6502-6889 TRANSLATOR

by Edgar M. (Bud) Pass, Ph.D.

Copyright (c) 1983 by
Computer Systems Consultants, Inc.
1454 Latta Lane, Conyers, GA 30207

Telephone Number 404-483-1717/4570

Copyright Notice
This manual and any accompanying materials described by this manual
are copyrighted and should not be reprcduced in any form, except as
described here, without prior written consent of an officer of
Computer Systems Consultants, Inc. The accompanying diskette may be
duplicated for backup purposes by the original license purchaser.
Protecting the software from unauthorized use will protect your access

tc new good software in the future. Programs such as 6502-6809
{ ANSLATOR would cost each user many hours or many thousands of
>llars to develop individually. They may be priced so low only

because of the expected large volume of sales. So let your friends
pay for their software, too!

Limited warranty Statement

Computer Systems Consultants, Inc., and its agents, makes no express
- or implied warranties concernping the applicability of 6582-6589
~ TTANSLATOR to a particular  purpose. Liability 1is limited to the
" _:ziginal license cost. This warranty is presented expressly in 1lieu
of all other warranties, expressed or implied, including those of
merchantability and fitness for use and of all other obligations on
the part of Computer Systems Consultants, Inc. and its agents.

- ‘ /7
{ ‘ Problems and Improvements

Users are encouraged to submit problems and to suggest or to provice
improvements for 6502-6809 TRANSLATOR. Such input will be processed
‘on a best effort basis. Computer Systems Consultants reserves the
right to make program corrections or improvements on an individual or
wholesale basis, as required. The company is under no obligation to
provide correctiens or improvements to all wusers of 6502-6809
TRANSLATOR. In the case of specific situations requiring extensions
to 6582-6809 TRANSLATOR or major assistance in its use, consulting 1is
available on a pre-arranged, for-fee basis.

¢ CSC 65C2-6809 TRANSLATOR 1 COPYRIGHT 1983




computer~Assisted Translation Ot Programs
From the MOS 6502 to the Motorola 68€9
; Edgar M. Pass, Ph.D.
Computer Systems Consultants, Inc.
' 1454 Latta Lane
Conyers, Georgia, 30207
Telephone 404-483-1717/4570

GENERAL

.

The CSC 6502 Translator provides a facility intended to assist
the user in converting 6502 source programs into 6809 source
programs. This manual first explains the theory of this
translation and then describes the application of the theory in
terms of the CSC 6502 Translator program. This program should be
useful to those users needing to convert programs from a
6502-based system to a 6809-based system. The user is
responsible for the media conversion required to make the 6582
program available to the translator program in FLEX, UNIFLEX, or
0S/9 format (t.m. Technical Systems Consultants and Microware).

INITIAL COMPARISON

From a review of the Motorola 6800 and 68089 and MOS €582, 1%
instruction sets of the 6809 and 6502 are both seen to be
derivatives of the (older) 6800 instruction set. However, the
extensions and changes made in the 6809 and 6502 instruction sets
have been in quite different directions. The following ta%-.
presents the programming models for each of the processr.~s, to
indicate the flavor of some of the changes and extensiuri.

Processor Registé} Bits Pescription

6800 A 8 Accumulator
B 8 Accumulator
cc 8 cCondition Code Register (11HINZVC)
PC 16 Program Counter
S 16 Stack Pointer
X 16 Index Register

6809 A 8 Accumulator
B 8 Accumulator ‘
cc 8 Condition Code Register (EFHINZVC)
D 16 A&B Registers (Concatenated)
DP 8 Direct Page Register
PC 16 Program Counter
S 16 Stack Pointer
4] 16 User Stack Pointer
X 16 Index Register
Y 16 1Index Register

Computer-Assisted Translation from 6502 to 6809 Page 1




(

v
i

6502 * A 8 Accumulator
cc 8 cCondition Code Register (NVGBDIZC)
PC 16 Program Counter
s 8 Stack Pointer (First 8 b1ts=ﬂl)
X 8 1Index Register
Y 8 Index Register

where Condition Code Register bits are defined as follows:

B BRK command (6502)

c carry/borrow

D decimal mode (6502)

E entire state on stack (6809) )
F fast interrupt (6889)

H half carry (6800/6809) .
I interrupt mask ‘
N negative .

v overflow

Z zero

REGISTER COMPARISON

" he similarities and differences in the register structures of

he processors are apparent from the table above. O0f the three,

the 6B09 has the most versatile register structure with its two
B8-bit accumulators, 8-bit direct page register, two 16-bit index
registers, and two 16-bit stack pointers. The 6582 has a
less~versatile register structure than either of the other two
processors, its only highlight being a second 8-bit index
register. The relative speed of the processors or relative
compactness of the code is not an issue here.

In corresponding the register structures from the 6502 to the
5809, most registers map to the similarly-named register. The
-xception is the 6502 A register which corresponds more closely
to the 6809 B register than the A register because of the manner
in which the 6809 TFR and EXG instructions function.

The condition code registers of the three processors all differ
in format and content, with the 6800 and 6809 being the most
similar and the 6502 the most unlike. All three condition code
egisters contain carry/borrow, interrupt mask, negative,
verflow, and zero bits, although the interpretation and setting
of bits may vary considerably among the three.

The 6502 "V" flag is modified by far fewer instructions than the
"V" flags on the 6808 and 6809 processors. The 6882 "B" flag
allows an interrupt processing routine to determine the
difference between an external interrupt and an internal
interrupt generated by a BRK command. The 6502 "D" flag
determines whether the ADC and SBC commands will operate in
decimal or binary mode. There are no directly corresponding
flags for "B" and "D" on the 6800 or 6809 processors. The
(nearly) equivalent functions are performed in quite different
manners.

-

Computer-Assisted Translation from 6502 to 6809 Page 2

R ]



&

'g ADDRESSING MODE COMPARISON

The addressing modes supported by each of the processors are
generally similar, although there are a few significant
differences. The following table presents the addressing modes
of interest in each of the processors (6808, 6502, 6809).

Mode Description
Inherent Changes registers or processor :
(Accumulator, states without explicit
Implied) regard for memory addressing
Direct Prefixes 8-bit address in instruction '

(Zero-Page) with 8--bit P00 (DP on 68@9) to provide
16-bit. effective address

Extended Uses 16-bit address in instruction
(Absolute) directly as effective address
Immediate Uses 8-bit or 16-bit value in

instruction directly, and not
as a memory address

Relative Adds 8-bit offset in instruction
to address of next sequential
instruction to provide effective
address of next instruction to
be executed

Indexed (6809) Adds 8-bit offset in instruction
to value in X register to provide
16-bit effective address

Indexed (6809) Uses one or more post-byte values in
instruction to indicate an entire
range of register and direct, indirect
or non-indirect addressing schemes

Zero Page Indexed (6502)
Adds 8-bit offset in instruction

to value in X or Y register to compute
8-bit value; prefixes this value with
8-bit 00 to provide 16-bit effective
address

Absolute Indexed (6502)
Adds 16-bit offset in instruction

to value in X or Y register to provide
a 16-bit effective address

Indirect (6502) Uses the 16-bit address in instruction to
provide a 16-bit effective address; uses
the contents of the locations at that

A

Computer-Assisted Translation from 6582 to 6889 Page 3




{

{

address and at the next address to
provide a 16-bit memory address

Indexed Indirect (6582)
Adds the 8-bit offset in instruction to

value in X or Y register to provide an
8-bit value, which is prefixed by an
8-bit 08 to form a 16-bit effective
address; the locations at that address
and at the next address to provide a
16-bit effective address

Indirect Indexed (6502) ’ .
Prefixes 8-bit address in instruction
with 8-bit 80 to provide an 16-bit .

effective address; adds the contents

of the locations at that address and at
the next address to the contents of the
Y or X register to provide a 16-bit
effective address

One significant difference between the 6502 and the other two
processors lies in the storage format of 16-bit address. Whereas

* Motorola processors store 16-bit addresses as high-order
t 9its then low-order 8-bits in successive locations, the 6502
stores 16-bit addresses as low-order 8-bits then high-order

B8-bits in successive locations. This difference appears in the
format o©f instructions containing 16-bit addresses and offsets,
return addresses 1in the stack, ..16-bit indirect addresses,

interrupt vectors, jump tables, etc.

There are several differences in the use of the S registers on
the 6502, 6800, and 68092. The most obvious is that the 6883 and

.6809 use a 16-bit S register, whereas the 6502 uses an B8-bit S

register and prefixes these 8-bits with an 8-bit constant 81 to
{ rm a 16-bit address. Thus the 6502 stack is restricted to
addresses $O0100-$O1FF. The 68098 and 6582 decrement the stack
pointer after placing a new item into it, whereas the 6889
decrements it Dbefore. Thus the 6800 and 65802 stack pointers
always point to one address Dbelow the current stack 1limit,
whereas the 6809 stack pointer always points to the last item
placed onto the stack (if any). The TSX and TXS instructions on

e 6800 (but not on the 6502) take this into account by adding

e to the X register after transferring the contents of the S
register to it and by subtracting one from the S register after
transferring the X register to it.

This difference can cause difficulty in translating programs from
the 6800 to the 6889 but, because of the highly restricted nature
of the 65082 S- register, should cause 1little difficulty in
translating programs from the 6582 to the 6809. The main problem
stems from the 6800 trick of using the stack pointer as a second
index register. However, the 6502 Y register functions as a
second index register in many addressing modes, and the 6502 S
register is restricted to page @1 in memory addresses,
eliminating it as an effective third index register on the 6502.

b J

Computer-Assisted Translation from 6502 to 6809 Page 4

‘
ey



The table below summarizes many of the differences and
similarities already discussed concerning the 6582, 68@d, and
6502, in terms of the 6502 instruction set. This set has 56
members, as opposed to 97 members for the 68088 and 58 members for
-the 6809. However, counting address mode and register
variations, the 6502 can execute approximately 108 instructions,
the 6800 can execute approximately 200 instructions, and the 6809
can execute approximately 758. In the table below, an asterisk
indicates that the instruction has the indicated address mode, an
entry under Condition-Code-Reg Form indicates the conversion of
the Condition-Code format, an entry under Stack indicates stack
manipulation, and an entry under X/Y indicates X or Y register
modification. The entries under 6809 Condition-Code-Reg indicate
the results provided by the translation suggested later in this

article.

6502 Absolute/ Condition-Code-Reg Stack Zero Indirect X/Y

Opcode Zero-Page 6502 6809 Form Wrap Wrap
NV@ZBDIZC EFHINZVC

ADC * NV....Z2C ..H.NZVC * *

AND * N.....Z. ....NZ.. * *

ASL * N..... ZC ....NZ2.C *

BCC

BCS

BEQ

BIT * NV....Z. ....NZV.

BMI

BNE

BPL

BRK RS T IR, I -3

BVC

BVS .

CLC T - B o

CLD eeeB... RESET D

cLT eee.. g.. ...0....

CLV I I

CMP * N.....Z2C ....NZ.C * *

CPX * N..... zC ....NZ.C

ZPY * N..... ZC ....NZ.C

DEC * NeeeooZe ose.NZ.. *

DEX N.eeeeZ. ....NZ.. X
DEY N..... Z. ....NZ.. Y
Computer-Assisted Translation from 6502 to 6899 Page 5

e g T A o

e weermge e

ot ]



ZO0R
INC
INX
INY
JMP
JSR
LDA
LDX
LDY
LSR
NOP
ORA
‘PHA
PHP
oLA
2LP
ROL
ROR
RTI
RTS
SBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Opcode Absolute/
Zero—-Page

.- %

* % % % 0w

»

*

Condition-Code-Reg Stack Zero Indirect X/Y

6502
NV@BDIZC

N.....2Z.
N.....2Z.
N..o..2.
N.....Z.

Nevooo.2.
N.eoo.oZ.
N.....Z.
g.....2C

N'.".Z.
N.....Z.
NVOBDIZC

NI.O..ZC
NV@BDIZC

NV....ZC
.Q."Q'l

ceesla

6809
EFHINZVC

ee.NZ..
eessNZ..
cee.NZ..
eeeNZ..

eessNZ..
«e.eNZ..
eeseNZ..
eeeBZ.C

...-NZ--

«ss»NZ..
EFHINZVC
.+ s . NZVC
««+.NZ.C
EFHINZVC

.o NZVC

00...001

SET D
.I!ll"'

«s+sNZ..
«...NZ..
ees . NZ..
«ee.NZ..

o e s 06 8 0 o o

eeeNZ..

Form

TO

FROM

-1
+1
+1

+3
+2

X+1

-

wWrap

*

Computer-Assisted Translation from 6582 to 6809

Wrap

4 ¥

L

HQPS M e R g

Page 6




‘The additional registers and instructions on the 68089 make
possible an almost exact emulation of the 6502. The 68089 code
will not generally have the same length as the 6502 code, nor
will it require the same amount of time to execute. Because the
translation is being done before assembly time, no run-time
instruction modification is assumed.

It has been noted that certain features of the two processors are
similar but not identical. If the incremental cost of the exact
emulation of a 6502 instruction or feature exceeds its
incremental utility in a specific program or subroutine,. it would '
be highly desirable to be able to trade-off the exact emulation
for a speed and space reduction in the 6809 code. For instance,
the format and contents of the 6502 and 6889 condition code
registers are different. Assuming that the "B® and "D" flags of
the 6502 are handled separately, many 6502 programs would run
correctly with no or minor changes (after translation) on the
6809, even with the 6802 format of condition code register.

The following differences in the instruction sets and features
are considered to require a sufficient time and space penalty on
the 6889 in exact emulation of the 6502 to be considered for less
than complete emulation in the following cases:
L -reversed order of absolute address high and low bytes,
-stack restriction to $@01XX address range,
-"B", "D", and "V" flag handling in many instructions,
-format of condition code register,
-page-zero wraparound in several addressing modes,
-8-bit X and Y register limitations.
Other major tradeoffs will be discussed in relation to the

individual instructions.

In order to reverse the order of high and low address bytes on
the 6809 from the °6502, several approaches are possible. the

{ nost direct method which still maintains an exact emulation is to
assume that all extended " address bytes, except within
instructions, are reversed and to include 68089 code of the
following form to actively flip the address before use:

TFR CC,DP SAVE CC REGISTER
LDU address LOAD ADDRESS
EXG U,D MOVE ADDRESS
{ EXG A,B REVERSE BYTES
EXG D,U PUT ADDRESS IN U REGISTER
TFR DP,CC RESTORE CC REGISTER
Executing this code is time-consuming and wasteful if it is not
needed. The definition of the 6502 .WORD (or equivalent)

assembler pseudo-op code will require defining in such a manner
as to reverse the bytes of its address operands. The TFR
instructions used above are included to avoid disturbing the
condition code register; most such sections of code will require
protection of the condition code register.

In many cases, the programmer may decide to use the 6809, rather
than 6502, form of extended addressing, and modify the translated

Computer-Assisted Translation from 6502 to 6809 Page 7

- - . o e e —— . e o e - - B e NN
iR T - wr B K i I .
=Y - g - g | !‘d P _’!



o Jogram  as necessary to accomplish this. Then the reversal of

;
%

Fddress bytes as described above will not be required and the
6502 .WORD (or equivalent) assembler pseudo-op code will be
translated to the 6809 FDB. The programmer will be required to
correspondingly modify references to the bytes in the program
representing reversed extended addresses. However, as most other
tradeoffs do, this one preserves more of the flavor of the 6809
and less of the 6502 and is hence more efficient.

e 6502 stack restriction to the $01XX address range causes
.~anslation problems generally as far-reaching as the reversed
address bytes situation. Every operation involving items placed
onto the stack or pulled from the stack or the setting of the 'S
register must be done thru special inline code. The translator
may not directly insert any operation, such as a subroutine
call, which uses the stack. The 6502 S register always points to
the next available location, whereas the 6809 S register always
points ~to the 1last item pushed into the stack. Whether 6582
stack emulation is used or not, the translated program must
initialize the S register. Interrupt processing may not be
supported with the emulated stack. The 6582 instructions which
directly place information on the stack are as follows:
BRK, JSR, PHA, PHP:

+hose which directly gather information from the stack are as

sl1lows:
.PLA, PLP, RTI, RTS;
and those which directly use or modify the stack pointer directly
are as follows:
TSX, TXS.

The inserted 6809 code to emulate the placing of an item onto a
6502 stack is of the following form: .

STB ,S STORE B REGISTER IN STACK
TFR CC,DP SAVE CC REGISTER

TFR D,U SAVE D REGISTER

TFR S,D

DECB BUMP S REGISTER DOWN

TFR D, S SET S REGISTER

TFR U,D RESTORE D REGISTER

TFR DP,CC RESTORE CC REGISTER

and that of removing of an item from a 6502 stack is of the
following form:

TFR CC,DP SAVE CC REGISTER

TFR D,U SAVE D REGISTER

TFR §,D

INCB BUMP S REGISTER UP

TFR D,S SET S REGISTER

TFR U,D RESTORE D REGISTER

LDB ,S GET B REGISTER FROM STACK
TFR DP,CC . RESTORE CC REGISTER

-

Instructions (such as BRK, JSR, RTI, and RTS) which require
multiple stack operations will require multiple copies of these
stack push and pull operations for exact emulation. Even with
the pull and push routines, exact 6502 stack emulation must be
done with interrupts turned off. The 6502 TXS and TSX
instructions will require review if either the S or the X

Computer-Assisted Translation from 6582 to 6809 Page 8




uniess such iexact stack emulation 18 required in a given
situation (which it seldom is), most 6582 programs will run after
translation using 6889 stack handling with little or no change,
and with a great increase in efficiency and functionality for
stack-related operations. -

The content differences in the condition code registers of the
6502 and 6809 are apparent primarily in the cases of interrupt
processing and the ADC, BIT, BRK, CLD, CLV, PHP, PLP, RTI, SBC,
and SED instructions. )

The 6502 BRK instruction has no exact 6809 counterpart with
respect to the "B" flag in the condition code register. However,
if 6502 stack emulation and condition code register format are
not required, the 6502 BRK instruction may be translated to ‘the
6809 SWI instruction, which has a different vector address in
high memory from the IRQ iunterrupt.

The 6809 has no direct counterpoint to the use of the 65802 "D"
flag: however, it is modified only by the CLD, PLP, RTI, and SED
.instructions and 1is  used only by the ADC and SBC instructions.
Thus the 6582 "D" flag is easily emulated using a separate byte,
the only difficulties being with the 6809 SBC instruction, which
does not interface with the DAA instruction, and properly
separating and combining multiple "D" flag bytes during interrupt
srocessing.

The 6889 has many more instructions which modify the "V" flag
than does the 6502, in which only the ADC, BIT, CLV, PLP, RTI,
and SBC instructions modify the "V" flag. The 6582 "V" flag is
thus easily emulated in the same manner as the "D" flag, with the
same potential problems during interrupt processing.

- Since the 6809 condition code register has format “EFHINZVC' and

the 6502 condition zode register has format "NV@BDIZC" two
routines must be defined for the 65802 emulation, one to reformat
condition codes in each direction. The routines are very
similar; the following one reformats the 6889 condition code
regicter into 6502 format:

TFR CC,DP - SAVE CC REGISTER
TFR D,U SAVE D REGISTER
TFR CC,A

CLRB ZERO 6502 REGISTER
BITA #5109 I FLAG

BEQ *+4

ORAB #3504

BITA #5$08 N FLAG

BEQ *+4

ORAB #5882 .

BITA 3504 Z FLAG

BEQ *+4

ORAB $#$02

TST SEVFLG V FLAG

BEQ *+4

ORAB #5540

BITA $S$81 C FLAG

Computer-Assisted Translation from 6502 to 6809 Page 9

QN VU U N




ORAB #$01 : St el
TST SEDFILG D FLAG '
BEQ *+4

ORAB #5580

TFR DP,CC RESTORE CC REGISTER

TFR B,DP

TFR U,D RESTORE D REGISTER

TFR DP,A 6502 CC IN A REGISTER

Rgain, since most programs never (or seldom) require the
_articular format of the 65082 condition code register, a
programmer may decide to use the 6809-format condition code
register and manually change the translated program, as required.

Page zero wraparound is another attribute of the 6502 which is
not present on the 68029 and must be handled by the translator
thru additional code if exact emulation is- required. This
problem occurs in the 6502 zero-page-indexed and indexed-indirect
address modes. In the zero-page-index:=d mode, the 8-bit offset
in the 6502 instruction is added to the 8-bit value in the X or Y
register to provide an 8-bit value, which is prefixed with 8-bit
P9 to provide a 16-bit effective address. The 6809 code inserted
by the translator would be of the following form:

TFR CC,DP SAVE CC REGISTER
LEAU ((address) AND SFF),X COMPUTE ADDRESS

EXG U,D .

CLRA TRUNCATE TO 8 BITS

EXG D,U ADDRESS IN U REGISTER

TFR DP,CC RESTORE CC REGISTER

OoPC ,U PERFORM ORIGINAL OPERATION

The alternative to emulation would be to treat =zero-page-indexed
address mode as 1if it were absolute-indexed address mode, in
which case the programmer would be responsible for ensuring that
the correct effective address is calculated in each case. In the
indexed-indirect mode, the B-bit offset in the instruction is

dded to the 8-bit value in the X or Y register to form an 8-bit

esult, which is prefixed by an B8-bit ©88 to form a 16-bit
effective address. The contents of the locations at that address
and at the next address are used to provide a 16-bit effective
address. The 6809 code inserted by the translator would be
identical to that provided earlier, with the exception of the
last 1line, which would use indirect addressing and would be of

the following form:
opc [,u] PERFORM ORIGINAL OPERATION

ssuming that no indirect addresses are placed at $S@OFF and
$0000. An alternative to emulation would be to directly use the
6809 indirect address facility, manually correcting any cases in
which the contents of the X or Y register plus the offset exceeds
SOOFE.

" The 6502 B-bit X and Y register limitations affect the following
6502 instructions:
nf

DEX, DEY, INX, INY, LDX, LDY, STX,

STY, TAX, TAY, TSX, TXA, TXS, TYA.
In virtually every case, the 8-bit value being processed must Dbe
moved thru the D register in order to properly extend or truncate

-

Computer-Assisted Translation from 6502 to 6809 Page 10

BEQ %44 ¢ o

| TP T

[T



---- vusus. rul 1nstance, the translator-generated 6829 code ' for
INX would be the following:

EXG X,D’ MOVE X REGISTER FOR TRUNCATION

LDA #$00 CLEAR MS 8 BITS, NOT C FLAG

INCB . BUMP LAST 8 BITS OF X .
EXG D,X° RESTORE NEW X REGISTER

The magnitude of the problems associated with the conversion of
the translated program to fully use the 16-bit X and Y registers
of the 6809 would depend upon the program being translated.
However, they may be severe, and the emulation overhead will
usually be small.

CONVERSION ANALYSIS

Most computer programs, even on microcomputers, ¢&o not run
stand-alone but run under control of an operating system or use
external I/0, math, or service subroutines. Thu=., ecven if the
translation from 6562 to 6809 is exactly correc. oa an
instruction-by-instruction basis, many 6502 programs would not
run after translation without modification. The portions of
. programs recuiring change in a practical environment will
generally be in the following areas:

-monitor, operating system, and subroutine library

entry .points,

~I/0 addresses and hardware,

-memory-mapped video facilities,

-miscellaneous tradeoffs made in translation.

Entry points may cause difficulties in terms of addresses,
parameters, and functions. The address problems are usually the
simplest to solve, since these generally involve merely changing
addresses in .EQU statements. The parameter-passing problem
" encompasses addresses and values passed to and from subroutines,
monitor entry points, a2nd operating system routines, and may be
far more complex. The number of variations in table and contrcl
block format and usage, control value interpretation. data
structure representation, method of returning results, etc. is

astrcnomical.

The Dbest plan of attack on these problems varies with the nature
of the effort. In the case of a well-defined subroutine library
or set of operating system routines being referenced, it may be
>ossible and advantageous to code a set of 6889 routines to
interface to a similar-functional library or routines. Then this
interface may be used in any program with few other changes in

logic required.

I1/0 address and hardware differences may cause from minor to
severe problems in conversion. Simply changing the EQU
statements will probably not affect the complete conversion
because of the differences in handling of the various I/0
devices, such as VIO's, VIA's, PIA's, ACIA's, etc. These
differences may be handled by coding interface subroutines, by
modifying the code to handle the new 1/0 device in_ native mode,
by using similar functional routines already available in the

-

Computer~Assisted Translation from 6582 to 6809 Page 11

. ey e e W s g e
P s s il b il




©9 operating system, etc. 1In the worst case, the 65¢2 hardware

: M7£acility may not even be available on the 6889, requiring

extensive modifications.

Memory-mapped video facilities are avilable on many oOf the
"appliance" computers as standard features but are not generally
directly available on 6809 systems, with the notable exception of
the Radio Shack Color Computer. If a 6502 program makes
extensive use of memory-mapped video hardware, but the facility
is not available on the 6889 or is available but is handled

ifferently, several methods of translating the running 6502
program to become a running 6809 program are possible. The
obvious, though sometimes most di¥ficult, means of performing the
conversion would be to rewrite the 6502 code after translation to
drive the video board or terminal used on the 6809 directly.
Another method would be to write a terminal emulation routine
which would make the same output appear on an output device on a
6809 as on a video monitor on a 6502. The method used in a given
case will depend upon the situation.

The other primary reason for manual intervention in the
conversion process involves the tradeoffs made in the
translation. The changes required by this have been previously
discussed, but may benefit from some of the same organized
* ttacks as suggested for the I1/0 and hardware problems. Other
1anges may be desirable to take advantage of the additional
instructions and addressing modes of the 6809 versus the 6502.

THEORY SUMMARY

The preceding discussion has presented, in detail, the theory by
which 6582 source programs are converted to 68Y9 source programs
" by the CSC 6502 Translator. This conversion is performed in two
- “hases. - '

The first is a low-level (instruction-by-instruction) translation
process which could be performed manually or by using a computer
program, namely +the CSC 65802 Translator. The instruction
emulation 1level may be varied to cause the translated program to
have certain attributes closer to the 6502 or to the 6809
. architectures, as desired.

ie second is a higher-level process which must generally be
performed manually (although possibly with the assistance of a
editing or special-purpose computer program) since it usually
involves creativity and cleverness on a level not yet found in
the most advanced computer programs, but sometimes found in human,
intelligence. This involves the resolution of the remaining
differences between the translated 6502 program and the 6809
environment in which the 6809 program will run, and the final
debugging and checkout.

-

Computer-Assisted Translation from 6502 to 6889 Page 12




APPLICATIUN : e e

3

,m.,yxl-cu 2

As noted above, it is the user’'s responsibility to convert the
6502 source program into a 6889 FLEX, UNIFLEX or 0S/9 compatible
format. CSC markets a 6502 disassembler which runs on the 68829
and may be used to assist the user in converting 6502 object
programs into 6502 source programs, compatible with the 6582
Translator.

The CSC 6502 Translator is delivered on a diskette containing the

following files:
X02XLATS.TXT source file for translator
XP2XLATS.CMD binary file for translator
XP2MACRO.TXT translator macro library
X@2MACLB.TXT assembler macro library
X@2SUBLB.TXT assembler subroutine library’
X@2TEST.TXT 6582 test program

. - '

The only customization required for a particular terminal is the

specification of the home-up-clear-screen sequence. This is

accomplished by modifying the values of the symbols CLRSC1,

CLRSC2, CLRSC3 in X@2XLATS.TXT and re-assembling the module.

Unused locations may be set to hex 60 (for no delay time) or hex
('Qﬁ (for timing delays).

The translator program functions as a macro generator. The
translation process 1is largely based upon the macro library
XO02MACRO.TXT, although certain assumptions are made in the
translator program pertaining to pseudo-opcodes and address
modes. There are currently three option groups (2ARBC,DEF,HIJ)
which partially control the macro generation process. Each macro

is composed of two parts.

" The first portion provides the macro name and suffix.. The macro

. name itself represents the €502 opcode name (three characters), -

[ starting in the first position. There are currently six suffixes
(A,X,Y,2X,2Y,null), representing instruction address modes
accumulator, indexed-indirect, indirect-indexed, zero page plus
X, zero page plus Y, and other modes, respectively.

The second portion provides the macro expansion budy. The lines
are in a fixed format. The first position must be Dblonk. The
( econd thru fourth positions contain zero to three option nomes.
he values of the multiple names, if any, are 1logically ANC «d
together. If any of the options are false, the line is not
selected. Lines with all blank option fields are always
selected. The fifth thru end positions contain the expansion
text.. Other than in a comment line (starting with an asterisk),
an underline character is replaced with the instruction operand;
the surrounding parentheses and trailing ",X" or ",Y" strings are
dropped for indexed-indirect and indirect-indexed address modes.

The three option groups represent decisions to be made pertaining
to condition-code format, ADC/SBC . special code, and address
format translations. These options were generally described 1in
the theory section. 6809 stack handling is assumed, with the

>

Computer-Assisted Translation from 6502 to 6809 Page 13




PR

macros used during the post-transla

; ;’iception of the 'TSX and TXS instructions,
"Freview. Eight-bit X and Y registers are assumed.

The assembler macro library X@2MACLB.TXT cont

tion ass

which will require

ains assembler
embly process.

Primarily, they reverse the order of address bytes from lo-hi in

the 6562 to hi-lo in the 6889. This could be done more readily
at assembly time than at translation time, when required.

The assembler subroutine 1library X@2SUBLB.TXT

initialization and special code subrouti

nes gene

contains the
rally required

for a translated program. If a 6502 program is translated in
several portions, the extra library calls for X02SUBLB.TXT should
be deleted when the program is re-combined for assembly.

e

Since the three libraries and translator are provided in editable
source format on diskette, they may be readily modified to change

or extend the translation process. In a
the 6502-68029 translation, errors are
easiest manner in which to correct errors

situation
certain
in or to

translation process will be to make changes in one
libraries. Changes in the translator should be
rarely, except to add new options or to adapt to a new 6502
format changes may Dbe
( -omplex, it may be simpler to modify the 6502 source program with
1 text editor before translation than to modify the translator.

The translator currently assumes MOS assembler format, which uses

assembler format. Since the assembler

pseudo-opcodes =, %=, .BYTE, .CHAR,

.DBYTE,

as complex as
to occur. The
customize the
or more of the
required more

and .WORD and

requires strings in .CHAR statements to be surrounded by single

or double quotes.

The test file XO2TEST.TXT contains at least one usage of every
translation macro and exercises most of the tran
logic, when used with the appropriate options.

used to help test modifications to the translator or libraries.

FINAL. NOTES

slator program
It may also be

The following items will almost certainly cause problems in the
translation process and must be investigated before successful

-translation:
-instruection modification,

-instruction-counter or label relative code references,

—-external address references,
-BRK, TsX, TXS usage.

Non-position-independent c¢ode will not run under 0Ss/9, although
non-position-independent data will run in single-user mode. csc
markets a program to assist in conversion of programs to PIC/PID

format for 0S/9 or for other purposes.

The tra

logically output 6809 PIC/PID code from 65082 code.

-

Computer-Assisted Translation from 6502 to 6809

P R ey ARS LR 4 L Y

e ST e

nslator cannot

Page 14



