

C Compiler User's Guide
From nitros9

Contents

� 1 The C Compiler System
� 1.1 Introduction
� 1.2 The Language Implementation

� 1.2.1 Differences From the K&R Specification
� 1.3 Enhancements and Extensions

� 1.3.1 The "Direct" Storage Class
� 1.3.2 Embedded Assembly Language
� 1.3.3 Control Character Escape Sequences

� 1.4 Implementation-Dependent Characteristics
� 1.4.1 Data Representation and Storage
� 1.4.2 Register Variables
� 1.4.3 Access to Command Line Parameters

� 1.5 System Calls and the Standard Library
� 1.5.1 Operating System Calls
� 1.5.2 The Standard Library

� 1.6 Run-Time Arithmetic Error Handling
� 1.7 Achieving maximum Program Performance

� 1.7.1 Programming Considerations
� 1.7.2 The Optimizer Pass
� 1.7.3 The Profiler

� 1.8 C Compiler Component Files and File Usage
� 1.8.1 Temporary Files

� 1.9 Running the Compiler
� 1.9.1 File Name Suffix Conventions

� 1.10 Compiler Option Flags
� 1.10.1 Command Line and Option Flag Examples

� 2 Characteristics of Compiled Programs
� 2.1 The Object Code Module

� 2.1.1 Module Header
� 2.1.2 Execution Offset
� 2.1.3 Storage Size
� 2.1.4 Module Name
� 2.1.5 Information
� 2.1.6 Executable Code
� 2.1.7 String Literals
� 2.1.8 Initialization Data and its Size
� 2.1.9 Data References

� 2.2 Memory Management
� 2.2.1 Typical C Program Memory Map
� 2.2.2 Compile Time Memory Allocation

� 3 System Calls

� 3.1 abort - Stop the program and produce a core dump
� 3.2 abs - Absolute value
� 3.3 access - Give file accessibility
� 3.4 chain - Load and execute a new program
� 3.5 chdir, chxdir - Change directory
� 3.6 chmod - Change access permissions of a file
� 3.7 chown - Change the ownership of a file
� 3.8 close - Close a file
� 3.9 crc - Compute a cyclic redundancy count
� 3.10 creat - Create a new file
� 3.11 defdrive - Get default system drive
� 3.12 dup - Duplicate an open path number
� 3.13 exit, _exit - Task termination
� 3.14 getpid - Get the task id
� 3.15 getstat - Get file status
� 3.16 getuid - Return user id
� 3.17 intercept - Set function for interrupt processing
� 3.18 kill - Send an interrupt to a task
� 3.19 lseek - Position a file
� 3.20 mknod - Create a directory
� 3.21 modload, modlink - Return a pointer to a module structure
� 3.22 munlink - Unlink a module
� 3.23 _os9 - System call interface from C programs
� 3.24 open - Open a file for read/write access
� 3.25 os9fork - Create a process
� 3.26 pause - Halt and wait for interrupt
� 3.27 prerr - Print error message
� 3.28 read, readln - Read from a file
� 3.29 sbrk, ibrk - Request additional working memory
� 3.30 setptr - Set process priority
� 3.31 setime, getime - Set and get system time
� 3.32 setuid - Set user id
� 3.33 setstat - Set file status
� 3.34 signal - Catch or ignore interrupts
� 3.35 stacksize, freemem - Obtain stack reservation size
� 3.36 _strass - Byte by byte copy
� 3.37 tsleep - Put process to sleep
� 3.38 unlink - Remove directory entry
� 3.39 wait - Wait for task termination
� 3.40 write, writeln - Write to a file or device

� 4 Standard Library
� 4.1 atof, atoi, atol — ASCII to number conversions
� 4.2 fflush, fclose - Fluse or close a file
� 4.3 feof, ferror, clearerr, fileno - Return status information of files
� 4.4 findstr, findnstr - String search
� 4.5 fopen - Open a file and return a file pointer

� 4.6 fread, fwrite - Read/write binary data
� 4.7 fseek, rewind, ftell - Position in a file or report current position
� 4.8 getc, getchar - Return next character to be read from a file
� 4.9 gets, fgets - Input a string
� 4.10 isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint,

iscntrl, isascii - Character classification
� 4.11 l3tol, ltol3 - Convert between long integers and 3-byte integers
� 4.12 longjmp, setjmp - Jump to another function
� 4.13 malloc, free, calloc - Memory allocation
� 4.14 mktemp - Create unique temporary file name
� 4.15 printf, fprintf, sprintf - Formatted output
� 4.16 putch, putchar, putw - Put character or word in a file
� 4.17 puts, fputs - Put a string on a file
� 4.18 qsort - Quick sort
� 4.19 scanf, fscanf, sscanf - Input string interpretation
� 4.20 setbuf - Fix file buffer
� 4.21 sleep - Stop execution for a time
� 4.22 strcat, strncat, strcmp, strncmp, strcpy, strhcpy, strncpy, strlen, index,

rindex - String functions
� 4.23 system - Shell command request
� 4.24 toupper, tolower - Character translation
� 4.25 ungetc - Put character back on input

� 5 Compiler Generated Error Messages
� 6 Compiler Phase Command Lines

� 6.1 Using and Linking to User Defined Libraries
� 7 Interfacing to BASIC09

� 7.1 Example 1 — Simple Integer Arithmetic Case
� 7.2 Example 2 - More Complex Integer Arithmetic Case
� 7.3 Example 3 - Simple String Manipulation
� 7.4 Example 4 — Quicksort
� 7.5 Example 5 - Matrix Elements

� 8 Relocating Macro Assembler Reference
� 8.1 Symbolic Names
� 8.2 Label Field
� 8.3 Undefined Names
� 8.4 Listing Format
� 8.5 Section Location Counters
� 8.6 Section Directives

� 8.6.1 PSECT Directive
� 8.6.2 VSECT Directive
� 8.6.3 CSECT Directive
� 8.6.4 RZB Statement

� 8.7 Macros
� 8.7.1 Macro Structure
� 8.7.2 Macro Arguments
� 8.7.3 Macro Automatic Internal Labels

� 8.7.4 Additional Comments About Macros

The C Compiler System

Introduction

The C programming language is rapidly growing in popularity and seems destined to

become one of the most popular programming languages used for microcomputers. The

rapid rise in the use of C is not surprising. C is an incredibly versatile and efficient

language that can handle tasks that previously would have required complex assembly

language programming.

C was originally developed at the Bel Telephone Laboratories as an implementation

language for the UNIX operating system by Brian Kernighan and Dennis Ritchie. They

also wrote a book titled The C Programming Language which is universally accepted as

the standard for the language. It is an interesting reflection on the language that although

no formal industry-wide "standard" was ever developed for C, programs written in C tend

to be far more portable between radically different computer systems as compared to so-

called "standardized" languages such as BASIC, COBOL, and PASCAL. The reason C is

so portable is that the language is so inherently expandable that if some special function

is required, the user can create a portable extension to the language, as opposed to the

common practice of adding additional statements to the language. For example, the

number of special-purpose BASIC dialects defies all reason. A lesser factor is the

underlying UNIX operating system, which is also sufficiently versatile to discourage

nonstandardization of the language. Indeed, standard C compilers and UNIX are

intimately related.

Fortunately, the 6809 microprocessor, the OS-9 operating system, and the C language

form an outstanding combination. The 6809 was specifically designed to efficiently run

high-level languages, and its stack-oriented instruction set and versatile repertoire of

addressing modes handle the C language very well. As mentioned previously, UNIX and

C are closely related, and because OS-9 is derived from UNIX, it also supports C to the

degree that almost any application written in C can be transported from a UNIX system

to an OS-9 system, recompiled, and corrected executed.

The Language Implementation

OS-9 C is implemented almost exactly as described in The C Programming Language by

Kernighan and Ritchie (hereafter referred to as K&R). A copy of this book, which serves

as the language reference manual, is included with each software package.

Although this version of C follows the specification faithfully, there are some differences.

The differences mostly reflect parts of C that are obsolete or the constraints imposed by

memory size limitations.

Differences From the K&R Specification

� Bit fields are not supported.
� Constant expressions for initializers may include arithmetic operators only if all

the operands are of type int or char.
� The older forms of assignment operators, =+ or =*, which are recognized by some

C compilers, are not supported. You must use the newer forms, +=, *=, etc.
� "#ifdef (#ifndef) ... [#else...] #endif" is supported but "#if <constant expression>"

is not.
� It is not possible to extend macro definitions or strings over more than one line of

source code.
� The escape sequence for newline '\n' refers to the ASCII carriage return character

(used by OS-9 for end-of-line), not linefeed (hex 0A). Programs which use '\n' for
end-of-line (which includes all programs in K&R) will still work properly.

Enhancements and Extensions

The "Direct" Storage Class

The 6809 microprocessor instruction for accessing memory via an index register or the

stack pointer can be relatively short and fast when they are used in C programs to access

"auto" (function local) variables or function arguments. The instructions for accessing

global variables are normally not so nice and must be four-bytes long and

correspondingly slow. However, the 6809 has a nice feature which helps considerably.

Memory, anywhere in a single page (256 byte block), may be accessed with fast, two

byte instructions. This is called the "direct page", and at any time its location is specified

by the contents of the "direct page register" within the processor. The linkage editor sorts

out where this should be, and it need not concern the program, who only needs to specify

for the compiler which variables should be in the direct page to give the maximum

benefit in code size and execution speed.

To this end, a new storage class specifier is recognized by the compiler. In the manner of

K&R page 192, the sc-specifier list is extended as follows:

Sc-specifier: auto

 static

 extern

 register

 typedef

 direct (extension)

 extern direct (extension)

 static direct (extension)

The new keyword may be used in place of one of the other sc-specifiers, and its effect is

that the variable will be placed in the direct page. direct creates a global direct page

variable. extern direct references an external-type direct page variable and static direct

creates a local direct page variable. These new classes may not be used to declare

function arguments. "Direct" variables can be initialized but will, as with other variables

not explicitly initialized, have the value zero at the start of program execution. 255 bytes

are available in the direct page (the linker requires one byte). If all the direct variables

occupy less than the full 255 bytes, the remaining global variables will occupy the

balance and memory above if necessary. If too many bytes of storage are requested in the

direct page, the linkage editor will report an error, and the programmer will have to

reduce the use of direct variables to fit the 256 bytes addressable by the 6809.

It should be kept in mind that direct is unique to this compiler, and it may not be possible

to transport programs written using direct to other environments without modification.

Embedded Assembly Language

As versatile as C is, occasionally there are some things that can only be done (or done at

maximum speed) in assembly language. The OS-9 C compiler permits user-supplied

assembly-language statements to be directly embedded in C source programs.

A line beginning with #asm switches the compiler into a mode which passes all

subsequent lines directly to the assembly-language output, until a line beginning with

#endasm is encountered. #endasm switches the mode back to normal. Care should be

exercised when using this directive so that the correct code section is adhered to. Normal

code from the compiler is in the PSECT (code) section. If your assembly code uses the

VSECT (variable) section, be sure to put an ENDSECT directive at the end to leave the

state correct for following compiler generated code.

Control Character Escape Sequences

The escape sequence for non-printing characters in character constants and strings (see

K&R page 181) are extended as follows:

 linefeed (LF): \l (lowercase 'ell')

This is to distinguish LF (hex OA) from \n which on OS-9 is the same as \r (hex OD).

 bit patterns: \NNN (octal constant)

 \dNNN (decimal constant)

 \xNN (hexadecimal constant)

For example, the following all have the value 255 (decimal):

 \377 \xff \d255

Implementation-Dependent Characteristics

K&R frequently refer to characteristics of the C language whose exact operations depend

on the architecture and instruction set of the computer actually used. This section

contains specific information regarding this version of C for the 6809 processor.

Data Representation and Storage

Each variable type requires a specific amount of memory for storage. The sizes of the

basic types in bytes are as follows:

Data Type Size Internal Representation

char 1 two's complement binary

int 2 two's complement binary

unsigned 2 unsigned binary

long 4 two's complement binary

float 4 binary floating point (see below)

double 8 binary floating point (see below)

This compiler follows the PDP-11 implementation and format in that char is converted to

int by sign extension, short or short int means int, long int means long, and long float

means double. The format for double values is as follows:

(low byte) (high byte)

+-+------------------------------------+----------+

| | seven byte | 1 byte |

| | mantissa | exponent |

+-+------------------------------------+----------+

 ^ sign bit

The form of the mantissa is sign and magnitude with an implied "1" bit at the sign bit

position. The exponent is biased by 128. The format of a float is identical, except that the

mantissa is only three bytes long. Conversion from double to float is carried out by

truncating the least significant (right-most) four bytes of the mantissa. The reverse

conversion is done by padding the least significant four mantissa bytes with zeros.

Register Variables

One register variable may be declared in each function. The only types permitted for

register variables are int, unsigned, and pointer. Invalid register variable declarations are

ignored; i.e., the storage class is made auto. For further details see K&R page 81.

A considerable saving in code size and speed can be made by judicious use a register

variable. The most efficient use is made of it for a pointer or a counter for a loop.

However, if a register variable is used in a complex arithmetic expression, there is no

savings. The "U" register is assigned to register variables.

IMPORTANT NOTE: Upper- and lowercase letters cannot be mixed as in Basic09. For

example, Prog.c and prog.c are distinct names. Since the Color Computer is usually used

in uppercase only, it is necessary to enter the following commands to use upper- and

lowercase: TMODE -UPC and CLEAR<0>.

Access to Command Line Parameters

The standard C arguments argc and argv are available to main as described in K&R

page 110. The startup routine for C programs ensures that the parameter string passed to

it by the parent process is converted into null-terminated strings as expected by the

program. In addition, it will run together as a single argument any strings enclosed

between single or double quotes ("'" or '"'). If either is part of the string required, then the

other should be used as a delimiter.

System Calls and the Standard Library

Operating System Calls

The system interface supports almost all the system calls of both OS-9 and UNIX. In

order to facilitate the portability of programs from UNIX, some of the calls use UNIX

names rather than OS-9 names for the same function. There are a few UNIX calls that do

not have exactly equivalent OS-9 calls. In these cases, the library function simulates the

function of the corresponding UNIX call. In cases where there are OS-9 calls that do not

have UNIX equivalents, the OS-9 names are used. Details of the calls and a name cross-

reference are provided in the C System Calls section of this manual.

The Standard Library

The C compiler includes a very complete library of standard functions. It is essential for

any program which uses functions from the standard library to have the statement:

 #include <stdio.h>

See the C Standard Library section of this manual for details on the standard library

functions provided.

IMPORTANT NOTE: If output via printf(), fprintf(), or sprintf() of long integers is

required, the program must call pflinit() at some point; this is necessary so that programs

not involving longs do not have te extra longs output code appended. Similarly, if floats

or doubles are to be printed, pffinit() must be called. These functions do nothing;

existence of calls to them in a program informs the linker that the relevant routines are

also needed.

Run-Time Arithmetic Error Handling

K&R leave the treatment of various arithmetic errors open, merely saying that it is

machine dependent. This implementation deals with a limited number of error conditions

in a special way; it should be assumed that the results of other possible errors are

undefined.

Three new system error numbers are defined in <errno.h>:

 #define EFPOVR 40 /* floating point overflow or underflow */

 #define EDIVERR 41 /* division by zero */

 #define EINTERR 42 /* overflow on conversion of floating point to long integer */

If one of these conditions occur, the program will send a signal to itself with the value of

one of these errors. If not caught or ignored, this will cause termination of the program

with an error return to the parent process. However, the program can catch the interrupt

using signal() or intercept() (see C System Calls), and in this case the service routine has

the error number as its argument.

Achieving maximum Program Performance

Programming Considerations

Because the 6809 is an 8/16 bit microprocessor, the compiler can generate efficient code

for 8 and 16 bit objects (char, int, etc.). However, code for 32 and 64 bit values (long,

float, double) can be at least four times longer and slower. Therefore don't use long,

float, or double where int or unsigned will do.

The compiler can perform extensive evaluation of constant expressions provided they

involve only constants of type char, int, and unsigned. There is no constant expression

evaluation at compile-time (except single constants and casts of them) where there are

constants of type long, float, or double, therefore, complex constant expressions

involving these types are evaluated at run time by the compiled program. You should

manually compute the value of constant expressions of these types if speed is essential.

The Optimizer Pass

The optimizer pass automatically occurs after the compilation passes. It reads the

assembler source code text and removes redundant code and searches for code sequences

that can be replaced by shorter and faster equivalents. The optimizer will shorten object

code by about 11% with a significant increase in program execution speed. The optimizer

is recommended for production versions of debugged programs. Because this pass takes

additional time, the -O compiler option can be used to inhibit it during error-checking-

only compilation.

The Profiler

The profiler is an optional method used to determine the frequency of execution of each

function in a C program. It allows you to identify the most frequently used functions

where algorithmic or C source code programming improvements will yield the greatest

gains.

When the -P compiler option is selected, code is generated at the beginning of each

function to call the profiler module (called _prof), which counts invocations of each

function during program execution. When the program has terminated, the profiler

automatically prints a list of all functions and the number of times each was called. the

profiler slightly reduces program execution speed. See prof.c source for more

information.

C Compiler Component Files and File Usage

Compilation of a C program by cc requires that the following files be present in the

current execution direction (CMDS).

OS-9 Level I Systems:

cc1 compiler executive program

c.prep macro pre-processor

c.pass1 compiler pass 1

c.pass2 compiler pass 2

c.opt assembly code optimizer

c.asm relocating assembler

c.link linkage editor

OS-9 Level II Systems:

cc2 compiler executive program

c.prep macro pre-processor

c.comp compiler proper

c.asm relocating assembler

c.link linkage editor

In addition a file called clib.l contains the standard library, math functions, and system

library. The file cstart.r is the setup code for compiled programs. Both of these files must

be located in a directory named LIB on drive /D1. The DEFS directory must also be on

/D1.

If, when specifying #include files for the processor to read in, the programmer uses angle

brackets, < and >, instead of parentheses, the file will be sought starting at the DEFS

directory.

Temporary Files

A number of temporary files are created in the current data directory during compilation,

and it is important to ensure that enough space is available on the disk drive. As a rough

guide, at least three times the number of blocks in the largest source file (and its include

files) should be free.

The identifiers etext, edata, and end are predefined in the linkage editor and may be used

to establish the address of the end of executable text, initialized data, and uninitialized

data respectively.

Running the Compiler

There are two commands which invoke distinct versions of the compiler. cc1 is for OS-9

Level I which uses a two pass compiler, and cc2 is for Level II which uses a single pass

version. Both versions of the compiler work identically, the main difference is that cc1

has been divided into two passes to fit the smaller memory size of OS-9 Level I systems.

In the following text, cc refers to either cc1 or cc2 as appropriate for your system. The

syntax of the command line which calls the compiler is:

 cc [option-flags] file {file}

One file at a time can be compiled, or a number of files may be compiled together. The

compiler manages the compilation through up to four stages: pre-processor, compilation

to assembler code, assembly to relocatable module, and linking to binary executable code

(in OS-9 memory module format).

The compiler accepts three types of source files, provided each name on the command

line has the relevant postfix as show below. Any of the above file types may be mixed on

the command line.

File Name Suffix Conventions

Suffix Usage

.c C source file

.a assembly language source file

.r relocatable module

none executable binary (OS-9 memory module)

There are two modes of operation: multiple source file and single source file. The

compiler selects the mode by inspecting the command line. The usual mode is single

source and is specified by having only one source file named on the command line. Of

course, more than one source file may be compiled together by using the #include

facility in the source code. In this mode, the compiler will use the name obtained by

removing the postfix from the name supplied on the command line, and the output file

(and the memory module produced) will have this name. For example:

 cc prg.c

will leave an executable file called prg in the current execution directory.

The multiple source mode is specified by having more than one source file name on the

command line. In this mode, the object code output file will have the name output in the

current execution directory, unless a name is given using the -f= option (see below).

Also, in multiple source mode, the relocatable modules generated as intermediate files

will be left int he same directories as their corresponding source files with the postfixes

changed to .r. For example:

 cc prg1.c /d0/fred/prg2.c

will leave an executable file called output in the current execution directory, one called

prg1.r in the current data directory, and prg2.r in /d0/fred.

 CC -E=3 FNAME.C -F=PROG

compiles the file called FNAME.C into an executable object file named PROG and sets

the module revision level to 3.

 CC PROG.C -DIDENTIFIER=VALUE

compiles the program with a definition identifier being passed to the compiler. The

definition being passed is used within the source to control compilation via #ifdef/#ifndef

functions.

Compiler Option Flags

The compiler recognizes several command-line option flags which modify the

compilation process where needed. All flags are recognized before compilation

commences so the flags may be placed anywhere on the command line. Flags may be ran

together as in -ro, except where a flag is followed by something else; see -f= and -d for

examples:

-A Suppresses assembly, leaving the output as assembler code in a file whose
name is postfixed .a.

-E=number Sets the edition number constant byte to the number given. This is an OS-9
convention for memory modules.

-O Inhibits the assembly code optimizer pass. The optimizer will shorten object
code by about 11% with a comparable increase in speed and is
recommended for production versions of debugged programs.

-P Invokes the profiler to generate function invocation frequency statistics after
program execution.

-R Suppresses linking library modules into an executable program. Outputs are

left in files with postfixes .r.

-M=memory

size
Instructs the linker to allocate memory size for data, stack, and parameter
area. Memory size may be expressed in pages (an integer) or in kilobytes by
appending k to an integer. For more details of the use of this option, see the
Memory Management section of this manual.

-L=filename Specifies a library to be searched by the linker before the Standard Library
and system interface.

-F=path Overrides the above output file naming. The output file will be left with
filename as its name. This flag does not make sense in multiple source
mode, and either the -a or -r flag is also present. The module will be called
the last name in path.

-C Outputs the source code as comments with the assembler code.

-S Stops the generation of stack-checking code. -S should only be used with
great care when the application is extremely time-critical and when the use
of the stack by compiler generated code is fully understood.

-D identifier Equivalent to #define identifier written in the source file. -D is useful where
different versions of a program are maintained in one source file and
differentiated by means of the #ifdef or #ifndef pre-processor directives. If
the identifier is used as a macro for expansion by the pre-processor, 1 will
the expanded value unless the form -d identifier=string is used in which
case the expansion will be string.

Command Line and Option Flag Examples

command line action output file(s)

cc prg.c compile to an executable program prg

cc prg.c -a compile to assembly language source code prg.a

cc prg.c -r compile to relocatable module prg.r

cc prg1.c prg2.c
prg3.c

compile to executable program
prog1.r, prg2.r,
prg3.r, output

cc prg1.c prg2.a
prg3.r

compile prg1.c, assemble prg2.a and combine all
into an executable program

prg1.r, prg2.r

cc prg1.c prg2.c -
a

compile to assembly language source code prg1.a, prg2.a

cc prg1.c, prg2.c
-f=prg

compile to executable program prg

Characteristics of Compiled Programs

The Object Code Module

The compiler produces position-independent, reentrant 6809 code in a standard OS-9

memory module format. The format of an executable program module is shown below.

Detailed descriptions of each section of the module are given on the following pages.

 Module Section

 Offset Size (bytes)

 +-----------------------------+

 $00 | |

 | Module Header | 8

 | |

 +-----------------------------+

 $09 | Execution Offset |---+ 2

 +-----------------------------+ |

 $0B | Permanent Storage Size | | 2

 +-----------------------------+ |

 $0D | Module Name | |

 |.............................| |

 | |<--+

 | Executable Code |

 |.............................|

 | String Literals |

 | |

 +-----------------------------+

 | Initializing Data Size | 2

 +-----------------------------+

 | |

 | Initializing Data |

 | |

 +-----------------------------+

 | Data-text Reference Count | 2

 +-----------------------------+

 | |

 | Data-text Reference Offsets |

 | |

 +-----------------------------+

 | Data-data Reference Count | 2

 +-----------------------------+

 | |

 | Data-data Reference Offsets |

 | |

 +-----------------------------+

 | CRC Check Value | 3

 +-----------------------------+

Module Header

This is a standard module header with the type/language byte set to $11 (Program + 6809

Object Code), and the attribute/revision byte set to $81 (Reentrant + 1).

Execution Offset

Used by OS-9 to locate where to start execution of the program.

Storage Size

Storage size is the initial default allocation of memory for data, stack, and parameter area.

For a full description of memory allocation, the section entitled Memory Management

located elsewhere in this manual.

Module Name

Module name is used by OS-9 to enter the module in the module directory. The module

name is followed by the edition byte encoded in cstart. If this situation is not desired it

may be overriden by the -E= option in cc.

Information

Any strings preceded by the directive info in an assembly code file will be placed here. A

major use of this facility is to place in the module the version number and/or a copyright

notice. Note that the #asm pre-compiler instruction may be used in a C source file to

enable the inclusion of this directive in the compiler-generated assembly code file.

Executable Code

The machine code instructions of the program.

String Literals

Quoted strings in the C source are placed here. They are in the null-terminated form

expected by the functions in the Standard Library. NOTE: the definition of the C

language assumes that strings are in the DATA area and are therefore subject to alteration

without making the program non-reentrant. However, in order to avoid the duplication of

memory requirements which would be ncessary if they were to be in the data area, they

are placed in the TEXT (executable) section of the module. Putting the strings in the

executable section implies that no attempt should be made by a C programmer to alter

string literals. They should be copied out first. The exception that proves the rule is the

initialization of an array of type char like this:

 char message[] = "Hello world\n";

The string will be found in the array message in the data area and can be altered.

Initialization Data and its Size

If a C program contains initializers, the data for the initial values of the variables is

placed in this section. The definition of C states that all uninitialized global and static

variables have the value zero when the program starts running, so the startup routine of

each C program first copies the data from the module into the data area and then clears

the rest of the data memory to nulls.

Data References

No absolute addresses are known at compile time under OS-9, so where there are pointer

values in the initializing data, they must be adjusted at run time so that they reflect the

absolute values at that time. The startup routine uses the two data reference tables to

locate the values that need alteration and adjusts them by the absolute values of the bases

of the executable code and data respectively.

For example, suppose there are the following statements in the program being compiled:

 char *p = "I'm a string!";

 char **q = &p;

These declarations tell the compiler that there is to be a char pointer variable, p, whose

initial value is the address of the string and a pointer to a char pointer, q, whose initial

value is the address of p. The variables must be in the DATA section of memory at run

time because they are potentially alterable, but absolute addresses are not known until run

time, so the values that p and q must have are not known at compile time. The string will

be placed by the compiler in the TEXT section and will not be copied out to DATA

memory by the startup routine. The initializing data section of the program module will

contain entries for p and q. They will have as values the offsets of the string from the

base of the TEXT section and the offset of the location of p from the base of the DATA

section respectively.

The startup routine will first copy all the entries in the initializing data section into their

allotted places in the DATA section. then it will scan the data-text reference table for the

offsets of values that need to have the addresses of the base of the TEXT section added to

them. Among thee will be p which, after updating, will point to the string which is in the

TEXR section. Similarly, after a scan of the data-data references, q will point to (contain

the absolute address of) p.

Memory Management

The C compiler and its support programs have default conditions such that the average

programmer need not be concerned with details of memory management. However, there

are situations where advanced programmers may wish to tailor the storage allocation of a

program for special situations. The following information explains in detail how a C

program's data area is allocated and used.

Typical C Program Memory Map

A storage area is allocated by OS-9 when the C program is executed. The layout of this

memory is as follows:

 high addresses

 | | <- SBRK() adds more

 | | memory here

 | |

 +------------------+ <- memend

 | parameters |

 +------------------+

 | |

Current stack | stack | <- sp register

reservation -> +..................+

 | v |

 | | <- standard I/O buffers

 | free memory | allocated here

Current top | |

of data -> |..................| <- IBRK() changes this

 | | memory bound upward

 | requested memory |

 +------------------+ <-- end

 | uninitialized |

 | data |

 +------------------+ <- edata

 | initialized |

 | data |

 +------------------+

 ^ | direct page |

 dpsiz | variables |

 v |------------------+ <- y,dp registers

 low addresses

The overall size of the this memory area is defined by the storage size value stored in the

program's module header. This can be overridden to assign the program additional

memory if the OS-9 Shell # command is used.

The parameter area is where the parameter string from the calling process (typically the

OS-9 Shell) is placed by the system. The initializing routine for C programs converts the

parameter into null-terminated strings and makes pointers to them available to main() via

argc and argv.

The stack area is the currently reserved memory for exclusive use of the stack. As each C

function is entered, a routine in the system interface is called to reserve enough stack

space for the use of the function with an addition of 64 bytes. The 64 bytes are for the use

of user-written assembly code functions and/or the system interface and/or arithmetic

routines. A record is kept of the lowest address so far granted for the stack. If the area

requested would not being this lower, the C function is allowed to proceed. If the new

lower limit would mean that the stack area would overlap the data area, the program stops

with the message:

 **** STACK OVERFLOW ****

on the standard error output. Otherwise, the new lower limit is set, and the C function

resumes as before.

the direct page variables area is where variables reside that have been defined with the

storage class direct in the C source code or in the direct segment in assembly language

code source. Notice that the size of this area is always at least one byte (to ensure that no

pointer to a variable can have the value NULL or 0) and that it is not necessarily 256

bytes.

The uninitialized data area is where the remainder of the uninitialized program variables

reside. These two areas are, in fact, cleared to all zeros by the program entry routine. The

initialized data area is where the initialized variables of the program reside. There are two

globally defined values which may be referred to: edata and end, which are the addresses

of one byte higher than the initialized data and one byte higher than the uninitialized data

respectively. Note that these are not variables; the values are accessed in C using the &

operator as in:

 high = &end;

 low = &edata;

and in assembler:

 leax end,y

 stx high,y

The Y register points to the base of the data area and variables are addresses using Y-

offset indexed instructions.

When the program starts running, the remaining memory is assigned to the "free" area. A

program may call ibrk() to request additional working memory (initialized to zeros) from

the free memory area. Alternatively, more memory can be dynamically obtained using

the sbrk() which requests additional memory from the operating system and returns its

lower bound. If this fails because OS-9 refuses to grant more memory for each reason

sbrk() will return -1.

Compile Time Memory Allocation

If not instructed otherwise, the linker will automatically allocate 1k bytes more than the

total size of the program's variables and strings. This size will normally be adequate to

cover the parameter area, stack requirements, and Standard Library file buffers. The

allocation size may be altered when using the compiler by using the -m option on the

command line. The memory requirements may be stated in pages, for example,

 cc prg.c =m-2

which allocates 512 bytes extra, or in kilobytes, for example:

 cc prg.c -m=10k

The linker will ignore the request if the size is less than 256 bytes.

The following rules can serve as a rough guide to estimate how much memory to specify:

1. The parameter area should be large enough for any anticipated command line
string.

2. The stack should not be less than 128 bytes and should take into account the depth
of function calling chains and any recursion.

3. All function arguments and local variables occupy stack space and each function
entered needs 4 bytes more for the return address and temporary storage of the
calling function's register variable.

4. Free memory is requested by the Standard Library I/O functions for buffers at the
rate of 256 bytes per accessed file. This does not apply to the lower level service
request I/O functions such as open(), read(), or write() nor to stderr which is
always unbuffered, but it does apply to both stdin and stdout (see the Standard
Library documentation).

A good method for getting the feel of how much memory is needed by your program is to

allow the linker to set the memory size to its usually conservative default value. Then, if

the program runs with a variety of input satisfactorily but memory is limited on the

system, try reducing the allocation at the next compilation. If a stack overflow occurs or

an ibrk() call return -1, then try increasing the memory next time. You cannot damage

the system by getting it wrong, but data may be lost if the program runs out of space at a

crucial time. It pays to be in error on the generous side.

System Calls

This section of the C compiler manual is a guide to the system calls available from C

programs.

It is not intended as a definitive description of OS—9 service requests as these are

described in the OS—9 System Programmer's Manual. However, for most calls, enough

information is available here to enable the programmer to write system calls into

programs without looking further.

The names used for the system calls are chosen so that programs transported from other

machines or operating systems should compile and run with as little modification as

possible. However, care should be taken as the parameters and returned values of some

calls may not be compatible with those on other systems. Programmers that are already

familiar with OS—9 names and values should take particular care. Some calls do not

share the same names as the OS—9 assembly language equivalents. The assembly

language equivalent call is shown, where there is one, on the relevant page of the C call

description, and a cross—reference list is provided for those already familiar with OS—9

calls.

The normal error indication on return from a system call is a returned value of —1. The

relevant error will be found in the predefined int errno. Errno always contains the error

from the last erroneous system call. Definitions for the errors for inclusion in the program

are in <errno.h>.

In the See Also sections on the following pages, unless otherwise stated, the references

are to other system calls.

Where #include files are shown, it is not mandatory to include them, but it might be

convenient to use the manifest constants defined in them rather than integers; it certainly

makes for more readable programs.

abort - Stop the program and produce a core dump

Usage

abort()

Description

This call causes a memory image to be written out to the file core in the current directory,

and then the program exits with a status of 1.

abs - Absolute value

Usage

int abs(i)
int i;

Description

Abs returns absolute value of its integer operand.

Caveats

You get what the hardware gives on the largest negative number.

access - Give file accessibility

Usage

access(fname,perm)
char *fname;
int perm

Description

Access returns 0 if the access modes specified in perm are correct for the user to access

fname. -1 is returned if the file cannot be accessed.

The value for perm may be any legal OS-9 mode as used for open() or creat(), it may be

zero, which tests whether the file exists, or the path to it may be searched.

Caveats

Note that the perm value is not compatible with other systems.

Diagnostics

The appropriate error indication, if a value of -1 is returned, may be found in errno.

chain - Load and execute a new program

Usage

chain(modname, paramsize, paramptr, type, lang, datasize)
char *modname, *paramptr;

Assembler Equivalent

os9 F$Chain

Description

The action of F$Chain is described fully in the OS-9 documentation. Chain implements

the service request as described with one important exception: chain will never return to

the caller. If there is an error, the process will abort and return to its parent process. It

might be wise, therefore, for the program to check the existence and access permissions

of the module before calling chain. Permissions may be checked by using modlink() or

modload() followed by munlink().

modname should point to the name of the desired module. paramsize is the length of the

parameter string (which should normally be terminated with a '\n'), and paramptr points

to the parameter string. type is the module type as found in the module header (normally

1: program), and lang should match the language nibble in the module header (C

programs have 1 for 6809 machine code here). datasize may be zero, or it may contain

the number of 256 byte pages to give to the new process as initial allocation of data

memory.

chdir, chxdir - Change directory

Usage

chdir(dirname)
char *dirname;
chxdir(dirname)
char *dirname;

Assembler Equivalent

os9 I$ChgDir

Description

These calls change the current data directory and the current execution directory,

respectively, for the running task. dirname is a pointer to a string that gives a pathname

for a directory.

Diagnostics

Each call returns 0 after a successful call, or -1 if dirname is not a directory path name,

or it is not searchable.

See Also

OS-9 shell commands chd and chx.

chmod - Change access permissions of a file

Usage

#include <modes.h>
chmod(fname, perm)
char *fname;

Description

chmod changes the permission bits associated with a file. fname must be a pointer to a

file name, and perm should contain the desired bit pattern.

The allowable bit patterns are defined in the include file as follows:

 /* permissions */

 #define S_IREAD 0x01 /* owner read */

 #define S_IWRITE 0x02 /* owner write */

 #define S_EXEC 0x04 /* owner execute */

 #define S_IOREAD 0x08 /* public read */

 #define S_IOWRITE 0x10 /* public write */

 #define S_IOEXEC 0x20 /* public execute */

 #define S_ISHARE 0x40 /* sharable */

 #define S_IFDIR 0x80 /* directory */

Only the owner or the super user may change the permissions of a file.

Diagnostics

A successful call returns NULL (0). A -1 is returned if the caller is not entitled to change

permissions or fname cannot be found.

See Also

OS-9 command attr

chown - Change the ownership of a file

Usage

chown(fname, ownerid)
char *fname;

Description

This call is available only to the super user. fname is a pointer to a file name, and

ownerid is the new user-id.

Diagnostics

Zero is returned from a successful call. -1 is returned on error.

close - Close a file

Usage

close(pn)

Assembler Equivalent

os9 I$Close

Description

close takes a path number, pn, as returned from system calls open(), creat(), or dup(),

and closes the associated file.

Termination of a task always closes all open file automatically, but it is necessary to close

files where multiple files are opened by the task, and it is desired to reuse path numbers

to avoid going over the system or process path number limit.

See Also

creat(), open(), dup()

crc - Compute a cyclic redundancy count

Usage

crc(start, count, accum)
char *start, accum[3]

Assembler Equivalent

os9 F$CRC

Description

This call accumulates a CRC into a three-byte array at accum for count bytes starting at

start. All three bytes of acum should be initialized to 0xFF before the first call to crc().

However, repeated calls can be subsequently made to cover an entire module. If the result

is to be used as an OS-9 module CRC, it should have its bytes complemented before

insertion at the end of the module.

creat - Create a new file

Usage

#include <modes.h>
creat(fname, perm)
char *fname;

Assembler Equivalent

os9 I$Creat

Description

creat() returns a path number to a new file available for writing, giving it the permissions

specified in perm and making the task user the owner. If, however, fname is the name of

an existing file, the file is truncated to zero length, and the ownership and permissions

remain unchanged. Note that unlike the OS-9 assembler service request, creat() does not

return an error if the file already exists. access() should be used to establish the existence

of a file if it is important that a file should not be overwritten.

It is unnecessary to specify writing permissions in perm in order to write to the file in the

current task.

The permissions allowed are defined in the include file as follows:

 /* permissions */

 #define S_IPRM 0xFF /* mask for permission bits */

 #define S_IREAD 0x01 /* owner read */

 #define S_IWRITE 0x02 /* owner write */

 #define S_EXEC 0x04 /* owner execute */

 #define S_IOREAD 0x08 /* public read */

 #define S_IOWRITE 0x10 /* public write */

 #define S_IOEXEC 0x20 /* public execute */

 #define S_ISHARE 0x40 /* sharable */

Directories may not be created with this call; use mknod() instead.

Diagnostics

This call returns -1 if there are too many files open, if the pathname cannot be search, if

permission to write is denied, or if the file exists and is a directory.

See Also

write(), close(), chmod()

defdrive - Get default system drive

Usage

char *defdrive()

Description

A call to defdrive() returns a pointer to a string containing the name of the default system

drive. The method used is to consult the Init module for the default directory name. The

name is copied to a static data area and a pointer to it is returned.

Diagnostics

-1 is returned if the Init module cannot be linked.

dup - Duplicate an open path number

Usage

dup(pn)

Assembler Equivalent

os9 I$Dup

Description

dup() takes the path number, pn, as returned from open() or creat() and returns another

path number associated with the same file.

Diagnostics

A -1 is returned if the call fails because there are too many files open or the path number

is invalid.

See Also

open(), creat(), close()

exit, _exit - Task termination

Usage

exit(status)
_exit(status)

Assembler Equivalent

os9 F$Exit

Description

exit() is the normal means of terminating a task. exit() does any cleaning up operations

required before terminating, such as flushing out any file buffers (see Standard I/O), but

_exit() does not.

A task finishing normally, that is returning from main(), is equivalent to a call to exit(0).

The status passed to exit() is available to the parent task if it is executing a wait().

See Also

wait()

getpid - Get the task id

Usage

getpid()

Assembler Equivalent

os9 F$ID

Description

A number unique to the current running task is often useful in creating names for

temporary files. This call returns the task's system id (as returned to its parent by

os9fork()).

See Also

os9fork(), mktemp()

getstat - Get file status

Usage

#include <sgstat.h>
getstat(code, filenum, buffer) /* code 0 */
char *buffer;
getstat(code, filenum) /* codes 1 and 6 */
getstat(code, filenum, size) /* code 2 */
long *size;
getstat(code, filenum, pos) /* code 5 */
long *pos;

Assembler Equivalent

os9 I$GetStt

Description

A full description of getstat can be found in the OS-9 System Programmer's Manual.

code must be the value of one of the standard codes for the getstat service request.

filenum must be the path number of an open file.

The form of the call depends on the value of code.

Code
0

buffer must be the address of a 32-byte buffer into which the relevant status
packet is copied. The header file has the definitions of the various file and device
structures for use by the program.

Code
1

Code 1 only applies to SCF devices and to test for data available. The return value
is zero if there is data available. -1 is returned if there is no data.

Code
2

size should be the address of a long integer into which the current file size is
placed. The return value of the function is -1 on error and 0 on success.

Code
5

pos should be the address of a long integer into which the current file size is
placed. The return value of the function is -1 on error and 0 on success.

Code
6

Returns -1 on EOF and error and 0 on success.

Note that when one of the previous calls returns -1, the actual error is returned in errno.

getuid - Return user id

Usage

getuid()

Assembler Equivalent

os9 F$ID

Description

getuid() returns the real user id of the current task (as maintained in the password file).

intercept - Set function for interrupt processing

Usage

intercept(func)
int (*func)(); /* i.e. "func" is a pointer to a function returning an int */

Assembler Equivalent

os9 F$Icpt

Description

intercept() instructs OS-9 to pass control to func when an interrupt (signal) is received

by the current process.

If the interrupt processing function has an argument, it will contain the value of the signal

received. On return from func, the process resumes at the point in the program where it

was interrupted by the signal. interrupt() is an alternative to the use of signal() to

process interrupts.

As an example, suppose we wish to ensure that a partially completed output file is deleted

if an interrupt is received. The body of the program might include:

 char *temp_file = "temp"; /* name of temporary file */

 int pn = 0; /* path number */

 int intrupt(); /* predeclaration */

 ...

 intercept(intrupt); /* route interrupt processing */

 pn = creat(temp_file, 3); /* make a new file */

 ...

 write(pn, string, count); /* write string to temp file */

 ...

 close(pn);

 pn = 0;

 ...

The interrupt routine might be coded:

 intrupt(sig)

 {

 if(pn)

 {

 /* only done if pn refers to an open file */

 close(pn);

 unlink(temp_file); /* delete */

 }

 exit(sig)

 }

Caveats

intercept() and signal() are mutually incompatible so that calls to both must not appear

in the same program. The linker guards against this by giving an "entry name clash -

_sigint" error if it is attempted.

See Also

signal()

kill - Send an interrupt to a task

Usage

#include <signal.h>
kill(tid, interrupt);

Description

kill() sends the interrupt type interrupt to the task with id tid.

Both tasks, sender and receiver, must have the same user id unless the user is the super

user.

The include file contains definitions of the defined signals as follows:

/* OS-9 signals */

#define SIGKILL 0 /* system abort (cannot be caught or ignored) */

#define SIGWAKE 1 /* wake up */

#define SIGQUIT 2 /* keyboard abort */

#define SIGINT 3 /* keyboard interrupt */

Other user-defined signals may, of course, be sent.

Diagnostics

kill() returns 0 from a successful call and -1 if the task does not exist, the effective user

ids do not match, or the user is not system manager.

See Also

signal, OS-9 shell command kill

lseek - Position a file

Usage

long lseek(pn, position, type)
long position;

Assembler Equivalent

os9 I$Seek

Description

The read or write pointer for the open file with the path number, pn, is positioned by

lseek() to the specified place in the file. The type indicates from where position is to be

measured: if 0, from the beginning of the file; if 1, from the current location; or, if 2,

from the end of the file.

Seeking to a location beyond the end of a file open for writing and then writing to it

creates a hole in the file which appears to be filled with zeros from the previous end to

the position sought.

The returned value is the resulting position in the file unless there is an error, so to find

out the current position use

 lseek(pn, 0l, 1);

Caveats

The argument position must be a long integer. Constants should be explicitly made long

by appending an "l", as above, and other types should be converted using a cast:

 lseek(pn, (long) pos, 1);

Notice also that the return value from lseek() is itself a long integer.

Diagnostics

-1 is returned if pn is a bad path number, or attempting to seek to a position before the

beginning of a file.

See Also

open(), creat(), fseek()

mknod - Create a directory

Usage

#include <modes.h>
mknod(fname, desc)
char *fname;

Assembler Equivalent

os9 I$MakDir

Description

This call may be used to create a new directory. fname should point to a string containing

the desired name of the directory. desc is a descriptor specifying the desired mode (file

type) and permissions of the new file.

The include file defines the possible values for desc as follows:

#define S_IREAD 0x01 /* owner read */

#define S_IWRITE 0x02 /* owner write */

#define S_IEXEC 0x04 /* owner execute */

#define S_IOREAD 0x08 /* public read */

#define S_IOWRITE 0x10 /* public write */

#define S_IOEXEC 0x20 /* public execute */

#define S_ISHARE 0x40 /* sharable */

Diagnostics

Zero is returned if the directory has been successfully made; -1 if the file already exists.

See Also

OS-9 command makdir

modload, modlink - Return a pointer to a module structure

Usage

#include <module.h>
mod_exec *modlink(modname, type, language)
char *modname;
mod_exec *modload(filename, type, language)
char *filename;

Assembler Equivalent

os9 F$Link
os9 F$Load

Description

Each of these calls return a pointer to an OS-9 memory module.

modlink() will search the module directory for a module with the same name as

modname and, if found, increment its link count.

modload() will open the file which has the path list specified by filename and loads

modules from the file adding them to the module directory. The returned value is a

pointer to the first module loaded.

Above, each is shown as returning a pointer to an executable module, but it will return a

pointer to whatever type of module is found.

Diagnostics

-1 is returned on error.

See Also

munlink()

munlink - Unlink a module

Usage

#include <module.h>
munlink(mod)
mod_exec *mod;

Assembler Equivalent

os9 F$UnLink

Description

This call informs the system that the module pointed to by mod is no longer required by

the current process. Its link count is decremented, and the module is removed from the

module directory if the link count reaches zero.

See Also

modlink(), modload()

_os9 - System call interface from C programs

Usage

#include <os9.h>
_os9(code, reg)
char code;
struct registers *reg;

Description

_os9() enables a programmer to access virtually any OS-9 system call directly from a C

program without having to resort to assembly language routines.

Code is one of the codes that are defined in os9.h. os9.h contains codes for the F$ and I$

function/service requests, and it also contains getstt, setstt, and error codes.

The input registers (reg) for the system calls are accessed by the following structure that

is defined in os9.h:

 struct registers {

 char rg_cc, rg_a, rg_b, rg_dp;

 unsigned rg_x, rg_y, rg_u;

 };

An example program that uses _os9() is presented on the following page.

Diagnostics

-1 is returned if the OS-9 call failed. 0 is returned on success.

Program Example

 #include <os9.h>

 #include <modes.h>

 /* this program does an I$GetStt call to get file size */

 main(argc, argv)

 int argc;

 char **argv;

 {

 struct registers reg;

 int path;

 /* tell linker we need longs */

 pflinit();

 /* low level open (file name is first command line param) */

 path = open(*++argv, S_IREAD);

 /* set up regs for call to OS-9 */

 reg.rg_a = path;

 reg.rg_b = SS_SIZE;

 if(_os9(I_GETSTT, ®) == 0)

 printf("filesize = %1x\n", (long) (reg.rg_x << 16) + reg.rg_u);

 else

 printf("OS9 error #%d\n", reg.rg_b & 0xFF); /* failed */

 dumpregs(®); /* take a look at the registers */

 }

 dumpregs(r)

 register struct registers *r;

 {

 printf("cc=%02x\n", r->rg_cc & 0xFF);

 printf(" a=%02x\n", r->rg_a & 0xFF);

 printf(" b=%02x\n", r->rg_b & 0xFF);

 printf("dp=%02x\n", r->rg_dp & 0xFF);

 printf(" x=%04x\n", r->rg_x);

 printf(" y=%04x\n", r->rg_y);

 printf(" u=%04x\n", r->rg_u);

 }

open - Open a file for read/write access

Usage

open(fname, mode)
char *fname;

Assembler Equivalent

os9 I$Open

Description

This call opens an existing file for reading if mode is 1, writing if mode is 2, or reading

and writing if mode is 3. Note that these values are OS-9 specific and are not compatible

with other systems. fname should point to a string representing the pathname of the file.

open() returns an integer as path number which should be used by I/O system calls

referring to the file.

The position where read and writes start is at the beginning of the file.

Diagnostics

-1 is returned if the file does not exist, if the pathname cannot be searched, if too many

files are already open, or if the file permissions deny the requested mode.

See Also

creat(), read(), write(), dup(), close()

os9fork - Create a process

Usage

os9fork(modname, paramsize, paramptr, type, lang, datasize)
char *modname, *paramptr;

Assembler Equivalent

os9 F$Fork

Description

The action of F$Fork is described fully in the OS-9 System Programmer's Manual.

os9fork will create a process that will run concurrently with the calling process. When

the forked process terminates, it will return to the calling process.

modname should point to the name of the desired module. paramsize is the length of the

parameter string which should normally be terminated with a '\n', and paramptr points to

the parameter string. type is the module type as found in the header (normally 1:program)

and lang should match the language nibble in the module header (C programs have 1 for

6809 machine code here). datasize may be zero, or it may contain the number of 256

byte pages to give to the new process as initial allocation of memory.

Diagnostics

-1 will be returned on error, or the Id number of the child process will be returned on

success.

pause - Halt and wait for interrupt

Usage

pause()

Assembler Equivalent

os9 F$Sleep with a value of 0

Description

pause may be used to halt a task until an interrupt is received from kill.

pause always returns -1.

See Also

kill(), signal(), OS-9 shell command kill

prerr - Print error message

Usage

prerr(filnum, errcode)

Assembler Equivalent

os9 F$PErr

Description

prerr prints an error message on the output path as specified by filnum which must be

the path number of an open file. The message depends on errcode which will normally

be a standard OS-9 error code.

read, readln - Read from a file

Usage

read(pn, buffer, count)
char *buffer;
readln(pn, buffer, count)
char *buffer;

Assembler Equivalent

os9 I$Read
os9 I$ReadLn

Description

The path number, pn, is an integer which is one of the standard path numbers 0, 1, or 2,

or the path number should have been returned by a successful call to open(), creat(), or

dup(). buffer is a pointer to space with at least count bytes of memory into which read

will put the data from the file.

It is guaranteed that at most count bytes will be read, but often less will be, either

because, for readln, the file represents a terminal and input stops at the end of a line, or

for both, end-of-file has been reached.

readln causes "line-editing" such as echoing to take place and returns once the first "\n"

is encountered in the input or the number of bytes requested has been read. readln is the

preferred call for reading from the user's terminal.

read does not cause any such editing. See the OS-9 manual for a fuller description of the

actions of these calls.

Diagnostics

read and readln return the number of bytes actually read (0 at end-of-file) or -1 for

physical I/O errors, a bad path number, or a ridiculous count.

Note that end-of-file is not considered an error, and no error indication is returned. Zero

is returned on EOF.

See Also

open(), creat(), dup()

sbrk, ibrk - Request additional working memory

Usage

char *sbrk(increase)
char *ibrk(increase)

Description

sbrk requests an allocation from free memory and returns a pointer to its base.

sbrk requests the system to allocate "new" memory from outside the initial allocation.

Users should read the Memory Management section of this manual for a fuller

explanation of the arrangement.

ibrk requests memory from inside the initial memory allocation.

Diagnostics

sbrk and ibrk return -1 if the requested amount of contiguous memory is unavailable.

setptr - Set process priority

Usage

setpr(pid, priority)

Assembler Equivalent

os9 F$$SPrior

Description

setpr sets the process identified by pid (process id) to have a priority of priority. The

lowest priority is 0 and the highest is 255.

Diagnostics

The call will return -1 if the process does not have the same user id as the caller.

setime, getime - Set and get system time

#include <time.h>
setime(buffer)
getime(buffer)
struct sgtbuf *buffer; /* defined in time.h */

Assembler Equivalent

os9 F$STime
os9 F$GTime

Description

getime returns system time in buffer.

setime sets system time from buffer.

setuid - Set user id

Usage

setuid(uid)

Assembler Equivalent

os9 F$SUser

Description

This call may be used to set the user id for the current task. setuid only works if the caller

is the super user (user id 0).

Diagnostics

Zero is returned from a successful call, and -1 is returned on error.

See Also

getuid()

setstat - Set file status

Usage

#include <sgtstat.h>
setstat(code, filnum, buffer) /* code 0 */
char *buffer
setstat(code, filenum, size) /* code 2 */
long size

Assembler Equivalent

os9 F$SetStt

Description

For a detailed explanation of this call, see the OS-9 System Programmer's Manual.

filenum must be the path number of a currently open file. the only values for code at this

time are 0 and 2. When code is 0, buffer should be the address of a 32 byte structure

which is written to the options section of the path descriptor of the file. The header file

contains definitions of various structures maintained by OS-9 for use by the programmer.

When code is 2, size should be a long integer specifying the new file size.

signal - Catch or ignore interrupts

Usage

#include <signal.h>
(*signal(interrupt, address))()
(*address)();
Which means signal returns a pointer to a function, address is a pointer to a
funtion.

Description

This call is a comprehensive method of catching or ignoring signals sent to the current

process. Notice that kill() does the sending of signals, and signal() does the catching.

Normally, a signal sent to a process causes it to terminate with the status of the signal. If,

in advance of the anticipated signal, this system call is used, the program has the choice

of ignoring the signal or designating a function to be executed when it is received.

Different functions may be designated for different signals.

The values for address have the following meanings:

0 reset to the default i.e. abort when received

1 ignore; this will apply until reset to another value

otherwise
taken to be the address of a C function which is to be executed on receipt of the
signal

If the latter case is chosen, when the signal is received by the process the address is reset

to 0, the default, before the function is executed. This means that if the next signal

received should be caught then another call to signal() should be made immediately. This

is normally the first action taken by the interrupt function. The function may access the

signal number which caused its execution by looking at its argument. On completion of

this function the program resumes at the point at which it was interrupted by the signal.

An example should help to clarify all this. Suppose a program needs to create a

temporary file which should be deleted before exiting. The body of the program might

contain fragments like this:

 pn = creat("temp", 3); /* create a temporary file */

 signal(2, intrupt); /* ensure tidying up */

 signal(3, intrupt);

 write(pn, string, count); /* write to temporary file */

 close(pn); /* finished writing */

 unlink(pn); /* delete it */

 exit(0); /* normal exit */

The call to signal() will ensure that if a keyboard or quit signal is received then the

funtion intrupt() will be executed and this might be written:

 intrupt(sig)

 {

 close(pn); /* close it if open */

 unlink("temp"); /* delete it */

 exit(sig); /* received signal as exit status */

 }

In this case, as the function will be exiting before another signal is received, it is

unnecessary to call signal() again to reset its pointer. Note that either the function

intrupt() should in the source code before the call to signal(), or it should be predeclared.

The signals used by OS-9 are defined in the header file as follows:

 /* OS-9 signals */

 #define SIGKILL 0 /* system abort (cannot be caught or ignored) */

 #define SIGWAKE 1 /* wake up */

 #define SIGQUIT 2 /* keyboard abort */

 #define SIGINT 3 /* keyboard interrupt */

 /* special addresses */

 #define SIG_DFL 0 /* reset to default */

 #define SIG_IGN 1 /* ignore */

Please note that there is another method of trapping signals, namely intercept().

However, since signal() and intercept() are mutually incompatible, calls to both of these

must not appear in the same program. The link-loader will prevent the creation of an

executable program in which both are called by aborting with an "entry name clash" error

for _sigint.

See Also

intercept(), kill(), OS-9 shell command kill

stacksize, freemem - Obtain stack reservation size

Usage

stacksize()
freemem()

Description

For a description of the meaning and use of this call, the user is referred to the Memory

Management section of this manual.

If the stack check code is in effect, a call to stacksize will return the maximum number of

bytes of stack used at the time of the call. This call can be used to determine the stack

size required by a program.

freemem will return the number of bytes of the stack that has not been used.

See Also

ibrk(), sbrk(), freemem(), Global variable memend and value end

_strass - Byte by byte copy

Usage

_strass(s1, s2, count)
char *s1, *s2;

Description

Until such time as the compiler can deal with structure assignment, this function is useful

for copying one structure to another.

count bytes are copied from memory location at s2 to memory at s1 regardless of the

contents.

tsleep - Put process to sleep

Usage

tsleep(ticks)

Description

tsleep deativates the calling process for the specified number of system ticks or

indefinitely if ticks is zero. A tick is system dependent but is usually 100ms.

For a fuller description of this call, see the OS-9 System Programmer's Manual.

unlink - Remove directory entry

Usage

unlink(fname)
char *fname;

Assembler Equivalent

os9 i$Delete

Description

unlink deletes the diretory entry whose name is pointed to by fname. If the entry was the

last link to the file, the file itself is deleted and the disk space occupied made available for

re-use. If, however, the file is open, in any active task, the deletion of the actual file is

delayed until the file is closed.

Errors

Zero is returned from a successful call, -1 if the file does not exist, if the directory is

write-protected, or cannot be searched, if the file is a non-empty directory or a device.

See Also

link(), Os-9 command kill

wait - Wait for task termination

Usage

wait(status)
int *status;
wait(0)

Description

wait is used to halt the current task until a child task has terminated.

The call returns the task id of the terminating task and places the status of that task in the

integer pointed to by status unless status is 0. A wait must be executed for each child

task spawned.

The status will contain the argument of the exit or _exit call in the child task or the signal

number if it was interrupted. A normally terminating C program with no call to exit or

_exit has an implied call of exit(0).

Caveats

Note that the status is the OS-9 status code and is not compatible with codes on other

systems.

Diagnostics

-1 is returned i there is no child to be waited for.

See Also

fork(), signal(), exit(), _exit()

write, writeln - Write to a file or device

Usage

write(pn, buffer, count)
char *buffer;
writeln(pn, buffer, count)
char *buffer;

Assembler Equivalent

os9 I$Write
os9 I$WritLn

Description

pn must be a value returned by open, creat, or dup or should be 0 (stdin), 1 (stdout), or 2

(stderr).

buffer should point to an area of memory from which count bytes are to be written.

write returns the actual number of bytes written, and if this is different from count, an

error has occurred.

Writes in multiples of 256 bytes to file offset boundaries of 256 bytes are the most

efficient.

write causes no "line-editing" to occur on output. writeln causes line-editing and only

writes up to the first '\n' in the buffer if this is found before count is exhausted. For a full

description of the actions of these calls, the reader is referred to the OS-9 documentation.

Diagnostics

-1 is returned if pn is a bad path number, if count is ridiculous, or on physical I/O error.

See Also

creat(), open(), dup()

Standard Library

The Standard Library contains functions which fall into two classes: high level I/O and

convenience.

The high level I/O functions provide facilities that are normally considered part of the

definition of other languages; for example the FORMAT statement of Fortran. In

addition, automatic buffering of I/O channels improves the speed of file access because

fewer system calls are necessary.

The high level I/O functions should not be confused with the low level system calls with

similar names. Nor should file pointers be confused with path numbers. The standard

library functions maintain a structure for each file open that holds status information and

a pointer into the files buffer. A user program uses a pointer to this structure as the

"identity" of the file (which is provided by fopen()), and passes it to the various I/O

functions. The I/O functions will make the low level system calls when necessary.

Using a file pointer in a system call, or a path number in a standard library call, is a

common mistake among beginners to C and, if made, will be sure to crash your program.

The convenience functions include facilities for copying, comparing, and concatenating

strings, converting numbers to strings, and doing the extra work in accessing system

information such as the time.

In the pages which follow, the functions available are described in terms of what they do

and the parameters they expect. The USAGE section shows the name of the function and

the type returned (if not int). The declaration of arguments are shown as they would be

written in the function definition to indicate the types expected by the function. If it is

necessary to include a file before the function can be used, it is shown in the USAGE

section by #include <filename>.

Most of the header files that are required to be included must reside in the "DEFS"

directory on the default system drive. If the file is included in the source program using

angle bracket delimiters instead of the usual double quotes, the compiler will append this

path name to the file name. For example, #include <stdio.h> is equivalent to #include

"/d0/defs/stdio.h", if "/d0" is the path name of the default system drive.

Please note that if the type of the value returned by a function is not int, you should make

a predeclaration in your program before calling it. For example, if you wish to use

atotf(), you should predeclare by having double atof(); somewhere in your program

before a call to it. Some functions which have associated header files in the DEFS

directory that should be included, will be predeclared for you in the header. An example

of this is ftell() which is predeclared in stdio.h. If you are in any doubt, read the header

file.

atof, atoi, atol — ASCII to number conversions

Usage

double atof(ptr)
char *ptr;
long atol(ptr)
char *ptr;
int atoi(ptr)
char *ptr;

Description

Conversions of the string pointed to by ptr to the relevant number type are carried out by

these functions. They cease to convert a number when the first unrecognized character is

encountered.

Each skips leading spaces and tab characters. atof() recognizes an optional sign followed

by a digit string that could possibly contain a decimal point, then an optional "e" or "E",

an optional sign and a digit string. atol() and atoi() recognize an optional sign and a digit

string.

Caveats

Overflow causes unpredictable results. There are no error indications.

fflush, fclose - Fluse or close a file

Usage

#include <stdio.h>
fflush(fp)
FILE *fp;
fclose(fp)
FILE *fp;

Description

fflush causes a buffer associated with the file pointer fp to be cleared by writing out to

the file; of course, only if the file was opened for write or update. It is not normally

necessary to call fflush, but it can be useful when, for example, normal output is to

stdout, and it is wished to send something to stderr which is unbuffered. If fflush were

not used and stdout referred to the terminal, the stderr message will appear before large

chunks of the stdout message even though the latter was written first.

fclose calls fflush to clear out the buffer associated with fp, closes the file, and frees the

butter for use by another fopen call.

The exit() system call and normal termination of a program causes fclose to be called for

each open file.

See Also

System call close(), fopen() setbuf()

Diagnostics

EOF is returned if fp does not refer to an output file or there is an error on writing to the

file.

feof, ferror, clearerr, fileno - Return status information of files

Usage

#include <stdio.h>
feof(fp)
FILE *fp;
ferror(fp)
FILE *fp;
clearerr(fp)
FILE *fp;
fileno(fp)
FILE *fp;

Description

feof returns non-zero if the file associated with fp has reached its end. Zero is returned on

error.

ferror returns non-zero if an error condition occurs or access to the file fp; zero is

returned otherwise. The error condition persists, preventing further access to the file by

other Standard Library functions, until the file is closed, or it is cleared by clearerr.

clearerr resets the error condition on the file fp. This does not "fix" the file or prevent

the error from occurring again; it merely allows Standard Library functions at least to try.

Caveats

These functions are actually macros that are defined in <stdio.h> so their names cannot

be redeclared.

See Also

System call open(), fopen()

findstr, findnstr - String search

Usage

findstr(pos, string, pattern)
char *string, *pattern;
findnstr(pos, string, pattern, size)
char *string, *pattern;

Description

These functions search the string pointed to by string for the first instance of the pattern

pointed to by pattern starting at position pos (where the fist position is 1 not 0). The

returned value is the position of the first matched character of the pattern in the string or

zero if a match is not found.

findstr stops searching the string when a null byte is found in string.

findnstr only stops searching at position pos + size so it may continue path null bytes.

Caveats

The current implementation does not use the most efficient algorithm for pattern

matching so that use on very long strings is likely to be somewhat slower than it might

be.

See Also

index(), rindex()

fopen - Open a file and return a file pointer

Usage

#include <stdio.h>
FILE *fopen(filename, action)
char *filename, *action;
FILE *freopen(filename, action, stream)
char *filename, *action;
FILE *stream;
FILE *fdopen(filedesc, action)
int filedes;
char *action;

Description

fopen returns a pointer to a file structure (file pointer) if the file named in the string

pointed to by filename can be validly opened with the action in the string pointed to by

action.

The valid actions are:

r open for reading

w create for writing

a append (write) at the end of file, or create for writing

r+ open for update

w+ create for update

a+ create or open for update at end of file

d directory read

Any action may have an "x" after the initial letter which indicates to fopen() that it

should look in the current execution directory if a full path name is not given, and the x

also specifies that the file should have execute permission.

e.g. f = fopen("fred", "wx");

Opening for write will perform a creat(). If a file with the same name exists when the file

is opened for write, it will be truncated to zero length. Append means open for write and

position to the end of the file. Writes to the end of the file via putc() etc. will extend the

file. Only if the file does not already exist will it be created.

Note that the type of a file structure is predefined in <stdio.h> as FILE, so that a user

program may declare or define a file pointer by, for example, FILE *f;

Three file pointers are available and can be considered open the moment the program

runs:

stdin the standard input - equivalent to path number 0

stdout the standard output - equivalent to path number 1

stderr standard error output - equivalent to path number 2

All files are automatically buffered except stderr, unless a file is made unbuffered by a

call to setbuf().

freopen is usually used to attach stdin, stdout, and stderr to specified files. freopen

substitutes the file passed to it instead of the open stream. The original stream is closed.

Note that the original stream will be closed even if the open does not succeed.

fdopen associates a stream with a file descriptor. The streams type(r,w,a) must be the

same as the mode of the open file.

Caveats

The action passed as an argument to fopen must be a pointer to a string, not a character.

For example:

 fp = fopen("fred", "r"); is correct, but

 fp = fopen("fred", 'r'); is not

Diagnostics

fopen returns NULL (0) if the call was unsucessful.

See Also

flose(), System call open()

fread, fwrite - Read/write binary data

Usage

#include <stdio.h>
fread(ptr, size, number, fp)
FILE *fp;
fwrite(ptr, size, number, fp)
FILE *fp;

Description

fread reads from the file pointed to by fp. number is the number of items of size size

that are to be read starting at ptr. The best way to pass the argument size to fread is by

using sizeof. fread returns the number of items actually read.

fwrite writes to the file pointed to be fp. number is the number of items of size size

reading them from memory starting at ptr.

Diagnostics

Both functions return NULL (0) at end of file or error.

See Also

fopen(), getc(), putc(), printf(), System calls read(), write()

fseek, rewind, ftell - Position in a file or report current position

Usage

#include <stdio.h>
fseek(fp, offset, place)
FILE &fp;
long offset;
rewind(fp)
FILE *fp;
long ftell(fp)
FILE *fp;

Description

fseek repositions the next character position of a file for either read or write. The new

position is at offset bytes from the beginning of the file if place is O, the current position

if 1, or the end if 2. fseek sorts out the special problems of buffering.

Note that using lseek() on a buffered file will produce unpredictable results.

rewind is equivalent to fseek(fp,0l,0).

ftell returns the current position, measured in bytes, from the beginning of the file pointed

to by fp.

Diagnostics

fseek returns —1 if the call is invalid.

See Also

System call lseek()

getc, getchar - Return next character to be read from a file

Usage

#include <stdio.h>
int getc(fp)
FILE *fp;
int getchar()
int getw(fp)
FILE *fp;

Description

getc returns the next character from the file pointed to by fp.

getchar is equivalent to getc(stdin).

getw returns the next two bytes from the file as an integer.

Under OS—9 there is a choice of service requests to use when reading from a file. read()

will get characters up to a specified number in raw mode i.e. no editing will take place on

the input stream and the characters will appear to the program exactly as in the file.

readln() on the other hand, will honor the various mappings of characters associated with

a Serial Character device such as a terminal and in any case will return to the caller as

soon as a carriage return is seen on the input.

In the vast, majority of cases, it is preferable to use readln() for accessing Serial

Character devices and read() for any other file input. getc() uses this strategy and, as all

file input using the Standard Library functions is routed through getc() so do all the other

input functions. The choice is made when the first call to getc() is made after the file has

been opened. The system is consulted for the status of the file and a flag bit is set in the

file structure accordingly. The choice may be forced by the programmer by setting the

relevant bit before a call to getc(). The flag bits are defined in <stdio.h> as _SCF and

_RBF and the method is as follows: assuming that the file pointer for the file, as returned

by fopen() is f,

 f->_flag |= _SCF;

will force the use of readln() on input and

 f->_flag |= RBF;

will force the use of read(). This trick may be played on the standard streams stdin,

stdout and stderr without the need for calling fopen() but before any input is requested

from the stream.

Diagnostics

EOF(-1) is returned for end of file or error.

See Also

putc(), fread(), fopen(), gets(), ungetc()

gets, fgets - Input a string

Usage

#include <stdio.h>
char *gets(s)
char *s;
char *fgets(s, n, fp)
char *s;
FILE *fp;

Description

fgets reads characters from the file fp and places them in the buffer pointed to by s up to

a carriage return ('\n') but not more than n-1 characters. A null character is appended to

the end of the string.

gets is similar to fgets, but gets is applied to stdin and no maximum is stipulated and the

'\n' is replaced by a null.

Both functions return their first arguments.

Caveats

The different treatment of the n by these functions is retained here for portability reasons.

Diagnostics

Both functions return NULL on end-of-file or error.

See Also

puts(), getc(), scanf(), fread()

isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl,
isascii - Character classification

Usage

#include <ctype.h>
isalpha(c)
etc.

Description

These functions use table lookup to classify characters according to their ASCII value.

The header file defines them as macros which means that they are implemented as fast,

in-line code rather than subroutines.

Each results in non-zero for true or zero for false.

The correct value is guaranteed for all integer values in isascii, but the result is

unpredictable in the others if the argument is outside the range -1 to 127.

The truth tested by each function is as follows:

isalpha c is a letter

isdigit c is a digit

isupper c is an uppercase letter

islower c is a lowercase letter

isalnum c is a letter or a digit

isspace c is a space, tab character, newline, carriage return, or formfeed

iscntrl c is a control character (0 to 32) or DEL (127)

ispunct c is neither control nor alphanumeric

isprint c is printable (32 to 126)

isascii c is in the range -1 to 127

l3tol, ltol3 - Convert between long integers and 3-byte integers

Usage

l3tol(lp, cp, n)
long *lp;
char *cp;
ltol3(cp, lp, n)
long *lp;
char *cp;

Description

Certain system values, such as disk addresses, are maintained in three-byte form rather

than four-byte; these functions enable arithmetic to be used on them.

l3tol converts a vector of n three-byte integers pointed to by cp into a vector of long

integers starting at lp.

ltol3 does the opposite.

longjmp, setjmp - Jump to another function

Usage

#include <setjmp.h>
setjmp(env)
jum_buf env;
longjmp(env, val)
jmp_buf env;

Description

These functions allow the return of program control directly to a higher level function.

They are most useful when dealing with errors and interrupts encountered in a low level

routine.

goto in C has scope only in the function in which it is used; i.e. the label which is the

object of a goto may only be in the sane function. Control can only be transferred

elsewhere by means of the function call, which, of course, returns to the oaller. In certain

abnormal situations a programmer would prefer to be able to start some section of code

again, but this would mean returning up a ladder of function calls with error indications

all the way.

setjmp is used to "mark" a point in the program where a subsequent longjmp can reach.

It places in the buffer, defined in the header file, enough information for longjmp to

restore the environment to that existing at the relevant call to setjmp.

longjmp is called with the environment buffer as an argument and also, a value which

can be used by the caller of setjmp as, perhaps, an error status.

To set the system up, a function will call setjmp to set up the buffer, and if the returned

value is zero, the program will know that the call was the "first time through". If,

however, the returned value is non—zero, it must be a "longjmp" returning from some

deeper level of the program.

Note that the function calling setjmp must not have returned at the time of calling

longjmp, and the environment buffer must be declared globally.

malloc, free, calloc - Memory allocation

Usage

char *malloc(size)
unsigned size;
free(ptr)
char *ptr;
char *calloc(nel, elsize)
unsigned nel, elsize;

Description

malloc returns a pointer to a block of at least size free bytes.

free requires a pointer to a block that has been allocated by malloc; it frees the space to

be allocated again.

calloc allocates space for an array. nel is the number of elements in the array, and elsize

is the size of each element. calloc initializes the space to zero.

Diagnostics

malloc, free, and calloc return NULL(O) if no free memory can be found or if there was

an error.

mktemp - Create unique temporary file name

Usage

char *mktemp(name)
char *name;

Description

mktemp may be used to ensure that the name of a temporary file is unique in the system

and does not clash with any other file name.

name must point to a string whose last five characters are "X"; the Xs will be replaced

with the ASCII representation of the task id.

For example, if "name" points to "foo.XXXXX" and the task id is 351, the returned value

points at the same place but it now holds "foo.351".

See Also

System call getpid()

printf, fprintf, sprintf - Formatted output

Usage

#include <stdio.h>
printf(control [,arg0[, arg1...]])
char *control;
fprintf(fp, control [, arg0[, arg1...]])
FILE *fp;
char *control;
sprintf(string, control [, arg0[, arg1...]])
string [];
char *control;

Description

These three functions are used to place numbers and strings on the output in formatted,

human readable form.

fprintf places its output on the file fp, printf on the standard output, and sprintf in the

buffer pointed to by string. Note that it is the user's responsibility to ensure that this

buffer is large enough.

The control string determines the format, type, and number of the following arguments

expected by the function. If the control does not match the arguments correctly, the

results are unpredictable.

The control may contain characters to be copied directly to the output and/or format

specifications. Each format specification causes the function to take the next successive

argument for output.

A format specification consists of a "%" character followed by (in this order):

An optional minus sign ("-") that means left justification in the field.
An optional string of digits indicating the field width required. The field will be at
least this wide and may be wider if the conversion requires it. The field will be
padded on the left unless the above minus sign is present, in which case it will be
padded on the right. The padding character is, by default, a apace, but if the digit
string starts with a zero ("0"), it will be "0".
An optional dot (".") and a digit string, the precision, which for floating point
arguments indicates the number of digits to follow the decimal point on
conversion, and for strings, the maximum number of characters from the string
argument are to be printed.
An optional character "l" indicates that the following "d", "x", or "o" is tho
specification of a long integer argument. Note that in order for the printing of long

integers to take place, the source code must have in it somewhere the statement
plfinit(), which causes routines to be linked from the library.
A conversion character which shows the type of the argument and the desired
conversion. The recognized conversion characters are:

d,o,x,X
The argument is an integer and the conversion is to decimal, octal, or
hexadecimal, respectively. "X" prints hex and alpha in uppercase.

u
The argument is an integer and the conversion is to an unsigned decimal in the
range O to 65535.

f

The argument is a double, and the form of the conversion is "[-]nnn.nnn" where
the digits after the decimal point are specified as above. If not specified, the
precision defaults to six digits. If the precision is 0, no decimal point or following
digits are printed.

e,E
The argument is a double and the form of the conversion is "[-]n.nnne(+or—)nn";
one digit before the decimal point, and the precision controls the number
following. "E" prints the "e" in uppercase.

g,G
The argument is a double, and either the "f" format or the "e" format is chosen,
whichever is the shortest. If the "G" format is used, the "e" is printed in
uppercase.

c The argument is a character.

s
The argument is a pointer to a string. Characters from the string are printed up to
a null character, or until the number of characters indicated by the precision have
been printed. if the precision is 0 or missing, the characters are not counted.

% No argument corresponding; "%" is printed.

Note in each of the above double conversions, the last digit is rounded.
Also note that in order for the printing of floats or doubles to take place, the
source program must have the statement pffinit() somewhere.

See Also

Kernighan & Ritchie pages 145-147. putc(), scanf()

putc, putchar, putw - Put character or word in a file

Usage

#include <stdio.h>
char putc(ch, fp)
char ch;
FILE *fp;
char putchar(ch)
char *ch;
putw(n, fp)
FILE *fp;

Description

putc adds the character ch to the file fp at the current writing position and advances the

position pointer.

putchar is implemented as a macro (defined in the header file) and is equivalent to

putc(ch, stdout).

putw adds the (two byte) machine word n to the file fp in the manner of putc.

Output via putc is normally buffered except:

(a) when buffering is disabled by setbuf(), and
(b) the standard error output is always unbuffered.

Diagnostics

putc and putchar return the character argument from a successful call, and EOF on end-

of-file or error.

See Also

fopen(), fclose(), fflush(), getc(), puts(), printf(), fread()

puts, fputs - Put a string on a file

Usage

#include <stdio.h>
puts(s)
char *s;
fputs(s, fp)
char *s;
FILE *fp;

Description

fputs copies the (null-terminated) string pointed to by s onto the file fp.

puts copies the string s onto the standard output and appends '\n'.

The terminating null is not copied by either function.

Caveats

The inconsistency of the new-line being appended by puts and not by fputs is dictated by

history and the desire for compatibility.

qsort - Quick sort

Usage

qsort(base, n, size, compfunc)
char *base;
int (*compfunc)(); /* which means a pointer to a function returning an int */

Description

qsort implements the quick-sort algorithm for sorting an arbitrary array of items.

base is the address of the array of n items of size size. compfunc is pointer to a

comparison routine supplied by the user. It will be called by qsort with two pointers to

items in the array for comparison and should return an integer which is less than, equal

to, or greater than 0 where, respectively, the first item is less than, equal to, or greater

than the second.

scanf, fscanf, sscanf - Input string interpretation

Usage

#include <stdio.h>
fscanf(fp, control[, pointer ...])
FILE *fp;
char *control;
scanf(control[, pointer ...])
char *control;
sscanf(string, control[, pointer ...])
char *string, *control;

Description

These functions perform the complement of printf() etc.

fscanf performs conversions from the file fp, scanf from the standard input, and sscanf

from the string pointed to by string.

Each function expects a control string containing conversion specifications, and zero or

more pointers to objects into which the converted values are stored.

The control string may contain three types of fields:

(a) Spaces, tab characters, or '\n' which match any of the three in the input.
(b) Characters not among the above and not "%" which must match characters in
the input.
(c) A "%" followed by an option "*" indicates suppression of assignment, an
optional field width maximum, and a conversion character indicating the type
expected.

A conversion character controls the conversion to be applied to the next field and

indicates the type of the corresponding pointer argument. A field consists of consecutive

non-space characters and ends at either a character inappropriate for the conversion or

when a specified field width is exhausted. When one field is finished, white-space

characters are passed over until the next field is found.

The following conversion characters are recognized:

d A decimal string is to be converted to an integer.

o An octal string; the corresponding argument should point to an integer.

x A hexadecimal string for conversion to an integer.

s
A string of non-space characters is expected and will be copied to the buffer
pointed to by the corresponding argument and a null ("\0") appended. The user

must ensure that the buffer is large enough. The input string is considered
terminated by a space, tab, or "\n".

c

A character is expected and is copied into the byte pointed to by the argument.
The white-space skipping is suppressed for this conversion. If a field width is
given, the argument is assumed to point to a character array and the number of
characters indicated is copied to it. Note to ensure that the next non-white-space
character is read use "%1s" and that two bytes are pointed to by the argument.

e,f
A floating point representation is expected on the input and argument must be a
pointer to a float. Any of the usual ways of writing floating point numbers are
recognized.

[

This denotes the start of a set of matching characters; the inclusion or exclusion of
which delimits the input field. The white-space skipping is suppressed. The
corresponding argument should be a pointer to a character array. If the first
character in the match string is not "^", characters are copied from the input as
long as they can be found in the match string, if the first character is the copying
continues which characters cannot be found in the match string. The match string
is delimited by a "]".

D,O,X
Similar to d,o,x above but the corresponding argument is considered to point to a
long integer.

E,F Similar to e,f above, but the corresponding argument should point to a double.

% a match for "%" is sought; no conversion takes place.

Each of these functions returns a count of the number of fields successfully matched and

assigned.

Caveats

The returned count of matches/assignments does not include character matches and

assignments suppressed by "*". The arguments must all be pointers. It is a common error

to call scanf with the value of an item rather than a pointer to it.

Diagnostics

These functions return EOF on end of input or error and a count which is shorter than

expected for unexpected or unmatched items.

See Also

atio(), atof(), getc(), printf(), Kernighan & Ritchie pp 147-150

setbuf - Fix file buffer

Usage

#include <stdio.h>
setbuf(fp, buffer)
FILE *fp;
char *buffer;

Description

When the first character is written to or read from a file after it has been opened by

fopen(), a buffer is obtained from the system if required and assigned to it. setbuf may be

used to forestall this by assigning a user buffer to the file.

setbuf must be used after the file has been opened and before any I/O has taken place.

The buffer must be of sufficient size and a value for a manifest constant, BUFSIZ, is

defined in the header file for use in declarations.

If the buffer argument is NULL (0), the file, becomes un—buffered and characters are

read or written singly.

Note that the standard error output is unbuffered and the standard output is buffered.

See Also

fopen() ,getc() ,putc()

sleep - Stop execution for a time

Usage

sleep(seconds)
unsigned seconds;

Description

The current task is stopped for the specified time. If seconds is zero, the task will sleep

for one tick.

strcat, strncat, strcmp, strncmp, strcpy, strhcpy, strncpy, strlen, index,
rindex - String functions

Usage

char *strcat(s1, s2)
har *s1, *s2;
char *strncat(s1, s2, n)
char *s1, *s2;
strcmp(s1, s2)
char *s1, *s2;
strncmp(s1, s2, n)
char *s1, *s2;
char *strcpy(s1, s2)
char *s1, *s2;
char *strhcpy(s1, s2)
char *s1, *s2;
char *strncpy(s1, s2, n)
char *s1, *s2;
strlen(s)
char *s;
char *index(s, ch)
char *s, ch;
char *rindex(s, ch)
char *s, ch;

Description

All strings passed to these functions are assumed null-terminated.

strcat appends a copy of the string pointed to by s2 to the end of the string pointed to by

s1. strncat copies at most n characters. Both return the first argument.

strcmp compares strings s1 and s2 for lexicographic order and returns an integer less

than, equal to, or greater than 0 where, respectively, s1 is less than, equal to, or grater

than s2. strncmp compares at most n characters.

strcpy copies characters from s2 to the space pointed to by s1 up to and including the

null byte. strncpy copies exactly n characters. if the string s2 is too short, s1 will be

padded with null bytes to make up the difference. If s2 is too long, s1 may not be null-

terminated. Both functions return the first argument.

strhcpy copies strings with the sign-bit terminator.

strlen returns the number of non-null characters in s.

index returns a pointer to the first occurrence of ch in s or NULL if not found.

rindex returns a pointer to the last occurrence of ch in s or NULL if not found.

Caveats

strcat and strcpy have no means of checking that the space provided is large enough. It

is the user's responsibility to ensure that string space does not overflow.

See Also

findstr()

system - Shell command request

Usage

system(string)
char *string;

Description

system passes its argument to "shell" which executes it as a command line. The task is

suspended until the shell command is completed and system returns the shell's exit status.

The maximum length of string is 80 characters. if a longer string is needed, use os9fork.

See Also

System calls os9fork(), wait()

toupper, tolower - Character translation

Usage

#include <ctype.h>
int toupper(c)
int c;
int tolower(c)
int c;
int _toupper(c)
int c;
int _tolower(c)
int c;

Description

The functions toupper and tolower have as their domain the integers in the range -1

through 255. toupper converts lowercase to uppercase and tolower converts uppercase to

lowercase. All other arguments are returned unchanged.

The macros _toupper and _tolower do the same things as the corresponding functions,

but they have restricted domains and they are faster. The argument to _toupper must be

lowercase, and the argument to _tolower must be uppercase. Arguments that are outside

each macro's domain, such as passing a lowercase to _tolower, yield garbage results.

ungetc - Put character back on input

Usage

#include <stdio.h>
ungetc(ch, fp)
char ch;
FILE *fp;

Description

This function alters the state of the input file buffer such that the next call of getc()

returns ch.

Only one character may be pushed back, and at least one character must have been read

from the file before a call to ungetc.

fseek() erases any pushback.

Diagnostics

ungetc returns its character argument unless no pushback could occur, in which case

EOF is returned.

See Also

getc(), fseek()

Compiler Generated Error Messages

Below is a list of the error messages that the C compiler generates, and, if applicable,

probable causes and the K&R Appendix A section number (in parentheses) to see for

more specific information.

already a local
variable

Variable has already been declared at the current block level. (8.1, 9.2)

argument: <text>
Error from preprocessor. Self-explanatory. Most common cause of this
error is not being able to find an include file.

argument error
Function argument declared as type struct, union, or function. Pointers
to such types, however, are allowed. (10.1)

argument storage
Function arguments may only be declared as storage class register.
(10.1)

bad character
A character not in the C character set (probably a control character)
was encountered in the sour file. (2)

both must be
integral

>> and << operands cannot be float or double. (7.5)

break error
The break statement is allowed only inside a while, do, for, or switch
blocks. (9.8)

can't take address
& operator is not allowed on a register variable. Operand must
otherwise be an lvalue. (7.2)

cannot cast Type result of cast cannot be function or array. (7.2, 8.7)

cannot evaluate
size

Could not determine size from declaration or initializer. (8.6, 14.3)

cannot initialize Storage class or type does not allow variable to be initialized. (8.6)

compiler trouble
Compiler detected something it couldn't handle. Try compiling the
program again. If this error still occurs, contact Radio Shack.

condition needed
While, do, for, switch, and if statements require a condition expression.
(9.3)

constant
expression
required

Initializer expressions for static or external variables cannot reference
variables. They may, however, refer to the address of a previously
declared variable. This installation allows no initializer expressions
unless all operands are of type int or char. (8.6)

constant
overflow

Input numeric constant was too large for the implied or explicit type.
(2.6, [PUP—11])

constant required Variables are not allowed for array dimensions or cases. (8.3, 8.7, 9.7)

continue error
The continue statement is allowed only inside a while, do, or for block.
(9.9)

declaration
mismatch

This declaration conflicts with a previous one. This is typically caused
by declaring a function to return a non—integer type after a reference
has been made to the function. Depending on the line structure of the
declaration block, this error may be reported on the line following the
erroneous declaration. (11, 11.1 11.2)

divide by zero Divide by zero occurred when evaluating a constant expression.

? expected
? is any character that was expected to appear here. Missing
semicolons or braces cause this error.

expression
missing

An expression is required here.

function header
missing

Statement or expression encountered outside a function. Typically
caused by mismatched braces. (10.1)

function type
error

A function cannot be declared as returning an array, function, struct, or
union. (8.4, 10.1)

function
unfinished

End—of—file encountered before the end of function definition.
(10.1)

identifier missing Identifier name required here but none was found.

illegal
declaration

Declarations are allowed only at the beginning of a block. (9.2)

label required Label name required on goto statement. (9.11)

label undefined Goto to label not defined in the current function. (9.12)

lvalue required
Left side of assignment must be able to be “stored into”. Array names,
functions, structs, etc. are not lvalues. (7.1)

multiple defaults Only one default statement is allowed in a switch block. (9.7)

multiple
definition

Identifier name was declared more than once in the sane block level
(9.2, 11.1)

must be integral Type of object required here must be type mt, char, or pointer.

name clash Struct—union member and tag names must be mutually distinct. (8.5)

name in a cast Identifier name found in a cast. Only types are allowed. (7.2, 8.7)

named twice Names in a function parameter list may appear only once. (10.1)

no ‘if’ for ‘else’
Else statement found with no matching if. This is typically caused by
extra or missing braces and/or semicolons. (9.3)

no switch
statement

Case statements can only appear within a switch block. (9.7)

not a function
Primary in expression is not type "function returning...". If this is really
a function call, the function name was declared differently elsewhere.
(7.1)

not an argument Name does not appear in the function parameter list. (10.1)

operand expected Unary operators require one operand, binary operators two. This is

typically caused by misplaced parenthesis, casts or operators. (7.1)

out of memory

Compiler dynamic memory overflow. The compiler requires dynamic
memory for symbol table entries, block level declarations and code
generation. Three major factors affect this memory usage. Permanent
declarations (those appearing on the outer block level (used in include
files)) must be reserved from the dynamic memory for the duration of
the compilation of the file. Each { causes the compiler to perform a
block—level recursion which may involve "pushing down" previous
declarations which consume memory. Auto class initializers require
saving expression trees until past the declarations which may be very
memory—expensive if they exist. Avoiding excessive declarations,
both permanent and inside compound statement blocks, conserve
memory. If this error occurs on an auto initializer, try initializing the
value in the code body.

pointer mismatch Pointers refer to different types. Use a cast if required. (7.1)

pointer or integer
required

A pointer (of any type) or integer is required to the left of the "—>"
operator. (7.1)

pointer required Pointer operand required with unary * operator. (7.1)

primary expected Primary expression required here. (7.1)

should be NULL
Second and third expression of ?: conditional operator cannot be
pointers to different types. If both are pointers, they must be of the
same type or one of the two must be null. (7.13)

**** STACK
OVERFLOW

Compiler stack has overflowed. Most likely cause is very deep lock—
level nesting or hundreds of switch cases.

storage error Reg and auto storage classes may only be used within functions. (8.1)

struct member
mismatch

Identical member names in two different structures must have the same
type and offset in both. (8.5)

struct member
required

Identifier used with * and —> operators must be a structure member
name. (7.1)

struct syntax Brace, comma, etc. is missing in a struct declaration. (8.5)

struct or union
inappropriate

Struct or union cannot be used in this context.

syntax error Expression, declaration, or statement is incorrectly formed.

third expression
missing

? must be followed by a : with expression. This error may be caused by
unmatched parenthesis or other errors in the expression. (7.13)

too long
Too many characters provided in a string initializing a character array.
(8.6)

too many
brackets

Unmatched or unexpected brackets encountered processing an
initializer. (8.6)

too many
elements

More data items supplied for aggregate level in initializer than
members of the aggregate. (8.6)

type error Compiler type matching error. Should never happen.

type mismatch Types and/or operators in expression do not correspond. (6)

typedef — not a
variable

Typedef type name cannot be used in this manner. (8.8)

undeclared
variable

No declaration exists at any block level for this identifier.

undefined
structure

Union or struct declaration refers to an undefined structure name. (8.5)

unions not
allowed

Cannot initialize union members. (8.6)

unterminated
character
constant

Unmatched ' character delimiters. (2.14.3)

unterminated
string

Unmatched " string delimiters. (2.5)

while expected No while found for do statement. (9.5)

Compiler Phase Command Lines

This appendix describes the command lines and options for the individual compiler

phases. Each phase of the compiler may be executed separately. The following

information describes the options available to each phase.

ccl & cc2 (C executives):

 cc [options] file (file) [options]

 Recognized file suffixes:

 .c C source file

 .a Assembly language source file

 .r Relocatable module format file

 Recognized options: (UPPER and lower case is equiv.)

 —a Suppress assembly. Leave output in .a file.

 —e=n Edition number (n) is supplied to c.prep for

 inclusion in module psect and/or to o.link for

 inclusion as the edition number of the linked

 module.

 —o Inhibits assembler code optimizer pass.

 —p Invoke compiler function profiler.

 —r Suppress link step. Leave output in .r file.

 —m=<size> Size in pages (in kbytes if followed by a K) of

 additional memory the linker should allocate to

 object module.

 —l:<path> Library file for linker to search before the

 standard library.

 —f:<path> Override other output naming. Module name (in

 object module) is the last name in the pathlist.

 —f is not allowed with —a or —r.

 —c Output comments in assembly language code.

 —s Suppress generation of stack—checking code.

 —d<NAME> Is equiv to #define <NAME> 1 in the

 preprocessor. —d<NAME>=<STRING> is equivalent to

 #define <NAME> <STRING>.

 -n=<name> output module name. <name> is used to override

 the —f default output name.

 CC1 only:

 —x Create, but do not execute c.oom command file.

 CC2 only:

 -q Quiet mode. Suppress echo of file names.

c.prep (C macro preprocessor)

 c.prep [options] <path>

 <path> is read as input. c.prep causes c.comp to generate a

 psect directive with the last element of the pathlist and _c as

 the psect name. If <path> is /d0/myprog.o, the psect name is

 myprog_c. Output is always to stdout.

 Recognized options:

 —l Cause c.comp to copy source lines to assembly

 output as comments.

 —E<n>

 —e<n> Use <n> as psect edition number.

 -D<NAME> Same as described above for ccl/cc2.

c.comp (One—pass compiler)

 c.comp [options] [<tile>] [options]

 If <tile> is not present, c.comp will read stdin. Input text

 need not be c.prep output, but no preprocessor directives are

 recognized (#include, #define, macros, etc.). Output assembly

 code is normally to stdout. Error message output is always

 written to stdout.

 Recognized options:

 -s Suppress generation of stack checking code.

 —p Generate profile code.

 —o:<path> Write assembly output to <path>.

c.passl (Pass One of Two—pass Compiler)

c.pass2 (Pass Two of Two—pass Compiler)

 c.passl [options] [<file>) [options]

 c.pass2 [options) [<file>] [options]

 Command line and options are the same as o.comp. If the

 options given to c.passl are not given to c.pass2 also, c.pass2

 will not be able to read the c.passl output. Both c.passl and

 c.pass2 read stdin and write stdout normally.

c.opt (Assembly code optimizer)

 c.opt [<inpath>) [<outpath>]

 C.opt reads stdin and writes stdout. <inpath> must be present

 if <outpath> is given. Since c.opt rearranges and changes

 code, comments and assembler directives may be rearranged.

c.asm (Assembler)

 c.asm <file> [options]

 C.asm reads <file> as assemble language input. Errors are

 written to stderr. Options are turned on or off by the

 inclusion of the option character preceded by a -.

 Recognized options:

 —o<path> Write relocatable output to path. Must be a

 disk file.

 —l Write listing to stdout. (default off)

 —c List conditional assembly lines. (default on)

 —f Formfeed for top of form. (default off)

 —g List all code bytes generated. (default off)

 —x Suppress macro expansion listing. (default on)

 —e Print errors. (default on)

 —s Print symbol table. (default off).

 —dn Set lines per page to n. (default 66).

 —wn Set line width to n. (default 80).

c.link (Linker)

 c.link [options] <mainline> [<subi> {<subn>)] [options]

 C.link turns c.asm output into executable form. All input

 files must contain relocatable object format (ROF) files.

 <mainline> specifies the base module from which to resolve

 external references. A mainline module is indicated by setting

 the type/lang value in the psect directive non—zero. No other

 ROF can contain a mainline psect. The mainline and all

 subroutine files will appear in the final linked object module

 whether actually referenced or not.

 For the C Compiler, cstart.r is the mainline module. It is the

 mainline module's job to perform the initialization of data and

 the relocation of any data—text and data—data references within

 the initialized data using the information in the object module

 supplied by c.link.

 Recognized options:

 —o:<path> Linker object output file must be a disk

 file. The last element in <path> is used as the

 module name unless overridden by —n.

 —n<name> Use <name> as output module name.

 —l<path> Use <path> as library file. A library tile

 consists of one or more merged assembly ROF

 files. Each psect in the file is checked to see

 if it resolves any unresolved references. If

 so, the module is included in the final output

 module, otherwise it is skipped. No mainline

 psects are allowed in a library file. Library

 files are searched in the order given on the

 command line.

 —E=<n>

 —e:<n> <n> is used for the edition number in the final

 output module. 1 is used if —e is not present.

 —M<size> <size> indicates the number of pages (kbytes if

 size is followed by a K) of additional memory

 c.link will allocate to the data area of the

 final object module. If no additional memory is

 given c.link adds up the total data stack

 requirements found in the psect of the modules

 in the input modules.

 —m Prints linkage map indicating base addresses of

 the psects in the final object module.

 —s Prints final addresses assigned to symbols in

 the final object module.

 —b:<ept> Link C functions to be callable by BASICO9.

 <ept> is the name of the function to be

 transferred to when BASICO9 executes the RUN

 command.

 —t Allows static data to appear in a BASICO9 call-

 able module. It is assumed the C function call-

 ed and the calling BASICO9 program have provided

 a sufficiently large static storage data area

 pointed to by the Y register.

Using and Linking to User Defined Libraries

A library consists of a group of C procedures or functions that have been separately

compiled into Relocatable Object Files (ROF) and subsequently merged into one library

file.

If, hypothetically, you had created a set of higher level mathematic functions, that you

wanted to convert into a C library. First you would separately compile each one using the

—R option. Then you would merge them all into one large library file. If you need to

scan the library file for available functions you can use the example program RDUMP.C

to inspect any C library file.

For example:

 0S9:CC1 SIN.C COS.C TAN.C ARCOS.C -R

 0S9:CCI ARCSIN.C ARCTAN.C EXP.C LOC.C —R

 0S9:CC1 NLOG.C SQRT.C SQR.C CUBE.C —R

 Then you would:

 0S9:MERGE SIN.R COS.R TAM.R ARCOS.R >TEMP1

 0S9:MERGE ARCSIN.R ARCTAN.R EXP.R LOG.R >TEMP2

 0S9:MERGE NLOG.R SQRT.R SQR.R CUDE.R >TEMP3

 0S9:MERGE TEMP1 TEMP2 TEMP3 >TRIG.L

Then to use the library simply use the -l=<pathlist> option in your command line when

you compile your program.

When the linker is executed the pathlist specified will be searched to resolve any

references made to the functions within the library. The linker searches all specified

libraries in the order specified before searching the standard library. The linker will

resolve all references on a first found basis. This means that the linker will use the first

procedure or function whose name matches a reference to that name and will ignore any

additional functions found that have the same name.

Procedures or functions within a library that use other functions within the same library

should always appear first. For example, in the above example if the ARCSIN routine

used the SIN routine, the SIN routine should be merged into the library file after the

ARCSIN. Another way of putting this is that all references to other procedures within a

library should be forward references.

Interfacing to BASIC09

The object code generated by the Nicroware C Compiler can be made callable from the

BASICO9 “RUN” statement. Certain portions of a BASICO9 program written in C can

have a dramatic effect on execution speed. To effectively utilize this feature, one must be

familiar with both C and BASIC09 internal data representation and procedure calling

protocol.

C type int and BASICO9 type INTEGER are identical; both are two byte two’s

complement integers. C type char and BASICO9 type BYTE and BOOLEAN are also

identical. Keep in mind that C will sign—extend characters for comparisons yielding the

range —128 to 127.

BASICO9 strings are terminated by OxFF (255). C strings are terminated by 0x00 (0). If

the BASICO9 string is of maximum length, the terminator is not present. Therefore,

string length as well as terminator checks must be performed on BASICO9 strings when

processing them with C functions.

The floating point format used by C and BASICO9 are not directly compatible. Since

both use a binary floating point format it is possible to convert BASICO9 reals to C

doubles and vice—versa. Multi—dimensional arrays are stored by BASICO9 in a

different manner than C. Multi—dimensional arrays are stored by BASICO9 in a

column—wise manner; C stores them row—wise. Consider the following example:

 BASICO9 matrix: DIM array(5,3):1NTEGER.

 The elements in consecutive memory locations (read left to right, line by line) are

stored as:

 (1,1),(2,1),(3,1),(4,1),(5,1)

 (1,2),(2,2),(3,2),(4,2),(5,2)

 (1,3),(2,3),(3,3),(4,3),(5,3)

 C matrix: mt array[5][3];

 The elements in consecutive memory locations (read left to right, line by line) are

stored as:

 (1,1),(1,2),(1,3)

 (2,1),(2,2),(2,3)

 (3,1),(3,2),(3,3)

 (4,1),(4,2),(4,3)

 (5,1),(5,2),(5,3)

Therefore to access BASICO9 matrix elements in C, the subscripts must be transposed.

To access element array (4,2) in BASICO9 use array[2][4) in C.

The details on interfacing BASICO9 to C are best described by example. The remainder

of this appendix is a mini tutorial demonstrating the process starting with simple

examples and working up to more complex ones.

Example 1 — Simple Integer Arithmetic Case

This first example illustrates a simple case. Write a C function to add an integer value to

three integer variables.

build bt1.c

? addints(cnt,value,s1,arg1,s2,arg2,s3,arg3,s4)

? int *value,*arg1,*arg2,&arg3;

? {

? *arg1 += *value;

? *arg2 += *value;

? *arg3 + *value;

? }

?

That’s the C function. The name of the function is addints. The name is information for

C and c.link; BASICO9 will not know anything about the name. Page 9—13 of the

BASICO9 Reference manual describes how BASICO9 passes parameters to machine

language modules. Since BASICO9 and C pass parameters in a similar fashion, it is easy

to access BASICO9 values. The first parameter on the BASICO9 stack is a two byte

count of the number of following parameter pairs. Each pair consists of an address and

size of value. For most C functions, the parameter count and pair size is not used. The

address, however, is the useful piece of information. The address is declared in the C

function to always be a "pointer to..." type. BASICO9 always passes addresses to

procedures, even for constant values. The arguments cnt, s1, s2, s3, and s4 are just place

holders to indicate the presence of the parameter count and argument sizes on the stack.

These can be used to check validity of the passed arguments if desired.

The line int *value,*arg1,*arg2,*arg3 declares the parameters (in this case all "pointers

to int"), so the compiler will generate the correct code to access the BASICO9 values.

The remaining lines increment each arg by the passed value. Notice that a simple

arithmetic operation is performed here (addition), so C will not have to call a library

function to do the operation.

To compile this function, the following C compiler command line is used:

 cc2 btl.c —rs

cc2 uses the Level—Two compiler. Replace cc2 with cc1 if you are using the Level-One

compiler. The —r option causes the compiler to leave bt1.r as output, ready to be linked.

The —s option suppresses the call to the stack checking function. Since we will be

making a module for BASICO9, cstart.r will not be used. Therefore, no initialized data,

static data, or stack checking is allowed. More on this later.

The bt1.r file must now be converted to a loadable module that BASICO9 can link to by

using a special linking technique as follows:

 c.link bt1.r —b=addints -o=addints

This command tells the linker to read bt1.r as input. The option —b=addints tells the

linker to make the output file a module that BASICO9 can link to and that the function

addints is to be the entry point in the module. You may give many input files to c.link in

this mode. It resolves references in the normal fashion. The name given to the —b option

indicates which of the functions is to be entered directly by the BASICO9 RUN

command. The option -o=addints says what the name of the output file is to be, in this

case addints. This name should be the name used in the BASICO9 RUN command to

call the C procedure. The name given in the -o= option is the name of the procedure to

RUN. The —b= option is merely information to the linker so it can fill in the correct

module entry point offset.

Enter the following BASICO9 program:

 PROCEDURE btest

 DIM i,j,k:INTEGER

 i = 1

 j = 132

 k = 1O33

 RUN addints(4, i, j, k)

 PRINT i, j, k

 END

When this procedure is RUN, it should print:

5 136 —1029

indicating that our C function worked!

Example 2 - More Complex Integer Arithmetic Case

The next example shows how static memory area can be used. Take the C function from

the previous example and modify it to add the number of times it has been entered to the

increment:

build bt2.c

? static int entcnt;

?

? addints(cnt,cmem,cmemsiz,value,s1,arg1,s2,arg2,s3,arg3,s4)

? char *cmem;

? int *value,*argl,*arg2,*arg3;

? {

? #asm

? ldy 6,s base of static area

? #endasm

? int j = *value + entcnt++;

?

? *arg1 += j;

? *arg2 += j;

? *arg3 += j;

? }

This example differs from the first in a number of ways. The line static int entcnt;

defines an integer value named entcnt global to bt2.o. The parameter cmem and the line

char *cmem indicate a character array. The array will be used in the C function for

global/static storage. C accesses non—auto and non—register variables indexed off the Y

register. Cstart.r normally takes care of setting this up. Since cstart.r will not be used for

this BAS1CO9 callable function, we have to take measures to make sure the Y register

points to a valid and sufficiently large area of memory. The line ldy 6,s is assembly

language code embedded in C source that loads the Y register with the first parameter

passed by BASICO9. If the first parameter in the BASICO9 RUN statement is an array,

and the idy 6,s is placed immediately after the { opening the function body, the offset will

always be 6,s. Note the line beginning int j = This line uses an initializer which, in

this case, is allowed because j is of class auto. No classes but auto and register can be

initialized in BASICO9 callable C functions.

To compile this function, the following C compiler command line is used:

 cc bt2.c —rs

Where cc is ccl or cc2.

Again, the —r option leaves bt2.r as output and the —s option suppresses stack checking.

Normally, the linker considers it to be an error if the —b= option appears and the final

linked module requires a data memory allocation. In our case here, we require a data

memory allocation and we will provide the code to make sure everything is set up

correctly. The =t linker option causes the linker to print the total data memory

requirement so we can allow for it rather than complaining about it. Our linker command

line is:

 c.link bt2.r —o=addints —b=addints —t

The linker will respond with BASICO9 static data size is 2 bytes. We must make sure

cmem points to at least 2 bytes of memory. The memory should be zeroed to conform to

C specifications.

Enter the following BASICO9 program:

 PROCEDURE btest

 DIM i,j,k,n:INTEGER

 DIM cmem(10):INTEGER

 FOR i=1 TO 10

 cmem(i)=0

 NEXT i

 FOR n=1 TO 5

 i=1

 j=132

 k=—1O33

 RUN addints(cmem,4,i,j,k)

 PRINT i,j,k

 NEXT n

 END

This program is similar to the previous example. Our area for data memory is a 10 integer

array (20 bytes) which is way more than the 2 bytes for this example. It is better to err on

the generous side. Cmem is an integer array for convenience in initializing it to zero (per

C data memory specifications). When the program is run, it calls addints 5 times with the

same data values. Because addints adds the number of times it was called to the value, the

i,j,k values should be 4+number of times called. When run, the program prints:

 5 136 —1029

 6 137 —1028

 7 138 —1027

 8 139 —1026

 9 l40 —1025

Works again!

Example 3 - Simple String Manipulation

This example shows how to access BASICO9 strings through C functions. For this

example, write the C version of substr:

 build bt3.c

 ? /* Find substring from BASICO9 string:

 ? RUN findstr(A$,B$,fndpos)

 ? returns in fndpos the position in A$ that B$ was found or

 ? 0 if not found. A$ and B$ Dust be strings, fndpos must be

 ? INTEGER.

 ? */

 ? findstr(cnt,string,strcnt,srchstr,srchcnt,result)

 ? char *string,*srchstr;

 ? int strcnt,srchcnt,*result;

 ? {

 ? *result = finder(string,strcnt,srchstr,srchcnt);

 ? }

 ?

 ? static finder(str,strlen,pat,patlen)

 ? char *str,*pat;

 ? int strlen,patlen;

 ? {

 ? int j;

 ? for(i=1;strlen-- > 0 && *str!=0xff; ++i)

 ? if(smatch(str++,pat,patlen))

 ? return j;

 ? }

 ?

 ? static smatch(str,pat,patlen)

 ? register char *str,*pat;

 ? int patlen;

 ? {

 ? while(patlen-- > 0 && *pat != Oxtf)

 ? if(*str++ != *pat++)

 ? return O;

 ? return 1;

 ? }

 ?

Compile the program:

 oc bt3.c —rs

Where cc is col or cc2

And link it:

 c.link bt3.r —o=findstr —b=findstr

The BASICO9 test program is:

 PROCEDURE btest

 DIM a,b:STRING(20)

 DIM matchpos:INTEGER

 LOOP

 INPUT "String ",a

 INPUT "Match ",b

 RUN findstr(a,b,matchpos)

 PRINT "Matched at position ",matchpos

 ENDLOOP

When the program is run, it should print the position where the matched string was found

in the source string.

Example 4 — Quicksort

The next example programs demonstrate how one might implement a quicksort written in

C to sort some BASICO9 data.

C integer quicksort program:

 #define swap(a,b) { int t; t=a; a=b; b=t; }

 /* qsort to be called by BASICO9:

 dim d(100):INTEGER any size INTEGER array

 run oqsort(d,100) calling qsort.

 */

 qsort(argcnt, iarray, iasize, icount, icsiz)

 int, argcnt1 /* BASICO9 argument count */

 iarray[], /* Pointer to BASICO9 integer array */

 iasize, /* and it’s size */

 icount, / Pointer to BASICO9 (sort count) */

 icsiz; /* Size of integer */

 {

 sort(iarray,0,*icount); /* initial qsort partition */

 }

 /* standard quicksort algorithm from Horouitz—Sahni */

 static sort(a,m,n)

 register int *a,m,n;

 {

 register i,j,x;

 if(m < n) (

 i = n;

 j = n + 1;

 x a[m];

 for(;;) {

 do j += 1; while(a[i] < x); /* left partition */

 do j -= 1; while(a[j] > x); /* right partition */

 if(i < j)

 swap(a[i],a[j]) /* swap */

 else break;

 }

 swap(a[m],a[j]);

 sort(a,m,j-1); /* sort left */

 sort(a,j+1,n); /* sort right */

 }

 }

The BASICO9 program is:

 PROCEDURE sorter

 DIM i,n,d(1000):INTEGER

 n=1000

 i=RND(-(PI))

 FOR 1:1 TO n

 d(i):=INT(RND(1000))

 NEXT i

 PRINT "Before:"

 RUN prin(1,n,d)

 RUN qsortb(d,n)

 PRINT "After:"

 RUN prin(1,n,d)

 END

 PROCEDURE prin

 PARAM n,m,d(1000):INTEGER

 DIN i:INTEGER

 FOR i=n TO m

 PRINT d(i); " ";

 NEXT i

 PRINT

 END

C string quicksort program:

 /* qsort to be oalled by BASICO9:

 dim cmemory:STRING[1O) This should be at least as large as

 the linker says the data size should

 be.

 dim d(100):INTEGER Any size INTEGER array.

 run cqsort(cwemory,d,100) calling qsort. Note that the pro-

 cedure name run is the linked OS—9

 subroutine module. The module name

 need not be the name of the C tuno—

 tion.

 */

 int maxatr; /* string maximum length */

 static strbcmp(strl,str2) /* basic09 string compare */

 register char •strl,*str2;

 {

 int maxlen;

 for (maxlen = maxstr; *str1 == *str2; ++str1)

 if (maxlen-- > 0 || *str2++ == Oxff)

 return 0;

 return (*str1 - *str2);

 }

 cssort(argcnt,stor,storsiz,iarray,iasize,elemlen,elsiz,

 icount, icsiz)

 int argcnt; /* BASICO9 argument count */

 char *stor; /* Pointer to string (C data storage) */

 char iarray[]; /* Pointer to BASICO9 integer array */

 int iasize, /* and it’s size */

 elemlen, / Pointer integer value (string length) */

 elsiz; /* Size of integer */

 icount, / Pointer to integer (sort count) */

 icsiz; /* Size of integer */

 {

 /* The following assembly code loads Y with the first

 arg provided by BASICO9. This code MUST be the first code

 in the function after the declarations. This code assumes the

 address of the data area is the first parameter in the BASICO9

 RUN command. */

 #asm

 ldy 6,s get addr for C data storage

 #endasm

 /* Use the C library qsort function to do the sort. Our

 own BASICO9 string compare function will compare the strings.

 */

 qsort(iarray,*icount,maxstr=*elemlen,strbcmp);

 }

 /* define stuff cstart.r normally defines */

 #asm

 _stkcheck:

 rts dummy stack check function

 vaect

 errno: rmb 2 C function system error number

 _flacc: reb 8 C library float/long accumulator

 endsect

 #endasm

The BASICO9 calling program: (words file contains strings to sort)

 PROCEDURE ssorter

 DIM a(200):STRING[20]

 DIM cmemory:STRING[2O]

 DIM i,n:INTEGER

 DIM path:INTEGER

 OPEN #path, "words": READ

 n=1OO

 FOR i=1 TO n

 INPUT #path,a(i)

 NEXT i

 CLOSE #path

 RUN prin(a,n)

 RUN cssort(cmemory,a,20,n)

 RUN prin(a,n)

 END

 PROCEDURE prin

 PARAM a(100):STRING[20]; n:INTEGER

 DIM i:INTEGER

 FOR i=1 TO n

 PRINT i; " "; a(i)

 NEXT i

 PRINT

 END

The next example shows how to access BASICO9 reals from C functions:

 flmult(cnt,cmemory,cmemisiz,realarg,realsize)

 int cnt; /* number of arguments */

 char *cmemory; /* pointer to some memory for C use */

 double *realarg; /* pointer a real */

 {

 #asm

 ldy 6,s get static memory address

 #endasm

 double number;

 getbreal(&number,realarg); /* get the BASICO9 real */

 number *= 2.,; /* number times two */

 putbreal(realarg,&number); /* give back to BASICO9 */

 }

 /* getbreal(creal,breal)

 get a 5—byte real from BASICO9 format to C format */

 getbreal(clreal,breal)

 double *creal,*breal;

 {

 register char *cr,*br; /* setup some char pointers */

 cr = creal;

 br = breal;

 #asm

 * At this point U reg contains address of C double

 * 0,s contains address of BASICO9 real

 ldx 0,s get address of B real

 cira clear the C double

 clrb

 std 0,u

 std 2,u

 std 4,u

 stb 6,u

 ldd 0,x

 beq g3 BASICO9 real is zero

 ldd 1,x get hi B mantissa

 anda #$7f clear place for sign

 std 0,u put hi C mantissa

 ldd 3,x get lo B mantissa

 andb #$fe mask off sign

 std 2,u put lo C mantissa

 lda 4,x get B sign byte

 isra shift out sign

 bcc g1

 lda 0,u get C sign byte

 ora #$80 turn on sign

 sta O,u put C sign byte

 gl lda 0,x get B exponent

 suba #128 excess 128

 sta 7,u put C exponent

 g3 clra clear carry

 #endasm

 }

 /* putbreal(breal,creal)

 put C format double into a 5—byte real from BASICO9 */

 putbreal(breal, creal)

 double *breal,*creal;

 {

 register char *cr,*br; /* setup some char pointers */

 cr = creal;

 br = breal;

 #asm

 * At this point U reg contains address of C double

 * 0,s contains address of BASICO9 real

 ldx 0,s get address of B real

 lda 7,u get C exponent

 bne p0 not zero?

 clra clear the BASICO9

 clrb real

 std 0,x

 std 2,x

 sta 4,x

 bra p3 and exit

 p0 ldd 0,u get hi C mantissa

 ora #$80 this bit always on for normalized real

 std 1,x put hi B mantissa

 ldd 2,u get lo C mantissa

 std 3,x put lo B mantissa

 incb round mantissa

 bne p1

 inc 3,x

 bne pl

 inc 2,x

 bne pl

 inc 1,x

 p1 andb #$fe turn off sign

 stb 4,x put B sign byte

 lda O,u get C sign byte

 lsla shift out sign

 bcc p2 bra if positive

 orb #$01 turn on sign

 stb 4,x put B sign byte

 p2 lda 7,u get C exponent

 adda #128 less 128

 sta 0,x put B exponent

 p3 clra clear carry

 #endasm

 }

 /* replace cstart.r definitions for BASICO9 */

 _stkcheck:

 _stkchec:

 rts

 vsect

 flacc: rmb 8

 errno: rmb 2

 endsect

 #endasm

BASICO9 calling progras:

 PROCEDURE btest

 DIM a:REAL

 DIM i:INTEGER

 DIM cmemory:STRING[32]

 a=1.

 FOR i=1 TO 10

 RUN flmult(cmemory,a)

 PRINT a

 NEXT i

 END

Example 5 - Matrix Elements

The last program is an example of accessing BASICO9 matrix elements. The C program:

matmult(cnt,cmemory,cmemsiz,matxaddr,matxsize,scalar,scalsize)

char *cmemory; /* pointer to some memory for C use */

int matxaddr[5][3]; /* pointer to a double dim integer array */

int *scalar /* pointer to integer */

{

#asm

 ldy 6,s get static memory address

#endasm

 int i,j;

 for(i = 0; i < 5; ++i)

 for(j = 1; j < 3; ++j)

 matxaddr[j][i] *= scalar; /* multiply by value */

}

#asm

_stkcheck:

_stkchec:

 rts

 vsect

_flacc: rmb 8

errno: rmb 2

 endsect

#endasm

BASICO9 calling program:

PROCEDURE btest

DIM im(5,3):INTEGER

DIM i,j:INTEGER

DIM cmem:STRING[32]

FOR i=1 TO 5

 FOR j=1 TO 3

 READ im(i, j)

 NEXT j

NEXT i

DATA 11,13,7,3,4,0,5,7,2,8,15,0,0,14,4

FOR i=1 TO 5

 PRINT im(i,1),im(i,2),im(i,3)

NEXT i

PRINT

RUN matmult(cmem,im,64)

FOR i=1 TO 5

 PRINT im(i,1),im(i,2),im(i,3)

NEXT i

END

Relocating Macro Assembler Reference

This appendix gives a summary of the operation of the Relocating Macro Assembler

(named c.asm as distributed with the C Compiler). This appendix and the example

assembly source files supplied with the C compiler should provide basic information on

how to use the Relocating Macro Assembler to create relocatable—object format files

(ROF). It is further assumed that you are familiar with the 6809 instruction set and

mnemonics. See the Microware Relocating Assembler Manual for a more detailed

description. The main function of this appendix is to enable the reader to understand the

output produced by c.asm. The Relocating Macro Assembler allows programs to be

compiled separately and then linked together, and it also allows macros to be defined

within programs.

Differences between the Relocating Macro Assembler (RMA) and the Microware

Interactive Assembler (MIA):

� RMA is does not have an interactive mode. Only a disk file is allowed as input.
� RMA output is an ROF file. The ROF file must be processed by the linker to

produce an executable 0S-9 memory module. The layout of the ROF file is
described later.

� RMA has a number of new directives to control the placement of code and data in
the executable module. Since RMA does not produce memory modules, the MIA
directives mod and emod are not present. Instead, new directives PSECT and
VSECT control the allocation of code and data areas by the linker.

� RMA has no equivalent to the MIA setdp directive. Data (and DP) allocation is
handled by the linker.

Symbolic Names

A symbolic name is valid if it consists of from one to nine uppercase or lowercase

characters, decimal digits or the characters "$", "_", "." or "@". RMA does not fold

lowercase letters to uppercase. The names "Hi.you" and "HI.YOU" are distinct names.

Label Field

If a symbolic name in the label field of a source statement is followed by a ":" (colon),

the name will be known GLOBALLY (by all modules linked together). If no colon

appears, the name will be known only in the PSECT in which it was defined. PSECT will

be described later.

Undefined Names

If a symbolic name is used in an expression and hasn't been defined, RMA assumes the

name is external to the PSECT. RMA will record information about the reference so the

linker can adjust the operand accordingly. External names cannot appear in operand

expressions for assembler directives.

Listing Format

00098 0032 59 + rolb

00117 0045=i7ffb8 label lbsr _dmove Comment

^ ^ ^^ ^ ^ ^ ^ ^

| | || | | | | Start of comment

| | || | | | Start of operand

| | || | | Start of mnemonic

| | || | Start of label

| | || A "+" indicates a line generated by a macro expansion.

| | |start of object code bytes.

| | An "=" here indicates that the operand contains an external reference.

| Location counter value.

Line number.

Section Location Counters

Each section contains the following location counters:

PSECT instruction location counter

initialized direct page location counter

non—initialized direct page location counter

initialized data location counter

VSECT

non—initialized data location counter

CSECT base offset counter

Section Directives

RMA contains 3 section directives. PSECT indicates to the linker the beginning of a

relocatable—object—format file(ROF) and initializes the instruction and data location

counters and assembles code into the ROF object code area. VSECT causes RMA to

change to the data location counters and place any generated code into the appropriate

ROF data area. CSECT initializes a base value for assigning offsets to symbols. The end

of these sections is indicated by the ENDSECT directive.

The source statements placed in a particular section cause the linker to perform a function

appropriate for the statement. Therefore, the mnemonics allowed within a section are

restricted as follows:

These mnemonics are allowed inside or outside any section: nam, opt, ttl, pag,
spa, use, fail, rept, endr, ifeq, ifne, iflt, ifle, ifge, ifgt, ifp1, endc, else, equ, set,
macro, endm, csect, and endsect.
Within a CSECT: rmb.
Within a PSECT: any 6809 instruction mnemonic, fcc, fdb, fcs, fcb, rzb, vsect,
endsect, os9 and end.
Within a VSECT: rmb, fcc, fdb, fcs, fcb, rzb and endsect.

PSECT Directive

The main difference between PSECT and MOD is that MOD sets up information for

OS—9 and PSECT sets up information for the linker (c.link in the C compiler).

 PSECT {name,typelang,attrrev,edition,stacksize,entrypoint}

name

Up to 20 bytes (any printable character except space or comma) for a name to
be used by the linker to identify this PSECT. This name need not be distinct
from all other PSECTS linked together, but it helps to identify PSECTs the
linker has a problem with if the names are different.

typelang
byte expression for the executable module type/lang usage byte. If this
PSSECT is not a "mainline" (a module that has been designed to be forked to)
module this byte must be zero.

attrrev byte expression for executable module attribute/revision byte.

edition byte expression for executable module edition byte.

stacksize
word expression estimating the amount of stack storage required by this psect.
The linker totals this value in all PSECTs to appear in the executable module
and adds this value to any data storage requirement for the entire program.

entrypoint
word expression entrypoint offset for this PSECT. If the PSECT is not a
mainline module, this should be set to zero.

</nowiki></pre>

PSECT must have either no operand list or an operand list containing a name and five

expressions. If no operand list is provided, the PSECT name defaults to "program" and all

other expressions to zero. There can only be one PSECT per assembly language file.

The PSECT directive initializes all counter orgs and marks the start of the program

module. No VSECT data reservations or object code may appear before or after the

PSECT/ENDSECT block.

Example:

 psect myprog,Prgrm+Objet,Reent+l,Edit,0,progent

 psect another_prog,0,0,0,0,0

VSECT Directive

 VSECT {DP}

The VSECT directive causes RMA to change to the data location counters. If DP appears

after VSECT, the direct page counters are used, otherwise the non—direct page data is

used. The RMB directive within this section reserves the specified number of bytes in the

appropriate uninitialized data section. The fcc, fdb, fcs, fcb and rzb (reserve zeroed bytes)

directives place data into the appropriate initialized data section. If an operand for fdb or

fcb contains an external reference, this information is placed in the external reference part

of the ROF to be adjusted at link or execution time. ENDSECT marks the end of the

VSECT block. Any number of VSECT blocks can appear within a PSECT. Note,

however, that the data location counters maintain their values between one VSECT block

and the next. Since the linker handles the actual data allocation, there is no facility

provided to adjust the data location counters.

CSECT Directive

 CSECT {expression}

The CSECT directive provides a means for assigning consecutive offsets to labels

without resorting to EQUs. If the expression is present, the CSECT base counter is set to

that value, otherwise it is set to zero.

RZB Statement

Syntax: RZR <expression>

The reserve zeroed bytes pseudo—instruction generates sequences of zero bytes in the

code or initialized data sections, the number of which is specified by the expression.

COMPARISON BETWEEN ASSEMBLY PROGRAMS FOR THE MICROWARE

INTERACTIVE ASSEMBLER AND THE RELOCATING MACRO ASSEMBLER

The following two program examples simply fork BASICO9. The purpose of the

examples are to show some of the differences in the new relocating assembler. The

differences are apparent.

* this program forks basic09

 ifp1

 use /defs/os9defs.a

 endc

PRGRM equ $10

OBJCT equ $01

stk equ 200

 psect rmatest,$11,$81,0,stk,entry

name fcs /basic09/

prm fcb $0D

prmsize equ *-prm

entry leax name,pcr

 leau prm,pcr

 ldy #prmsize

 lda #PRGRM+OBJCT

 clrb

 os9 F$Fork

 os9 F$Wait

 os9 F$Exit

 endsect

MACRO INTERACTIVE ASSEMBLER SOURCE

 ifp1

 use defsfile

 endc

 mod siz,prnam,type,revs,start,size

prnam fcs /testshell/

type set prgrm+objct

revs set reent+1

 rmb 250

 rmb 200

name fcs /basic09/

prm fcb $0D

prmsize equ *-prm

size equ .

start equ *

 leax name,pcr

 leau prm,pcr

 ldy #prmsize

 lda #PRGRM+OBJCT

 clrb

 os9 F$Fork

 os9 F$Wait

 os9 F$Exit

 emod

siz equ *

Macros

Sometimes identical or similar sequences of instructions may be repeated in different

places in a program. The problem is that if the sequence of instructions is long or must be

used a number of times, writing it repeatedly can be tedious.

A macro is a definition of an instruction sequence that can be used numerous places

within a program. The macro is given a name which is used similarly to any other

instruction mnemonic. Whenever RMA encounters the name of a macro in the instruction

field, it outputs all the instructions given in the macro definition. In effect, macros allow

the programmer to create “new” machine language instructions.

For example, suppose a program frequently must perform 16 bit left shifts of the D

register. The two instruction sequence can be defined as a macro, for example:

 dasl macro

 aslb

 rola

 endm

The macro and endm directives specify the beginning and the end of the macro

definition, respectively. The label of the macro directive specifies the name of the macro,

dasl in this example. Now the "new" instruction can be used in the program:

 ldd 12,s get operand

 dasl double it

 std 12,s save operand

In the example above, when RMA encountered the dasl macro, it actually outputted code

for aslb and rola. Normally, only the macro name is listed as above, but an RMA option

can be used to cause all instructions of the "macro expansion" to be listed.

Macros should not be confused with subroutines although they are similar in some ways.

Macros repetitively duplicate an "in line" code sequence every time they are used and

allow some alteration of the instruction operands. Subroutines appear exactly once, never

change, and are called using special instructions (BSR, JSR, and RTS). In those cases

where they can be used interchangeably, macros usually produce longer but slightly

faster programs, and subroutines produce shorter and slightly slower programs. Short

macros (up to 6 bytes or so) will almost always be faster and shorter than subroutines

because of the overhead of the BSR and RTS instructions needed.

Macro Structure

A macro definition consists of three sections:

1. The macro header - assigns a name to the macro
2. The body — contains the macro statements
3. The terminator — indicates the end of the macro

 <name> MACRO /* macro header */

 .

 .

 body /* macro body */

 .

 .

 ENDM /* macro terminator */

The macro name must be defined by the label given in the MACRO statement. The name

can be any legal assembler label. It is possible to redefine the 6809 instructions (LDA,

CLR, etc.) themselves by defining macros having identical names. Caution: redefinition

of assembler directives such as RMB can have unpredictable consequences.

The body of the macro can contain any number of legal RMA instruction or directive

statements including references to previously defined macros. The last statement of a

macro definition must be ENDM.

The text of macro definitions are stored on a temporary file that is created and maintained

by RMA. This file has a large (1K byte) buffer to minimize disk accesses. Therefore,

programs that use more than 1K of macro storage space should be arranged so that short,

frequently used macros are defined first so they are kept in the memory buffer instead of

disk space.

Macro calls may be nested, that is, the body of a macro definition may contain a call to

another macro. For example:

 times4 MACRO

 dasl

 dasl

 ENDM

The macro above consists of the dasl macro used twice. The definition of a new macro

within another is not permitted. Macro calls may be nested up to eight deep.

Macro Arguments

Arguments permit variations in the expansion of a macro. Arguments can be used to

specify operands, register names, constants, variables, etc., in each occurrence of a

macro.

A macro can have up to nine formal arguments in the operand fields. Each argument

consists of a backslash character and the sequence number of the formal argument, e.g,

\1, \2 ... \9. When the macro is expanded, each formal argument is replaced by the

corresponding text string "actual argument" given in the macro call. Arguments can be

used in any part of the operand field not in the instruction or label fields. Formal

arguments can be used in any order and any number of times.

For example, the macro below performs the typical instruction sequence to create an

OS—9 file:

 create MACRO

 leax \1,pcr get addr of file name string

 lda \2 set path number

 1db #\3 set file access modes

 os9 I$CREATE

 ENDM

This macro uses three arguments: "\1" for the file name string address; "\2" for the path

number; and "\3" for the file access mode code. When create is referenced, each

argument is replaced by the corresponding string given in the macro call, for example:

 create outname,2,$1E

The macro call above will be expanded to the code sequence:

 leax outname,pcr

 lda #2

 1db #$1E

 os9 I$CREATE

If an argument string includes special characters such as backslashes or commas, the

string must be enclosed in double quotes. For example, this macro reference has two

arguments:

 double count,"2,s"

An argument may be declared null by omitting all or some arguments in the macro call to

make the corresponding argument an empty string so no substitution occurs when it is

referenced.

There are two special argument operators that can be useful in constructing more

complex macros. They are:

\Ln Returns the length of the actual argument n, in bytes.

\# Returns the number of actual arguments passed in a given macro call.

These special operators are most commonly used in conjunction with RMA’s conditional

assembly facilities to test the validity of arguments used in a macro call, or to change the

way a macro works according to the actual arguments used. When macros are performing

error checking they can report errors using the FAIL directive. Here is an example using

the create macro given on the previous page but expanded for error checking:

 create MACRO

 ifne \# - 3 must have exactly 3 args

 FAIL create: must have three arguments

 endc

 ifgt \L1 - 29 file name can be 1 — 29 chars

 FAIL create: file name too long

 endc

 leax \1,pcr get addr of file name string

 ida #\2 set path number

 1db #\3 set file access modes

 os9 I$CREATE

 ENDM

Macro Automatic Internal Labels

Sometimes it is necessary to use labels within a macro. Labels are specified by "\". Each

time the macro is called, a unique label will be generated to avoid multiple definition

errors. Within the expanded code "\" will take on the form "xxx", where xxx will be a

decimal number between 000 to 999.

More than one label may be specified in a macro by the addition of an extra character(s).

For example, if two different labels are required in a macro, they can be specified by

"\@A" and "\@B". In the first expansion of the macro, the labels would be "@001A" and

"@001B", and in the second expansion they would be "@002A" and "@002B". The extra

characters may be appended before the "\" or after the "@".

Here is an example of macro that uses internal labels:

 testovr MACRO

 cmpd #\1 compare to arg

 bls \@A bra if in range

 orcc #1 set carry bit

 bra \@B and skip next instr.

 \@A andcc #$FE clear carry

 \@B equ * continue...

 ENDM

Suppose the first macro call is:

 testovr $80

The expansion will be:

 cmpd #$80 compare to arg

 bls @001A bra if in range

 orcc #1 set carry bit

 bra @001B and skip next instr.

 @001A andcc #$FE clear carry

 @001B equ * continue...

If the second macro call is:

 testovr #240

The expansion will be:

 cmpd #240 compare to arg

 bls @002A bra if in range

 orcc #1 set carry bit

 bra @002B and skip next instr.

 @002A andcc #$FE clear carry

 @002B equ * continue...

Additional Comments About Macros

Macros can be an important and useful programming tool that can significantly extend

RMA’s capabilities. In addition to creating instruction sequences, they can also be used

to create complex constant tables and data structures.

Macros can also be dangerous in the sense that if they are used indiscriminately and

unnecessarily they can impair the readability of a program and make it difficult for

programmers other than the original author to understand the program logic. Therefore,

when macros are used they should be carefully documented.

Retrieved from
"http://sourceforge.net/apps/mediawiki/nitros9/index.php?title=C_Compiler_User%27s_
Guide"

