
OS-9

Technical

Reference

Contents

Chapter 1 System Organization . 1-1
I/0 System Modules . 1-1
Color Computer OS-9 Modules . 1-2
Kernel, Clock Module, and INIT . 1-2
Input/Output Modules . 1-3

I/0 Manager . 1-3
F ile Managers . 1-3
Device Drivers . 1-3
Device Descriptors . 1-4

Shel l . 1-4

Chapter 2 The Kernel . 2-1
System Initialization . 2-1
System Call Processing . 2-4

OS9Defs and Symbolic Names 2-4
Types of System Calls . 2-4

Memory Management . 2-5
Memory Use . 2-5
Color Computer OS-9 Typical Memory Map 2-7
Memory Management Hardware 2-7

Multiprogramming . 2-12
Process Creation . 2-12
Process States . 2-13
Execution Scheduling . 2-14
Signals . 2-15

Interrupt Processing . 2-16
Logical Interrupt Pol ling System 2-17

V irtual Interrupt Processing . 2-19

Chapter 3 Memory Modules . 3-1
Module Types . 3-1
Module Format" . 3-1

Module Header . 3-2
Module Body . 3-2
CRC Value . 3-2

Module Headers: Standard Information 3-3
Sync Bytes . 3-3
Module Size . 3-3
Offset to Module Name . 3-3
Type/Language Byte . 3-4
Attributes/Revision Level Byte 3-4
Header Check . 3-5

OS -9 Technical Reference

Module Headers: Type-Dependent Information 3-5
Executable Memory Module Format 3-6

Chapter 4 OS-9's Unified Input/Output System 4-1
I/0 System Modules . 4-1
The I/0 Manager . 4-2
File Managers . 4-3

File Manager Structure . 4-3
Create, Open . 4-4
Makdir . 4-4
ChgDir . 4-4
Delete . 4-5
Seek . 4-5
Read . 4-5
Write . 4-6
ReadLn . 4-6
WriteLn . 4-6
GetStat, PutStat . 4-6
Close . 4-7

I nterfacing with Device Drivers . 4-7
Device Driver Modules . 4-8

Device Driver Module Format4-10
OS-9 Interaction With Devices4-11

Suspend State (Level Two Only) 4-13
Device Descriptor Modules 4-15

Path Descriptors4-18

Chapter 5 Random Block File Manager 5-1
Logical and Physical Disk Organization 5-1

Identification Sector (LSN 0) 5-2
Disk Allocation Map Sector (LSN 1) 5-3
ROOT Directory 5-3
File Descriptor Sector 5-3

Directories ... 5-5
The REF Manager Definitions of the Path Descriptor . . 5-5
REF-Type Device Descriptor Modules 5-8

REF Record Locking 5-10
Record Locking and Unlocking 5-11
Non-Shareable Files 5-12
End-of-File Lock 5-12
Deadlock Detection 5-13

REF-Type Device Driver Modules 5-13
The REF Device Memory Area Definitions 5-13
REF Device Driver Subroutines 5-16

Contents

Chapter 6 Sequential Character File Manager 6-1
SCF Line Editing Functions . 6-1

Read and Write . 6-1
Read Line and Write Line . 6-2
SCF Definitions of the Path Descriptor 6-2

SCF-Type Device Descriptor Modules 6-6
SCF-Type Device Driver Modules 6-9

SCF Device Driver Subroutines 6-10

Chapter 7 The Pipe File Manager (PIPEMAN) 7-1

Chapter 8 System Calls 8-1
Calling Procedure 8-1
I/0 System Calls 8-2
System Call Descriptions . 8-2
User Mode System Calls Quick Reference 8-3
System Mode Calls Quick Reference 8-5
User System Calls . 8-7
I/0 User System Calls 8-44
Privileged System Mode Calls 8-66
Get Status System Calls . 8-112
Set Status System Calls . 8-130

Appendices . A-1
A Memory Module Diagrams . A-1
B Standard Floppy Disk Format B-1
C System Error Codes C-1

Index

Chapter 1

System Organization

OS-9 is composed of a group of modules, each of which has a spe­
cific function. The following illustration shows the major mod­
ules. Actual module names are capitalized.

I/0 System Modules

I NIT

Disk File
Manager

(RBF)

RBF Device Descriptors

DS·9 KERNEL
(OS9P1, OS9P2)

lnput.Output Manager
(lOMAN)

Pipe File
Manager

(Pipeman)

Pipe Oeser. SCF Device Descriptors

Vdglnt
CC310

Interface

Grflnt
CC310

Interface

05-9 COMPONENT MODULE ORGANIZATION

Clock

Windlnt
CC310

Interface

1-1

OS -9 Technical Reference

Color Computer OS-9 Modules

lOMAN Input/output management
INIT System initialization table
CLOCK Software routine time management
RBF Random block file management
SCF Sequential character file management
PIPEMAN Pipe file management
CC3DISK Color Computer disk driver
CC3IO Color Computer input/output driver

The VDGINT (video display generator) provides both interface
functions and low-level routines for Color Computer 2 VDG
compatibility.

The GRFINT interface provides high-level graphics code interpre­
tation and interface functions.

The WINDINT interface contains all the functions of GRFINT,
along with additional support for Multiview functions. If you are
using Multiview, exclude GRFINT from the system.

Both WINDINT and GRFINT use the low-level driver GRFDRV
to perform the actual drawing on bitmap screens.

Ter:rn_VDG uses CC3IO and VDGINT. TERM_WIN and all
window descriptors (W, Wl, W2, and so on) use CC3IO, WIN­
DINT, GRFINT, and GRFDRV modules.

Kernel, Clock Module, and INIT

The system's first level contains the kernel, clock module, and
!NIT.

The kernel provides basic system services, such as multitasking
and memory management. It links all other OS-9 modules into
the system.

The clock module is a software handler for the real-time clock
hardware.

INIT is an initialization table used by the kernel during system
startup. This table loads initial tasks and specifies initial table
sizes and initial system device names. It is loaded into RAM
(random access memory) by the OS-9 bootstrap module Boot.
Boot also loads the OS9P2 and INIT modules during system
startup.

1-2

System Organization I 1

There are two ways to run boot:

• Using the DOS command with Color Disk BASIC, Ver­
sion 1.1, or later.

e Pressing the reset button after OS-9 is running.

Input/Output Modules

The remaining modules make up the OS-9 I/0 system. They are
defined briefly here and are discussed in detail in Chapter 4.

I/0 Manager

The system's second level (the level below the kernel) contains
the input/output manager, lOMAN. The I/0 manager provides
common processing for all input/output operations. It is required
for performing any input/output supported by OS-9.

File Managers

The system's third level contains the file managers. File man­
agers perform I/0 request processing for similar classes of I/0
devices. There are three file managers:

RBF manager

SCF manager

PIPE MAN

Device Drivers

The random block file manager processes
all disk I/0 operations.

The sequential character file manager han­
dles all non-disk I/0 operations that operate
one character at a time. These operations
include terminal and printer I/0.

The pipe file manager handles pipes. Pipes
are memory buffers that act as files. Pipes
are used for data transfers b e tween
processes.

The system's fourth level contains the device drivers. Device
drivers handle basic I/0 functions for specific I/0 controller hard­
ware. You can use pre-written drivers, or you can write your
own.

1-3

OS -9 Technical Reference

Device Descriptors

The system's fifth level contains the device descriptors. Device
descriptors are small tables that define the logical name, device
driver, and file manager for each I/0 port. They also contain port
initialization and port address information. Device descriptors
require only one copy of each I/0 controller driver used.

Shell

The shell is the command interpreter. It is a program and not a
part of the operating system. The shell is fully described in the
OS-9 Commands manual.

1-4

Chapter 2

The Kernel

The kernel is the core of OS-9. The kernel supervises the system
and manages system resources. Hal f of the kernel (called
OS9Pl) resides in the boot module. The other half of the kernel
(called OS9P2) is loaded into RAM with the other OS-9 modules.

The kernel's main functions are:

• System initialization after reset

• Service request processing

• Memory management

• Multiprogramming management

• Interrupt processing

I/0 functions are not included in the list because the kernel does
not directly process them. Instead, it passes I/0 system calls to
the I/0 Manager for processing.

System Initialization

After a hardware reset, the kernel initializes the system. This
involves:

1. Locating modules loaded in memory from the OS-9 Boot file.

2. Determining the amount of available RAM.

3. Loading any required modules that were not loaded from the
OS-9 Boot file.

OS-9 Level Two cannot install new system calls using the OS-9
Level One system call F$SSvc. F$SSvc does not work with a
Level Two user program because of the separation of system and
user address space.

2-1

OS -9 Technical Reference

OS9P3 can be used to tailor the system to fit specific needs. The
following listing is an example of how to use the OS9P3 module.

2-2

Microware OS-9 Assembler 2.1 11118183 16:06:01 Page 001

OS-9 Level TWO V1.21 part 2 - OS-9 System Symbol Definitions

iii11

iii12
iii13

00014
00015

00016
30017

00018

iii19

00029
03330

00031

00332
0033

00041

00042
iii43

00044
iii45

00046
00047

00048

30049
00053

30051
30052

03053
00354

30055

03056

03057
iii 58

00059

03060

fHHftftftfftttfffffHffffffffffffftfffffffflffHIHffffffHffffffffff

0iC1

0381

iii! 87CD0i5E
mo 4F53397i

3012 il

Module Header

Type

Revs
set Systm+Objct

set ReEnt+l
mod OS9E nd 1 OS9Hame 1 Type 1 Revs 1 Cold 1256

OS9Hame fcs "OS9p3"

feb I edit ion number

use defsf ile

level equ 2

opt -c

opt

fffffffffffffffffffffffffffffffffffffftffffffffffffHffHffff

Routine Cold

3313 318Diii4 Cold

0017 1i3F32
301 A 39

leay SvcTbl1pcr get service routine

OS9 FISSvc install new service
rts

fffffffffffHffffffffffffffHffffflfffffffffffffffffHfffffff

Service Routines Initialization Table

3025 F$SAYHI equ 125 set up new call

Add this to the user os9defs file.

The Kernel I 2

eee61 em Svc Tbl equ
eee62 em 25 feb FISAYHI
iii63 em !iii fdb SayHi -•-2
iii64 em se feb ISe

Microware OS-9 Assembler 2.1 II /IS/S3 16: e6: et Page m

OS-9 Level TWO VI ,21 part 2- OS-9 System Symbol Definitions

ems

iii69

mn

iii71

iii72

iii73

iii74

ems

iii76

mn

ems

iii79

mse em

ii!SI m1

ii!S2 em

ii!S3 ee26

ii!S4 ms

mss ms

ii!S6 mo

ms7 mF
mss em

ii!S9 m7

m9e mA
iii91 me

eee92 ee4e

iii93 ee42

iii94 ee45

ems ee4S

iii96

iii97 ee49

ems mA
iii99

e01 ee ms

0el el

•Service call Say Hello to user

• Input:

•Ou tpu t:

•Data:

AE44

2619

I e9E5e

EE24

33CSDS

96De

E626

1 esEee2S

3esoee12

1 e3F3S

3eC4

leSEii2S

om

A6CS32

I e3FSC

39

4S656C6C

eo

51 e4B6

U ' Registers ptr
RIX1u 'Message ptr (if e send default)
Max message length ' 4e bytes.

Message sent to standard error path of user.

D. Proc

SayHi ldx
bne
ldy
ldu
leau
lda
!db
ldy
leax
059

leax
5ayHi6 ldy

1 du
Ida
059

rts

Hello fcc
feb

emod

RIX I u
SayH i 6

D. Proc
PISP 1Y
-4e 1 U

D.SysTs�
PITASK1y
#4e

Hello 1pcr
FIMove
e lu
#4e

D. Proc

get mess. address
bra if not default
get proc descr plr
get caller's stad
room for message
system's las� num
caller's las� num
set byte count
destination plr
mess into user mem

get max byte count
get proc desc plr

PIPATH+21u path num of stderr
I $Wr i tln write mess line

"Hello there user."
$0

module CRC

2-3

OS -9 Technical Reference

00102 mE

00103

00104

00000 errodsl

00000 warning(s)

059End equ

1005E 00094 program bytes generated

$0000 00000 data bytes allocated

$2884 10372 bytes used for symbols

end

System Call Processing

System calls are used to communicate between OS-9 and assem­
bly-language programs for such functions as memory allocation
and process creation. In addition to I/0 and memory manage­
ment functions, system calls have other functions. These include
interprocess control and timekeeping.

System calls use the SWI2 instruction followed by a constant
byte representing the code. You usually pass parameters for sys­
tem calls in the 6809 registers.

OS9Defs and Symbolic Names

A system-wide assembly-language equate file, called OS9Defs,
defines symbolic names for all system calls. This file is included
when assembling hand-written or compiler-generated code. The
OS-9 assembler has a built-in macro to generate system calls.
For example:

059 !$Read

is recognized and assembled as equivalent to:

SW!2

FCB !$Read

The OS-9 assembly macro OS9 generates an SWI2 function. The
label I$Read is the label for the code $89.

Types of System Calls

System calls are divided into two categories, I/0 calls and func­
tion calls.

2-4

The Kernel I 2

I/0 calls p erform various input/output functions. The kernel
p asses calls of this typ e to the I/0 manager for processing. The
symbolic names for I/0 calls begin with I$. For example, the
Read system call is called I$Read.

F unction calls p erform memory management, multi-program­
ming, and other functions. Most are processed by the kernel. The
symbolic names for function calls begin with F$. For example,
the Link function call is called F$Link.

The function calls include user calls and privileged system mode
calls. (See Chapter 8, "System Calls", for more information.)

Memory Management

Memory management is an important operating system function.
Using memory modules, OS-9 manages the logical contents of
memory and the physical assignment of memory to programs.

A ll programs that are loaded must be in the memory module for­
mat. This format allows OS-9 to maintain a module directory of
all the programs in memory. The directory contains information
about each module, including its name and address and the
number of processes using it. The number of processes using a
module is called the module's link count.

When a module's link count is zero, OS-9 deallocates its p art of
memory and removes its name from the module directory.

Memory modules are the foundation of OS-9's modular software
environment. Advantages of memory management are:

o Automatic runtime linking of programs to libraries of
utility modules

o Automatic sharing of re-entrant programs
o Replacement of small sections of large programs into

memory for update or correction

Memory Use

OS-9 reserves some space at the top and bottom of RAM for its
own use. The amount depends on the sizes of system tables that
are specified in the INIT module.

2-5

OS -9 Technical Reference

OS-9 pools all other RAM into a free memory space. A s the sys­
tem allocates or deallocates memory, it dynamically takes it
from or returns it to this pool. RAM does not need to be contig­
uous because the memory management unit can dynamically
rearrange memory addresses.

The basic unit of memory allocation is the 256-byte page. OS-9
always allocates memory in whole numbers of pages.

The data structure that OS-9 Level Two uses to keep track of
memory allocation is a 256-byte bit map. Each bit in this table
is associated with a specific page of memory. A cleared bit indi­
cates that the page is free and available for assignment. A set
bit indicates that the page is in use (that no RAM is free at that
address). OS-9 Level Two always allocates memory in 8192-byte
increments. This is the smallest memory block that the memory
management hardware supports.

OS-9 automatically allocates memory when any of the following
occurs:

• Program modules are loaded into RAM

e Processes are created

e Processes execute system calls to request additional
RAM

• OS-9 needs I/0 buffers or larger tables

OS-9 also has inverse functions to deallocate memory allocated
to program modules, new processes, buffers, and tables.

In general, memory for program modules and buffers is allocated
from high addresses downward. Memory for process data areas is
allocated from low addresses upward.

Following, is a memory map of a typical system. Actual memory
sizes and addresses can vary depending on the exact system
configuration.

2-6

The Kernel I 2

Color Computer OS-9 Typical Memory Map

1/0 Device Addresses

Reserved 110 Devices

Reserved Common Memory

OS-9 Kernel

Bottom of Memory
in a 128K System

Bottom of Memory
in a 512K System

Figure 2.1

+- $7FFFF

+- $7FFOO

+- $7FE80

+- $7FEOO

+- varies

+- $60000

+- $00000

Note: The high two pages of every logical address space
contain the defined areas I/0 Device Addresses, Reserved
I/0 Devices, and Reserve d Common Memory.

Memory Management Hardware

The 8-bit CPU in the Color Computer 3 can dire ctly address only
64 kilobytes of memo:ry using its 16 address lines (A0-A15). The
Color Computer 3's Memory Management Unit (MMU) extends
the addressing capability of the computer by in creasing the
address lines to 19 (AO-A18). This lets the computer address up
to 512 kilobytes of memory ($0-$7FFFF).

The 512K address space is cal led the physical address space. The
physical address space is sub divided into SK blocks. The six high
order address bits (A13-A18) define a block number.

2-7

OS -9 Technical Reference

OS-9 creates a logical address space of up to 64K for each task
by using the FORK system call. Even though the memory
within a logical address space appears to be contiguous, it might
not be-the MMU translates the physical addresses to access
available memory. Address spaces can also contain blocks of
memory that are common to more than one map.

The MMU consists of a multiplexer and a 16 by 6-bit RAM
array. Each of the 6-bit elements in this array is an MMU task
register. The computer uses these task registers to determine
the proper 8-kilobyte memory segment to address.

The MMU task registers are loaded with addressing data by the
CPU. This data indicates the actual location of each 8-kilobyte
segment of the current system memory. The task registers are
divided into two sets consisting of eight registers each. Whether
the task register select bit (TR bit) is set or reset, determines
which of the two sets is to be used.

The relation between the data in the task register and the gen­
erated addresses is as follows:

Bit D5 D4 D3 D2 Dl DO

Corresponding
Memory Address A18 A17 A16 A15 A14 A13

Figure 2.2

When the CPU accesses any memory outside the I/0 and control
range (XFFOO = XFFFF), the CPU address lines (A13-Al5) and
the TR bit determine what segment of memory to address. This
is done through the multiplexer when SELECT is low. (See the
following table.)

When the CPU writes data to the MMU, AO-A3 determine the
location of the MMU register to receive the incoming data when
SELECT is high. The following diagram illustrates the operation
of the Color Computer 3's memory management:

2-8

The Kernel I 2

DO D5 -

CPU data

RAM

A13-Aly
� Din

TR bit

Multiplexer D out A13-A18

AO-A3 [> I) RAO-RA3
v

WE
ro

SELECT I I !'-..
v

Figure 2.3

The system uses the data f rom the MMU registers to determine
the block of memory to be accessed, according to the following
table:

TR MMU
Bit A15 A14 A13 Address Range Address

0 0 0 0 XOOOO-X1FFF FFAO
0 0 0 1 X2000-X3FFF FFA1
0 0 1 0 X4000-X5FFF FFA2
0 0 1 1 X6000-X7FFF FFA3
0 1 0 0 X8000-X9FFF FFA4
0 1 0 1 X AOOO-XBFFF FFA5
0 1 1 0 XCOOO-XDFFF FFA6
0 1 1 1 XEOOO-XFFFF FFA7

1 0 0 0 XOOOO-X1FFF FFAS
1 0 0 1 X2000-X3FFF FFA9
1 0 1 0 X4000-X5FFF FFA A
1 0 1 1 X6000-X7FFF FFAB
1 1 0 0 X8000-X9FFF FFAC
1 1 0 1 X AOOO-XBFFF FFAD
1 1 1 0 XCOOO-XDFFF FFAE
1 1 1 1 XEOOO-XFFFF FFAF

Figure 2.4

2-9

OS -9 Technical Reference

The translation of physical address to 8K-blocks is as follows:

Range Block Range Block
From To Number From To Number

00000 01FFF 00 40000 41FFF 20
02000 03FFF 01 42000 43FFF 21
04000 05FFF 02 44000 45FFF 22
06000 07FFF 03 46000 47FFF 23
08000 09FFF 04 48000 49FFF 24
OAOOO OBFFF 05 4AOOO 4BFFF 25
OCOOO ODFFF 06 4COOO 4DFFF 26
OEOOO OFFFF 07 4EOOO 4FFFF 27

10000 llFFF 08 50000 51FFF 28
12000 13FFF 09 52000 53FFF 29
14000 15FFF OA 54000 55FFF 2A
16000 17FFF OB 56000 57FFF 2B
18000 19FFF oc 58000 59FFF 2C
1AOOO 1BFFF OD 5AOOO 5BFFF 2D
1COOO 1DFFF OE 5COOO 5DFFF 2E
1EOOO 1FFFF OF 5EOOO 5FFFF 2F

20000 21FFF 10 60000 61FFF 30
22000 23FFF 11 62000 63FFF 31
24000 25FFF 12 64000 65FFF 32
26000 27FFF 13 66000 67FFF 33
28000 29FFF 14 68000 69FFF 34
2AOOO 2BFFF 15 6AOOO 6BFFF 35
2COOO 2DFFF 16 6COOO 6DFFF 36
2EOOO 2FFFF 17 6EOOO 6FFFF 37

30000 31FFF 18 70000 71FFF 38
32000 33FFF 19 72000 73FFF 39
34000 35FFF 1A 74000 75FFF 3A
36000 37FFF 1B 76000 77FFF 3B
38000 39FFF 1C 78000 79FFF 3C
3AOOO 3BFFF 1D 7AOOO 7BFFF 3D
3COOO 3DFFF 1E 7COOO 7DFFF 3E
3EOOO 3FFFF 1F 7EOOO 7FFFF 3F

Figure 2.5

2-10

The Kernel I 2

In order for the MMU to function, the TR bit at $FF90 must be
cleared and the MMU must be enabled. However, before doing
this, the address data for each memory segment must be loaded
into the designated set of task registers. For example, to select a
standard 64K map in the top range of the Color Computer 3's
512K RAM, with the TR bit set to 0, the following values must
be preloaded into the MMU's registers:

MMU
Location Data Data Address
Address (Hex) (Bin) Range

FFAO 38 111000 70000-71FFF
FFA1 39 111001 72000-73FFF
FFA2 3 A 111010 74000-75FFF
FFA3 3B 111011 76000-77FFF
FFA4 3C 111100 78000-79FFF
FFA5 3D 111101 7 A000-7BFFF
FFA6 3E 111110 7C000-7DFFF
FFA7 3F 111111 7EOOO-7FFFF

Figure 2.6

Although this table shows MMU data in the range $38 to 3F,
any data between $0 and $3F can be loaded into the MMU reg­
isters to select memory addresses in the range 0 to $7FFFF, as
illustrated by Figure 2.5.

Normally, the blocks containing I/0 devices are kept in the sys­
tem map, but not in the user maps. This is appropriate for time­
sharing applications, but not for process control. To directly
access I/0 devices, use the F$MspBlk system call. This call
takes a starting block number and block count, and maps them
into wwllocated spaces of the process's address space. The sys­
tem call returns the logical address at which the blocks were
inserted.

For example, suppose a display screen in your system is allo­
cated at extended addresses $7 A000-$7DFFF (blocks 3D and
3E). The following system call maps them into your address
space:

ldb
ldx
os9
stu

#2
#3D
F$MapBlk
IOPorts

number of blocks
starting block number
call MapBlk
save address where mapped

2-11

OS -9 Technical Reference

On return, the U register contains the starting address at which
the blocks were switched. For example, suppose that the call
returned $4000. To access extended address $7 A020, write to
$4020.

Other system calls that copy data to or from one task's map to
another are available, such as F$STABX and F$Move. Some of
these calls are system mode privileged. You can unprotect them
by changing the appropriate b it in the corresponding entry of
the system service request table and then making a new system
b o ot with the patched table.

Multiprogramming

OS-9 is a multiprogramming operating system. This means that
several independent programs called processes can b e executed at
the same time. By issuing the appropriate system call to OS-9,
each process can have access to any system resource.

Multiprogramming functions use a hardware real-time clock.
The clock generates interrupts 60 times per second, or one every
16.67 milliseconds. These interrupts are called ticks.

Processes that are not waiting for some event are called active
processes. OS-9 runs active processes for a specific system­
assigned period called a time slice. The number of time slices
per minute during which a process is allowed to execute depends
on a process's priority relative to all other active processes.
Many OS-9 system calls are available to create, terminate, and
control processes.

Process Creation

A process is created when an existing process executes a Fork
system call (F$Fork). This call's main argument is the name of
the program module that the new process is to execute first (the
primary module).

Finding the Module. OS-9 first attempts to find the module in
the module directory. If it does not find the module, OS-9 usu­
ally attempts to load into memory a mass-storage file in the exe­
cution directory, with the requested module name as a filename.

2-12

The Kernel I 2

Assigning a Process Descriptor. Once OS-9 finds the module,
it assigns the process a data structure called a process descrip­
tor. This is a 64-byte package that contains information about
the process, its state (see the following section "Process States"),
memory allocations, priority, queue pointers, and so on. OS-9
automatically initializes and maintains the process descriptor.
The process itself cannot access the descriptor; it has no need to
do so.

Allocate RAM. The next step is to allocate RAM for the pro­
cess. The primary module's header contains a storage size. OS-9
uses this size unless the Fork system call requests a larger area.
OS-9 then attempts to allocate a memory area of the specified
size from the free memory space. The memory space does not
need to be contiguous.

Proceed or Terminate. If OS-9 can perform all of the previous
steps, it adds the new process to the active process queue for exe­
cution scheduling. If it cannot, it terminates the creation; the
process that originated the Fork is informed of the error.

Assign Process ID and User ID. OS-9 assigns the new process
a unique number called a process ID. Other processes can com­
municate with the process by referring to its ID in various sys­
tem calls.

The process also has a user ID, which is used to identify all pro­
cesses and files belonging to a particular user. The user ID is
inherited from the parent process.

Process Termination. A process terminates when it executes
an Exit system call (F$Exit) or when it receives a fatal signal.
The termination closes any open paths, deallocates memory used
by the process, and unlinks its primary module.

Process States

At any instant a process can be in one of three states:

• Active-The process is ready for execution.

• Waiting-The process is suspended until a child process
terminates or until it receives a signal. A child process
is a process that is started (execution is begun by)
another process-a parent process.

2-13

OS -9 Technical Reference

e Sleeping-The process is suspended for a specific period
of time or until it receives a signal.

Each state has its own queue, a linked list of descriptors of pro­
cesses in that state. To change a process's state, move its
descriptor to another queue.

The Active State. Each active process is given a time slice for
execution, according to its priority. The scheduler in the kernel
ensures that all active processes, even those of low priority, get
some CPU time.

The Wait State. This state is entered when a process executes a
Wait system call (F$Wait). The process remains suspended until
one of its child processes terminates or until it receives a signal.
(See the "Signals" section later in this chapter.)

The Sleeping State. This state is entered when a process exe­
cutes a Sleep system call (F$Sleep), which specifies the number
of ticks for which the process is to remain suspended. The pro­
cess remains asleep until the specified time has elapsed or until
it receives a wakeup signal.

Execution Scheduling

The OS-9 scheduler uses an algorithm that ensures that all
active processes get some execution time.

All active processes are members of the active process queue,

which is kept sorted by process age. Age is the number of process
switches that have occurred since the process's last time slice.
When a process is moved to the active process queue f rom
another queue, its age is set according to its priority-the higher
the priority, the higher the age.

Whenever a new process becomes active, the ages of all other
active processes increase by one time slice count. When the exe­
cuting process's time slice has elapsed, the scheduler selects the
next process to be executed (the one with the next highest age,
the first one in the queue). At this time, the ages of all other
active processes increase by one. Ages never go beyond 255.

A new active process that was terminated while in the system
state is an exception. This process is given high priority because
it is usually executing critical routines that af fect shared system
resources.

2-14

The Kernel I 2

When there are no active processes, the kernel handles the next
interrupt and then executes a CWA1 instruction. This procedure
decreases interrupt latency time (the time it takes the system to
process an interrupt).

Signals

A signal is an asynchronous control mechanism used for inter­
process communication and control. It behaves like a software
interrupt. It can cause a process to suspend a program, execute
a specific routine, and then return to the interrupted program.

Signals can be sent from one process to another process by the
Send system call (F$Send). Or, they can be sent from OS-9 ser­
vice routines to a process.

A signal can convey status information in the form of a 1-byte
numeric value. Some signal codes (values) are predefined, but
you can define most. The signal codes are:

0

1

2

3

4

128-255

Kill (terminates the process, is non­
interceptable)

Wakeup (wakes up a sleeping process)

Keyboard terminate

Keyboard interrupt

Window change

User defined

When a signal is sent to a process, the signal is saved in the
process descriptor. If the process is in the sleeping or waiting
state, it is changed to the active state. When the process gets its
next time slice, the signal is processed.

What happens next depends on whether or not the process has
set up a signal intercept trap (signal service routine) by execut­
ing an Intercept system call (F$Icpt).

If the process has set up a signal intercept trap, the process
resumes execution at the address given in the Intercept call. The
signal code passes to this routine. Terminate the routine with
an RTI instruction to resume normal execution of the process.

2-15

OS -9 Technical Reference

Note: A wakeup signal activates a sleeping process. It sets
a flag but ignores t he call to branch to the intercept
routine.

If it has not set up a signal intercept trap, the process is termi­
nated immediately. It is also terminated if the signal code is
zero. If the process is in the system mode, OS-9 defers the termi­
nation. The process dies upon return to the user state.

A process can have a signal pending (usually because the pro­
cess has not been assigned a time slice since receiving the sig­
nal). If it does, and another process tries to send it another
signal, the new signal is terminated, and the Send system call
returns an error. To give the destination process time to process
the pending signal, the sender needs to execute a Sleep system
call for a few ticks before trying to send the signal again.

Interrupt Processing

Interrupt processing is another important function of the kernel.
OS-9 sends each hardware interrupt to a specific address. This
address, in turn, specifies the address of the device service rou­
tine to be executed. This is called vectoring the interrupt. The
address that points to the routine is called the vector. It has the
same name as the interrupt.

The SWI, SWI2, and SWI3 vectors point to routines that read
the corresponding pseudo vector from the process's descriptor
and dispatch to it. This is why the Set SWI system call
(F$SSWI) is local to a process; it only changes a pseudo vector in
the process descriptor.

2-16

Hard ware Vector
Table

Vector

SWI3
SWI2
FIRQ
IRQ
SWI
NMI
REST ART

Address

$FFF2
$FFF4
$FFF6
$FFF8
$FFFA
$FFFC
$FFFE

The Kernel I 2

FIRQ Interrupt. The system uses the FIRQ interrupt. The
FIRQ vector is not available to you. The FIRQ vector is reserved
for future use. Only one FIRQ generating device can be in the
system at a time.

Logical Interrupt Polling System

Bec ause most OS-9 I/0 dev ices use IRQ interrupts, OS-9
includes a sophisticated polling system. The IRQ polling system
automatically identifies the source of the interrupt, and then exe­
cutes its associated user- or system-defined service routine.

IRQ Interrupt. Most OS-9 I/0 devices generate IRQ interrupts.
The IRQ vector points to the real-time clock and the keyboard
scanner routines. These routines, in turn, jump to a special IRQ
polling system that determines the source of the interrupt. The
polling system is discussed in the next section, "Logical Inter­
rupt Polling System."

NMI Interrupt. The system uses the NMI interrupt. The NMI
vector, which points to the disk driver interrupt service routine,
is not available to you.

The Polling Table. The information required for IRQ polling is
maintained in a data structure called the IRQ polling table. The
table has a 9-byte entry for each device that might generate an
IRQ interrupt. The table size is permanent and is defined by an
initialization constant in the INIT module. Each entry in the
polling table is given a number from 0 (lowest priority) to 255
(highest priority). In this way, the more important devices (those
that have a higher interrupt frequency) can be polled before the
less important ones.

Each entry has six variables:

Polling Address Points to the status register of the device.
The register must have a bit or bits that
indicate if it is the source of an interrupt.

Flip Byte Selects whether the bits in the device status
register indicate active when set or active
when cleared. If a bit in the flip byte is set,
it indicates that the task is active whenever
the corresponding bit in the status register
is clear.

2-17

OS -9 Technical Reference

Mask Byte

Service
Routine Address

Static
Storage Address

Priority

Selects one or more interrupt request flag
bits within the device status register. The
bits identify the active task or device.

Points to the interrupt service routine for
the device. You supply this address.

Points to the permanent storage a rea
required by the device service routine. You
supply this address.

Sets the order in which the devices are
polled (a number from 0 to 255).

Polling the Entries. When an IRQ interrupt occurs, OS-9
enters the polling system via the corresponding RAM interrupt
vector. It starts polling the devices in order of priority. OS-9
loads the status register address of each entry into Accumulator
A, using the device address from the table.

OS-9 performs an exclusive-OR operation using the flip byte, fol­
lowed by a logical-AND operation using the mask byte. If the
result is non-zero, OS-9 assumes that the device is the source of
the interrupt.

OS-9 reads the device memory add ress and service routine
address f rom the table, and performs the interrupt service
routine.

Note: If you are writing your own device driver, terminate
the interrupt service routine with an RTS instruction, not
an RTI instruction.

Adding Entries to the Table. You can make entries to the IRQ
(interrupt request) polling table by using the Set IRQ system
call (F$IRQ). Set IRQ is a privileged system call, OS-9 can exe­
cute it only in the system mode. OS-9 is in system mode when­
ever it is running a device driver.

Note: The code for the interrupt polling system is located
in the I/0 Manager module. The OS9Pl and OS9P2 mod­
ules contain the physical interrupt processing routines.

2-18

The Kernel I 2

Virtual Interrupt Processing

A virtual IRQ, or VIRQ, is useful with devices in Multi-Pak
expansion slots. Because of the absence of an IRQ line from the
Multi-Pak interface, these devices cannot initiate physical inter­
rupts. VIRQ enables these devices to act as if they were inter­
rupt driven. Use VIRQ only with device driver and pseudo device
driver modules. VIRQ is handled in the Clock module, which
handles the VIRQ polling table and installs the F$VIRQ system
call. Since the F$VIRQ system call is dependent on clock initial­
ization, the CC3GO module forces the clock to start.

The virtual interrupt is set up so that a device can be inter­
rupted at a given number of clock ticks. The interrupt can occur
one time, or can be repeated as long as the device is used.

The F$VIRQ system call installs VIRQ in a table. This call
requires specification of a 5-byte packet for use in the VIRQ
table. This packet contains:

e Bytes for an actual counter

• A reset value for the counter

• A status byte that indicates whether a virtual interrupt
has occurred and whether the VIRQ is to be re-installed
in the table after being issued

F$VIRQ also specifies an initial tick count for the interrupt.
The actual call is summarized here and is described in detail in
Chapter 8.

Call: OS9 F$VIRQ
Input: (Y) = address of 5-byte packet

(X) = 0 to delete entry, 1 to install entry
(D) = initial count value

Output: none
CCC) carry set on error
(IS) appropriate error code

The 5-byte packet is defined as follows:

Name

Vi.Cnt
Vi.Rst
Vi.Stat

Offset

$0
$2
$4

Function

Actual counter
Reset value for counter
Status byte

2-19

OS -9 Technical Reference

Two of the bits in the status byte are used. These are:

Bit 0 - set if VIRQ occurs
Bit 7 - set if a count reset is required

When making an F$VIRQ call, the packet might require initial­
ization with a reset value. Bit 7 of the status byte must be
either set or cleared to signif y a reset of the counter or a one­
time VIRQ call. The reset value does not need to be the same as
the initial counter value. When OS-9 processes the call, it writes
the packet address into the VIRQ table.

At each clock tick, OS-9 scans the VIRQ table and subtracts one
from each timer value. When a timer count reaches zero, OS-9
performs the following actions:

1. Sets Bit 0 in the status byte. This specifies a Virtual IRQ.

2. Checks Bit 7 of the status byte for a count reset request.

3. If bit 7 is set, resets the count using the reset value. If bit 7
is reset, deletes the packet address from the VIRQ table.

When a counter reaches zero and makes a virtual interrupt
request, OS-9 runs the standard interrupt polling routine and
services the interrupt. Because of this, you must install entries
on both the VIRQ and DIRQ polling tables whenever you are
using a VIRQ.

Unless the device has an actual physical interrupt, install the
device on the IRQ polling table via the F$IRQ system call before
placing it on the VIRQ table.

If the device has a physical interrupt, use the interrupt's hard­
ware register address as the polling address for the F$IRQ call.
After setting the polling address, set the flip and mask bytes for
the device, and make the F$IRQ call.

If the device is totally VIRQ-driven, and has no interrupts, use
the status byte from the VIRQ packet as the status byte. Use a
mask byte of %00000001, defined as Vi.IFlag in the defs file.
Use a flip byte value of 0. The following examples show how to
set up both types of VIRQ calls. The first example is taken from
an ACIA-type driver that has a physical interrupt found in a
status register, but that cannot be accessed by the processor if
used in the Multi-Pak. The second example is for a device with
no physical inter rupt handling, all inter rupts are handled
through the VIRQ.

2-20

• VIRQ Example #1 - Device Driver possessing real IRQ's

Copyright 198511986 by Microware Systems
Corporation. Reproduced Under License

use defsfile

• actual mask byte for hardware interrupt
IRQReq set D1000000i Interrupt Request

• offset to the actual hardware status register
Status equ 1

• VIRQ countdown value
VIRQCNT equ 1 do the VIRQ on every tick

• Static storage offsets

org V, SCF room for scf variables

VIRQBUF rmb 5 buffer for fake interrupt from clock

MEM equ , Total static storage requirement

• Module Header
mod MEND 1 NAM 1 DR I VR+ OBJCT 1 REENT + 11 ENT 1 MEM
feb UPDAT.

feb Edition Current Revision

• Driver entry jump table
ENT !bra I NIT

!bra READ
!bra WRITE
!bra GETSTA

The Kernel I 2

2-21

OS -9 Technical Reference

2-22

!bra PUTSTA

bra TRMNAT

• Actual mask information for F$JRQ call for the

• hardware interrupt MASK feb 3 no flip bits

• feb IRQReg Irq polling mask

• feb 13 (higher) priority

• !nit

Initialize the device

Includes setting up the IRQ and VIRQ entries

!NIT

• Install IRQ polling Table Entry first

Use the hardware status register and the hardware

mask

ldd V.PORT,U get port address in D
add #Status point to hardware status byte

leax MASK,PCR get the hardware interrupt mask

leay MIRQ,PCR address of interrupt service routine

OS9 F$IRQ Add to IRQ polling table

bcs INIT9 error - return it

• Install VIRQ in Clock Module second

leay VIRQBUF,U get the 5 byte VIRQ buffer pointer

Ida #$83 get reset flag for repeated VIRQ's

sta Vi.Stat,y put it into buffer

ldd #VlRQCNT get count for number of licks for the VIRQ
std Vi.Rst,y put in initial reset value

ldx #1 put onto table
os9 F$VIRQ make the service request

bcs INIT9 Error - return it

INIT9 rts

READ

WRITE
GETSTA
PUTSTA

• Subroutine TRMNAT
Terminate device, including removal from tables

TRMNAT

• remove from VIRQ table first
ldx #0 remove from VIRQ table
leay VIRQBUF ,U get address
os9 F$VIRQ remove modem from VIRQ table

• next remove from IRQ table
ldx #0

OS9 F$IRQ remove modem from polling tbl
rts

*'******************

• MIRQ
process Interrupt

MD IRQ

< actual interrupt service routine >

rts

emod Module Crc
MEND egu •

• VIRQ Example #2 - Device Driver without hardware interrupts

fffffffffffffff

• STATIC STORAGE DEFINITION

The Kernel/ 2

2-23

OS -9 Technical Reference

2-24

VIRQBF rmb 5 buffer for VIRQ
DMEM egu .

flfffflfffffffffff

• Module Header

mod DEND, DNAM, DR I VR+ OBJCT, REENT +REV, DENT, DMEM
feb UPDAT. mode byte

feb 3 EDITION BYTE

• Driver entry table
DENT !bra !NIT initialize

!bra READ
!bra WRITE
!bra GETSTAT get status
!bra SETSTAT set status
!bra TERM terminate

• Mask information packet for F$!RQ call
• NOTE: uses the virtual interrupt flag, Vi. !Flag, for
• the maskbyte

DMSK feb 9 no flip bits
feb Vi. !Flag polling mask for VIRQ
feb 19 priority

fffffffffffffffff

• INITIALIZE STORAGE AND CONTROLLER
• Includes setting up the IRQ and VIRQ table entries

!NIT

• set up IRQ table entry first
• NOTE: uses the status register of the VIRQ buffer for
• the interrupt status register since no hardware status
• register is available

leay VIRQBF+Vi.Stat,U get address of status byte

tfr y,d put it into D reg
leay DIRQ,PCR get address of interrupt routine
leax DMSK,PCR get VIRQ mask info
os9 F$IRQ install onto table

bcs INIT9 exit on error

• now set up the VIRQ table entry
leay VIRQBF,U point to the 5-byte packet
lda #$80 get the reset flag to repeat VIRQ's
sta Vi. Stat ,y save it in the buffer
ldd #VIRQCNT get the VIRQ counter value

std Vi.Rst,y save it in the reset area of buffer
ldx #1 code to install the VIRQ
os9 F$VIRQ install on the table
bcs INIT9 exit on error

INJT9 rts

READ
WRITE
GETS TAT
PUTSTAT

flfffffffffffffffflllfl

• TERM - terminate the device and remove entries from
• tables

TERM

• remove from VIRQ table first
ldx #0 get zero to remove from table
leay VIRQBF,U get address of packet
os9 F$VIRQ

• then remove from IRQ table
ldx #0 get zero to remove from table
os9 F$IRQ

rts

f f I I If I I I I I I I I I I I I If If I I If I I I I I I I I I II f I I I I I If I I I I If I I I I I

The Kernel I 2

2-25

OS -9 Technical Reference

2-26

• DIRQ - interrupt service routine

• NOTE: The service routine must be sure to reset the

• status byte of the VIRQ packet so that the interrupt
• looks as if it is cleared.

DIRQ

Ida VJRQBF+Vi.Stat,U get status byte
anda #$FF-Vi. !Flag mask off interrupt bit
sta VJRQBF+Vi.Stat,U put it back

rts

EM_OD

DEND egu

END

Chapter 3

Memory Modules

In Chapter 2, you learned that OS-9 is based on the concept that
memory is modular. This means that each program is considered
to be an individually named object.

You also learned that each program loaded into memory must be
in the module format. This format lets OS-9 manage the logical
contents of memory, as well as the physical contents. Module
types and formats are discussed in detail in this chapter.

Module Types

There are several types of modules. Each has a different use and
function. These are the main requirements of a module:

• It cannot modify itself.

• It must be position-independent so that OS-9 can load or
relocate it wherever space is available. In this respect,
the module format is the OS-9 equivalent of load records
used in older operating systems.

A module need not be a complete program or even 6809 machine
language. It can contain BASIC09 I-code, constants, single sub­
routines, and subroutine packages.

Module Format

Each module has three parts: a module header, a module body,
and a cyclic-redundancy-check value (CRC value).

3-1

OS -9 Technical Reference

Module Header

Program
or

Constants

CRC Value

Figure 3.1

Module Header

At the beginning of the module (the lowest address) is the mod­
ule header. Its form depends upon the module's use.

The header contains information about the module and its use.
This information includes the following:

• Size
• Type (machine code, BA SIC09 compiled code, and so on)
• Attributes (executable, re-entrant, and so on)
• Data storage memory requirements
• Execution starting address

Usually, you do not need to write routines to generate the mod­
ules and headers. All OS-9 programming languages automati­
cally create modules and headers.

Module Body

The module body contains the program or constants. It usually
is pure code. The module name string is included in this area.
Figure 3.2 provides the offset values for calculating the location
of a module's name. (See "Of fset to Module Name".)

CRC Value

The last three bytes of the module are the Cyclic Redundancy
Check (CRC) value. The CRC value is used to verify the integ­
rity of a module.

3-2

Merrwry Modules I 3

When the system first loads the module into memory, it per­
forms a 25-bit CRC over the entire module, from the first byte of
the module header to the byte immediately before the CRC. The
CRC polynomial used is $800FE3.

A s with the header, you usually don't need to write routines to
generate the CRC value. Most OS-9 prog rams do this
automatically.

Module Headers: Standard Information

The fi rst nine bytes of all module headers are defined as follows:

Relative
Address

$00,$01
$02,$03
$04,$05
$06
$07
$08

Sync Bytes

Use

Sync bytes ($87 ,$CD)
Module size
Offset to module name
Module type/Language
Attributes/Revision level
Header check

Figure 3.2

The sync bytes specify the location of the module. (The first sync
byte is the start of the module.) These two bytes are constant.

Module Size

The module size specifies the size of the module in bytes
(includes CRC).

Offset to Module Name

The offset to module name specifies the address of the module
name string relative to the start of the module. The name string
can be located anywhere in the module. It consists of a string of
ASCII characters with the most significant bit set on the last
character.

3-3

OS -9 Technical Reference

Type/Language Byte

The type/language byte specifies the type and language of the
module.

The four most significant bits of this byte indicate the type.
Eight types are pre-defined. Some of these are for OS-9's inter­
nal use only. The type codes are given here (0 is not a legal type
code):

Code

$1x
$2x
$3x
$4x
$5x-$Bx
$Cx
$Dx
$Ex
$Fx

Module Type

Program module
Subroutine module
Multi-module (for future use)
Data module
User-definable module
OS-9 system module
OS-9 file manager module
OS-9 device driver module
OS-9 device descriptor module

Figure 3.3

Name

Prgrm
Sbrtn
Multi
Data

Systm
FlMgr
Drivr
Devic

The four least significant bits of Byte 6 indicate the language
(denoted by x in the previous Figure). The language codes are
given here:

Code

$x0
$xl
$x2
$x3
$x4-$xF

Language

Data (non-executable)
6809 object code
BASIC09 I-code
PASCAL P-code
Reserved for future use

Figure 3.4

By checking the language type, high-level language runtime
systems can verify that a module is the correct type before
attempting execution. BASIC09, for example, can run either I­
code or 6809 machine language procedures arbitrarily by check­
ing the language type code.

Attributes/Revision Level Byte

The attributes/revision level byte defines the attributes and revi­
sion level of the module.

3-4

Merrwry Modules I 3

The four most significant bits of this byte are reserved for mod­
ule attributes. Currently, only Bit 7 is defined. When set, it indi­
cates the module is re-entrant and, therefore, shareable.

The four least significant bits of this byte are a revision level in
the range 0 to 15. If two or more modules have the same name,
type, language, and so on, OS-9 keeps in the module directory
only the module having the highest revision level. Therefore, you
can replace or patch a ROM module, simply by loading a new,
equivalent module that has a higher revision level.

Note: A previously linked module cannot be replaced until
its link count goes to zero.

Header Check

The header check byte contains the one's complement of the
Exclusive-OR of the previous eight bytes.

Module Headers: Type-Dependent
Information

More information usually follows the first nine bytes of a module
header. The layout and meaning vary, depending on the module
type.

Module types $Cx-$F x (system module, file manager module,
device driver module, and device descriptor module) are used
only by OS-9. Their formats are given later in the manual.

Module types $1x through $Bx have a general-purpose executa­
ble format. This format is often used in programs called by
F$Fork or F$Chain. Here is the format used by these module
types:

3-5

OS -9 Technical Reference

Executable Memory Module Format

Relative
Address

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

I--

1--

I--

1--

I--

Use

Sync Bytes ($87,$CD) -

Module Size (bytes) -

Module Name Offset -

Type Language

Attributes Revision

Header Parity Check

Execution Offset -

Permanent Storage Size -

(Additional optional header
extensions)

• • • • • • 0 • • 0 0 0 0 • • • • • • • • • • • 0 0 0 . 0 • • • •

Module B ody
object code, constants,

and so on

I-- -

CRC Check Value
1-- -

Figure 3.5

3·6

Check
Range

header

J
ity

module

c c

Merrwry Modules I 3

As you can see from the preceding chart, the executable memory
has four extra bytes in its header. They are:

$09,$0A
$0B,$0C

Execution offset
Permanent storage size

Execution Offset. The program or subroutine's offset starting
address, relative to the first byte of the sync code. A module that
has multiple entry points (such as cold start and warm start)
might have a branch table starting at this address.

Permanent Storage Size. The minimum number of bytes of
data storage required to run. Fork and Chain use this number
to allocate a process's data area.

If the module is not directly executed by a Fork or Chain system
call (for instance a subroutine package), this entry is not used by
OS-9. It is commonly used to specify the maximum stack size
required by re-entrant subroutine modules. The calling program
can check this value to determine if the subroutine has enough
stack space.

When OS-9 starts after a single system reset, it searches the
entire memory space for ROM modules. It finds them by looking
for the module header sync code ($87,$CD).

When OS-9 detects the header sync code, it checks to see if the
header is correct. If it is, the system obtains the module size
from the header and performs a 24-bit CRC over the entire mod­
ule. If the CRC matches, OS-9 considers the module to be valid
and enters it into the module directory. All ROM modules that
are present in the system at startup are automatically included
in the system module directory.

After the module search, OS-9 links to the component modules it
found. This is the secret to OS-9's ability to adapt to almost any
6809 computer. It automatically locates its required and optional
component modules and rebuilds the system each time it is
started.

3-7

Chapter 4

OS-9's Unified
Input/Output System

Chapter 1 mentioned that OS-9 has a unified I/0 system, con­
sisting of all modules except those on the kernel level. This chap­
ter discusses the I/0 modules in detail.

1/0 System Modules

I NIT

Disk File
Manager

(RBF)

RBF Device Descriptors

OS-9 KERNEL
(OS9P1, OS9P2)

Input/Output Manager
(lOMAN)

Pipe File
Manager

(Pipeman)

Vdglnt
CC310

Interface

Grflnt
CC310

Interface

OS-9 COMPONENT MODULE ORGANIZATION

Clock

Windlnt
CC310

Interface

4-1

OS -9 Technical Reference

The VDG Interface performs both interface and low level routines
for VDG Color Computer 2 compatible modes and has limited
support for high res screen allocation.

The Grflnt Interface provides the standard code interpretations
and interface functions.

The Windlnt Interface, available in the Multi-view package, con­
tains all the functionality of Grflnt, along with additional sup­
port features. If you use Windlnt, do not include Grflnt.

Both Windlnt and Grflnt use the low-level driver GrfDrv to per­
form drawing on the bit-map screens.

Term_VDG uses CC3IONdgint while Term_win and all win­
dow descriptors use CC3IO/(Windint/Grflnt)/GrtDrv modules.

The I/0 system provides system-wide, hardware-independent I/0
services for user programs and OS-9 itself. All I/0 system calls
are received by the kernel and passed to the I/0 manager for
processing.

The I/0 manager performs some processing, such as the alloca­
tion of data structures for the I/0 path. Then, it calls the file
managers and device drivers to do most of the work. Additional
file manager, device driver, and device descriptor modules can be
loaded into memory from files and used while the system is
running.

The I/0 Manager

The I/0 manager provides the first level of service of IIO system
calls. It routes data on I/0 process paths to and from the appro­
priate file managers and device drivers.

The I/0 Manager also maintains two important internal OS-9
data structures-the device table and the path table. Never mod­
ify the I/0 manager.

When a path is opened, the I/0 manager tries to link to a mem­
ory module that has the device name given or implied in the
pathlist. This module is the device descriptor. It contains the
names of the device driver and file manager for the device. The
I/0 manager saves the names so later system calls can be routed
to these modules.

4-2

OS-9's Unified Input/Output System I 4

File Managers

OS-9 can have any number of file manager rrwdules. Each of
these modules processes the raw data stream to or from a class
of device drivers that have similar operational characteristics. It
removes as many unique characteristics as possible from I/0
operations. Thus, it assures that similar devices conform to the
OS-9 standard I/0 and file structure.

The file manager also is responsible for mass storage allocation
and directory processing, if these are applicable to the class of
devices it serves.

File managers usually buffer the data stream and issue requests
to the kernel for dynamic allocation of buffer memory. They can
also monitor and process the data stream, for example, adding
line-feed characters after carriage-return characters.

The file managers are re-entrant. The three standard OS-9 file
managers are:

• Random block file manager: The RBF manager supports
random-access, block-structured devices such as disk sys­
tems and bubble memories. (Chapter 5 discusses the
RBF manager in detail.)

• Sequential Character File Manager: The SCF manager
supports single-character-oriented devices, such as CRTs
or hardcopy terminals, printers, and modems. (Chapter 6
discusses SCF in detail.)

• Pipe File Manager (PIPEMAN): The pipe manager sup­
ports interprocess communication via pipes.

File Manager Structure

Every file manager must have a branch table in exactly the fol­
lowing format. Routines that are not used by the file manager
must branch to an error routine, that sets the carry and loads
Register B with an appropriate error code before returning. Rou­
tines returning without error must ensure that the carry bit is
clear.

4-3

OS -9 Technical Reference

* All
* (Y)

* (U)

routines are entered with:
Path Descriptor pointer
Caller's register stack pointer

EntryPt equ *

lbra Create
lbra Open
!bra MakDir
lbra ChgDir
lbra Delete
lbra Seek
lbra Read
lbra Write
lbra Readln
lbra Writeln
lbra Get Stat
lbra Put Stat
lbra Close

Create, Open

Create and Open handle file creating and opening for devices.
Typically, the process involves allocating any required buffers,
initializing path descriptor variables, and establishing the path
name. If the file manager controls multi-file devices (RBF),
directory searching is performed to find or create the specified
file.

Makdir

Makdir creates a directory file on multi-file devices. Makdir is
neither preceded by a Create nor followed by a Close. File man­
agers that are incapable of supporting directories need to return
carry set with an appropriate error code in Register B.

ChgDir

On multi-file devices, ChgDir searches for a directory file. If
ChgDir finds the directory, it saves the address of the directory
(up to four bytes) in the caller's process descriptor. The descrip­
tor is located at P$DIO + 2 (for a data directory) or P$DIO + 8
(for an execution directory).

4-4

OS-9's Unified Input/Output System I 4

In the case of the RBF manager, the address of the directory's
file descriptor is saved. Open/Create begins searching in the cur­
rent directory when the caller's pathlist does not begin with a
slash {/). File managers that do not support directories should
return the carry set and an appropriate error code in Register
B.

Delete

Multi-file device managers handle file delete requests by initiat­
ing a directory search that is similar to Open. Once a device
manager finds the file, it removes the file from the directory.
Any media in use by the file are returned to unused status. In
the case of the RBF manager, space is returned for system use
and is marked as available in the free cluster bit map on the
disk. File managers that do not support multi- file devices
return an error.

Seek

File managers that support random access devices use Seek to
position file pointers of an already open path to the byte speci­
fied. Typically, the positioning is a logical movement. No error is
produced at the time of the seek if the position is beyond the
current "end of file".

Normally, file managers that do not support random access
ignore Seek. However, an SCF-type manager can use Seek to
perform cursor positioning.

Read

Read returns the number of bytes requested to the user's data
buffer. Make sure Read returns an EOF error if there is no data
available. Read must be capable of copying pure binary data, and
generally performs no editing on the data. Generally, the file
manager calls the device driver to actually read the data into
the buffer. Then, the file manager copies the data from the buffer
into the user's data area to keep file managers device­
independent.

4-5

OS -9 Technical Reference

Write

The Write request, like Read, must be capable of recording pure
binary data without alteration. The routines for Read and Write
are almost identical with the exception that Write uses the
device driver's output routine instead of the input routine. The
RBF manager and similar random access devices that use fixed­
length records (sectors) must often preread a sector before writ­
ing it, unless they are writing the entire sector. In OS-9, writing
past the end of file on a device expands the file with new data.

ReadLn

ReadLn differs from Read in two respects. F irst, ReadLn termi­
nates when the first end-of-line (carriage return) is encountered.
ReadLn performs any input editing that is appropriate for the
device. In the case of SCF, editing involves handling functions
such as backspace, line deletion, and the removal of the high­
order bit f rom characters.

WriteLn

WriteLn is the counterpart of ReadLn. It calls the device driver
to transfer data up to and including the first (if any) carriage
return encountered. Appropriate output editing can also be per­
formed. For example, SCF outputs a line feed, a carriage return
character, and nulls (if appropriate for the device). It also pauses
at the end of a screen page.

GetStat, PutStat

The GetStat (get status) and PutStat (put status) system calls
are wildcard calls designed to provide a method of accessing fea­
tures of a device (or file manager) that are not generally device
independent. The file manager can perform specific functions
such as setting the size of a file to a given value. Pass unknown
status calls to the driver to provide further means of device inde­
pendence. For example, a PutStat call to format a disk track
might behave differently on different types of disk controllers.

4-6

OS-9's Unified Input/Output System I 4

Close

Close is responsible for ensuring that any output to a device is
completed. (If necessary, Close writes out the last buffer.) It

releases any buffer space allocated in an Open or Create. Close
does not execute the device driver's terminate routine, but can
do specific end-of-file processing if you want it to, such as writ­
ing end-of-file records on disks, or form feeds on printers.

Interfacing with Device Drivers

Strictly speaking, device drivers must conform to the general for­
mat presented in this manual. The I/0 Manager is slightly dif­
ferent because it only uses the Init and Terminate entry points.
Other entry points need only be compatible with the file man­
ager for which the driver is written. For example, the Read entry
point of an SCF driver is expected to return one byte from the
device. The Read entry point of an RBF driver, on the other
hand, expects Read to return an entire sector.

The following code is part of an SCF file manager. The code
shows how a file manager might call a driver.

4-7

OS -9 Technical Reference

* I OEXEC
* Execute Device's Read/Write Routine

*

* Passed:
*

*

*

<A>
(X)
(YJ
<UJ

* Returns: <A>
* <BJ
* Destroys B,CC

Output character (write)
Device Table entry ptr
Path Descriptor pointer
Offset of routine CD$Read,
D$Write)
Input char (read)
Error code, CC set if error

IOEXEC pshs a,x,y,u save registers
ldu V$STAT,x get static storage for driver
ldx V$DRIV,x get driver module address
ldd M$EXEC,x and offset of execution entries
addd S,s offset by read/write
leax d,x absolute entry address
lda ,s+ restore char (for write)
jsr O,x execute driver read/write
puls x,y,u,pc return <AJ=char, <BJ=error

emod Module CRC
Size egu * size of seguential file manager

Device Driver Modules

The device driver modules are subroutine packages that perform
basic, low-level I/0 transfers to or from a specific type of I/0

device hardware controller. These modules are re-entrant. So,
one copy of the module can concurrently run several devices that
use identical I/0 controllers.

Device driver modules use a standard module header, in which
the module type is specified as code $Ex (device driver). The exe­
cution offset address in the module header points to a branch
table that has a minimum of six 3-byte entries.

Each entry is typically an LBRA to the corresponding subrou­
tine. The file managers call spe cific routines in the device driver
through this table, passing a pointer to a path descriptor and
passing the hardware control register address in the 6809 regis­
ters. The branch table looks like this:

4-8

Code

+$00
+$03
+$06
+$09
+$0C
+$OF

OS-9's Unified Input/Output System I 4

Meaning

Device initi alization routine
Read from device
Write to device
Get device status
S et device status
Device termination routine

(For a complete description of the parameters passed to these
subroutines, see the "Device Dri ver Subroutines" sections in
Chapters 5 and 6.)

4-9

OS -9 Technical Reference

Device Driver Module Format

Relative
Address

$00
-

-

-

Use

Sync Bytes ($87 ,$CD)

Module Size (bytes)

Module Name Offset

Type Language

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

Attributes Revision

Header Parity Check

r-- Execution Offset

t- Permanent Storage Size

Mode Byte

t- Module Body

r-- CRC Check Value

-

-

-

-

-

-

-

$0D Mode Byte - (D S PE PW PR E W R)

4-10

Check
Range

Header j
ity

Module

CRC

OS-9's Unified Input/Output System I 4

OS-9 Interaction With Devices

Device drivers often must wait for hardware to complete a task
or for a user to enter data. Such a wait situation occurs if an
SCF device driver receives a Read but there is no data is avail­
able, or if it receives a W rite and no buffer space is available.
OS-9 drivers that encounter this situation should suspend the
current process (via F$Sleep). In this way the driver allows other
processes to continue using CPU time.

The most efficient way for a driver to awaken itself and resume
processing data is by using interrupt requests (IRQs). It is possi­
ble for the driver to sleep for a number of system clock ticks and
then check the device or buffer for a ready signal. The drawbacks
to this technique are:

• It requires the system clock to always remain active.

• It might require a large number of ticks (perhaps 20) for
the device to become ready. Such a case leaves you with
a dilemma. If you make the program sleep for two ticks,
the system wastes CPU time while checking for device
ready. If the driver sleeps 20 ticks, it does not have a
good response time.

An interrupt system allows the hardware to report to the CPU
and the device drivers when the device is finished with an opera­
tion. Using interrupts to its advantage, a device driver can set
up interrupt handling to occur when a character is sent or
received or when a disk operation is complete. There is a built-in
polling facility for pausing and awakening processes. Here is a
technique for handling interrupts in a device driver:

1. Use the Init routine to place the driver interrupt service call
(IRQSVC) routine in the IRQ polling sequence via an F$IRQ
system call:

ldd V.Port,u get address to poll
leax IRQPOLL,pcr point to IRQ packet
leay IRQSVC,pcr point to IRQ routine
059 F$IRQ add dev to poll seguence
bcs Error abnormal exit if error

2. Ensure that driver programs waiting for their hardware, call
the sleep routine. The sleep routine copies V.Busy to
V.Wake. Then, it goes to sleep for some period of time.

4-11

OS -9 Technical Reference

3. W hen the driver program wakes up, have it check to see
whether it was awakened by an interrupt or by a signal sent
f rom some other process.

Usually, the d ri ver performs this check by reading the
V.Wake storage byte. The V.Busy byte is maintained by the
file manager to be used as the process ID of the process
using the driver. W hen V.Busy is copied into V.Wake, then
V.Wake becomes a flag byte and an information byte. A non­
zero Wake byte indicates that there is a process awaiting an
interrupt. The value in the Wake byte indicates the process
to be awakened by sending a wakeup signal as shown in the
following code:

lda V.Bu:;y,u
:;ta V.Wake,u
andcc #"IntMa:;k:;

SleepSO ldx #0

059 F$Sleep
ldx D.Proc

ldb P$Signal,x

bne SigTe:;t

get proc ID
arrange for wakeup
prep for interrupt:;
or any other tick time
(if :;ignal te:;t)
await an IRQ
get proc de:;c ptr if
:;ignal te:;t
i:; :;ignal pre:;ent?
(if :;ignal te:;t)
bra if :;o if :;ignal
te:;t

t:;t V.Wake,u IRQ occur?
bne SleepSO bra if not

Note that the code labeled "if signal test" is only necessary
if the driver wishes to return to the caller if a signal is sent
without waiting for the device to finish. Also note that IRQs
and FIRQs must be masked between the time a command is
given to the device and the moving of V.Busy and V.Wake. If
they are not masked, it is possible for the device IRQ to
occur and the IRQSVC routine to become confused as to
whether it is sending a wakeup signal or not.

4-12

OS-9's Unified Input/Output System I 4

4. W hen the device issues an interrupt, OS-9 calls the routine
at the address given in F$IRQ with the interrupts masked.
Make the routine as short as possible, and have it return
with an RTS instruction. IRQSVC can verify that an inter­
rupt has occurred for the device. It needs to clear the inter­
rupt to retrieve any data in the device. Then the V.Wake
byte communicates with the main driver module. If V.Wake
is non-zero, clear it to indicate a true device interrupt and
use its contents as the process ID for an F$Send system call.
The F$Send call sends a wakeup signal to the process. Here
is an example:

ldx V.Port,u get device address

tst ?? is it real interrupt from

bne IRQSVC90 bra to error if not

lda Data,x get data from device

sta O,y

lda V.Wake,u

beq IRQSVC80 bra if none

clr V.Wake,u clear it as flag to

routine
ldb #S$Wake,u get wakeup signal

059 F$Send send signal to driver

device?

main

IRQSVC80 clrb clear carry bit (all is well)

rts
IRQSVC90 comb set carry bit (is an IRQ call)

rts

Suspend State (Level Two only)

The Suspend State allows the elimination of the F$Send system
call during interrupt handling. Because the process is already in
the active queue, it need not be moved f rom one queue to
another. The device driver IRQSVC routine can now wake up the
suspended main driver by clearing the process status byte sus­
pend bit in the process state. Following are sample routines for
the Sleep and IRQSVC calls:

lda D.Proc get process ptr

sta V.Wake,u prep for re-awakening

enable device to IRQ, give command, etc.

bra Cmd50 enter suspend loop

Cmd30 ldx D.Proc get ptr to process desc

4-13

OS -9 Technical Reference

lda P$State,x get 5tate flag

ora #Su5pend put proc in 5U5pend 5tate
5ta P$State,x 5ave it in proc de5c

andcc #AintMa5k5 unma5k interrupt5

ldx #1 give up time 5lice

059 F$Sleep 5U5pend (in active gueue)

CmdSO orcc #IntMa5k5 ma5k interrupt5 while

changing 5tate
ldx D.Proc get proc de5c add� (if 5ignal

te5t)

lda P$Signal,x get 5ignal (if 5ignal te5t)
beg SigProc bra if 5ignal to be handled

lda V.Wake,u true interrupt?

bne Cmd30 bra if not

andcc #AintMa5k5 a55Ure interrupt5 unma5ked

Note that D.Proc is a pointer to the process descriptor of the cur­
rent process. Process descriptors are always allocated on 256-

byte page boundaries. Thus, having the high order byte of the
address is adequate to locate the descriptor. D.Proc is put in
V.Wake as a dual value. In one instance, it is a flag byte indi­
cating that a process is indeed suspended. In the other instance,
it is a pointer to the process descriptor which enables the
IRQSVC routine to clear the suspend bit. It is necessary to have
the interrupts masked from the time the device is enabled until
the suspend bit has been set. Making the interrupts ensure that
the IRQSVC routine does not think it has cleared the suspend
bit before it is even set. If this happens, when the bit is set the
process might go into permanent suspension. The IRQSVC rou­
tine sample follows:

4-14

ldy V.Port,u get dev addr

t5t V.Wake,u i5 proce55 awaiting
IRQ?

beg IRQSVCER no exit

clear device interrupt

exit if IRQ not from thi5 device

lda V.Wake,u get proce55 ptr
clrb

5tb V.Wake,u clear proc waiting flag
tfr d,x get proce55 de5criptor ptr

lda P$State,x get 5tate flag

anda # Su5pend clear 5U5pend 5tate

5ta P$State,x 5ave it

OS-9's Unified Input/Output System I 4

clrb clear carry bit
rts

IRQSVCER comb set carry bit
rts

Device Descriptor Modules

Device descriptor modules are small, non-executable modules.
Each one provides information that asso ciates a spe cific 110
device with its logical name, hardware controller address(es),
device driver, file manager name, and initialization parameters.

Unlike the device drivers and file managers, which operate on
classes of devices, each device descriptor tailors its functions to a
specific device. Each device must have a device descriptor.

Device descriptor modules use a standard module header, in
which the module type is specified as code $Fx (device descrip­
tor). The name of the mo dule is the name by which the system
and user know the device (the device name given in pathlists).

The rest of the device descriptor header consists of the informa­
tion in the following chart:

Relative
Address(es)

$09,$0A

$0B,$0C

$0D

$0E,$0F,$10

$11

$12,$12+n

Use

The relative address of the file manager
name string address

The relative address of the device driver
name string

Mo de/Capabilities: D S PE PW PR E W R
(directory, single user, public execute, pub­
lic write, public read, execute, write, read)

The absolute physical (24-bit) address of the
device controller

The number of bytes (n bytes) in the ini­
tialization table

Initialization table

When OS-9 opens a path to the device, the system copies the ini­
tialization table into the option section (PD.OPT) of the path
descriptor. (See "Path Descriptors" in this chapter.)

4-15

OS -9 Technical Reference

The values in this table can be used to define the operating
parameters that are alterable by the Get Status and Set Status
system calls (I$GetStt and I$SetStt). For example, parameters
that are used when initializing terminals define which control
characters are to be used for functions such as backspace and
delete.

The initialization table can be a maximum of 32 bytes long. If
the table is fewer than 32 bytes long, OS-9 sets the remaining
values in the path descriptor to 0.

You might wish to add devices to your system. If a similar device
driver already exists, all you need to do is add the new hardware
and load another device descriptor. Device descriptors can be in
the boot module or they can be loaded into RAM from mass-stor­
age files while the system is running.

The following diagram illustrates the device descriptor format:

4-16

Relative
Address

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0D

$0E

$OF

$10

$11

$12,$12+n

OS-9's Unified Input/Output System I 4

Device Descriptor Format

Use

f-- Sync Bytes ($87,$CD)

- Module Size (bytes)

- Offset to Module Name

F$ (Type) $1 (Lang)

Attributes Revision

Header Parity Check

f-- Offset to File Manager
Name String

f-- Offset to Device Driver
· Name String

Mode Byte

f-- Device Controller
Absolute P hysical Addr.

t--- (24 bit)

Initialization Table Size

(Initialization Table)

(Name Strings, and so on)

CRC Check Value

-

-

-

-

-

-

-

Check
Range

4-17

OS -9 Technical Reference

Path Descriptors

Every open path is represented by a data structure called a path
descriptor (PD). The PD contains the information the file man­
agers and device drivers require to perform 110 functions.

PDs are 64 bytes long and are dynamically allocated and deallo­
cated by the 110 manager as paths are opened and closed.

They are internal data structures, that are not normally refer­
enced from user or applications programs. The description of PDs
is presented here mainly for those programmers who need to
write custom file managers, device drivers, or other extensions to
OS-9.

PDs have three sections. The first section, which is ten bytes
long, is the same for all file managers and device drivers. The
information in the first section is shown in the following chart.

Path Descriptor: Standard Information

Relative Size
Name Address (Bytes) Use

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1 = read, 2 =

write, 3 = update

PD.CNT $02 1 Number of open paths using
this PD

PD.DEV $03 2 Add ress of the asso ciated
device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of the caller's regis-
ter stack

PD.BUF $08 2 Address of the 256-byte
data buffer (if used)

PD.FST $0A 22 Defined by the file manager

PD.OPT $20 32 Reserved for the Gets tat/
Setstat options

PD.FST is 22-byte storage reserved for and defined by each type
of file manager for file pointers, permanent variables, and so on.

4-18

OS-9's Unified Input/Output System I 4

PD.OPT is a 32-byte option area used for file or device operat­
ing parameters that are dynamically alterable. When the path is
opened, the 110 manager initializes these variables by copying
the initialization table that is in the device descriptor module.
User programs can change the values later, using the Get Status
and Set Status system calls.

PD.FST and PD.OPT are defined for the file manager in the
assembly-language equate file (SCFDefs for the SCF manager or
RBFDefs for the RBF manager).

4-19

Chapter 5

Random Block File Manager

The random block file manager (RBF manager) supports disk
storage. It is a re-entrant subroutine package called by the 110
manager for 110 system calls to random-access devices. It main­
tains the logical and physical file structures.

During normal operation, the RBF manager requests allocation
and deallocation of 256-byte data buffers. Usually, one buffer is
required for each open file. When physical 110 functions are nec­
essary, the RBF manager directly calls the subroutines in the
associated device drivers. All data transfers are performed using
256-byte data blocks (pages).

The RBF manager does not deal directly with physical addresses
such as tracks and cylinders. Instead, it passes to the device
drivers address parameters, using a standard address called a
logical sector number, or LSN. LSNs are integers fi·om 0 to n-1,
where n is the maximum number of sectors on the media. The
driver translates the logical sector number to actual cylinder/
track/sector values.

Because the RBF manager supports many devices that have dif­
ferent performance and storage capacities, it is highly parame­
ter-driven. The physical parameters it uses are stored on the
media itself.

On disk systems, the parameters are written on the first few
sectors of Track 0. The device drivers also use the information,
particularly the physical parameters stored on Sector 0. These
parameters are written by the FORMAT program that initial­
izes and tests the disk.

Logical and Physical Disk Organization

All disks used by OS-9 store basic identification, file structure,
and storage allocation information on these first few sectors.

LSN 0 is the identification sector. LSN 1 is the disk allocation
map sector. LSN 2 marks the beginning of the disk's ROO T
directory. The following section tells more about LSN 0 and LSN
1.

5-1

OS -9 Technical Reference

Identification Sector (LSN 0)

LSN 0 contains a description of the physical and logical charac-
teristics of the disk. These characteristics are set by the FOR-
MAT command program when the disk is initialized.

The follo w i ng table gives the OS-9 mnemonic n ame , byte
address, size, and description of each value stored in this LSN 0.

Relative Size
Name Address (Bytes) Use

DD.TOT $00 3 Number of sectors on disk

DD.TKS $03 1 Track size (in sectors)

DD.MAP $04 2 Number of bytes in the alloca-
tion bit map

DD.BIT $06 2 Number of sectors per cluster

DD.DIR $08 3 Starting sector of the ROOT
directory

DD.OWN $0B 2 Owner's user number

DD.ATT $0D 1 Disk attributes

DD.DSK $0E 2 Disk identification (for internal
use)

DD.FMT $10 1 Disk format, density, number
of sides

DD.SPT $11 2 Number of sectors per track

DD.RES $13 2 Reserved for future use

DD.BT $15 3 Starting se ctor of the b o ot-
strap file

DD.BSZ $18 2 Size of the bootstrap file (in
bytes)

DD.DAT $1 A 5 Time of creation (Y:M:D:H:M)

DD.N AM $1F 32 Volume name in which the last
character has the most signifi-
cant bit set

DD.OPT $3F Path descriptor options

5-2

Random Block File Manager I 5

Disk Allocation Map Sector (LSN 1)

LSN 1 contains the disk allocation map, which is created by
FORMAT. This map shows which sectors are allocated to the
files and which are free for future use.

Each bit in the allocation map represents a sector or cluster of
sectors on the disk. If the bit is set, the sector is considered to be
in use, defective, or non-existent. If the bit is cleared, the corre­
sponding cluster is available. The allocation map usually starts
at LSNl. The number of sectors it requires varies according to
how many bits are needed for the map. DD.MAP specifies the
actual number of bytes used in the map.

Multiple sector allocation maps allow the number of sectors/clus­
ter to be as small as possible for high volume media.

The FORMAT utility bases the size of the allocation map on the
size and number of sectors per cluster.

The DD.MAP value in LSN 0 specifies the number of bytes (in
LSN 1) that are used in the map.

Each bit on the disk allocation map corresponds to one sector
cluster on the disk. The DD.BIT value in LSN 0 specifies the
number of sectors per cluster. The number is an integral power
of 2 (1, 2, 4, 8, 16, and so on).

If a cluster is available, the corresponding bit is cleared. If it is
allocated, non-existent, or physically defective, the corresponding
bit is set.

ROOT Directory

This file is the parent directory of all other files and directories
on the disk. It is the directory accessed using the physical device
name (such as /D1). Usually, it immediately follows the Alloca­
tion Map. The location of the ROOT directory file descriptor is
specified in DD.DIR. The ROOT directory contains an entry for
each f i le that resides in the directory, including other
directories.

File Descriptor Sector

The first sector of every file is the file descriptor. It contains the
logical and physical description of the file.

5-3

OS -9 Technical Reference

The following table describes the contents of the file descriptor.

Relative Size
Name Address (Bytes) Use

FD.ATT $00 1 File attributes: D S PE PW PR
E W R (see next chart)

FD.OW N $01 2 Owner's user ID

FD.DAT $03 5 Date last modified: (Y M D H
M)

FD.LNK $08 1 Link count

FD.SIZ $09 4 File size (number of bytes)

FD.CRE AT $0D 3 Date created (Y M D)

FD.SEG $10 240 Segment list (see next chart)

FD.ATT. (The attribute byte) contains the file permission bits.
W hen set the bits indicate the following:

Bit 7 Directory
Bit 6 Single user
Bit 5 Public execute
Bit 4 Public write
Bit 3 Public read
Bit 2 Execute
Bit 1 Write
Bit 0 Read

FD.SEG (the segment list) consists of a maximum of 48 5-byte
entries that have the size and address of each file block in logical
order. Each entry has the block's 3-byte LSN and 2-byte size (in
sectors). The entry following the last segment is zero.

A fter creation, a file has no data segments allocated to it until
the first write. (Write operations past the current end-of-file
cause sectors to be added to the file. The first write is always
past the end-of-file.)

If the file has no segments, it is given an initial segment. Usu­
ally, this segment has the number of sectors specified by the
minimum allocation entr y in the device descriptor. If, however,
the number of sectors requested is more than the minimum, the
initial segment has the requested number.

5-4

Random Block Filf! Manager I 5

Later expansions of the file usually are also made in minimum
allocation increments. Whenever possible, OS-9 expands the last
segment, instead of adding a segment. When the file is closed,
OS-9 truncates unused sectors in the last segment.

OS-9 tries to minimize the number of storage segments used in
a file. In fact, many files have only one segment. In such cases,
no extra Read operations are needed to randomly access any byte
in the file.

If a f i le is repeatedly closed, opened, and expanded, it can
become fragmented so that it has many segments. You can avoid
this fragmentation by writing a byte at the highest address you
want to be used on a file. Do this before writing any other data.

Directories

Disk directories are files that have the D attribute set. A direc­
tory contains an integral number of entries, each of which can
hold the name and LSN of a file or another directory.

Each directory entry contains 29 bytes for the filename, followed
by the three bytes for the LSN of the file's descriptor sector. The
filename is left-justified in the field, with the most significant bit
of the last character set. Unused entries have a zero byte in the
first filename character position.

Every disk has a master directory called the ROOT directory.
The DD.DIR value in LSN 0 (identification sector) specifies the
starting sector of the ROOT directory.

The RBF Manager Definitions of the Path
Descriptor

·

As stated earlier in this chapter, the PD.F ST section of the path
descriptor is reserved for and defined by the file manager. The
following table describes the use of this section by the RBF man­
ager. For your convenience, it also includes the other sections of
the PD.

5-5

OS -9 Technical Reference

Relative Size
Name Address (Bytes) Use

Universal Section (Same for all file managers and device drivers)

PD.PD $00 1 Path number

PD.MOD

PD.CNT

PD.DEV

PD.CPR

PD.RGS

PD.BUF

$01

$02

$03

$05

$06

$08

1 Access mode
1 = read,
2 = write,
3 = update

1 Number of open images (paths
using this PD)

2 Address of the associa t e d
device table entry

1 Current process ID

2 Address of the cal ler's 6809
register stack

2 Address of the 256-byte data
buffer (if used)

Relative Size
Name Address (Bytes) Use

The RBF manager Path Descriptor Definitions (PD.FST Section)

PD.SMF $0A 1 State flag:

PD.CP $0B

PD.SIZ $OF

PD.SBL $13

PD.SBP $16

5-6

4

4

3

3

Bit 0 =cur rent buffer is
altered

Bit 1 = current sector is in
the buffer

Bit 2 = descriptor sector is
in the buffer

C urrent logical file position
(byte address)

File size

Segment beginning logical sec-
tor number (LSN)

Segment beginning physical
sector number (PSN)

Random Block File Manager I 5

Relative Size
Name Address (Bytes) Use

PD.SSZ

PD.DSK

PD.DTB

$19 3 Segment size

$1C

$1E

2

2

Relative Size

Disk ID (for internal use only)

Address of drive table

Name Address (Bytes) Use

The RBF manager Option Section Definitions CPD.OPT Section)

(Copied from the device descriptor)

PD.DTP $20

PD.DRV $21

PD.STP $22

PD.TYP $23

PD.DNS $24

PD.CYL $25

PD.SID $27

PD.VFY $28

PD.SCT $29

PD.TOS $2B

PD.ILV $2D

PD.SAS $2E

PD.TFM $2F

PD.EXTEN $30

PD.STOFF $32

1

1

1

1

1

2

1

1

2

2

1

1

1

2

1

Device class:
0 = SCF
1 = RBF
2 =PIPE
3 = SBF

Drive number (O .. n)

Step rate

Device type

Density capability

Number of cylinders (tracks)

Number of sides (surfaces)

0 = verify disk writes

Default number of sectors per
track

Default number of sectors per
track (Track 0)

Sector inter leave factor

Segment allocation size

DMA transfer mode

Path extension for record
locking

Sector/track offsets

5-7

OS -9 Technical Reference

Relative Size
Name Address (Bytes) Use

(Not copied from the device descriptor):

PD.AT T $33 1 File attributes
(D S PE PW PR E W R)

PD.FD $34 3 File descriptor PSN

PD.DFD $37 3 Directory file descriptor PSN

PD.DCP $3A 4 File's directory entry pointer

PS.DVT $3E 2 Address of the device table
entry

Any values not determined by this table default to zero.

RBF-Type Device Descriptor Modules

This section describes the use of the initialization table con­
tained in the device descriptor modules for RBF-type devices.
The fol lowing values are those the I/0 manager copies from the
device descriptor to the path descriptor.

5-8

Random Block File Manager I 5

Relative Size
Name Address (Bytes) Use

$0-$11 Standard device descriptor
module header

IT.DTP $12 1 Device type:
0 = SCF
1 = RBF
2 =PIPE
3 = SBF

IT.DRV $13 1 Drive number

IT.STP $14 1 Step rate

IT.TYP $15 1 Device type (see RBF pa th
descriptor)

IT.DNS $16 1 Media density:
Always 1 (double)
(see following information)

IT.CYL $17 2 Number of cylinders (tracks)

IT.SID $19 1 Number of sides

IT. V FY $1A 1 0 = Verify disk writes
1 = no verify

IT.SCT $1B 2 Default number of sectors per
track

IT.TOS $1D 2 Default number of sectors per
track (Track 0)

IT.ILV $1F 1 Sector interleave factor

IT.SAS $20 1 Minimum size of segment allo-
cation (number of sectors to be
allocated at one time)

IT.DRV is used to associate a 1-byte integer with each drive
that a controller handles. Number the drives for each controller
as 0 to n-1, where n is the maximum number of drives the con-
troller can handle.

5-9

OS -9 Technical Reference

IT.TYP specifies the device type (all types).

Bit 0 - 0 = 5-inch floppy diskette

Bit 5 - 0 = Non-Color Computer format
1 = Color Computer format

Bit 6 - 0 = Standard OS-9 format
1 = Non-standard format

Bit 7- 0 = Floppy diskette
1 = Hard disk

IT.DNS specifies the density capabilities (floppy diskette only).

Bit 0- 0 = Single-bit density (FM)
1 = Double-bit density (MFM)

Bit 1- 0 = Single-track density (5-inch, 48 t racks per
inch)

1 = Double-track density (5-inch, 96 tracks per
inch)

IT.SAS specifies the minimum number of sectors allowed at one
time.

RBF Record Locking

Record locking is a general term that refers to methods designed
to preserve the integrity of files that can be accessed by more
than one user or process. The OS-9 implementation of record
locking is designed to be as invisible as possible. This means
that existing programs do not have to be rewritten to take
advantage of record locking facilities. You can usually write new
programs without special concern for multi-user activity.

Record locking involves detecting and preventing conflicts during
record access. Whenever a process modifies a record, the system
locks out other proced ures f rom accessing the f ile. It defers
access to other procedures until it is safe for them to write to the
record. The system does not lock records during reads; so, multi­
ple processes can read the record at the same time.

5-10

Random Block File Manager I 5

Record Locking and Unlocking

To detect conflicts, OS-9 must recognize when a record is being
updated. The RBF manager provides true record locking on a
byte basis. A typical record update sequence is:

OS9 !$Read

OS9 !$Seek
OS9 !$Write

program reads record
RECORD IS LOCKED

program updates record

reposition to record
record is rewritten
RECORD IS RELEASED

When a file is opened in update mode, any read causes locking
of the record being accessed. This happens because the RBF
manager cannot determine in advance if the record is to be
updated. The record stays locked out until the next read, write,
or close.

However, when a file is opened in the read or execute modes, the
system does not lock accessed records because the records cannot
be updated in these two modes.

A subtle but important problem exists for programs that interro­
gate a data base and occasionally update its data. If you neglect
to release a record after accessing it, the record might be locked
up indefinitely. This problem is characteristic of record locking
systems and you can avoid it with careful programming.

Only one portion of a file can be locked out at a time. If an
application requires more than one record to be locked out, open
multiple paths to the same file and lock the record accessed by
each path. RBF notices that the same process owns both paths
and keeps them from locking each other out.

5-11

OS -9 Technical Reference

Non-Shareable Files

Sometimes (although rarely), you must create a file that can
never be accessed by more than one user at a time. To lock the
file, you set the single-user (s) bit in the file's attribute byte. You
can do this by using the proper option when the file is created,
or later using the OS-9 ATTR command. Once the single-user
bit is set, only one user can open the file at a time. If other users
attempt to open the file, Error 253 is returned. Note however,
that non-shareable means only one path can be opened to a file
at one time. Do not allow two processes to concurrently access a
non-shareable file through the same path.

More commonly, you need to declare a file as single-user only
during the execution of a specific program. You can do this by
opening the file with the single-user bit set. For example, sup­
pose a process is sorting a file. With the file's single-user bit set,
OS-9 treats the file exactly as though it had a single-user attrib­
ute. If another process attempts to open the file, OS-9 returns
Error 253.

You can duplicate non-shareable paths by using the I$Dup sys­
tem call. This means that it can be inherited, and therefore
accessible to more than one process at a time. Single-user means
that the file can be opened only once.

End-of-File Lock

A special case of record locking occurs when a user reads or
w rites data at the end of a file, creating an EOF Lock. An EOF
Lock keeps the end of the file locked out until a process performs
a READ or WRITE that is not at the end of the file. It prevents
problems that might otherwise occur when two users want to
simultaneously extend a file. The EOF Lock is the only case in
which a WRITE call automatically causes portions of a file to be
locked out. An interesting and useful side effect of the EOF Lock
f unction occurs if a program creates a file for sequential output.
As soon as the program -creates the file, EOF Lock is set and no
other process can pass the w riter in processing the file. For
example, if an assembler redirects a listing to a disk file, and a
spooler utility tries to print a line f rom the file before it is writ­
ten, record locking makes the spooler wait and stay at least one
step behind the assembler.

5-12

Random Block File Manager I 5

Deadlock Detection

A deadly embrace, or deadlock, typically occurs when two pro­
cesses attempt to gain control of two or more disk areas at the
same time. If each process gets one area (locking out the other
process), both processes become permanently stuck. Each waits
for a segment that can never become free. This situation is not
restricted to any particular record locking scheme or operating
system.

When a deadly embrace occurs, RBF returns a deadlock error
(Error 254) to the process that caused 08-9 to detect the dead­
lock. To avoid deadlocks, make sure that processes always access
records of shared files in the same sequence.

When a deadlock error occurs, it is not sufficient for a program
to retry the operation that caused the error. If all processes use
this strategy, none can ever succeed. For any process to proceed,
at least one must cancel operation to release its control over a
requesting segment.

RBF-Type Device Driver Modules

An RBF-type device driver module contains a package of subrou­
tines that perform sector-oriented I/0 to or from a specific hard­
ware controller. Such a module is usually re-entrant. Because of
this, one copy of one device driver module can simultaneously
run several devices that use identical I/0 controllers.

The I/0 manager allocates a permanent memory area for each
device driver. The size of the memory area is given in the device
driver module header. The I/0 manager and the RBF manager
use some of this area. The device driver can use the rest in any
manner. This area is used as follows:

The RBF Device Memory Area Definitions

Name

V.PAGE

V.PORT

Relative
Address

$00

$01

Size
(Bytes)

1

2

Use

Port extended add ress bits
A20- A16

Device base address (defined
by the I/0 manager)

5-13

OS -9 Technical Reference

Name

V.LPRC

V.BUSY

V.WAKE

V.USER

V.NDRV

DRVBEG

TABLES

FREE

Relative Size
Address (Bytes)

$03 1

$04 1

$05 1

$06 0

$06 1

8

Use

ID of the last active process
(n o t us ed b y RBF d e v ic e
drivers)

ID of the current process using
driver (defined by RBF)

0 = no current process

ID of the process waiting for
I/0 completion (defined by the
device driver)

Beginning of file manager spe­
cific storage

Maximum numb er of drives
the controller can use (defined
by the device driver)

Res erved $07

$OF

$OF

0 Beginning of the drive tables

DRVMEN*N Sp ace for numb er of tables
reserved (n)

0 Beginning of space available
for driver

These values are defined in files in the DEFS directory on the
Development Package disk.

TABLES. This area contains one table for each drive that the
controller handles. (The RBF manager assumes that there are as
many tables as indicated by V.NDRV.) Some time after the
driver Init routine is called, the RBF manager issues a request
for the driver to read LSN 0 from a drive table by copying the
firs t p art of LSN 0 (up to DD.SIZ) into the table. Following is
the format of each drive table:

5-14

Name
Relative Size
Address (Bytes)

DD.TOT

DD.TKS

$00 3

$03 1

DD.MA P $04

DD.BIT $06

DD.DIR $08

DD.OWN $0B

DD.ATT $0D

DD.DSK $0E

DD.FMT $10

DD.SPT $11

DD.RES $13

DD.S IZ $15

V.TRAK $15

V.BMB $17

V.F ILEHD $18

2

2

3

2

1

2

1

2

2

0

2

1

2

Random Block File Manager I 5

Use

Number of sectors.

Track size (in sectors).

Number of bytes in the alloca­
tion bit map.

Number of sectors p e r b i t
(cluster size).

Add ress (LSN) of the ROOT
directory.

Owner's user number.

Disk access attributes
(D S PE P W PR E W R).

Disk ID (a pseudo-ra ndom
number used to detect diskette
swaps).

Media format.

Number of sectors per track.
(Track 0 can use a different
value specified by IT. TOS in
the device descriptor.)

Reserved for future use.

Min imum size of d e v ic e
descriptor.

Number of the current track
(the track that the head is on,
and the track updated by the
driver).

Bit-map use flag:
0 = Bit map is not in use.

(Disk driver routines
must not alter V.BMB.)

Open file list for this drive.

5-15

OS -9 Technical Reference

Relative Size
Name Address (Bytes) Use

V.DISK ID $1A 2 Disk ID.

V.BMAPSZ $1C 1 Size of bitmap.

V.MAPSCT $1D 1 Lowest reasonable b itmap
sector.

V.RESBIT $1E 1 Reserved bitmap sector.

V.SCTKOF $1F 1 Sector/track byte.

V.SCOFST $20 1 Se ctor offset spl it
V.SCTKOF.

V.TKOFST $21 1 Track offset spl it
V.SCTKOF.

RESERVED $22 4 Reserved for future use.

DRVMEN $26 Size of each drive table.

The format attributes (DD.FMT) are these:

Bit BO = Number of sides
0 = Single-sided
1 = Double-sided

Bit B1 = Density
0 = Single-density
1 = Double-density

Bit B2 = Track density
0 = Single (48 tracks per inch)
1 = Double (96 tracks per inch)

RBF Device Driver Subroutines

from

from

Like all device driver modules, RBF device drivers use a stan­
dard executable memory module format.

The execution offset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically
a long branch (LBRA) to the corresponding subroutine. The
branch table is defined as follows:

5-16

ENTRY LBRA
LBRA
LBRA
LBRA
LBRA
LBRA

Random Block File Manager I 5

INIT
READ
WRITE
GETSTA
SETSTA
TERM

Initialize drive
Read sector
Write sector
G et status
Set status
Terminate device

Ensure that each subroutine exists with the C bit of the condi­
tion code register cleared if no error occurred. If an error occurs,
set the C bit and return an appropriate error code Register B.

T he rest of this chapter describes the RBF device driver subrou­
tines and their entry and exit conditions.

5-17

OS -9 Technical Reference

lnit Initializes a device and the device's memory
area.

Entry Conditions:

Y = address of the device descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• If you want OS-9 to verify disk writes, use the Request
Memory system call (F$SRqMem) to allocate a 256-byte
buffer area in which a sector can be read back and verified
after a write.

• You must initialize the device memory area. For floppy
diskette controllers, initialization typically consists of:

1. Initializing V.NDRV to the number of drives with which
the controller work s

2. Initializing DD.TOT (in the drive table) to a non-zero
value so that Sector 0 can be read or written

3. Initializing V.TR AK to $F F so that the first seek finds
Track 0

4. Placing the IRQ service routine on the IRQ polling list,
using the Set IRQ system call (F$IRQ)

5. Initializing the device control registers (enabling inter­
rupts if necessary)

• Prior to being called, the device memory area is cleared (set
to zero), except for V.PAGE and V.PORT. (These areas con­
tain the 24- bit device address.) Ensure the driver initial­
izes each drive table appropriately for the type of diskette
that the driver expects to be used on the corresponding
drive.

5-18

Random Block File Manager I 5

Read Reads a 256-byte sector from a disk and
places it in a 256-byte sector buffer.

Entry Conditions:

B = MSB of the disk's LSN
X = LSB of the disk's LSN
Y = address of the path descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• The following is a typical routine for using Read:

1. Get the sector buffer address from PD.BUF in the path
descriptor.

2. Get the drive number from PD.DRV in the path
descriptor.

3. Compute the physica l disk address from the logical sec­
tor number.

4. Initiate the Read operation.

5. Copy V.BUSY to V.WAKE. The driver goes to sleep and
waits for the 1/0 to complete . (The I RQ service routine is
responsible for sending a wakeup signal.) After awaken­
ing, the driver tests V.WAKE to se e if it is clear. If it
isn't clear, the driver goes back to sle ep.

• Whenever you read LSN 0, you must copy the first part of
this sector into the proper drive table . (Get the drive num­
ber from PD.DRV in the path descriptor.) The number of
bytes to copy is in DD.SIZ. Use the drive number (PD.DRV)
to compute the offset for the corresponding drive table as
follows:

5-19

OS -9 Technical Reference

LDA PD.DRV,Y Get the drive number

LDB #DRVMEN Get the 5ize of a

drive table

MUL

LEAX DRVBEG,U Get the addre55 of

the fir5t table

LEAX D,X Compute the addre55

of the table

5-20

Random Block File Manager I 5

Write Writes a 256-byte sector buffer to a disk.

Entry Conditions:

B = MSB of the disk LSN
X = LSB of the disk LSN
Y = address of the path descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code

Additional Information:

• Following is a typical routine for using Write:

1. Get the sector buffer address from PD.BUF in the path
descriptor.

2. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the logical sector
number.

4. Initiate the Write operation.

5. Copy V.BUSY to V.WAKE. The driver then goes to sleep
and waits for the I/0 to complete. (The IRQ service routine
sends the wakeup signal.) After awakening, the driver tests
V.WAKE to see if it is clear. If it is not, the driver goes
back to sleep. If the disk controller cannot be interrupt-dri­
ven, it is necessary to perform a programmed I/0 transfer.

6. If PF .VFY in the path descriptor is equal to zero, read the
sector back in and verify that it is written correctly. Verifi­
cation usually does not involve a comparison of all of the
data bytes.

• If disk writes are to be verified, the Init routine must
request the buffer in which to place the sector when it is
read back. Do not copy LSN 0 into the drive table when
reading it back for verification.

5-21

OS -9 Technical Reference

• Use the drive number CPD.DRV) to compute the offset to
the corresp ond ing drive table as shown for the Read
routine.

5-22

Random Block File Manager I 5

Getstats and Setstats
Reads or changes device's operating parameters.

Entry Conditions:

U = address of the device memory area
Y = address of the path descriptor
A = status code

Exit Conditions:

B = error code (if any)
CC = carry set on error

Additional Information:

• Get/set the device's operating parameters (status) as speci­
fied for the Get Status and Set Status system calls. Getsta
and Setsta are wild card calls.

• It might be necessary to examine or change the register
stack that contains the values of the 6809 register at the
time of the call. The address of the register stack is in
PD.RGS, which is located in the path descriptor. You can
use the following of fsets to access any value in the register
stack:

Reg.

R$CC
R$D
R$A
R$B
R$DP
R$X
R$Y
R$U
R$PC

Relative
Addr.

$00
$01
$01
$02
$03
$04
$06
$08
$0A

Size

1
2
1
1
1
2
2
2
2

6809 Reg.

Condition Code Reg.
Register D
Register A
Register B
Register DP
Register X
Register Y
Register U
Program Counter

• Register D overlays Registers A and B.

5-23

OS -9 Technical Reference

Term Terminate a device.

Entry Conditions:

U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• This routine is called when a device is no longer in use in
the system (when the link count of its device descriptor
module becomes zero).

• Following is a typical routine for using Term:

5-24

1. Wait until any pending I/0 is completed.

2. Disable the device interrupts.

3. Remove the device from the IRQ polling list.

4. If the Init routine reserved a 256-byte buffer for verify­
ing disk writes, return the memory with the Return
Sysmem system call (F$SRtMem).

Random Block File Manager I 5

IRQ Service Routine
Services device interrupts.

Additional Information:

• The IRQ Service routine sends a wakeup signal to the pro­
cess indicated by the process ID in V.WAKE when the 110
is complete. It then clears V.WAKE as a flag to indicate to
the main program that the IRQ has indeed occurred.

e W hen the IRQ service routine finishes servicing an inter­
rupt it must clear the carry and exit w ith an RTS
instruction.

• Although this routine is not included in the device driver
module branch table and is not called directly by the RBF
manager, it is a key routine in interrupt-driven drivers. Its
function is to:

1. Service the device interrupts (receive data from device or
send data to it). The IRQ service routine puts its data
into and get its data from buffers that are defined in the
device memory area.

2. Wake up a process that is waiting for I/0 to be com­
pleted. To do this, the routine che cks to see if there is a
process ID in V.WAKE (if the bit is non-zero); if so, it
sends a wakeup signal to that process.

3. If the device is ready to send more data, and the output
buffer is empty, disable the device's ready to transmit
interrupts.

5-25

OS -9 Technical Reference

Boot (Bootstrap Module)
Loads the boot file into ftAM.

Entry Conditions:

None

Exit Conditions:

D = size of the boot file (in bytes)
X = address at which the boot file was loaded into memory
CC = carry set on error
B = error code (if any)

Additional Information:

• The Boot module is not part of the disk driver. It is a sepa­
rate module that is stored on the boot track of the system
disk with OS9Pl and REL.

• The bootstrap module contains one subroutine that loads
the bootstrap file and related information into memory. It
uses the standard executable module format with a module
type of $C. The execution offset in the module header con­
tains the offset to the entry point of this subroutine.

• The module gets the starting sector number and size of the
OS9Boot file from LSN 0. OS-9 allocates a memory area
large enough for the Boot file. Then, it loads the Boot file
into this memory area.

• Following is a typical routine for using Boot:

5-26

1. Read LSN 0 from the disk into a buffer area. The Boot
module must pick its own buffer area. LSN 0 contains
the values for DD.BT (the 24-bit LSN of the bootstrap
file), and DD.BSZ (the size of the bootstrap file in bytes).

2. Get the 24-bit LSN of the bootstrap file from DD.BT.

3. Get the size of the bootstrap file from DD.BSZ. The Boot
module is contained in one logically contiguous block
beginning at the logical sector specified in DD.BT and
extending for DD.BSZ/256 + 1 sectors.

Random Block File Manager I 5

4. Use the OS-9 Request Sysmem system call (F$SRqMem)
to request the memory area in which the Boot file is
loade d.

5. Read the Boot file into this memory area.

6. Re turn the size of the Boot file and its location. Boot file
is loade d.

5-27

Chapter 6

Sequential Character
File Manager

The Sequential Character File Manager (SCF) supports devices
that operate on a character-by-character basis. These include
terminals, printers, and modems.

SCF is a re-entrant subroutine package. The I/0 manager calls
the SCF manager for I/0 system handling of sequential, charac­
ter-oriented devices. The SCF manager includes the extensive I/0
editing functions typical of line-oriented operation, such as:

e backspace

e line delete

e line repeat

e auto line feed

e screen pause

e return delay padding

The SCF-type device driver modules are CC3IO, PRINTER, and
RS-232. They run the video display, printer, and serial ports
respectively. See the OS-9 Commands manual for additional
Color Computer I/0 devices.

SCF Line Editing Functions

The SCF manager supports two sets of read and write functions.
I$Read and !$Write pass data with no modification. I$ReadLn
and I$WritLn provide full line editing of device functions.

Read and Write

The Read and Write system calls to SCF-type devices correspond
to the BASIC09 GET and PUT statements. While they perform
little modification to the data they pass, they do filter out key­
board interrupt, keyboard terminate, and pause character. (Edit­
ing is d isabled if the corresponding character in the path
descriptor contains a zero.)

6-1

OS -9 Technical Reference

Carriage returns are not followed by line feeds or nulls automat­
ically, and the high order bits are passed as sent/received.

Read Line and Write Line

The Read Line and Write Line system calls to SCF-type devices
correspond to the BASIC09 INPUT, PRINT, READ, and W RITE
statements. They provide full line editing of all functions enabled
for a particular device.

The system initializes I$ReadLn and I$WritLn functions when
you first use a particular device. (OS-9 copies the option table
from the device descriptor table associated with the specific
device.)

Later, you can alter the calls-either from assembly-language
programs (using the Get Status system call), or from the key­
board (using the TMODE command). All bytes transferred by
Readln and Writln have the high order bit cleared.

SCF Definitions of the Path Descriptor

The PD.FST and PD.OPT sections of the path descriptor are
reserved for and used by the SCF file manager.

The following table describes the SCF manager's use of PD.FST
and PD.OPT. For your convenience, the table also includes the
other sections of the PD.

The PD.OPT section contains the values that determine the line
editing functions. It contains many device operating parameters
that can be read or written by the Set Status or Get Status sys­
tem call. Any values not set by this table default to zero.

Note: You can disable most of the editing functions by set­
ting the corresponding control character in the path
descriptor to zero. You can use the Set Status system call
or the TMODE command to do this. Or, you can go a step
further by setting the corresponding control character value
in the device descriptor module to zero.

To determine the default settings for a specific device, you can
inspect the device descriptor.

6-2

Name

Sequential Character File Manager I 6

Relative Size
Address (Bytes) Use

Universal Section (Same for all file managers)

PD.PD $00 1 Path number

PD.MOD

PD.CNT

PD.DEV

PD.CPR

PD.RGS

PD.BUF

$01

$02

$03

$05

$06

$08

1

1

2

1

2

2

Relative Size

Access mode:
1 = read
2 = write
3 = update

Number of open images (paths
using this PD)

Address of the ass oci ate d
device table entry

Current process ID

Address of the caller's 6809
register stack

Address of the 256-byte data
buffer (if used)

Name Address (Bytes) Use

SCF Path Descriptor Definitions (PD.FST Section)

PD.DV2

PD.RAW

PD.MAX

PD.MIN

PD.STS

PD.STM

$0A

$0C

$0D

$OF

$10

$12

2

1

2

1

2

2

Device table address of the sec­
ond (echo) device

Edit flag:
0 =raw mode
1 = edit mode

Read Line maximum character
count

Devices are mine if cleared

Status routine module address

Reserved for status routine

6-3

OS -9 Technical Reference

Relative Size Use
Name Address (Bytes)

SCF Option Section Defin ition (PD.OPT Section)

(Copied f rom the device descriptor)

PD.DTP

PD.UPC

PD.BSO

PD.DLO

PD.EKO

PD. A LF

PD.NUL

PD.PAU

PD.PAG

PD.BSP

PD.DE L

6-4

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$2 A

1

1

1

1

1

1

1

1

1

1

1

Device class:
0 = SCF
1 = RBF
2 =PIPE
3 = SBF

Case:
0 = upper and lower
1 = upper only

Backspace:
0 = backspace
1 = backspace, space and

backspace

Delete:
0 = backspace over line
1 = carriage return, line

feed

E cho:
0 = no echo

Auto line feed:
0 = no auto line feed

End-of-line null count:
n = number of nulls ($00)
sent af ter each carria g e
return o r carriage retu rn
and line feed (n = $00-$FF)

End of page pause:
0 = no pause

Number of lines per page

Backspace character

Delete-line character

Sequential Character File Manager I 6

Relative Size
Name Address (Bytes) Use

SCF Option Section Definition continued (PD.OPT Section)

PD.EOR $2B 1 End-of-record character (End-
of-line character) Read only.
Normally set to $0D:

0 = Terminate read-line
only at the end of the
file

PD.EOF $2C 1 End-of-file character (read
only)

PD.RPR $2D 1 Reprint-line character

PD.DUP $2E 1 Duplicate-last-line character

PD.PSC $2 F 1 Pause character

PD.INT $30 1 Keyboard-interrupt character

PD.QUT $31 1 Keyboard-terminate character

PD.BSE $32 1 Backspace-echo character

PD.OVF $33 1 Line-overflow character (bell
I CTRL I[]])

PD.PA R $34 1 Device-initialization value
(parity)

PD.BAU $35 1 Software setable baud rate

PD.D2P $36 2 Offset to second device name
string

PP.XON $38 1 ACIA XON char

PD.XOFF $39 1 ACIA XOFF char

PD.ERR $3 A 1 Most recent 1/0 error status

PD.TBL $3B 2 Copy of device table address

PD.PLP $3D 2 Path descriptor list pointer

PD.PST $3 F 1 Current path status

6-5

OS -9 Technical Reference

PD.EOF specifies the end-of-file character. If this is the first
and only character that is input to the SCF device, SCF returns
an end-of-file error on Read or Readln.

PD.PSC specifies the pause character, which suspends output to
the device before the next end-of-record character. The pause
character also deletes any type-ahead input for Readln.

PD.INT specifies the keyboard-interrupt character. When the
character is received, the system sends a keyboard terminate
signal to the last user of a path. The character also terminates
the current I/0 request (if any) with an error identical to the
keyboard interrupt signal code.

PD.QUT specifies the keyboard-terminate character. When this
character is received, the system sends a keyboard terminate
signal to the last user of a path. The system also cancels the
current I/0 request (if any) by sending error code identical to the
keyboard interrupt signal code.

PD.PAR specifies the parity information for external serial
devices.

PD.BAU specifies baud rate, word length and stop bit informa­
tion for serial devices.

PD.XON contains either the character used to enable transmis­
sion of characters or a null character that disables the use of
XON.

PD.XOFF contains either the character used to disable trans­
mission of characters or a null character that disables the use of
XOFF.

SCF-Type Device Descriptor Modules

The following chart shows how the initialization table in the
device descriptors is used for SCF -type devices. The values are
those the I/0 manager copies f rom the device descriptor to the
path descriptor.

An SCF editing function is turned off if its corresponding value
is set to zero. For example, if IT.EOF is set to zero, there is no
end-of-file character.

6-6

Sequential Character File Manager I 6

Relative Size
Name Address (Bytes) Use

(header) $00- Standard device d e s criptor
11 module header

IT.DVC $12 1 Device class:
0 = SCF
1 = RBF
2 =PIPE
3 = SBF

IT.UPC $13 1 Case:
0 = upper- and lowercase
1 = uppercase only

IT.BSO $14 1 Backspace:
0 = backspace
1 = backspace, then space

and backspace

IT.DLO $15 1 Delete:
0 = backspace over line
1 = carriage return

IT.EKO $16 1 Echo:
0 = echo off

IT.ALF $17 1 Auto line feed:
0 = auto line feed disabled

IT.N UL $18 1 End-of-line null count

IT.PAU $19 1 Pause:
0 = end-of-page pause

disabled

IT.PAG $1A 1 Number of lines per page

IT.BSP $1B 1 Backspace character

IT.DEL $1C 1 Delete-line character

IT.EOR $1D 1 End-of-record character

IT.EOF $1E 1 End-of-file character

IT.RPR $1F 1 Reprint-line character

6-7

OS -9 Technical Reference

Relative Size
Name Address (Bytes) Use

IT.DUP $20 1 Duplicate-last-line character

IT.P SC $21 1 Pause character

IT.INT $22 1 Interrupt character

IT.QUT $23 1 Quit character

IT.BSE $24 1 Backspace echo character

IT.OV F $25 1 Line-overflow character (bell)

IT.PAR $26 1 Initialization value-used to
initialize a device control reg-
ister when a path is opened to
it (parity)

IT.BAU $27 1 Baud rate

IT.D2P $28 2 Attached device name string
offset

IT.XON $2A 1 X -ON character

IT.XOFF $2B 1 X-OFF character

.-.:;;> IT.COL $2C $5<b 1 Number of columns for display q 0
IT.ROW $2D 1 Number of rows for display

IT.WN D $2E 1 Window number

IT.VAL $2F 1 Data in rest of descriptor is
valid

7 IT.STY $30 '$ ('/) 2.. 1 Window type 2-
IT.CP X $31 1 X cursor position

IT.CPY $32 1 Y cursor position

IT.FGC $33 1 Foreground color

IT.BGC $34 1 Background color

IT.BDC $35 1 Border color

6-8

Sequential Character File Manager I 6

SCF-Type Device Driver Modules

An SCF-type device driver module contains a package of subrou­
tines that perform raw (unformatted) data I/0 transfers to or
from a specific hardware controller. Such a module is usually re­
entrant so that one copy of the module can simultaneously run
several devices that use identical I/0 controllers. The
I/0 manager allo cates a permanent memory area for each con­
troller sharing the driver.

The size of the memory area is defined in the device driver mod­
ule header. The I/0 manager and SCF use some of the memory
area. The device driver can use the rest in any way (typically as
variables and buffers). Typically, the driver uses the area as
follows:

OS -9 Technical Reference

Relative Size
Name Address (Bytes) Use

V.QUIT $0C 1 Quit character

V.PCHR $0D 1 Pause character

V.ERR $0E 1 Error accumulator

V.XON $OF 1 XON character

V.XOFF $10 1 XOFF character

V.KANJI $11 1 Reserved

V.KBUF $12 2 Reserved

V.MODADR $14 2 Reserved

V.PDLHD $16 2 Path descriptor list header

V.RSV $18 5 Reserved

V.SCF $1D 0 End of SCF memory
requirements

FREE $1D 0 Free for the device d river to
use

V .LPRC contains the process ID of the last process to use the
device. The IRQ service routine sends this process the proper sig­
nal if it receives a quit character or an interrupt character.
V.LPRC is defined by SCF.

V.BUSY contains the process ID of the process that is using the
device. (If the device is not being used, V.BUSY contains a zero.)
The process ID is used by SCF to prevent more than one process
from using the device at the same time. V.BUSY is defined by
SCF.

SCF Device Driver Subroutines

Like all device d rivers, SCF device d rivers use a standard exe­
cutable memory module format.

The execution of fset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically
an LBRA to the corresponding subroutine. The branch table is
defined as follows:

6-10

ENTRY LBRA

LBRA

LBRA

LBRA

LBRA

LBRA

Sequential Character File Manager I 6

!NIT

READ

WRITE

GETSTA

SETSTA

TERM

Initialize driver

Read character

Write character

Get status

Set status

Terminate device

If no error occurs, each subroutine exits with the C bit in the
Condition Code Register cleared. If an error occurred, each sub­
routine sets the C bit and returns an appropriate error code in
Register B.

The rest of this chapter describes these subroutines and their
entry and exit conditions.

6-11

OS -9 Technical Reference

lni t Initializes device control registers, and
enables interrupts if necessary.

Entry Conditions:

Y = address of the device descriptor
U = address of the device menwry area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• Prior to being called, the device memory area is cleared (set
to zero), except for V.PAGE and V.PORT. (V.PAGE and
V.PORT contain the device address.) There is no need to
initialize the part of the memory area used by the I/0
manager and SCF .

• Follow these steps to use Init:

6-12

1. Initialize the device memory area.

2. Place the IRQ service routine on the IRQ polling list,
using the Set IRQ system call (F$IRQ).

3. Initialize the device control registers.

Sequential Character File Manager I 6

Read Reads the next character from the input
buffer.

Entry Conditions:

Y = address of the path descriptor
U = address of the device menwry area

Exit Conditions:

A = character read
CC = carry set on error
B = error code (if any)

Additional Information:

• This is a step by step description of a Read operation:

1. Read gets the next character from the input buffer.

2. If no data is ready, Read copies its process ID from
V.BUSY into V.WAKE. It then uses the Sleep system
call to put itself to sleep.

3. Later, when Read receives data, the IRQ service rou­
tine leaves the data in a buffer. Then, the routine
checks V.WAKE to see if any process is waiting for the
device to complete 110. If so, the IRQ service routine
sends a wakeup signal to the waiting process.

• Data buffers are not automatically allocated. If a buffer is
used, it defines it in the device memory area.

6-13

OS -9 Technical Reference

Write Sends a character (places a data byte in
an output buffer) and enables the device
output interrupts.

Entry Conditions:

A = character to write
Y = address of the path descriptor
U = address of the device merrwry area

Exit Conditions:

CC = carry set on error
B =error code (if any)

Additional Information:

• If the data buffer is full, Write copies its process ID from
V.BUSY into V.WAKE. Write then puts itself to sleep.

Later, when the IRQ service routine transmits a character
and makes room for more data, it checks V.WAKE to see if
there is a process waiting for the device to complete I/0. If
there is, the routine sends a wakeup signal to that process.

• Write must ensure that the IRQ service routine that starts
it begins to place data in the buffer. After an interrupt is
generated, the IRQ service routine continues to transmit
data until the data buffer is empty. Then, it disables the
device's ready-to-transmit interrupts.

• Data buffers are not allocated automatically. If a buffer is
used, define it in the device memory area.

6-14

Sequential Character File Manager I 6

Getsta and Setsta
Gets/sets device operating parameters (status) as
specified for the Get Status and Set Status system
calls. Getsta and Setsta are wildcard calls.

Entry Conditions:

A = depends on the function code
Y = address of the path descriptor
U = address of the device memory area
Other registers depend on the function code.

Exit Conditions:

B = error code (if any)
CC = carry set on error
Other registers depend on the function code

Additional Information:

• Any codes not defined by the I/0 manager or SCF are
passed to the device driver.

• You might need to examine or change the register stack
that contains the values of the 6809 registers at the time of
the call. The address of the register stack can be found in
PD.RGS, which is located in the path descriptor.

• You can use the following offsets to access any value in the
register packet:

Relative Size
Name Address (Bytes) 6809 Register

R$CC $00 1 Condition Codes Register
R$D $01 0 Register D
R$A $01 1 Register A
R$B $02 1 Register B
R$DP $03 1 Register DP
R$X $04 2 Register X
R$Y $06 2 Register Y
R$U $08 2 Register U
R$PC $0A 2 Program Counter

The function code is retrieved from the R$B on the user stack.

6-15

OS -9 Technical Reference

Term Terminates a device. Term is called when a

device is no longer in use (when the link
count of the device de script or module
becomes zero).

Entry Conditions:

U = pointer to the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• To use Term:

1. Wait until the IRQ service routine empties the output
buffer.

2. Disable the device interrupts.

3. Remove the device from the IRQ polling list.

• W hen Term closes the last path to a device, OS-9 returns
to the memory pool the memory that the device used. If the
device has been attached to the system using the !$Attach
system call, OS-9 does not return the static storage for the
driver until an !$Detach call is made to the device. Mod­
ules contained in the Boot file are never terminated, even if
their link counts reach 0.

6-16

Sequential Character File Manager I 6

IRQ Service Routine
Receives device interrupts. When 110 is complete, the
routine sends a wakeup signal to the process identi­
fied by the process ID in V.WAKE. The routine also
clears V .WAKE as a flag to indicate to the main pro­
gram that the IRQ has occurred.

Additional Information:

• The IRQ Service Routine is not included in device driver
branch tables, and is not called directly by SCF. However, it
is a key routine in device drivers.

• W hen the IRQ Service routine finishes servicing an inter­
rupt, the routine must clear the carry and exit with an
RTS instruction.

• Here is a typical sequence of events that the IRQ Service
Routine performs:

1. Service the device interrupts (receive data from the
device or send data to it). Ensure this routine puts its
data into and get its data from buffers that are defined
in the device memory area.

2. Wake up any process that is waiting for I/0 to complete.
To do this, the routine checks to see if there is a pro­
cess ID in V.WAKE (a value other than zero); if so, it
sends a wakeup signal to that process.

3. If the device is ready to send more data, and the output
buffer is empty, disable the device's ready-to-transmit
interrupts.

4. If a pause character is received, set V.PAUS in the
attached device storage area to a value other than zero.
The address of the attached device memory area is in
V.DEV2.

V.PAUS in the attached device storage area to non-zero
value. The address of the attached device memory area
is in V.DEV2.

5. If a keyboard term inate or interrupt character is
received, signal the process in V.LPRC (last known
process) if any.

6-17

Chapter 7

The Pipe File Manager
(PIPE MAN)

The Pipe file manager handles control of processes that use
paths to pipes. Pipes allow concurrently executing processes to
send each other data by using the output of one process (the
writer) as input to a second process (the reader). The reader gets
input from the standard input. The exclamation point (!) opera­
tor specifies that the input or output is from or to a pipe. The
Pipe file manager allocates a 256-byte block and a path descrip­
tor for data transfer. The Pipe file manager also determines
which process has control of the pipe. The Pipe file manager has
the standard file manager branch table at its entry point:

PipeEnt lbra Create
lbra Open
lbra MakDir
lbra ChgDir
lbra Delete
lbra Seek
lbra PRead
lbra PWrite
lbra PRdLn
lbra PWrLn
lbra Getstat
lbra Putstat
lbra Close

You cannot use MakDir, ChgDir, Delete, and Seek with pipes. If
you try to do so, the system returns E$UNKSVC (unknown ser­
vice request). Getstat and Putstat are also no-action service rou­
tines. They return without error.

Create and Open perform the same functions. They set up the
256-byte data exchange buffer, and save several addresses in the
path descriptor.

The Close request checks to see if any process is reading or writ­
ing through the pipe. If not, OS-9 returns the buffer.

PRead, PWrite, PRdLn, and PWrLn read data from the buffer
and write data to it.

7-1

OS -9 Technical Reference

The ! ope rator tells the Shell that processes wish to comm unicate
through a pipe. For example:

p r o c 1 ! p r o c 2 I ENTER I

In this example, shell forks Procl with the standa rd output path
to a pipe, and forks Proc2 with the Standa rd input path f rom a
pipe.

Shell can also handle a series of processes using pipes. Example:

p r o c 1 ! p r o c 2 ! p r o c 3 ! p r o c 4 I ENTER I

The following outl ine shows how to set up pipes be twe en
processes:

7-2

Open /pipe

Dup path #1

Dup x

Fork proc1

Clo:;e #1

Dup y
Clo:;e y
Dup path #lil

Clo:;e #lil

Dup x

Fork 2
Clo:;e #lil

Dup y
Clo:;e x

Clo:;e y

:;ave path in variable x

:;ave :;tdout in variable y
make path available

put pipe in :;tdout

<Dup u:;e:; lowe:;t available)

make path available

re:;tore :;tdout

make path available

:;ave :;tdin in Y
make path available

put pipe in :;tdin

fork proce:;:; 2
make path available

re:;tore :;tdin

no longer needed

no longer needed

The Pipe File Manager (PIPEMAN) I 7

Example: The fol lowing example shows how an appl ication can
initiate another pro c es s with the stdin and stdout routed
throu gh a pipe.

Open /pipe1
Open /pipe2
Dup il
Dup 1
Close il
Close
Dup a

save
save
save
save
make
make
make
make

path in variable a
path in variable b
stdin in variable x

stdout in variable y
path available
path available
pipe1 stdin
pipe2 stdout Dup b

Fork new
Close il

process

Close
Dup x

Dup y
Return a&b

make path available
make path available
restore stdin
restore stdout
return pipe path numbers to caller

7-3

Chapter 8

System Calls

System calls are used to communicate between the OS-9 op erat­
ing system and assembly-language programs. There are two
major types of calls-I/O calls and function calls.

F unction calls include user mode calls and system mode calls.

Each system call has a mnemonic name. Names of 110 calls start
with 1$. For example, the Change Directory call is I$ChgDir.
Names of function calls start with F$. For example, the Allocate
Bits call is F$AllBit. The names are defined in the assembler­
input conditions equate file called OS9Defs.

System mode calls are privileged. You can execute them only
while OS-9 is in the system state (when it is processing another
system call, executing a file manager or device driver, and so
on).

System mode calls are included in this manual primarily for pro­
grammers writing device drivers and other system-level
applications.

Calling Procedure

To exe cute any system calls, you ne ed to us e an SWI2
instruction:

1. Load the 6809 registers with any appropriate parameters,

2. Execute an SWI2 instruction, followed immediately by a con­
stant byte, which is the request code. In the references in
this chapter, the first line is the system call name (for exam­
ple Close Path) and the second line contains the call's mne­
monic name (for example !$Close), the software interrupt
Code 2 (103F), and the call's request code (for example, SF)
in hexadecimal.

3. After OS-9 processes the call, it returns any parameters in
the 6809 registers. If an error occurs, the C bit of the condi­
tion code register is set, and Register B contains the appro­
priate error code. This fe ature p ermits a BCS or BCC
instruction immediately following the system call to branch
either if there is an error or if no error occurs.

8-1

OS -9 Technical Reference

As an example, here is the Close system call:

LDA PATHNUM

SWI2

FCB $8F

BCS ERROR

You can use the assembler's 089 directive to simplify the call, as
follows.

LDA PATHNUM

059 !$Close

BCS ERROR

The ASM assembler allows any combination of upper- or lower­
case letters. The RMA assembler, included in the OS-9 Level
Two Development Pak, is case sensitive. The names in this man­
ual have been spelled with upper and lower case letters, match­
ing the defs for RMA.

1/0 System Calls

OS-9's I/0 calls are easier to use than many other systems' I/0
calls. This is because the calling program does not have to allo­
cate and set up file control blocks, sector buffers, and so on.

Instead, OS-9 returns a 1-byte path number whenever a process
opens a path to a file or device. Until the path is closed, you can
use this path number in later I/0 requests to identify the file or
device.

In addition, OS-9 allocates and maintains its own data struc­
tures; so, you need not deal with them.

System Call Descriptions

The rest of this chapter consists of the system call descriptions.
At the top of each description is the system call name, followed
by its mnemonic name, the SWI2 code and the request code.
Next are the call's entry and exit conditions, followed by addi­
tional information about the code where appropriate.

In the system call descriptions, registers not specified as entry
or exit conditions are not altered. Strings passed as parameters
are normally terminated with a space character and end-of-line
character, or with Bit 7 of the last character set.

8-2

System Calls I 8

If an error occurs on a system call, the C bit of Register CC is
set, and Register B contains the error code. If no error occurs,
the C bit is clear, and Register B contains a value of zero.

User Mode System Calls Quick Reference

Following is a summary of the User Mode System Calls refer­
enced in this chapter:

F$AllBit

F$Ch ain

F$CmpNam

F$CpyMem

F$CRC

F$ De1Bit

F$Exit

F$Fork

F$GBl kMp

F$GModDr

F$GPrDs c

F$Icpt

F$ID

F$Link

F$Load

F$Mem

F$NMLink

F$NMLoad

F$Perr

F$PrsNam

F$SchBit

Sets bits in an allocation bit map

Chains a process to a new module

Compares two names

Copies external memory

Generates a cyclic redundancy check

Deallocates bits in an allocation bit map

Terminates a process

Starts a new process

Gets a copy of a system block map

Gets a copy of a module directory

Gets a copy of a process descriptor

Sets a signal intercept trap

Returns a process ID

Links to a memory module

Loads a module from mass storage

Changes a process's data area size

Links to a module; does not map the mod­
ule into the user's address space

Loads a module but does not map it into the
user's address space

Prints an error message

Parses a pathlist name

Searches a bit map

8-3

OS -9 Technical Reference

F$Send

F$Sleep

F$SPrior

F$SSWI

F$STime

F$SUser

F$Time

F$UnLink

F$UnLoad

F$Wait

I$Attach

I$Chgdir

I$Close

I$Create

I$Delete

I$DeletX

I$Detach

I$Dup

I$GetStt

I$MakDir

I$0pen

I$Read

I$ReadLn

I$Seek

I$SetStt

I$Write

I$WritLn

8-4

Sends a signal to a process

Suspends a process

Sets a process's priority

Sets a software interrupt vector

Sets the system time

Sets the user ID number

Returns the current time

Unlinks a module

Unlinks a module by name

Waits for a signal

Attaches an 1/0 device

Changes a working directory

Closes a path

Creates a new file

Deletes a file

Deletes a file from the execution directory

Detaches an 1/0 device

Duplicates a path

Gets a device's status

Creates a directory file

Opens a path to an existing file

Reads data from a device

Reads a line of data from a device

Positions a file pointer

Sets a device's status

Writes data to a device

Writes a data line to a device

System Calls I 8

System Mode Calls Quick Reference

Following is a summary of the System Mode Calls referenced in
this chapter:

F$Alarm

F$All64

F$AllHRAM

F$Alllmg

F$Al1Prc

F$AURAM

F$A11Tsk

F$AProc

F$Boot

F$BtMem

F$ClrBlk

F$DATLog

F$Dellmg

F$De1Prc

F$DelRAM

F$De1Tsk

F$ELink

F$FModul

F$Find64

F$FreeHB

F$FreeLB

F$GCMDir

F$GProcP

Sets up an alarm

Allocates a 64-byte memory block

Allocates high RAM

Allocates image RAM blocks

Allocates a process descriptor

Allocates RAM blocks

Allocates a process task number

Enters active process queue

Performs a system b ootstrap

Performs a memory request b ootstrap

Clears the specified block of memory

Converts a DAT block offset to a logical
address

Deallocates image RAM blocks

Deallocates a process descriptor

Deallocates RAM blocks

Deallocates a process task number

Lin ks modules using a module directory
entry

Finds a module directory entry

Finds a 64-byte memory block

Gets a free high block

Gets a free low block

Compacts module directory entries

Gets a process's pointer

8-5

OS -9 Technical Reference

F$10Del

F$10Qu

F$IRQ

F$LDABX

F$LDAXY

F$LDDDXY

F$MapBlk

F$Move

F$NProc

F$RelTsk

F$ResTsk

F$Ret64

F$Setlmg

F$SetTsk

F$SLink

F$SRqMem

F$SRtMem

F$SSvc

F$STABX

F$VIRQ

F$VModul

8-6

Deletes an I/0 module

Puts an entry into an I/0 queue

Makes an entry into IRQ polling table

Loads Register A from O,X in Task B

Loads A[X,[Y]]

Loads D[D + X,[Y]]

Maps the specified block

Moves data to a different address space

Starts the next process

Releases a task number

Reserves a task number

Returns a 64-byte memory block

Sets a process DAT image

Sets a process's task DAT registers

Performs a system link

Performs a system memory request

Performs a system memory return

Installs a function request

Stores Register A at O,x in Task B

Makes an entry in a virtual IRQ polling
table

Validates a module

User System Calls I 8

User System Calls

Allocate Bits

OS9 F$AllBit 103F 13

Entry Conditions:

Sets bits in an
allocation bit map

D = number of the first bit to set
X = starting address of the allocation bit map

Y = number of bits to set

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Bit numbers range from 0 to n-1, where n is the number of
bits in the allocation bit map.

• Warning: Do not issue the Allocate Bits call with Register
Y set to 0 (a bit count of 0).

8-7

OS -9 Technical Reference

Chain

OS9 F$Chain 103F 05

Entry Conditions:

A =language/type code

Loads and executes a

new primary module
without creating a new
process

B =size of the data area (in pages); must be at least one
page

X = address of the rrwdule name or filename
Y =parameter area size (in bytes); defaults to zero if not

specified
U = starting address of the parameter area

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Chain lollds and executes a new primary module, but does
not create a new process. A Chain system call is similar to
a Fork followed by an Exit, but it has less processing over­
head. Chain resets the calling process program and data
memory areas and begins executing a new primary module.
It does not affect open paths. This is a user mode system
call.

• Warning: Make sure that the hardware stack pointer (Reg­
ister SP) is located in the direct page before Chain exe­
cutes. Otherw ise the system might crash or return a
suicide attempt error. This precaution also prevents a sui­
cide in the event that the new module requires a smaller
data area than that in use. Allow approximately 200 bytes
of stack space for execution of the Chain system call.

• Chain performs the following steps:

8-8

1. It causes OS-9 to unlink the process's old primary
module.

User System Calls I 8

2. 08-9 parses the name string of the new process's pri­
mary module (the program that is to be executed first).
Then, it causes 08-9 to search the system mo dule
directory to see if a module with the same name, type,
and language is already in memory.

3. If the module is in memory, it links to it. If the module
is not in memory, it uses the name string as the path­
list of a file to load into memory. Then, it links to the
first module in this file. (Several modules can be loaded
from a single file.)

4. It reconfigures the data memory area to the size speci­
fied in the new primary module's header.

5. It intercepts and erases any pending signals.

The following diagram shows how Chain sets up the
data memory area and registers for the new module .

.-------------, +- Y (highest address)

Parameter Area
1--------------1 + X,SP

Data Area

Direct Page

.__ _______ ____, +- U,DP (lowest address)

D = parameter area size
PC = nwdule entry point absolute address
CC = F =O, I=O; others are undefined

Registers Y and U (the top-of-memory and bottom-of-memory
pointers, respectively) always have values at page boundaries. If
the parent process does not specify a size for the parameter area,
the size (Register D) defaults to zero. The data area must be at
least one page long.

(For more information, see the Fork system call.)

8-9

OS -9 Technical Reference

Compare Names
OS9 F$CmpNam 103F 11

Entry Conditions:

B = length of string 1
X = address of string 1
Y = address of string2

Exit Conditions:

Compares two strings
for a match

CC = carry clear if the strings match

Additional Information:

• The Compare Names call compares two strings and indi­
cates whether they match. Use this call with the Parse
Name system call. The second string must have the most
significant bit (Bit 7) of the last character set.

8-10

Copy External
Memory
OS9 F$CpyMem
103F lB

Entry Conditions:

D = DAT image pointer

User System Calls I 8

Reads external memory
into the user's buffer
for inspection

X = offset in block to begin copy
Y = byte count
U = caller's destination buffer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

• You can view any system memory through the use of the
Copy External Memory call. The call assumes X is the
address of the 64K space described by the DAT image
given.

• If you pass the entire DAT image of a process, place a value
in the X Register that equals the address in the process
space. If you pass a partial DAT image (the upper half),
then place a value in Register X that equals the offset from
the beginning of the DAT image ($8000).

• The support module for this call is OS9p2.

8-11

OS -9 Technical Reference

CRC

OS9 F$CRC 103F 17

Entry Conditions:

X = starting byte address
Y = number of bytes

Calcul ates the CRC of
a module

U =address of the 3-byte CRC accumulator

Exit Conditions:

Updates the CRC accumulator.

Additional Information:

• The CRC call calculates the CRC (cyclic redundancy count)
for u s e by c ompilers, ass emblers, or other module
generators.

• The calculation begins at the starting byte address and con­
tinues over the specified number of bytes.

• You need not cover an entire module in one call, since the
CRC can be accumulated over several calls. The CRC accu­
mulator can be any 3-byte memory area. You must initial­
ize it to $FFFFFF before the first CRC call.

• When checking an existing module CRC, the calculation
should be performed on the entire module (including the
module CRC). The CRC accumulator will contain the CRC
constant bytes if the module CRC is correct.

• If the CRC of a new module is to be generated, the CRC is
accumulated over the module (excluding CRC). The accu­
mulated CRC is complemented then stored in the correct
position in the module.

• Be sure to initialize the CRC accumulator only once for
each module checked by CRC.

8-12

User System Calls I 8

Deallocate Bits

089 F$De1Bit 103F 14

Clears allocation map
bits

Entry Conditions:

D = number of the first bit to set
X = starting address of the allocation bit map
Y = number of bits to set

Exit Conditions: None

Additional Information:

• The Deallocate Bits call clears bits in the allocation bit
map pointed to by Register X. Bit numbers are in the
range 0 to n-1, where n is the number of bits in the alloca­
tion bit map.

• Warning: Do not call Deallocate Bits with Register Y set
to 0 (a bit count of 0).

8-13

OS -9 Technical Reference

Exit

OS9 F$Exit 103F 06

Entry Conditions:

Terminates the calling
process

B = status code to return to the parent

Exit Conditions:

The process is terminated.

Additional Information:

• The Exit system call is the only way a process can termi­
nate itself. Exit deallocates the process's data memory
area, and unlinks the process's primary module. It also
closes all open paths automatically.

• The Wait system call always returns to the parent the sta­
tus code passed by the child in its Exit call. Therefore, if
the parent executes a Wait and receives the status code, it
knows the child has died. This is a user mode system call.

• Exit unlinks only the primary module. Unlink any module
that is loaded or linked to by the process before calling
Exit.

8-14

User System Calls I 8

Fork Creates a child process

OS9 F$Fork 103F 03

Entry Conditions:

A = language/type code
B = size of the optional data area (in pages)
X = address of the module name or filename (See the follow­

ing example.)
Y = size of the parameter area (in pages); defaults to zero if

not specified
U = starting address of the parameter area; must be at

least one page

Exit Conditions:

X = address of the last byte of the name + 1 (See the fol-
lowing example.)

A = new process IO number

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• Fork creates a new process, a child of the calling process.
Fork also sets up the child process's memory and 6809 reg­
isters and standard I/0 paths.

• Before the Fork call:

I T I E I s I T I $0D I
•
X

8-15

OS -9 Technical Reference

• After the Fork call:

T I E I s I T I $0D I
•

X

• This is the sequence of Fork's operations:

8-16

1. OS-9 parses the name string of the new process's pri­
mary module (the program that OS-9 executes first).
Then, it searches the system module directory to see if
the program already is in memory.

2a. The next step depends on whether or not the program is
already in memory. If the program is in memory, OS-9
links the module to the process and executes it.

b. If the program is not in memory, OS-9 uses the name
as the pathlist of the file that is to be loaded into mem­
ory. Then, the first module in this file is linked to and
executed. (Several modules can be loaded from one file.)

3. OS-9 uses th<! primary module's header to determine
the initial size of the process's data area. It then tries
to allocate a contiguous RAM area of that size. (This
area includes the parameter passing area, which is cop­
ied from the parent process's data area.)

4. The new process's data memory area and registers are
set up as shown in the following diagram. OS-9 uses
the execution offset given in the module header to set
the program counter to the module's entry point.

,------------,+ y
Parameter Area

t---------1+ X,SP (highest address)

Data Area

Direct Page
'--------------' U,DP (lowest address)

User System Calls I 8

D = size of the parameter area
PC = rrwdule entry point absolute address
CC = F = 0, I= 0, other condition code flags are undefined

Registers Y and U (the top-of-memory pointer and bottom­
of-memory pointer, respectively) always have values at page
boundaries.

As stated earlier, if the parent does not specify the size of
the parameter area, the size defaults to zero. The minimum
overall data area size is one page.

W hen the shell processes a com mand line, it passes a
string in the parameter area. This string is a copy of the
parameter part of the command line. To simplify string­
oriented processing, the shell also inserts an end-of-line
character at the end of the parameter string.

Register X points to the start byte of the parameter string.
If the command line includes the optional memory size
specification (#n or #nK), the shell passes that size as the
requested memory size when executing the Fork.

• If any of the preceding operations is unsuccessful, the Fork
is terminated and OS-9 returns an error to the caller.

• The child and parent processes execute at the same time
unless the parent executes a Wait system call immediately
after the Fork. In this case, the parent waits until the child
dies before it resumes execution.

• Be careful when recursively calling a program that uses
the Fork system call. Another child can be created with
each new execution. This continues until the process table
becomes full.

• Do not fork a process with a memory size of 0.

8-17

OS -9 Technical Reference

Get System
Block Map
089 F$GBlkMp 103F 19

Entry Conditions:

Gets a copy of the
system block map

X = pointer to the 1024 -byte buffer

Exit Conditions:

D = number of bytes per block ($2000) (MMU block size
dependent)

Y = system memory block map size

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Get System Block Map call copies the system's memory
block map into the user's buffer for inspection. The OS-9
MFREE command uses this call to find out how much f ree
memory exists.

• The support module for this call is OS9p2.

8-18

User System Calls I 8

Get Module
Directory
F$GModDr 103F lA

Entry Conditions:

Gets a copy of the
system module
directory

X =pointer to the 2048-byte buffer
Y = end of copied rrwdule directory
U = start address of system rrwdule directory

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Get Module Directory call copies the system's module
directory into the user's buffer for inspection. The OS-9
MDIR c ommand use s this call to read the module
directory.

• The support module for this call is OS9p2.

8-19

OS -9 Technical Reference

Get Process
Descriptor
F$GPrDsc 103F 18

Entry Conditions:

A = requested process ID

Gets a copy of the
process's process
descriptor

X =pointer to a 512-byte buffer

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Get Process Descriptor call copies a process descriptor
into the calling process's buffer for inspection. The data in
the process descriptor cannot be changed. The OS-9 PROC S
command uses this call to get information about each exist­
ing process.

• The support module for this call is OS9p2.

8-20

User System Calls I 8

Intercept
OS9 F$Icpt 103F 09

Sets a signal intercept
trap

Entry Conditions:

X = address of the intercept routine
U = starting address of the routine's memory area

Exit Conditions:

Signals sent to the process cause the intercept routine to be
called instead of the process being killed.

Additional Information:

• Intercept tells OS-9 to set a signal intercept trap. Then,
whenever the process receives a signal, OS-9 executes the
process's intercept routine.

• Store the address of the signal handler routine in Register
X and the base address of the routine's storage area in
Register U.

• Once the signal trap is set, OS-9 can execute the intercept
routine at any time because a signal can occur at any
time.

• Terminate the intercept routine with an RTI instruction.

• If a process has not used the Intercept system call to set a
signal trap, the process terminates if it receives a signal.

• This is the order in which F$Icpt operates:

1. When the process receives a signal, OS-9 sets Registers
U and B as follows:

U = starting address of the intercept routine's
memory area

B = signal code (process's termination status)

Note: The value of Register DP cannot be the
same as it was when the Intercept call was
made.

2. After setting the registers, OS-9 transfers execution to
the intercept routine.

8-21

OS -9 Technical Reference

Get ID

089 F$ID 103F OC

Entry Conditions:

None

Exit Conditions:

A = process ID

Y =user ID

Additional Information:

Return's a caller's
process ID and user ID

• The process ID is a byte value in the range 1 to 255. OS-9
assigns each process a unique process ID.

• The user ID is an integer from 0 to 65535. It is defined in
the system password file, and is used by the file security
system and a few other functions. Several processes can
have the same user ID.

• On a single user system (such as the Color Computer 3),
the user ID is inherited from CC3go, which forks the initial
shell.

8-22

User System Calls I 8

Link

OS9 F$Link 103F 00

Entry Conditions:

A = type/language byte

Links to a memory
module that has the
specified name,
language, and type

X = address of the modu le nam e (See the following
example.)

Exit Conditions:

A = type/language code
B = attri butes I revis ion leve l (if no error)
X = address of the last byte of the module name + 1 (See

the following example.)
Y = module entry point absolute address
U = module header absolute address

Error Output:

CC = C bit set if error encountered

Additional Information:

• The module's link count increases by one whenever Link
references its name. Incrementing in this manner keeps
track of how many processes are using the module.

• If the module requested is not shareable (not re-entrant),
only one process can link to it at a time.

• Before the Link call:

I T I E I s I T I $0D I
+

X

• After the Link call:

I T I E I s I T I $0D I
+

X

8-23

OS -9 Technical Reference

• This is the order in which the Link call operates:

1. OS-9 searches the module directory for a module that
has the specified name, language, and type.

2. If OS-9 finds the module, the address of the module's
header is returned in Register U, and the absolute
add r e ss of the module's execution entry point is
returned in Register Y. (This, and other information is
contained in the module header.)

• If OS-9 doesn't find the module-or if the type/language
codes in the entry and exit conditions don't match-OS-9
returns one of the following errors:

8-24

• Module not found
• Module busy (not shareable and in use)
• Incorrect or defective module header

User System Calls I 8

Load

OS9 F$Load 103F 01

Entry Conditions:

Loads a module or
modules from a file

A =language/type code; 0 = any language/typ e
X =address of the pathlist (filename) (See the following

example.)

Exit Conditions:

A = language/type code
B = attributes I revision level (if no error)
X =address of the last byte of the pathlist (filename) + 1

(See the following example.)
Y = primary rrwdule entry point address
U = address of the rrwdule header

Error Output:

CC = carry set if error encountered

Additional Information:

• The Load call loads one or more modules from the file spec­
ified by a complete pathlist or from the working execution
directory (if a n incomplete p athlist is given).

• The file must have the execute access mode bit set. It also
must contain one or more with proper module headers.

• OS-9 adds all modules loaded to the system module direc­
tory. It links the first module read. The exit conditions
ap ply only to the first module loaded.

• Before the Load call:

I I I D I 0 I I I A I c I c I T I s I R I c I v I $0D I
•
X

8-25

OS -9 Technical Reference

After the Load call:

I I I D I 0 I I I A I c I c I T I s I R I c I v I $0D I
•
X

• Possible errors:

8-26

• Mo dule directory full
• Memory full
• Errors that occur on the Open, Read, Close, and Link

system calls

User System Calls I 8

Memory
OS9 F$Mem
103F 07

Changes process's data
area size

Entry Conditions:

D = size of the new menwry area (in bytes);
0 = return current size and upper bound

Exit Conditions:

Y = address of the new menwry area upper bound
D = actual size of the new menwry (in bytes)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The memory call expands or contracts the process's data
memory area to the specified size. Or, if you specify zero as
the new size, the call returns the current size and upper
boundaries of data memory.

• OS-9 rounds off the size to the next page boundary. In allo­
cating additional memory, OS-9 continues upward from the
previous highest address. In deallocating unneeded mem­
ory, it continues downward from that address.

8-27

OS -9 Technical Reference

Link to a module

089 F$NMLink
103F 21

Entry Conditions:

A = type/ language byte

Links t o a module;
does not map the
module int o the user's
address space

X = address of the rrwdule name

Exit Conditions:

A =type/language code
B = rrwdule revision
X = address of the last byte of the rrwdule name+ 1; any

trailing blanks are skipped
Y = storage requirement for the rrwdule

Error Output:

CC = carry set on error
B = error code if any

Additional Information:

• Although this call is similar to F$Link, it does not map
the specified module into the user's address space but does
retum the memory requirement for the module. A calling
process can use this memory requirement information to
fork a program with a m aximum amount of space.
F$NMLink can therefore fork larger programs than can be
forked by F$Link.

8-28

Load a module

089 F$NMLoad
103F 22

Entry Conditions:

A = type/language byte
X = address of the pathlist

Exit Conditions:

A = type/ language code
B = module revision

User System Calls I 8

Loads one or more
modules from a file but
does not map the
module into the user's
address space

X = address of the last byte of the pathlist + 1
Y = storage requirement for the module

Error Output:

CC = carry set on error
B = error code if any

Additional Information:

• If you do not provide a full pathlist for this call, it attempts
to load from a file in the current execution directory.

• Although this call is similar to F$Load, it does not map
the specified module into the user's address space but does
return the memory requirement for the module. A calling
process can use this memory requirement information to
fork a program with a max imum amount of space.
F$NMLoad can therefore fork larger programs than can be
forked by F$Load.

8-29

OS -9 Technical Reference

Print Error

089 F$Perr 103F OF

Entry Conditions:

B = error code

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Writes an error
message to a specified
path

• Print Error writes an error message to the standard error
path for the specified process. By default, OS-9 shows:

ERROR #decimal number

• The error reporting routine is vectored. Using the Set SVC
system call, you can replace it w ith a more elaborate
reporting module.

8-30

User System Calls I 8

Parse Name

OS9 F$PrsNam 103F 10

Scans an input string
for a valid OS-9 name

Entry Conditions:

X = address of the pathlist (See the following example.)

Exit Conditions:

X = address of the optional slash + 1
Y = address of the last character of the name + 1
A = trailing byte (delimiter character)
B = length of the name

Error Output:

CC = carry set
B = error code
Y = address of the first non-delimiter character in the

string

Additional Information:

• Parses, or scans, the input text string for a legal OS-9
name. It terminates the name with any character that is
not a legal name character.

• Parse Name is useful for processing pathlist arguments
passed to new processes.

• Because Parse Name processes only one name, you might
need several calls to process a pathlist that has more than
one name. As you can see from the following example,
Parse Name finishes with Register Y in position for the
next parse.

• If Register Y was at the end of a pathlist, Parse Name
returns a bad name error. It then moves the pointer in Reg­
ister Y past any space characters so that it can parse the
next pathlist in a command line.

8-31

OS -9 Technical Reference

• Before the Parse Name call:

8-32

I I I D I 0 I I I p I A I y IR I 0 I L I LIb I bIb I
•

X

After the Parse Name call:

I I I D I 0 I I I p I A I y IR I 0 I L I L I b I bIb I
-+ -+ B = 2
X y

Search Bits

089 F$SchBit 103F 12

Entry Conditions:

D = starting bit number

User System Calls I 8

Searches a specified
memory allocation b it
ma p for a free memory
block of a specified
size

X = starting address of the map

Y = bit count (free bit block size)
U = ending address of the map

Error Output:

CC = C bit set

Exit Conditions:

D = starting bit number
Y = bit count

Additional Information:

• The Search Bit call searches the specified allocation bit
map for a free block (cleared bits) of the required length.
The search starts at the starting bit number. If no block of
the specified size exists, the call returns with the carry set,
starting bit number, and size of the largest block.

8-33

OS -9 Technical Reference

Send

OS9 F$Send 103F 08

Entry Conditions:

A = destination's process ID
B = signal code

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Sends a signal to a
specified process

• The signal code is a single byte value in the range 0
through 255.

• If the destination process is sleeping or waiting, OS-9 acti­
vates the process so that the process can process the signal.

• If a signal trap is set up, F$Send executes the signal pro­
cessing routine (Intercept). If none was set up, the signal
terminates the destination process, and the signal code
becomes the exit status. (See the Wait system call.) An
exception is the wakeup signal; that signal does not cause
the signal intercept routine to be executed.

• Signal codes are defined as follows:

0 =System terminate
(cannot be intercepted)

1 = Wake up the process
2 = Keyboard terminate
3 = Keyboard interrupt

128-255 = User defined

• If you try to send a signal to a process that has a signal
pending, OS-9 cancels the current Send call, and returns
an error. Issue a Sleep call for a few ticks; then, try again.

• The Sleep call saves CPU time. See the Intercept, Wait,
and Sleep system calls for more information.

8-34

Sleep
OS9 F$Sle ep 103F OA

Entry Conditions:

X = One of the following:
sleep time (in ticks)
0 (sleep indefinitely)

User System Calls I 8

Temporarily turns off
the calling process

1 (sleep for the remainder of
the current time slice)

Exit Conditions:

X =sleep time minus the number of ticks that the process
was asleep

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• If Register X contains 0, OS-9 turns the process off until it
receives a signal. Putting a process to sleep is a good way
to wait for a signal or interrupt without wasting CPU time.

• If Register X contains 1, OS-9 turns the process off for the
remainder of the process's current time slice. It inserts the
process into the active process queue immediately. The pro­
cess resumes execution when it reaches the front of the
queue.

• If Register X contains an integer in the range 2-255, OS-9
turns off the process for the specified number of ticks, n. It
inserts the process into the active process queue after n-1
ticks. The process resumes execution when it reaches the
front of the queue. If the process receives a signal, it awak­
ens before the time has elapsed.

• When you select processes among multiple windows, you
might need to set sleep for two ticks.

8-35

OS -9 Technical Reference

Set Priority
089 F$SPrior 103F OD

Entry Conditions:

A = process ID
B =priority

0 = lowest
255 = highest

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Changes the priority
of a process

• Set Priority changes the process's priority to the priority
specified. A process can change another process's priority
only if it has the same user ID.

8-36

User System Calls I 8

Set SWI

OS9 F$SSWI 103F OE

Entry Conditions:

A = SWI type code

Sets the SWI2 and
SWI3 vectors

X = address of the user software interrupt routine

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• Sets the interrupt vectors for SWI, SWI2 and SWI3
instructions.

• Each process has its own local vectors. Each Set SWI call
sets one type of vector according to the code number passed
in Register A:

1 = SWI
2 = SWI2
3 = SWI3

• When OS-9 creates a process, it initializes all three vectors
with the address of the OS-9 service call processor.

• Warning: Microware-supplied software uses SWI2 to call
OS-9. If you reset this vector, these programs cannot work.
If you change all three vectors, you cannot call OS-9 at all.

8-37

OS -9 Technical Reference

Set Time

089 F$8Time 103F 16

Entry Conditions:

Sets the system time
and date

X = relative address of the time packet

Error Output:

CC = C bit set
B = error code

Additional Information:

• Set Time sets the current system date and time and starts
the system real-time clock. The date and time are passed
in a time packet as follows.

8-38

Relative

Address Value

0 year
1 month
2 day
3 hours
4 minutes
5 seconds

Then, the call makes a link system call to find the clock. If
the link is successful, OS-9 calls the clock initialization.
The clock initialization:

1. Sets up hardware dependent functions

2. Sets up the F$Time system call via F$SSvc

Set User ID

Number

F$SUser 103F lC

Entry Conditions:

Y = desired user ID number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

User System Calls I 8

Changes the current
user ID without
checking for errors or
checking the ID
number of the caller

• The support module for this call is OS9pl.

8-39

OS -9 Technical Reference

Time

089 F$Time 103F 15

Entry Conditions:

Gets the system date
and time

X = address of the area in which to store the date and time
packet

Exit Conditions:

X = date and time

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Time call returns the current system date and time in
the form of a 6-byte packet (in binary). OS-9 copies the
packet to the address passed in Register X.

• The packet looks like this:

Relative
Address

0
1
2

3
4

5

Value

year
month
day
hours
minutes
seconds

• Time is a part of the clock module and it does not exist if
no previous call to F$Time has been made.

8-40

Unlink

089 F$UnLink 103F 02

Entry Conditions:

U = address of the rrwdule header

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

User System Calls I 8

Unlinks (removes
from memory) a
module that is not
in use and that has
a link count of 0

• Unlink unlinks a module f rom the current process's
address space, decreases its link count by one and, if the
link count becomes zero, returns the memory where the
module was located to the system for use by other
processes.

• You cannot unlink system modules or device drivers that
are in use.

• Unlink operates in the following order:

1. Unlink tells OS-9 that the calling process no longer
needs the module.

2. OS-9 decreases the module's link count by one.

3. When the resulting link count is zero, OS-9 destroys
the module.

If any other process is using the module, the module's
link count cannot fall to zero. Therefore, OS-9 does not
destroy the module.

• If you pass a bad address, Unlink cannot find a module in
the module directory and does not return an error.

8-41

OS -9 Technical Reference

Unlink
A Module
By Name
F$UnLoad 103F lD

Entry Conditions:

A =module type
X = pointer to module name

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Decrements a specified
module's link count,
and removes the
module from memory if
the resulting link count
is zero

• This system call differs from Unlink in that it uses a
pointer to the module name, instead of the address of the
module header.

• The support module for this call is OS9p2.

8-42

Wait

089 F$Wait 103F 04

Entry Conditions: None

Exit Conditions:

User System Calls I 8

Temporarily turns off a
calling process

A = deceased child process's ID
B = deceased child process's exit status code (if no error)

Error Output:

CC = carry set on error
B = error code if any

Additional Information:

• The Wait call turns off the calling process until a child pro­
cess dies, either by executing an Exit system call, or by
receiving a signal. The Wait call helps you save system
time.

• OS-9 returns the child's process's ID and exit status to the
parent. If the child died because of a signal, the exit status
byte (Register B) contains the signal code.

• If the caller has several children, OS-9 activates the caller
when the first one dies. Therefore, you need to use one Wait
system call to detect the termination of each child.

• OS-9 immediately reactivates the caller if a child dies
before the Wait call. If the caller has no children, Wait
returns an error. (See the Exit system call for more
information.)

• If the Wait call returns with the carry bit set, the Wait
function was not successful. If the carry bit is cleared, Wait
functioned normally and any error that occurred in the
child process is returned in Register B.

8-43

OS -9 Technical Reference

110 User System Calls

Attach

089 !$Attach 103F 80

Entry Conditions:

A = access mode

Attaches a device to
the system or verifies
device attachment

X = address of the device name string

Exit Conditions:

X = updated past device name

U = address of the device table entry

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• Attach does not reserve the device. It only prepares the
device for later use by any process.

• 08-9 installs most devices automatically on startup. There­
fore, you need to use Attach only when installing a device
dynamically or when verif ying the existence of a device. You
need not use the Attach system call to perform routine I/0.

• The access mode parameter specifies the read and/or w rite

8-44

operations to be allowed. These are:

0 = Use any special device capabilities
1 = Read only
2 = Write only
3 = Update (read and write)

I/0 User System Calls I 8

• Attach operates in this sequence:

1. OS-9 searches the system module to see if memory con­
tains a device descriptor that has the same name as the
device.

2a. OS-9's next operation depends on whether or not the
device is already attached. If OS-9 finds the descriptor
and if the device is not already attached, OS-9 links the
device's file manager and device driver. It then places
the address of the manager and the driver in a new
device table entry. OS-9 then allo cates any memory
needed by the device driver, and calls the driver's ini­
tialization routine which initializes the hardware.

b. If OS-9 finds the descriptor, and if the device is already
attached, OS-9 verifies the attachment.

8-45

OS -9 Technical Reference

Change Directory
OS9 I$Chgdir 103F 86

Entry Conditions:

A = access rrwde
X = address of the pathlist

Exit Conditions:

X = updated past pathlist

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Changes the working
directory of a process
to a directory specified
by a pathlist

• If the access mode is read, write, or update, OS-9 changes
the current data directory. If the access mode is execute,
OS-9 changes the current execution directory.

• The calling process must have read access to the directory
specified (public read if the directory is not owned by the
calling process).

• The access modes are:

8-46

1 =Read
2 = Write
3 = Update (read and write)
4 = Execute

Close Path

OS9 I$Close 103F SF

Entry Con ditions:

A = path number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

I/0 User System Calls I 8

Terminates an 1/0 path

• Close Path terminates the 1/0 path to the file or device
specified by path number. Until you use another Open,
Dup, or Create system call for that path, you can no longer
perform I/0 to the file or device.

• If you close a path to a single-user device, the device
becomes available to other requesting processes. OS-9 de­
allocates internally managed buffers and descriptors.

• The Exit system call automatically closes all open paths.
Therefore, you might not need to use the Close Path system
call to close some paths.

• Do not close a standard I/0 path unless you want to change
the file or device to which it corresponds.

• Close Path performs an implied I$Detach call. If it causes
the device link count to become 0, the device termination
routine i s executed. See !$Detach for addi tional
information.

8-47

OS -9 Technical Reference

Create File

089 I$Create 103F 83

Entry Conditions:

Creates and opens a
disk file

A = access rrwde (write or update)
B = file attributes
X = address of the pathlist; (See the following example.)

Exit Conditions:

A = path number
X = address of the last byte of the pathlist + 1; skips any

trailing blanks (See the following example.)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• OS-9 parses the pathlist and enters the new filename in the
specified directory. If you do not specify a directory, OS-9
enters the new filename in the the working directory.

• OS-9 gives the file the attributes passed in Register B,
which has bits defined as follows:

Bit Definition

0 Read
1 Write
2 Execute
3 Public read
4 Public write
5 Public execute
6 Shareable file

• The access mode parameter passed in Register A must have
the write bit set if any data is to be written. These access
codes are defined as follows: 2 = write; 3 = update. The
mode �ffects the file only until the file is closed.

8-48

I/0 User System Calls I 8

• You can reopen the file in any access mode allowed by the
file attributes. (See the Open system call.)

• Files opened for write can allow faster data transfer than
those opened for update because update sometimes needs to
pre-read sectors.

• If the execute bit (Bit 2) is set, the file is created in the
working execution directory instead of the working data
directory.

• Create File causes an implicit !$Attach call. If the device
has not previously been attached, the device's initialization
routine is called.

• Later 110 calls use the path number to identify the file,
until the file is closed.

• OS-9 does not allocate data storage for a file at creation.
Instead, it allocates the storage either automatically when
you f i rst issue a write or expl icitly by the Setstat
subroutine.

• If the filename already exists in the directory, an error
occurs. If the call specifies a non-multiple file device (such
as a printer or terminal), Create behaves the same as
Open.

• You cannot use Create to make directories. (See the Make
Directory system call for instructions on how to do make
directories.)

• Before the Create File call:

I I I D I 0 I I I w I 0 I R I K I $0D I
+

X

After the Create File call:

I I I D I 0 I I I w I 0 I R I K I $0D I
+

X

8-49

OS -9 Technical Reference

Delete File

089 !$Delete 103F 87

Entry Conditions:

Deletes a specified disk
file

X = address of the pathlist (See the following example.)

Exit Conditions:

X = address of the last byte of the pathlist + 1; any trail-
ing blanks are skipped (See the following example.)

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• The Delete File call deletes the disk file specified by the
pathlist. The file must have write permission attributes
(public write, if the calling process is not the owner). An
attempt to delete a device results in an error. The caller
must have non-shareable write access to the file or an error
results.

Example:

Before the Delete File call:

I; I D I 0 I I I w I 0 I R I K I � I � I � I M I E I M I 0 I $0D I
•
X

After the Delete File call:

I; I D I 0 I I I w I 0 I R I K I� I � I � I M I E I M I 0 I $0D I

8-50

•
X

Delete A File

089 I$DeletX 103F 90

Entry Conditions:

A = access rrwde
X = address of the pathlist

Exit Conditions:

l/0 User System Calls I 8

Deletes a file from the
current data or current
execution directory

X = address of the last byte of the pathlist+ 1; any trailing
b lanks are skipped

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Delete A File call removes the disk file specified by the
selected pathlist. This function is similar to !$Delete except
that it accepts an access mode byte. If the access mode is
execute, the cal l selects the current execution directory.
Otherwise, it selects the current data directory.

• If a complete pathlist is provided (the pathlist begins with
a slash (/), the access mode the cal l ignores the access
mode.

• Only use this cal l to delete a file. If you attempt to use
I$DeletX to delete a device, the system returns an error.

8-51

OS -9 Technical Reference

Detach Device

OS9 I$Detach 103F 81

Removes a device
from the system
device table

Entry Conditions:

U = address of the device table entry

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Detach Device call removes a device from both the sys­
tem and the system device table, assuming the device is not
being used by another process. You must use this call to
detach devices attached using the Attach system call.
Attach and Detach are both used mainly by the IO man­
ager. SCF also uses Attach and Detach to set up its second
device (echo device).

• This is the sequence of the operation of Detach Device:

8-52

1. Detach Device calls the device driver's termination rou­
tine. Then, OS-9 deallocates any memory assigned to
the driver.

2. OS-9 unlinks the associated device driver and file man­
ager modules.

3. OS-9 then removes the driver, as long as no other mod­
ule is using that driver.

Duplicate Path
OS9 I$Dup 103F 82

Entry Conditions:

110 User System Calls I 8

Returns a synonymous
path number

A = old path number (number of path to duplicate)

Exit Conditions:

A = new path number (if no error)

Error Output:

B = error code (if error encountered)
CC = carry set on error

Additional Information:

• The Duplicate Path returns another, synonymous path
number for the file or device specified by the old path
number.

• The shell uses the Duplicate Path call when it redirects
I/0.

• System calls can use either path number (old or new) to
operate on the same file or device.

• Make sure that no more than one process is performing I/0
on any one path at the same time. Concurrent I/0 on the
same path can cause unpredictable results with RBF files.

• The I$Dup call always uses the lowest available path num­
ber. This lets you manipulate standard I/0 paths to contain
any desired paths.

8-53

OS -9 Technical Reference

Get Status

089 I$GetStt 103F SD

Entry Conditions:

A = path number
B = function code

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Returns the status of a
file or device

• The Status is a wildcard call. Use it to handle device
parameters that:

• Are not the same for all devices

• Are highly hardware-dependent

• Must be user-changeable

• The exact operation of the Get Status system call depends
on the device driver and file manager associated with the
path. A typical use is to determine a terminal's parameters
for such functions as backspace character and echo on/off.
The Get Status call is commonly used with the Set Status
call.

• The Get Status function codes that are currently defined
are listed in the "Get Status System Calls" section.

8-54

Make Directory
089 I$MakDir 103F 85

Entry Conditions:

B = directory attributes
X = address of the pathlist

Exit Conditions:

I/0 User System Calls I 8

Creates and initializes
a directory

X = address of the last byte of the pathlist + 1; Make Direc-
tory skips trailing blanks.

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• The Make Directory call creates and initializes a directory
as specified by the pathlist. The directory contains only two
entries, one for itself(.) and one for its parent directory (..)

• OS-9 makes the calling process the owner of the directory.

• Because the Make Directory call does not open the direc­
tory, it does not return a path number.

• The new directory automatically has its directory bit set in
the access permission attributes. The remaining attributes
are specified by the byte passed in Register B. The bits are
defined as follows:

Bit Definition

0 Read
1 Write
2 Execute
3 Public read
4 Public write
5 Public execute
6 Single-user
7 Don't care

8-55

OS -9 Technical Reference

• Before the Make Directory call:

I I I D I 0 I I I N I E I w I D I I I R I $0D

8-56

•

X

After the Make Directory call:

I I I D I 0 I I I N I E I w I D I I I R I $0D
•

X

I/0 User System Calls I 8

Open Path
089 I$0pen 103F 84

Opens a path to an
existing file or device
as specified by the
pathlist

Entry Conditions:

A = access mode (D S PE PW PR E W R)
X = address of the pathlist (See the following example.)

Exit Conditions:

A = path number
X = address of the last byte of the pathlist + 1

Error O utput:

B = error code (if any)
CC = carry set on error

Addition al Information:

• OS-9 searches for the file in one of the following:

• The directory specified by the pathlist if the pathlist
begins with a slash.

• The working data d irectory, if the pathlist does not
begin with a slash.

• The working execution directory, if the pathlist does not
begin with a slash and if the execution bit is set in the
access mode.

• OS-9 returns a path number for later system calls to use to
identify the file.

• The access mode parameter lets you specify which read
and/or write operations are to be permitted. W hen set, each
access mode bit enables one of the following: Write, Read,
Read and Write, Update, Directory I/0.

• The access mode must conform to the access permission
attributes associated with the file or device. (See the Cre­
ate system call.) Only the owner can access a file unless
the appropriate public permission bits are set.

8-57

OS -9 Technical Reference

• The update mode might be slightly slower than the others
because it might require pre-reading of sectors for random
access of bytes within sectors.

• Several processes (users) can open files at the same time.
Each device has an attribute that specifies whether or not
it is shareable.

• Before the Open Path call:

I I I D I 0 I I I A I c I c I T I s I p I A I y I $0D I
•

X

After the Open Path call:

I I I D I 0 I A I c I c I T I s I p I A I y I $0D I
•

X

• If the single-user bit is set, the file is opened for single-user
access regardless of the settings of the file's permission
bits.

• You must open directory files for read or write if the direc­
tory bit (Bit 7) is set in the access mode.

• Open Path always uses the lowest path number available
for the process.

8-58

Read

089 I$Read 103F 89

Entry Conditions:

A = path number
Y = number of bytes to read

110 User System Calls I 8

Reads n bytes from a
specified path

X = address in which to store the data

Exit Conditions:

Y = number of bytes read

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• The Read call reads the specified number of bytes from the
specified path. It returns the data exactly as read from the
file/device, without additional processing or editing. The
path must be opened in the read or update mode.

• If there is not enough data in the specified file to satisfy
the read request, the call reads fewer bytes than requested
but an end-of-file error is not returned. After all data in a
file is read, the next I$Read call returns an end-of-file
error.

• If the specified file is open for update, the record read is
locked out on RBF-type devices.

• The keyboard terminate, keyboard interrupt, and end-of-file
characters are filtered out of the Entry Conditions data on
SCF-type devices unless the corresponding entries in the
path descriptor have been set to zero. You might want to
modify the device descriptor so that these values a re ini­
tialized to zero when the path is opened.

8-59

OS -9 Technical Reference

• The call reads the number of bytes requested unless Read
encounters any of the following:

8-60

• An end-of-file character

• An end-of-record character (SCF only)

• An error

I/0 User System Calls I 8

Read Line With
Editing

Reads a t ext line with
editing

089 I$ReadLn 103F 8B

Entry Conditions:

A = path number
X = address at which to store data
Y = maximum number of bytes to read

Exit Conditions:

Y = number of bytes read

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• Read Line is similar to Read. The difference is that Read
Line reads the input file or device until it encounters a car­
riage return character or until it reaches the maximum
byte count specified, whichever comes first. The Read Line
also automatically activates line editing on character ori­
ented devices, such as terminals and printers. The line
editing refers to auto line feed, null padding at the end of
the line, backspacing, line deleting, and so on.

• SCF requires that the last byte entered be an end-of-record
character (usually a carriage return). If more data is
entered than the maximum specified, Read Line does not
accept it and a PD.OVF character (usually a b ell) is
echoed.

• After one Read Line call reads all data in a file, the next
Read Line call generates an end-of-file error.

• (For more information about line editing, see "SCF Line
Editing F unctions" in Chapter 6.)

8-61

OS -9 Technical Reference

Seek

OS9 I$ Seek 1 03F 88

Entry Conditions:

A = path number

Repositions a file
pointer

X = MS 16 bits of the desired file position
U = LS 16 bits of the desired file position

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Seek Call repositions the path's logical file pointer, the
32-bit address of the next byte in the file to be read from or
written to.

• You can perform a seek to any value, regardless of the file's
size. Later writes automatically expand the file to the
required size (if possible). Later reads, however, return an
end-of-file condition. Note that a seek to Address 0 is the
same as a rewind operation.

• OS-9 usually ignores seeks to non-random access devices,
and returns without error.

• On RBF devices, seeking to a new disk sector causes the
internal disk buffer to be rewritten to disk if it has been
modified. Seek does not change the state of record locking.

8-62

I/0 User System Calls I 8

Set Status

OS9 I$SetStt 103F 8E

Sets the status of a file
or device

Entry Conditions:

A = path number
B = function code
Other registers depend on the function code.

Error Output:

B = error code (if any)
CC = carry set on error
Other registers depend on the function code.

Additional Information:

e Set Status is a wild card call. Use it to hand le device
parameters that:

• Are not the same for all devices

• Are highly hardware-dependent

• Must be user-changeable

• The exact operation of the Set Status system call depends
on the device driver and file manager associated with the
path. A typical use is to set a terminal's parameters for
such functions as backspace character and echo on/off. The
Set Status call is commonly used with the Get Status call.

• The Set Status function codes that are currently defined
are listed in the "Set Status System Calls" section.

8-63

OS -9 Technical Reference

Write

089 1$Write 103F SA

Entry Conditions:

A = path number

Writes to a file or
device

X = starting address of data to write
Y = number of bytes to write

Exit Conditions:

Y = number of bytes written

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

• The Write system call writes to the file or device associated
with the path number specified.

• Before using Write, be sure the path is opened or created
in the Write or Update access mode. OS-9 writes data to
the file or device without processing or editing the data.
OS-9 automatically expands the file if you write data past
the present end-of-file.

8-64

Write Line

OS9 I$WritLn 103F 8C

Entry Conditions:

A = path number

1/0 User System Calls I 8

Writes to a file or
device until it
encounters a carriage
return

X = address of the data to write
Y = maximum number of bytes to write

Exit Conditions:

Y = number of bytes written

Error Output:

B =error code (if any)
CC = carry set on error

Additional Information:

• Writes to the file or device that is associated with the path
number specified.

• Write Line is similar to Write. The difference is that Write
Line writes data until it encounters a carriage return char­
acter. It also activates line editing for character-oriented
devices, such as terminals and printers. The line editing
refers to auto line feed, null padding at the end of the line,
backspacing, line deleting, and so on.

• Before using Write Line, be sure the path is opened or cre­
ated in the write or update access mode.

• (For more information about line editing, see "SCF Line
Editing F unctions" in Chapter 6.)

8-65

OS -9 Technical Reference

Privileged System Mode Calls

Set an alarm

OS9 F$Alarm 103F lE

Entry Conditions:

Sets an alarm to ring
the bell at a specifie d
time

X = relative address of time packet

Error Output:

CC = carry set on error
B = appropriate error code

Additional Information:

e When the system reaches the specified alarm time, it rings
the bell for 15 seconds.

• The time packet is identical to the packet used in the
F$STime call. See F$STime for additional information on
the format of the packet.

• All alarms begin at the start of a minute and any seconds
in the packet are ignored.

• The system is limited to one alarm at a time.

8-66

Privileged System Mode Calls I 8

Allocate 64

OS9 F$All64 103F 30

Entry Conditions:

Dynamically allocates
64-byte blocks of
memory

X = base address of the page table; 0 = the page table has
not been allocated

Exit Conditions:

A = block number
X = base address of the page table
Y = address of the block

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Allocate 64 system call allocates the 64-byte blocks of
memory by splitting pages (256-byte sections) into four
sections.

• OS-9 uses the first 64 bytes of the base page as a page
table. This table contains the page number (most signifi­
cant byte of the address) of all pages in the memory struc­
ture. If Register X passes a value of zero, the call allocates
a new base page and the first 64-byte memory block.

• Whenever a new page is needed, a Request System Memory
system call (F$SRqMem) executes automatically.

• The first byte of each block contains the block number.
Routines that use the Allocate 64 call should not alter this
byte.

8-67

OS -9 Technical Reference

• T he following diagram shows how seven blocks might be
allocated:

8-68

B P
Any Memory Page Any Memory Page

ase age-+
X

Page Table Block 4
(64 bytes)

(64 bytes)

X X
Block 1 Block 5

(64 bytes) (64 bytes)

X X
Block 2 Block 6

(64 bytes) (64 bytes)

X X
Block 3 Block 7

(64 bytes) (64 bytes)

Privileged System Mode Calls I 8

Allocate High
RAM
089 F$AlHRam 103F 53

Entry Conditions:

B = number of blocks

Error Output:

CC = carry set on error
B = appropriate error code

Additional Information:

Allocate system
memory from high
physical memory

• This call searches for the desired number of contiguous free
RAM blocks, starting its search at the top of memory.
F$AllHRam is similar to F$AllRAM except F$AllRAM
begins its search at the bottom of memory.

• Screen allocation routines use this call to provide a better
chance of finding the necessary memory for a screen.

8-69

OS -9 Technical Reference

Allocate Image
OS9 F$Alllmg 103F 3A

Entry Conditions:

A = s tarting block number
B = number of blocks
X = process descriptor pointer

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

Allocates RAM
blocks for process
DAT image

• Use the Allocate Image system call to allocate a data area
for a process. The blocks that Allocate Image defines might
not be contiguous.

• The support module for this system call is OS9pl.

8-70

Privileged System Mode Calls I 8

Allocate Process
Descriptor
089 F$AllPrc 103F 4B

Entry Conditions: None

Exit Conditions:

U = process descriptor pointer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Allocates and
initializes a 512-byte
process descriptor

• The process descriptor table houses the address of the
descriptor. Initialization of the process descriptor consists
of clearing the first 256 bytes of the descriptor, setting up
the state as a system state, and marking as unallocated as
much of the DAT image as the system allows-typically,
60-64 kilobytes.

• The support module for this system call is OS9p2. The call
also branches to the F$SRqMem call.

8-71

OS -9 Technical Reference

Allocate RAM

089 F$AllRAM 103F 39

Entry Conditions:

B = number of blocks

Exit Conditions:

CC = C bit set on error
B = appropriate error code

Additional Information:

Searches the
memory block map
for the desired
number of
c ontiguous free
RAM blocks

• The support module for this system call is OS9pl.

8-72

Privileged System Mode Calls I 8

Allocate Process

Task Number

089 F$AHTsk 103F 3F

Entry Conditions:

X = process descriptor pointer

Error Output:

CC = C bit set
B = appropriate error code

Additional Information:

Determines whether
OS-9 has assigned a
task number to the
specified process

• If the process does not have a task number, OS-9 allocates
a task number and copies the DAT image into the DAT
hardware.

• The support module for this call is OS9pl. A llocate Process
Task number also branches to F$ResTsk and F$SetTsk.

8-73

L ___ _

OS -9 Technical Reference

Insert Process

OS9 F$AProc 103F 2C

Entry Conditions:

Inserts a process into
the queue for execution

X = address of the process descriptor

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e The Insert Process system call inserts a process into the
active process queue so that OS-9 can schedule the process
for execution.

• OS-9 sorts all processes in the queue by process age (the
count of how many process switches have occurred since the
process's last time slice). When a process is moved to the
active process queue, OS-9 sets its age according to its
priority-the higher the priority, the higher the age.

8-74

An exception is a newly active process that was deactivated
while in the system state. OS-9 gives such a process higher
priority because the process usually is executing critical
routines that affect shared system resources.

Privileged System Mode Calls I 8

Bootstrap System
OS9 F$Boot 103F 35

Entry Conditions: None

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Links either the
module named Boot
or the module
specified in the INIT
module

• When it calls the linked module, Bo ot expects to receive a
pointer giving it the location and size of an area in which
to search for the new module.

• The support module for this call is OS9pl. Bootstrap Sys­
tem also branches to the F$Link and F$VModul system
calls.

8-75

OS -9 Technical Reference

Bootstrap
Memory Request
OS9 F$BtMem 103F 36

Entry Conditions:

D = byte count requested

Exit Conditions:

D = byte count granted
U = pointer to memory allocated

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Allocates the
requested memory
(rounded to the
nearest block) as
contiguous memory
in the system's
address space

• This call is identical to F$SRqMem.

• The Bootstrap Memory Request support module is OS9pl.

8-76

Privileged System Mode Calls I 8

Clear Specified
Block
OS9 F$ClrBlk 103F 50

Entry Conditions:

B = number of blocks
U = address of first block

Exit Conditions: None

Additional Information:

Marks blocks in the
process DAT image as
unallocated

• After Clear Specified Block deallocates blocks, the blocks
are free for the process to use for other data or program
areas. If the block address passed to Clear Specified Block
is invalid or if the call attempts to clear the stack area, it
returns E$IBA.

• The support module for the call is OS9p2.

8-77

OS -9 Technical Reference

DAT to Logical
Address
OS9 F$DATLog 103F 44

Entry Conditions:

B = DAT image offset
X = block offset

Exit Conditions:

X = logical address

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Converts a DAT image
clock numb er and
block offset to its
equivalent logical
address

• Following is a sample conversion:

1-------------1 Input: B = 2
X= $0329

2000- 2FFF

Output: X = $2329
1000- lFFF

0- FFF

• The support module for this call is OS9pl.

8-78

Privileged System Mode Calls I 8

Deallocate Image
RAM Blocks
089 F$Dellmg 103F 3B

Entry Conditions:

A = number of starting block
B = block count
X = process descriptor pointer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Deallocates image
RAM blocks

• This system c all dealloc ates memory f rom a process's
address space. It frees the RAM for system use and frees
the DAT image for the process. Its main use is to let the
system clean up after a process death.

• The support module for this call is OS9p2.

8-79

OS -9 Technical Reference

Deallocate
Process
Descriptor
OS9 F$De1Prc 103F 4C

Entry Conditions:

A = process ID

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Returns a process
descriptor's memory to
a free memory pool

• Use this call to clear the system scratch memory and stack
area associated with the process.

• The support module for this call is OS9p2.

8-80

Privileged System Mode Calls I 8

Deallocate RAM

blocks

089 F$DelRAM 103F 51

Entry Conditions:

B = number of blocks
X = starting block number

Exit Conditions: None

Additional Information:

Clears a block's RAM
In Use flag in the
system memory block
map

• The Deallocate RAM Blocks call assumes the blocks b eing
deallocated are not associated with any DAT image.

• The support module for this call is OS9p2.

8-81

OS -9 Technical Reference

Deallocate Task

Number

OS9 F$De1Tsk 103F 40

Entry Conditions:

X = process descriptor pointer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Releases the task
number that the
process specified by
the passed descriptor
pointer

• The support module for this call is OS9pl.

8-82

Privileged System Mode Calls I 8

Link Using
Module Directory
Entry
OS9 F$ELink 103F 4D

Entry Conditions:

B = module type

Performs a link using a
pointer to a module
directory entry

X = pointer to module directory entry

Exit Conditions:

U = module header address
Y = module entry point

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

• This call differs from Link in that you supply a pointer to
the module directory entry rather than a pointer to a mod­
ule name.

• The support module for this call is OS9pl.

8-83

OS -9 Technical Reference

Find Module
Directory Entry
089 F$FModul 103F 4E

Entry Conditions:

A = module type
X = pointer to the name string

Returns a pointer to
the module directory
entry

Y = DAT image pointer (for name)

Exit Conditions:

A = module type
B = module revision number
X = updated name string; (if Register A contains 0 on

entry)
U = module directory entry pointer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

• The Find Module Directory Entry call returns a pointer to
the module directory entry for the first module that has a
name and type matching the specified name and type. If
you pass a module type of zero, the system call finds any
module.

• The support module for this call is OS9pl.

8-84

Privileged System Mode Calls I 8

Find 64

089 F$Find64 103F 2F

Entry Conditions:

A = block number
X = address of the block

Exit Conditions:

Y = address of the block

Returns the address
of a 64-byte memory
block

CC = carry set if block not allowed or not in use

Additional Information:

e 08-9 uses Find 64 to find path descriptors when given
their block number. The block number can be any positive
integer.

8-85

OS -9 Technical Reference

Get Free High
Block
OS9 F$FreeHB 103F 3E

Entry Conditions:

B = block count
Y = DAT image pointer

Exit Conditions:

A = starting block number

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Searches the DAT
image for the
highest set of
contiguous free
blocks of the
specified size

• The Get Free High Block call returns the block number of
the beginning memory address of the free blocks.

• The support module for this system call is OS9pl.

8-86

Privileged System Mode Calls I 8

Get Free Low

Block

089 F$FreeLB 103F 3D

Entry Conditions:

B = block count
Y = DAT image pointer

Exit Conditions:

A = starting block number

Err or Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

Searches the DAT
image for the lowest set
of contig uous free
blocks of the specified
size

• The Get Free Low Block call returns the block number of
the beginning memory address of the free blocks.

• The support module for this system call is OS9pl.

8-87

OS -9 Technical Reference

Compact Module
Directory
OS9 F$GCMDir 103F 52

Entry Conditions: None

Exit Conditions: None

Additional Information:

Compacts the entries in
the module directory

• This function is only for internal OS-9 system use. You
should never call it from a program.

8-88

L_ __

Privileged System Mode Calls I 8

Get Process

Pointer

F$GProcP 103F 37

Entry Conditions:

A = process ID

Exit Conditions:

Gets a pointer to a
process

B = pointer to process descriptor (if no error)

Error Output:

CC = carry set on error
B = error code (If an error occurs (E$BPrciD))

Additional Information:

• The Get Process Pointer call translates a process ID num­
ber to the address of its process descriptor in the system
address space. Process descriptors exist only in the system
task address space. Because of this, the address returned
only refers to system address space.

• The support module for this call is OS9p2.

8-89

OS -9 Technical Reference

1/0 Delete

089 F$10Del 103F 33

Entry Conditions:

X = address of an 1/0 rrwdule

Error Output:

CC = carry set on error
B =error code (if any)

Additional Information:

Deletes an 1/0 module
that is not being used

• The I/0 Delete deletes the specified I/0 module from the
system, if the module is not in use. This system call is
used mainly by the I/0 MANAGER, and can be of limited
or no use for other applications.

• This is the order in which I/0 Delete operates:

1. Register X passes the address of a device descriptor
module, device driver module, or file manager module.

2. 08-9 searches the device table for the address.

3. If 08-9 finds the address, it checks the module's use
count. If the count is zero, the module is not being
used; 08-9 deletes it. If the count is not zero, the mod­
ule is being used; 08-9 returns an error.

e I/0 Delete returns information to the Unlink system call
after determining whether a device is busy.

8-90

1/0 Queue
OS9 F$IOQu 103F 2B

Entry Conditions:

A = process number

Error Output:

CC = carry set on error
B =error code (if any)

Additional Information:

Privileged System Mode Calls I 8

Inserts the calling
process into another
process's I/0 queue,
and puts the calling
process to sleep

• The I/0 Queue call links the calling process into the I/0
queue of the specified process and performs an u ntimed
sleep. The IO Manager and the fi le managers are primary
and extensive users of I/0 Queue.

• Routines associated with the specified process send a wake­
up signal to the calling process.

8-91

OS -9 Technical Reference

Set IRQ Adds a device to or
removes it from the
polling table

OS9 F$IRQ 103F 2A

Entry Conditions:

D = address of the device status register
X = 0 (to remove a device) or the address of a packet (to

add a device)
e the address at X is the flip byte
e the address at X + 1 is the mask byte
e the address at X+ 2 is the priority byte

Y = address of the device IRQ service routine
U = address of the service routine's memory area

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e Set IRQ is used mainly by device driver routines. (See
"Interrupt Processing" in Chapter 2 for a complete discus­
sion of the interrupt polling system.)

e Packet Definitions:

8-92

The Flip Byte. Determines whether the bits in the device
status register indicate active when set or active when
cleared. If a bit in the flip byte is set, it indicates that the
task is active whenever the corresponding bit in the status
register is clear (and vice versa).

The Mask Byte. Selects one or more bits within the device
status register that are interrupt request flag(s). One or
more set bits identify which task or device is active.

The Priority Byte. Contains the device priority number (0
= lowest priority, 255 = highest priority).

Load A From

TaskB

F$LDABX 103F 49

Entry Conditions:

B = task number
X = pointer to data

Exit Conditions:

Privileged System Mode Calls I 8

Loads A from O,X in
taskB

A = byte at O,X in task address space

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The value in Register X is an offset value from the begin­
ning address of the Task module. The Load A From Task B
call returns one byte from this logical address. Use this
system call to get one byte from the current process's mem­
ory in a system state routine.

8-93

OS -9 Technical Reference

Get One Byte
F$LDAXY 103F 46

Entry Conditions:

X = block offset
Y = DAT image pointer

Exit Conditions:

Loads A from [X, [Y]]

A = contents of byte at DAT image (Y) offset by X

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Get One Byte system call gets the contents of one byte
in the specified memory block. The block is specified by the
DAT image in (Y), offset by (X). The call assumes that the
DAT image pointer is to the actual block desired, and that
X is only an offset within the DAT block. The value in Reg­
ister X must be less than the size of the DAT block. OS-9
does not check to see if X is out of range.

8-94

Privileged System Mode Calls I 8

Get Two Bytes
F$LDDDXY 103F 48

Entry Conditions:

Loads D from
[D+X],[Y]

D = Offset to the offset within the DAT image
X = Offset within the DAT image
Y = DAT image pointer

Exit Conditions:

D =contents of two bytes at [D+X,Y]

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Get Two Bytes loads two bytes from the address space
described by the DAT image pointer. If the DAT image
pointer is to the entire DAT, then make D +X equal to the
process address for data. If the DAT image is not the entire
image (64K), then you must adjust D +X relative to the
beginning of the DAT image. Using D +X lets you keep a
local pointer within a block, and also lets you point to an
offset within the DAT image that points to a specified block
number.

8-95

OS -9 Technical Reference

Map Specific
Block
F$MapBlk 103F 4F

Entry Conditions:

X = starting block number
B = number of blocks

Exit Conditions:

U = address of first block

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

Maps the specified
block(s) into
unallocated blocks of
process space

• The system maps blocks from the top down. It maps new
blocks into the highest available addresses in the address
space. See Clear Spe cifie d Block for information on
unmapping.

8-96

Privileged System Mode Calls I 8

Move Data

F$Move 103F 38

Entry Conditions:

A = source task number
B = destination task number
X = source pointer
Y = byte count
U = destination pointer

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Moves data bytes from
one address space to
another

• You can use the Move Data system call to move data bytes
from one address space to another, usually from system to
user, or vice versa.

e The support module for this call is OS9pl.

8-97

OS -9 Technical Reference

Next Process

089 F$NProc 103F 2D

Entry Conditions: None

Exit Conditions:

Control does not return to caller.

Additional Information:

Executes the next
process in the active
process queue

• The Next Process system call takes the next process out of
the active process queue and initiates its execution. If the
queue contains no process, OS-9 waits for an interrupt, and
then checks the queue again.

• The process calling Next Process must already be in one of
the three process queues. If it is not, it becomes unknown
to the system even though the process descriptor still exists
and can be displayed by a PROCS command.

8-98

Privileged System Mode Calls I 8

Release A Task

F$Re1Tsk 103F 43

Entry Conditions:

B = task number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Releases a specified
DAT task number from
use by a process,
making the task's DAT
hardware available for
use by another task

• The support module for this call OS9pl.

8-99

OS -9 Technical Reference

Reserve Task

Number

F$ResTsk 103F 42

Entry Conditions: none

Exit Conditions:

B = task number (if no error)

Error Output:

CC = carry set on error

Reserves a DAT task
number

B = error code if an error occurs

Additional Information:

• The Reserve Task Number call finds a free DAT task num­
her, reserves it, and returns the task number to the caller.
The caller often then assigns the task number to a process.

• The support module for this call is OS9pl.

8-100

Privileged System Mode Calls I 8

Return 64

OS9 F$Ret64 103F 31

Entry Conditions:

A = block number
X = address of the base page

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Deallocates a 64-byte
block of memory

• See the Allocate 64 system call for more information.

8-101

OS -9 Technical Reference

Set Process DAT
Image
F$Setlmg 103F 3C

Entry Condition:

Copies all or part of
the DAT image into a
process descriptor

A = starting image block number
B = block count
X = process descriptor pointer
U = new image pointer

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• While copying part or all of the DAT image, this system
call also sets an image change flag in the process descrip­
tor. This flag guarantees that as a process returns from
the system call. The call updates the hardware to match
the new process DAT image.

• The support module for this call is OS9pl.

8-102

Privileged System Mode Calls I 8

Set Process Task
DAT Registers
F$SetTsk 103F 41

Entry Conditions:

Writes to the hardware
DAT registers

X = pointer to process descriptor

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• This system call sets the process task hardware DAT regis­
ters, and clears the image change f lag in the process
descriptor. It also writes to DAT RAM the process's seg­
ment address information.

• The support module for this call is OS9pl.

8-103

OS -9 Technical Reference

System Link
F$SLink 103F 34

Entry Conditions:

A = module type

Adds a module fr om
outside the current
address space int o the
current addre ss space

X = module name string pointer
Y = name string DAT image pointer

Exit Conditions:

A = module type
B = module revision (if no error)
X = updated name string pointer
Y = module entry point
U = module pointer

Err or Output:

CC = carry set on error
B = error code (If an error occurs)

Additional Information:

• The 1/0 System uses the System Link call to link into the
current process's address space those modules specified by a
device name in a user call. User calls such as Create File
and Open Path use this System Link.

• The support module for this call is OS9pl.

8-104

Privileged System Mode Calls I 8

Request System
Memory
OS9 F$SRqMem 103F 28

Entry Conditions:

D = byte count

Exit Conditions:

Allocates a block of
memory of the
specified size from the
top of available RAM

U = starting address of the memory area
D = new memory size

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The Request System Memory call rounds the size request
to the next page boundary.

• This call allocates memory only for system address space.

8-105

OS -9 Technical Reference

Return System
Memory
OS9 F$SRtMem 103F 29

Entry Con ditions:

Deallocates a block of
contiguous pages

U = starting address of menwry to return; must point to an
even page boundary

D = number of bytes to return

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Register U must point to an even page boundary.

• This call deallocates memory for system address space only.

8-106

Privileged System Mode Calls I 8

Set SVC

089 F$SSvc 103F 32

Entry Conditions:

Y = address of the system call
initialization table

Error Output:

CC = C b it set
B = error code

Additional Information:

Adds or replaces a
system call

• Set SVC adds or replaces a system call, which you have
written, to OS-9's user and system mode system call tables.

• Register Y passes the address of a table, which contains the
function codes and offsets, to the corresponding system call
handler routines. This table has the following format:

Relative Use
Address

$00

$01

$02

$03

$04

$05

-

-

Function Code

Offset From Byte 3

To Function Handler

Function Code

Offset From Byte 6

To Function Handler

More Entries

$80

+ First entry

-

+ Second entry

-

+ More entries

+End-of-table mark

8-107

OS -9 Technical Reference

e If the most significant bit of the function code is set, OS-9
updates the system table.

If the most significant bit of the function code is not set,
OS-9 updates the system and user tables.

e The function request codes are in the range $29-$34. IO
calls are in the range $80-$90

e To use a privileged system call, you must be executing a
program that resides in the system map and that executes
in the system state.

• The system call handler routine must process the system
call and return f r o m the subrou tine w i t h an RTS
instruction.

• The handler routine might alter all CPU registers (except
Register SP).

• Register U passes the address of the register stack to .the
system call handler as shown in the following diagram:

Relative Name

Address

U-+ cc $00 R$CC
$01 R$D

A $01 R$A

B $02 R$B

DP $03 R$DP

X $04 R$X

y $06 R$Y

u $08 R$U

PC $0A R$PC

Codes $70-$7F are reserved for user definition.

8-108

Privileged System Mode Calls I 8

Store A Byte
InA Task
F$STABX 103F 4A

Entry Conditions:

A = byte to store
B = destination task number
X = logical destination address

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Stores A at O,X in
TaskB

• This system call is si mil a r to the ass embly la nguage
instruction "STA O,X". The difference is that in the system
call, X refers to an address in the given task's address
space, instead of the current address space.

• The support module for this system call is OS9pl.

8-109

OS -9 Technical Reference

Install virtual
interrupt
OS9 F$VIRQ 103F 27

Entry Conditions:

D = initial count value
X = 0 to delete entry

1 to install entry
Y = address of 5 -byte packet

Error Output:

CC = carry set on error
B = appropriate error code

Additional Information:

Installs a virtual
interrupt handler
routine

• Install VIRQ for use with devices in the Multi-Pak Expan­
sion Interface. This call is explained in detail in Chapter 2.

8-110

Privileged System Mode Calls I 8

Validate Module

089 F$VModul 103F 2E

Entry Conditions:

D = DAT image pointer
X = new module block offset

Exit Conditions:

Checks the module
header parity and CRC
bytes of a module

U = address of the module directory entry

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• If the values of the specified module are valid, OS-9
searches the module directory for a module with the same
name. If one exists, OS-9 keeps in memory the module that
has the higher revision level. If both modules have the save
revision level, OS-9 retains the module in memory.

8-111

OS -9 Technical Reference

Get Status System Calls

You use the Get Status system calls with the RBF manager sub­
routine GETSTA. The OS-9 Level Two system reserves function
Codes 7-127 for use by Microware. You can define Codes 128-255
and their parameter-passing conventions for your own use. (See
the sections on device drivers in Chapters 4, 5, and 6.)

The Get Status routine passes the register stack and the speci­
fied function code to the device driver.

Following are the Get Status functions and their codes.

SS.OPT

(Function co de $00). Reads the option se ction of the path
descriptor, and copies it into the 32-byte area pointed to by Reg­
ister X

Entry Conditions:

A = path number
B = $00
X = address to receive status packet

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Use SS.OPT to determine the current settings for editing
functions, such as echo and auto line feed.

8-112

System Calls I 8

SS.RDY

(Function code $01). Tests for data available on SCF-supported
devices

Entry Conditions:

A = path number
B = $01

Exit Conditions:

If the device is ready:
CC = carry clear
B = $00

If the device is not ready:
CC = carry set
B = $F6 CE$SRNDY)

Error Output:

CC = carry set
B = error code

SS.SIZ

(Function code $02). Gets the current file size on a REF-sup­
ported devices only

Entry Conditions:

A = path number
B = $02

Exit Conditions:

X = most significant 16 bits of the current file size
U = least significant 16 bits of the current file size

Error Output:

CC = carry set on error
B = error code (if any)

8-113

OS -9 Technical Reference

SS.POS

(Function code $05). Gets the current file position (RBF -sup­
ported devices only)

Entry Conditions:

A = path number
B = $05

Exit Conditions:

X = rrwst significant 16 bits of the current file position
U = least significant 16 bits of the current file position

Error Output:

CC = carry set on error
B = error code (if any)

SS.EOF

(Function code $06). Tests for the end of the file (EOF)

Entry Conditions:

A = path number
B = $06

Exit Conditions:

If there is no EOF:
CC = carry clear
B = $00

If there is an EOF:
CC = carry set
B = $D3 (E$EOF)

Error Output:

CC = carry set
B = error code

8-114

System Calls I 8

SS.DevNm

(Function Code $0E). Returns a device name

Entry Conditions:

A = path number
B = $0E
X = address of 32 -byte buffer for 1ULme

Exit Conditions:

X = address of buffer, 1ULme moved to buffer

SS.DSTAT

(Function code $12). Returns the displ ay status

Entry Conditions:

A = path number
B = $12

Exit Conditions:

A = color code of the pixel at the cursor address
X = address of the graphics display memory
Y =graphics cursor address; X = MSB, Y = LSB

Additional Information:

• This function is supported onl y with the VDGINT module
and deal s with VDG-compatible graphics screens. See
SS.AAGBf for information regarding Level Two operation.

8-115

OS -9 Technical Reference

SS.JOY

(Function code $13). Returns the joystick values

Entry Conditions:

A = path number
B = $13
X = joystick number

0 = (right joystick)
1 = (left joystick)

Exit Conditions:

A = fire button down
0 =none
1 =Button 1
2 =Button 2
3 = Button 1 a nd Button 2

X = selected joystick x value (0-63)
Y = selected joystick y value (0-63)

Note: Under Level 1, the following values are returned by
this call:

A =fire button status.

8-116

$FF = fire button is on
$00 = fire button is off

System Calls I 8

SS.AlfaS

(Function code $1C). Retur n s VDG alpha screen memory
information

Entry Conditions:

A = path number
B = $1C

Exit Conditions:

A = caps lock status
$00 = lower case
$FF = upper case

X = memory address of the buffer
Y = memory address of the cursor

Additional Information:

• SS.AlfaS maps the screen into the user address space. The
call requires a full block of memory for screen mapping.
This call is only for use with VDG text screens handled by
VDGINT.

• The support module for this call is VDGINT.

• Warning: Use extreme care when poking the screen, since
other system variables reside in screen memory. Do not
change any addresses outside of the screen.

8-117

OS -9 Technical Reference

SS.Cursr

(Function code $25). Retur ns VDG alpha screen cursor
information

Entry Conditions:

A = path number
B = $25

Exit Conditions:

A = character code of the character at the current cursor
address

X = cursor X position (column)
Y = cursorY position (row)

Additional Information:

• SS.Cursr returns the character at the current cursor posi­
tion. It also returns the X-Y address of the cursor relative
to the current device's window or screen. SS.Cursr works
only with text screens.

• The support module for this call is VDGINT.

8-118

System Calls I 8

SS.ScSiz

(Function code $26). Returns the window or screen size

Entry Conditions:

A = path number
B = $26

Exit Conditions:

X = number of columns on screen/window
Y = number of rows on screen/window

Additional Information:

• Use this call to determine the size of an output screen. The
values returned depend on the device in use:

For non-CCIO devices, the call returns the values follow­
ing the XON/XOFF bytes in the device descriptor.

For CCIO devices, the call returns the size of the window
or screen in use by the specified device.

For window devices. the call returns the size of the cur­
rent working area of the window.

• The support modules for this call are VDGINT, Grflnt, and
Windlnt.

8-119

OS -9 Technical Reference

SS.KySns

(Function code $27). Returns key down status

Entry Conditions:

A = path number
B = $27

Exit Conditions:

A = keyboard scan information

Additional Information:

• Accumulator A returns with a bit pattern representing
eight keys. With each keyboard scan, 089 updates this bit
pattern. A set bit (1) indicates that a key was pressed since
the last scan. A clear bit (0) indicates that a key was not
pressed. Definitions for the bits are as follows:

Bit Key
0 I SHIFT I
1 I CTRL I or I CLEAR I
2 IALTI or@:)
3 rn (up arrow)
4 rn (down arrow)
5 8:] (left arrow)
6 [:B (right arrow)
7 Space Bar

The bits can be masked with the following equates:

SHIFTBIT
CN T RLBIT
ALTERBIT
UP BIT
D OWNBIT
LEFTBIT
RIGH TBIT
SPACE BIT

equ
equ
equ
equ
equ
equ
equ
equ

%00000001
%00000010
%00000100
%00001000
%00010000
%00100000
%01000000
%10000000

• The support module for this call is CC3IO.

8-120

System Calls I 8

SS.ComSt

(Function co de $28). Return serial port conf iguration
information

Entry Conditions:

A = path number
B = $28

Exit Conditions:

Y = high byte: parity
low byte: baud rate
(See the Setstat call SS.ComSt for values)

Err or Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The SCF manager uses this call when performing an
SS.Opt Getstat on an SCF-type device. User calls to
SS.ComSt do not update the path descriptor. Use the
SS.OPT Getstat call for most applications, because it auto­
matically updates the path descriptor.

8-121

OS -9 Technical Reference

SS.MnSel

(Function code $87). Requests that the high-level menu handler
take c ontrol of menu selection

Entry Conditions:

A = path number
B = $87

Exit Conditions:

A = menu ID (if valid selection)
0 (if invalid selection)

B = item number of menu (if valid selection)

Error Output:

CC = carry set on error
B = error code (if invalid selection)

Additional Information:

• After detecting a valid mouse click (when the mouse is
p ointing t o a c ontrol area on a window), a process needs t o
call SS.MnSel. This cal l tel ls the enhanced window inter­
face t o handle any menu selection being made. If accumula­
t or A returns with 0, then no selection has been made. The
cal ling process needs t o test and handle other returned
values.

• A c ondition where Register A returns a valid menu ID
number and Register B returns 0 signals the selection of a
menu with no items. The application can now take over and
do a special graphics pull dow n of its own. The menu tit le
remai n s high ligh t e d until the application cal l s the
SS.UMBar SetStat to update the menu bar.

• The supp ort module for this call is Windlnt.

8-122

SS.Mouse

(Function code $89). Gets mouse status

Entry Conditions:

A = path number
B = $89
X = data storage area address
Y = mouse port select:

0 = automatic selection
1 = right side
2 = left side

Exit Conditions:

X = data storage area address

Error Output:

CC = carry set on error
B = error code (if any)

System Calls I 8

8-123

OS -9 Technical Reference

Additional Information:

• SS.Mouse returns information on the current mouse and its
f ire button. The following list defines the 32-byte data
packet that SS.Mouse creates:

Pt. Valid rmb 1 Is returned info valid? (0 =no,

Pt.Actv

Pt.ToTm
Pt.TTTo

Pt.TSSt
Pt.CBSA
Pt.CBSB
Pt.CCtA
Pt.CCtB
Pt.TTSA
Pt.TTSB
Pt.TLSA
Pt.TLSB

Pt.BDX
Pt.BDY
Pt. Stat
Pt.Res
Pt.AcX
Pt.Ac Y
Pt.WRX
Pt. WRY
Pt.Siz
SPt.SRX
SPt.SRY
SPt.Siz

rmb 1

rmb 1
rmb 1
rmb 2
rmb 2
rmb 1
rmb 1
rmb 1
rmb 1
rmb 1
rmb 1
rmb 1
rmb 1
rmb 2
rmb2
rmb2
rmb 1
rmb 1
rmb2
rmb 2
rmb2
rmb 2
equ .
rmb 2
rmb 2
equ .

1 =yes)
Active side (0 = off, 1 = right, 2 =
left)
Timeout initial value
Time until timeout
RESERVED
Time since counter start
Current button state
Current button state
Click count
Click count
Time this state counter
Time this state counter
Time last state counter
Time last state counter
RESERVED

(Button A)
(Button B)
(Button A)
(Button B)
(Button A)
(Button B)
(Button A)
(Button B)

Button down frozen Actual X
Button down frozen Actual Y
Window pointer type location
Resolution (0-640 by 0 = 10/1 = 1)
Actual X value
Actual Y value
Window relative X
Window relative Y
Packet size 32 bytes
System use, screen relative X
System use, screen relative Y
Size of packet for system use

• Button Information:

8-124

Pt.Valid. The valid byte gives the caller an indication of
whether the information contained in the returned packet
is accurate. The information returned by this call is only
valid if the process is running on the current interactive
window. If the process is on a non-interactive window, the
byte is zero and the process can ignore the information
returned.

System Calls I 8

Pt.Actv. This byte shows which port is selected for use by
all mouse functions. The default value is Right (1). You can
change this value with the SS.GIP Setstat call.

Pt.ToTm. This is the initial value used by Pt.TTTo.

Pt. TTTo. This is the count down value (as of the instant
the Getstat call is made). This value starts at the value
contained in the Pt. ToTm and counts down to zero at a rate
of 60 counts per second. The system maintains all counters
until this value reaches 0, at which point it sets all
counters and states to 0. The mouse scan routine changes
into a quiet mode which requires less over head than when
the mouse is active. The timeout begins when both buttons
are in the up (open) state. The timer is reinitialized to the
value in Pt.ToTm when either button goes down (closed).

Pt.TSSt. This counter is constantly increasing, beginning
when either button is pressed while the mouse is in the
quiet state. All counts are a number of ticks (60 per sec­
ond). The timer counts to $FFFF, then stays at that value
if additional ticks o ccur.

Pt.CBSA. These flag bytes indicate the state of the button
Pt.CBSB. at the last system clock tick. A value of 0 indi­

-cates that the button is up (open). A value other than zero
indicates that the button is down (closed). Button A is
available on all Tandy joysticks and mice. Button B is only
available for products that have two buttons.

The system scans the mouse buttons each time it scans the
keyboard.

Pt.CCtA. This is the number of clicks that have occurred
Pt.CCtB. since the mouse went into an active state. A
click is defined as pressing (closing) the button, then releas­
ing (opening) the button. The system counts the clicks as
the button is relea_sed.

Pt. TTSA. This counter is the number of ticks that have
Pt.TTSB. occurred during the current state, as defined by
Pt.CBSx. This counter starts at one (counts the tick when
the state changes) and increases by one for each tick that
occurs while the button remains in the same state (open or
closed).

8-125

OS -9 Technical Reference

Pt. TLSA. This counter is the number of ticks that have
Pt.TLSB. occurred during the time that a button is in a
state opposite of the current state. Using this count and
the TTSA/TTSB count, you can determine how a button
was in the previous state, even if the system returns the
packet after the state has changed. Use these counters,
along with the state and click count values, to define any
type of cl ick, drag, or hold convention you want.

Reserved. Two packet bytes are reserved for future expan­
sion of the returned data.

• Position Information:

8-126

Pt.BDX. These values are copies of the Pt.AcX and Pt.Ac Y
Pt.BDY. values when either of the buttons change from an
open state to a closed state.

Pt.Stat. This byte contains information about the area of
the screen on which the mouse is positioned. Pt.Valid must
be a value other than 0 for this information to be accurate.
If Pt. Valid is 0, this value is also 0 and not accurate. Three
types of areas are currently defined:

0 content region or current work ing area of the
window

1 control region (for use by Mul ti-V iew)
2 off window, or on an area of the screen that is not

part of the window

Pt.Res. This value is the current resolution for the mouse.
The mouse must always return co ordinates in the range of
0-639 for the X axis and 0-191 for the Y axis. If the system
is so configured, you can use the high-resolution mouse
adapter which provides a 1 to 1 ratio with these values plus
1. If the adapter is not in use, the resolution is a ratio of 1
to 10 on the X axis and 1 to 3 on theY axis. The keyboard
mouse provides a resolution of 1 to 1. The values in Pt.Res
are:

0 = low res (x:10, y:3)
1 = high res (x,y:1)

Pt.AcX. The values read from the mouse returned in the
Pt.Ac Y. resolution as described under Pt.Res.

System Calls I 8

Pt.WRX. The values read from the mouse minus the
Pt.WRY. starting coordinates of the current window's
working area. These values return the coordinates in num­
bers relative to the type of screen. For example, the X axis
is in the range 0-639 for high-resolution screens and 0-319
for low resolution screens. You can divide the window rela­
tive values by 8 to obtain absolute character positions.
These values are most helpful when working in non-scaled
modes.

• The support modules for this call are CC3IO, Grflnt, and
Windlnt.

SS.Palet

(Function code $91). Gets palette information

Entry Conditions:

A = path number
B = $91
X = pointer to the 16 -byte palette information buffer

Exit Conditions:

X = pointer to the 16 -byte palette information buffer

Additional Information:

• SS.Palet reads the contents of the 16 screen palette regis­
ters, and stores them in a 16-byte buffer. When you make
the call, be sure the X register points to the desired buffer
location. The pointer is retained on exit. The palette values
returned are specific to the screen on which the call is
made.

• The support modules for this call are VDGINT, Grflnt, and
Windlnt.

8-127

OS -9 Technical Reference

SS.ScTyp

(Function code $93). Returns the type of a screen to a calling
program.

Entry Conditions:

A =path
B = $93

Exit Conditions:

A = screen type code
1 = 40 x 24 text screen
2 = 80 x 24 text screen
3 = not used
4 = not used
5 = 640 x 192, 2-color graphics screen
6 = 320 x 192, 4-color graphics screen
7 = 640 x 192, 4-color graphics screen
8 = 320 x 192, 16-color graphics screen

Additional Information:

• Support mo dules for t his system call are Grflnt and
Windlnt.

8-128

System Calls I 8

SS.FBRgs

(Function code $96). Returns the foreground, background and
border palette registers for a window.

Entry Conditions:

A = path number
B = $96

Exit Conditions:

A = foreground palette register number
B = background palette register number (if carry clear)
X = least significant byte of border palette register number

Error Output:

B = error code if any
CC = carry set on error

Additional Information:

• Support modules for SS.FBRgs are Grflnt and Windint.

SS.DFPal

(Function code $97). Returns the default palette register
settings.

Entry Conditions:

A = path number
B = $97
X =pointer to 16-byte data space

Exit Conditions:

X = default palette data moved to user space

Error Output:

B = error code, if any
CC = carry set on error

8-129

OS -9 Technical Reference

Additional Information:

• You can use SS.DFPal to find the values of the default pal­
ette registers that are used when a new screen is allocated
by Grflnt or Windlnt. The corresponding SetStat can alter
the default registers. This GetStat/SetStat pair is for sys­
tem configuration utilities and should not be used by gen­
eral applications.

Set Status System Calls

Use the Set Status system calls with the RBF manager subrou­
tine SETSTA. The OS-9 Level Two system reserves function
Codes 7-127 for use by Microware. You can define Codes 200-255
and their parameter-passing conventions for your own use. (See
the sections on device drivers in Chapters 4, 5, and 6.)

Following are the Set Status functions and their codes.

SS.OPT

(Function code $00). Writes the option section of the path
descriptor

Entry Conditions:

A = path number
B = $00
X = address of the status packet

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• SS.OPT writes the option section of the path descriptor
from the 32-byte status packet pointed to by Register X.
Use this system call to set the device operating parameters,
such as echo and line feed.

8-130

System Calls I 8

SS.SIZ

(Function code $02). Changes the size of a file for RBF-type
devices

Entry Conditions:

A = path number
B

= $02
X = most significant 16 bits of the desired file size
U = least significant 16 bits of the desired file size

Error Output:

CC = carry set on error
B = error code (if any)

SS.RESET

(Function code $03). Restores the disk drive head to Track 0 in
preparation for formatting and error;recovery (use only with
RBF-type devices)

Entry Conditions:

A = path number
B = $03

Error Output:

CC = carry set on error
B = error code (if any)

8-131

OS -9 Technical Reference

SS.WTRK

(Function code $04). Formats (writes) a track on a disk (REF­
typ e devices only)

Entry Conditions:

A = path number
B = $04
U = track number (least significant 8 bits)

x; = address of the track buffer
Y = side/density

Bit BO = side
0 = Side 0
1 = Side 1

Bit B1 = density
0 = single
1 = double

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• For hard disks or floppy disks that have a "format entire
diskette command," SS.WTRK formats the entire disk only
when the track number is zero.

8-132

System Calls I 8

SS.SQD

(Function code $0C). Starts the shutdown procedure for a hard
disk that has sequence-down requirements prior to removal of
power. (Use only with RBF-type devices.)

Entry Conditions:

A = path number
B = $0C

Exit Conditions: None

SS.KySns

(Function code $27). Turns the key sense function on and off

Entry Conditions:

A
B
X

= path number
= $27
= key sense switch value

0 = normal key operation
1 = key sense operation

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• When SS.KySns switches the keyboard to key sense mode,
the CC3IO module suspends transmission of keyboard char­
acters to the SCF manager and the user. While the com­
puter is in key sense mode, the only way to detect key press
is with SS.KySns.

• The support module for this call is CC3IO.

8·133

OS -9 Technical Reference

SS.ComSt

(Function code $28). Used by the SCF manager to configure a
serial port

Entry Conditions:

A = path number
B = $28
Y = high byte: parity

low byte: baud rate

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Baud Configuration. The high order byte of Y determines the
baud rate, the word length, and number of stop bits. The byte is
configured as follows:

8-134

PD.BAU I 7 I 6 I 5 I 4 3 I 2 I 1 I 0

Stop bits:
0 = 1
1 = 2

Word length:
00 = 8 bit
01 = 7 bit

Baud rate:

I L .__I
-1 --1

0000 = 110
0001 = 300
0010 = 600
0011 = 1200
0100 = 2400
0101 = 4800
0110 = 9600
0111 = 19200
1xxx = undefined

Baud rate
Reserved
Word length
Stop bits

System Calls I 8

• Parity Configuration. The low order byte of Y determines
parity. The byte is configured as follows:

PD.BAU I 7 6 5 4lsl2l1lol

Parity:
xxO
001
011
101

111

I I

= none

I I
Special use

Parity

=odd (ACI APAK and MODPAK only)
= even CACI APAK and MODPAK only)
=transmit: mark

receive: ignore
= transmit: space

receive: ignore

• The SCF manager uses SS.ComSt to inform a driver that
serial port configuration information has been changed in
the path descriptor. After calling SS.ComSt, a user routine
must call the SS.OPT SetStat to correctly update the path
descriptor.

• This call is for the use of the SCF manager. Use SS.OPT
for changing baud, stop bit, and parity values.

SS.Close

(Function code $2A). Informs a device driver that a path is
closed.

Additional Information:

This call is used internally by OS-9's SCF file manager and is
not available for user programs. It can be used only by device
drivers and file managers.

8-135

OS -9 Technical Reference

SS.AAGBf

(Function code $80). Reserves an additional graphics buffer

Entry Conditions:

A = path number
B = $80

Exit Conditions:

X = buffer address
Y = buffer number {1-2)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e SS.AAGBf allocates an additional SK graphics buffer. The
first buffer (Buffer 0) must be allocated by using the DIS­
PLAY GRAPHICS command. To use the DISPLAY GRAPH­
ICS command, send control code $OF to the standard
terminal driver. SS.AAGBf can allocate up to two addi­
tional buffers (Buffers 1 and 2), one at a time.

• After calling SS.AAGBf, Register X contains the address of
the new buffer. Register Y contains the buffer number.

• To deallocate all graphics buffers, use the END GRAPHICS
control code.

• When SS.AAGBf allocates a buffer, it also maps the buffer
into the application's address space. Each buffer uses SK of
the available memory in the application's address space.
Also, if SS.DStat is called, Buffer 0 is also mapped into the
application's address space. Allocation of all three buffers
reduces the application's free memory by 24K.

• The support module for this call is VDGINT.

8-136

System Calls I 8

SS.SLGBf

(Function code $81). Selects a graphics buffer

Entry Conditions:

A = path number
B = $81
X = $00 select buffer for use

$01-$FF select buffer for use and display
Y = buffer number (0-2)

Exit Conditions:

X = unchanged from entry
Y = unchanged from entry

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Use DISPLAY GRAPHICS to allocate the first graphics
buffer. Use SS.AAGBf to allocate the second and third
graphics buffers.

• Save each return address when writing directly to a screen.
It is not necessary to save return addresses when using
operating system graphics commands.

• SS.S L GBf does not update hardware information until the
next vertical retrace (60Hz rate). Programs that use
SS.AAGBf to change current draw buffers need to wait long
enough to ensure that OS-9 has moved the current buffer to
the screen.

• The screen shows the buffer only if the buffer is selected as
the interactive device. If the device does not possess the
keyboard, OS-9 stores the information until the device is
selected as the interactive dev ice. When the device is
selected as the interactive device, the display shows the
selected device's screen.

• The support module for this call is VDGINT.

8-137

OS -9 Technical Reference

SS.MpGPB

(Function code $84). Maps the Get/Put buffer into a user
address space

Entry Conditions:

A = path number
B = $84
X = high byte: buffer group number

low byte: buffer number
Y = action to take

1 = map buffer
0 = unmap buffer

Exit Conditions:

X = address of the mapped buffer
Y = number of bytes in buffer

Error Output:

CC = carry set on error
B =error code (if any)

Additional Information:

• The support modules for this call are Grflnt and Windlnt.

• SS.MpGPB maps a Get/Put buffer into the user address
space. You can then save the buffer to disk or directly mod­
ify the pixel data contained in the buffer. Use extreme care
when modifying the buffer so that you do not write outside
of the buffer data area.

8-138

System Calls I 8

SS.WnSet

(Function code $86). Set up a high level window handler

Entry Conditions:

A = path number
B = $86
X = window data pointer (if Y = WT.FSWin or WT.Win)
Y = window type code

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• The C language data structures for windowing are defined
in the wind.h file in the DEFS directory of the system disk.

• The support module for this call is Windlnt.

SS.SBar

(Function code $88). Puts a scroll block at a specified position

Entry Con ditions:

A = path number
B = $88
X = horizontal position of scroll block
Y = vertical position of scroll block

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• WT.FSWin-type windows have areas at the bottom and
right sides to indicate their relative positions within a
larger area. These areas are called scroll bars. SS.SBar
gives an application the ability to maintain relative posi­
tion markers within the scroll bars. The markers indicate

8-139

OS -9 Technical Reference

the location of the current screen within a larger screen.
Calling SS.SBar, updates both scroll markers.

• The support module for this call is Windlnt.

SS.Mouse

(Function code $89). Sets the sample rate and button timeout
for a mouse

Entry Conditions:

A = path number
B = $89
X = mouse sample rate and timeout

most significant byte = mouse sample rate
least significant byte = mouse timeout

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• SS. Mouse al lows the application to def ine the mouse
parameters. The sample rate is the number of clock ticks
between the actual readings of the mouse status.

• The support module for the call is CC3IO.

8-140

System Calls I 8

SS.MsSig

(Function code $8A). Sends a signal to a process when the
mouse button is pressed

Entry Conditions:

A = path number
B = $8A
X = user defined signal code (low byte only)

Error Output:

CC = carry set on error
B =error code (if any)

Additional Information:

• SS.MsSig sends the process a signal the next time a mouse
button changes state (from open to closed). Once SS.MsSig
sends the signal, the process must repeat the Setstat each
time that it needs to set up the signal.

• Processes using SS.MsSig should have an intercept routine
to trap the signal. By intercepting the signal, other pro­
cesses can be notified when the change occurs. Therefore,
the other processes do not need to continually poll the
mouse.

• The SS.Relea Setstat clears the pending signal request, if
desired. It also clears any pending signal from SS.SSig.
Because of this, if you want to clear only one signal, you
must reset the other signal after calling SS.MsSig.

• The support module for this call is CC3IO.

8-141

OS -9 Technical Reference

SS.AScrn

(Function code $8B). Allocates and maps a high-resolutio n
screen into an applicatio n address space

Entry Conditions:

A = path number
B = $8B
X = screen type

0 = 640 x 192 x 2 colors (16K)
1 = 320 x 192 x 4 colors (16K)
2 = 160 x 192 x 16 colors (16K)
3 = 640 x 192 x 4 colors (32K)
4 = 320 x 192 x 16 colors (32K)

Exit Conditions:

X = application address space of screen
Y = screen number (1-3)

Error Output:

CC = carry set o n error
B = error code (if any)

Additional Information:

• SS.AScrn is particularly useful in systems with minimal
memory when you want to allocate a high resolution graph­
ics screen with all screen updating handled by a process.

• This call uses VDGint (GRFINT is not required).

• All screens are allocated in multiples of 8K blocks. You can
allocate a maximum of three buffers at one time. To select
between buffers, use the SS.DScrn Setstat call.

• Screen memory is allocated but not cleared. The application
using the screen must do this.

• Screens must be allo cated from a VDG-typ e device-a
standard 32-column text screen must be available for the
device.

• The support mo dule for this call is VDGINT.

8-142

System Calls I 8

SS.DScrn

(Function code $8C). Causes VDGINT to display a screen that
was allocated by SS.AScrn

Entry Conditions:

A = path number
B = $8C
Y = screen number (1-3)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• SS.DScrn shows the requested screen if the requested
screen is the current interacti ve device.

• The support module for this call is VDGINT.

8-143

OS -9 Technical Reference

SS.FScrn

(Function code $8D). Frees the memory of a screen allocated
by SS.AScrn

Entry Conditions:

A = path number
B = $8D
Y =screen number (1-3)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

• Do not attempt to free a screen that is currently on the
display.

• SS.FScrn returns the screen memory to the system and
removes it from an application's address space.

• The support module for this call is VDGINT.

8-144

System Calls I 8

SS.PScrn

(Function code $8E). Converts a screen to a different type

Entry Conditions:

A = path number
B = $8E
X = new screen type

0 = 640 x 192 x 2 colors (16K)
1 = 320 x 192 x 4 colors (16K)
2 = 160 x 192 x 16 colors (16K)
3 = 640 x 192 x 4 colors (32K)
4 = 320 x 192 x 16 colors (32K)

Y = screen number

Error Output:

CC = carry set on error
B =error code (if any)

Additional Information:

• SS.PScrn changes a screen allocated by SS.AScrn to a new
screen type. You can change a 32K screen to either a 32K
screen, or a 16K screen. You can change a 16K screen only
to another 16K screen type. SS.PScrn updates the current
display screen at the next clock interrupt.

• However, if you change a 32K screen to a 16K screen, OS-9
does not reclaim the extra 16K of memory. This means
that you can later change the 16K screen back to a 32K
screen.

• The support module for this call is VDGINT.

8-145

OS -9 Technical Reference

SS.Montr

(Function code $92). Sets the monitor type

Entry Conditions:

A = path number
B = $92
X = monitor type

0 = color composite
1 = analog RGB
2 = monochrome composite

Error Output:

CC = carry set on error
B =error code (if any)

Additional Information:

• SS.Montr loads the hardware palette registers with the
codes for the default color set for three types of monitors.
The system default initializes the palette for a composite
color monitor.

• The monochrome mode removes color information from the
signals sent to a monitor.

• When a composite monitor is in use, a conversion table
maps colors from RGB color numbers. In RGB and mono­
chrome modes, the system uses the RGB color numbers
directly.

• The support modules for this call are VDGINT and GrfDrv.

8-146

System Calls I 8

SS.GIP

(Function code $94). Sets the system wide mouse and key
repeat parameters

Entry Conditions:

A = path number
B = $94
X = mouse resolution; in the most significant byte

0 = low resolution mouse
1 = optional high resolution adapter

= mouse port location; in the least significant byte
1 = right port
2 = left port

Y = key repeat start constant; in the most significant byte
=key repeat delay; in the least significant byte

OOXX = no repeat
FFFF = unchanged

Error Output:

CC = carry set if error
B = error code, if any

Additional Information:

• Because this function affects system-wide settings, it is
best to use it from system configuration utilities and not
from general application program.

• The support module for this call is CC3IO.

8-147

OS -9 Technical Reference

SS.UMBAR

(Function code $95). Requests the high level menu manager to
update the menu bar.

Entry Conditions:

A = path number
B = $95

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

• An application can call SS.UMBar when it needs to redraw
menu bar information, such as when it enables or disables
menus, or when it completes a window pull down and needs
to restore the menu.

• The support module for this call is Windlnt.

8-148

System Calls I 8

SS.DFPal

(Function code $97). Sets the default palette register values

Entry Conditions:

A = path number
B = $97
X = pointer to 16 bytes of palette data

Exit Conditions:

X = unchanged, bytes moved to system defaults
CC = carry set on error
B = error code (if any)

Additional Information:

• Use SS.DFPal to alter the system-wide palette register
defaults. The system uses these defaults when it allocates a
new screen using the DWSet command.

• Because this function affects system wide settings, it is
b est to use it from system configuration utilities, not gen­
eral application programs.

8-149

OS -9 Technical Reference

SS.Tone

(Function code $98). Creates a sound through the terminal
output device.

Entry Conditions:

A = path number
B = $98
X = duration and amplitude of the tone

LSB = duration in ticks (60-sec) in the range 0-255
MSB = amplitude of tone in the range 0-63

Y =relative frequency counter (O=low, 4095=high)

Exit Conditions:

These are the same as the entry conditions. There are no
error conditions.

Additional Information:

• This call produces a programmed IO tone through the
speaker of the monitor used by the terminal device. You can
make the call on any valid path open to term or to a win­
dow device.

• The system does not mask interrupts during the time the
tone is being produced.

• The frequency of the tone is a relative number ranging
from 0 for a low frequency to 4095 for a high frequency.
The widest variation of tones occurs at the high range of
the scale.

8-150

Appendix A

Memory Module Diagrams

Executable Memory Module Format

Relative
Address

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

-

r--

r---

r--

r--

-

-

Use

Sync Bytes ($87 ,$CD)

Module Size (bytes)

Module Name Offset

Type Language

Attributes Revision

Header Parity Check

Execution Offset

Permanent Storage Size

(Additional optional header
extensions located here)

.

Module B ody
object code, constants,

and so on

CRC Check Value

-

-

-

-

-

-

-

Check
Range

header

J
a ity

module
c c

A-1

OS -9 Technical Reference

Device Descriptor Format

Relative
Address

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0D

$0E

$OF

$10

$11

$12,$12+n

A-2

-

-

-

-

-

-

-

Use

Sync Bytes ($87,$CD) -

Module Size (bytes) -

Offset to Module Name -

$F (T ype) $1 (Lang)

Attributes Revision

Header Parity Check

Offset to File Manager -
Name String

Offset to Device Driver -
Name String

Mode Byte

Device Controller -
Absolute Physical Addr.

(24 bit) -

Initialization Table Size

(Initialization Table)

(Name Strings, and so on)

CRC Check Value

Check
Range

header

J
a ity

Module
c c

Merrwry Module Diagrams I Appendix A

INIT Module Format

Relative
Address

$00

$01

$02

$03

$04

$05

$06

$07

$08

$09

$0A

$0B

$0C

$0D

$0E

$OF

$10

$11

$12

$13

$14-n

f--

r--

r--

f--

f--

f--

-

-

-

-

Use

Sync Bytes ($87 ,$CD)

Module Size (bytes)

Module Name Offset

$F (Type)

Attributes

$1 (Lang)

Revision

Header Parity Check

Forced Limit of Top
of F ree RAM

#IRQ Polling Table Entries

#Device Table Entries

Offset to Startup
Module Name String

Offset to Default Mass
Storage Device Name String

Offset to Bootstrap
Module Name String

Name Strings

CRC Check Value

-

-

-

-

-

-

-

-

-

-

Check
Range

header

J
a ity

Module
c c

A-3

Appendix B

Standard Floppy Disk Format

Color Computer 3

Physical Track Format Pattern

Bytes Value
Format (Dec) (Hex)

Header pattern 32 4E
(once per track) 12 00

Sector pattern
(repeated 18 times)

Trailer pattern
(once per track)

3 F5
1 FC

32 4E

12
3
1
1
1
1
2

22
12

3
1

256
2

24

N

00
F5
track number (0-34)
side number (0-1)
sector number (1-18)
sector length code (1)
CRC
4E
00
F5
FB
data area
CRC
4E

4E (fill to index mark)

B-1

Appendix C

System Error Codes

The error codes are shown in both hexadecimal and decimal. The
error codes listed include OS-9 system error codes, BASIC error
codes, and standard windowing system error codes.

Code
HEX DEC

$01 001

$02 002

$03 003

$B7 183

$B8 184

$B9 185

$BA 186

$BB 187

$BD 189

$BE 190

$BF 191

Code Meaning

UNCONDITIONAL ABORT -An error occurred
from which OS-9 cannot recover. All processes
are terminated.

KEY BOARD ABORT -You pressed I BREAK I to
terminate the current operation.

KEY BOARD INTERRUPT - You pressed
I SHIFT II BREAK I either to cause the current operation
to function as a background task with no video
display or to cause the current task to terminate.

ILLEGAL WINDOW T Y PE -You tried to
define a text type window for graphics or used
illegal parameters.

WINDOW ALREADY DEFINED -You tried to
create a window that is already established.

FONT NOT FOUND-You tried to use a win­
dow font that does not exist.

STACK OVERFLOW -Your process (or pro­
cesses) requires more stack space than is avail­
able on the system.

ILLEGAL ARGUMENT - You have used an
argument with a command that is inappropriate.

ILLEGAL COORDINATES -You have gi ven
coordinates to a graphics command which are
outside the screen boundaries.

INTERNAL INTEGRIT Y CHECK-System
modules or data are changed and no longer
reliable.

BUFFER SIZE IS TOO SMALL -The data you
assigned to a buffer is larger than the buffer.

C-1

OS -9 Technical Reference

Code Code Meaning
HEX DEC
$CO 192 ILLEGAL COM M AND - You have iss ued a

command in a form unacceptable to OS-9.

$C1 193 SCREEN OR WINDOW TABLE IS FULL - You
do not have enough room in the system window
table to keep t rack of any more windows or
screens.

$C2 194 BAD/UNDEFINED BUFFER NUM BER - You
have specif ied an il legal or undefined buffer
number.

$C3 195 ILLEGAL WINDOW DEFINI TION - You have
tried to give a window illegal parameters.

$C4 196 WINDOW UNDEFINED - You have tried to
access a window that you have not yet defined.

$C8 200 PATH TABLE FULL - OS-9 cannot open the
file, because the system path table is full.

$C9 201 ILLEGAL PATH NUM BER - The path number
is too large, or you specified a non-existent path.

$CA 202 IN TERRUP T POLLING TABLE FULL - Your
system can not handle an inter r up t request,
because the polling table does not have room for
more entries.

$CB 203 ILLEGAL MODE - The specified device cannot
perform the indicated input or output f unction.

$CC 204 DEVICE TABLE FULL - The device table does
not have enough room for another device.

$CD 205 ILLEGAL MODULE HEADER - OS-9 cannot
load the specified module because its sync code,
header parity, or Cyc l ic Red undancy Code is
incorrect.

$CE 206 MODULE DIREC TORY FULL- The mod ule
directory does not have enough room for another
module entry.

C-2

Code
HEX DEC
$CF 207

$DO 208

$D1 209

$D2 210

$D3 211

$D4 212

$D5 213

$D6 214

$D7 215

$DB 216

$D9 217

$DA 218

$DB 219

System Error Codes I C

Code Meaning

MEMORY FULL - Process address space is full
or your computer does not have sufficient memory
to perform the specified task.

ILLEGAL SERVICE REQUES T - The current
program has issued a system call containing an
illegal code number.

MODULE BUSY - Another process- is already
using a non-shareable module.

B OUNDARY ERROR - OS-9 has received a
memory allocation or deallocation request that is
not on a page boundary.

END OF FILE- A read operation has encoun­
tered a n end-of-f ile character and has
terminated.

RE TURNING NON-ALLOCATED MEMORY­
The current operation has attempted to deallo­

cate memory not previously assigned.

NON-EXIS TING SEGMEN T - The file struc­
ture of the specified device is damaged.

NO P ERMISSION- The attributes of the speci­
fied file or device do not permit the requested
access.

BAD PATH NAME- The specified pathlist con­
tains a s y ntax error, for i nstance a n illegal
character.

PATH NAME NO T FOUND - The system can­
not find the specified pathlist.

SEGMEN T LIS T FULL - The specified file is
too fragmented for further expansion.

FILE ALREADY EXISTS - The specified file­
name already exists in the specified directory.

ILLEGAL BLOCK ADDRESS - The file struc­
ture of the specified device is damaged.

C-3

OS -9 Technical Reference

Code Code Meaning
HEX DEC
$DC 220 PHONE HANGUP-DATA CARRIER DETECT

LOST - The data carrier detect is lost on the
RS-232 port.

$DD 221 MODULE NO T FOUND - The system received
a request to link a module that is not in the
specified directory.

$DF 223 SUICIDE ATTEMPT - The current operation
has attempted to return to the memory location
of the stack.

$EO 224 ILLEGAL PROCESS NUMBER - The specified
process does not exist.

$E2 226 NO CHILDREN - The system has issued a wait
service request but the current process has no
dependent process to execute.

$E3 227 ILLEGAL SWI CODE- The system received a
software interrupt code that is less than 1 or
greater than 3.

$E4 228 PROCESS ABORTED - The system received a
signal Code 2 to terminate the current process.

$E5 229 PROCESS TABLE FULL- A fork request can-
not execute because the process table has no
room for more entries.

$E6 230 ILLEGAL PARAMETER AREA - A fork call
has passed incorrect high and low bounds.

$E7 231 KNOWN MODULE - The specified module is
for internal use only.

$E8 232 INCORRECT MODULE CRC - The CRC for the
module being accessed is bad.

$E9 233 SIGNAL ERROR - The receiving process has a
previous, unprocessed signal pending.

$EA 234 NON-EXISTEN T MODULE- The system can-
not locate the specified module.

C-4

Code
HEX DEC
$EB 235

$EC 236

$ED 237

$EE 238

$EF 239

System Error Codes I C

Code Meaning

BAD NAME- The specified device, file, or mod­
ule name is illegal.

BAD MODULE HEADER- The specified mod­
ule header parity is incorrect.

RAM FULL - No free system random access
memory is available: the system address space is
full, or there is no physical memory available
when requested by the operating system in the
system state.

UNKNOWN PROCESS ID - The specified pro­
cess ID number is incorrect.

NO TASK NUMBER AVAILABLE - All avail­
able task numbers are in use.

Device Driver Errors

110 device drivers generate the following error codes. In most
cases, the codes are hardware-dependent. Consult your device
manual for more details.

Code
HEX DEC

$FO 240

$Fl 241

$F2 242

$F3 243

$F4 244

Code Meaning

U N I T ERROR - The specified device u n i t
doesn't exist.

SECTOR ERROR - The specified sector number
is out of range.

WRI TE PRO TECT - The specified dev ice is
write-protected.

CRC ERROR - A Cyclic Redundancy Code error
occurred on a read or write verify.

READ ERROR - A data transfer error occurred
during a disk read operation, or there is a SCF
(terminal) input buffer overrun.

C-5

OS -9 Technical Reference

Code
HEX DEC
$F5 245

$F6 246

$F7 247

$F8 248

$F9 249

$FA 250

$FB 251

$FC 252

$FD 253

$FE 254

C-6

Code Meaning

WRITE ERROR - An error occurred during a
write operation.

NOT READY - The device specified has a not

ready status.

SEEK ERROR - The system attempted a seek
operation on a non-existent sector.

MEDIA FULL - The specified media has insuf­
ficient free space for the operation.

WRONG TYPE - An attempt is made to read
incompatible media (for instance an attempt to
read double-side disk on single-side drive).

DEVICE BUSY - A non-shareable device is in
use.

DISK ID C HANGE - You changed d iskettes
when one or more files are open.

RECORD IS LOCKED-OUT - Another process
is accessing the requested record.

NON -SHAREABLE FILE BUSY - Another pro­
cess is accessing the requested file.

I/0 DEADLOCK ERROR - Two processes have
attempted to gain control of the same disk area
at the same time.

Index

ACIAPAK 8-135
active process 2-12 - 2-13

queue 2-14, 8-98
state 2-13 - 2-14

address
find 64K block 8-85
lines 2-7
p olling 2-17
space, add module 8-104

age, process 2-14
alarm, set 8-66
allocate

high RAM 8-69
image 8-70
memory 8-76
memory blocks 8-67 -

8-68
process descriptor 8-71
process task number

8-73
RAM 8-72

allocation
bit map 8-7
map sector 5-1
of memory 2-5 - 2-7
polling 2-17

allocation map

clear 8-13
disk 5-3

alpha screen
cursor 8-118
memory 8-117

AS M assembler 8-2
assembler, RMA 8-2
attach a device 8-44- 8-45
attribute

byte 5-5,
file 5-12

background color, get 8-129
bell, set alarm 8-66
bit map 2-5

allocation 8-7

bitmap (cont'd.)

block

search memory
allocation 8-33

allocate system
memory 8-105

deallocate system
memory 8-106

map into process
space 8-96

number 2-7
scroll 8-139

block map, system 8-18
boot

file, load 5-26
module, link 8-75

b ooting OS-9 1-3
b ootstrap

memory request 8-76
system 8-75

b order color, get 8-129
buffer

map (Get/Put) 8-138
reserve graphics 8-136

button
state, mouse 8-124-

8-125, 8-126
timeout, mouse 8-140

byte
attribute 5-5
deallocate 64-byte

block 8-101
get from memory

block 8-94
get two bytes 8-95
read from path 8-59 -

8-60
store in task 8-109

calling process
insert in I/0 queue 8-91
terminate 8-14
turn off 8-35, 8-43

C C3DIS K 1-2

1

OS-9 Technical Reference

CC3GO module 2-19
CC310 1-2, 6-1
chain 8-8 - 8-9
change

device operating
parameters 5-23

directory 8-46
character

read SCF input 6-13
write, SCF 6-14

ChgDir 4-4
child process 2-13

create 8-15 - 8-17
clear specified block 8-77
click 8-126
CLOCK 1-2
clock

module 1-2, 2-19
real-time 2-12, 2-17

close
file 4-7
path 8-47, 8-135

codes
signal 2-15
system error C-1

command interpreter 1-4
communication,

interprocess 2-15
compact module directory

8-88
compare strings 8-10
compatibility with Level

One 2-1
concurrent execution 7-1 - 7-3
copy external memory 8-11
count, link 2-5
counter start, mouse 8-124
CPU 2-7

CRC
time 4-11

calculate 8-12
validate module 8-111
value 3-1 - 3-3

create
directory 8-55 - 8-56

2

create (cont'd.)
file 8-48 - 8-49

current
data directory 8-51
execution directory 8-51

cursor positioning 4-5
cyclic redundancy check 3-1 -

3-3

DAT
hardware 8-99
registers 8-103
to logical address 8-78

data
available, SCF test

8-113
directory 8-51
stream 4-3
transfer, pipes 7-1 - 7-3
move in memory 8-97

DAT image 8-70
conversion 8-78
copy into process

descriptor 8-102
deallocate block 8-77
high block 8-86
low block 8-87
pointer 8-95

DAT task number
release 8-99
reserve 8-100

date
get system 8-40
set 8-38

deadlock 5-13
deadly embrace 5-13
deallocate

· image RAM blocks 8-79
map bits 8-13
process descriptor 8-80
RAM blocks 8-81
task number 8-82

default palette registers
8-129, 8-149

delete file 8-50 - 8-51

descriptions, system call 8-2
descriptor

get process 8-20
path 4-18
pointer 8-82
process 2-13

detach device 8-52
device

add or remove from
polling table 8-92

attach 8-44 - 8-45
attachment, verify 8-44

- 8-45
controller 5-15
control registers,

initialize 6-12
control registers, SCF

6-12
descriptor 1-4, 4-2, 4-17,

A-2
detach 8-52
modules 5-15
modules, RBF 5-8 - 5-10
modules, SCF 6-6 - 6-8
name, get 8-115
open path to 8-57 - 8-58
operating parameters,

RBF 5-23
operating parameters,

SCF 6-15
status 2-17 - 2-18, 8-63
status, get 8-54
table 4-2, 8-52
terminate, RBF 5-24
terminate, SCF 6-16
write to 8-64 - 8-65

device driver 1-3, 4-11
close path 8-135
modules 4-8
name 5-15
SCF 6-9 - 6-17
SCF subroutines 6-10 -

6-17
subroutines, RBF 5-16 -

5-27

Index

device driver modules,
RBF 5-13 - 5-17

device interrupt 5-25
SCF 6-17

directory

disk

attribute byte 5-5
change 8-46
disk 5-5
entry, module 8-83
get module 8-19
make 8-55 - 8-56
module 2-12, 8-88

directories 5-5
sector read 5-19, 5-21

disk allocation map 5-3
sector 5-1

diskette format B-1
display

screen 8-143
status, get 8-115

drag 8-126
drive head, restore 8-131
duplicate path 8-53

editing, line 6-1, 8-61
end-of-file, test for 8-114
equate file 2-4
equivalent logical address

8-78
error

codes, system C-1 - C-6
message, write 8-30
print 8-30

exclamation point, pipes 7-1 -
7-3

execute
mode 5-11
system calls 8-1 - 8-2

execution
directory 8-51
offset, module 3-7

exit calling process 8-14
external memory, read 8-11

3

OS -9 Technical Reference

fatal signal 2-13
file

attribute byte 5-12
closing 4-7
create 4-4, 5-12, 8-48 -

8-49
deadlock 5-13
delete 4-5, 8-50 - 8-51
descriptor 5-3 - 5-4
execute mode 5-11
get pointer position

8-114
line reading/writing 4-6
load module 8-29
locking 5-12
non-shareable 5-12
opening 4-4
open path 8-57 - 8-58
permission bits 5-4
pipe 7-1 - 7-3
pointer 4-5, 8-62
position, RB F 8-114
read 5-1, 4-5
sharing 5-12
size, get 8-114
status, get 8-54, 8-114
update mode 5-11
write line to 8-64 - 8-65
writing 4-6

file manager 1-3
modules 4-3
name 5-15

find
64-byte block 8-85
module directory

entry 8-84
fire button 8-123 - -8-127
FIRQ 4-12

interrupt 2-17
flag, RA M In Use 8-81
flip byte 2-17
floppy diskette format B-1
foreground color, get 8-129
FORK 2-8
fork, child process 8-15 - 8-17

4

FORMAT 5-2
format

device descriptor 4-17,
A-2

INIT module A-3
memory module 3-6 -

3-7, A-1
of device driver

modules 4-10
track 8-132

function

get

calls 2-4 - 2-5, 8-1
key sense 8-133

a byte 8-94
free high block 8-86
free low block 8-87
ID 8-22
process pointer 8-89
status 8-54
Status system calls

8-112 - 8-130
system time 8-40

Get/Put buffer, map 8-138
GETS TA 8-112

SCF 6-15
GetStat 4-6
Getstats 5-23
graphics buffer

reserve 8-136
select 8-137

graphics interface 1-2
GRFINT 1-2

handler routine, virtual
interrupt 8-110

hard disk shutdown 8-133
hardware

controller, SCF 6-9
DAT registers 8-103
vector 2-16

header
module 3-1 - 3-2
parity 8-111

header (cont'd.)
pattern, floppy

diskette B-1
high block, memory search

8-86
high-level

menu handler 8-122
menu manager 8-148
window handler 8-139

high-resolution
mouse adapter 8-126
screen, allocate 8-142

hold, button 8-126
I/0

calls 2-4 - 2-5, 8-1
device accessing 2-11
module, delete 8-90
path, close 8-47
queue, insert calling

process 8-91
I/0 system 1-3 - 1-4

calls 2-1, 8-2

ID

system modules 1-1 -
1-4, 4-1

transfers 4-8

return caller's
process 8-22

set user 8-39
identification sector 5-1
image, allocate 8-70
INIT 1-2, 5-18
INIT module 2-17

format A-3
link 8-75

Init, SFC 6-12
initialization table, SCF

device 6-6 - 6-8
initialize device memory 5-18
input buffer, read SCF

character 6-13
insert process 8-7 4
install virtual interrupt

8-110
intercept, set signal 8-21

Index

interface
graphics 1-2
VDG 4-2
Windint 4-2

interprocess
communication 2-15

interrupt
device 5-25
enable, SCF 6-12
FIRQ 2-17
processing 2-1

lOMAN 1-2
IRQ 4-12

add/remove device from
polling table 8-92

interrupt 2-17
polling 2-17
polling table 2-18
service routine 5-25

IRQSVC routine 4-13
IRQSV 4-11

joystick value, get 8-116

kernel 1-2
key

repeat parameters,
set 8-147

sense function 8-133
status, get 8-120

keyboard scan 2-17

language byte 3-4
line

link

editing 6-1, 8-61
reads 4-6, 8-61
writes 4-6, 8-65

to memory module 8-23
- 8-24, 8-28

using module directory
entry 8-83

link count 2-5
decrease 8-42

5

OS -9 Technical Reference

load
boot file 5-26
byte from memory

block 8-94
from task offset 8-93
module 8-25 - 8-26, 8-29
two bytes 8-95

lock, end-of-lock 5-12
locking

files 5-12
record 5-10 - 5-11

logical
address space 2-6, 2-8
sector number 5-1

LSN 5-2, 5-5

macro 2-4
MAKDIR 4-4
make directory 8-55 - 8-56
manager

map

file 1-3
random block 1-3
sequential file 1-3

block 8-96
search allocation 8-33

mask byte 2-18
memory

6

allocate 8-76
allocate blocks 8-67 -

8-68
allocate high RAM 8-69
change process data

size 8-27
deallocate 2-5
find low block 8-87
free screen 8-144
map 2-6
module format 3-6 - 3-7,

A-1
module, link 8-23 - 8-24
move data 8-97
page 2-5
pool 8-80
request, bootstrap 8-76

memory (cont'd.)
segment 2-8

memory allocation 2-5 - 2-7
memory block 2-7

find 64K 8-85
get byte 8-94
get high 8-86
map 8-81
map, search 8-72

memory management 2-1, 2-5
- 2-12

unit 2-7 - 2-8
menu

manager, update
request 8-148

selection 8-122
message, write error 8-30
MMU registers 2-8
mnemonic name, LSN 5-2
MODPAK 8-135
module

add into address
space 8-104

body 3-1 - 3-2
clock 2-19
CRC calculate 8-12
decrease link count 8-42
delete 110 module 8-90
device descriptor 5-15
device driver 4-8
file manager 4-3
finding 2-12
format 3-1 - 3-3
link 8-28
link count, decrease

8-42
linking 1-2
load 8-25 - 8-26, 8-29
load and execute

primary 8-8 - 8-9
name 3-3
RBF -type device

drivers 5-13 - 5-17
SCF device descriptor

6-6 - 6-8

module (cont'd.)
types 3-1, 3-5
unlink 8-41
validate 8-111

module directory 2-5, 2-12
compact 8-88
entry, link using 8-83
find 8-84
get 8-19
pointer 8-84

module header 3-1 - 3-3, 5-15
SCF device driver 6-9

monitor, set type 8-146
mouse

button state 8-125
button timeout 8-140
click 8-122
coordinates 8-127
countdown 8-125
countup 8-125
parameters, set 8-147
port 8-125
resolution 8-126
screen position 8-126
send signal to process 8-

141
status, get 8-123
timeout 8-124
window working area

8-127
move data 8-97
multiplexer 2-8
multiprogramming 2-12 -

2-16
management 2-1

multitasking 1-2

name parse 8-31 - 8-32
names, compare 8-10
next process 8-98
NMI interrupt 2-17
non-shareable file 5-12
number, path 8-53

Index

open
file 8-48 - 8-49
path 8-57 - 8-58

operation of memory
management 2-8 - 2-12

08-9
Level One

compatibility 2-1
modules 1-2
scheduler 2-14 - 2-15

OS9P3 2-1
module 2-2

packet size 8-124
palette, get information 8-127
palette register 8-129

set default 8-149
settings 8-129

parameters, mouse and key
repeat 8-147

parent
directory 5-3
process 2-13

parity 8-135
parse name 8-31 - 8-32
path

close 8-47, 8-135
duplicate 8-53
open 8-57 - 8-58
read bytes 8-59 - 8-60
table 4-2

path descriptor 4-18, 5-5 -
5-8

read option section
8-112

SCF 6-2 - 6-6
write option section

8-130
permanent storage size,

module 3-7
physical address space 2-7
pipe file manager 4-3
PIPEMAN 1-2 - 1-3, 4-3
pipes 4-3, 7-1 - 7-3

7

OS -9 Technical Reference

process descriptor 2-13 -
2-14, 8-102

deallocate 8-80
descriptor, allocate 8-71
get 8-20
pointer 8-82

processes
active 2-12
data size, change 8-27

process ID 2-13
return caller's 8-22

pseudo vector 2-16
PutStat 4-6

RAM 2-5 - 2-7
allocate 8-69, 8-72
allocate blocks 8-70
allocation 2-13
blocks, deallocate 8-81
blocks, deallocate

image 8-79
interrupt vector 2-18

random

RBF

read

access 5-1
block file manager 1-3,

4-3

change file size 8-131
format track 8-132
get file size 8-114
manager 4-3
tables 5-14 - 5-17

bytes 8-59 - 8-60
device operating

parameters 5-23
disk sector 5-19
external memory 8-11
input character, SCF

6-13
line 6-2, 8-61
mode 5-11
system call 6-1

real-time clock 2-12, 2-17
record locking 5-10

8

reference
System Mode calls 8-5 -

8-6
User Mode system

calls 8-3 - 8-4
registers

DAT 8-103
MMU 2-8

release a task 8-99
request system memory

8-105
reserved memory 2-5 - 2-7
reserve task number 8-100
return

64 bytes 8-101
system memory 8-106

RMA assembler 8-2
ROOT directory 5-3, 5-5
RTS instruction 2-18

SCF
configure serial port

8-134 - 8-135
data available test

8-113
device control

registers 6-12
Getsta 6-15
manager 4-3
path descriptor 6-2 - 6-6
terminate device 6-16

scheduler, OS-9 2-14 - 2-15
screen

allocate high-
resolution 8-142

convert type 8-145
display 8-143
free memory 8-144
mouse position 8-126
palette 8-127
size, get 8-119
type 8-128, 8-142, 8-145

scroll block, install 8-139
search bits 8-33

sector 5-3
pattern, floppy

diskette B-1
seek, file pointer 8-62
segment, memory 2-8
select graphics buffer 8-137
send signal 8-34
sequential character

file manager 1-3, 4-3
I/0 6-1

serial port configuration
8-121

service

set

request processing 2-1
routine, IRQ 5-25

alarm 8-66
date 8-38
IRQ 8-92
priority 8-36
process DAT image

8-102
process task DAT

registers 8-103
status 8-63
svc 8-107 - 8-108
SWI 8-37
time 8-38
user ID 8-39

Setstats 5-23
Set Status system calls 8-130

- 8-150
shareable bit 3-5
sharing, file 5-12
shell 1-4
shutdown hard disk 8-133
signal 2-15 - 2-16

codes 2-15
fatal 2-13
from mouse to

process 8-141
intercept trap 2-15 -

2-16
intercept, set 8-21
send to process 8-34

Index

single-user

size

attribute 5-12
bit, files 5-12

of screen 8-119
of window 8-119

sleep
calling process 8-35

sleeping process 2-14, 2-16
slices, time 2-12
sound, create 8-150
speaker, create sound 8-150
state

active 2-13
of button 8-126
sleeping 2-14
suspend 4-13
waiting 2-13

static storage address 2-18
status

display 8-115
get, SCF 6-15
get mouse 8-123 - 8-127
of key 8-120
register 2-17
set, SCF 6-15

status, get 8-54
status, set 8-63
store byte in a task 8-109
string, scan input 8-31 - 8-32
strings, compare 8-10
subroutines

RBF device driver 5-16 -
5-27

SCF device drivers 6-10
- 6-17

suspend
bit 4-13 - 4-14
state 4-13

SWI, set 8-37
SWI2 instruction 2-4
symbolic names 2-4
sync byte 3-3
synonymous path number,

return 8-53

9

OS -9 Technical Reference

system
block map, get 8-18
boot 1-3
bootstrap 8-75
date, get 8-40
device, attach 8-44
error codes C-1 - C-6
initialization 2-1
link 8-104
mode call reference 8-5 -

8-6
time, get 8-40

system call
add 8-107 - 8-108
descriptions 8-2, 2-4
execution 8-1 - 8-2
get status 8-112 - 8-130
mnemonics names 8-1
User Mode reference 8-3

- 8-4
system memory

allocate high RAM 8-69
block map 8-81
deallocate 8-106
module directory, get

8-19
request 8-105

system modules 1-1 - 1-4

table

task

device 8-52
IRQ polling 2-18
RBF 5-14 - 5-17
SCF device descriptor

6-6 - 6-8
VIRQ 2-20

map 2-12
offset, load from 8-93
register 2-8
release 8-99
store byte 8-109

task number 8-73
DAT 8-100
deallocate 8-82

10

terminal, create sound 8-150
termi nate

a device 5-24
calling process 8-14
SCF device 6-16

ticks 4-11
time

CPU 4-11
get system 8-40
set 8-38
sharing 2-11
slice 2-16, 2-12

timeout, mouse 8-124
track

format 8-132
restore drive head 8-131

trailer pattern, floppy
diskette B-1

trap, signal intercept 2-15 -
2-16

type
convert screen 8-145
of screen 8-128
set monitor 8-146
window screen 8-142

unlink module 8-41 - 8-42
update mode 5-11
user calls 2-5
user ID 2-13

set 8-39
User Mode system calls

reference 8-3 - 8-4

validate module 8-111
VDG 1-2

alpha screen cursor
8-118

alpha screen memory
8-117

interface 4-2
vector

pseudo 2-16
set SWI 8-37

vectoring 2-16

verify device attachment
8-44 - 8-45

video display generator 1-2
VIRQ 2-19- 2-20

polling table 2-19 - 2-20
virtual interrupt, install

8-110

wait
calling process 8-43
state 2-13 - 2-14

waiting process 2-13
wildcard 4-6
WINDINT 1-2

Windint interface 4-2

window
descriptors 1-2
high-level handler 8-139
pointer location 8-124

screen, type 8-142
size, get 8-119
type 8-145
working area, mouse

8-127

Index

working directory, change
8-46

write
character to SCF

output 6-14

disk sector 5-21
path descriptor 8-130 -

8-131

to file or device 8-64

write line 8-65
line system call 6-2

11

