BABY BASIC

A TUTORIAL
ON
HOW TO ACCESS THE EXTRA MEMORY IN YOUR
COMPUTER TO STORE AND EXECUTE BASIC
PROGRAM LINES.

ALS0O, HOW TO CHAIN PROGRAM SECTIONS
FROM DISK WITHOUT ERASING VARIABLES.

FOR ANY COCO WITH 64K OR MORE

FROM

DANOSOF T

P.O. BOX 124, STATION A, MISSISSAUGA, ONT.
LSA 227, CANADA

(DOES NOT REPLACE BIG BASIC'S COMPREHENSIVE
SYSTEM THAT ALSO PROVIDES EXPANDED DATA
STORAGE AND MANY OTHER FEATURES.)

COPYRIGHT AND TERMS AND CONDITIONS

Using this manual and/or its accompanying disk indicates
your acceptance of our conditions of sale.

This manual and its described computer programs are
copyrighted in both Canada and the United S5tates of
America to Danosoft, Mississauga, Ontarioy Canada, and
- all rights are reserved. Reproduction of any part aof any
program is forbidden without the expressed written
permission of Danosoft.

The computer programs and manual are sold on an "as is”
basis without warranty. Danosoft does not acecept anu
liability or responsibility with respect to liabilitu,
loss or damage caused or alleged to be caused directly,
or limited to consequential damagess resulting from the
use of this manual or accompanying computer programs.

DANOSOFT, P.0O. Box 124, Station "A", Mississauga,
ontario Canada. Telephone: (414) B97-8121

BABY BASIC

A TUTORIAL ON HOW TO ACCESS THE EXTRA MEMORY IN YOUR

COMPUTER TO STORE AND EXECUTE PASIC PROGRAM LINES.

Copyrighted in the United States
and Canada December, 1989 by
RILL DANIELS for DANOSOFT of
Mississauga, Ontario, Canada

(Note: This method does not replace Danosoft’s RBRIG BASIC
program which is an easier to use, comprehensive M.L.
system that includes provision for expanded data storage
and many other features.)

THE DISK

A disk with the basic program "BABY BASIC" is
included with this tutorial and is required to use this
presentation. The program contains seven subroutines
which are necessary to enable the programming methods
being described and which will be referred to below.

It is suggested that you run the file "BABY/BAS" for
a quick look at the suystem, and then proceed with
reading this tutorial. Later you will want to list the
praogram to see the commented subroutines you will use in
your own Programs.

THE SEVEN SUBROUTINES ON THE DISK

Sub Line
No. Number Purpose
| 1000 ~ Set CoCo 3 Protected Memory
i 10302 Jump from Low to High Memory
4 20000 Jump from High to Low Memory
3 26008 Copy Program to High Memory
4 28008 CoCo 3 BK Memory Block Switcher
i 30008 Move System Stack in CoCo 3
6 49000 Reset Protect Changes
7 50000 Copy ROM to RAM - CoCo 2

THE POSSIBILITIES

All CoCo’s with 64K or more contain extra unused
memory that basic programmers can access using the
techniques presented in this tutorial.

CoCo 3 memory is managed in blocks of Bk (8192 bytes)
by the operating system. By programming in modules of
Bk, you can execute basic program lines anywhere in the
computer’s normal 64k memory as well as from any other
memory in the machine. Maximum in-memory total capacity
of all program modules is about 472K in a 912k machine
or 922k with a 128k computer.

Coco 2 users have 97728 free bytes at the top of the
computer’s memory. This provides a maximum of almost 38K
for basic program lines in a CoCo 2.

Either model of CoCo can chain unlimited numbers of
program sections into the computer from disk using the
LOADM command in the manner described below without
erasing variables.

THE CONCEFPT

The primary concept presented is that all programs
consist of groups of instructions to the computer. Any
instruction group (such as one that displays a menu) can
be considered a "module®. A number of wmodules normally
are combined to create an overall program.

t

By programming in a modular manner, or by breaking a
program into appropriate segments, your program does not
need to be located in one large chunk of memory. It can
be scattered wherever memory is available throughout the
computer.

Alsoy, program execution speed is much improved when
the computer is concentrating on just one module at a
time. Furthermore, any program module created can be
used in other programs as required; so that a library of
routines can be developed.

THE METHOD

The method presented here is to start with a normal
basic program in the lowest area of user memory. Then we
take advantage of Basic’'s SAVEM and LOADM commands.
These commands normally save a block of machine language
from a designated block of memory.

But using the techniques we shall describe, you can
save modules of basic programming with SAVEM and later,
using LOADM, 1load the program module to any user
selected memory outside of the normal area in low
memory.

Then you can jump from your normal basic program to
the module in high memory loaded with LOADM. In the high
memory area you will execute your basic code as usual.
When you are finished therey you jump back into your
normal program in low memory.

As an added bonusy SAVEM and LOADM transfer
programming between computer and disk drive much faster
than SAVE and LOAD.

THE MEMORY

Coco 3 users will protect an 8K block at the top of
user memory with the CLEAR command as per line 1000 in
Subroutine No 1 (i.e. CLEAR 200, 245746); then switch in
memory from outside of the CoCo 3’s normal 64k to that
area as required. (Subroutine No. 4). Your normal basic
program in low memory controls the memory switchingy as

well as the LOADM and SAVEM of 8k memory blocks to that

protected area.

A TABLE at the end of this tutorial lists all the 8K
memory blocks that can be used in a CoCo 3. It is easy
to access them with subroutine No. 4. You just put the
block number you select into the subroutine, run it, and
you will have a new 8K of memory in the protected memory
area.

CoCo 2 users won’t require setting protected memory
with the CLEAR command like CoCo 3 users. Instead, they
will simply jump from the normal basic area in low
memory straight to the extra 9728 bytes available at the
top of the CoCo 2°s normal &4K space.

CoCo 2 users also must use subroutine No. 7 before
proceeding with their programming. It copies the
operating system from ROM to RAM and leaves the computer
in the all RAM mode. The CoCo 2 must be in this mode in
order to access the extra 9728 bytes of memory for
Programming or to poke any modifications to the
operating system. (Subroutine 7 is not to be used in a
CoCo 3.}

RESET PROTECTION

To preserve programming and to preserve changes to
the basic operating system, both CoCo 2 and CoCo 3 users
should use subroutine No. 4. Whenever the RESET button
is pressed, the computer normally rewrites the operating
system to the original ROM. The code in subroutine No. &
is used to prevent this.

ADDRESSES OF THE LOW AND HIGH MEMORY AREAS

The low memory area for either a CoCo 3 or a CoCp 2
can start as low in memory as computer address 3584
($EQB). This is where you would be if you wused the
command PCLEAR @. Normal basic produces a *FC" error for
PCLEAR @ which you can overcome from direct mode or a
program with the following: POKE &HP68F,33: POKE
&H76A3,33: PCLEAR @.

The CoCo 3 low memory area will end at 24575 ($5FFF),

the point where the CLEAR command sets protected memory.
The CoCo 3 high area starts at 24574 ($600B) and ends at
32767 ($7FFF); a total of 8K.

For the CoCo 2 the end of the low memory area is at
32767 ($7FFF). Its high area starts at 955552 ($D98@8) and
ends at 45279 ($FEFF}, a total of 9728 buytes.

HOW TC¢ PROGRAM

Normal basic programming is done in low memory. The
low memory voutine will include the code found in
Subroutine No. 1 of the BABY BASIC program found on the
disk that comes with this tutorial.

Your program module for high memory will include
subroutines No. 2 and No. 3. Although your high memory
module will execute in high memory, it is actually
created in low memory. Then it is saved as machine
lanquage with the SAVEM command and transferred to high
memory by subroutine No. 3 which also processes it to
make it usable. Subroutine No. Z has the code you will
use later to return to normal low memory.

Subroutines 1 and 2 simply set the computer system’s
*start of basic® variable to either the 1low or high
areas of memory. The computer’s operating system
determines the start of basic from a 2-byte address
found in memory locations 29 & 26 (%19 & $1A). The
address of the start of basic is the value found in
address 29 multiplied by 256 plus the value in address
26,

COPYING A PROGRAM MODULE FROM LOW TO HIGH MEMORY

Subroutine No. 3 is used to copy a program module in
low memory to the high area via the disk using SAVEM and
LOADM. This subroutine also contains one of the secrets
of this system.

The first two bytes of every basic program line
represent the memory address of the next basic line, If
you use a machine language method such as SAVEM and
L OADM to transfer basic programming to another area, the
first two bytes of every line will have a wrong address.

But lines 26020, 26830 & 26040 of subroutine No. 3
call a basic operating system subroutine that
re-addresses the transferred code and corrects the
problem..

Subroutine No. 3 first saves a copy of the program
module it is transferring to high memory as “Source"
code. Pragramming located anywhere except in normal low
memory cannot be changed or edited. Therefore you need
to keep a source copy S0 You can make any necessary
changes later.

USING "GOTO"

Understanding the GOT0 command also is a key to
learning how to execute programming from anywhere in
memory. When the basic interpreter executes a GOTO, it
first searches for the line number in higher memory. If
the next line number is higher than the GOTO line

number, then the search for the line is transferred to
the start of basic.

If the computer believes the start of basic is
elsewhere in memory, that is where it continues its
search for the GOTO line. So simply by changing the
operating system’s start of basic variable in memory
addresses 25 & 26 we can use GOTO to execute program
lines anywhere. This is done in subroutines 1 and 2.

DUPLICATE LINE NUMBERING

Strangely enough, every program module can have the
same line numbering if you want it to. Both the program
module in low memory and the program module in high
memory can have a line 10, for instance, and it will not
matter. The line 10 that is executed is the one
currently being pointed to by the address in the start
of basic variable (z5 & 256).

HOW TO AVOID THE PITFALLS

Yes, there are pitfalls to this systemj but nothing
you cannot overcome by being careful. If you are not
carefuly, you can easily have a software crash and erase
all programming currentiy in the user programming area.

)

There are five categories of pitfalls: Exiting yvour
Progyam from the high memory area; using certain
commands in the high memory aread switching in wrong
memory blocks; using string variables within a program
line in high memory; and system stacik conflict.

EXITING YOUR PROGRAM FROM HIGH MEMORY

if an error should occur while executing code in high
memory, you must enter a GOTO to the sub that restores
you to low memory. Failure to do spo could result in a
crash. Therefores Cofo 3 users should use the ON ERR and
ON BRR commands to set up an error subroutine that makes
sure the start of basic (25 & 26) is poked to the normal
low memory area values whenever an error or break
oCcurs.

While in high memory, commands that clear the
variable table will confuse the computer and cause a
crash. When the variable table is clearedy the computer
calculates a new start for its variable table based on
the addreszes of the start and end of youwr basic
program. In high memory this calculation will be wrong.

Either from direct mode or from a program in the high
memory area; you will have no difficulty if you do not
use these commands: RUN, LOADy, SAVEy EDIT, CLEAR,
PCLEAR, FILES. However,; from direct mode, you can use

LIST or SAVE “"FILE",A. (That's GSGAVE with the ASCII
option.)

SWITCHING WRONG MEMORY BLOCKS

CoCo 3 users must take care in selecting BK memory
blocks using subroutine No 4. If you select operating
system blocks such as 56,60,61,62 & 63 you will crash.
If you use the 4@/80 column text screen do not select
block 54. Similarly the high resolution graphics blocks
48 to 52 must be used with carej and you must not use
block 53. See the TABLE at the end of this tutorial.

STRING VARIAPLES IN HIGH MEMORY PROGRAM LINES

I1f a program line in a high memory module contains a
variable statement 1like: A% = *TEST", then the pointer
in the variable table will always expect to find that

7

variable in a high memory address. If you switch in
another memoruy block from elsewhere in the computer or a
program segment from disk, then your variable is going
to be wrong.

There are two solutions to this problem. First:
Program lines in high memory modules containing literal
string statements with a + “" added to the end of the
string will be copied to normal low memory string space
when the program line is executed. (i.e. A$ = "TEST" +

ll)-

Second: Poking a 33 to $B543 will force all strings
in a program line to be copied to low memory string
space when the program line is executed. (Normal value
in $B543 is a 34.)

MOVING THE SYSTEM STACK —— SUBRROUTINE NO. 5

There is a little known problem with the CoCo 3
operating system. The computer keeps its operating
system variables in an area known by machine language
programmers as “the stack®. This stack must be available
to the system at all times or the computer will crash.
it is located in memory directly below the user cleared
string space and most of the time there is no user
problem.

However, whenever a user makes a change to the 48 or
B® column text screen, the text memory block No. 54 is
momentarily switched by the operating system into
logical computer space at addresses 8192 to 16383 (42080
to $4008). On startup, string space is located directly
below 32768. In the 4B/8@ text mode, a statement such as
CLEAR 146500 will cause an immediate crash as text block
No. 54 overlays the stack.

in the BARY PASIC system as described above,
protected memory is set at 24576 which means string
space now resides in memory just below that address and
the stack is below that again. Therefore a command such
as CLEAR BO@@ will cause a crash.

If you are going to use less than 78088 bytes of
string space, or you are using anly the J3Z-column text

screens then you will have no problem with the stack.
But chances are, if you are writing a large program, you
may want more than 7K of string variables. In that case
you must move the stack out of harm’s way.

Subroutine Mo. 7 uses a PCLEAR 1 to set the start of
basic at 5176 (514800}, 1t presumes Colnd users will use
the high resolution graphics and not requive the (oo
type low resolution graphics pages that would exist i
memory just below the start of your basic program. Thi
leaves 1536 bhytes between 3584 and 58078 where you can
put the stack which rarely reaquires more than 4880 huytes.

W g

Subroutine No. 7 seis the stack at 49746 ($1@0A). The
stack grows from its starting point downward toward
lower memory. Other pokes in the subroutine adiust
commands like COPY and MEM which normally take the
location of the stack into consideration when they make
memory calculations,

Moving the stack also regets it and erases return
addresses for the GOSUB and FOR/NEXT commands. Therefore
using subroutine No. 7 in a program means it must end
with a 60TO statement to continue with the program.

T0 OUR VALUED CUSTOMERS:

Users of our programs are invited to comment, If we
have missed some vital pointy, or something is not
explained clearly encugh, please contact us and tell us
s we can ammend any reprints. We realize others mau
see things differently than us, and are concerned that
users are satisfied with our programs.

Please send all enquiriesy, comments or requests for
assistance to:

DANOSOFT

P.0. Pox 124, Station "A",
Mississauga, Ont. L5A 2I7
Canada

Telephone: (416) B97-BiZ1

Immediate access by phone to a programmer is not always
possible and writing is recommended.

E4

MEMORY BLOCK TABLE

Memory is managed in a {oCo3 in blocks of 8K e=ach.

(1K = 1824 butes; BR = B19Z bytes)

The top 8 blocks are the normally used 64K,

BLOCK USE ACCESS by "BARY BRASIC®

&3 CoCo3 Extra Basic No

&2 Disk BRasic No

61 Color Basic No

&8 Extended Basic No

5% User Programs/Variables Yes

58 User Programs/Variables Yes

57 User Programs/Variables Yes

56 Basic’s Variables/Buffers No

55 Free Memory Yoo

54 Both 4@ & 88 Column Hi—~Res Yes if not using

Text Screens Hi~-Res Text Screens

53 Secondary Stack Area No

52 HGET/HPUT Buffer Yes if not using
HGET /HPUT

51 Hi-Res Graphics Screen Yes if not using
Graphics Screen

] Hi—-Res Graphics Scresn Yes if not using
graphics Screen

49 Hi—-Res Graphics Screen Yecs if not using
Graphics Screen

48 Hi~-Res Graphics Screen Yes if not using
Graphics Screen

47 448K of Free Memory only Yo

to in the 51ZK CoCo3

a

127 Another 512K of free Yes

to memory only with CRG/

&4 Disto { Meg Upgrade

