almost 2K and it
will use the Screen memory normally used for the WIDTH 80 display.
It will afford you many enhanced screen display formats as well as
the ability to use PRINT @ on the 32/40/64/80 column displays.
See Appendix D for HI-RES Screen Commands & Functions.

Example: HIRES

MODULE Statement

The MODULE statement is used when you want the compiler to
generate the code required to preserve the MPU registers and the
Stack of a calling program before initalizing the Stack & Direct
Page registers for the compiled programs use. It will also
instruct the compiler to ignore the HIRES statement if used and
generate the code required to restore the MPU registers and Stack
when an END or STOP statement is executed. This can be useful for
creating separate modules that can be called from a compiled
program. Variable storage will still be allocated normally so
variables that are to be passed from the calling compiled program
must be coordinated by the BASE and DIM or SWITCH statements if
required.

Example: MODULE

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
e




CBASICI11]
I/0 Structure Changes

CBASIC-3 extensivly changes the I/0 structure of the CoCo-3
to add support for the RS-232 port and to improve interrupt
handling in 64K modes of operation. Because of these changes, a
compiled porgram automatically re-vectors several Color Basic
hooks. The program automatically inserts its own vectors in these
locations and preserves the old vector information. The program
will automatically restore these vectors when the compiled porgram
is exited via an END, STOP or CHAIN command. This is important to
remember when using more than one compiled program in memory at
the same time or using the LOADM & EXEC commands to execute
another CBASIC-3 program, since the second or third program will
also re-vector these hooks. If the current program was not
un-linked before exiting, un-predictable results will occur. The
same problem will exist if you try to exit a compiled program into
another machine language program or into basic using a CALL or
EXEC statement. We have therefore provided two additional
commands to allow you to manually Link or Un-link the CBASIC-3
program. These commands are as follows:

UNLINK Statement

This command will wun-link or restore the original vector
information the same as it was found before the program was
executed (normal Color Basic vectors). It would normally be used
before you use the CALL or EXEC statement to exit from a CBASIC-3
program. When a program is un-linked, HI-RES, RS-232, ON IRQ and
ON ERROR functions will no longer be functional. You can use the
UNLINK command at any time within the program, however it is not
advisable unless you plan to exit the program.

Example: 1020 UNLINK:EXEC $A027: ‘unlink & do basic reset

CBLINK Statement

This command will allow you to re-link the CBASIC-3 program
manually if you have previously un-linked it and executed another
program and returned. If the program has not previously been
un-linked it will not try to re-link itself, so no conflict will
occur.

Example: 1020 UNLINK:EXEC $4800: ’ go do sort & list
1030 CBLINK:' restore program links

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=36~



CBASIC I

Assignment Statements

Arithmetic Assignment
Syntax: LET var = expression or var=expression

The expression is evaulated and the result is stored in the
variable. Use of the keyword LET is optional.

POKE and Double Byte POKE Assignment

Syntax: POKE address, value
DPOKE address, value

The POKE and DPOKE statements are used to place a single byte
(POKE) or double byte (DPOKE) variable or value at a specified
location in memory. The address and value can be any valid
numeric expression or variable. If numbers are used for both the
address and value the shortest and fastest possible code will be
generated. When using POKE only the least significant byte of the
result is stored. When using DPOKE the full 16 bit value is
stored at the address and address+1.

String Assignment

Syntax: LET strvar = strexpr or strvar = strexpr

The string expression is evaluated and the result assigned to
the string variable specified. If the result of the evaluation
produces a result with a longer length than the size of the result

variable, the first N characters only are stored where N is the
length of the resulting variable.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

o



CBASICI1I

Assignment Statements
DATA Statement
Syntax: DATA value,value,...,value

The DATA statement is used to store information in the
program that is to be read in by the program. The data can be
either in a numeric or string form, and can be placed anywhere in
the program. The compiler will automatically assign it to a data
storage area that is invisible to the user. If a DATA statement
is used on a multiple statement line, it must be the last
statement on the 1line. All information following the DATA
statement up to the end of the line is considered to be valid
information.

Examples: DATA 7,Sun,Mon,Tue,Wed,Thur,Fri, Sat
DATA 10,12,14,18,57,99,109,33,Horses,Cows

The examples demonstrate that mixed numeric and text can be
stored on the same line. It is up to the programmer to know what
type of information is stored in the data statements before
reading it into the program with the READ statement.

READ Statement
Syntax: READ var, var,...,var

The READ statement is used to read data from a DATA statement
as explained in the preceeding paragraphs. The READ statement can
be used with more than one variable if desired. When a READ
statement is followed by more than one variable, each variable is
assigned the next available piece of data. If a READ statement
tries to read past the end of all data statements it will
automatically be assigned a value of zero for numeric variables
and a null string "" for string variables., If ON ERROR handling
is enabled it will generate an out of data error.

Example: 10 DATA 7,Sun,Mon,Tue,Wed,Thur,Fri,Sat
20 READ N : ‘read # of items of data
30 FOR I =1 TO N
40 READ A$(I): NEXT

10 DATA Sun,Mon,Tue,Wed, Thur,Fri,Sat
20 READ AS$,BS$,CS$,D$,ES,FS,GS, HS

In the first example the value of "7" was read from the DATA
statement first and then that value was used to count how many
items of data were to be READ from the DATA statement. 1In the
second example all the data was read with a single READ statement,
only in this case there were 8 variables and only 7 items of data
so the variable H$ was assigned a null string value "".

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-38~




CBASICIIII

Assignment Statements

RESTORE Statement
Syntax: RESTORE

The RESTORE statement is provided to allow re-read capability
for the DATA statements. When a program is first run, the first
READ statement causes the first element of data to be read, each
succeeding variable of that READ statement and following READ
statements will continue to read the next element of data
sequentially. When a RESTORE statement is executed, it causes the
"next available data pointer" to be reset to the first DATA
statement of the program. The next READ statement executed after
a4 RESTORE will begin reading data from the "first" DATA statement
in the program.

Example: 05 DIM A(10), B(10)
10 DATA 10,9,8,7,6,5,4,3,2,1
20 FOR I=1 TO 10
30 READ A(I) : NEXT
40 RESTORE
50 FOR X=1 TO 10
60 READ B(X) : NEXT

The example shows the array A(10) being assigned the data
first, then the RESTORE statement resets the pointer back to the

beginning of data again. The array B(1l0) is then assigned the
same values from the DATA statement.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
=30~



CBASIC III

Program Control Statements
EXEC Statement
Syntax: EXEC address

The EXEC statement is used to directly call a machine
language subroutine at the address specified. If the address is
omitted it will use the previous EXEC address or the one from the
last CLOADM or LOADM. Before jumping to the address, the current
Direct Page register contents will be saved on the stack and the
Direct Page register will be set to zero for Color Basic ROM call
compatibility. Upon returning from the EXECuted program or
subroutine, the DP register will be restored from the stack
automatically. Obviously if the stack is altered by the EXECuted
routine or it does not return with the stack intact, unpredictable
results will occur. If you wish to have information from the
Executed routine returned to the CBASIC-3 program, use the BASE &
DIM or SWITCH variable statements to coordinate returned values.

Examples: EXEC $SA282 Execute subroutine at address S$A282
LOADM"TEST":EXEC Execute subroutine at address 1024

CALL Statement
Syntax: CALL address

The CALL statement is similar to the EXEC statement in
operation, except that it does not save the DP register or preset
it to zero. It requires that the address be specified. It can be
useful when you do not want the DP register to be set to zero or
if the DP register is set using the GEN statement prior to the
CALL statement. The CALL statement translates directly into the
machine code for Jump to Subroutine (JSR).

Example: CALL $1000
CALL SA282

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
—40-




CBASIC III

Program Control Statements
FOR/NEXT Statement

Syntax: FOR var = expr TO expr STEP expr
NEXT (var),(var),etc

The FOR/NEXT statement uses a variable "var" as a counter
while performing the loop ended by the NEXT statement. If no step
value is specified, the increment value will be 1. The FOR/NEXT
implementation in CBASIC-3 differs slightly from COLOR BASIC due
to a looping method that results in extremely fast execution and

minimum length. Note the following characteristics of FOR/NEXT
operation:

1. var must be a non-subscripted numeric variable.

2. The loop will be executed at least once reguardless of the

terminating value.

3. After termination of the loop, the counter value will be
GREATER or LESS than the terminating value depending on the
direction of the loop, because the test and increment is at
the bottom (NEXT) part of the loop.

4, FOR/NEXT loops may be exited and entered at will.

5. At compile time, up to 16 loops may be active, and all must
be properly nested.

6. The 1initial, step, and terminating values may be positive or
negative. The loop will terminate when the counter variable
is greater than the terminating value in a forward loop (Ex.
1l to 10), or less than the terminating wvalue in a reverse
loop (Ex. 10 to 1).

7. There can be only one NEXT statement for any given FOR loop.
Therefore you cannot use the structure: IF A=1 THEN C=C+l
NEXT Y ELSE NEXT Y. This will cause compiler errors and may
cause the compiler to loop.

Examples: FOR N J+1 TO Z/4 STEP X*2

FOR A = -100 TO -10 STEP -2

FOR I = 9 TO 3 (REVERSE LOOP)

FOR I = 3 TO 9 (FORWARD LOOP)

NEXT X,Y,2 (more than one loop var)

NEXT (end most recent loop activated)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
—41-



CBASICIIII

Program Control Statements

GOSUB/RETURN Statements

Syntax: GOSUB line#
RETURN

The GOSUB statement calls a subroutine starting at the line
number specified. If no such line exists, an error message will
be generated on the second pass. The machine stack is used for
return address linkage the same as a normal assembly language
program. The RETURN statement terminates the subroutine and
returns to the statement following the calling GOSUB. Subroutines
may have multiple entry and return points. The GOSUB and RETURN
statements compile directly to JSR and RTS machine language
instructions, respectively.

IF/THEN Statement

Syntax:IF <expr> <rel.> <expr> AND/OR <expr> <rel.> <expr>
THEN <statement(s)> ELSE <statement(s)>
GOTO <line #> ELSE <{statement(s)>
GOSUB <line #> ELSE <statement(s)>

The IF/THEN, IF/GOSUB or IF/THEN/ELSE statements are used to
conditionally branch or execute statements, or conditionally call
a subroutine based on a comparison of two expressions. Legal
relations are:

less than
greater than
equal to
> not equal to
= =< less than or equal to
= =) greater than or equal to

If the statement is an IF/GOSUB the subroutine specified will
be called if the relation is true and will return to the next line
# following. If an ELSE is used, statements or the line# following
it will be executed if the relationship is False. The logical
operators AND/CR may be used to test the results of several
conditions in one statement.

Examples: IF N = 100 THEN 1210
IF A=1 AND C=2 GOSUB 550
IF XZ=200 OR XY=192 THEN 240 ELSE 1100
IF XZ=200 THEN XY=240 ELSE GOTO 1100
IF AS$=B$ THEN C$="YES":D$="NO" ELSE D$=YES"
IF AS>BS THEN 260 ELSE CS$=A$

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

w42



CBASIC III

Program Control Statements

ON ERROR GOTO Statement

Syntax: ON ERROR GOTO
ON ERROR GOTO line#
ON ERR GOTO line#

The ON ERROR/ERR statement provides a run-time error “trap"-
the capability to transfer program control when an error occurs.

When an ON ERROR GOTO statement is executed the compiler
saves the address of the line number specified in a temporary
location. If any detectable error occurs during execution of
following statements, the program will transfer control to the
line number given in the ON ERROR GOTO statement last executed.
This would normally be the line number where an error recovery
routine begins.

If the ON ERROR GOTO statement is used WITHOUT a line number
specified, it has the effect of "turning off" the error trap -
errors in following statements will be ignored.

After an error has been detected, the ERR or ERNO function
may be used to access a value which is an error code identifying
the type of error which most recently occured. The exact error
codes are listed in the appendix. The ERL or ERLIN function may
also be used to determine which line number the error occured in,
providing that TRACE was ON.

The ON ERRCR function if enabled will automatically restore
the Direct Page register and initalize the Stack Pointer to the
top of the Direct Page (same as default Stack Pointer on startup).

The types of errors that can be detected by ON ERROR GOTO and
the types of statements they occur in are listed below:

Divide by zero Arithmetic expressions -
ASCII to Binary conversion error INPUT, READ, VAL(XS)
Multiply overflow Arithmetic expressions
Disk, Tape errors Disk, Tape I/0O

Syntax Errors HI-Res Graphics DRAW, PLAY

Examples of usage:
100 ON ERROR GOTO 500
120 INPUT A(N)
130 N=N+1 : IF N=50 THEN 600 :GOTO 120
600 PRINT "ILLEGAL INPUT ERROR - RETYPE": GOTO 120

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-43-



CBASIC III1I
Program Control Statements

ON BRK GOTO Statement:
Syntax: ON BRK GOTO line#

The ON BRK statement allows you to transfer control to a
specified line number when the Break key is pressed. If the
Statement is used without a line number it has the effect of
turning off Break key detection. If ON BRK is disabled (default)
the Break key or Shift € can be used to pause the display.
CBASIC-3 only checks for an ON BRK condition when data is being
output to the screen.

Example: ON BRK GOTO 1000

ON-GOTO/ON-GOSUB Statements

Syntax: ON expr GOTO <line#>,...,<line#>
ON expr GOSUB <line#>,...,<line#>

The expression is evaluated and one line number in the 1list
corresponding to the value is selected for a branch or subroutine
call. Ex: if <expr> evaluates to 5, the 5th line number is used.
If <expr> evaluates to zero or a number greater than the number of
lines specified, the statement will be ignored and the next
statement on the line or next line will be executed.

Examples: ON A*(B+C) GOTO 200,350,400,110,250
ON N GOSUB 500,510,520,530,100

STOP & END Statements

Syntax: STOP or END

The STOP & END statements are used to terminate execution of
a program by causing a Coldstart return to the Color BASIC
operating system. If the MODULE statement was used in the program
these statements will generate the code required to restore all
MPU registers and the Stack Pointer to the program entry
conditions.
RUN Statement:

Syntax: RUN

The RUN statement is used to re-execute the compiled program,
just as if it were first executed. It will not close any open

disk or tape files, like Color Basic. It simply performs a GOTO
to the first execution address of the program.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

—44-



CBASIC III

System Control Statements

GEN Statement
Syntax: GEN number, number,...., number

The GEN statement allows data or machine language
instructions to be directly inserted in the program. The list of
values supplied are inserted directly into the object program. If
a value given in the list is less than 255, only one byte will be
generated for that wvalue reguardless of leading zeros. This
function can be very useful for directly inserting machine
language subroutines in a BASIC program, as the line # for the
beginning of the routine can easily be called via the Basic GOSUB
statement and control returned to the calling GOSUB by ending the
routine with an RTS ($39) instruction.

Examples: GEN $BD,S$A282,SCE, 1024 (produces 6 bytes)
GEN 0040,500,32767 (produces ¢4 bytes)

CLEAR Statement

The CLEAR statement has no function in CBASIC, it is
recognized for conversion of Color Basic programs. It is handled
the same as a REMark Statement.

ON RESET GOTO Statement

Syntax: ON RESET GOTO line#

This statement allows a CBASIC-3 program to be re-initialized
or continue execution at a specified line# in the program.
Normally if the RESET button on the back of the computer is
depressed during program execution, the machine is Cold Started
and control is returned to Color Basic. The ON RESET statement is
typically one of the first statements in a CBASIC-3 program if
used, but may be used to re-define the RESET control vector at any
time within the program. If an ON RESET statement is executed in
the program, the only way to terminate program execution is thru a
STOP or END statement. The compiler will automatically generate
the proper code to re-initialize the Direct Page and Stack
registers and 64K RAM if used.

Example: ON RESET GOTO 5000

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-45-



CBASIC III

System Control Statements
STACK Assignment Statement
Syntax: STACK = address

This statement is used to initialize or change the MPU stack
pointer register. Normally, the STACK statement is not required
in a program as the compiler automatically uses the page of memory
immediately prior to the beginning of the program. This is
normally adeguate for almost all programs, including extensive
subroutine nesting and interrupt processing (200 bytes of Stack
space). Otherwise, a specific memory area should be dedicated for
the stack and the STACK instruction used to set the TOP of the
stack (highest address).

' Example: STACK = $7FFF (stack builds down)

PAUSE Statement
Syntax: PAUSE ON or OFF

The PAUSE command allows you to select whether or not to
allow output to the display to be paused by using the Shift € key
or Break key (CBASIC-3 only). Normally PAUSE is enabled by
default when a CBASIC-3 program starts execution so it will work
the same as a normal Basic program for stopping a display or
detecting an ON BRK condition. However with the addition of ON
BRK GOTO and ON KBDIRQ commands in CBASIC-3 the keyboard scan
required to detect a pause key being pressed will make the ON
KBDIRQ (explained later in the Interrupt commands) not to function
properly. If you want to use the ON BRK command, the PAUSE
function must be on since CBASIC-3 only checks for the Break key
when data is being output to the Screen.

Example: PAUSE OFF

SIGN Statement
Syntax: SIGN ON or OFF

The SIGN command allows you to select whether or not to add a
leading space to positive numeric values output to a device.
Normally CBASIC-3 supresses this leading space so that multiple
numeric variables can be output together to represent larger
numbers. Since Color Basic normally outputs this leading space,
many programs expect it to be there when doing number to string
conversions, etc. To make CBASIC-3 output the extra space, use
the SIGN ON command.

Example: SIGN ON <enable leading sign space>

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

- b=



CBASIC I

Interrupt Processing Statements

Interrupt processing is not easily understood unless you are
familar with the hardware of the machine and machine language
programming. They can easily hang up a program or cause the
system to crash unless used carefully. We have tried to make them
easy for you to use by doing most of the tedious processing
required for interrupt handling, but if not properly understood
you can still have a lot of difficulty using them, so please
beware. Also note that we recommend that only simple commands be
used within an Interrupt processing subroutine, do not attempt to
use any I/0 commands or string manulipation commands since you can
not determine what other functions may have been in progress when
the Interrupt condition was detected and you may make the results
of the function that was in progress totally invalid or even hang
the system.

ON INTERRUPT Statements *** Not available in Basic

Syntax: ON KBDIRQ GOTO line# (Keyboard interrupt)
ON TMRIRQ GOTO line# (12 bit Timer interrupt)
ON SERIRQ GOTO line# (Serial data interrupt)
ON IRQ GOTO line# (60 cycle/other interrupt)

The ON Interrupt commands allow you to do real time
processing based on interrupt conditions. The Keyboard, Timer and
Serial data interrupts are not normally enabled (or available in
Basic) and must be enabled via the "IRQ" statements after each
time the interrupt occurs. If enabled, and one of these
interrupts occur, the detected interrupt type will be disabled
from re-occuring until an "IRQ=" statement is used to re-enable
them. The reason for this automatic disable feature is that an
interrupt may be processed continuiously in error. For instance
if a Keyboard interrupt is detected and processed, the Return from
Interrupt is executed and the Key is still pressed on the keyboard
(Guaranteed). Which means that the Keyboard interrupt would be
processed possibly thousands of times for a single key stroke.

A Keyboard interrupt can be generated by any key on the
keyboard if the data line from the keyboard PIA ($FF02) output is
at a zero level for that key column. For example to enable all
keys for interrupt detection you would poke a 00 value at §FF02,
or to enable the key column with Enter,@,H,P,X,0 and 8 keys you
would poke a 01 at SFF02. Another note is that any time an INKEY,
INPUT or other command that causes a keyboard scan (PRINT with
PAUSE enabled) will change the value of $FF02. A good way to
process a Keyboard interrupt is to simply set a flag variable and
let the Main program do the acutal Key scan with an INKEY and then
re-enable the XBDIRQ when a key is no longer pressed. The KBDIRQ
function should be disabled when using normal INKEY, INPUT and
GETCHAR commands from the keyboard by using the "IRQ=" statement
before attempting keyboard input.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=47



CBASICIIII

Interrupt Processing Statements

A Serial data interrupt is generated when the RS-232 input
data line on the computer goes from a zero state to a one state
(serial data bit = 1 or printer status goes to not ready). It can
not be used to detect a start bit for serial data since it is a
one to =zero transition which makes the Serial data interrupt of
little value for Serial communications. However, it may become
more useful in an future revision of the Coco3 if it becomes
programmable by changing the inverter gate used to an Exclusive or
gate with one input tied to one of the pia output lines (hint to
R.S.). Until then it works basically the same as the KBDIRQ in
that once detected it is disabled until re-enabled by use of the
"IRQ=" statement.

A Timer interrupt is generated by the 12 bit programmable
timer built into the GIMI chip (in case you didn’t know). The
Timer register at address $FF94 & S$FF95 is loaded with a value
least significant byte first ($FF95), with the count automatically
beginning when the most significant byte ($FF94) is loaded. As
the count falls thru zero, an interrupt is generated (if enabled),
and the count is automatically reloaded. As with the Keyboard &
Serial interrupts, the Timer interrupt is disabled |until
re-enabled by the *"IRQ=" statement. You can select the input
clock to be either 63 micro seconds or 70 nano seconds by the TINS
input (bit 5 of $FF91). Default is the 70 nsec clock and we do
not recommend that you fool with it since that register also
controls the Memory Managment Unit Task Register Select, which if
changed at the wrong time can crash the system instantly and it is
not a readable register (so you never can tell whether the TR bit
or TINS bit is On or Off).

The normal IRQ interrupt is generated every 1/60th of a
second by the vertical retrace interrupt in the computer (the same
as the Coco 1 & 2), and is used for the TIMER value increment as
well as Sound and Play commands for timing, The ON IRQO statement
will be executed if any IRQ interrupt is generated including KBD,
Serial or Timer if a handler is not set up for that particular
interrupt by an ON TMRIRQ/KBDIRQ/SERIRQ statement. Essentially it
is a catch all interrupt handler. The 1/60th second interrupt is
never disabled automatically like the other interrupts, so it will
occur continuously unless disabled by some other means. Since
this is a normal interrupt function, CBASIC-3 will automatically
handle the interrupt even if you do not have and ON IRQ handler
setup, so don‘t think you have to have one in a CBASIC-3 program,
you don’t.

A few points to remember, ALL interrupt handling subroutines
must end with a RETI statement or you will get a crashed system.
If you wish to disable one of the interrupt handlers that have
been in use, Use the same statement without a line# (Ex. ON KBDIRQ
GOTO) instead of (ON KBDIRQ GOTO 1000).

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-48-



GIME

CBASICIIII

Interrupt Processing Statements

IRQ Statements

Syntax: IRQ = value
IRQ ON/OFF
The IRQ statements are used to enable or disable IRQ & FIRQ
interrupt detection either entirely or partially. The IRQ ON
statement is used to disable the detection of all IRQ interrupts
by setting the 6809 MPU mask bits for interrupt detection. The

IRQ OFF statement clears the 6809 MPU mask bits and allows the
detection of all FIRQ & IRQ types. It is recommended that you use
a IRQ ON command before setting up ON Interrupt handlers and then
using the IRQ OFF statement to enable them when finished.

The "IRQ=" statement is used to selectively enable or disable
interrupt conditions. There are six different interrupt conditions
that can be enabled by this statement which gives 64 possible
interrupt combinations. They are selected by adding together the
bit values of the interrupt enable bits. To activate an interrupt
condition, you set the bit on and off to de-activate it.

1 = Cartridge IRQ 2

4 = Serial data IRQ 8 Vertical Border IRQ

16 = Horizontal Border IRQ 32 Interval Timer IRQ

These values are OR'd together and stored into $FF92 IRQ or $FF93 FIRQ
If you wanted to enable the Keyboard and Timer interrupts you
would use a value of 34 (2 for the KBD plus 32 for the Timer). If
you are working with more than one interrupt, you should keep a
variable with the value of all interrupt conditions and use bit
operators like AND (&) and OR (!) to set and reset the bits to be

enabled.

Keyboard IRQ

Interrupt Handler Example

10 IRQ ON : ON TMRIRQ GOTO 100 : IRQ = 32
20 POKE $FF95,0 : POKE $FF94,4 : IRQ OFF

30 TI = 0 : * COUNT= 0, IRQ EVERY 1024 CLOCKS
40 PRINT @ 0, "TIMER COUNT = ";TI

50 GOTO 40

100 TI = TI + 1 : * ADD 1 FOR EACH TIMER IRQ

110 IRQ =32 " RE-ENABLE TIMER IRQ Unnecessary
120 RETI

These are GIME interrupts and require $FF90 to be set up to allow interrupts to reach
the CPU.

Example: $FC for COCO2 or $7C for COCO 3 screen modes

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-49-



CBASIC 1]

Interrupt Processing Statements
Other ON INTERRUPT Statements

Syntax: ON FIRQ GOTO line# Must save registers manually FIRQ
ON NMI GOTO line# GEN $3406 to PSHS D at start of IRQ code
ON SWI GOTO line¥ GEN $3506 to PULS D before RETI

These statements are used for generating programs where
interrupts are processed by specific service routines rather than
by the normal Color Basic service routines. When encountered in a
program these statements cause the absolute address of the Basic
program line specified to be stored at the interrupt vector
addresses in the operating system memory. The line number
specified should be the beginning of the interrupt service routine
which would typically service the device causing the interrupt.
This routine is similar to a BASIC subroutine except it is
terminated by an RETI (return from interrupt) statement instead of
a RETURN statement. These are not normally used unless you have a
good understanding of how the M6809 interrupt structure works.

INTERRUPT RETURN Statement
Syntax: RETI

The RETI statement is used to terminate an interrupt-caused
routine by loading the MPU register contents prior to the
interrupt £from the machine stack, and resuming program execution
from the point where the interrupt was acknowledged. This
statement corresponds directly to the machine language RTI
instruction.

Interrupt Simulation Statements
Syntax: IRQ : NMI : FIRQ : SWI

These commands allow you to simulate an interrupt via
software in a CBASIC-3 program. They can be useful for testing
interrupt handling routines without having to use live interrupts
and for special function handling in a program. These commands
cause the current processor registers to be saved on the stack &
interrupt masks to be set the same as their hardware counterparts.
On interrupt handlers should use the RETI command to exit the
routine the same as if it were handling a hardware interrupt. All
interrupt simulation commands generate 11 bytes of code to
simulate the interrupt except the SWI command which generates only
1 byte for the SWI code. Note that SWI2 & SWI3 interrupt vectors
are reserved for use by the compiled programs use and are not
available for use by the programmer.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-50-



CBASIC III

Extended Memory Management Statements

LPOKE & DLPOKE Statements

Syntax: LPOKE page#,offset,value *** Different from Basic
DLPOKE page#,o0ffset,value *** Not available in Basic

The DPOKE and LPOKE commands are used to place a single byte
(LPOKE) or double byte (DLPOKE) variable or value in a specified
extended memory location (00000- 7FFFF). The page# value is used
to select which 64K bank (0-7) is to be used. The offset selects
which address in the selected page to use (0-FFFF) and the value
is the data to be stored at that location. The page, offset and
value can be either numeric or variables used to specify the
information. When using the LPOKE statement only the least
significant byte of the result is stored and DLPOKE will store the
full 16 bit value.

Example: DLPOKE 6,0,255
LPOKE 6,0,&HFFFF
LPOKE P,OF,VA

LPEEK & DLPEEK Statements

Syntax: A=LPEEK(page#,offset) *** Different from Basic
A=DLPEEK (page#,offset) *** Not available in Basic

The LPEEK & DLPEEK commands are used to examine or get the
information stored in a specified Extended memory location. The
page# specifies which 64K bank of memory (0-7) and the offset
selects which address within that 64K block is to be accessed
(0-FFFF), the same as the LPOKE command. If the LPEEK command is
used a single byte value will be read and stored in the least
significant byte (0-255 only) and the DLPEEK command will return a
full 16 bit value from the two consecutive bytes.

Example: A
A

LPEEK(6,10)
DLPEEK (P, OF)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=5l



CBASICIIII
Extended Memory Management Statements

RAM64K Statement *** Not available in Basic
Syntax: RAM64K page#

The RAM64K statement tells the compiler that a full 64K of
RAM is to be made available in the computer for variable storage
etc. The compiler will automatically generate code to allow
access to the upper 32K of ram during program execution. This
normally unused 32K of memory can be used for any variable or
array storage except for Disk related file buffers and Fielded
variables. It 1is especially handy for large Arrays and string
variable storage. This area of memory begins at address $8000 and
extends up to $FDFF, a total of 32,255 bytes of extra memory
storage. To define variables in this area, it is best to use the
BASE and DIM statements.

Example: BASE=$8000
DIM A1§$(200,80),A2$(50,255),AZ(1600)
BASE=0000

The preceeding example demonstrates how easy it is to assign
variables to the upper 32K of RAM, the two string arrays Al$ and
A2$ occupy 28,750 bytes and the numeric array AZ occupys 3200
bytes of RAM. The BASE pointer is then restored to zero to allow
any further variables to be assigned address space immediately
following the program.

The RAM64K statement for CBASIC-3 allows you to select any
32K bank of memory to be used in place of the upper 32K of memory
where Basic normally resides. 1In the CoCo-3 you are normally in
the ALL RAM mode and a modified image of the Basic ROM's is stored
there and used for I/0 calls and some other functions in a
CBASIC-3 program, You can still use the upper portion of memory
$8000-SFDFF for variable storage etc. but with a little twist.
You must tell CBASIC-3 what the starting page# of the 32K bank of
memory you want to use in the upper 32K area to replace the Basic
ROM* code. This means that you can select any 32K block of ram
available in the machine to be access as the upper 32K, which
gives you about 420K of storage space if desired. The page#
specified can be a number or variable in the range of 0-59 to
select the starting 8K page (60-63 is the normal 64K being used)
For example if you wanted to select the Extended Hi-Res Graphics
pages (320/640 * 192) which reside in memory from $60000-S67FFF
(32K total) you would use a value of 48 decimal or $30 hex to
start at $60000 (8 blocks of BK for each 64K). If you want to
deselect the upper 32K of memory to the normal ROM image use a
value of 255.To return to normal Basic ROM map, you must use RAM64K 60

Example: RAM64K 48
RAM64K 530
RAM64K 255 This does nothing
CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-52-




CBASIC I

Extended Memory Management Statements
RAM ON/OFF Statements
Syntax: RAM <ON/OFF>

The RAM statement allows manual control of the upper 32K of
memory space address mode,. The RAM ON statement, switches the
Basic ROM’s off and enables access to the upper 32K of RAM (normal
CoCo-3 mode) which normally contains a modified image of the Basic
ROM’s. The RAM OFF statement does just the opposit, it disables
the upper 32K of RAM and enables the Basic ROM's to occupy the
upper 32K of address space. These two statements can be useful
when RAM64K is not being used and access to some part of the Basic
ROM’s is needed, you simply enable the ROM’s with a RAM OFF
statement and when finished, restore to the RAM64K mode by using a
RAM ON statement. These statements can be used whether or not the
RAM64K statement has been used to allow accessing these areas of
Mmemory.

When wusing the RAM ON/OFF option, it is necessary to either
mask interrupts with the IRQ ON statement or provide ON IRQ and ON
FIRQ interrupt handling.

LPCOPY Statement *** Not available in Basic
Syntax: LPCOPY source TO destination

The LPCOPY statement is used to copy the contents of any 8K
page (0-63) of memory to any other 8K page (0-63). The "source"
and "destination" are numeric constants or expressions between 0
and 63 specifying memory pages. This can be very handy for
swaping info to and from the Extended Graphics screens which are
normally not accessable.

Examples: LPCOPY 1 to 48
LPCOPY AX to AY

The first example would copy the 8K block on page 1
(02000-03FFF) to page 48 (60000-61FFF). The second example

demonstrates the use of wvariables to specify the source and
destination pages.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-53-



CBASIC III

Hi-Res Text Screen Statements
WIDTH Statement
Syntax: WIDTH wvalue

The WIDTH command sets the text screen resolution to either
32 (32 * 16), 40 (40 * 24) or 80 (80 * 24).

Example: WIDTH 80

LOCATE Statement
Syntax: LOCATE (x,y)

The LOCATE command allows you to position the cursor to any
column (x) and line (y) position on the 40 or 80 column text
screens. When used on a WIDTH 40 screen, the x position can be 0
to 39. When used on a WIDTH 80 screen, the x position can be 0 to
79. On either screen the y position can be 0 to 23.

Example: LOCATE (3,10)
LOCATE (X,Y)
ATTRIbutes Statement
Syntax: ATTR foreground, background,Blink,Underline

The ATTRibutes command allows you to select the foreground
(Character) and background colors for the WIDTH 40 and 80 text
display modes. These can be in the range of 0-15 to select a
pallette color. Optionally you can select if the characters are
to be Blinking and/or Underlined by following the fore/background
colors with the letter "B" for Blinking or "U" for Underlining.
Attributes stay in effect until the next ATTR command is executed.

Example: ATTR 3,2,U (select underline on)
ATTR F,B,B (select blink on)
HSTSTus Statement
Syntax: HSTAT vl,v2,v3,vd
The HSTAT command is used to get information about the 40 or
80 column text screen cursor position. The values returned in the
variables are: vl=character code, v2=character attribute,

v3=cursor x coordinate and vé4=cursor y coordinate.

Example: HSTAT A,B,C,D

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-54-



CBASIC I
Low Resolution Graphics & Sound

In the description of the following Low Resolution Graphics
Statements the notations:

c refers to a numeric constant or expression in the range of 0
to 8 and represents a specified Color for the Low Resolution
Text Display.

x refers to a numeric constant or expression in the range of 0
to 63 and represents the X coordinant (horizontal position)
on the Low Resolution Text Display.

V4 refers to a numeric constant or expressing in the range of 0
to 31 and represents the Y coordinant (vertical position) on
the Low Resolution text Display.

CLS Statement

Syntax: CLS(c)

The CLS statement is used to clear the Low Resolution Display
Screen to a specified color "c". If a color is not specified,
Green is used by default. If the HIRES statement has been used to
include the Hi-Resolution Display package, a CLS statement without
a color will cause the Hi-Res Text Screen to be cleared.

Example: CLS(2)

CLS
CLS(N)
SET Statement
Syntax: SET(x,y,c)

The SET statement is used to set a graphics dot at a
specified Text Screen location to a specified color. The x,y
coordinants can range from 0 to 63 and 0 to 31 respectively, and
the color specified can range from 0 to 8. Any one or all the
arguments can be a constant or variable expression.

Example: SET(14,13,3)
SET(x,v,4)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=55




CBASICIIII
Low Resolution Graphics & Sound

RESET Statement

Syntax: RESET(x,v)

The RESET statement is just the opposite of the SET
statement. It is wused to reset or clear a point on the Low

Resolution Text Screen. The x,y coordinants can be a constant or
variable the same as the SET statement.

Example: RESET(14,4)
RESET(X,Y)

POINT Statement
Syntax: POINT(x,Y)

The POINT statement is used to test whether a specified
Graphics cell on the Text Display is on or off. The x,y
coordinants can be a constant or variable expression the same as
the SET & RESET statements. The value returned is -1 if the cell
is in a Text Character mode, 0 is returned if it is off, and the
color code 1-8 is returned if it is on.

Example: A=POINT(14,4)
A=POINT(X,Y)

SOUND Statement

Syntax: SOUND tone, duration

The SOUND statement allows you to generate a sound thru the
TV speaker with a specified tone for a specified duration of time.
The tone and duration can be either constants or variable
expressions in the range of 1 to 255.

Example: SOUND 128, 3
SOUND T,D

CER-COMP 5566 RICOCHET AVE. LAS VECAS, NEVADA 89110

—56-




CBASIC III

Medium Resolution Graphics & Play

The Medium Resoulution Graphics statements in CBASIC-3 are
almost identical to those in Extended Color Basic. Some brief
descriptions of the statements are given to show differences and
examples of their usage. For more information on these statements
and graphics refer to the Extended Color Basic Manual.

In the description of the following Medium Resolution
Graphics Statements the notations:

x specifies the X-coordinant (horizontal position) on the
graphics display area and is a numeric constant or expressing
from 0 to 255.

Y specifies the Y-coordinant (vertical position) on the
graphics display area and is a numeric constant or expressing
from 0 to 191.

¢ specifies an available color code and is a numeric constant
or expression from 0 to 8. This is optional in many
statements; if omitted, the foreground color is used.

PMODE Statement
Syntax: PMODE N, page

The PMODE statement sets the graphics resolution and
optionally the memory page to start on. The PMODE value ranges
from 0 to 4 with 4 being the highest resolution mode (256%192).
The starting page "page" is a numeric expression or constant from
1l to 8, and specifies which 1.5K memory page you wish to start on.
This is optional; if omitted, the previously set page is used. If
the PMODE statement is never used, the computer defaults to PMODE
2,1. For more information see the Extended Color Basic Manual.

Examples: PMODE 4,1
PMODE 3,P
PMODE 4

The first example sets the graphics mode to 4 starting on the
lst page of graphics memory. The second example selects mode 3
which is 128*192 in four colors and the starting page is specified
by the variable "P". The third example simply sets the mode to 4
without a starting page.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=B



CBASIC I
Medium Resolution Graphics & Play

COLOR Statement
Syntax: COLOR foreground, background

The COLOR statement allows you to change the graphics
foreground and background colors (within the available choices).
The “foreground" and “background" colors are numeric constants or
variable expressions from 0 to 8, and represent the color codes.

Examples: COLOR 5,7
COLOR 7,5
COLOR FG,BR

- The first two examples simply show constants being used for
the foreground and background colors. The second example reverses
the foreground and background colors from the lst example. The
third example shows variables being used for the color codes.

SCREEN Statement

Syntax: SCREEN type, color

The SCREEN statement is used to select between the Text or
Graphics screen “type®", and to optionally select a color set
“color". The "type" is either an 0 for text screen or a 1 for
graphics screen. The "color" set is either an 0 or a 1 to select

which color set is to be used.

Examples: SCREEN 1,1

SCREEN 1,0
SCREEN 0,1

PSET Statement
Syntax: PSET(x,v,c)

The PSET statement is used to set a single point on the
graphics screen to a specified color. The x and y coordinants are
used to specify exactly which position on the screen you want to
set. The ¢ argument is used to specify the color the dot on the
screen will have.

Examples: PSET(0,0,8)
PSET(128,96,8)
PSET(X1,Y1,8)

The first example will set a dot in the top left corner of
the screen and the 2nd example sets a dot in the center. The
third example uses variables for the x,y coordinants.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-58-



CBASIC III
Medium Resolution Graphics & Play

PRESET Statement
Syntax: PRESET(x,y)

The PRESET statement does the exact opposite of the PSET
statement. It "“resets" a dot in the screen to the background
color. The x and y arguments are used to specify exactly which
dot on the screen is to be reset. Notice that you don’t have to
specify the color with PRESET since the computer automatically
uses the background color.

Examples: PRESET(128,96)
PRESET(X1,Y1)

The first example will reset the dot at the center of the
screen and the second example demonstrates the use of variables
for the coordinants.

PPOINT Statement
Syntax: PPOINT(x,Yy)

The PPOINT statement is similar in form to the PRESET
statement, but instead of reseting the specified dot on the
screen, it tests the color of a specified graphics point. Your
program may then use the information any way you choose. The
PPOINT statement returns a value from 0 to 8 to represent the
color of the specified graphics point.

Examples: C=PPOINT(128,96)
IF PPOINT(X1,Yl) = 8 THEN 500

The first example will get the value of the color from the
point in the center of the screen and assign that value to the
variable C. The second example demonstrates the use of PPOINT in
an IF/THEN statement, that is testing to see if the point at
location X1,Yl1 is orange in color, if so it will transfer control
to line 500.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
-59-



CBASIC I
Medium Resolution Graphics & Play

PCLS Statement
Syntax: PCLS color

The PCLS Statement is used to clear the graphics screen to a
specified color 0-8. If a color is not specified, the screen will
be cleared to the background color. This serves the same function
for Hi-Res graphics as CLS does for the text screen.

Examples: PCLS
PCLS 6

The first example would simply clear the screen to the
background color. The second example would clear the screen with
the color "cyan" (color code 6).

LINE Statement
Syntax: LINE(x1,yl)-(x2,y2),a,b

The LINE statement is used to draw a line, box or rectangle
on the graphics screen. The x1,yl coordinants are used to specify
the starting point on the screen and the x2,y2 coordinants are
used to specify ending point for the line. The line is then drawn
by the computer between these two points. The "a" argument is
used to tell the computer whether to draw the line using the
pre-specified foreground color (PSET), or to use the pre-specified
background color (PRESET). The PRESET function may be compared to
"erasing” rather than drawing on the screen, since the background
color makes the line invisable.

The "b" arcument is an option that allows you to draw a "Box"
or rectangle without having to draw four separate lines. All you
have to do is specify two of the opposing corners for the square
in x1,yl1 and x2,y2, and add ",B" to the statement. You also have
the option to add an "F" to the optional arqument ",B" to produce
“,BF". This will let you "fill" the box with the foreground color
to produce a solid box.

Examples: LINE(0,0)-(255,191),PSET
LINE(64,48)-(96,64),PSET,BF

The first example will draw a line from the top 1left corner
of the screen to the bottom right corner. The second example will

draw a rectangle 32 points across and 16 points down in the middle
of the screen and fill the box with the foreground color.

CER-COMF 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-60-



CBASICIII

Medium Resolution Craphics & Play
PCOPY Statement
Syntax: PCOPY source TO destination

The PCOPY statement is used to copy the graphics content of
one memory page to another. The "source" and "destination" are
numeric constants or expressions between 1 and 8 specifying memory

pages.

Examples: PCOPY 3 to 8
PCOPY AX to AY

The first example would copy the graphics on page 3 to page
8. The second example demonstrates the use of variables to
specify the source and destination pages.

PAINT Statement
Syntax: PAINT(x,y), color, border color

The PAINT statement allows you to "paint" any shape with any
available color. The x,y coordinants are used to specify where on
the graphics screen the painting is to begin. The "color"
parameter specifies the color code of the paint 0-8. The “"border
color" parameter tells the computer the color code of the border
at which the painting is to stop. If the computer reaches a
border other than the specified color, it will paint over that
border.

Examples: 10 PMODE 3,1
20 PCLS
30 SCREEN 1,1
40 CIRCLE(128,96),90
50 PAINT(128,96),8,8
60 GOTO 60

The sample program will draw a circle in the center of the
screen and paint in orange.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

ZhY=



CBASICIIII
Medium Resolution Graphics & Play

CIRCLE Statement
Syntax: CIRCLE(X,y),r,[color],[hw ratio],[start],[end]

The CIRCLE statement will allow you to create a full circle,
a partial circle or an ellipse using a single Basic statement.
The only arguments required to make a circle are the center point
coordinants (x,y) and a radius "r", all other arguments are
optional. The radius “r" specifies the circle’s radius in units
from 0 to 255, each unit of measurement is equal to one point on
the screen. The optional "color" specifies an available color
0-8, default is the foreground color. The height/width ratio "hw"
is optional, it specifies the ratio or the circle’s "width" to
it’s "heigth", if not specified, a value of 256 is used (1l:1). A
value less than 256 results in a circle "wider" than it is high, a
value over 256 results in a circle "Higher" than it is wide. The
start & end options allow you to draw just part of a circle (an
arc). To use this option, specify the point where the arc is to
begin (0-255), insert a comma, and then the point where it 1is to
end (0-255). The starting point (0) for any circle is equivalent
to 3 o’'clock on a clock, 64 would be 6 o’clock, 128 would be 9
o‘clock and 192 would be 12 o’‘clock. To use the start and end
options, you must specify the "hw" ratio, for a normal arc, use
hw=256. For more information on the "CIRCLE" statement refer to
the Extended Color Basic Manual.

Examples: CIRCLE(128,92),95
CIRCLE(128,92),30,1,256,64,192
CIRCLE(X1,Y1),30,1,HW,ST,EN

The first example demonstrates a simple circle drawn at the
center of the screen. The second example demonstrates the use of
all options to draw a half circle from 6 o’clock (64) to 12
o’‘clock (192). The last example is similar except variables are
used instead of constants.

Please note that the "hw", "start" and "end" arguments in
CBASIC-3 differ from those in Color Basic since they are
fractional numbers. If these items are specified as constants in
the CIRCLE statement the normal Color Basic decimal format will be
accepted by the compiler. When variables are used the values
assigned to the variables must conform to the specifications
listed above for "hw", "start" and "end".

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

—52-



CBASIC III
Medium Resolution Graphics & Play

DRAW Statement
Syntax: DRAW string expression

The DRAW statement is used to draw a line or series of lines,
by specifying its direction, angle, and color. The string
expression may be a "literal", string variable or expression used
to contain the DRAW statement commands. The DRAW commands are as
follows:

Motion cmds. M = Move the draw position
U = Up
D = Down
L = Left
R = Right
E = 45 degree angle
F = 135 degree angle
G = 225 degree angle
H = 315 degree angle
X = Execute a substring & return
Mode cmds. C = Color
A = Angle
S = Scale
Option cmds. N = No update of draw position
B = Blank (no draw, just move)

The Motion commands tell the computer where to start drawing
on the screen (Mx,v), which direction to draw in
(u,p,L,R,E,F,G,H), and how many dots to draw (U25,D25,E30,..
etc.). The motion command Mx,y; positions the cursor to a

specified x,y point on the screen, to avoid unwanted lines on the
screen preface the M command with the letter B (BM 128,96). The M
command can also specify a position "relative" to the current x,y
position by preceeding each of the coordinants with a "+" or "-"
sign (BM+15,-15).

The Mode command "Cx" allows you to specify a color code 0-8
to be used while drawing (C7).

The Mode command "Sx" allows you to "scale" a drawing up or
down, where x is a number from 1 to 62 to indicate the scaling
factor in 1/4 units. A scale of 4 = full scale 4/4, a scale of 1
= 1/4 scale, a scale of 8 = double scale 8/4 and so on up to 62.
After an Sx command all motion commands will be scaled accordingly
until the next Sx command.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-63=



CBASIC I
Medium Resolution Graphics & Play

The Mode command "Ax" allows you to specify the angle at
which a 1line is to be drawn, 0 = 0 degrees, 1 = 90 degrees, 2 =
180 degrees, and 3 = 270 degrees. All lines drawn following an Ax
command will be drawn relative to the angle displacement specified
by Ax.

The option "B" blank, has already been mentioned in relation
to the Move command. It can also be used to preceed any motion
command to cause a blank line to be drawn. This only affects the
line immediately following the "B" blank option.

The option *"N" can be used to tell the computer "not" to
update the x,y location after drawing a line, but to return to the
current x,y location before doing the next command. This only
affects the command immediately following it.

The last Motion command "X" allows you to execute another
DRAW string assigned to the string variable immediately following
the command (XA$). The computer will execute this DRAW string and
then return to the next command following.

Examples: DRAW "BM128,96;E25;F25;G25;H25"
DRAW AS

The first example moves the draw position to the center of
the screen 128,96 and draws a box. The second example shows the
use of a string variable for the DRAW string. For more
information and examples of using the DRAW statement refer to the
Extended Color Basic Manual chapter 7.

CER-COMP 5566 RICOCHET AVE. LAS VECAS, NEVADA 89110

-64-




CBASICIIII

Medium Resolution Graphics & Play
GET & PUT Statements

Syntax: GET (x1,yl)-(x2,y2), destination, G
PUT (x1,yl)-(x2,y2), source, option

The GET and PUT statements are used to "get" a rectangular
area which contains a graphics display, store it in an array, then
"“put" the array back on the screen at a later time. The x1,yl and
x2,y2 coordinants are used to tell the computer where the upper
left corner and lower right corner of the rectangular graphics
area is located on the screen to GET or PUT. The “"destination"
for GET is the name of a pre-defined numeric array that will be
used to store the rectangle’s contents. The "G" parameter for GET
is optional, but if used specifies that the rectangle will be
stored in the array with “Full GRAPHIC" detail.

The "source" parameter for the PUT statement is the name of a
pre-defined numeric array that contains the data or previously
stored GET rectangle, that is to be written to the display. The
"options" for the PUT statement determine how the data is to be
written to the display. They consist of the following:

PSET Set each point that is set in the source array.
PRESET Reset each point that is set in the source array.
AND Logically AND each point in the array with each

corresponding point in the destination rectangle. If
both points are set then the screen point will be set,
otherwise reset.

OR Logically OR each point in the array with each
corresponding point in the destination rectangle. If
either point is set then the screen point will be set.

NOT Reverces the otate of each point in the destination
rectangle reguardless of the PUT arrays contents.

Before using the GET or PUT statements, an array must be
defined to store the graphics data. The size of the array is
determined by the size of the display rectangle. It must be large
enough to hold all the data, but not too large, or memory space
will be wasted. Since CBASIC uses 2 byte integer variables for
storage, it is easy to determine how large an array is required to
hold the data. First, you must obtain the length and width of the
rectangle by subtracting x2 from x1 and y2 from yl. Divide the X
value by 16 rounding up to the next higher even number and add 2,
then multiply that by the Y value. Now you have the number of
elements for the array. You can use either a one or two
dimensional array.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
=55




CBASICIII
Medium Resolution Graphics & Play

For example: if a graphics rectangle is 40 by 20, you have
40/16=2.5 rounded up equals 4. Multiplied by 20 for the Y value
gives a total of 80 elements. This is the number of elements for
the array DIM X(50). If we had a large rectangle 180 by 125, this
gives wus 180/16=12 (rounded up) and 12 * 125 equalsl500 elements.
You could use a (12,125) array or a one dimensional array of 1500.
There are several other ways to figure out the dimension size,
this is Jjust a simple straight forward way that seems to always
work.

One more note, if you use the "G" option in a GET statement,
you must use one of the options available for PUT or "garbage"
will appear when you put the rectangle back on the screen. For
more information on GET and PUT see the Extended Color Basic
Manual chapter 8.

Examples: 10 DIM X(80)
20 GET (10,10)-(30,30),X,G
30 PCLS
40 PUT (100,100)-(120,120),X,PSET
50 GOTO 50

The sample program simply "gets" the 20 by 20 rectangle from

the screen and stores it in array X. It then clears the screen
and "puts" the rectangle at a different location on the screen.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

BB~



CBASICIIII

Medium Resolution Graphics & Play
PLAY Statement
Syntax: PLAY string expression

The PLAY statement allows you to play music thru the speaker
in the TV set. It allows you to control the notes, octave,
volume, note length, tempo, pauses, sharps, flats and allows
execution of substrings. These functions are controled with the
following commands.

Notes A letter from "A" thru "G" with the a "+" or "#" to
denote a sharp note and "-" to denote a flat note.
Optionally the numbers 1 thru 12 can be used to
represent the notes: ¢, C#/D-, D/E-, E-/D#, E/F-,
F/E4, F#/G-, G, G#/A-, A, A#/B-, B respectively.

Octave The letter "O" followed by a numeral from 1 to 5 is
used to represent the octave. If omitted, octave 2
is used. The higher the value the higher to notes
will be.

Note-length The letter "L" followed by a numeral from 1 to 255
is used to represent the note length. If omitted,
the current length is used. The wvalue represents
the length of the note as follows: l=whole note,
2=1/2 note, 4=1/4 note, etc..

Tempo The letter "T" followed by a numeral from 1 to 255
is used to represent the tempo. If opmitted, T2 is
used. The higher the value the faster the tempo
will be.

Volume The letter "V" followed by a numeral from 1 to 31

is used to represent the Volume. If omitted, V15
is used. The higher the volume will be.

pause-length The letter "P" followed by a numeral from 1 to 255
is used to represent a pause. The values represent
the 1length of the pause, l=whole note, 2=1/2 note,
4=1/4 note, etc..

Execute string The letter "X" followed by the name of the string
variable is used to instruct the computer to "PLAY"
the contents of the string wvariable and then
continue in the present string.

Dotted notes The "Period" character "." is used following notes
to instruct the computer to increase the length of
the note by one half its normal value. If several
"dots" are added to a note, each one will increase
its note length by 1/2 its normal value.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
-67-



Suffixes

Example:

CBASICIIII
Medium Rescolution Graphics & Play

There are four suffix characters that can be used
to alter the wvalues for Octave "0", Volume "V",
Tempo "T" and Note length "L". The suffixes can be
used to adjust the values of these commands without
having to add numbers.

+ Adds one the the current value.

- Subtracts one from the current value.
> Multiplies the current value by two.
< Divides the current value by two.

For example: to increase the current tempo by one,
you could use T+, or to decrease the volume for a
few notes you could use V< to lower it by half and
then use V> to restore it back to normal.

PLAY "Tl1; V5; P2; V10; A;P2; V20;A
PLAY "XAS;XBS$;XC$;XD$

The first example demonstrates a constant PLAY string that
simply plays a note and increases the volume. The second example

demonstrates

the use of the Execute string command which is used

to PLAY several pre-defined play strings. For more information

and examples

of using the PLAY statement, refer to the Extended

Color Basic Manual chapter #9.

CER-COMF 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-68-




CBASICIIII
High Resolution Graphics

The Extended Hi-Resoulution Graphics statements in CBASIC-3
are almost identical to those in Enhanced Color Basic. Some brief
descriptions of the statements are given to show differences and
examples of their usage. For more information on these statements
and graphics refer to the Extended Color Basic Manual.

In the description of the following High Resolution Graphics
Statements the notations:

X specifies the X-coordinant (horizontal position) on the
graphics display area and is a numeric constant or expressing
from 0 to 639.

Yy specifies the Y-coordinant (vertical position) on the
graphics display area and is a numeric constant or expressing
from 0 to 191.

o] specifies an available color code and is a numeric constant
or expression from 0 to 15. This is optional 1in many
statements; if omitted, the foreground color is used.

HMODE Statement *#** Not available in Basic
Syntax: HMODE value

The HMODE statement sets the graphics resolution the same as
the HSCREEN command except that it does not perform a clear screen
when used. The HMODE value ranges from 0 to 4 with 4 being the
highest resolution mode (640*192 2-color). For more information
see the Extended Color Basic Manual.

Examples: HMODE 4
HMODE 2
HMODE P

The first example sets the graphics mode to 4 (640*192
2-colors). The second example selects mode 2 which is 320*%192 in

16 colors. The third example simply sets the mode to whatever the
value of the variable P is at the time it is executed.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-69-



CBASICIIII
High Resolution Graphics

HCOLOR Statement
Syntax: HCOLOR foreground, background

The HCOLOR statement allows you to change the graphics
foreground and background colors (within the available choices).
The "foreground" and "background" colors are numeric constants or
variable expressions from 0 to 15, and represent the palette #.

Examples: HCOLOR 5,7
HCOLOR 7,5
HCOLOR FG,BR

- The first two examples simply show constants being used for
the foreground and background colors. The second example reverses
the foreground and background colors from the 1st example. The
third example shows variables being used for the color codes.

HSCREEN Statement

Syntax: HSCREEN value

The HSCREEN statement is used to select between the Text or
Enhanced Hi-Res Graphics modes (320/640 modes). When this command
is used it will automatically clear the Hi-Res screen. If you

don‘t want the screen to clear use the HMODE command.

Examples: HSCREEN 1

HSCREEN 4
HSCREEN 0
HSET Statement
Syntax: HSET(x,y,c)

The HSET statement is used to set a single point on the
graphics screen to a specified color. The x and y coordinants are
used to specify exactly which position on the screen you want to
set. The c argument is used to specify the palette color #.

Examples: HSET(0,0,8)
HSET(128,96,8)
HSET(X1,Y1,8)

The first example will set a dot in the top left corner of
the screen. The second example will set a dot in the center of

the screen. The third example demonstrates the use of variables
for the x,y coordinants.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=70-




CBASIC III

High Resolution Graphics
HRESET Statement
Syntax: HRESET(x,y)

The HRESET statement does the exact opposite of the HSET
statement. It "resets" a dot in the screen to the background
color. The x and y arguments are used to specify exactly which
dot on the screen is to be reset. Notice that you don’'t have to
specify the color with HRESET since the computer automatically
uses the background color.

Examples: HRESET(128,96)
HRESET(X1, Y1)

The first example will reset the dot at the center of the
screen and the second example demonstrates the use of variables
for the coordinants.

HPOINT Statement
Syntax: HPOINT(x,¥y)

The HPOINT statement is similar in <form to the HRESET
statement, but instead of reseting the specified dot on the
screen, it tests the color of a specified graphics point. Your
program may then use the information any way you choose. The
HPOINT statement returns a value from 0 to 15 to represent the
color Palette slot of the specified graphics point.

Examples: C=HPOINT(128,96)
IF HPOINT(X1,Yl) = 8 THEN 500

The first example will get the value of the color from the
poeint in the center of the screen and assign that value to the
variable C. The second example demonstrates the use of HPOINT in
an IF/THEN statement, that is testing to see if the point at
location X1,Y1 is orange in color, if so it will transfer control
to line 500.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=T1=



CBASICIIII
High Resolution Graphics

HCLS Statement
Syntax: HCLS color

The HCLS Statement is used to clear the graphics screen to a
specified color 0-15. 1If a color is not specified, the screen
will be cleared to the background color. This serves the same
function for Hi-Res graphics as CLS does for the text screen.

Examples: HCLS
HCLS 6

The first example would simply clear the screen to the
background color. The second example would clear the screen with
the color "cyan' (color code 6).

HLINE Statement
Syntax: HLINE(x1,yl)-(x2,y2),a,b

The HLINE statement is used to draw a line, box or rectangle
on the graphics screen. The xl1,yl coordinants are used to specify
the starting point on the screen and the x2,y2 coordinants are
used to specify ending point for the line. The line is then drawn
by the computer between these two points. The "a" argument is
used to tell the computer whether to draw the line using the
pre-specified foreground color (PSET), or to use the pre-specified
background color (PRESET). The PRESET function may be compared to
“erasing" rather than drawing on the screen, since the background
color makes the line invisable.

The "b" argument is an option that allows you to draw a "Box"
or rectangle without having to draw four separate lines. All you
have to da is specify two of the opposing corners for the square
in x1,yl and x2,y2, and add ",B" to the statement. You also have
the option to add an "F" to the optional argument ",B" to produce
“+BF". This will let you "fill" the box with the foreground color
to produce a solid box.

Examples: HLINE(0,0)-(255,191),PSET
HLINE (64,48)-(96,64),PSET,BF

The first example will draw a line from the top left corner
of the screen to the bottom right corner. The second example will

draw a rectangle 32 points across and 16 points down in the middle
of the screen and fill the box with the foreground color.

CER-COMF 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

L



CBASIC III
High Resolution Graphics

HPAINT Statement
Syntax: HPAINT(x,y), color, border color

The HPAINT statement allows you to "paint" any shape with any
available color. The x,y coordinants are used to specify where on
the graphics screen the painting is to begin. The "color"
parameter specifies the color code of the paint 0-15. The "border
color" parameter tells the computer the color code of the border
at which the painting is to stop. If the computer reaches a
border other than the specified color, it will paint over that
border.

Examples: 10 HMODE 3,1
20 HCLS
30 HSCREEN 1,1
40 HCIRCLE(128,96),90
50 HPAINT(128,96),8,8
60 GOTO 60

The sample program will draw a circle in the center of the
screen and paint in orange.

HCIRCLE Statement
Syntax: HCIRCLE(x,y),r,[color],[hw ratio],[start],[end]

The HCIRCLE statement will allow you to create a full circle,
a partial circle or an ellipse using a single Basic statement.
The only arguments required to make a circle are the center point
coordinants (x,y) and a radius "r", all other arguments are
optional. The radius "r" specifies the circle’s radius in units
from 0 to 255, each unit of measurement is equal to one point on
the screen. The optional “color* specifies an available color
0-15, default is the foreground color. The height/width ratio
"hw" is optional, it specifies the ratio or the circle’s "width"
to it’s "heigth", if not specified, a value of 256 is used (1:1).
A value less than 256 results in a circle "wider" than it is high,
a value over 256 results in a circle "Higher" than it is wide.
The start & end options allow you to draw just part of a circle
(an arc). To use this option, specify the point where the arc is
to begin (0-255), insert a comma, and then the point where it is
to end (0-255). The starting point (0) for any circle is
equivalent to 3 o’clock on a clock, 64 would be 6 o'clock, 128
would be 9 o‘clock and 192 would be 12 o‘clock. To use the start
and end options, you must specify the "hw" ratio, for a normal
arc, use hw=256. For more information on the "HCIRCLE" statement
refer to the Extended Color Basic Manual.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
i b



CBASICIIII
High Resolution Graphics

Examples: HCIRCLE(128,92),95
HCIRCLE(128,92),30,1,256,64,192
HCIRCLE(X1,Y1),30,1,HwW,ST, EN

The first example demonstrates a simple circle drawn at the
center of the screen. The second example demonstrates the use of
all options to draw a half circle from 6 o’clock (64) to 12
o‘clock (192). The last example is similar except variables are
used instead of constants.

Please note that the "hw", "start" and "end" arguments in
CBASIC-3 differ from those in Color Basic since they are
fractional numbers. If these items are specified as constants in
the HCIRCLE statement the normal Color Basic decimal format will
be accepted by the compiler. When variables are used the values
assigned to the variables must conform to the specifications
listed above for "hw", "start” and "end".

HPRINT Statement

Syntax: HPRINT (x,y),String

The HPRINT command allows you to print a text message on the
Hi-Res (320/640 by 192) screen. The x and y positions are a
column (0-39 for 320 modes or 0-79 for 640 modes) and a line
position (0 to 23). The string is any valid string literal or
variable up to the remaining character positions on the display.

Example: HPRINT (10,12),“HELLO"
HPRINT (X,Y),AS$

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=78~




CBASICIIII
High Resolution Graphics

HDRAW Statement
Syntax: HDRAW string expression

The HDRAW statement is used to draw a line or series of
lines, by specifying its direction, angle, and color. The string
expression may be a "literal", string variable or expression used
to contain the HDRAW statement commands. The HDRAW commands are
as follows:

Motion cmds. M = Move the draw position
U = Up
D = Down
L = Left
R = Right
E = 45 degree angle
F = 135 degree angle
G = 225 degree angle
H = 315 degree angle
X = Execute a substring & return
Mode cmds. C = Color
A = Angle
S = Scale
Option cmds. N = No update of draw position
B = Blank (no draw, just move)

The Motion commands tell the computer where to start drawing
on the screen (Mx,y), which direction to draw in
(u,0,L,R,E,F,G,H), and how many dots to draw (U25,D25,E30,..
etc.). The motion command Mx,y; positions the cursor to a

specified x,y point on the screen, to avoid unwanted lines on the
screen preface the M command with the letter B (BM 128,96). The M
command can also specify a position "relative" to the current X,y
position by preceeding each of the coordinants with a "+" or "-"
sign (BM+15,-15).

The Mode command “Cx" allows you to specify a color code 0-15
to be used while drawing (C7).

The Mode command "Sx" allows you to "scale" a drawing up or
down, where x is a number from 1 to 62 to indicate the scaling
factor in 1/4 units. A scale of 4 = full scale 4/4, a scale of 1
= 1/4 scale, a scale of 8 = double scale 8/4 and so on up to 62.
After an Sx command all motion commands will be scaled accordingly
until the next Sx command.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=75



CBASICIIII
High Resolution Graphics

The Mode command "Ax" allows you to specify the angle at
which a 1line 4is to be drawn, 0 = 0 degrees, 1 = 90 degrees, 2 =
180 degrees, and 3 = 270 degrees. All lines drawn following an Ax
command will be drawn relative to the angle displacement specified
by Ax.

The option "B" blank, has already been mentioned in relation
to the Move command. It can also be used to preceed any motion
command to cause a blank line to be drawn. This only affects the
line immediately following the "B" blank option.

The option "N" can be used to tell the computer "not" to
update the x,y location after drawing a line, but to return to the
current x,y locetion before doing the next command. This only
affects the command immediately following it.

The last Motion command "X" allows you to execute another
HDRAW string assigned to the string variable immediately following
the command (XA$). The computer will execute this HDRAW string
and then return to the next command following.

Examples: HDRAW "BM128,96;E25;F25;G25;H25"
HDRAW AS

The first example moves the draw position to the center of
the screen 128,96 and draws a box. The second example shows the
use of a string variable for the HDRAW string. For more
information and examples of using the HDRAW statement refer to the
Extended Color Basic Manual chapter 7.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

~76=



CBASIC I

High Resolution Graphics
HGET & HPUT Statements

Syntax: HGET (x1,yl)-(x2,y2), buffer#
HPUT (x1,yl)-(x2,y2), buffer#, action

The HGET and HPUT statements are used to "get" a rectangular
area which contains a graphics display, store it in a buffer, then
"put" the buffer back on the screen at a later time. The x1l,yl
and x2,y2 coordinants are used to tell the computer where the
upper left corner and lower right corner of the rectangular
graphics area is located on the screen to HGET or HPUT. The
“destination" for HGET is the name of a pre-defined HBUFF # used
to store the graphics data.

] The "options" for the HPUT statement determine how the data
is to be written to the display. They consist of the following:

PSET Set each point that is set in the source buffer.
PRESET Reset each point that is set in the source buffer.

AND Logically AND each point in the buffer with each
corresponding point in the destination rectangle. If
both points are set then the screen point will be set,
otherwise reset.

OR Logically OR each point in the buffer with each
corresponding point in the destination rectangle. 1If
either point is set then the screen point will be set.

NOT Reverses the state of each point in the destination
rectangle requardless of the HPUT buffers contents.

Before using the HGET or HPUT statements, a buffer must be
defined to store the graphics data. The size of the buffer is
determined by the size of the display rectangle. It must be large
enough to hold all the data, but not too large, or memory space
will be wasted. Since CBASIC-3 uses the same buffer area as
Enhanced Color basic the calculations are the same, see page
173-175 in your Co-Co 3 Extended Book for more information.

Examples: 10 HBUFF 1,43
20 HGET (10,0)-(20,10),1

30 HCLS
40 HPUT (100,100)-(110,110),1,PSET
50 GOTO 50

The sample program simply "gets" the 10 by 10 rectangle from
the screen and stores it in buffer 1. It then clears the screen
and "puts" the rectangle at a different location on the screen.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
17




CBASIC III
High Resoclution Graphics

HBUFF Statement
Syntax: HBUFF buff#, size

The HBUFF command is used to reserve memory space to store a
rectangle of graphics information for the HGET & HPUT Statements.
The buff# is a number that labels the buffer for use with HGET or
HPUT Statements and the size is the number of bytes to reserve.
For more information on determining the size for the HBUFF command
see the Extended Color basic book chapter 31, page 173.

Example: HBUFF 1,43

BORDER Statement *** Not available in Basic
Syntax: BORDER value

The BORDER command allows you to select a pallette number
0-15 for use as the BORDER color on the screen. You can change
colors for the border at any time. Normally the Border color is
selected the same as the background color when a HCLS command is
executed. The BORDER command allows you to select a new color
without having to clear the screen.

Example: BORDER 14

PALETTE Statement

Syntax: PALETTE reg#, color
PALETTE RGB
PALETTE CMP
CMP
RGB

The PALETTE command is used to select any of the available 64
colors for a specified palette register (0-15) number. If RGB or
CMP follows the PALETTE command it will cause the default colors
for an RGB monitor or Composite monitor to be used. The RGB or
CMP commands can also be used by themselves to obtain the same
results.

Example: PALETTE 3,44

PALETTE CMP
PALETTE N,C

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-78-




CBASIC 11

Screen, Printer and R5-232 I/0O

INPUT Statement

Syntax: INPUT var, var, ..., Var
INPUT "literal string"; var,...; var
INPUT #N, var, var, ..., var

The INPUT statement causes code to be generated which
displays a "?" prompt and space on the screen or RS-232 device.
It then reads characters into the input buffer until 255
characters have been read or an ENTER or BREAK key depressed. A
carriage return is output to the screen or RS-232 device when the
last character is input. During the entry of data, each character
input is echoed back to the screen or RS-232 device.

At run-time, entry of a shift/left arrow will delete the
current buffer contents. A left arrow will backspace the cursor
and erase the character.

If a "literal string" immediately follows the INPUT
statement, that string of characters will be displayed on the
screen or RS-232 device before the "?" prompt.

The variables specified may be numeric or string, subscripted
or simple type. When the program is "looking for" a number from
the current position 4in the input buffer, it will skip leading
spaces, if any, and read a minus sign (if any), and up to five
number characters. The numeric field is terminated by a space,
comma, or end of line. If a non-digit character is read or any
other illegal condition, a value of zero will be returned for the
number. The symbols "$" and "&H" may also be used to input
hexadecimal numbers directly.

If a string-type field is being processed, leading spaces

will be skipped unless enclosed within quotes "" and data
accepted, until the variable field is terminated by a comma, end
of line, ending quote, or when the string variable is "full". 5

no characters are available, a null string will be returned.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=79 =



CBASICI1II
Screen, Printer and RS-232 I/O

The INPUT statement may also be followed immediately by the
“#" pound symbol and a device number or numeric variable. When
doing input from a device such as Tape or Disk, the file must have
been previously “opened" by the OPEN statement, or an error will
occur. This condition 4is detectable by the ON ERROR GOTO
statement. For more information on device 1/0 see the section on
TAPE & DISK I/O.

Examples: INPUT A,B,AXS,RAS(N)
INPUT #-1, AS,N,A(4,N)
INPUT “Enter your name";NAS
INPUT #-3,"Enter your name";NAS$
INPUT #N,AS$,BS,C,D
INPUT N

LINEINPUT Statement

Syntax: LINEINPUT string variable
LINEINPUT "literal string"; string variable
LINEINPUT #N, string variable

The LINEINPUT statement is almost identical to the standard
INPUT statement, except it assigns the entire contents of the
input buffer to a string variable, including commas, spaces and
quotes. Only one variable name may be listed since any following
variables will be assigned a null string. When used for keyboard
or RS-232 input, it will not display the "?" prompt.

As in the standard INPUT statement a "#" pound sign followed
by a device number or numeric variable may be used immediately
following the statement to direct input from tape, disk or the
RS-232 port.

Examples: LINEINPUT A$
LINEINPUT "Enter your full name";NAS

LINEINPUT #-1, AXS
LINEINPUT #-3, "Enter your Name ";NAS

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

S0~




CBASIC III

Screen, Printer and RS-232 I/O

PRINT Statement

Syntax: PRINT output spec[,;] ... output spec
PRINT @N, output spec[,;] ... output spec
PRINT #N, output spec[,;] ... output spec

The PRINT statement is used to output information to the
screen, printer, RS-232 port, tape or disk. The output spec’s are
processed and the appropriate characters are put in the I/O
buffer. The buffer is then output to the proper device.

The output spec’s may consist of string or numeric
expressions, or the output function TAB(expr) which inserts spaces
in the buffer until the position "expr" is reached. Each item in
the list is separated by a delimiter which is either a comma or
semicolon. The buffer is divided into thirty-two 8 character
zones, which are effectively tab stops every eighth position. It
a comma is wused as a delimiter, the next item will begin at the
first position of the next zone. If a semicolon 1is used, NO
spacing will occur. A semicolon at the end of a PRINT statement
will inhibit the printing of a carriage/return at the end of the
line. A PRINT statement without any output spec’s will produce a
carriage return only.

The PRINT statement can optionally be followed by the "#"
pound sign and a number or numeric variable to direct output to a
device other than the screen. If output is attempted to tape or
disk, a file must have been previously "opened" for output or an
error condition will occur. This can be detected at run-time by
the ON ERROR GOTO statement. For more information refer to the
section on TAPE & DISK I/O.

The PRINT statement can also be followed by the "@" symbol
and a number or numeric variable to print at a specified location
on the screen. If the standard screen is being used, the highest
location available is 511 (32 by 16). If the HIRES option was
used in the program, the highest location can vary from 671 to as
high as 6119 depending on the selected line length.

Examples: PRINT A,B,C

PRINT AS(N),AS(N+1)
PRINT #-2, A,AS$,B,B$,NAS
PRINT #-3, "Hello ";NAS
PRINT @12,"Hello ";NAS

PRINT #N, AS$;TAB(N+M);BAS

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

~B]=



CBASICIIII
Screen, Printer and RS-232 I/O

INKEY Statements

Syntax: INKEY <numeric wvar.>
INKEYS <string var.>

CBASIC-3 allows the use of an INKEY type function to return a
numeric value or a string value. This can be very helpful in
evaluating data returned to represent a key pressed, since it is
normally converted from a string to a numeric value before
processing. It also requires much less code to evaluate a numeric
value in an IF/THEN statement, than to evaluate a string argument.
It also generates less code and executes faster than doing an
INKEY$ function.

- Example: 100 A=INKEY
200 IF INKEY=13 THEN 500 ELSE 200:'WAIT FOR ENTER

RS-232 PORT Device #-3 support for:

INKEY #-3 INKEYS #-3
INPUT $#-3 LINEINPUT #-3
PRINT #-3

CBASIC-3 supports the RS-232 port on the back of the CoCo for
input and output, using standard basic commands and functions.
All commands work the same as they do normally except for the
INKEY and INKEYS functions. When an INKEY type function is
executed on the R5-232 port (device #-3), it will scan the port
for input for approximately 2 seconds waiting for a character. If
no character is received within that time limit a 0 or null string
value 1is returned. If received data is available it will return
the data as soon as a full character is received.

Example: INPUT #-3,variable list

PRINT #-3,variable list
A=INKEY #-3

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=82



CBASIC III
Screen, Printer and RS-232 I/O

Printer & RS-232 Baud rate Statements

Syntax: BRATE = baud rate
PRATE = baud rate

These commands are used to set a desired Baud rate for the
Printer (PRATE) or the RS-232 port (BRATE) from within a compiled
CBASIC-3 program. The value must be a rate between 110 and 9600,
variables or numeric expressions are not allowed. Valid baud
rates are: 110, 300, 600, 1200, 2400, 4800 and 9600. A baud rate
of 110 is not valid for use on the RS-232 port. If you are going
to run the computer at double speed select a rate that is half the
desired baud rate, ie. to select 4800 baud use BRATE=2400.

Example: PRATE=9600
BRATE=1200

Position @ Statement
Syntax: POS@

The POSE@ function has been added to allow access to the
current print @ position on the screen. It will return the
current print @ position for either the standard 16*32 screen or
the HIRES screen if the HIRES option was used. This can be handy
when you wish to display a message on a different part of the
screen than the current cursor location such as a status update.
Then return to the original cursor position for input or another
display.

Example:
100 A=POS@
110 PRINT €0,"TIME IS RUNNING OUT";
120 PRINT @A,"";

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
83—




CBASIC 1]

Character I/0 Commands
PUTCHAR Statement *** Not available in Basic
Syntax: PUTCHAR device#, #variable or value

The PUTCHAR command allows you to send or write a single byte
value of information to a specified device. You can use any
numeric expression, variable or number for the value to be output.
The data will be output as a single byte to the device which means
that only the least significant byte of a variable or expression
will be used (0-255) with the most significant byte discarded.
This can be very useful for doing screen dumps or outputing binary
data to a device or file. This command will allow you to overcome
CBASIC's limitation of not being able to send a null (00)
character out as part of a string or string variable (00 is used
as an end of string marker). Any legal device number can be used
(-3 thru 9) to select where the output data will sent. 1If a
device number is not specified the Screen will be used (device 0).

Example: PUTCHAR #-2,A
PUTCHAR #-2,PEEK(A+B)
PUTCHAR DV,223

GETCHAR Statement *+* Not available in Basic
Syntax: CETCHAR device#, numeric variable

The GETCHAR command allows you to get or input a single byte
of information from a specified device. In some ways it is
similar to the INKEY statement except that when used to get a byte
from the Keyboard or Serial port it will wait until a byte is
received or key pressed before continuing on to the next
statement. The byte returned from the command is always stored in
a numeric variable as a value between 0 and 255. For example if a
GETCHAR command was used to input a value from the keyboard and
the “A" key was pressed a value of 65 or $41 would be stored in
the variable specified. It can also be useful to read binary
information from a disk file or binary serial data from the RS-232
port such as in an XMODEM file transfer etc. If a device number
is not specified it will default to the keyboard (device 0).

Example: GETCHAR #-3,A
GETCHAR B

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-84-




CBASICIII

Tape & Disk I/0

Disk and Tape I/O in CBASIC-3 is channel oriented meaning a
file to be used for input or output must be "opened" and assigned
a channel number by which all further operations on that file are
performed. CBASIC-3 supports up to 9 Disk channels (1-9) and 1
tape channel (-1), which are maximum number of files that may be
open at any time.

All disk and tape file names are defined the same as the
normal Basic operating system’s. All files used by CBASIC-3 are
standard ASCII formatted data files.

Many of the CBASIC-3 disk and tape operations are the same as
the normal Basic, so information as to disk and tape operations in
the Basic Reference manuals will generally apply.

NOTE: In the descriptions of disk and tape statements that follow
the term "file-id" refers to an 8 character file name. For disk
files the 3 character extension and drive number may also be
included. 1If a file extension is not included, a ".DAT" extension
will automatically be assumed. If a drive number is not
specified, it will default to drive #0.

The term "#F" refers to a channel number which may be a
numeric constant or variable for reference to a specified disk
channel, or tape. It is up to the programmer to make sure that
any variable used for a channel number is within the correct
range, and that the device has been previously "opened" by the
OPEN statement. BAll errors are detectable at run-time by the ON
ERROR GOTO statement. If an error should occur during disk or
tape I/0 and ON ERROR trapping is disabled, unpredictable results
can occur.

Remember that Disk file buffers can not reside in the upper
32K of memory space. You can determine this from the Variable
table listed at the end of the program when compiled. Disk file
buffers are shown as "#n" where n is the file number as used 1in
the program. Fielded record buffers are shown as "*n" where n is
the file number it is associated with in the program. If the
address of the next variable is greater than 8000, it means that
the associated disk buffer or record is in the upper 32K of memory
space. If this condition exists you can use the BASE statement in
the beginning of the program to assign variables in the upper 32K
of memory and when you get to the first statement that references
a disk file buffer, change the base back to zero. This will
usually do the trick.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
=BS5S



CBASIC 111
Tape & Disk I/0
FILES command

The FILES command is recognized by CBASIC-3 to avoid syntax
errors and confusion when converting Color Basic programs to

CBASIC. Since CBASIC-3 dynamically allocates file buffers as
files are created, the FILES command has no function and does not
generate any program code. When encountered in a CBASIC-3

program, the FILES statement 1is treated the same as a REM
statement.

AUDIO ON/OFF

The AUDIO ON/OFF command is used to either connects or
disconnects the sound coming from the cassette tape recorder to
the T.V. speaker. The AUDIO command must be followed by either
the word "ON" to enable sound to the speaker, or "OFF" to
disconnect the cassette sound from the speaker.

Example: AUDIO ON
AUDIO OFF

MOTOR ON/OFF

This command allows the user to manually turn the cassette
recorder motor either on or off under program control. Normally
the cassette tape recorder is controled automatically when reading
or writing tape files.

Example: MOTOR ON
MOTOR OFF

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-B6-




CBASIC III
Tape & Disk I/O

OPEN Statement

Syntax: OPEN "I/O/R/D",#(1-9),"file-id", (record length)
OPEN "I/O",#-1,"file-id"

The "OPEN" statement for Disk & Tape files 1is almost
identical to the standard Basic Open command. Basic normally
allows file numbers -2 and 0 to be used in association with
Printer and Screen or Keyboard Input and Output. On a Disk
System, the system allows file numbers between one and nine (1-9)
to be used in association with disk files. These files can be
opened for Input, Output, Direct, or Random access. Tape files
(-1) can only be opened for Sequential access, Input or Output
only. If a disk file is opened for Input or Output, it can only
be accessed in a sequential manner, examples of these would be
text, program or cassette tape files. They must be either read or
written to in sequence, and cannot be accessed in any other
manner. Random or Direct access files can be read or written to
in any portion of the file, and will be discussed in more detail
further on in this manual.

The file id can be a string or string variable. For disk
files, it must include a drive number if other than drive 0. The
disk file type will default to a data file ".DAT". On disk files,
a record length may be specified following the file-id for Random
or Direct access files, if not a default record length of 256
bytes is used.

NOTE: In the OPEN statement the channel number "MUST" be a
constant number in the range of 1-9 for disk, or -1 for tape.

Examples:
10 OPEN "I",#2,"LABLES.TXT:1"
210 OPEN"R",#1,"DATABS:2",128
610 OPEN"I",#-1,"DATABASE"

The first example shows that a sequential input file (file
#2) is to be opened on drive #1, and the file will be called

"LABEL.TXT". The second example shows a Random access file (#1)
will be opened on drive #2, and the file name is "DATABS.DAT"
(it’s record length is 128 bytes). The third example will open

the Tape file "DATABASE" for input.

When a Random access file is opened and the file is mnot on
the specified disk drive, or does not exist, a file will be
created with no data in it. If a file is to be opened for Input
and does not exist, an error will be reported. If a file is to be
opened for Output and already exists on the disk, it will
automatically be "KILLED" or Scratched and no warning or message
will be displayed.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

i



CBASIC III
Tape & Disk I/O

PRINT Statement
Syntax: PRINT #F, (VARIABLE LIST)

The PRINT statement is used to output data sequentially to a
disk or tape file buffer. It can be used for sequential or random
access disk files (you may use a comma or semi-colon to format or
separate each item). Normally when using the PRINT statement the
data is output to the file in the same exact format as it would be
output to the Screen or Printer. This includes spaces output by
TAB functions or by commas, etc. This may not be exactly what you
want if you plan to read the data back out of the file with an
INPUT statement. Normally you would use the "WRITE" statement if
you want data to be in this format. You can also make the PRINT"
statement work the same by using a “"#number" instead of a
#variable for the device number.

Example:
10 OPEN"O", #1, "NUMBER"
20 FOR I=1TO 100
30 PRINT #1,1I

40 NEXT I

50 CLOSE
This example would write the numbers from 1 thur 100 to a
disk file on drive 0 with the name “NUMBER.DAT". Each number
would be separated by an “"enter" character in the file. 1If a
semi-colon were used following the "I" such as "PRINT #1,I;", the

numbers would be written with only a single space between each
one. Also if a comma were used to separate two items such as
"PRINT #1,I,I+1", then there would be several spaces between "I"
and "I+" followed by an "enter" character.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
-88-




CBASICIIII
Tape & Disk I/0

WRITE Statement
Syntax: WRITE #F, (VARIABLE LIST)

The WRITE statement is used to output data sequentially to a
disk file buffer. It can be used for sequential or random access

files (you may use a comma “"ONLY" to separate each item). When
using the WRITE statement the data is output to the file with
delimiters between each item as it is written to the file. This

is exactly what you want if you plan to read the data back out of
the file with an INPUT statement. Normally you would use the
"WRITE" statement if you want data to be in this format. The
WRITE statement can be used with random access files by following
each WRITE statement with a "PUT" statement (see GET & PUT for the
format). If an attempt to write more data than the record buffer
can hold is made an error will be reported. Note, the record
buffer does "NOT" have to be Fielded when I/0 is performed using
WRITE, PRINT and INPUT in this format.

Example:
10 OPEN"O",#1,"DATA"
20 AS="JOHN SMITH"
30 B$="TEST DATA"
40 C=9875432
50 WRITE #1,AS$,BS,C
*55 PUT #1,1
60 CLOSE

This example would write the data “JOHN SMITH", "TEST DATA"
and the number "9875432" to the disk file on drive #0 called
"DATA.DAT". Each item would be separated by a delimiter character
in the file. Line 55 is there to show how WRITE would be used to
store data in a random access file.*

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
_89-




CBASIC I

Tape & Disk I/0
INPUT Statement

Syntax: INPUT #F, (VARIABLE LIST)
LINE INPUT #F, (VARIABLE LIST)

The INPUT statement like the Write and Print statements can
be used to communicate with a sequential or random access disk
file. The variable list is the same as the normal INPUT statement
for Tape or Keyboard 1I/0. Each item in the variable list is
separated by a comma, and can be mixed string and numeric
variables as long as the input data from the disk file is the same
type. Numeric data can be read into a string variable as long as
it was not created using the MKN$ function. The LINE INPUT
command functions identically, except it will ingore delimiters
such as commas, quotation marks and colons, Everything is
accepted. (See the Extended Basic manual for further details).

Example:
5 DIM A(100)
10 OPEN "O",#1, "NUMBER"
20 FOR I=1 TO 100
30 WRITE #1,1I
40 NEXT I
50 CLOSE #1
60 OPEN "I",#1,"NUMBER"
70 FOR I=100 TO 1 STEP -1
80 INPUT #1,A(I)
90 NEXT
100 CLOSE

The example shows a file being written with the numbers from
1 to 100, and then being Rewound (CLOSED & RE-OPENED for INPUT).

The file is then read storing the data in the array "A(100)" in
reverse order.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=O0=




CBASIC III
Tape & Disk I/O

EOF Function
Syntax: EOF ( #F)

The EOF function is used to determine whether the file number
(#F) specified is at the End Of File during a read. It will
return a value of 0 if there is more data to be read in the file,
and a -1 if there is "no" more data. The EOF function should be
used prior to every INPUT performed on a file, or an "IE" (Input
Past End Of File) error will be reported when the end of £file 1is
reached. (See Color Basic manual for more information)

Example:
10 OPEN "I",#1,"LABLES"
20 IF EOF(l1) = -1 THEN 50
30 INPUT #1,AS$,B,CS
40 PRINT AS,B,CS
45 GOTO 20
50 CLOSE #1

The Example shows how the EOF function is used in a program
to test for an end of file condition prior to each INPUT command.
If line 20 was not in the program an "IE" error would be reported
when the end of file is reached.

CLOSE Statement

Syntax: CLOSE #F
CLOSE

The CLOSE statement is used to terminate I/0 between a Basic
program and a disk, or tape file, whether for Input, Output or
Random/Direct access. Closing a file will release the memory
space used for the disk file sector buffer (FIB), and random
access sector buffer i1f used. This statement can have two forms;
one of which specifies a file number previously used in an OPEN
statement to be closed and the second form is used without- any
file number and specifies that all open files are to be closed.
It is very important to CLOSE files when communications is
finished so that all information is written to the correct disk or
tape file, and on the correct disk before it is removed from the
drive (SEE Color Basic manual for further details).

Examples:

150 CLOSE #1
240 CLOSE

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

L. G



CBASIC I

Tape & Disk I1/0
ERR & ERNO Function

Syntax: ERR
ERNO

The ERR & ERNO functions works in conjunction with the ON
ERROR GOTO statement. The ERR function allows access to the last
error reported in general or on any active file number. See the
example following the ON ERROR GOTO statement.

ERL & ERLIN Function

Syntax: X=ERL
X=ERLIN

The ERL & ERLIN functions also works in conjunction with the
ON ERROR GOTO statement. These functions allows access to the
number of the 1line in which the last error occured. For ERL &
ERLIN to function properly the TRACE ON function must be enabled.
Otherwise these functions will return a value of zero.

ON ERROR & ON ERR GOTO Statement

Syntax: ON ERROR GOTO line#
ON ERR GOTO line#

The ON ERROR & ON ERR statements allows the user to handle
system errors without halting the current program execution, by
passing control to a specified line number in the program to
process the error. These functions can be changed at any time in
the program to allow for a general error handling routine, or may
be changed for a specific disk error handling not covered by the
general error handler. If no error handling is specified, a
normal basic error display & halt will occur. Error handling for
any active file may be changed at any time or disabled by
specifying a "GOTO" line number of "0". This can be used for
disabling the general "ON ERROR" handling as well.

Example:
10 ON ERROR GOTO 300:TRACE ON
20 OPEN "I",#1,"NAMES1"

300 PRINT "ERROR #":ERR;" IN LINE NUMBER ;ERL

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

B« o,



CBASICIIII
Tape & Disk I/0

FIELD Statement
Syntax: FIELD #F, length AS var,...., etc.

The FIELD command is used in conjunction with Random or
Direct access files to format a disk record into specific fielded
variables. By fielding a file record (buffer), the system
associates specified areas in the disk file record to wvariables.
When fielding a record, the total length of the the fielded areas
may not exceed the length of a single record as defined by the
OPEN statement. Each time a FIELD statement is executed, the
record is fielded starting at the first position of the record,
therefore many different variables may be associated with the same
area or overlapping areas in a record. The record may be fielded
at any time during program execution, provided the associated file

number is open for random or direct ("R" or "D") access. Once a
variable has been fielded, its wvalue will be whatever data is
currently in the associated record buffer. When the data is

changed by use of the "GET" statement, the variable data will also
change according to the file contents.

When the FIELD statement associates a string variable with an
record buffer in Color Basic, it can only be assigned data via the
RSET or LSET statement. This is not the case in CBASIC. Once a
variable is assigned to a fielded record buffer it cannot be
reassigned. Therefore in CBASIC-3 the "LET" or implied "LET"
statement can be used on fielded variables. Since wvariables are
assigned in fixed locations, you cannot use a previously fielded
variable in another FIELD statement. You can however field a file
record more than once, as long as successive FIELD statements use
different variable names. Data can also be moved to a fielded
variable by the use of the LSET or RSET statements. The following
examples will show some methods for fielding a record.

Example #1:

10 OPEN "R",#1,":1 TESTER.TXT",64

20 FIELD #1,32 AS A$,32 AS BS

30 FIELD #1,10 AS IT$,12 AS VN$,20 AS DIS,22 AS COS$
EXAMPLE #2:

10 OPEN #1,"R","TESTER.DAT", 256

20 FIELD #1,20 AS FIRSTS,20 AS LASTNS,40 AS ADDRESS,

15 AS CITYS,2 AS STATES,S5 AS ZIP$,40 AS COMPANYS
The first example shows how a file record can be fielded more

than once with different variables. The second example shows a

mailing record be defined and that the entire record length does
not have to be fielded.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-93=




CBASIC 11
Tape & Disk I/0

RSET & LSET Statements

Syntax: RSET var = expression
LSET var = expression

The FIELD statement has previously been used to assign a
string variable name to a portion of the disk file record buffer.
These and other string variables can receive their data via the
RSET and LSET commands so that the unused string storage will be
filled with spaces. These commmands store the result of a string
expression into the variable space either right justifed (RSET) or
left justified (LSET). If the transfered data lenght is less than
the length of the variable space allocated, the unused spaces will
be filled with "space" characters. If the transfered data is
larger than the fielded variable it will be truncated or lost.

Example:

10 FIELD #1,10 AS A$,10 AS BS

20 LSET A$="TESTING"

30 RSET BS="FIELDSET"

40 LSET BS$=STRINGS(10,32)
Location 1 2 3 45 6 78 9 10 "-" = SPACE
A$ field TESTING - - - LSET (LEFT JUSTIFIED)
BS field - - FIELDSET RSET (RIGHT JUSTIFIED)
BS field - = = = = = = = - - FILLED WITH SPACES

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
—94-



CBASIC I
Tape & Disk I/0

GET & PUT Statements

Syntax: GET #F,(RECORD #)
PUT #F,(RECORD #)

The GET & PUT statements are used in conjunction with Random
or Direct access files only. They tell the system to read or
write the "next"' or specified record# of the designated file. The
correct disk sector is computed and read into the sector buffer if
necessary. The correct portion of that sector information is then
transferred to or from the file record buffer. Once there by the
use of a GET statement, the data can be manipulated or transferred
from a fielded variable or assigned to a different variable by the
use of an INPUT or LET statements. If a PUT statement is
executed, the record buffer is transferred to the disk file sector
buffer and written to the disk when necessary. A variable can be
used to specify the file and/or record number to PUT or GET. When
no record number is specified, the next record number in sequence
will be used. If an attempt is made to GET a record that is past
the end of the file, an error will be reported. If an attempt is
made to PUT a record past the end of file, the file will
automatically be expanded to store the record with extra space
allocated for future expansion. If no disk space can be obtained
for file expansion, an error will be reported.

Example:

10 OPEN "R",#1,"DATA",128

20 INPUT"HOW MANY RECORDS TO INITALIZE";RECORD
30 REM INITALIZE SPECIFIED NUMBER OF RECORDS
40 FIELD #1,INITALIZES AS 128

50 LSET INITALIZES="EMPTY RECORD"

60 PUT #1,RECORD:'REM ALLOCATE RECORD SPACE

70 FOR I=1 TO RECORD

80 PUT #1,1

90 NEXT I

100 CLOSE #1

This example shows a random file being opened and the
operator being prompted for the number of records that the file is
to be initialized for, when input the highest record # is written
first to expand the file. The rest of the records are then
initialized in sequence via the for next loop until the highest
record is re-written & the file closed.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

~05



CBASIC III

Tape & Disk I/O

CHAIN Statement

Syntax: CHAIN "file id.ext:drive"”,offset

The CHAIN statement allows Machine Language Disk programs to
be loaded and automatically executed. It is identical to the
format of the Basic LOADM command. CBASIC-3 will allow any

machine language program to be loaded and executed in this manner,
even if it loads right over the currently executing program in
memory. However, if a program has an I/O error after it has been
partly loaded into memory, unpredictable results may occur. The
file name can be any valid string expression and the offset can be
either a number or numeric variable.

Example: 10 CHAIN "BIOIA"
349 CHAIN AS

The first example shows the command being used with & literal
string to load and begin execution of the machine language program
'BIOIA.;" from drive 0 (default). The second example shows it
being wused in a program statement line where the variable 'A$’ is
being used to pass the drive and file id paramaters to the disk
operating system.

KILL Statement

Sytax: KILL "file-id.ext:drive"

The KILL statement is the same as the Basic Kill command only
it must be used in a basic program. The KILL command can specify
only a single file on a specified disk.

Example: 10 KILL “TESTER.DAT:2"
50 KILL DF$

The first example shows that the individual file called
“TESTER.DAT" will be removed from the disk on drive #2. The

second example shows the use of a string variable to specify the
file to be removed.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-6~



CBASIC I
Tape & Disk I/0

RENAME Statement
Syntax: RENAME <old file-id> TO <new file-id>

The RENAME command is used to change the name of a specified
file to a new name. If the Old file name does not exist or the
New file name is already being used an error will be returned.
Both the 0ld and New file specifiers can be either string
variables or literals.

Example: RENAME"TEST.BAS" TO "TESTER.BAS"
RENAME AS to BS
RENAME AS$ to “"OLDFILE"

DSEARCH Statement

Syntax: DSEARCH(file.ext:drive)
*** Not available in Basic

DSEARCH is a numeric function that is used to determine if a
specified file exists on the specified or default drive. The file
id may be any valid String variable or literal. If the £file does
not exist a value of zero is returned, if the file does exist a
value of -1 is returned.

Example: IF DSEARCH(AS$) THEN KILL AS
A=DSEARCH(DATAFILE.DAT:2)

DRIVE Statement
Syntax: DRIVE <value>

The DRIVE command is used to specify a default Disk Drive for
Disk I/O commands and functions. The Value can be either a number
or numeric expression. There is no run time error checking for
the Drive command, so a value greater than 3 is allowed (useful
for 5 Meg. Hard Disk users). The default drive number is used
when ever a Disk I/O command does not specify a drive number.

Example: DRIVE 3
DRIVE A

The first example would set the default drive to #3. The

second examplw would set the default drive to the number specified
by the variable A.

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

~97-




CBASICIIII

Tape & Disk I/O

VERIFY Statement
Syntax: VERIFY <ON/OFF>

The VERIFY command is used to tell the system whether or not
to verify (Read after Write) all write operations performed on the
Disk System. The System normally leaves VERIFY OFF by default.
IF VERIFY is enabled by the VERIFY ON command, all disk writes
will take two disk revolutions to complete. One to write the
sector and the next to read back the information written to verify
that it was written correctly. It is a good practice to keep the
verify option enabled to insure disk data integrity. However, it
does take twice as long to write the same information on disk with
VERIFY ON as it does to write it with VERIFY OFF.

Example: VERIFY ON
VERIFY OFF

The first example would turn disk verification on (enabled)

and the second example would be used to turn disk verification off
(disabled).

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-08-~



CBASICIIII
Tape & Disk I/O

DSKI$ & DSKOS$ Statements

Syntax: DSKIS$ drive, track, sector, AS$, B$
DSKIS$ drive, track, sector, BUFS$

The DSKI$ and DSKOS commands are used to perform Disk Input
(DSKIS) and Output (DSKO$) without the use of the Disk Operating
System. These commands input and output directly to a sector (256
bytes) on a specified disk. The drive, track and sector values
can be any numbers or variables, and specify where the disk I/0 is
to be performed. CBASIC-3 has two options for using these
commands. Since a sector is 256 bytes and string variables can
only be a maximum of 255 bytes in length, two string variables are
required to hold the contents of a single sector. Each of these
variables is to be 128 bytes each. If the variable names
specified in the command are not previously used in the program,
CBASIC-3 will automatically create two consecutive variables of
the required length. 1If the variable names were previously used
in the program, they must be a minimum of 128 bytes each or an
error will be declared. The second option is to use the CBASIC-3
variable BUFS$ which is the 256 byte run-time I/0 buffer. If BUFS$
is used, it is the only variable that is to be specified.

Since direct disk I/0 can easily destroy a disk file or the
disk directory, you should be very careful when using these
statements. Only an experienced programmer who has a good working
knowledge of the disk system should even attempt to wuse these
commands.

Example: DSKI$ 0,17,3,AS8,BS
DSKO$ 0,TK,SC,BUFS

These commands may also use subscripted variables for the
sector data storage, however, the data is stored in 256
consecutive bytes starting at the first variable specified. When
using a subscripted variable, only the £first variable need be
specified and must be dimmed for a length of 128 bytes or
incorrect results will occur. For example if the array A$ were to
be used it would be dimmed something like DIM AS$(35,128). This
would be sufficient space for 36 blocks of 128 bytes each (18
sectors or 1 track). The program to read a full track into the
array would be something like the following:

10 DIM A$(35,128)
20 FOR S=0 TO 17

30 DSKIS$ 0,17,S+1,A$(S*2)
40 NEXT S

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-90_



CBASICIIII
Tape & Disk I/O

CLOADM & LOADM

Syntax: CLOADM "file name",offset
LOADM "file name",offset

The CLOADM & LOADM commands are identical to the Color Basic
CLOADM & LOADM commands. They allows you to load Machine Language
programs from cassette tape (CLOADM) or DISK (LOADM) into memory.
The "file name" can be any valid string expression and the offset
value is optional. 1If used, the offset value may be any valid
numeric expression. The offset value is added to the load address
of the program, that address is then used for the location in
memory where the program will be stored.

Example: CLOADM “TEST",$1000
LOADM NAS,OF

CSAVEM & SAVEM

Syntax: CSAVEM "file name",begin,end, exec.
SAVEM "file name",begin,end,exec.

The CSAVEM & SAVEM commands are used to save a machine
language program or file in memory to either tape (CSAVEM) or Disk
(SAVEM) . The *“file name" can be any valid string expression or
string variable. The begin, end and execution addresses of the
file are required and may not be omitted. They can be any valid
numeric expression or variable. CBASIC-3 does not check the
validity of the addresses at run-time, it is up to the programmer
to check for address validity (begin not greater than end).

Example: CSAVEM"TEST",$2000,$3000,82000
SAVEM NAS,BEGIN,END,BEGIN+12

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110
-100-




CBASIC III
Tape & Disk I/O

The following section will discuss the functions available
for use with disk related I/0. All the functions listed will
return a numeric value related to a particular disk file or
drive. These functions can be used wherever a number or value is
used in an expression.

FREE Function
Syntax: FREE <drive #>

The FREE function returns the number of available or free
granuls on a specified disk drive. If no drive is specified, a
default drive of 0 is used.

Example:
5 PRINT FREE(1)
10 IF FREE(2) > 10 THEN 100 ELSE 200
100 OPEN "O",#1,":2 DATA"

200 PRINT"LOW DISK SPACE ON DISK DRIVE #2"

LOC Function
Syntax: LOC(&F)

The LOCation function returns the current number stored in a
Random Access File buffer for a specified file number. If used on
a sequential access file, it will always return a value of 0.

Example:
100 PRINT @18, "RECORD #";LOC(1);" BEING PROCESSED"

LOF Function
Syntax: LOF (#F)

The LOF function returns the highest record number of the
specified random access file. If used on a sequential access
file, unspecified results will occur. This function can be useful
to avoid accessing past the end of file which will cause an error.
This wvalue is also used for various types of sort functions and
hashing access technigues.

Example:
100 FOR I=1 TO LOF(1)
110 GET #1,I:REM READ RECORD OF FILE
120 NEXT I
130 REM NOW POSTITIONED AT END OF FILE

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

=101~



CBASIC 111

Tape & Disk I/O
MKNS Function
Syntax: MENS (number /variable)

This function will convert a numeric variable or number into
a 2 byte coded string for storage in a formatted or fielded disk
file buffer. It is normally used in conjunction with a fielded
variable so that numbers can be stored in a disk file, using a
field length of 2 bytes to store any number up to 5 digits 1in
length.

Example:

5 A = 23456
10 LSET B$=MRN$(A)

CVN Function

Syntax: CVN(string variable)

This function will convert a 2 byte coded string previously
created by the MKNS function back to a numerical representation.
It can be displayed directly or assigned to a numeric variable.

Example:

5 PRINT CVN(B$)
10 A = CVN(BS)

CER-COMP 5566 RICOCHET AVE. LAS VEGAS, NEVADA 89110

-102-



DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&
OTHER HELPFUL HINTS

Even though a CBASIC-3 program may be designed to perform the
same function as a typical Color Basic program, it may appear to
execute differently. For example:

10 FOR I =1 TO 10
20 PRINT I
30 NEXT

If the above program is run under Color Basic you would
simply see it display the number from 1 thru 10 on the screen. It
would then display an "OK" message and stop. The same program
compiled under CBASIC-3 may appear to execute differently, even
though it doesn’'t. If you watch the screen very carefully, and
don’t blink your eyes when executing the compiled version of the
game version program. You will see that it will also display the
numbers from 1 thru 10 on the screen, however, it disappears
almost immediately after displaying the numbers. The next thing
you see is the Color Basic message, just 1like you do when you
first power on the computer.

One of the reasons for this is, CBASIC-3 produces pure
Machine Language programs, and under some circumstances : 2
modifies the configuration of the normal Color Basic operating
system. If the program were simply allowed to return control back
to the Color Basic Operating System, it may “appear" to work ok.
But, if you started to write a program or perform some disk
operation, the system might crash, destroy a disk, or some other

unpredictable results might occur. In order to avoid this
situation the CBASIC-3 program forces the computer to do a "Cold
Start" when it 1is finished. This may not be necessary in all

cases, but, it is the safest and most reliable way to return
control back to Color Basic. Almost all good Machine Language
programs, which modify the operation of the computer in any way
wili perform this type of “Cold Start" when the program is
finished.

From looking at the previous example, it may appear the . this
is an un-necessary precaution. But, on the other hand, most
programs will not be this simple, if they were, there really would
be no reason to compile them into Machine Language programs.
CBASIC-3 has a large variety of commands and functions that allow
it to do many things besides straight forward Basic programs. It
has the <capacity to provide a complete Operating System
environment for programs, not available in Color Basic. Normally
these functions could only be performed by an experienced Machine
Language Programmer. Things like Interrupt Handling and using the
upper 32K of a 64K machine. You can easily and quickly control or
manipulate Hardware Devices such as the X-PAD, DELUXE RS-232
Program PAK and various other devices available from third party
vendors. In normal Color Basic operating these types of devices
is slow and cumbersome. CBASIC-3 also provides you with an

A 1=



DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&
OTHER HELPFUL HINTS

optional Hi-Resolution Text Display Package that is directly
attached to your compiled program. With these types of advanced
operations, you can not expect to be able to keep the Color Basic
Operating System completely functional. Therefore it must "Cold
Start" the system to insure that Color Basic is completely
operational when the CBASIC-3 program is finished.

If you need to see the results of a programs display on the
screen before the program exits back to Color Basic, use an INPUT
statement just before the STOP or END Statement. This will allow
you to see the display and simply hit the "enter" key when you are
finished.

REMARK STATEMENTS

With CBASIC-3 programs, the REM or ' statements do not affect
the compiled program size or execution speed in any way. They do
not produce any code within the compiled program. By using REMark
statements generously, it will enable you to improve the internal
documentation and readability of your program, without affecting
it's performance. It pays to write well documented programs that
can be understood and modified easily, either by yourself or
others.

GRAPHICS STATEMENTS

CBASIC-3 hLas the same Graphics Statements that are available
in Extended Color Basic, and consequently CBASIC-3 uses many of
the graphics subroutines available within the Extended Basic ROM.
Since CBASIC-3 uses the same machine language code to generate the
same functions as Color Basic the actual time tc draw or display
the graphics is the same. However in a CBASIC-3 program, the same
Graphics statement will execute about 4 times faster than Extended
Color Basic. We probably could have made it much faster by
rewriting the run-time graphics package but the cost in memary
would be tremendous, and the Graphics syntax would not be
compatible or as extensive as Extended Color Basic's. The reason
that CBASIC-3 executes graphics faster than Color Basic is that
the compiled program does not have to lookup the command and
variable locations each time a graphics statment is executed, this
is where the real speed increase comes from in CBASIC-3.

When using Graphics statements in CBASIC-3, if you use
numeric constants for the x,y coordinates or parameters, the
generated code will be shorter and execute slightly faster than
using variables. This applies to the statements: CIRCLE, LINE,
PSET, PRESET, SCREEN, PMODE, COLOR, PAINT, PUT and GET. This
format will save from 8 to 20 bytes of code in the compiled
program for each statement using this method. By making use of
subroutines wherever possible for duplicated statements, you will
also reduce a programs size significantly.

=hA 2-



DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&
OTHER HELPFUL HINTS

USING SUBROUTINES

Since CBASIC-3 is a native compiler (generates actual machine
code), each statement compiled will generate the equivalent
machine code to perform that function. In many programs the same
statement may be executed several times, especially in graphics
programs. Each statement compiled will produce roughly the same
amount of code, so even a single line which is used repeatedly in
a program will produce a significantly larger program. If
statements which are used repeatedly are made into subroutines and
called with a GOSUB statement, the program size will be reduced
significantly. A GOSUB statement only generates 3 bytes of code
to call a subroutine, and to make a single statement or group of
statements into a subroutine only requires that it be ended with a
RETURN statement (1 byte of code). If this method is wused to
replace a single complex IF and/or THEN ... ELSE ... statement you
could easily save up to 200-300 bytes of code for each occurence.
A typical graphics or string statement using variables can use
anywhere from 20 to 50 bytes for each occurance. So you can
easily see how much memory space can be saved with 1little or no
effect on program execution speed.

DATA & GENERATE STATEMENTS

Many Color Basic programs will use DATA statements to hold a
machine language program or subroutine and then read the data and

poke it into memory somewhere. It then calls the program or
subroutine using the DEFUSR and USR statements or the EXEC
statement. While this type of format can be used in CBASIC-3 it

will waste a tremendous amount of program space since the DATA
uses almost twice the amount of memory required, and it will still
occupy space in the program after the proram or subroutine is
poked into memory. CBASIC-3 has a statement called GENerate which
allows machine language programs to be imbedded directly within
the compiled program. This also allows these routines to be
called from within the program by simply using a GOSUB or GOTO
statement. The subroutine can return control back to the program
by simply ending it with a RTS ($39) op code. This also
eliminates the problem of placing the program in a part of memory
where it will not be disturbed as well as using the READ and POKE
statements to get it into memory.

W



DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&
OTHER HELPFUL HINTS

FOR/NEXT loops & TIMING

Many Color Basic prorams use FOR/NEXT loops for delays and
timing. Since CBASIC-3 will execute a straight FOR/NEXT loop
almost 1000 times faster it is not practical to use it for delays
and timing. For example: FOR X=1 TO 1000:NEXT this statement in
Color Basic will take almost 2 seconds to complete, but in
CBASIC-3 is will be less than the blink of an eye. To generate
accurate or consistent time delays in CBASIC-3 it is suggested you
use the TIMER function, which will count up in 1/60 of a second
intervals. Ex:

10 TIMER=0
20 IF TIMER <120 THEN 20

This will produce a delay of 2 seconds, if you know how many
seconds you want to delay just multiply it by 60 and use that
number in the IF TIMER statement. This format will also produce
less code than the equivalent FOR/NEXT loop and will be much more
accurate for timing and delays.

Get to know your Color Computer

If you have not had experience with the 6809's machine
language, take the time to aquire some understanding of it. There
are many good books and reference manuals available from Radio
Shack. It is not absolutely necessary to have an understanding of
machine language to use the CBASIC-3 compiler, in fact it was
designed to be as compatible with the Color Basic interpreter as
possible. This enables you to write and debug most programs using
Color Basic, which is much easier than trying to debug machine
language programs. However, many of the advanced features of
CBASIC-3 can not be used in Color Basic. If you have a good
understanding of how the machine works and operates, you will have
much less difficulty using CBASIC-3 and its advanced features.

-A 4-




DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&
OTHER HELPFUL HINTS

Debugging Compiled Programs

If your CBASIC-3 program compiles without errors, but does
not perform as expected, chances are you made a logical
programming error. Make sure that the Program and Data storage
areas do not overlap. If variable storage is allocated in the
upper 32K of RAM, did you use the RAM64K page# statement? Make
sure there are no DISK buffers (#1-#9 vars) in the upper 32K.
Does the CBASIC-3 program overlap or conflict with another program
being called?

The CBASIC-3 program listing provides you with some valuable
information that can be used to find run-time errors in
conjunction with the TRACE statement and a Monitor/Debugger
program, like Cer-Comp’s TRSMON System Monitor. The statement
addresses on the 1listing can be used to set Breakpoints at the
beginning of a specific program line. The Symbol table dump at
the end of the listing shows variable memory locations, that can
be examined with the Monitors memory examine and change function.
With this information you can tell whether or not the program is
running correctly up to the point where you examined the
variables.

Read the Manual carefully, there is a great deal of
information in this document which can make programming in
CBASIC-3 easier for you. If CBASIC-3 is your first experience
with a compiler, it would be wise to read this manual more than
once. Many of the questions we get about programs are answered in
the manual, so before you call or write to us with a question,
check the manual, chances are the answer to your question is in
here.

Errors During Compilation

When CBASIC-3 detects an error in the source program during
compilation, the source line in error and a message describing the
error will be displayed. The line immediately below the source
line in error will have an "up-arrow" showing the approximate
position of the error. Note that on long statement lines it may
be more than one line below the last line to indicate that the
error is on the second, third or fourth display line. This error
locating arrow is about 95% accurate. When an error is detected
the compiler will not process any further information on the line,
even if it is a multiple statement line. So examine the rest of
the line carefully for possible undetected errors. If an error
should occur during compilation, "DO NOT" attempt to execute the
compiled program, as the program is incomplete and undetermined
results will occur. Maybe even crash or wipe out a disk.

=A 5=



DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&

OTHER HELPFUL HINTS

Converting Color Basic Programs
VARIABLE INITIALIZATION

Many Color Basic programs can be converted to CBASIC-3
compiled programs easily. However, in many cases the program will
assume that all variable storage is cleared at run time. 1In
CBASIC-3 this is not the case, variables are not initialized
automatically. This can cause very strange results when the
compiled program is executed. If wvariable initialization is
required in a program, it can be done by assignment statements:
A=0:B=0:A$="":etc. This can take a lot of program code depending
on how many variables are to be initialized. Another method can
be used that will produce less program code and clear all
variables to a 0 or "" state. This method uses a FOR/NEXT loop
and the VARPTR function. 1In the beginning of the program, use a
variable name not used in the program and assign it a value of 0 ,
then follow it with a GOSUB to a line # past the end of the
program. Example: YY=0:GOSUB 9590

For the last lines of the program write a FOR/NEXT loop using
another previously unused variable name in the following form: FOR
ZZ=VARPTR(YY) TO VARPTR(ZZ)-1. The final form of the
initialization routines would look something like this:

10 YY=0:GOSUB 9990

9990 FOR ZZ=VARPTR(YY) TO VARPTR(ZZ)-1
9995 POKE ZZ,0:NEXT

This is one of the easiest and most effective ways to
initialize variables in a CBASIC-3 progran.

DIMENSION STATEMENTS & STRINGS

Another area of confusion when converting Color Basic
programs is String Variable arrays. In Color Basic a Dimensioned
String array only has one element in its definition: DIM AS$(10).
In Color Basic this means to allocate 10 different strings, A(1l)
thru A(10). In CBASIC-3 it means to allocate 1 string 10
characters in length. The reason for this is to allow better
control over variable storage allocation and eliminate the
problems associated with "String Pools" and "Garbage Collection”
at run-time. When you define a string array in CBASIC-3, you must
tell it the number of elements in the array and the length that is
to be reserved for each string: DIM(10,32). This would allocate
space for 10 strings of 32 characters each. This can be changed
easily when converting a Color Basic program, by using the Editor
in CBASIC-3 to search for DIM statements and then use the Line
Edit function to change it to the correct format. CBASIC-3 will
also automatically allocate space for an array up to 10 elements
without requiring it to be declared in a DIM statement. However,
remember that each element is assigned only 32 bytes of space the
same as a default string variable.

-A 6-



DIFFERENCES BETWEEN CBASIC-3 AND COLOR BASIC PROGRAMS
&
OTHER HELPFUL HINTS

STRING VARIABLES

CBASIC-3 will normally allocate 32 bytes of storage for a
string variable unless it is decaired in a DIM statement. In some
Color Basic programs you may see an assignment statement in which
the string being assigned is longer than 32 characters. 1In these
cases you will have to use the DIM statement in CBASIC-3 to
allocate enough space for the string variable or it will be
truncated to 32 characters. This can cause an "FC" Function Call
error in a program when the string is used as part of a DRAW or
PLAY statement. Use the TRACE function to locate the line # that
is causing the problem.

Example 1:
10 AS="BM10,10;C2;UBR6F2D2L8BREBD2G2L6BR12USREBDB"
20 DRAW AS

Example 2:

5 DIM A$(50)

10 A$="BM10,10;C2;UBR6F2D2L8BRBD2G2L6BR12UBRED8"
20 DRAW AS

The first example would cause an FC error when the program is
run since the assignment would only move the first 32 characters
to the variable. In the second example the variable A$ was first
assigned 50 characters of space in the DIM statement before being
assigned the string. It would execute correctly.

GRAPHICS GET & PUT ARRAYS

Most of the time Color Basic programs that use the Craphics
GET & PUT statements will define an array large enough for
CBASIC-3 to use. Sometimes a program will use a different method
than the one mentioned in the Extended Color Basic manual to
calculate the size of an array for a GET or PUT. 1In these cases
the array may not be large enough for CBASIC-3 to use. This can
produce a "FC" Function Call error at run-time. If you encounter
this problem refer to the CBASIC-3 manual section on GET & PUT
statements to check the dimension calculations. Also use the
TRACE function to locate the line # causing the error.

e Ly I



ASSIGNMENT STATEMENTS:
RESTORE LSET
CONTROL STATEMENTS:

STEP GoTo
ON/GOTO ON/GOSUB
STACK CHAIN
ANTERRUPT CONTROL STATEMENTS:
ON FIRG GOTO  ON SWI GOTO

FIRG simulate NMI simulate

INPUT/QUTPUT STATEMENTS:
WRITE CLOSE
RENAMNE DSKIS
CSAVEM SAVEM
AUDIO on/off MOTOR on/off
EXTENDED MEMORY STATEMENTS:
DLPOKE LPCOPY

- C TAT
COMPILER DIRECTIVES:
REM DPSET
NUMERIC FUNCTIONS:
DPEEK TAB
EOF SWAP
JOYSTK BUTTON
INT
STRING FUNCTIONS:
TRMS STRINGS
SWAPS
SOUND § GRAPHICS STATEMENTS:
(H)DRAW (H)GET
PMODE PSET
PPOINT HMODE
ARITHHETIC OPERATORS
+ ADD
= SUBTRACT
/ DIVIDE
+ MULTIPLY
= NEGATE

LET POKE

RSET SWITCH
EXEC CALL
GOsSuUB RETURN

ON ERROR GOTO ON BRK GOTO
ON KBDIRQ GOTO ON TMRIRG GOTO
RET1 IRQ on/off
OPEN INPUT
FIELD GET

DSKOS VERIFY
GETCHAR PUTCHAR
RAMELK pagel RAM on/off
HIRES(E modes) WIDTH

BASE CRG

MODULE PCLEAR
ABS POS

ASC LEN

LOF Loc

INKEY TIMER
CHRS LEFTS
MENS INKEYS
PLAY SOUND
CHIPUT (H)LINE
PRESET (HYRESET
BORDER HPRINT
LOGICAL OPERATORS

& LOGICAL AND

! LOGICAL OR

% LDGICAL XOR

# LOGICAL NOT

+ CONCATENATE STRING

B =

CBASIC-3 LANGUAGE SUMMARY

DPOKE DATA
RUN FOR

IF /THEN/ELSE STOP

ON OVR GOTO ON NOVR GOTO
ON SERIRQ GOTO ON IRG GOTO
IRG = mask Sul

LINE INPUT PRINT
PUT RESTORE
DRIVE CLOADM
BRATE PRATE
LPEEK LPOKE
LOCATE ATTR
GEN END
PAUSE on/off CBLINK
POSa RND
INSTR VAL

FREE CVN
OVEREM SGN
RIGHTS HIDS
BUFS HEXS
(HICIRCLE (H)COLOR
CHIPAINT PCLS
(H)SCREEN (H)SET
HBUFF PALETTE
RELATIONAL OPERATORS

<,»>,= GREATER/LESS THAN, EQUAL
<=, >= LESS/EQUAL, GREATER/EQUAL

< NOT EQUAL
AND / OR

NEXT
END
ON RESET GOTO

ON NM1 GOTO
IRG simulate

PRINT @
KILL
LOADN
DSEARCH

DLPEEK

HSTATUS

DIM
UNLINK

PEEK

ERR -
VARPTR

ERL

STRS
SWITCHS

(H)CLS

PCOPY —
(HIPOINT

RGE/CHP




CBASICIIII
CBASIC-3 Run-Time ERROR CODES

One of the following codes will be generated if an error
occurs during the execution of a compiled program. The ERR or
ERNO function will return the most recent error generated,
provided ON ERROR trapping is active. A determination can be made
by the program, based on the error condition, to attempt
correcting the error, abort the program or whatever the programmer
decides.

If ON ERROR trapping is disabled, a normal Basic error
message will be displayed and control will then be returned to
Color Basic. At this point there are basically two options
available. Either to press the Reset button to Cold Start the
computer or re-execute the program with an EXEC statement. If for
some reason the compiled program was corrupted, re-execution may
cause the computer to crash or some other unpredictable results
may occur. For this reason it is recommended that a POKE&H71,0 be
performed and the Reset button pressed to insure that the computer
is cleared to its normal state.

01 Next Without For, should not occur

02 Syntax error, cause unknown

03 Return Without, should not occur

04 Out of data in READ statement

05 TIllegal function call, use TRACE to locate line#
06 Multiply overflow, results exceeded +32767 to -32768
07 Out of Memory, Illegal procedure call

08 Undefinde line, should not occur

09 Bad Subscript, should not occur

10 Attempt to Redimension an array, should not occur
11 Divide by zero attempted

12 1Illegal Direct Statement, should not occur

13 Variable and data type mismatch

14 Out of String Space, should not occur

15 String too long, should not occur

16 String formula too complex, should not occur

17 Cannot continue, should not occur

18 Bad file data

19 File already open, disk or tape

20 Bad device number

21 Input or Output device error (hardware ?)

22 File Mode error, attempted input from output device, etc.
23 File not open for I/O

24 Attempted to input more data than a file contained.
25 Direct Statement, should not occur

26 Undefined function attempted

27 File does not exist (disk)

28 Bad random access disk record number.

29 Disk is full, no more room to write

31 Disk is write protected on attempted write

32 Bad file name

33 Disk file structure is corrupted.

39 Hires Graphics Error

40 Hires Print Error

= el -



CBASIC I
Hi-Resolution Text Package

The Hi Resolution Text Package is designed to improve the
standard 32*16 and WIDTH 40/80 Screen displays. The program is
fully integrated into the compiled Basic program by using the
"HIRES" statement. It also allows you to switch back and forth
between the Hi-Res format and the Standard 32 by 16 format for
complete compatibility in almost all situations. The format of
the display when the compiled program is first executed defaults
to 80 characters by 24 lines. This can be changed to 32, 40, or
64 characters in either 192 or 225 Resolution modes thru the use
of control codes. The package also includes other control code
functions which add an extensive amount of flexability to the
display. Some of them include: Reverse Screen, Reverse character,
Underline character, Double Size characters, Erase to end of line,
Erase to end of screen, Clear Screen, Home Cursor, Bell tone, and
more. All of these features are controlled thru the use of
control code characters sent via the CHR$(n) Basic statement or
thru Machine language routines. The following is a 1list of
Control codes recognized by the program and the function that it
performs.

CHRS (n) Function

1 Display Black characters on a White background (Default)
2 Display White characters on Black background.

6 Switch between Blinking & Non-Blinking Cursor

7 Sound Bell tone.

8 Backspace cursor one character position.

9 Advance cursor one character position.

10 Move cursor down one line (Scroll if at bottom).
11 Initiate X,Y cursor position function.

12 Clear screen.

13 Move cursor to begin of line & move down 1 line.
14 Turns character Underline off (default).

15 Turns character Underline on.

16 Home cursor to position #0 on the screen (top left).
17 Turns Destructive Cursor on.

18 Turns Destructive Cursor off (default).

19 Turns Space character Underline On (Default)

20 Turns Space character Underline Off

21 Erase from cursor to the end of line.

22 Erase from cursor to the end of screen.

23 Turn Reverse character mode off (Default).

24 Turn Reverse character mode on.

25 Save current cursor position.

26 Restore cursor to previously saved position.

27 Change chars/line, or Auto key repeat

28 Change display to Monochrome or Color mode.

29 Switch Screen format to Hi-Res or Standard 32*16.
30 Turns double size characters off (default).

31 Turns double size characters on.

=




CBASIC I

Hi-Resolution Text Package
Control Code Use

All of the screen control functions will be used with the
Basic statement "PRINT CHR$(n)". For example, to clear the screen
use the Basic statement PRINT CHR$(12). There are several control
functions which are not completed with a single character code.
The first one, (11), is used for X,Y cursor positioning and the
second one , (27), has two functions depending on the wvalue of the
character immediately following it.

The X,Y cursor position function allows the cursor to be
positioned to any location on the screen with a minimum of effort.
This can be useful for screen mapping & information updating.
This is similar to the Basic PRINT @ function. Instead of using a
single number for the location, a column position and line number
are used. These values must immediately follow the X,Y control
code. A column value of 0 to the current number of characters per
line may be used (51 is the default). The line number must then
follow with a value from 0 to 23. For example, to position the
cursor to the middle of the screen and print the word "HELP", you
would use the following statement:

PRINT CHRS$(11);CHR$(23);CHRS$(11); "HELP"

This would print the word "HELP" starting at column 23 on
line 11. Notice that a ";* must be used between each character so
that other characters are not sent in between the column, line #,
and print data for the command to work correctly.

"Escape" Character Sequence Commands

The “Escape” code CHR$(27) is used for three different
functions depending upon the value of the character following it:

1) The number of lines on the Hi-Res Screen to be protected

2) The number of characters per line to be displayed on the
Hi-Res Screen

3) Clearing several of the Special functions options with a
single command

-D 2-



CBASIC III

Hi-Resolution Text Package

Changing Characters per line

The Hi-Res Screen package allows the user to set the number
of characters displayed per line on the Hi-Res Text Screen, This
can be varied from 32 to 80 characters per line in defined steps.
The Hi-Res screen defaults to a 80 characters across by 24 lines
in 225 Resolution at program startup time, but can be changed to
one of 8 different formats. The following characters correspond
to the number of display characters per line selected when used
following the "Escape" code:

1 =32 (192) 2 = 40 (192)
3 = 64 (192) 4 = B0 (192)
5 =32 6225) 6 = 40 (225)
7 = 64 (225) 8 = B0 (225) default

PRINT CHR$(27);"5"<enter> Set width to 32, 225 Res.
PRINT CHR$(27),"64<enter> Set width toc 64, 192 Res.

Clearing Special functions

There is a special function code used to reset most of the
special functions in the HI-Res package. The functions which are
reset to the default conditions are:Reverse Display (2), Underline
(15), Reverse character mode (24), Double Size characters (31),
Destructive Cursor (18) and Protected lines (27). All of these
functions can be reset by the single command:

PRINT CHR$(27);"0"
This can be useful for clearing display options used during a

program that has been interrupted while some of these functions
were in use, or at the end of a program using them.

=D 3=



CBASIC I

Hi-Resolution Text Package

Changing Screen Formats

This function allows the user to switch screen formats back
and forth between the Normal 32*16 screen and the Hi-Res screen.
When in the Standard 32 by 16 screen all Hi-Res control functions
will be ignored except the "CHR$(28)" which is used to return you
back into the Hi-Res Screen format. This function toggles or
flips back and forth between formats each time it is entered.

Changing Monochrome or Color modes

This command allows the user to select whether or not to
supress the color display thru a single controle character. The
screen comes up in Monochrome mode by default and be changed by
sending a CHR$(28). Each time it 1is send, the screen flips
between Mono & Color mode, the Basic command would be PRINT
CHRS (28).

-D 4-



CBASIC I

Hi-Resclution Text Package
Character Highlighting Functions

The majority of the control functions supported consist of a
single control code and can easily be used in a Basic program.
Three of the functions control how the characters will be

displayed on the screen until they are turned off. They are
Underline CHR$(15), Reverse characters CHR$(24), and Double size
characters CHR$(31). Once these functions are enabled, each

character displayed will be affected by the active functions. Any
combination of the three or all three may be enabled at the same
time. They may also be reset at any time. The Reverse character
effect can also be obtained by adding a value of 128 to any normal
ASCII printable code. For example, to highlight a single
character just add 128 to the letter using the format:

PRINT CHR$(ASC("Z")+128)

The Destructive cursor function allows you to tell the
program whether or not to erase the character at the current
cursor location. This is normally on by default. Some screen
editing programs require it to be off to function correctly, while
others require it to be on, so characters are erased during
backspace operations. For these reasons we allow it to be
changed.

The Reverse screen function also allows for special effects,
or just personal preference for the screen display.

Additional Functions

Three functions have been added to allow more flexibility in
using Hi-Res. The first allows you to switch between a blinking
and non-blinking cursor CHRS$(6). The second function allows you
to select whether or not to Underline space characters on the
screen CHRS$(19) & CHRS(20) (spaces underlined by default). The
third function allows you to select whether or not to erase the
screen to the end of line following a carriage return or “Enter”
character CHRS$(25) & CHRS$(26) (erase to end of line is off by
default). All three of the additional functions consist of a
single control code and remain in effect until turned off or
switched by their counterpart code.

= 5=



CBASICIIII

Hi-Resolution Text Package

EFFECTS ON BASIC SCREEN COMMANDS

This package was designed to be as compatible and convenient
to use as possible, so normal operations with CBASIC-3 programs
would be affected as little as possible. Since some Basic
programs use commands that affect the screen display, we have
tried to make them as compatible as possible with the new screen
format. Unfortunately, this may not be 100% compatible but should
be close enough so the programs will still run without any major
problems. If problems do arise, you can always switch back to the
standard screen format for those functions, and then back to the
Hi-Res format with a simple function command.

One of the most common screen commands is "CLS", the clear
screen command. With the Hi Resolution package in the compiled
program, this command only clears the screen in normal video
(black characters on a white background). If a value follows the
command, it will clear the standard 16*32 Text screen to that
color.

The second most used screen command is the PRINT @ function.
Under normal system operation this value may not exceed a value of
511, or an error will occur. You only have 32 character positions
available per line by 16 lines, thus 0 to 511 is the range. When
using the Hi Resolution screen package any value is allowed and
will be adjusted according to the number of characters displayed
per line. For example, if you printed at column 68 in the 40
character mode, it would display on line 2, column 28. If you did
the same thing in 64 character mode, it would display on line 2,
column 4. If you would like to have compatibility with the old
screen format, just reprogram the number of characters per line to
32. This is accomplished by the statement:

PRINT CHRS$(27);"1"<enter>

When in this mode, all PRINT € screen formatting should be
almost identical to the original format.

P



CBASIC III
Sample Program Listings

DISK DIRECTORY PROGRAM LISTING

0120
0130

for this, is string functions use a 00 as an end
of string marker for strings shorter than the

0010 * This is a demonstration program that shows
0020 ' how to use the BASE & DIM statements to map
0030 ' out an area of memory for reading and analyzing
0040 ’ a disk directory using DSKI$. Since the variable
0050 ' arrays NA$ and EX$ are setup to map out the DSKIS$
0060 ' variables AS & BS. By using this method of re-mapping
0070 ' variables, extracting information is very fast
0080 ’ since extensive string manipulation is not necessary.
0090 * This method of variable mapping must be used any
0100 ' time the DSKIS$ function is used to read mixed
0110 ' binary and ASCII information from disk. The reason
0140 ' defined length. Thus when mixed ASCII & binary

0150 ’ data are read using DSKIS$, string functions will

0160 ' not allow access to any of the information in the

0170 ' string variable past the first 00 encountered.

0180

0190 BASE=$5000 : * start variable space at $5000

0200 DIM A$(128),BS(128): ’'variables for DSKIS

0210 BASE=$5000 : ' put next variable at same place in memory
0220 DIM NA$(7,32) : ' map directory names every 32 bytes 0-7
0230 BASE=$5008 : ' map Extensions at name + 8 for each entry
0240 DIM EX$(7,32) : ' map Extensions every 32 bytes 0-7

0250 BASE=0 : ‘restore variables allocation to normal

0260 CLS:INPUT "DRIVE TO ANALYZE";D

0270 FOR S=3 TO 11: ' read sectors 3 thru 1l of directory track
0280 DSKI$ D,17,S,AS,BS : ' read sector on track 17

0290 FOR L=0 TO 7:' loop for 8 entries per sectory

0300 IF PEEK(VARPTR(NAS(L)))=SFF THEN 330:' empty entry

0305 PRINT LEFT$(NAS(L),8);".";

0310 PRINT LEFT$(EXS$(L),3),PEEK(VARPTR(NAS(L))+11),

0320 IF PEEK(VARPTR(NAS(L))+12)=0 THEN PRINT "B" ELSE PRINT "A"
0330 NEXT L,S: ' loop for 8 entries & all sectors

0340 INPUT A:GOTO 260

-E 1-



0001
0002
0003
0004
0005
0006
0007
ooos
0009
0010
0011
0012
0015
0020
0030
0040
0050
0060
0070
0080
0090
0100
0110

CBASICIIII

Sample Program Listings

DISK COPY PROGRAM LISTING

OPT N: ’ Option for nc listing generated

' This example program demonstrates how to use the

s DSKIS & DISKOS with a string array to copy the
contents of a disk to another disk. The destination
disk must have been previously formatted. It is
equivalent to having a "BACKUP" command.

The program uses a string array to store the entire
contents of a disk track for each read/write sequence.
You could use the BASE & DIM statements to put the
track buffer array anywhere in memory that doesn’t

cause a conflict.

- owm W W W oW ow

r

DIM AS$(36,128):’ Setup string ARRAY for Track buffer
CLS:INPUT "DRIVE TO COPY FROM AND TO";CF,CT

FOR T=0 TO 34: ' Loop for all 35 tracks

FOR S=0 TO 34 STEP 2: ' loop for 1-18
DSKISCF,T,(S/2)+1,A$(S),A$(S+1): ' read sector into array
NEXT S

FOR S=0 TO 34 STEP 2: ' loop for sectors 1-18 write(track)
DSKOSCT,T,(S/2)+1,A$(S),AS(S+1): ' write sector from array
NEXT S,T: ! Next Sector & Track

INPUT "COPY COMPLETE, ANOTHER COPY Y/N";AS

IF AS="N" THEN END ELSE RUN

-l P



CBASICIII

Sample Program Listings
DISK MENU PROGRAM LISTING
0010 ORG = $6000: HIRES: ' Include Hires Text package

0013 PRINT CHRS$(27);"5";:*' SCREEN MODE 32 CHARS/225 RES
0015 POKE $FFD9,0: ' HIGH SPEED

0020 BASE = $600 : DIM AS$(128),BS$(128): ’‘variables for DSKI$
0040 BASE = $600 : DIM NAS(7,32) : ' dir names every 32 bytes 0-7
0060 BASE = $608 : DIM EX$(7,32) : ' map .ext name+8 bytes 0-7

0080 BASE=0 : ‘restore variables allocation to normal
0090 DIM FI$(68,12): ‘array for all file names possible
0091 CLS

0092 PRINT " MENU MASTER PROGRAM": PRINT

0100 PRINT “T - TEXTPRO3 C - CBASIC3"

0110 PRINT “E - EDTASM3 D - DPIII+"
0111 PRINT "M - MONIIIA 1 - TASER *
0112 PRINT “S - SOURCE Q - QuiT *

0113 PRINT "L - DISKLOOK Q - QUIT *

0115 PRINT

0120 INPUT "DRIVE # OR COMMAND KEY ";CS$

0125 IF C$="" THEN 091

0130 C= INSTR("TCEDMISLQ",C$)

0140 IF C=0 THEN D=VAL(CS$):GOTO 200

0150 ON C GOTO 160,170,180,190,191,192,193,194,195
0155 GOTO 91

0160 CHAIN"TEXTPRO3.BIN:2"

0170 CHAIN"CBASIC3.BIN:2"

0180 CHAIN"EDTASM3.BIN:2"

0190 CHAIN"DPIII+.BIN:2"

0191 CHAIN"MONIIIA.BIN:2"

0192 CHAIN"LASER.BIN:2"

0193 CHAIN"SOURCE3,.BIN:2"

0194 CHAIN"DISKLOOK:2"

0195 PRINT"EXITING PROGRAM BACK TO SYSTEM"

0196 POKE$71,0:POKESFFD8,0:EXEC DPEEK(SFFFE) :END
0200 FOR I = 0 TO 68: FIS(I)="":NEXT: I = 1

0205 DRIVE D

0210 FOR S=3 TO 11: ' read sectors 3 thru 11 of directory track
0220 DSKI$ D,17,S,AS$,BS : ' read sector on track 17
0230 FOR L=0 TO 7:' loop for 8 entries per sectory
0240 PK=PEEK(VARPTR(NAS(L)))

0250 IF PK=SFF OR PK=0 THEN 290:' empty entry

0260 IF DPEEK(VARPTR(NAS$(L))+11)<>$200 THEN 290 :’ NOT BINARY
0270 FI$(I)= LEFTS(NAS(L),8)+"."+LEFTS$(EXS(L),3)
0280 I = I + 1 :' NEXT ARRAY ENTRY

0290 NEXT L,S: ' loop for 8 entries & all sectors
0300 IF I = 1 THEN RUN :’ NO EXECUTABLE FILES

0310 FOR F =1 TO I - 1

0320 PRINT F;"-"; FI$(F),: ' display executable binary files
0330 NEXT: PRINT:PRINT

0340 INPUT"ENTER NUMBER OF FILE TO EXECUTE";F

0345 IF ((F>=I) OR (F<=0)) THEN 360

0350 PRINT “LOADING ";FIS$(F):CHAIN FIS(F)

0360 RUN

=P 3=



0010
0020
0030
0040
0050
0060
0070
0080
00580
0100
0110
0120
0130
0135
0140
0145
0146
0147
0150
0160
0170
0180
0185
0186
0187
0190
0200
0210
0220
0230
0240
0245
0246
0247
0250
0260
0270
0280
0290
0300
0305
0306
0310
0320
0330
0340
0350
0360
0370
0380
0380

CBASICIIII

Sample Program Listings
GRAPHICS PRINT PROGRAM LISTING

OPT S,N

ORG =$6000

MODULE

BASE=$0600 : ' start variable space at $5000

DIM A$(128),B$(128): ’'variables for DSKIS$

BASE=$0600 : ' put next variable at same place in memory
DIM NA$(7,32) : ' map directory names every 32 bytes 0-7
BASE=$0608 : ‘' map Extensions at name + 8 for each entry

DIM EX$(7,32) : ' map extensions every 32 bytes 0-7
BASE=0 : ’‘restore variables allocation to normal
DIM FI$(68,12)

RAM64K $30

ON ERROR GOTO 660
MODE=3:FG=0:BG=63

PRATE=9600
FThhkkhkkhkhkRkhhhh kb hhh kb bk khkhhrh Aok hhhhkkhhk
fa SET GRAPHICS MODE & DISPLAY *

Thhkdkhdkhhkhkhhhkhkdhhhkkhdbkhhhkdhkhrhhhbhhhhkbhhhhdhkik

STACK=$6000:HMODE MODE

PALETTE O,FG:PALETTE 1,BG:PALETTE 8,FG:PALETTE 9,BG
BORDER BF: TIMER=0:IRQ OFF

IF TIMER<120 THEN 180 ELSE HMODE 0

Thhkhkhhkhhhkdhhkhdhhhhdkhhhkhhhhrhhrdhhhkrrhhrhhd

" x MAIN MENU PROMPT & INPUT *
fThdkkktkkhdthkhkktdxhkktdthhkhttkhhrtkrhkhkhkhkhkrhktkkthtikk
CLS:PRINT "pRINT, 10AD, sAVE, gRAPHICS"

INPUT “mODE, dIRECTORY OR eXIT";A$

IF AS="" THEN RAM64K 255:END

A=INSTR("PLSGMD",A$): IF A=0 THEN RAM64K 255 : END
ON A GOSUB 250,430,520,150,710,790

GOTO 140
AR R AR AR IA AR AR AA AR AR AR AR A A Ak hdk ke hddhd
** [LASER LINE6 GRAPHICS SCREEN DUMP o

Frkkkhkhkhkhkkrthkkhkhhkkhhkhkhhkhhkhkhkhkhkhkhkhkhhhkhkhkkhkhhkxk

INPUT "ENTER RESOLUTION 75, 100, 150, 300 ";RES
INPUT "DO FORM FEED WHEN DONE (Y/N)";FF$
INPUT “START POSITION 0 OR 1 ";SP$
HMODE MO
MODE$=CHRS$ (27 )+"*t"+RES+"R"
STARTS=CHRS$ (27 )+"*r"+SPS+"A"
IF (MODE=1)OR(MODE=3)THEN TW=80:TW$="080" GOTO 310
TW=160:TW$="160"
TRANSFERS$=CHRS (27 )+"*b"+TWS+"W"
AD=$8000: 'GRAPHICS IN B8000-FFO00
IF SP$<>"0" THEN PRINT #-2,CHRS$(10)
PRINT #-2,MODES$;STARTS;:'SEND MODE & START CMDS
FOR LINE = 0 TO 191
FOR DEPTH = 1 TO 2
PRINT #-2,TRANSFERS$;:‘ SEND TRANSFER CMD
FOR COL = 0 TO TW-1
PUTCHAR #-2,PEEK(AD+COL):NEXT COL,DEPTH
|

-E 4-



CBASICIIII

Sample Program Listings

0400 AD=AD+TW:NEXT LINE
0410 PRINT #-2,CHR$(27);"*rB*;
0415 IF FF$="Y" THEN PRINT #-2,CHRS$(12);

0420 RETURN
(o B R L R e P e
0430 "= LOAD GRAPHICS PAGE *

043] "Hhkkkkkkkrkkkbhhhhd b hr kA hhkhkhhkrhhkd kb h b d bt hhhhd

0440 INPUT "ENTER NAME & DRIVE TO LOAD";FIS$
0450 OPEN"R",1,FI$,256

0460 HMODE MO

0465 Y =LOF(1):IF Y>30720 THEN Y=30720

0466 CLOSE #1:0PEN "I",1,FI$

0470 FOR X=$8000 TO X+Y STEP 1

0490 GETCHAR #1,A

0500 POKE X,A: NEXT X

0510 CLOSE #1:RETURN

0515 "*%kkkkhkkhkkhhkhkhkhkhhhhhkhhhhhhdrhhhhhhdhhhhhhhhhd

0520 ‘= SAVE GRAPHICS PAGE *
0521 Fhkkkhkkbthkhkhkhkthkrthhkrthdrhkrhkthbhkbrtrthkdtrhrhktdhititdrtd
0560 IF MODE AND 1 THEN Y =SBFFF ELSE Y = SF7FF
0590 INPUT "ENTER FILE NAME & DRIVE":FIS$

0600 OPEN"O",#1,FI$

0610 FOR X=$8000 TO Y STEP 1

0620 PUTCHAR #1,PEEK(X)

0630 NEXT X

0640 CLOSE #1

0650 RETURN

D655 '*kkkkdkhhhkhhhhhkhkhdhh ko hkrh ok hhhhhkhhkhhkdhdk
0660 '* ERROR HANDLER »

D661 '"*kkkdkhkhhkkkhkkhhkdhhhhkhhddkdhhhhhbhhhhdhdhrodddtsd

0670 HMODE 0

0680 PRINT "ERROR #";ERR;" IN LINE #";ERL
0690 INPUT “PRESS ENTER TO RESTART";AS
0700 GOTO 120

N B e T e

0710 ** SET GRAPHICS MODE *
07]1] "*kkkdkkdkkkdhhdhdhdhhhhhhhkdhkhdhkdbhhhhdhhhdbhbddhdk
0720 HMODE MO

0730 GETCHAR #0,A

0740 IF A=8 THEN MODE MODE -1

0750 IF A=9 THEN MODE MODE +1

0760 IF MODE <0 THEN MODE=4

0770 IF MODE >4 THEN MODE= 0

0780 IF A=13 THEN RETURN ELSE 720

078] '"#**kkdkhkhkkhhhhhhhdhhhhdhhhhhdhhhhhhdhhhdhhdhhkdhdi

0790 '* DIRECTORY DISPLAY %

0?91 T e g s s de e e de v e e de o A ok ok e ok e b sk e vk ok vk ok b o ok ok ok gk o b ok e ke ok

0800 CLS:INPUT "DIRECTORY DRIVE #";C$

0810 IF CS="" THEN RETURN

0820 D=VAL(C$)

0830 FOR I = 0 TO 68: FIS(I)="":NEXT: I = 1

0840 DRIVE D

0850 FOR S=3 TO 11: ' read sectors 3 thru 11 of directory track

=B G



0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980

CBASICIIII
Sample Program Listings

DSKIS$ D,17,S,AS$,BS$ : ' read sector on track 17
FOR L=0 TO 7:' loop for 8 entries per sectory
PK=PEEK (VARPTR (NAS(L)))

IF PK=$FF OR PK=0 THEN 920:’' empty entry
FIS(I)= LEFT$(NAS(L),8)+"."+LEFTS(EXS(L),3)

I =1+ 1 :* NEXT ARRAY ENTRY

NEXT L,S: ' loop for 8 entries & all sectors
IF I=1 THEN 970:' NO ENTRIES

FORF=1T01I -1

PRINT F;"-"; FI$(F),

NEXT: PRINT

INPUT"PRESS ENTER TO RETURN TO MENU";F$
RETURN

= 'f=





