. .S 9 Levei .

Development System

a"/

- TANDY®

0S-9 Level Two

Development System

0S-9 Level Two Software:
© 1987 Microware Systems Corporation.
Licensed to Tandy Corporation. All rights Reserved.

0S-9 Level Two Development System Software:
© 1987 Tandy Corporation,
All rights Reserved.

08-9 Level Two Development System Documentation:
Interactive Debugger, Screen Editor, Relocating Macro Assembler, Utilities, Commands
© 1987 Tandy Corporation.
All rights Reserved.

Reproduction or use of any portion of this manual without express written permission
from Tandy Corporation is prohibited, While reasonable efforts have been taken in the
preparation of this manuals to assure its accuracy, Tandy Corporation assumes no
liability resulting from any errors in or omissions from this manuals, or from the use of
the information contained herein,

Tandy and the Tandy logo are registered trademarks of Tandy Corporation.

Motorola is a registered trademark of Motorola Inc.

10987654321

Contents

This manual contains documents for:

Interactive Debugger

A program to aid in diagnosing system programs, testing machine
language programs and to gain access to your computer's
memory.

Screen Editor
A screen-oriented text editor for preparing letters, documents, and
for writing OS-9 programs.

Relocating Macro Assembler
A full-featured macro assembler and linkage editor,

Utilities

Three utility programs: Make, to help maintain current version
software; Touch, to update files; and VDD, a Virtual Disk
Driver/RAM Disk Driver to create a high-speed storage in your
systems RAM,

Commands
Twelve additional OS-9 commands to expand your system's

capabilities.

Each document contains its own table of contents.

Vi

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTEH EQUIPMENT AND
SOFTWARE PURCHASED FROM RADIO SHAGK COMPANY-QWNED COMPUTER CENTERS, RETAIL
STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHDH\ZED LOCATIONS

USA LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A CUSTOMER assumes full responsibilbty that this computer hardware ﬁurchased (the ' Equipment '), and any
copies of software inciuded with the Equipment or licensed segarate Ev {the "Software''} meets the specifications,
capacity, capabilities, versatirty, and other requirements of Cl

B CUSTOMER assumes full msponmb!lﬂy for the condition and eftectveness of the operating environmeni in which
the Equipment and Software are to function, and for its installation.

LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a penod of ningty (90) calendar days from the date of the Radio Shack sales document received upon
purchase of the Equipment RADIO SHACK warrants to the oniginal CUSTOMER that the Equipmeni and the
medium upon which the Software 15 stored is free from manufacturing defects This warranty i3 only applicable
o purchases of Tandy Equipment hy the original customer from Radlo Shack company-owned compuiar
cantars, retail stores, and Radlo 8hack franchigees and dealers at their authorized locations. The warranty (s
void if the Equipment ar Software has been subjected to improper or abnormal use {f a manufacturing defect is
discovered during the stated warranty perod the defective Equipment must be rstumed to a Radio Shack
Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a participating Radio Shack
dealer for repair, alon%wnh a copy of the sales document Or |ease agreement. Ths or\glnal CUSTOMER § sale and
exclusive remedy in the event of a delect is limited to the correction of the defect b ’Jlau replacement, or
refund of the purchase price, at RADIO SHACK'S election and soie expense. RADIO SHACK has no obligation to

E\aoe or repair expendable items.

8. DIO SHACK makes ng warranty as to the design, capability. ca.paf:lt‘é of surtability for use of the Softwara,
BXCE) Erowded in this paragraph Software 15 icensed on an basis, without warranty The nngma\
Cus OME 'S exclusive remedy, in the event of a Software manufacturing dmect is Its repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales dacument received upon license of the
Sottware The defective Software shall bs returned to 3 Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no emploaee, aqsenl, franchisee, dealer or other person Is authonized to give any
warranties of any nature on behalf of

D EXCEPT AS PROVIDED HEREIN, HADIU SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPDSE IS LIMITED IN ITS DURATION
TO THE DURATION OF THE WRITTEN LIMlTEn WAHRANTIES SET FORTH HEREIN,

E Some states do nut allow fimitations 01 how long an implied warranty lasts, so the abave imitation(s) may not
apply to CUSTOM

LIMITATICIN OF LIABIL TY

GCEPT AS PROVIDED HEREIN, RADIO SHAGK SHALL HAYE NG LIABILITY OR RESPONSIBILITY TO CUSTOMER
nﬂ ANY OTHER PERSON OR ENTITY WITH HESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED TO BE CAUSED DIRECTLY OR INDMRECTLY BY “EQUIPMENT” OR “‘SOFTWARE” SOLD, LEASED,
LICENSED OR FURNISHED BY RADID SH. Acu INCLUDI G, BUT NOT LIMITED TO, ANY INTERAUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES HESULTING FROM
THE USE OR OPERATION OF THE “EQUIPMENT" OR “SOFTWAR! HACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEUUENHAL BAMABES AHISINB 0uT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OLT DF OR [:ﬂIINE(:TEn WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT” OR ‘‘SOFTWARE."

NOTWITHSTANDING THE ABOYE LIMITATIONS AND WARRANTIES, RADID SHACK'S LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR “'EQUIPMENT"' DR “'SOFTWARE" INVOLVED.

8 gADIO SHACK shall not be liable for any damages caused by de'ay .n delivering or furmishing Equipment andror

oftware

C No action ansm? out of any claimed breach of this Warranty or transactions under this Warranty may be brought
mare than two (2) dvears after the cause of action has accrugd or more than four (4) vears after the date of the
Radio Shack sales document for the Equipment or Software, whichever first occurs,

0 Some states do not allow the Imitation or exclusion of incidental or consequential damages. so the above
Ilmuaﬂunls) ur exclusmn(s) may not apply to CUSTOMER

SOFTWARE LICE

RADIC SHACK qranis to CUSTOMER a non-exciusive, paid-up license to use the TANDY Software on one computer,

subject to the tollowsng provisions

A, Except as otherwise prowvided in this Software License, applicable copyright laws shall apply to the Software

B Title to the medium on which the Sofiware 1s recorded (cassette and/or diskette) or stored (ROM) Is transferred to
CUSTOMER, but not titls to the Software

C. CUSTOMER may use Software on a multiuser or networx syster only if erther the Software 15 expressy labeled
to be for use on 2 multiuser or netwerk System, or one copy of ths software s purchased tor each node or
terminal on which Software 15 to be used simultaneously

D CUSTOMER shall not use make manufacture, or reproduce copies of Software excapt for use on one computsr
and as 1s specilically provided in this Sottware License Customer is expressly prohibited from disassembling the

oftware

E CUSTOMER is permitted to make additional capies of the Software only for backup or arenval purposes or if
additional capies are required In the operation of one computer with the Software, but anly ta the extent the
Software allows a hackup copy to be made. However, for TRSDOS Software, CUSTOMER 15 parmitted to make a
limitad number of additional copies for CUSTOMER'S own use

F CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed The provisions of this Software License shal also be
applicable to third parties receving capies of the Sottware from CUSTOMER.
All copyright natices shall be retained on all copies of the Schware.

APPLICABILITV OF WARRANTY

A The terms and condrtions of this Warranty are applicadie as between RADIO SHAGK and CUSTOMER to either a
sale of the Equipment and:or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for lease to CUSTOMER

B The imitations of liability and Warranty provisions heren shal inure to the benefit of RADIO SHACK, the author.
owner and or licensar of the Software and any manufacturer ot the Equipment sold by Radio Shack

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the arlginal CUSTOMER may

have other rights which vary from state to state 4/87

Interactive Debugger

Contents

Chapter 1/ Introductionc..ccoeeeveininieeiiieceeeereee. 1-1
Calling Debugc.cccvvevrvrincircnirccncneneneea s 1-1
BasiC CONCEPLSc.ooeeeeeeieieieeeetrecie e eses e cere e s 1-1

Chapter 2 / EXPressionsc.ccccovvvenienierievecnnecseeneenne. 2-1
CONSLANLSeeierericrcreree et e e e ereeseeneesne e 2o 1
Special NAMIEScccvviviereeireeeeeee e seneeescsssneesaanens 2-2
Register Namesc.ccoooiiiiiiiieeeeeeee e, 2-3
OPETALOTSoeeeireerieeeeeritesieectesnee e sraeesrrrsanneseanensssensens 2-3
Forming EXPressionscccevcverirninnverensrnevenecnsnnensnnes 2-4
Indirect AdAressingccccviveeciieimeriineireeeeciienee e renenens 2-4

Chapter 3/ Debug Commandsc.ccoeveeeeeiveinnnn. 3-1
Calculator Commandsc.ocovcveviemrriecciecneenec e 3-1
Dot and Memory Examine/Change Commands 3-2

Incrementing DOtccvvveereinenienninninnnnncnnasineennenns 3-3
Decrementing DOtcccoccevceennvnnerneeneiieecnenes 3-3
Changing DOtcccoirieiiiieiierr e 3-3
Changing Dot's Contentscccevevvvnievecriseeenes 3-4
Register Examine/Change Commandccceevvrineennnen. 3-5
Breakpoint CoOmmandsccccuvnconariinrcineinonmeneneenns 3-7
Setting Breakpointscccovcveiniiiiieiniimnnrinnnnns 3-8
Removing Breakpointsc.cccveieiinciieiiiiiiaeieeeeenenns 3-8
Program Setup and Run Commandsc.cccceervrnennnnne. 3-9
Goto Commandcceeovviieiiiiiieene e 3-10

Link Commandocovveiveeireeriiireiiieneeeneserseniosssosesns 3-10

Interactive Debugger Contents

Utility Commandsccccccmiiriiiiieriennineescereinsensecncrnnees 3-11
Clearing MEMOTYoovveviirnerrivriessimseresreineessnnseinns 3-11
Displaying Memoryccoeeeveiemieeerenreneceraorreeeen. 3-12
Searching Memoryccooovvveivicccciieee e 3-12
Shell Commandc.ocvivvvvereiecricnerecreceneene 3-12
Quitting Debugcvcvvvviriimiiiniciiinnnenninnne s 3-13

Chapter 4/ Using Debugccocooociiiiiiiimnicieniieee 4-1

Sample Programcccoeminiiriiciinniiniennen 4-1

USINg DebUZ .t 4-4

Patching Programscccceeeveiciiniisninninnicmenseersnenceneannas 4-7
Patching OS-9 Component Modulesc.cccccoceeneee. 4-8

Chapter 5/ Debug Command Summary
and Error Codes ... 5-1

Debug Command SUmMmMAarycoceeeeeeieeiorinvnennececenneane 5-1
Dot Commandsccooeevieriiieneercnicrrree e 5-1
Register Commandscooeviiiiiiiiinireceec e 5-2
Program Setup and Run Commandsccoccovivrennes 5-2
Breakpoint Commandscccccceeenrericinieiicenecinconnne 5-2
Utility Commandsccveeeverreervcnrerrerconorerereenioneenses 5-3

Debug Error Codes ... 5-3

Chapter 1

Introduction

Debug is an interactive debugger that aids in diagnosing system
programs and testing machine-language programs for the 6809 micro-
processor. You can also use it to gain direct access to the computer's
memory. Debug's calculator mode can simplify address computation,
radix conversion, and other mathematical problems,

Calling Debug

To run Debug, type the following command at the OS-9 system
prompt:

DEBUG [ENTER]

Basic Concepts

Debug responds to 1-line commands entered from the keyboard. The
screen shows the DB: prompt when Debug expects a command.

Terminate each line by pressing [ENTER]. Correct a typing error by
using the backspace () key, or delete the entire line by pressing X
while pressing [CLEAR].

1-1

Interactive Debugger Introduction / 1

Each command starts with a single character, which you can follow
with text or one or two arithmetic expressions, depending on the
command. You can use upper- or lowercase letters or a mixture.
When you use the spacebar to insert a space before a specific
expression, the screen shows the results in hexadecimal and decimal
notation. For example, in the calculator mode, to obtain the
hexadecimal and decimal notation for the hexadecimal expression
A+2, type:

[SPACEBAR][A][+][2]

Debug displays:

DB: A+2
$000C #00012

Chapter 2

Expressions

Debug's integral expression interpreter lets you type simple or
complex expressions wherever a command calls for an input value.
Debug expressions are similar to those used with high-level languages
such as BASIC, except that some extra operators and operands are
unique to Debug.

Numbers in expressions are 16-bit unsigned integers--the 6809's
native arithmetic representation. The allowable range of numbers is 0
to 65535. Debug performs two's complement addition and subtraction
correctly, but displays all results as positive numbers in decimal form.

Some commands require byte values. The screen shows an error
message if the result of an expression is too large to be stored in a
byte; that is, if the result is greater than 255. Some operands, such as
individual memory locations and some registers, are only one byte
long, and Debug automatically converts them to 16-bit words without
sign extension.

Spaces, other than a space at the beginning of a command, do not
affect evaluation of the expression. Use them as necessary between
operators and operands to improve readability.

Constants

Constants can be in base 2 (binary), base 10 (decimal), or base 16
(hexadecimal). Binary constants require the prefix %. Decimal
constants require the prefix #. Debug assumes all other numbers to be
hexadecimal. They can have the optional prefix $. The following table
shows examples of each type of constant;

2-1

Interactive Debugger Expressions { 2

Decimal Hexadecimal Binary

#100 64 %1100100

#255 FF %11111111

#6000 1770 %1011101110000
#65535 FFFF %1111111111111111

You can use character constants. Use a single quotation mark (') for 1-
character constants and a double quotation mark (") for 2-character
constants. Quotation marks produce the numerical value of the ASCII
codes for the character(s) that follow. For example:

‘A = $0041
‘0 = $0030
"AB = $4142
"99 = $3939

Special Names

Dot (.) refers to Debug's current working address in memory. You can
examine it, change it, update it, use it in expressions, and recall it. Dot
eliminates a tremendous amount of memory address typing.

Dot-Dot (..) is the value of Dot before the last time it was changed. Use
Dot-Dot to restore Dot from an incorrect value, or use it as a second
memory address.

2-2

Interactive Debugger Expressions 2

Register Names

Specify the MPU registers with a colon (:) followed by the mnemonic
name of the register, as follows:

A = Accumulator A

:B = Accumulator B

:D = Accumulator D

X = X Register

Y = Y Register

U = U Register

:DP = Direct Page Register

:SP = Stack Pointer

‘PC = Program Counter

:CC = Condition Codes Register

The values returned are the test program's registers, which are sracked
when Debug is active. Debug increases 1-byte registers to a word
when used in expressions.

Note: When a break point interrupts a program, the SP
register points at the bottom of the MPU register stack,

Operators

Operators specify arithmetic or logical operations to be performed
within an expression. Debug executes operators in the following
order:

- (negative numbers)
& and ! (logical AND and OR)

* and / (multiplication and division)
+and - (addition and subtraction)

Operators that are in a single expression and that have equal
precedence (for example, + and -) are evaluated left to right. You can
use parentheses, however, to override precedence.

2-3

Interactive Debugger Expressions 2

Forming Expressions

An expression is composed of any combination of constants, register
names, special names, and operators. The following are wvalid
expressions:

#1024+#128
X-1¥-2

+20

(i X+:A)
:U & FFFE

Indirect Addressing

Indirect addressing returns the data at the memory address, using a
value (expression, constant, special name, and so on) as the memory
address. The two Debug indirect addressing modes are:

<expression> returns the value of a memory byte using
expression as an address

[expression]) returns the value of a 16-bit word using
expression as an address.

For example:

<200> returns the value of the byte at Address 200

[:X] returns the value of the word pointed to by
Register X

[.+10] returns the word value at Address Dot plus 10

2-4

Chapter 3

Debug Commands

This chapter describes Debug's available commands. Following the
description for each command, there is an example. The left side of
the example shows what you type, and the right side shows what the
screen displays. Be sure to execute these examples in the order they
appear so you obtain the screen display shown. Many of the examples'
results depend on examples previously executed. Also, remember to
press [ENTER] after each command.

Calculator Commands

The [SPACEBAR] expression command evaluates the specified
expression and displays the result in both hexadecimal and decimal.
For example:

You Type: The Screen Shows:
[SPACEBAR]5000+200[ENTER] $5200 #20992
[SPACEBAR]8800/2[ENTER] $4400 #17408
[SPACEBAR}#100+#12[ENTER] $0070 #00112

You can also use this command to convert values from one
representation to another. For example:

You Type: The Screen Shows:
[SPACEBAR]%11110000[ENTER] $00F0 #00240
[SPACEBARJ'A[ENTER] $0041 #00065
[SPACEBAR]#100[ENTER] $0064 #00100
[SPACEBAR].[ENTER] $0000 #00000

3-1

Interactive Debugger Debug Commands | 3

The examples show: (1) a conversion from binary to both hexadecimal
and decimal, (2) a character constant conversion to hexadecimal and
decimal ASCII, and (3) a decimal to hexadecimal conversion. The last
example used indirect addressing to examine memory without
changing Dot's value.

In addition, you can use indirect addressing to simulate 6809 indexed
or indexed indirect instructions. The following example is the same as
the assembly-langhage syntax [D,Y]:

You Type: The Screen Shows:

[SPACEBAR][:D+:Y][ENTER] $0110 *00272

Dot and Memory
Examine/Change Commands

You can display the current value of Dot (the current memory
address), using the DOT command. For example:

You Type: The Screen Shows:

2201 BO

This shows that the present value of Dot is 2201. That memory address
contains the value BO.

Incrementing Dot

You can use [ENTER] to increment the value of Dot and display its new
value and contents:

You Type: The Screen Shows:
[ENTER] 2202 05
[ENTER] 2203 C2
[ENTER] 2204 82

3-2

Interactive Debugger Debug Commands / 3

Decrementing Dot

Use the minus (-) key to decrement the value of Dot. As when you use
the [ENTER] key, Debug displays both the new value and the contents
of that address:

You Type: The Screen Shows:

[ENTER] 2204 82

-[ENTER] 2203 C2

-[ENTER] 2202 05
Changing Dot

You can enter an expression after the DOT command to change the
value of Dot:

Debug evaluates the expression, and sets Dot to that value. For
example:

You Type: The Screen Shows:

. 500[ENTER] 0500 12
Debug displays the new value of Dot and its contents.

The DOT-DOT command (..) command restores Dot to its previous
value:

You Type: The Screen Shows:
.[ENTER] 0500 12
. 2000[ENTER] 2000 9C
{ENTER] 0500 12

33

Interactive Debugger Debug Commands ! 3

Changing Dot's Contents
You can change the contents of Dot with the EQUAL (=) command:

= expression

Debug evaluates expression, and stores the result at Dot. Debug then
increments Dot and displays the next address and its contents.

The EQUAL command also checks Dot, after the new value is stored,
to see that it changed to the correct value. If it did not, the screen
shows an error message. This happens when you attempt to alter non-
RAM memory. In particular, the registers of many 6800-family
interface devices (such as PIAs and ACIAs) do not read the same as
when written to.

For example:
You Type: The Screen Shows:
JENTER] 2203 C2
=FF[ENTER] 2204 01
-[ENTER] 2203 FF

Note: The EQUAL command can change any memory
location. Be careful when changing addresses so that you do
not accidentally alter the Debug program, the program being
tested, or OS-9.

3.4

Interactive Debugger Debug Commands | 3

Register Examine/Change Command

You can use any of several forms of the colon (:) REGISTER
command t{o examine one or all registers or to change a specific
register's contents.

The registers affected by these commands are actually images of the
register values of the program under test. These values are stored on a
stack when the program is not running. Although a dumsmy stack is
established automatically when you start Debug, use the E command
to give the register images valid data before using the G command to
run the program. The registers are valid after breakpoints are
encountered and are passed back to the program upon the next G
command. (See the "Program Setup” and "GOTO Command" sections
later in this chapter for information on the E and G commands.)

Note: If you change the SP register, you move your stack and
change register contents. In addition, Bit 7 of Register CC
(the E flag) must always be set for the G command to work. If
it is not set, Debug does not return to the program correctly.

This form of the REGISTER command displays the contents of a
specific register:

: register

Omitting register causes Debug to displays all register contents:

You Type: The Screen Shows:
:PC[ENTER] cag9
:B[ENTER] 007E
:SP[ENTER] 42FD
:[ENTER] PC=B265 A=01 B=0B CC=80
DP=0C
SP=0CF4 X=FFOD Y=000B
U=00AE

3-5

Interactive Debugger Debug Commands | 3

Use the following form of the REGISTER command to assign a new
value to a register:

:register expression

Debug evaluates the expression, and stores the result in the specified
register. If you specify 8-bit registers, the expression value must fit in
one byte. Otherwise, Debug displays an error message and does not
change the value of the register. Here is an example of this command:

You Type: The Screen Shows:

:X #4096 :X #4086

Breakpoint Commands

The breakpoint capabilities of Debug let you specify addresses at
which you want to suspend execution of the program under test and
reenter Debug. When you encounter a breakpoint, the screen shows
the values of the MPU registers and the DB: prompt. After the program
reaches a breakpoint, you can examine or change registers, alter
memory, and resume program execution. You can insert breakpoints
at as many as 12 addresses.

The inserted breakpoints use the 6809 SWI instruction, which
interrupts the program and saves its complete state on the stack.
Debug automatically inserts and removes SWT instructions at the right
times; so you do not see them in memory,

3-6

Interactive Debugger Debug Commands / 3

Because SWIs operate by temporarily replacing an instruction OP
code, there are three restrictions on their use:

e You cannot use breakpoints in programs in ROM.

e You must position breakpoints at the first byte (OP code) of the
instruction.

e You cannot use the SWI instruction in user programs for other
purposes. (You can use SWI2 and SWI3.)

When you encounter the breakpoint during execution of the program
under test, reenter Debug by typing : register [ENTER], where register
is a mnemonic as discussed in Chapter 2. The screen shows the
program's register contents.

Setting Breakpoints
Use the BREAKPOINT (B) command to insert breakpoints:
B expression
Debug evaluates the expression, and sets the breakpoint at that ad-
dress. If you omit expression, Debug displays all present breakpoint

addresses. Note in the following examples that the B . command sets a
breakpoint at the address of Dot.

You Type: The Screen Shows:
B 1CO0[ENTER] B 1C00

B 4FD3[ENTER] B 4FD3

[ENTER] 1277 39

B .[ENTER] B.

B[ENTER] 1C00 AFD3 1277

3-7

Interactive Debugger Debug Commands /3

Removing Breakpoints
Use the KILL (K) command to remove breakpoints:
K expression
Debug evaluates expression for the address at which to remove the

breakpoint. Omitting expression causes Debug to remove all break-
points, For example:

You Type: The Screen Shows:
BIENTER] 1C00 4FD3 1277

K 4FD3[ENTER]

BIENTER] 1C00 1277
K[ENTER]

B[ENTER]

Program Setup and Run Commands

The ESTABLISH (E) command prepares Debug for testing a specific
program module:

E module-name

This command's function is similar to that of the OS-9 Shell in starting
a program. The E command does not, however, redirect I/0 or override
(#) memory size. The E command sets up a stack, parameters, regis-
ters, and data memory area in preparation for executing the program
to be tested. The G command starts the program.

Note: The E command allocates program and data area
memory as appropriate. The new program uses Debug's
current standard I/O paths, but can open other paths as
necessary. In effect, Debug and the program become co-
routines.

3-8

Interactive Debugger Debug Commands /3

The E command is acknowledged by a register dump showing the
program’s initial register values. The G command begins program
execution. The E command sets up the MPU registers as if you had
just performed an FSCHAIN service request as shown in the following
table:

DP,U low
direct page

data area

parameter arca .
XS high

D = parameter area size
PC = module entry point absolute address
CC= (F=0), (=0 imterrupts disabled

For example:

You Type: The Screen Shows:
E myprog SP CC A B DP
X Y PC

0CF3 C800010C
OCFF 0DO00 9214

GOTO Command

To start (or resume) program execution, use the G command. The G
command goes to (resumes) program execution after a breakpoint. If a
breakpoint exists at the present program counter address, Debug does
not insert that breakpoint. If you wish to suspend execution during
each pass in a loop, you must insert two breakpoints in that loop.

3-9

Interactive Debugger Debug Commands | 3

Note: Usually you use the E command before the first G
command to set up the program to be tested. Debug initially
scts up a default stack, so you can use G expression to start a
program, using the results of the expression as a starting
address.

Examples:
DB: G 4CO0[ENTER]
DB: G :PC+100[ENTER]
DB: G [.JIENTER]
LINK Command
The LINK (L) command sets a link fo the specified module:

L module-name

If successful, LINK sets Dot to the address of the first byte of the
program and displays it.

You can use L to find the starting address of an OS-9 memory module.
For example:

You Type: The Screen Shows:

L FPMATH [ENTER] Ccooos7

You can also use the LINK command to reset Dot to the first byte of a
module:

You Type: The Screen Shows:

L FPMATH [ENTER] C000 87
. .+A10 [ENTER] CA10 FF
L FPMATH [ENTER] C000 87

3-10

Interactive Debugger Debug Commands | 3

Utility Commands

Clearing Memory

The CLEAR MEMORY (C) command performs a walking bit memory
test and clears all memory between the two evaluated expressions:

C expression! expression2

Expressionl specifies the starting address and expression2 specifies
the ending address, which must be higher. If any byte fails the test, the
C command displays its address. You can test and clear random access
memory only.

Note: Use this command carefully. Be sure of the memory
address you are clearing.

Some examples of this command are:

You Type: The Screen Shows:

C . .+FF[ENTER]

C 15FF 2000[ENTER] 17E4
17E7

The first example clears all memory between the last value of Dot and
Dot plus FF. Because Debug displayed a blank line (nothing), all
memory tested good.

The second example indicates that there is bad memory at addresses
17E4 and 17E7.

3-11

Interactive Debugger Debug Commands | 3

Displaying Memory

The MEMORY command produces a screen-sized tabular display of
the contents of memory in both hexadecimal and ASCII form:

M expression! expression2

Expressionl specifies the starting address. Expression2 specifies the
ending address, which must be higher.

Each line's starting address displays on the left, followed by the
contents of the subsequent memory locations. On the far right, Debug
displays the ASCII representation of the same memory locations.

Debug substitutes periods (.) for nondisplayable characters.

Searching Memory

The SEARCH command searches an area of memory for a 1- or 2-byte
pattern, beginning at Dot.

S expression1 expression2

Expressionl specifies the ending address. Expression2 is the data for
which to search. If expression2 is less than 256, Debug uses a 1-byte
comparison. If if is greater than 256, Debug uses a 2-byte comparison.

If Debug finds a match, it sets Dot to the address at which the match
occurred. If Debug does not find a match, it displays the DB: prompt.

Shell Command
To call the OS-9 shell from within Debug, use the $ command:

$ shell-command

This command executes the specified shell-command and returns to
Debug. If you omit the shell-command, Debug calls the OS-9 Shell,
which responds with prompts for one or more command lines.

3-12

Interactive Debugger Debug Commands | 3

You can also use the $ command to call the system utility programs
and the assembler from within Debug. For example:

$DIR[ENTER]}

displays the current directory.

Quitting Debug

The QUIT command lets you exit Debug and return to the OS-9 Shell.
To exit Debug, type:

Q [ENTER]
The system returns you to OS-9.

Note: Any modules you load using $load module-name,or
any modules you link using L module-name, remain linked in
memory. See the UNLINK command in the 0S-9 Level Two
Operating System manual for information about unlinking
modules from memory.

3-13

Chapter 4

Using Debug

You use Debug primarily to test system memory and I/O devices, to
patch the operating system or other programs, and to test hand-
written or compiler-generated programs.

Sample Program

The simple assembly-language program shown here illustrates the use
of Debug commands. This program prints HELLO WORLD and then
waits for a line of input.

NAM EXAMPLE

* Usetul Numbers

PRGRM equ $10

OBJCT equ 301

STK equ 200

* Data Section

csect

LINLEN RMB 2 LINE LENGTH
INPBUF RMB 80 LINE INPUT BUFFER
endsect

Interactive Debugger Using Debug | 4

* Program Section
psect example, PRGRM+0OBJCT,$81,0,STK,ENTRY

ENTRY EQU * MODULE ENTRY POINT

LEAX QUTSTR,PCR OUTPUT STRING ADDRESS
LDY #STRLEN GET STRING LENGTH

LDA #1 STANDARD OUTPUT PATH

0s9 1$WritLn WRITE THE LINE

BCS ERROR BRA IF ANY ERRORS

LEAX INPBUF,U ADDRESS OF INPUT BUFFER
LDY #80 MAX OF 80 CHARACTERS

LDA #0 STANDARD INPUT PATH

0s9 i$Readl.Ln READ THE LINE

BCS ERROR BRA IF ANY /O ERRORS

STY LINLEN SAVE THE LINE LENGTH

DB #0 RETURN WITH NO ERRORS

ERROR o0s9 F$Exit TERMINATE THE PROCESS

QUTSTR FCC /HELLO WORLD/ QUTPUT STRING
FCB $0D END OF LINE CHARACTER
STRLEN EQU *-OUTSTR STRING LENGTH

endsect End of PSect

Following is the listing (RMA output) for the Example program:

Microware OS-9 RMA - V1.1 87/03/16 17:33 example.a Page 1
EXAMPLE -

00001 NAM EXAMPLE

00002

00003 * Useful Numbers

00004 0010 PRGRM equ $10

00005 0001 OBJCT equ $01

00006 Q0c8 STK equ 200

00007

00008 * Data Section

00009 0000 csect

00010 0000 LINLEN RMB 2 line length

00011 0002 INPBUF RMB 80 line input buffer
00012 0052 endsect

00013

00014 * Program Section

00015 psect example, PRGRM+OBJCT,$81,0,STK,ENTRY
00016

Interactive Debugger Using Debug / 4

00017 0000 ENTRY EQU * module entry point
00018 0000 30840020 LEAX OUTSTR,PCR output string address
00019 0004 108e000c LDY #STRLEN get string length
00020 0008 8601 LDA #1 standard output path
00021 000a=103100 0s9 I$Writln write the line

00022 000d 2512 BGS ERROR BRA if any errors
00023 000f 3042 LEAX INPBUF,U address of input buffer
00024 0011 108e0050 LDY #80 max of 80 characters
00025 0015 8600 LDA #0 standard input path
00026 0017=103f00 0s9 I$ReadlLn read the line

00027 001a 2505 BCS ERROR BRA if any I/O errors
00028 001c 108100 STY LINLEN save the line length
00029 001f c600 LDB #0 return with no errors
00030 0021=103f00 ERROR o0s9 F$Exit terminate the process
00031

00032 0024 48454c4c QUTSTR FCC /HELLO WORLD/ QUTPUT STRING
00033 002f 0d FCB $0D end-of-line character
00034 000c STRLEN EQU *-QUTSTR string length

00035

00036 0030 endsect End of PSect

Following is the linkage map (Rlink output) for the Example program:
Linkage map for example File - /h0/CMDS/color/example

Section Code [Dat UDat IDpD UDpD File
example 00150000 0000 0C 00 RELS/example.r
dpsiz udpd 0000
end udat 0000
edata idat 0000
btext code 0000
etext code 0045

os9defs_a 00450000 0000 00 00 ../LIB/sys.l
{$ReadlLn cnst 008b
I$WritLn cnst 008c
F$Exit cnst 0006

00300000 0000 00 00

Interactive Debugger Using Debug | 4

Note: This Psect Example has a value of $15, which is the
offset from the beginning of the final module.

Following is the display created by using OS-9's DUMP command on
the Example module:

0S9:dump /d0/cmds/example
Addr 0 12 34 56 78 9ABCDETF 02468ACE

0000 87CD 0058 000D 11C1 3000 1500 C865 7661 .M.X...A0..Hexa
0010 6D70 6CES 0030 8D00 2010 BEODD 0C86 0110 mple.d..
0020 3F8C 2512 3042 108E 0050 8600 103F 8B25 ?.%.0B..P..?.%
0030 0510 9F00 CG00 103F 0648 454C 4CA4F 2057 ...F.?.HELLO W
0040 4F52 4C44 0DO0 0000 0000 0000 0065 7861 ORLD......... exa
0050 6D70 6C65 D091 A4B8S mple..$8

Using Debug

Following is a sample session using the OS-9 Interactive Debugger:

First, run Debug by typing:

debug [ENTER]
The screen displays the Debug prompt DB:. To load the Example
program module, type:

$load example [ENTER]

The dollar sign ($) tells Debug that you want to use an OS-2 system
command and LOAD reads the example module from the current
directory to your computer's memory.

You now need to tell Debug what module you want to use. Do so with
the L (LINK) command. Type:

1 example [ENTER]

4-4

Interactive Debugger Using Debug 1 4

Debug links to Example and displays the module's address:
C000 87

Redisplay the current address and its value using the DOT command.
Type:
. [ENTER]

The screen shows:

Cooo 87

To display the contents of the entire module, use the M (display
memory) command. Type:

m . .+57 [ENTER]

The screen displays:

C000 87CD 0058 000D 11C1 3000 1500 C865 7861 ..X...0...exa
C010 6D70 6CES 0030 8D0O0 2010 8E00 0C86 0110 mpl.0..
C020 3F8C 2512 3042 108E 0050 8600 103F 8B25 7.%.0B..P..2.%
C030 0510 9F00 C600 103F D648 4543C 4C4F 2057 ... ?.HELLO W
C040 4F52 4C44 0DOO 0000 0000 0000 0065 7861 ORLD........ exa
C050 6D70 6C65 0091 A4B8 0000 FFFF 0000 0276 mple........... v

Note: Psect of example program starts at an offset of $15
from the beginning linked module.

Prepare to run the Example program by typing:
e example [ENTER]

The screen displays the program’s initial register values:

SP cC A B DP X Y U PC
2F3 A8 00 o1 02 02FF 0300 0200 CO15

To set a breakpoint at BCS ERROR, type:
b .+2f [ENTER]

4-5

Interactive Debugger Using Debug / 4

Then, display the breakpoint by typing:
b [ENTER]

The screen displays:
CO2F

To run the program, type:
g [ENTER]

The module displays HELLO WORLD. To complete the program, type a
message and press [ENTER], such as:

hello computer

Debug now encounters the breakpoint and displays the current
register values:

BKPT:
SP CC A B DP X v U PC
02F3 A0 00 o1 02 0202 O0OF 0200 CO2F
You can display the module's data area by typing:

m :u :Uu+20 [ENTER]

The screen displays:

0200 D109 6865 6C6C 6F20 636F 6D70 7574 6572 ..hello computer
0210 0D86 AGA4 847F 8D06 A6AD 2AF6 8620 3410*..4.
0220 9E01 A780 SFO01 3550 3432 860D 8DFO 304D 5.42....0M

Display the relative data area at offset 2 by typing:
:u+2 [ENTER]

4-6

Interactive Debugger Using Debug / 4

To step through the data area, press the [ENTER] one or more times.
The screen displays the addresses and address values, such as:

0202 68
0203 65
0204 6C
0205 6C
0206 6F

To end the Debug session, type:
q [ENTER]

The 0S9: prompt reappears on the screen.

Patching Programs
To patch a program (to change its object code), follow these steps:
1. Load the program into memory, using OS-9's LOAD command.

2. Use Debug's LINK, DOT, and EQUAL commands to link to and
change the program in memory.

3. Save the new, patched version of the program on a disk file, using
0S-9's SAVE command.

4. Update the program module's CRC check value, using OS-9's
VERIFY command. Be sure to use the U option.

5. Set the module's execute status, using 05-9's ATTR command.

Step 4 is essential because OS-9 cannot load the patched program into
memory until the program'’s CRC check value is updated and correct.

4-7

Interactive Debugger Using Debug / 4

The example that follows shows how the sample program is patched.
In this case, the I1dy #80 instruction is changed to Idy #32.

0S9: debug call Debug
Interactive Debugger
DB: $load example call 0S-9 1o load the program
DB: | example set dot to beg addr of program
2000 87 actual address will vary
DB:..+29 add offset of byte to change
2029 50 current value is 00
DB: =#32 change to decimal 32
202A 86 next byte displayed
DB: - back up I byte
2029 20 (change confirmed)
DB: q exit Debug
0S89: save temp example save in file called “temp”
089: verify U temp newex update CRC and copy to “newex"”
0S9: attr newex e pe set execution status
059: del temp delete temporary file

Patching OS-9 Component Modules

Patching modules that are part of OS-9 (are contained in the 0S-9
Boot file) is different than patching a regular program because you
must use the COBBLER and OS9GEN programs to create a new 0S-9
Boot file. This example shows how an OS-9 device descriptor module
is permanently patched, in this case to change the uppercase lock of
the device /TERM from on to off. This example assumes that a blank,
freshly formatted diskette is in Drive 1 (/D1).

Note: Always use a copy of your OS-9 System Disk when
patching, in case something goes wrong.

Interactive Debugger Using Debug 1 4

089: debug call Debug

Interactive Debugger

DB:1term set dot to addr of TERM module
CA8287 actual address will vary

DB:..+13 add offset of byte to change
CA95 01 current value os 01

DB: =0 change value to 00 for "OFF"
CA96 01

DB: - move back one byte
CA95 00 change confirmed

DB: q exit Debug

0S9: COBBLER /D1 write new bootfile on ID1

0S9: VERIFY </D1/0S9BOOT »/DU/TEMP U update CRC value
0S9; DEL /D1/0S9BOOT delete old boot file
0S9: COPY /DO/TEMP /D1/0S9BOOT install updated boot file

You can now use the DSAVE command to build a new system disk.

4-9

Chapter 5

Debug Command Summary
and Error Codes

Debug Command Summary

[SPACEBAR]expression

Dot Commands

. expression

= expression

[ENTER]

Evaluate; display in hexadecimal and
decimal form

Display Dot address and contents

Restore last Dot address; display address
and contents

Set Dot to result of expression; display
address and contents

Set memory at Dot to result of
expression

Decrement Dot; display address and
contents

Increment Dot; display address and
contents

Interactive Debugger

Command Summary and Error Codes | §

Register Commands

register

register expression

Program Setup and Run

E module-name
G

G expression

L module-name

Breakpoint Commands
B

B expression

K

K expression

Display all registers’ contents

Display the specified register's contents
Set register to the result of expression
Commands

Prepare for execution

Go to the program

Goto the program at the address
specified by the result of expression

Link to the module named; display
address

Display all breakpoints

Set a breakpoint at the result of
expression

Kill all breakpoints

Kill the breakpoint at address specified
by expression

5-2

Interactive Debugger Command Summary and Error Codes | 5

Utility Commands

M expressionl expression2 Display memory dump in tabular
form

Cexpressionl expression2 Clear and test memory

Sexpressionl expression2 Search memory for pattern

$ texr Call 0S-9 Shell

Q Quit (exit) Debug

Debug Error Codes

Debug detects several types of errors, and displays a corresponding
error message and code number in decimal notation. The various
codes and descriptions are listed here. Error codes other than those
listed are standard OS-9 error codes returned by various system calls.

0 Illegal Constant: The expression includes a constant that has an
illegal character or that is greater than 65,535,

1 Divide by Zero: You are trying to use a divisor of zero.

2 Multiplication Overflow: The product of the multiplication is
greater than 65,535,

3 Operand Missing: An operator is not followed by a legal
operand,

4 Right Parenthesis Missing: Parentheses are not correctly nested.

5 Right Bracket Missing: Brackets are not correctly nested.

5-3

Interactive Debugger Command Summary and Error Codes | 5

6 Right Angle Bracket Missing: A byte-indirect is not properly
nested.

7 Incorrect Register: A misspelled, missing, or illegal register
name follows the colon.

8 Byte Overflow: You are trying to store a value greater than 255
in a byte-sized destination.

9 Command Error: A command is misspelled, missing, or illegal.

10 No Change: The memory location does not match the value
assigned to it.

11 Breakpoint Table Full: Twelve breakpoints already exist.

12 Breakpoint Not Found: No breakpoint exists at the address
given.

13 Tllegal SWI: Debug encountered an SWI instruction in the user
program at an address other than a breakpoint.

5-4

Interactive Debugger

Index

Y operator 2-3

" (quotation marks) 2-2

prefix 2-1-2-2

$ (SHELL) command 3-12 - 3-13
$ prefix 2-1-2-2

% prefix 2-1-2-2

& operator 2-3

. (DOT) command 2-2, 3-2 - 3-4,4-5
.. (Dot-Dot) command 2-2, 2-3

* operator 2-3

+ operator 2-3

- operator 2-3

/ operator 2-3

:(REGISTER) command 3-5 - 3-6
: (register names) 2-3

accumulator 2-3

addition 2-3

addresses, specifying 3-6 - 3-8
addressing, indirect 2-4
ASCII codes 2-2

ASCII conversion 3-2

B (BREAKPOINT) command 3-7,4-5 - 4-6
binary conversion 3-2
breakpoints 3-6 - 3-8

C (CLEAR MEMORY) command 3-11
changing register contents 3-5 - 3-6
character constants 2-2

clearing memory 3-11

Interactive Debugger Index

COBBLER 4-8 -4-9
codes, ASCIT 2-2
colon (REGISTER) command 3-5 - 3-6
command line 1-2
commands
$ (SHELL) 3-12-3-13
B (BREAKPOINT) 3-7,4-5-4-6
C (CLEAR MEMORY) 3-11
DOT 2-2-2-3,4-5
DOT-DOT 2-2, 3-3
E (ESTABLISH) 3-5, 3-8-3-10, 4-5
G (GOTO) 3-5,3-9-3-10
K (KILL) 3-8
L (LINK) 3-10,4-4-4-5
M (MEMORY) 4-5 - 4-6
0S-9 3-12-3-13
REGISTER 3-5 - 3-6
S (SEARCH) 3-12
content of registers 3-5
converting values 3-1
current working address 2-2

Debug prompt 1-1
decimal

conversion 3-2

notation 1-2
deleting a line 1-1
diagnosing programs 1-1
displaying memory 3-12
division 2-3
Dot 2-2
Dot-Dot 2-2
DSAVE 4-9
E (ESTABLISH) command 3-§, 3-8, 3-10, 4-5
ending a debug session 3-13
examining registers 3-5 - 3-6

Interactive Debugger

Index

execution
of programs 3-9 - 3-10
testing 3-8 - 3-9

exiting a debug session 3-13

expressions 2-3, 3-1
displaying 1-2

G (GOTO) command 3-5, 3-9 - 3-10

hexadecimal
conversion 3-2
notation 1-2
indirect addressing 2-4
inserting breakpoints 3-6 - 3-7
integers 2-1
integral expression interpreter - 2-1

K (KILL) command 3-8

L (LINK) command 3-10,4-4 - 4-5
line deleting 1-1

loading a program module 4-4
logical operators 2-3

M (MEMORY) command 4-5 - 4-6
memory

clearing 3-11

displaying 3-12

searching 3-12

testing 3-11
modes, indirect addressing 2-4
modules

linking 3-10,4-4 - 4-5

loading 4-4

patching 4-8 - 4-9
multiplication 2-3

Interactive Debugger

Index

negative arithmetic 2-1
negative numbers 2-3
notation (hexadecimal and decimal) 1-2

operands 2-1
operators 2-3
08S-9 Shell 3-12 -3-13
OS9GEN 4-8

programs
executing 3-9 - 3-10
loading modules 4-4
patching 4-7 - 4-9

quitting debug 3-13
quotation marks 2-2

REGISTER command 3-5- 3-6
registers 2-3

examining 3-5- 3-6
resuming execution 3-9 - 3-10

S (SEARCH) command 3-12
sample session 4-4 - 4-9
searching memory 3-12
shell command 3-12 - 3-13
software interrupts 3-6 - 3-7
SP register 3-5
spaces 2-1
starting program execution 3-9 - 3-10
starting

address 3-10

Debug 1-1
subtraction 2-3
suspending execution 3-6 - 3-8

Interactive Debugger Index

test
execution 3-8 - 3-9
memory 3-11

two's complement 2-1

value, assigning to a register 3-6
values, converting 3-1

working address 2-2

Screen Editor

Contents

Chapter 1/ INtroduction ... 1-1
Modes Of Operationc.ooooveveereeeeeeiecece e, 1=1
Starting SCred ..o 12
AVAILAbIE OPHONS .vovvieririricisienerisrcreesieeina soranosenieisienienines 172

Chapter 2/ The Termset File ..o, 2-1
Modifying the Termset File ..o, 2-1
The Termset File FOrmatcouiecomanoniencninininenen 22
Termset FIldSooce et ernrscssteeeranas 22

Chapter 3/ Command MOde ..o 3-1
Changing to the Edit Modeccocieiininiicnencrnrinsennns 3-1
Changing to the Insert Mode ... 372
Manipulating the Edit Bufferccocccvvcrnvncnniiccriennnninienen. 3-3

SavING TEXL ..o 373
Removing TEXLccvonccrmrecrrmcenrmreesnniemsrerensnescrrscssssraresnees 3-4
Searching fOr SIHNES .c.ovcceeiieoeimmmenmmieneme o 3-5
Changing SINES ...vcvvveiereinnenenme e 379
USINE Wild Cardscoccveercrrererennnreneemensenmeccssserenesensessescosans 3-6
Miscellaneous COmMMANASc.ccoveermriensirarecrsnisecccrreenirenens 3-0
EXItING SCIeAoovvieeeeeet et ssresnes i ssnves i vscsessesmsesesns 3-8

Chapter 4/ Edit Modecoononececiccicrerccceecmeceeeee A1
Getting Help ...ooeeeeeeee ettt ettt 4-1
Controlling the CUrsor ... e 4-2
Scrolling the SCTEEMooovicieeieeeeccieececiererreeeeenecrerseeseereseresenene 42
Moving to & SPecCific LiNecoevvecccrncconmccencncrncerennnrereionee 4-3
Finding @ SHNg ...c.ooviiiieeeeiecere e eterenecnecrnercnsneeneeees 423
Replacing StrNGS ..o ssnensesassens 44
Deleting Text .. Y - & |
Inserting or Replacmg a Smgle Character 4-5
Cutting and Pasting ... et et e ensssstenincsenns nsnnans 7D

Screen Editor

Contents

Editing LINES ..ooceeeereerieieeririrencsnsensreresessssssesenns
Displaying the Status Lineccoenn.n,

Chapter 5/ Insert Modeconecnierenrinenninncnes

Chapter 6 / Quick Referenceccocervneiinnas
Command MOEoeoierieiiriiniireceeeie oo eeevess e ese e

Edit Mode ...covvevvmnnn.

Cursor Movement COmmMandSocccvveveererrevoresssssesenna.
Cut and Paste Commandsc.oooeeeeoeeoooeeeeeee,
InSert Modecovveeeeeicieeeeecreeeeveere e e

Chapter 1

Introduction

The OS-9 Level Two Screen Editor (Scred) is a powerful and simple to
learn screen-oriented text editor. You can use Scred to prepare text
for letters and documents or text to be used by other OS-9 programs
such as the assembler and high level languages. Scred's features
include:

e Adjustable screen and workspace size

e Continuously updated screen

e Cursor positioning by characters, words, and line-by-line
e Scrolling

o Cutand paste

e Change, find, and search strings

e Wild cards

Modes of Operation

Scred has three modes of operation: Command, Edit, and Insert. The
Command Mode lets you execute Scred commands that affect files or
the edit buffer. Scred starts up in Command Mode. The Edit Mode
lets you modify or manipulate text within the edit buffer. The Insert
Mode lets you enter new text into the edit buffer,

1-1

Screen Editor Introduction / 1

Starting Scred
To start Scred, type:
scred filename [ENTER]

If the file exists, Scred loads the file into the edit buffer, displays the
beginning of the file, and enters Edit Mode.
If the file does not exist, Scred displays:

can't open filename
ERROR #216

and enters the Command Mode.

If you want to create a new file, type:

scred [ENTER]

This starts Scred in Command Mode, from which you can load
a file or begin creating a new one by using the NEW command (see
Chapter 3).

Note: Scred uses a special file called termses to describe the
attributes of a particular terminal. See Chapter 2, "The
Termset File," for more information on this file.

Available Options

You can use several options on the command line when starting up
Scred. These options specify the terminal type, buffer size, and so on.
Use the following form when starting Scred with options:

scred filename options [ENTER]

Screen Editor Introduction | 1

The available options are:
-7 Displays a list of the Scred options.

-b= numk Allocates numk bytes of memory for Scred's working
buffer. The buffer's default size is 12 kilobytes. The "="
and "k" are optional parameters. For example, -b32 is the
same as -b=32k.

-e Configures Scred for terminals that have embedded video
attributes, that is, terminals in which the attribute start
flag uses one character position.

-g Configures Scred for special graphic-oriented terminals
(terminals that do not support line feeds).

-l=num Specifies the number of lines to be displayed on the
terminal screen. You can also set this option in the
termset file. See Chapter 2, "The Termset File," for more
information.

-t=term Specifies the terminal type. Use this option if your
terminal type is different from the default terminal type
as set in the termset file. See Chapter 2, "The Termset
File," for more information.

-w=num Specifies the maximum number of characters per line to
be displayed on the terminal screen. You can also set this
option in the termser file. See Chapter 2, "The Termset
File," for more information.

-z=path Sets the pathlist that Scred uses to find the termset file.
See Chapter 2, "The Termset File," for more information.

Note: Since Scred normally checks the current window size,
the -1 and -w options are not often needed. If you use them, be
certain you give valid values. Otherwise these options can
interfere with screen formatting.

1-3

Screen Editor Introduction/ 1

Examples
scred file1 -b=32k

This command starts up Scred with a 32k byte buffer.

scred file1 -1=24 -w=30

This command starts up Scred with a screen size of 24 lines by 30
characters.

Chapter 2

The Termset File

To operate properly, Scred must know the type of terminal you are
using. Scred finds this information in a file named Termset. The
Termset is a text file containing entries that describe a variety of
terminals. The terminal types currently supported in Termset are:

e COCO (the default for windows) e KT7
e VDG (for VDG screen) ® ANSI
e ABMSS e ABMSSH

If you using other than the Coco terminal, use the -t option and
specify the terminal name when starting Scred. If your terminal type
is not currently supported in the Termset file, read the rest of this
chapter for instructions to add your terminal to the file.

Scred looks for the Termset file in the directory /dd/sys, where dd is
the default device for your system. If Scred doesn't find the file there,
it looks in /h0/sys and then in /d0/sys. You can use the -z option of
Scred to specify a different path for the Termset file.

Modifying the Termset File

To add a new terminal type to the Termset file, you can:

e Edit the Termset file using a text editor

e Use the Maketerm supplied on the Scred distribution diskette

Because Makefile is easier to use, it is the method shown in this
chapter's examples.

2-1

Screen Editor The Termset File /2

The Termset File Format

The Termset file contains control code definitions for one or more
types of terminals. Each text line in the file is a complete description
list for a particular kind of terminal.

The first line of the Termset file contains the name and control code
definitions for the default terminal type. This is the terminal type
Scred uses if you do not use the -t option. The form is:

NAME:ccc:cov:di:de:cs:celil:sav.eav: sl sw

Each field represents a different control code definition. Notice that
each field is separated by a colon (:). Even if the terminal cannot
perform a certain function, the colon must still be present to hold the
function's position.

Termset Fields

The following list defines each field in a terminal type entry:

NAME Terminal Name
Specifies the identification name of the terminal
described in the line. Use this name with the -t option to
specify the terminal type for Scred to use. You must
specify the name in all uppercase, although you can
specify lowercase with the -t option on Scred's command
line.

cee Cursor Control Code
Positions the cursor to any location on the screen. This
function is required. There are two parts to the Cursor
Control Code : (1) one or more position cursor command
characters, and (2) cursor coordinates. \X and \Y (or
\X\X and \Y\Y) are cursor coordinates where X and Y
refer to the column number and row number,
respectively. The order in which you specify the cursor
coordinates is dependent on your terminal’s requirements.

2-2

Screen Editor The Termset File /2

cov

dl

dc

[\

cel

This information should be supplied with the hardware
specifications that come with your terminal.

Examples:

$1bAYVY \XAXH:
$1b$3d\Y\X:
$1bR\X\Y:

In the first example, the bracket character ([) has an
ASCII value of $5B. You could use $5B in place of [to
produce the same results.

Cursor Offset Value

Sets the offset value for the cursor coordinates. This
value, specified in hexadecimal, is always added to the
cursor X and Y coordinates. Many terminals use an
offset of $20.

Delete Line Control Character(s)
Deletes the current line and causes lines below the
deleted line to scroll up.

Delete Character Control Character(s)

Deletes the character under the cursor and shifts the
remaining characters on the line to the left by one
character position.

Clear Screen
Erases the entire screen, and returns the cursor to the
home position.

Clear to End of Line

Erases all characters on the line from the current cursor
position to the end of the line, including the character
under the cursor.

Screen Editor The Termset File /2

eqay

sl

SW

Insert Line
Creates a new blank line by scrolling the current and
subsequent lines down one line.

Start Alternate Video
Displays all subsequent characters in reverse video,
different intensity, or any similar mode that is visibly
different from the normal video mode. This code is used
when highlighting text.

End Alternate Video
Displays all subsequent characters in normal video mode.

You can specify 0-4 output control characters for the
following fields: Delete Line, Delete Character, Clear
Screen, Clear to End of Line, Insert Line, Start Alternate
Video, and End Alternate Video.

Screen Length

Specifies, in hexadecimal, the number of lines to be
displayed on the terminal screen. This field is optional.
If you omit this value, Scred uses 24.

Screen Width

Specifies, in hexadecimal, the number of columns to be
displayed on the terminal screen. This field is optional.
If you omit this value, Scred uses 80.

Screen length and screen width are optional fields. If
you omit them, Scred checks the size of the current
screen (or part of the screen) and uses these values.
For external terminals, Scred assumes a screen size of
24 lines by 80 columns. If you do specify a length
and width, Scred uses these values and does not
check on the size of the current screen.

Screen Editor The Termset File /2

Examples

Example 1

Create the following Termset entry:

ABMS85:$1b$3d\eY\eX:$20:$1bR:31bW:$1e$1bY:$1bT:$1bE:$1 bj:$1bk:$18
:$50:

To create the above entry, type the following at the system prompt ($):

maketerm [ENTER]

The Maketerm utility prompts you to supply a value for each field in
the Termset entry. If a Termset file does not exist, Maketerm creates
it. If the file does exist, Maketerm appends the new entry to the end of
the Termset file.

Note: If a particular terminal does not have one of the
requested features, simply press [ENTER] at the prompt,

Following are the prompts displayed by Maketerm and the responses
needed to create the ABM8S5 entry:

terminal name: ABMB8S [ENTER]

cursor positioning sequence: $1b$3d\eY\eX [ENTER]
cursor position offset: $20 [ENTER]
delete line sequence: $1bR [ENTER]
delete character sequence: $1bW [ENTER]
clear screen: $1e$1bY [ENTER]

clear to end of line: §1bT [ENTER]

insert line: $1bE [ENTER]

alternate video: $1bj [ENTER]

restore normal video: $1bk [ENTER]
screen length: $18 [ENTER]

screen width: $50 [ENTER]

2-5

Screen Editor The Termset Fite /2

Example 2
To create the following Termset entry:

TERM:$1bRVOAY:$00:::50e:::$1bj:$1bl:::

Type maketerm [ENTER]. The prompts and responses look like this:

terminal name: TERM [ENTER]
cursor positioning sequence: $1bR\X\Y [ENTER]
cursor position offset: $00 [ENTER]
delete line sequence: [ENTER]
delete character sequence: [ENTER]
clear screen: $0e [ENTER]

clear to end of line: [ENTER]

insert line: [ENTER]

alternate video: $1bj [ENTER]
restore normal video: $1b! [ENTER]
screen length: [ENTER])

screen width: [ENTER]

2-6

Chapter 3

Command Mode

The Command Mode lets you invoke commands that affect files or
manipulate the entire edit buffer. Scred starts up in Command Mode if
you do not specify a file on the command line. When you are in the
Command Mode, Scred displays the > prompt in the lower left corner
of the display screen.

Command Mode commands (except the GOTO command) are at least
two characters long to distinguish them from the Edit and Insert Mode
commands. You can use either the full name for the command, such as
edit, or Scred's shortened form, ed. Commands that have short forms
are shown as follows:

ed[it]

This means you can type either ed or edit for the EDIT command. Do
not type the square brackets.

When entering commands in Command Mode, you can use the
standard OS-9 control keys to backspace, delete lines and characters,
and so on. Press [ENTER] after typing each command.

Changing to the Edit Mode

There are two methods in which you can enter Edit Mode from
Command Mode:

1. Edit an existing file by typing at the > prompt:
ol[d] filename [ENTER]

If Scred can open the file, it then enters the Edit Mode.

3-1

Screen Editor Command Mode | 3

2. If you have a file open and want to enter the Edit Mode, type:
ed[it] [ENTER]
You can also press [CTRL][E] to enter the Edit Mode.

From the Edit Mode, you can change to the Command Mode by
pressing [CTRL][BREAK]

Changing to the Insert Mode
You can enter Insert Mode from Command Mode by typing:
in[sert] [ENTER]

Create a new file by typing at the > prompt:

ne[w] filename [ENTER]

If Scred can create the file, it loads the file into the edit buffer and
then enters the Edit Mode.

You can enter the Insert Mode from the Edit Mode by: (1) pressing
[ENTER] to insert text before the cursor position, and (2) pressing the
down arrow to insert a new line before the current line. You can then
begin typing the new line,

Note: You cannot enter the Insert or Edit Modes if no file
exists in the edit buffer.

Screen Editor Command Mode / 3

Manipulating the Edit Buffer

Scred's edit buffer size is 12k bytes unless you use the -b option to
specify a different value. If your file is larger than the edit buffer,
Scred loads as much of the file as it can, while leaving approximately
2k free for changes and additions. With the 12k buffer size, Scred
loads 10k of the file. The following commands show how to write,
read, and insert files or sections of files.

Saving Text

The WRITE command writes the contents of the edit buffer and the
remainder of the input file (if any) to the output file. WRITE then
closes the file and clears the edit buffer. To write a file, type:

wrlite] [ENTER]

When Scred saves a file, it creates an output file called Ed.tmp.xxx,
where xxx is the process id number. If Scred can successfully create
and write the entire output file, it deletes the current input file and
renames the output file to the old name.

The UPDATE command writes out the changes you made to the edit
buffer and re-enters the Edit Mode. To update a file, type:

up[date] [ENTER]
The ADD command lets you insert a specified file within the text of

the edit buffer. Scred inserts the file directly before the current line.
To add a file before the current line, type:

ad[d] filename [ENTER]
Note: There must be enough free space in the edit buffer for

the extra text. If Scred runs out of space, it terminates with the
message file too large to add and does not load any of the file.

33

Screen Editor Command Mode ! 3

The MORE command lets you read in the next section of the input file.
Use this command when the file you are editing is too large to entirely
fit in the edit buffer. The MORE command causes Scred to write the
contents of the edit buffer between the top of the buffer and the
current cursor position to the output file and read the next section of
the input file into the edit buffer. To read the next section of a file,

type
mo[re] [ENTER]

Removing Text

Scred lets you delete specified lines of text from the edit buffer or
delete the entire buffer.

The DELETE command lets you delete specified lines from the edit
buffer. To delete lines, type:

deflete] stari-line end-line [ENTER]
This command deletes text from start-line to end-line, inclusive.

The ABORT command erases the entire contents of the edit buffer and
closes the file. To erase and close a file, type:

abjort] [ENTER]

The CLEAR command also erases the entire contents of the edit buffer
but the file remains open. To clear the edit buffer, type:

cl[ear] [ENTER]

34

Screen Editor Command Mode / 3

Searching for Strings

The FIND command prompts you to enter a search mask and then
searches for that string. If Scred finds the string, it positions the cursor
at the beginning of the first occurrence of the string and then enters
Edit Mode. To find a string, type:

filnd] [ENTER]

The SEARCH command prompts you to enter a search mask and then
searches for that string. In addition, SEARCH lets you search for that
string between specified lines instead of through the entire file. If
Scred finds the string, it displays the lines, including the line number,
in which the string was found. To search for a string, type:

selarch] start-line end-line [ENTER]

This command searches for the string beginning at szare-line through
end-line, inclusive, If you omit start-line and end-line, Scred searches
the entire edit buffer.

Note: The SEARCH and FIND commands accept a match first word
only character. By placing a * as the first character in the search
string, Scred finds a match only if it finds the string at the beginning
of the line.

Changing Strings

The CHANGE command replaces all occurrences of a string within the
specified range of lines or over the entire edit buffer, To use the
CHANGE command, type:

chl[ange] start-line end-line [ENTER]

If you omit szart-line and end-line, Scred searches the entire edit
buffer.

Screen Editor Command Mode | 3

When you invoke the CHANGE command, Scred prompts you to enter
2 Search mask: Enter the string you want to change. Scred then
prompts you to enter a Change mask:. Enter the new string.

If Scred finds the search string, it displays the lines, including the line
numbers, in which the changes occurred.

Note: The CHANGE command accepis a match first word
only character. By placing a # as the first character in the
search string, Scred finds a match only if it finds the string at
the beginning of the line.

Using Wild Cards

When entering the search string for the FIND, SEARCH and CHANGE
commands, you can optionally use the wild card character "?". The
wild card character matches any one character in the specified
location. For example:

m???27? [ENTER]

Scred matches all strings that begin with the letter "m" and are
followed by five characters. Sample strings that would match are:
"millio,” "mister," and "my dog."

2?2_77 [ENTER]

In this example, Scred matches all five character strings with an un-
derscore character (_) in the third character position. Some sample
strings that match this string are: "SS_ID," "WA 86,"and" _dj."

Note: Scred matches spaces between words when searching
for a wild card string.

Screen Editor Command Mode | 3

Miscellaneous Commands

The GOTO command positions the cursor on a specified line and
enters Edit Mode. To position the cursor, type:

gloto] line-number [ENTER]

The CHD command changes the current working directory to the
specified directory. You can specify either a relative or absolute path
to the new directory. To change directories, type:

chd pathname [ENTER]

The DIR command displays the directory listing for the current
directory. To obtain a listing, type:

dir [ENTER]

Scred can handle files with tabs in them. However, tabs are not a
function of Scred. The TABS command lets you set tab stops at each »
characters. To set the tab stops, type:

ta[bs] n [ENTER]
Scred sets tabs at every four characters by default.

Another feature of Scred is auto-indent. If you enter an indented line,
Scred automatically aligns the next line with it.

The NOTAB command turns off the auto-indent function. To disable
the auto-indent feature, type:

not[ab] [ENTER]

3-7

Screen Editor Command Mode | 3

The AUTO INDENT command turns the feature back on. To enable the
auto-indent feature, type:

au[to indent] [ENTER]
The $ command lets you execute a shell command line from within
Scred. To execute an OS-9 command, type:

$command-line [ENTER]

For example, to list the contents of a file, type:

$list filename [ENTER]
When you use the SHELL command ($ [ENTER]), OS-9 starts a new
shell (if your computer has enough free memory). In this way it can

process several OS-9 commands. To return to the Scred > prompt,
press [CTRL][BREAK].

Exiting Scred

The EXIT command ends the current editing session. If a file exists,
Scred saves the file to disk and returns to the OS-9 system. To exit
Scred, type:

ex[it] [ENTER]

3-8

Chapter 4

Edit Mode

The Edit Mode lets you control and modify text in the edit buffer and
on the screen display. You can enter Edit Mode from Command Mode
by typing ed [ENTER] or by pressing [CTRL]J[E]. You can enter Edit
Mode from Insert Mode by pressing [CTRL][BREAK]. When you enter
Edit Mode, Scred displays the text of the file being edited.

Commands in this chapter, appear in uppercase as they appear on your
keyboard. Uniless specifically noted, you do not have to press [SHIFT]
to invoke the commands.

Getting Help

You can display help information at any time while in Edit Mode. To
do so, press ?. Scred displays a list of commands at the top of the
screen. The commands are divided into four groups:

¢ Cursor control keys
e Edit buffer controls
e CUT and PASTE commands

e Miscellaneous commands

Press the spacebar to review the display for each group. Press g to
exit the help function.

4-1

Screen Editor Edit Mode | 4

Controlling the Cursor

The following table lists the keys Scred uses to position the cursor.
When looking at this table, notice that the location of each key on the
keyboard is related to the movement it performs.

Key Action

I moves the cursor up one line

, (comma) moves the cursor down one line.

J moves the cursor left one character
L moves the cursor right one character
K moves the cursor alternately to the beginning or end of

the current line
H moves the cursor one word to the left

moves the cursor one word to the right

Scrolling the Screen

Scred uses four keys to scroll the screen. The table below lists the
keys and their descriptions. As before, notice the location of the keys
on your keyboard.

Key Action

U scrolls the screen up continuously
M scrolls the screen down continuously
O scrolls the screen up

. scrolls the screen down

The continuous scroll feature is useful when you want to quickly scan
through afile. Use the space bar to pause and restart scrolling. Type
any other character to terminate scrolling.

4-2

Screen Editor Edit Mode | 4

When scrolling down one screenful, the line at the bottom of the
screen scrolls to the top of the screen. When scrolling up one
screenful, the line at the top of the screen scrolls to the bottom of the
screen,

Moving to a Specific Line

The GOTO command moves the cursor to the specified line within the
edit buffer. To move the cursor to a specific line, press G. Scred
prompts you to enter the line number with the prompt goto:. Enter the
line number to which you want to move the cursor. Scred positions
the cursor at the beginning of the specified line and positions that line
on the third line of the screen.

Line 1 is the first line of the edit buffer. Any number higher than the
last line number causes the last line to be selected.

Finding a String

The FIND command searches for a specified string and positions the
cursor on the first character of that string., To invoke FIND, press F.
Scred prompts you to enter a Search mask:. Type the string you want
to find. If Scred finds the string, it positions the cursor on the first
character of the string and positions the line in which the string
occurred on the third line of the screen. If Scred cannot find the
string, it displays the message, find: no match.

To find another occurrence of the same string, press F and press
[ENTER] for the search mask. Scred moves the cursor to the next
occurrence of the previously entered string,

4-3

Screen Editor Edit Mode / 4

Replacing Strings

The REPLACE command lets you substitute one string for another. To
replace a string, press R [ENTER] and Scred prompts you to enter a
Search string:. Enter the string you want to replace. Scred then
prompts you to enter the Change string:. Enter the new string.

To replace the next occurrence of the search string with the same
string, press R and press [ENTER] for both prompts.

Deleting Text

Scred offers a variety of ways to delete text. You can delete
characters, words, and lines. The following table summarizes the key
commands and their definitions.

Key Action

] deletes the character to the left of the cursor

[CTRLI[;] deletes the character under the cursor

[CTRLIIA] deletes one word to the left of the cursor

[CTRL](D] deletes one word to the right of the cursor

[CTRL][C] deletes from the current cursor position to the end of
the line

[CTRL][Z] deletes from the current cursor position to the

beginning of the line
[CTRL}IX] deletes the current line
Note: If you accidentally delete text, you can recover by

pressing [CTRL)[F]. The [CTRL][F] command restores the
current line to its original state.

Screen Editor Edit Mode | 4

Inserting or Replacing a Single Character

Scred easily lets you insert one character or substitute one character
with another without having to enter Insert Mode.

The REPLACE CHARACTER command replaces the character under
the cursor. To replace a character, type Xcharacter. For example,
typing Xz replaces the character under the cursor with a "z."

The INSERT CHARACTER command inserts a character in front of
the character under the cursor. To insert a character, type Beharacter.
For example, typing Ba inserts an "a" in front of the character under
the cursor.

Cutting and Pasting

Scred's cut and paste feature lets you move a block of text and insert
it at another location. Scred lets you move, delete, or duplicate blocks
of text.

Before you move a block of text, you must mark the beginning point
of the block. The SET command marks the starting line. To mark a
line, move the cursor to the first line of the block of text you want to
move, and press 8. To mark in the middle of a line, first break the line
into two lines, and then mark it. Scred displays the marked line in
reverse video if your terminal has the capability.

Next, move the cursor to the last line of the text block you want to
move. Use the CUT command to remove the text from the edit buffer.
Scred places the text in its paste buffer.

You can add more text to the paste buffer by using the APPEND
command. To use the APPEND command, mark the beginning of the
text block using SET, and move the cursor to the end of the block.
Press A, and Scred appends the text block to the text already in the
paste buffer.

4-5

Screen Editor Edit Mode 1 4

Use the PASTE command to return the contents of the paste buffer to
the edit buffer. Scred pastes text on the line above the current line.
Therefore, to paste the text, position the cursor one line below the line
on which you want the text inserted, and press P.

You can also duplicate text by using the NON-DESTRUCTIVE CUT
command. To do so, mark the beginning of the text block using the
SET command and move the cursor to the last line of the text to be
duplicated. Press N and Scred copies the text block into the paste
buffer. The text in the edit buffer is untouched.

Scred also offers a NON-DESTRUCTIVE APPEND command. Mark
the beginning of the text block (SET), and move the cursor to the last
line of the text to duplicate. Press v, and Scred appends a copy of the
text to the end of the paste buffer. The text in the edit buffer is
untouched.

The ERASE command clears the paste buffer and returns its memory.
Press E to erase.

Scred also lets you write sections of text to a file using the WRITE
command. To do so, mark the beginning of the block (SET), and move
the cursor to the last line of the block. Press p. Scred prompts you to
enter an output filename. If you invoke the WRITE command without
marking a text block, Scred writes the paste buffer to the output file.
If Scred cannot create the file, it issues an error message.

Editing Lines

Scred allows you to use lines of up to 256 characters in length.
However, because Scred does not wrap lines, you can see only a
portion of the line if it is longer than the width of your screen. Scred
offers an easy method of breaking and joining lines.

Screen Editor Edit Mode | 4

The BREAK command splits the line at the current cursor position.
Scred inserts the break before the cursor. To break a line, press
[CTRL][B].

The JOIN command joins the current line with the one above. To join
two lines, press [CTRL][P].

Displaying the Status Line

The status line displays the line number, column number, amount of
free space in the edit buffer, paste buffer size, current filename, and
the current mode (Command, Edit, or Insert). To display the status
line, press [CTRLI[G]. Press the space bar to remove the status line
from the screen.

The following sample status line shows the current cursor position to
be Line 50, Column Q. There is more than 14k bytes free in the edit
buffer and 51 bytes of text stored in the paste buffer. The filename is
Example, and Scred is in the Edit Mode.

L:50 C:0 MB:14526 CB:51 F:Example edit:

4-7

Chapter 5

Insert Mode

The Insert Mode lets you enter new text into the edit buffer. To eater
the Insert Mode from the Command Mode, type in [ENTER]. To enter
the Insert Mode from the Edit Mode, press [ENTER] or { 4 1.

Scred inserts the new text before the current cursor position and stores
it exactly as you type it. You can enter control characters. To enter
control characters, press [CTRL][V] followed by the character you wish
to enter. For example, to enter a Control-L into the edit buffer, press
[CTRL][V], then [L].

Chapter 6

Quick Reference

The following tables provide a quick reference to the commands for
the Command, Edit, and Insert Modes.

Command Mode

Command Description

ab[ort] Cancels all changes made to the
current file, erases the entire edit
buffer, and closes the current file.

ad[d] filename Adds the text of the specified file to
the edit buffer, starting at the line
above the current cursor position.

au[to indent] Tells Scred to automatically indent
the next line after a carriage return
in the previous line begun with a tab
or space(s). Scred indents the new
line to the same column position as
the previous line. Scred starts up in
auto-indent mode.

ch(ange][start-line [end-line]] Replaces all occurrences of a string
within the specified range of lines.
Omitting a range value causes Scred
searches the entire edit buffer.

6-1

Screen Editor

Quick Reference / 6

Command Description

chd pathname Changes the current working
directory.

cl[ear] Erases all text in the edit buffer.

de[lete] {start-line [end-line])

dir

ed[it]

ex[it]

fi[nd]

gloto] line

in[sert]

mo[re]

ne{w] filename

not[ab]
ol[d]

Scred does not close the file.

Erases the specified range of lines
from the edit buffer.

Displays the directory listing for the
current working directory.

Enters Edit Mode. You can also use
[CTRL][E]

Writes the edit buffer to the output
file and exits Scred.

Searches for the first occurrence of
a string. Enters the Edit Mode.

Moves the cursor to the specified
line number. Enters the Edit Mode.

Enters Insert Mode.

Saves the text in the edit buffer to
the output file and reads in the next
section of the input file.

Creates a new file with the specified
filename and enters.Insert Mode.

Turns off the auto-indent mode.

Clears the edit buffer, opens an
existing file, and enters Edit Mode.

6-2

Screen Editor Quick Reference / 6

Command Description

selarch] [start-line {end-line]] Searches for a string within the
specified lines. If you omit the line
numbers, Scred searches the entire

edit buffer.

ta[bs] n Sets the tab stops to every =n
characters.

up[date] Writes changes to the output file

and re-enters Edit Mode.

wrfite] Writes the contents of the edit
buffer and the remainder of the
input file, if any, to the output file.

$ [command] Executes a shell command line.
[CTRL][G] Displays the status line.

Edit Mode

Cursor Movement Commands

Command Description

1 Moves the cursor up one line.

, (comma) Moves the cursor down one line.

J Moves the cursor left one character.

H Moves the cursor left one word,

L Moves the cursor right one character.

Moves the cursor right one word.

-

K Moves the cursor to the beginning or end of the line.

R Replaces a string.

6-3

Screen Editor

Quick Reference / 6

Command Description

U Scrolls the text up. Press the space bar to stop and
start. Press any other key to abandon.

M Scrolls the text down. Press the space bar to stop and
start. Press any other key to abandon.

O Scrolls text up on page.
Scrolls text down one page.

G Moves the cursor to the specified line.

F Finds the first occurrence of a string.

X char Replaces the character under the cursor with the
specified character,

B char Inserts the specified character before the cursor and
advances the cursor.

[«] Deletes the character to the left of the cursor.

[CTRLIL] Deletes the character under the cursor.

[ENTER] Enters Insert Mode.

[4] Moves the text in the edit buffer down one line and
enfers Insert Mode with the cursor on the new line.

[CTRL][BREAK] Returns to Command Mode.

? Displays help information.

[CTRLI][A] Erases one word to the left of the cursor.

{CTRL]ID] Erases one word to the right of the cursor.

[CTRLI[F} Cancels any changes made to the current line.

6-4

Screen Editor

Quick Reference ! 6

Command Description

{CTRL]IC] Erases text from the cursor to the end of the line.

[CTRL][Z] Erases text from the cursor to the beginning of the
line.

[CTRLI[X] Erases the entire line.

[CTRL][B] Splits the current line into two lines at the cursor
position.

[CTRLI}IP] Joins the current line with the line above.

[CTRL][G] Displays the status line.

Cut and Paste Commands

Command

Description

S

Set. Marks the first line of a text block to be deleted,
duplicated, or moved. If the starting mark is already
set, s removes the mark.

Cut. Deletes the selected block of text from the edit
buffer and stores it in the paste buffer.

Non-destructive Cut. Places the selected block of
text in the paste buffer without altering the edit
buffer.

Paste. Inserts the contents of the paste buffer at the
line above the cursor.

Append. Deletes the specified block of text from the
edit buffer and adds it to the end of the paste buffer.

Screen Editor Quick Reference | 6

Command Description

v Non-destructive Append. Appends the specified
block of text to the paste buffer without altering the
edit buffer.

E Erase. Erases the content of the paste buffer and
releases its memory space to the edit buffer.

w Write. Writes the specified lines to the output file. If
no lines are marked, Scred writes the paste buffer to
the output file.

Insert Mode

Command Description

[CTRL)VIchar Inserts the specified control character into the edit
buffer.

[CTRL}[BREAK] Returns to Edit Mode.

Screen Editor

Index

$ command 3-8

-7 (list options) 1-3

-b (buffer size) 1-3, 3-3

-e (embedded video attributes) 1-3
-g (graphics terminalg) 1-3
-1 (display lines) 1-3

-t (terminal type) 1-3

-w (text width) 1-3

-z (termset path) 1-3, 2-1
> prompt 3-1

? (display help) 4-1

? (wild card) 3-6

ABMSS terminal 2-1
ABMB85H terminal 2-1
ABORT command 3-4

ADD command 3-3

adding terminal type 2-1
allocating memory 1-3
ANSI terminal 2-1

APPEND command 4-5-4-6
auto-indent 3-7 - 3-8

BREAK command 4-7
buffer size 1-3, 3-3

CHANGE command 3-5 - 3-6
character

deleting 4-4

inserting 4-5
characters per line 1-3

Screen Editor Index

CHD command 3-7
CLEAR command 3-4
clear screen code 2-3
clearing to end of line code 2-3
closing a file3-4
COCO terminal 2-1
command mode 1-1-1-2
commands 3-1

$ 3-8

ABORT 3-4

ADD 3-3

APPEND 4-5-4-6

BREAK 4-7

CHANGE 3-5-3-6

CHD 3-7

CLEAR 34

CUT 4-5-4-6

DELETE 34

ERASE 4-6

FIND 3-5,4-3

GOTO 3-7,4-3

INSERT 4-5

JOIN 4-7

MORE 3-4

NEW 1-2

NOTAB 3-7-3-8

REPLACE 4-4-4-5

SEARCH 3-5

SET 4-5-4-6

TABS 3-7

UPDATE 3-3

WRITE 3-3, 4-6
configuring terminals 1-3
creating a file 1-2,3-2
cursor control 4-2
cursor control code 2-2 - 2-3
cursor offset value 2-3

Screen Editor Index

cursor, moving 4-3
CUT command 4-5 - 4-6
cutting and pasting 4-5 - 4-6

DELETE command 34
deleting
character codes 2-3
line codes 2-3
text 3-4,4-4
directories
changing 3-7
listing 3-7
duplicating text 4-5 - 4-6

edit buffer, erasing 3-4

Edit mode 1-1, 3-1-3-2,4-1 -4-7
ERASE command 4-6

erasing the edit buffer 3-4

exiting Scred 3-8

features 1-1
file
closing 3-4
creating 1-2
reading in 3-4
saving 3-3
FIND command 3-5, 4-3

GOTO command 3-7, 4-3
graphics 1-3

help 4-1
indent, auto 3-7 - 3-8

INSERT command 4-5
Insert Line code 2-4

Screen Editor

Index

insert mode 1-1, 3-2, 5-1
characters 4-5
files 3-3

JOIN command 4-7
KT7 terminal 2-1

line character width 1-3
fines
deleting 3-4
moving to 4-3
listing
directories 3-7
options 1-3

Maketerm 2-1,2-5-2-6
mask, search 3-5 - 3-6, 4-3
memory allocation 1-3
modes
Command 1-1-1-2
Edit 1-1,3-1-3-2,4-1-4-7
Insert 1-1, 3-2, 5-1
MORE command 3-4

name of terminal 2-2

NEW command 1-2, 3-2
new text 5-1

NOTAB command 3-7 - 3-8

operation modes 1-1
options 1-2-1-3
0S-9 commands 3-8

paste 4-5-4-6

Screen Editor

quitting Scred 3-8

reading files 3-4

replacing characters 4-5
REPLACE command 4-4 - 4-5
reverse video codes 2-4

saving text 3-3
screen, scrolling 4-2 - 4-3
screen length code 2-4
screen width code 2-4
scroil 4-2-4-3
SEARCH command 3-5
search mask 3-5-3-6,4-3
SET command 4-5 - 4-6
shell 3-8
size of buffer 3-3
starting Scred 1-2 - 1-3
status line 4-7
string
changing 3-5-3-6
replacing 4-4
searching for 3-5, 4-3
TABS command 3-7
terminal 2-1
name 2-2
type 1-3,2-1
terminating Scred 3-8
termset file 1-2-1-3,2-1-2-6
text
deleting 3-4, 4-4
duplicating 4-6
entering 5-1
saving 3-3
type of terminal 1-3, 2-1

Index

Screen Editor

Index

UPDATE command 3-3

VDG terminal 2-1
video attributes 1-2

width of line 1-3
wild cards 3-6
WRITE command 3-3, 4-6

Relocating Macro Assembler

Contents

Chapter 1/ Introductiono
INSLALALION 1eoeoecreriveeeerererereeeeriaess s srrisssneseresarssrnresisasssrnsssnersossaress
USINg the RIMA .ot e e srssassets s nareenns
Available OPHONScovvruernreererirennseiiereesesesereriiesasasemnsasssasasnsses

Chapter 2 / General INformation ...
Source File FOrmat ... sesenesnsserens
The Label Field ... s

The Operation Field ...

The Operand Field ...t ieceeenneseseseenersoonans

The Comment Field ...t
The Assembly Listing Formatcccvevemereneierinennininiissenenns
Evaluation of EXPressionscccocooveeevnniieecieeiee e
Expression Operands .o e
Expression OPeratorscocoeeeeiererrrerersserssmrmrnssrsnsssrrens
Symbolic Namesocoovioiieeieeeee e
Symbolic Names for System Call§ocoocoiviiiniiniiececncconnninenne
The DEFS DiIECIOTY Levovererrvinarsrssessessrersinseserssssssmsesaesesisessessessssseses

The LIB DIreCtOrY .ucirisimmmimmmiiierissssememmmoessisn s 2-10

Chapter 3/ MACTOS ...c.coovvniecriecnnieniecsnisisasisesecassssisenressmassnssenssesssns
IMACTO SHTUCIUTEcoviinininicrtirrsniinisser s e cvenesesesenenons
MaACTO ATZUITIENLS ..oocoririrrinirneiisireimscisassnisineseseesesaises saesesnesacssnass

Special Arguments ...
Automatic Internal Lablesccocereceiieiurcrirreecrnercemeeeeieessnseneee
Documenting MacCIOS ...cccocvoerirerreerir e veere e

Chapter 4/ Program Sections ...
Program Section Declarations ...,

Relocatable Macro Assembler

Contents

Chapter 5/ Program Section Directivescccoeeeecrrrmriecrreronnnen.

PSECT Directiveocovenivvirorisionnes

VSECT DITECHVE .voeieiee ettt ts et tveein e s
CSECT DITECHVE c.neereececiareimreriresearisneseisneressasesiaessessasnsessssesieins
Chapter 6 / Assembler Directive Statementsccccooocoeoooo...
End Statement ...,
EQU and SET Statementsccooooereeeereceenee.
FAIL Statement

IF, ELSE, and ENDC Statementscccccoevnvervreveene.
NAM and TTL Statementsco.ocooeeieeeeeceevericrenns

OPT Statement

PAG and SPC StAEMENLS .veccververerirerirsiereiisiieisiaiensares vorveseserares setons
REPT and ENDR Statementscccceeeeeevverevnereirnns
RMB Statementccoviimemminmiiiiseimon.
USE Statementccvevienreneonisienecniscnsinsssinesssoveens

Chapter 7 / Pseudo-Instructionscoccoeeeveerennen..
FCB and FDB Statementsc.ccoeeievecieesercnenas
FCC and FCS Statementsoocooveieinenee e
RZB STALEIMENE ...ovvevvvireeienreiniererreienaeensseresiemsmseessssin
80 SLATCIMEGNLoeevrreeiriree et i rmers e sre e e e sasessseereressrerssenes

Chapter 8/ Accessing the Data Areacocoorverieennan.
Using Non-Initialized Dataccooverererevvesecarnisnvonnans
Using Initialized Dataccooovvmvemvsenerenereoneecenneinnne

Chapter 9/ Using the Linker ...
Running the LINKET ...
Available OptOnS ..o s,

Chapter 10 / Error Messagescccceueverrerveerenseninns

Chapter 11/ EXaMPIES ..o ensesssnsean

Appendix A / 6809 Instructions and Addressing Modes

5-1
w31
5-3
5-5

6-1

...................... 6-1
...................... 6-1

6-2

...................... 6-3
...................... 6-5

.. 6-5
6-6

........ s 66
...................... 6-7
...................... 68

...................... 7-1
...................... 7-1
...................... 7-2
...................... 7-3

7-3

...................... 8-2

Chapter 1

Introduction

The OS-9 Level Two Relocatable Macro Assembler (RMA) is a full-
feature relocatable macro assembler and linkage editor designed to be
used by advanced programmers or with compiler systems,

The RMA lets you assemble sections of assembly-language programs
independently to create relocatable object files. The linkage editor,
RLINK, takes any number of program sections and/or library sections,
and combines them into a single executable 0S-9 memory module.
The RMA's features include:

¢ 0S-9 modular, multi-tasking environment support
o Built-in functions for calling OS-9 system routines
e Position-independent, re-entrant code support

e Creating of standard subroutine libraries by allowing programs to
be written and assembled separately and then linked together,

e Macro capabilities

o 0S-9 Level Two compatibility

e Automatic resolution of global data and program references

o Conditional assembly and library source file support

This manual describes how to use the RMA and basic programming
techniques for the OS-9 environment. However, this manual does not
attempt to teach 6809 assembly language programming. If you are
not familiar with 6809 programming, consult the Motorola 6809

programming manuals or an assembly-language programming book
available at most bookstores and libraries.

1-1

Relocating Macro Assembler Introduction ! 1

Installation

The RMA distribution diskette contains a number of files that you will
want to copy to a working system disk. After copying the files, store
the original diskette in a safe place.

The files included on the distribution diskette are:

RMA Relocatable Macro Assembler program, Copy this file to
the system's execution directory (CMDS).

RLINK Linkage Editor program. Copy this file to the system's
execution directory (CMDS).

ROOT.a Assembly-language source code file used as a front end
section for programs that use initialized data. Copy this
file to an RMA working data directory.

Using the RMA

RMA is a command program that you can run from the 0S-9 Shell,
from a Shell procedure file, or from another program. The basic format
used to run the RMA is:

RMA filename options » listing

The filename argument represents the source text file. It is the only
required argument.

The options argument lets you specify certain RMA features, such as
the ability to generate a listing or object file. The list of available
options is given in the next section.

The listing option tells the RMA to generate a program listing. The
redirection symbol (>) lets you redirect the listing to a printer or a
disk file, or even pipe the listing to another program. If you omit the
redirection symbol, OS-9 prints the listing on your terminal screen.

1-2

Relocaring Macro Assembler Introduction / 1

Available Options

You specify options on the command line by using the prefix - or --,
Use - to turn on an option and -- to turn off an option. The available
RMA options are:

-o=path

5|

-C

-dn

Writes the relocatable output to the specified mass
storage file. (Default=off)

Writes the formatted assembler listing to standard
output. When this option is off, OS-9 prints error
messages only. (Default=off)

Suppresses conditional assembly lines in assembler
listings. (Default=on)

Sends a top-of-form signal to the printer.
(Default=0ff)

Lists all code bytes generated. (Default=0ff)

Suppresses macro expansions in assembler listings.
{Default=0n)

Suppresses error messages in assembler listings.
(Default=on)

Prints the symbol table at the end of the assembly
listing. {Default=off)

Sets the number of lines per page, for the listing, to z.
(Default=66)

Note: You can override command line options by using the
OPT statement with a source program. See the OPT statement
for more information.

1-3

Relocating Macro Assembler Introduction / 1

Examples
RMA prog5 -l -s ~c >/p [ENTER]

This command line tells RMA to assemble the source program, Prog3.
The -1 and >/p options causes the RMA to write the formatted
assembler listing to the printer. The -s option tells the RMA to print
the symbol table. The -c option tells the RMA not to print any
conditional assembly lines in the listing.

RMA sampile -1 -x --¢ =/h0/programs/sample.lst [ENTER]

This command line assembles the source program, sample, and sends
the listing to the file Sample.lst on the hard disk. The -x option tells
the RMA to suppress macro expansion in the listing. The --c option
tells the RMA to print conditional assembly lines.

1-4

Chapter 2

General Information

The RMA is a two-pass assembler. During the first pass through the
source file, it creates the symbol table. During the second pass, the
RMA places the machine-language instructions and data values into
the relocatable object file.

Writing and testing an assembly-language program using the RMA
involves a basic edit, assemble, link, and test cycle, The RMA
simplifies this process by letting you write programs in sections that
you can assemble separately then link to form the entire program.
With this method, if you must change one program section, you do not
have to reassemble the entire program.

When using the RMA to develop assembly-language programs, follow
these steps:

1. Create a source program file using a text editor, such as the 0S-9
Level Two screen editor, Scred.

2. Run the RMA to translate the source file(s) to relocatable object
module(s).

3. If the assembler reports any errors, correct the source files and
reassemble.

4. Run RLINK to combine the relocatable object modules(s).

5. If RLINK reports any errors, correct the source files, reassemble,
and relink.

6. Run and test your program. You can use the Interactive Debugger
to help you with this step. Correct errors, if any.

You now have an executable assembly-language program.

Relocating Macro Assembler General Information | 2

Source File Format

The assembler reads its input from the specified source file. This
source file contains variable-length lines of ASCII characters. You
can create the source file using any text editor, such as Scred.

Each line of the source file is a text string terminated by an end-of-
line character (carriage return). The maximum length for a line is 256
characters. Each line can have from one to four fields, which are:

e Label field (optional)

e Operation field

e Operand field (for some operations)
o Comment field (optional)

You can specify an entire line as a comment by placing an asterisk (*)
as the first character of the line.

Note: The assembler ignores any blank lines in the source
file.

The Label Field

The label field begins at the first character position of the line. Some
statements require labels (for example, EQU and SET); others must not
have them (for example SPC and TTL).

If a label is present, the assembler usually defines the label as the
program address of the first object code byte generated for the line.
Exceptions occur in the SET, EQU, and RMB statements. In the SET
and EQU statements, the assembler gives the label the value of the
result of the operand field. In the RMB statement, it gives the current
value of the data address counter.

The label must be a legal symbolic name consisting of from one to
eight upper or lowercase characters. Letters, numbers, dollar signs

2-2

Relocating Macro Assembler General Information / 2

($), dots (.), and underline characters {) are all allowed. The first
character must be a letter. You must not define a label more than once
in a program (except when using it with the SET directive).

If you follow the symbolic name in a label field with a colon (;), the
RMA makes the name globally known to all modules that are linked
together. In this way, you can execute a branch or jump to a label in
another module. If you do not place a colon after the label, that label
is known only in its own PSECT .

If a line does not contain a label, the first character must be a space.

The Operation Field

The operation field specifies the machine-language instruction or
assembler directive statement mnemonic name. Use one or more
spaces between it and the label field.

Some instructions include a register name (such as LDA, LDD, or
LDU) in the operation field. In these cases, you cannot separate the
register name from the rest of the field with a space. The RMA accepts
instruction mnemonic names in either upper- or lowercase characters.

Instructions generate from one to five bytes of object code depending
on the specific instruction and address mode. Some assembler
directives (such as FCB and FCC) also cause the assembler to generate
object code.

The Operand Field

The operand field follows the operation field. You must separate the
two fields by at least one space. Some instructions do not use the
operand field; other instructions and assembler directives require an
operand to specify an addressing mode, operand address, parameters,
and so on.

Relocating Macro Assembler General Information / 2

The Comment Field

The comment field is the last field of a source statement. It is an
optional field you can use to include a comment about the instruction.
The RMA does not process this field but copies it to the program
listing.

The Assembly Listing Format

If you specify the -1 option with the RMA, the assembler generates a
formatted assembly listing. The output listing uses the following
format:

0098 0032 5% + rolb
00117 0045=17fb8 copyit lbsr dmove copy result

Fay FagVa
l[‘t operand

mnemonic
label comment area

macro expansion indicator

Object code bytes

—external reference indicator

‘- location counter value

—listing line number

Evaluation of Expressions

Operands of many instructions and assembler directives can include
numeric expressions in one or more places. The assembler can
evaluate expressions of almost any complexity using a form similar to
the algebraic notation used in programming languages such as BASIC
and FORTRAN.

An expression consists of an operand and an operator. An operand is
a symbolic name and an operator specifies an arithmetic or logical
function. All assembler arithmetic uses 2-byte (16-bit binary

2-4

Relocating Macro Assembler General Information / 2

internally) signed or unsigned integers in the range of 0 to 65535 for
unsigned numbers, or -32768 to +32767 for signed numbers.

In some cases, the assembler expects expressions to produce a value
that fits in one byte, such as 8-bit register instructions. Such values
must be in the range 0 to 255 for unsigned values and -128 to +127 for
signed values.

If the result of an expression is outside its range, OS-9 returns an error
message.

0S-9 evaluates expressions from left to right using the algebraic order
of operations. That is, it performs multiplication and divisions before
addition and subtraction. You can use parentheses to alter the natural
order of evaluation.

Expression Operands
You can use the following items as operands within an expression:

decimal numbers A positive or negative value comn-
taining one to five digits (values are
in the range of -32768 through
+32767). Examples:

100
-32767
0

12

2-5

Relocating Macro Assembler

General Information / 2

hexadecimal numbers

binary numbers

character constants

symbolic names

instruction counter

The dollar sign ($) followed by one
to four hexadecimal characters (0-9,
A-F, or a-f). Examples:

$EC00
$1000
$3

$0300

Percent sign (%) followed by one to
16 binary digits (0 or 1). Examples:

%0101
%1111000011110000
%10101010

%11

Single quotation mark (') followed
by any printable ASCII character.
Examples:

X

'c
'S
T

One to nine characters, the first
character must be a letter. Legal
characters are upper- and lowercase
letters (A-Z, a-z), digits (0-9), and
the special characters underscore
(), period (.), dollar sign ($), and
"at" (@).

Placed at the beginning of the ex-
pression, the asterisk (*) represents
the program instruction counter
value.

2-6

Relocating Macro Assembler General Information [2

Expression Operators

The following list shows the available operators in the order in which
08-9 evaluates them. Operators listed on the same line have identical
precedence. OS-9 processes them left to right when they occur in the
same expression.

Assembler Operators By Order of Evaluation

- negative A logical NOT
& logical AND ! logical OR
* multiplication \ division

+ addition - subtraction

Logical operations are performed bit-by-bit for each bit of the
operands.

Division and multiplication functions expect unsigned operands, but
subtraction and addition accept signed (2's complement) or unsigned
numbers. OS-9 returns an error if you attempt to divide by zero or
multiply by a factor that results in a product larger that 65535.

Symbolic Names

A symbolic name consists of one to nine lower- or uppercase
characters, decimal digits, or the special characters dollar sign ($),
undescore (), period (.), or the at (@). The first character in a
symbolic name must be a letter. Some examples of legal symbolic
names are:

HERE there SPL030 PGM_A
Q1020.1 t$integer L.123.X a002@

Note: The RMA does not convert lowercase characters to
uppercase. The names file_A and FILE_A are unique names.

2.7

Relocating Macro Assembler General Information / 2

The following are examples of illegal symbol names:
2move The first character is not a letter.
main.backup There are more than nine characters.

Ibl#123 The number sign (#) is not a legal character.

You define a name the first time you use it as a label in an instruction
or directive statement. You can define a name only once in a program
(except if it is a SET label). 0S-9 returns an error message if you
attempt to redefine a name.

If you use an undefined symbolic name in an expression, the RMA
assumes the name is external to the PSECT. The RMA records
information about the reference so the linker can adjust the operand
accordingly.

Note: You cannot use external names in operand expressions
for assembler directives,

Symbolic Names for System Calls

A system-wide assembly language equate file called OS9defs.a
defines the RMA symbolic names for all system calls, You can include
this file when the RMA assembles hand-written or compiler-generated
code by using the USE assembler directive (see Chapter 6). The RMA
has a built-in macro that generates the system calls from the symbolic
names.

Symbolic System names can also be resolved by using sys.l in the LIB
directory with RLINK. This chapter contains additional information
on the LIB Directory. Chapter 9 discusses RLINK.

Relocating Macro Assembler General Information / 2

The DEFS Directory
The OS9defs.a file contains the following groups of defined symbols:

System Service Request Code definitions
I/O Service Request Code definitions
File access modes
Signal codes
Status codes for GetStat/PutStat structure formats
Module definitions
Universal module offsets
Type-dependent module offsets
System module
File manager module
Device driver module
Program module
Device descriptor module
Machine characteristics definitions
Error code definitions
System dependent error codes
Standard OS-9 error codes

To view the contents of the OS9defs.a file, which includes a brief
description of each symbol name, use the OS-9 LIST command. For
example, if your OS-9 Level Two Development Pack Diskette 1 is in
the current drive, type:

list /d0/defs/os9defs.a

Or send the file to your printer by typing:

list /d0/defs/os9dets.a > /p
To include the OS9defs file with your source code when assembling a
file, you can use the following statements:

i{+]|
use os9defs.a
endc

2-9

Relocating Macro Assembler General Information / 2

However, OS9Defs.a provides the assembly source from which Sys.1
is created (see the following section "The LIB Directory”). In many
cases, using Sys.1 requires less memory and processes faster.

For programmers who prefer to use the OS-9 Level One ASM program
for writing code, the DEFS directory contains four other files:
Defsfile, Defsfile.dd, OS9defs, and Systype. These four files contain
Level Two information but are in the format required by ASM.

Also included in the DEFS directory are Wind.h, Stdmenu.h, Mouse.h,
and Buffs.h. These four files contain Level 2 data structures for
window, menu, mouse, and buffer manipulation using the C language.

The LIB Directory

Two OS-9 library files are also included in the LIB directory on
Diskette 1 of your Development Pack. The files are:

cgfx.l that provides Level Two graphics routines for the C
language

sys] the system library--defines the standard symbolic
references (error messages, I$ and F$ system calls, and so
on), Use with RLINK to resolve references rather than the
USE instruction in your source code.

For instance, to link a program called Updn (see Chapter
11, "Examples"), you could type:

RLINK RELS/UPDN.R -I=/d0/lib/sys.] -0=/d0/cmds/updn

2-10

Chapter 3

Macros

At times, you might need to use an identical sequence of instructions
more than once in a program, such as a routine to display messages to
the screen. Instead of repeating the routine in your program, you can
create a macro that you can call just like any other assembly-language
instruction.

A macro defines a set of instructions with a name you assign. Using
this name, you can call the macro as many times as you want. In
addition, you can use macros to create complex constant tables and
data structures. To define a macro, use the MACRO and ENDM
directives. For example, the following macro performs a 16-bit left
shift on the Register D:

dasl MACRO
aslb

rola

ENDM

The MACRO directive marks the beginning of the macro definition.
The name assigned to the macro is dasl. To use this new macro,
specify dasl ag an instruction as shown here:

Idd 12,8 get operand
dasl double it
std 12,3 save operand

If the RMA encounters a macro name in the instruction field during
the assembly process, it replaces the macro name with the machine
instructions given in the macro definition. So, when the RMA
encounters the dasl macro name in the instruction field, it outputs the
codes for aslb and rola.

3-1

Relocating Macro Assembler Macros 1 3

Normally, RMA does not expand macros on listings. However, you
can use the -x option to cause it to do so.

Note: Macros are similar to subroutines, but do not confuse
the two. A macro duplicates the routine within your program
every time you call it. It also allows some alteration of the
instruction operands. A subroutine, however, appears only
once within a program and cannot be changed. Also, you call
a subroutine using the special instructions (BSR or JSR).
Generally, using a macro instead of a subroutine produces
longer but slightly faster programs.

Macro Structure

A macro definition consists of three sections: header, body, and
terminator. The macro header marks the beginning of the macro and
assigns the macro's name. The body of the macro contains the
statements. The zerminator indicates the end of the macro. The general
format is as shown here:

name MACRO /* macro header */
bor.-'iy *macro body */

ENDM /* macro terminator */

The name is required by the MACRO directive. It can be any legal
assembler label. You can, if you wish, even redefine a 6809 directive,
such as LDA or CLR, by defining a macro with the same name. This
lets you use the RMA as a cross-assembler for non-6809 (8- or 16-bit)
processors by either defining (or re-defining) instructions for the
target CPU.

Note: Redefinition of assembler directives, such as RMB, can
cause unpredictable consequences. Redefine with care.

3-2

Relocating Macro Assembler Macros / 3

The body of the macro contains any number of legal RMA instruction
or directive statements. You can even include references to previously
defined macros. Calling another macro from within a macro is called
nesting. For example:

times4 MACRO
dasi
dasl
ENDM

This example shows the times4 macro cailing the dasl macro twice.
You can nest macros up to eight deep.

Note: You cannot define one new macro within another.

Macro Arguments

By using arguments with your macros, you can vary a macro each time
you call it. You can use arguments to pass operands, register names,
constants, variables, and so on, to the macro. A macro can have as
many as nine arguments in the operand field. An argument consists of
a backslash and an argument number (\1,\2, ..\9).

When the RMA expands the macro, the assembler replaces each
argument with the corresponding text string argument specified in the
macro call. When using arguments within the macro, you can only use
them in the operand field. You can use arguments in any order and
any number of times.

The following example macro performs the typical instruction
sequence to create an OS-9 file:

create MACRO

leax \1,per get addr of filename string
Ida #2 set path number

Idb A3 set file access mode

0s9 I$CREATE

ENDM

Relocating Macro Assembler Macros /3

The first argument, \1, supplies the filename string address. The
second argument, \2, specifies the path number, and the third, \3, gives
the file access-mode code. The following instruction shows how to
call the create macro with its arguments:

create outname,2,$1E

RMA expands the create macro like this:

leax outname,pcr
Ida #2

Idb #$1E

059 I$CREATE

Note that if an argument string includes special characters such as
backslashes or commas, you must enclose the string in double
quotation marks. For example, the following instruction calls a macro
called double and passes two arguments:

double count,"2,s”
To declare a null argument, omit the argument and use a comma to

hold its place in the sequence (if necessary). The RMA creates an
empty string. For example:

double count
or

double ,"2,s"

Special Arguments

RMA has two special argument operators that you might find useful
when constructing complex macros. They are:

\Ln Returns the length of argument » in bytes
\# Returns the number of arguments passed in a given macro
call

3-4

Relocating Macro Assembler Macros (3

Generally, you use these special operators with the RMA's conditional
assembly statements to test the validity of arguments used in a macro
call, or to customize a macro according to the actual arguments
passed. You can use the FAIL directive if you want a macro to report
errors that occur during execution. The following example is an
expanded version of the create macro:

create MACRO

ifne W-3 must have exactly 3 arguments
FAIL create: must have 3 arguments

endc

ifgt \L1-29 filename can be 1 - 29 characters long
FAIL create: filename too long

endc

leax \1,per get addr of filename string

Ida #\2 set path number

Idb #3 set file access mode

os9 ISCREATE

ENDM

Automatic Internal Labels

At times, it might be necessary to use labels within a macro. You can
specify macro-internal labels with \@. If there is more than one label,
you can add an extra character or characters for uniqueness. For
example, if you need two labels with a macro, you might use the
names \@A and \@B. You can add the extra character(s) before the
backslash or after the \@ symbol.

When the RMA expands the code, internal labels (\@) take the form
\@xxx where xxx is a decimal number between 000 and 999. For
example, the expansion of the labels \@A and \@B would be \001A
and \OO1B. If the macro is called again, the expansion would be \O02A
and \O02B, and so on.

3-5

Relocating Macro Assembler

The following example shows a macro using internal labels:

testovr MACRO

cmpd #1
bls @A
orcc #1
bra \@B
@A andcc #SFE
@B equ |
ENDM

compare to arg

branch if in range

set carry bit

and skip next instruction
clear carry

continue with routine...

If you call the testovr macro with the instruction:

testovr $80

RMA expands the labels in the following way:

cmpd #380
bls @001A
orce #

bra @001B
@001A andcc #$FE
@001B equ I

compare to arg

branch if in range

set carry bit

and skip next instruction
clear carry

continue with routine...

If you call the testovr macro a second time with:

testovr 240

RMA expands the labels in the following way:

empd #2340
bls @002A
orcc #1

bra @002B
@002A andcc #$FE
@002B equ I

compare to arg

branch if in range

set carry bit

and skip next instruction
clear carry

continue with routine...

3-6

Relocating Macro Assembler Macros | 3

Documenting Macros

Although macros are a useful programming tool, you should use them
with care. Indiscriminate use can impair the readability of a program
and make it difficult for other programmers to understand the program
logic. Be sure to document your macros thoroughly.

37

Chapter 4

Program Sections

One of the most useful functions of the RMA is that it lets you write
programs in segments that you can assemble separately, You can then
use RLINK to combine the segments into one 0S-9 memory module
with a coordinated data storage area.

When writing a program in segments, you must divide it into sections
for variable storage definitions (VSECTs) and sections for program
statements (PSECTs). By using external names, the code in one
segment can reference variables declared in another segment, or can
transfer program control to labels in another segments. The assembler
outputs a relocatable object file (ROF) for each program section. This
object file contains the object code output plus information about the
variable storage declarations for the linker to use.

RLINK reads relocatable object files, and assigns space in the data
storage area. It also combines all the object code into a single
executable memory module. To do this, RLINK must alter the
operands of instructions to refer to the final variable assignments and
must adjust program transfer control instructions that refer to labels in
other segments.

The following shows a simplified memory map after the linker has
processed three program segments (A, B, and C):

4-1

Relocating Macro Assembler Program Sections | 4

process data area

Segment A Variables
Segment B Variables
Segment C Variables

Executable Memory Module
Moedule Header
Segment A Object Code
Segment B Object Code
Segment C Object Code
CRC Check Value

Each section in the process data area corresponds to each program
segment's VSECT, RLINK generates the module header and CRC
check values. The Segment A Object Code is the mainline, or
beginning, segment. Each object code segment corresponds to each
program segment's PSECT.

Program Section Declarations

The RMA uses three section directives (PSECT, VSECT, and CSECT)
to control the placement of object code and allocation of variable
space in the program. The ENDSECT directive indicates the end of a
section.

PSECT indicates the beginning of a relocatable object file. PSECT
causes the RMA to initialize the instruction and data location
counters, and assemble subsequent instructions into the ROF object
code area.

VSECT causes the RMA to change the variable (data) location
counters and to place information about subsequently declared
variables in the appropriate ROF data description area. You declare
VSECTs within PSECTs.

4-2

Relocating Macro Assembler Program Sections / 4

CSECT initializes a base value for assigning sequential numeric
values to symbolic names. CSECTS are provided for convenience
only. Their use is optional.

The RMA maintains the following counters within each section:

Directive Counter
PSECT instruction location counter
VSECT initialized direct page counter

non-initialized direct page counter
initialized data location counter
non-initialized data location counter

Because the source statements within a certain program section cause
the linker to perform a function appropriate for the statement, the type
of mnemonic allowed within a section is sometimes restricted. How-
ever, the following mnemonics can appear inside Qr outside any
section: nam, opt, ttl, pag, spc, use, fail, rept, endr, ifeq, ifne, iflt, ifle,
ifge, ifgt, ifpl, endc, else, equ, set, macro, endm, and endsect.

4-3

Chapter 5

Program Section Directives

PSECT Directive

The PSECT directive specifies the beginning of a program code
section. You can specify only one PSECT for each assembly-language
file. The PSECT directive initializes all assembler location counters
and marks the start of the program segment. You must declare all
instruction statements and VSECT data reservations (RMB) within the
PSECT/ENDSECT block.

The syntax for the PSECT directive is:

PSECT name,typelang,attrrev,edition,stacksize,entry

If the program section is to be 2 mainline segment, you can specify the
name and five expressions as an operand list to PSECT. The RMA
stores the values of the operand list in the relocatable object file for
later use by the linker. If you omit the operand list, PSECT defaults to
the name Program and all expressions default to zero. The following
list describes the available expressions:

name Used by the linker to identify the PSECT. The name
can be up to 20 bytes long and can consist of any
printable characters, except the space and comma,
The name does not need {o be unique; however, it is
often easier to identify PSECTs when their names are
distinct.

typelang Used by the linker as the executable module
type/language byte. If the PSECT is not a mainline
segment, typelang must be zero.

5-1

Relocating Macro Assembler Program Section Directives | 5

atirrev

edition

stacksize

entry

Used by the linker as the executable module
attribute/revision byte.

Used by the linker as the executable module edition
byte.

Used by the linker as the amount of stack storage
required by the PSECT. Specify stacksize as a word
expression. The linker adds the value in all PSECTs
that make up the executable module and adds the
total to any data storage requirement for the entire
program.

Used by the linker as the program entry point offset
for the PSECT. Specify entry as a word expression, If
the PSECT is not a mainline segment, this value must
be zero.

Statements that you can use in a PSECT are: any 6809 mnemonic, fcc,
fdb, fcs, fdb, rzb, vsect, endsect, 0s9, and end. Note that you cannot
use RMB in a PSECT.

Note: If you are familiar with the OS-9 Level I Interactive
Assembler, note the following difference between the RMA's
PSECT directive and the Interactive Assembler's MOD
statement. The MOD statement directly outputs an 0OS-9
module header, but PSECT only sets up information for the
linker. The linker creates the module header.

Example

* this program starts a basic09 process

ifp1
use/defs/os9defs.a
endc

PRGRM equ $10

OBJCT equ $1

Relocating Macro Assembler Program Section Directives ! 5

stk equ 200
psect rmatest,$11,$81,0,stk.entry

name fcs /basic08/
prm fcb $d
prmsize *-prm

entry leax name,pcr
leau prm,per
Idy #prmsize
lda #PRGRM+OBJCT
cirb
os9 F$FORK
os9 FSWAIT
osg F$EXIT
endsect

VSECT Directive

The VSECT directive indicates the variable storage section, which can
contain either initialized or non-initialized variable storage defini-
tions. The VSECT directive causes the RMA to change the data
location counters. The RMA offers two sets of counters for each
VSECT: one set for direct page variables and another for variables
that are normally index-register offsets into a process's data storage
area.

The syntax for a VSECT directive is:
VSECT [DP]

If you specify the DP operand, the RMA uses the direct page counters.
If you omit DP, the RMA uses the index register counters.

You can specify any number of VSECT blocks within a PSECT. Note,
however, that the data location counters maintain their values from
one VSECT to the next. Because the linker handles the actual data
allocation, there is no facility to adjust the data location counters.

5-3

Relocating Macro Assembler Program Section Directives !/ 5

Statements that you can use within a VSECT are: rmb, fcc, fdb, fcs,
fcb, rzb, and endsect. The fcc, fdb, fcb, fcs, and rzb directives place
data into the initialized data area. Programs move initialized constants
which appear inside a VSECT from the data section to the program
section for accessing by the 6809 program counter relative addressing
mode. Initialized constants can appear outside of a VSECT; however,
if they do, the program cannot change them.

Example

ifp1
use/defs/os9defs.a
ende

PRGRM EQU $10
OBJCT EQU $1
stk EQU 200
PSECT pgmlen,$11,$81,0,stk,start

* data storage declarations
VSECT

temp RMB 1

addr RMB 2

buifer RMB 500

ENDSECT
start leax buffer,u get address of buffer
cir temp
inc temp
idd #500 loop count
loop cir X4+
subd #1
bne loop
os9 FS$EXIT return to OS9
ENDSECT

Relocating Macro Assembler Program Section Directives | 5

CSECT Directive

The CSECT directive provides a method for assigning consecutive
offsets to labels without resorting to EQUS.

The syntax for the CSECT directive is:
CSECT expression

If you specify an expression, the RMA sets the CSECT base counter to
the specified value. If you do not include an expression, the RMA uses
a base counter value of zero.

Example

* This CSECT assigns offsets of 0, 1, and 2 respectively.

CSECT O
R$CC RMB1 Condition code register
R$A RMB 1 A accumulator
R$B RMB 1 B accumulator
ENDSECT

See the Defs file that is included in the OS9 Development diskette for
more CSECT examples.

Chapter 6

Assembler Directive Statements

Directive statements give the assembler information that affects the
assembly process, but they do not generate code. Read the descrip-
tions in this chapter carefully. Some directives require labels, some
allow optional labels, and a few cannot have labels.

END Statement

The END statement indicates the end of a program. The syntax for
END is:

END
You cannot use a label with the END statement.

Because the RMA assumes the end of file when it encounters an end-
of-file condition on the source file, the END statement is optional.

EQU and SET Statements

The EQU and SET statements let you assign a value to a symbolic
name (label). The syntaxes for these statements are:

label EQU expression
label SET expression

The label is required. You can specify expression as an expression, a
name, or a constant.

6-1

Relocating Macro Assembler Assembler Directive Statements [6

EQU lets you define symbols only once in the program. Usually, you
use EQU to define program symbolic constants, especially those used
with instructions. It is a standard programming practice to place all
EQUSs at the beginning of the program.

When using EQU, the label must be unique, and you must define the
expression if you specify a name.

SET lets you redefine a symbol as many times as you want. Usually,
you use SET to define symbols used to control the assembler opera-
tions, such as conditional assembly and listing control.

Example
FIVE EQU 5
OFFSET EQU address-base
TRUE EQU $FF
FALSE EQU 0

SUBSET SET TRUE

ifne SUBSET

use subset.defs
else

use full.defs
endc

SUBSET set FALSE

FAIL Statement

The FAIL statement forces the RMA to report an assembler error.
Generally, you use FAIL with conditional assembly directives that test
for various illegal conditions. The syntax for the FAIL statement is:

FAIL fextstring

The RMA displays the textstring operand in the same manner as
normal RMA-generated error messages. Because the RMA assumes
the entire line after the FAIL keyword to be the error message, you
cannot specify a comment field.

6-2

Relocating Macro Assembler Assembler Directive Statements [6

Example
ifeq maxval
FAIL maxval cannot be zero
endc

IF, ELSE, and ENDC Statements

The IF, ELSE, and ENDC statements let you selectively assemble (or
not assemble) one or more parts of a program, depending on the value
of a variable or computed value. The syntaxes for these statements
are:

IFxx expression
statements
ELSE
statements
ENDC

When the RMA processes an IF statement, it makes the desired
comparison. If the comparison result is true, the RMA processes the
statements following the IF statement until it finds an ENDC or ELSE.

The ELSE statement is optional. If the RMA encounters an ELSE
statement, it processes the statements following the ELSE if the result
of the comparison is false.

The ENDC statement marks the end of a conditional program section.

There are several available IF statements:

IFEQ True if operand equals zero

IFNE True if operand does not equal zero

IFLT True if operand is less than zero

IFLE True if operand is less than or equal to zero

IFGT True if operand is greater than zero

I[FGE True if operand is greater than or equal to zero

[FP1 True only during the assembler's first pass (no operand)

6-3

Relocating Macro Assembler Assembler Directive Statements | 6

Examples

In the following example, IFEQ tests if the operand is equal to zero:

IFEQ SWITCH

Idd #0 assembled only if SWITCH=0
leax 1,x

ENDC

The following example adds the ELSE condition to the preceding
program:

IFEQ SWITCH

Idd #0 assembled only if SWITCH=0

leax 1,x

ELSE

Idd #1 assembled only if SWITCH does not equal 0
leax -1,x

ENDC

You can use IF statements to test the result of a arithmetic evaluation
as an operand. This example tests to see if the result of the subtraction
of MIN from MAX is less than or equal to zero:

IFLE MAX-MIN

The IFP1 statement tells the RMA to process subsequent statements
during the first pass only. You can use this for program sections that
contain only symbolic definitions to be processed only once during
the assembly. Because they do not generate actual object code output,
the symbolic definitions are processed during Pass 1 only. The
0OS9Defs file is an example of a large section of such definitions. For
example, you can use the following statements at the beginning of
many source files:

IFP1

use /do/defs/OS9Defs
ENDC

Relocating Macro Assembler Assembler Directive Statements | 6

NAM and TTL Statements

The NAM and TTL statements let you define or redefine a program
name or listing titfle line, respectively. The RMA prints this
information on each listing page header,

The syntaxes for NAM and TTL are:
NAM string
TTL string

You cannot specify a label with these statements.

The RMA prints the program name, set by NAM, on the left side of the
second line of each listing page. The RMA then prints a dash, and the
title line, set by TTL. You can change the program name and listing
title as often as you like.

Example

NAM Datac
TTL Data Acquisition System

This example prints the following information in the listing header:

Datac - Data Acquisition System

OPT Statement

The OPT statement lets you set or reset any of several assembler
control options. The syntax is:

OPT option
The operand option can be any of the assembler options described in
Chapter 1 of this manual. It consists of one character, except for the d

and w options, which require a number. Do not specify - or -- in the
OPT statement.

You cannot use the label or comment fields with the OPT statement.

6-3

Relocating Macro Assembler Assembler Directive Statements | 6

Examples
The following statement suppresses the listing generation:

OPTI

The next example sets the line width to 72 charac -2rs:

OPT w72

PAG and SPC Statements

The PAG and SPC statements let you improve the readability of a
program listing by starting a new page or inserting blank lines. The
syntaxes for the statements are:

PAG
SPC expression

The PAG and SPC statements cannot have a label field.

The PAG statement causes the RMA to begin a new page in the listing.
For Motorola compatability you can also use the alternate form,
PAGE.

The SPC statements inserts blank lines in the listing. The operand
expression specifies the number of blank lines to be inserted. The
expression can be an expression, constant, or name. If you

omit the expression, the RMA inserts one blank line.

REPT and ENDR Statement

REPT and ENDR let you repeat the assembly of a sequence of
instructions a specified number of times. The syntaxes are:

REPT expression
gtatements
ENDR

Relocating Macro Assembler Assembler Directive Statements | 6

The operand expression specifies the number of times the assembly
is to be repeated. The expression cannot include EXTERNAL or
undefined symbols. You cannot nest REPT loops.

Example

* make module size exactly 2048 bytes
REPT 2048-*-3 compute fill size w/crc space
fcb 0
ENDR
emod

* 20-cycle delay

REPT 5
nop
nop
ENDR

RMB Statement

The RMB statement has two uses. When used within a VSECT, RMB
declares storage for non-initialized variables in the data area. When
used within a CSECT, RMB assigns a sequential value to the symbolic
name given as its label. The syntax for RMB is:

label RMB expression

When using RMB in a VSECT, specify a label that is assigned the
relative address of the variable. In OS-9, the address must not be
absolute and you should usually use indexed or direct page
addressing modes to access variables. The linker assigns the actual
relative address when processing the relocatable object file. It adds
the operand, expression to the address counter to update them.

When using RMB in a CSECT, specify a label to which you assign the
value of the current CSECT location counter. Doing this, then updates
the counter by causing the program to add the result of the expression
given.

Relocating Macro Assembler Assembler Directive Statements | 6

USE Statement

The USE statement causes the RMA to temporarily stop reading the
current input file. USE requests that OS-9 open and read input from
the specified file/device until an end-of-file occurs. OS-9 then closes
the new input file, and the RMA resumes processing at the statement
following the USE statement, The syntax is:

USE pathlist

The pathlist specifies the new input file or device. You cannot specify
a label with the USE statement.

You can nest as many USE statements as you can have open files at
one time (usually 13, not including the standard I/O paths).
Example

To accept interactive input from the keyboard during the assembly of
a disk file, use the following statement:

USE ferm

6-8

Chapter 7

Pseudo-Instructions

Pseudo-instructions are special assembler statements that generate
object code, but do not correspond to actual 6809 machine
instructions. Their primary purpose is to create special sequences of
data to be included in the program. Labels are optional on pseudo-
instructions.

FCB and FDB Statements

The FCB and FDB pseudo-instructions generate sequences of
constants within the program. The syntaxes for these pseudo-
instructions are:

FCB expression, [expression,...]
FDB expression, [expression,...]

Expression can be any legal expression. You can specify more than
one expression by separating them with commas.

FCB generates a sequence of single constants in the program. It
reports an error if an expression has a value that is greater than 255 or
less than -128.

FDB generates a sequence of double constants in the program. If FDB
evaluates an expression with an absolute value of less than 256, the
high-order byte is zero.

If FCB or FDB appears within a VSECT, the RMA assigns the data to
the appropriate initialized data area (DP or non-DP). Otherwise, the
RMA places the constant in the code area. If the constant contains an
EXTERNAL reference, the program, using Root.a, must copy out and
adjust the references.

7-1

Relocating Macro Assembler Pseudo-Instructions | 7

Examples

FCB 1,20,'A
FCB index/2+1,0,0,1

FDB 1,10,100,1000,10000
FDB $F900,$FA00,$FB00,$FC0O0

FCC and FCS Statements

The FCC and FCS pseudo-instructions generate a series of bytes
corresponding to the specified character string. The syntaxes are:

FCC string
FCS siring

FCS is the same as FCC except that the most significant bit (the sign
bit) of the last character in the string is set. This is a common OS-9
programming technique to indicate the end of a text string without
using additional storage.

String must be enclosed in delimiters. You can use the following char-
acters as delimiters:

I"ES%& (), -]

The beginning and ending delimiters must be the same character. The
delimiting character cannot appear in the character string.

FCC and FCS output bytes that are the literal numeric representation
of each ASCII character in the character string.

if FCC or FCS appear in a VSECT, the RMA assigns the data to the
appropriate initialized data area (DP or non-DP). Otherwise, the RMA
places the constant in the code area.

7-2

Relocating Macro Assembler Pseudo-Instructions | 7

Examples

FCC /this is the character string/
FCS ,01234567899,

FCS AA null string

FCC $z%

FCS " null string

RZB Statement

The RZB pseudo-instruction fills memory with a sequence of bytes,
each of which has a value of zero. The syntax is:

RZB expression

The expression is a 16-bit expression. The RMA evaluates the
expression and places that number of zero bytes in the appropriate
code or data section.

0OS9 Statement

The OS9 pseudo-instruction is a convenient way to generate OS-9
system calls. The syntax is:

0S$8 expression

The RMA uses the expression value as the request code. The fol-
lowing instruction sequence is the equivalent to the OS9 pseudo-
instruction:

sSwi2
FCB operand

The OS9Defs file contains the standard definitions of the symbolic
names of all the OS-9 service requests. You can use these names with
the OS89 pseudo-instruction to improve the readability and portability
of assembly-language software.

7-3

Relocating Macro Assembler Pseudo-Instructions / 7

Examples
0S89 ISREAD call OS-9 READ service request
0Ss9 FSEXIT call 0S-9 EXIT service request

7-4

Chapter 8

Accessing the Data Area

In general, the RMA assumes that the program will access data using
indexed or direct page addressing modes. By convention, one index
register contains the starting address of the data area, and the direct
page register contains the page number of the lowest-address page of
the data area. The RMA/RLINK system automatically adjust operands
of instructions, using indexed and direct page addressing modes.

The RMA accesses the data area differently depending on whether or
not your program uses initialized data. Initialized data is data that has
an initial value that is modified by the program. You create initialized
data with the FCB, FDB, FCC and similar directives used in a VSECT.

If you do not use initialized data, the RMA accesses program data
using index registers--this is the method used by the OS-9 Level I
Interactive Assembler.

Using Non-Initialized Data

Programs that do not used initialized data declare all data storage in
VSECTs using RMBs. The following diagram shows how the RMA
sets up the data memory area and registers for a new process:

<4— Y (highest address)
<+ X, SpP

parameter area

data area

direct page

< U, DP (lowest address)

Relocating Macro Assembler Accessing the Data Area ! 8

When OS-9 executes a process, the MPU Registers contain the bounds
of the data area. Register U contains the beginning address and
Register Y contains the ending address. OS-9 sets the SP register to
the ending address + 1, unless you use a parameter. The direct page
register contains the page number of the beginning page. If you used
no parameters, Y, X, and SP are the same value. The OS-9 Shell always
passes at least an end-of-line character in the parameter area.

If Register U is maintained throughout the program, you can use
constant-offset-indexed addressing,

You can write part of the program’s initialization routine to compute
the actual addresses of the data structure and store these addresses in
pointer locations in the direct page. Then, obtain the addresses later
using direct-page addressing mode instructions.

Note: Because the memory addresses assigned to the
program section and the address section are not a fixed
distance apart, you cannot use program-counter relative
addressing to obtain the address of objects in the data section.

Using Initialized Data

If you plan to use initialized data, you need to copy the data from the
initialized data section in the object module to the data storage area
pointed to by the Register U. Do so by using the Root.2a mainline
module (object code that is directly executable by using the OS-9
F$FORK). The function of the Root.a mainline module is to use the
initializing values and offsets of the initialized data location, stored in
the object code module, to actually initialize variables. The linker
automatically generates the initialization information area of the
object code module based on information passed by the RMA in the
relocatable object file.

Root.a sets Register Y to point to the same location to which Register
U pointed. Register X points to the parameter area, and Register U
points to the top of data allocated by the linker. The data-index

8-2

Relocating Macro Assembler Accessing the Data Area/ 8

register choice is arbitrary, but use your choice conmsistently. To
maintain compatibility with code produced by the C compiler,
Register Y is used as the data pointer. For more information on Root.a,
study the commented source code supplied on the distribution
diskette. The following diagram shows how the RMA sets up the data
area:

Process Data Area Layout

parameters x
stack SP Register
free memory
requested memory 4—U
uninitialized data
initialized data

unitialized direct page
initialized direct page
ot PAg° l4—v, P

Process Object Code
Module Layout

CRC Check Bytes

Initializing Data Offsets

<¢—Used by Root.a
Initializing Data Values 7
Additional (user)
Executable PSETS

Mainline PSET_ <}— Program entry point
(Root.a)

Standard OS-9
Module Header

<}— PC (this area)

8-3

Chapter 9

Using the Linker

The Relocating Macro Assembler lets you write and assemble
programs scparately and then link them to form a single object code
0S-9 module. The linker, RLINK, combines relocatable object files
(ROF) into a single OS-9 format memory module. It also resolves
external data and program references. Because RLINK allows
references to occur between modules, you can write one program that
references a symbol in another program.

If the RMA encounters an external reference during the assembly
process, it sets up information denoting the existence of an internal
reference. The RMA does not know the location of the external
reference.

Because the RMA is a relocatable assembler, it produces relocatable
object files that do not have absolute addresses assigned. The RMA
assembles each section with the absolute address 0,

RLINK reads in all the relocatable object files and assigns each an
absolute memory address for data locations and instruction locations
for branching. OS-9 resolves any other addresses at execution time.

By using the RMA and RLINK, you can write programs in smaller
sections that are easier to read and debug. In this way, if an error
occurs, you need edit and reassemble only the module in which the
error occurred. Then, you can relink the fixed module with the rest of
the program.

Relocating Macro Assembler Using the Linker | 9

Running the Linker
You call the linker, RLINK, with the following command line:

RLINK [options] mainiine [sub1....subn] [options]
All input files must be in relocatable object format (ROF).

Mainline specifies the pathlist of the mainline (first) segment from
which RLINK resolves external references and generates a module
header. It is the object of the mainline file to perform the initialization
of data and the relocation of any initialized data references within the
initialized data, using the information in the object module supplied
by RLINK {See Chapter 7.) You indicate that a program is the
mainline module by setting the type/lang value in the PSECT directive
to a non-zero value.

The subl and subn options represent any additional modules to be
linked to the mainline module. The additional ROFs cannot contain a
mainline PSECT notation (type/lang>0).

RLINK includes the mainline file and all sub-modules in the final
linked object module, even if you did not reference the subroutine.

Available Options

You can use any of the following options on the RLINK ¢ommand
line:

-0=path Writes the linker object (memory module) output to
the file specified by the pathlist. RLINK assumes the
last element in the pathlist to be the module name
unless you use the -n option.

-n=pame Specifies name as the object file.

9-2

Relocating Macro Assembler Using the Linker / 9

-1=path

-M=size

-m

Specifies path as the library. A library file consists of
one or more merged assembly ROFs. The assembler
checks each PSECT in the file to see if it resolves any
unresolved references. If so, RLINK includes the
module in the final output module. Otherwise, RLINK
skips the file. RLINK searches library files in the
order in which you specify them on the command
line. A library file cannot contain a mainline PSECT.

Sets the edition number in the final output module to
n. You can also use -e (lowercase).

Sets the number of pages of additional memory for
C.LINK to allocate to the data area of the final object
module. If you omit this option, C.LINK adds up the
total data stack requirements found in the PSECT of
the input modules, and uses that value.

Prints the linkage map that indicates base addresses
of the PSECTSs in the final object module.

Prints the final addresses that RLINK assigned to
symbols in the final object module.

Links C-language functions so that they can be called
from BASIC09. The argument epr specifies the name
of the function to which control is transferred when
BASICO09 executes a RUN command.

Allows static data to appear in a BASIC09 callable
module. RLINK assumes that the C function being
called and the calling BASIC09 program provide a
sufficiently large static storage data area pointed to
by Register Y.

Chapter 10

Error Messages

When the RMA detects an error during assembly, it prints an error
message in the listing just before the source line containing the error.
In some cases, the RMA might report more than one error for a source
line. If you do not use the -1 option to produce the listing, the RMA
still prints the error messages and the problem source line. At the end
of the listing, the RMA reports the total number of errors and warnings
in the assembly summary statistics.

The RMA prints all error messages, the associated source line, and the
assembly summary to the assembler's error path. You can redirect this
output using the shell redirection symbol. For example:

RMA sourcefile -o=sourcefile >>src.error

During the initial stages of assembly, you might find it useful to
suppress generation of both the listing and object code (by omitting
the -1 and -o options). Doing this lets the RMA perform a quick
assembly just to check for errors. In this way, you can find and correct
many errors before printing a lengthy listing.

Some errors stop execution on a line. In these cases, the RMA might
not detect all errors that occur on one line; so, make changes
carefully.

The following list shows the RMA error messages and a description
for each message.

Bad label

The label field contains an incorrectly formed label.

10-1

Relocating Macro Assembler Error Messages ! 10

Bad Mnemonic

The mnemonic field contains a mnemonic that the RMA does not
recognize or a mnemonic that is not allowed in the current program
section,

Bad number

The numeric constant definition contains a character that is not
allowed in the current radix.

Bad operand

The operand field is missing an expression or contains an incorrectly
formed operand expression.

Bad operator

The operator contains an incorrectly formed arithmetic expression.

Bad option

An option is not recognized or is incorrectly specified.

Bracket Missing

A bracket is missing from an expression.

Can't open file

The RMA encountered a problem when opening an input file.

Can't open macro work file

The RMA cannot open a macro work file.

Relocating Macro Assembler Error Messages ! 10

Comma expected

The RMA cannot find an expected comma.

Conditional nesting error

Program contains mismatched IF and ELSE/ENDC conditional
assembly directives.

Constant definition

The statement contains an incorrectly formed constant definition.

DP section???

Direct Page assignments have exceeded 256 bytes.

ENDM without MACRO

The RMA encountered an ENDM statement without a matching
MACRO statement.

ENDR without REPT

The RMA encountered an ENDR statement without a matching REPT
statement.

Fail message

The RMA encountered a FAIL directive.

File close error

An error occurred closing a file.

Illegal addressing mode

The specified addressing mode cannot be used with the instruction.

10-3

Relocating Macro Assembler Error Messages | 10

Illegal external reference

You cannot use external names with assembler directives. If an
operand expression contains an external name, the RMA can only
perform binary plus and minus operations.

Illegal index register

You cannot use the specified register as an index register.

Label missing

The statement is missing a required label.

Macro arg too long

More than 60 characters (total) were passed to the macro.

Macro file error

The RMA experienced problems when trying to access the macro
work file,

Macro nesting too deep

You can nest macros up to eight levels deep.

Nested MACRO definitions

You cannot define a macro within another macro definition.

Nested REPT

You cannot nest repeat blocks.

10-4

Relocating Macro Assembler Error Messages / 10

New symbol in pass two

This indicates an assembler symbol lookup error. This error can be
caused by a symbol table overflow or bad memory.

No input files

You must specify an input file.

No param for arg

A macro expansion is attempting to access an argument that was not
passed by the macro call.

Phasing error

A label has a different value during Pass 2 than it did during Pass 1.

Redefined name

The name appears more than once in the label field (other than on a
SET directive).

Register list error

The legal register names allowed in tfr, exg, and pul are: A, B, CC, DP,
X, Y, U, S, and PC.

Register size mismatch

The registers specified in the tfr and exg instructions must be the same
size.

Symbol lost?

This indicates an assembler symbol lookup error. This error can be
caused by a symbol table overflow or bad memory.

10-5

Relocating Macro Assembler Error Messages ! 10

Too many args

You can pass up to nine arguments to a macro.

Too many object files

You can specify the -o option to the RMA only once on the command
line.

Too many input files

You can specify a maximum of 32 input files.

Undefined org

The * (program counter org) cannof be accessed within a VSECT.

Unmatched quotes

A quotation mark is missing.

Value out of range

A byte expression value is less than -128 or greater than 255.

10-6

Chapter 11

Examples

The chapter contains two assembly language programming examples:
e LSIT, to list files

e UpDn, to convert input case to either upper or lower

ekkdedkdkk i

* LSIT UTILITY COMMAND

* A "LIST" Command for poor typists

* Syntax: Isit <path>

* Lsit copies input from path to standard output
* NOTE: This command is similar to the

* LIST command. lts name was changed

* to allow easy assembly and testing

* since LIST normally is already in memory.

PRGRM equ $10
OBJCT equ $01
STK equ 200
csect
IPATH rmb 1 input path number
PRMPTR rmb 2 parameter pointer
BUFSIZ mb 200 size of input buffer
endsect

psect list, PRGRM+0BJCT,$81,0,STK,LSTENT

BUFFER equ 200 allocate line buffer
READ. equ 1 file access mode

11-1

Relocating Macro Assembler Examples/ 11

LSTENT stx PRMPTR save parameter pir
Ida #READ. select read access mode
os9 1$0pen open input file
bcs LSIT50 exit if error
sta IPATH save input path number
stx PRMPTR save updated param ptr
LSIT20 Ida IPATH load input path number

leax BUFFER,u load buffer pointer
Idy #BUFSIZ max bytes to read
0s3 I$SReadlLn read line of input

bes LSIT30 exit if error
Ida #1 load st. out path #
os9 1SWritLn output line
bec LSIT20 repeat if no error
bra LSIT50 exit if error

LSIT30 cmpb #ES$EQOF at end of file?
bne LSIT50 branch if not
Ida IPATH load input path number
0os9 I$Close close input path
bcs LSIT50 exit if error
ldx PRMPTR restore param ptr
Ida 0,x
cmpa #$0D end of param line?
bne LSTENT ..hoj; list next file
cirb

LSIT50 0s9 F$Exit .terminate
endsect

11-2

Relocating Macro Assembler Examples ! 11

* This is a program to convert characters from lower to

* upper case (by using the u option), and upper to lower
* (by using no option). To use type:

* updn u {for lower to upper) < input > output

nam updn

opt |
ttl ASSEMBLY LANGUAGE EXAMPLE
PRGRM equ $10
OBJCT equ $01
stk equ 250
psect updn,PRGRM+OBJCT,$81,0,stk.entry
vsect
temp mb 1
uprbnd mb 1
lwrbnd mb 1
endsect
entry ida N+ search parameter area
anda #$df make upper case
cmpa #U see if a U was input
beq upper branch to set uppercase
cmpa #$0D carriage return?
bne entry no; go get another char
Ida #A get lower bound
sta twrbnd set it in storage area
Ida #2 get upper bound
sta uprbnd set it in storage area
bra start1 go to start of code
upper ida #a get lower bound
sta lwrbnd set it in storage
Ida #z get upper bound
sta uprbnd get it In storage
startt leax temp,u get storage address
Ida #0 standard input
idy #3501 number of characters

11-3

Relocating Macro Assembler

Examples / 11

loop 0s9 I$Read
becs exit
Idb temp

cmpb Iwrbnd
blo write
empb uprbnd

bhi write
eorb #$20
write stb temp

inca reg'a’
o0s9 I$WritLn

deca
bce loop
exit cmph #ESEOF
bne exitl
cirb
exitt 0s9 F$Exit
endsect
cirb

do the read

exit if error

get character read
test char hound
branch if out

test char bound
branch if out

flip case bit

put it in storage
standard out

write the character
return to standard in
get char if no error
is it an EOF error
not eof, leave carry
clear carry, no error
error returned, exit

11-4

Appendix A

6809 Instructions
and Addressing Modes

Direct Extended Index Immed Accum Inher Relat Regis

ABX X
ADCA
ADCB
ADDA
ADDB
ADDD
ANDA
ANDB
ANDCC
ASL
ASLA
ASLB
ASR
ASRA
ASRB
(L)BCC
(L)BCS
(L)BEQ
(L)BGE
(L)BGT
(L)BGI
(L)BHS
BITA X X X
BITB X X X X

E T P e S
BT R e P S
PR X X

PR R i R P S

s

ot

P
o X

P KR

Relocating Macro Assembler 6809 Instructions | A

Direct Extended Index Immed Accum Inher Relat Regis

(L)BLE
(L)BLO
(L)BLS
(L)BLT
(L)BMI
(L)BNE
(L)BPL
(L)BRA
(L)BRN
(L)BSR
(L)BVC
(L)BVS
CLR
CMPA
CMPB
CMPD
CMPS
CMPU
CMPX
CMPY
COM
CWAI
DAA
DEC
EORA
EORB
EXG
INC
IMP
JSR
LDA
LDB
LDD
LDS
LDU

PaTl Il o i i sl i e S S S

S I T I B
XK X 4 K X
DK DA R K

PSR K K

PRI B A L
PP S P S T R
R i A .

Pl S

A-2

Relocating Macro Assembler 6809 Instructions | A

Direct Extended Index Immed Accum Inher Relat Regis

LDX X
LDY X
LEAS
LEAU
LEAX
LEAY
LSL

LSR

X
X

P I e

Pl

NEG
NOP
ORA
ORB
ORCC
PSHS
PSHU
PULS
PULU
ROL
ROR
RTI X
RTS X
SBCA
SBCB
SEX
STA
STB
STS
STU
STX
STY
SUB
SUBA
SUBB
SWI X

E I
Ko o XK
e
WX
]
> K

>
Paficad
»d
Ll

>
>

IR i e e e
PEX XXM K KX
P D DA e

S X

A-3

Relocating Macro Assembler 6809 Instructions | A

Direct Extended Index Immed Accum Inher Relat Regis

SWI2 X

SWI3 X

SYNC X

TFR X
TST X X X X

A-4

Relocating Macro Assembler

Index

! (logical OR) 2-7

& (logical AND) 2-7

* (comment) 2-2

* (multiplication) 2-7

+ (addition) 2-7

- (negative) 2-7

- (subtraction) 2-7

-x option (expand macro listings) 3-2
\ (division) 2-7

\ (macro argument) 3-3 - 3-5
\# (macro argument) 3-4
\@ (macro labels) 3-5 - 3-6
\L (macro argument) 3-4

A (logical NOT) 2-7

additional memory, setting 9-3

arguments, macros 3-3 - 3-5

assembling programs 6-3 - 6-4

assembler control options 6-5 - 6-6
assembler error reporting 6-2 - 6-3

assembly location counters 5-1
assembly-language programs, developing 2-1
attribute/revision byte 5-2

base counter, CSECT 5-5
binary numbers 2-6
blank lines 2-2

body, macro 3-2 - 3-3

Relocating Macro Assembler Index

C compiler, compatibility 8-3
C-language functions, linking 9-3
cgfx.1 file 2-10

character
constants 2-6
string 7-2-7-3

code bytes, listing 1-3
colon (global name) 2-3
comment field 2-2, 2-4
comments 2-2
comparison statement 6-3 - 6-4
conditional assembly lines, suppressing 1-3
consecutive offsets to labels 5-5
constants

character 2-6

generating 7-1-7-2
counter, instruction 2-6
CSECT 4-2-4-3,5-5, 6-7

data

area 8-2

location counters 5-3

storage 8-1-8-2
data, initialized 8-2 - 8-3
decimal numbers 2-5
defined symbols 2-9
DEFS directory 2-9 - 2-10
Defs file 5-5
device or file, opening 6-8
direct page

addressing 8-2

register 8-2

variable 5-3

Relocating Macro Assembler Index

directives

CSECT 5-5

ENDSECT 4-2

FAIL 3-5

VYSECT 5-3-54
directive statements 6-1 - 6-8
directory

DEFS 2-9-2-10

LIB 2-10
division functions 2-7
double constants 7-1 - 7-2

edition number option 9-3
ELSE statement 6-3 - 6-4
END statement 6-1
ENDC statement 6-3 - 6-4
ENDR statement 6-6 - 6-7
ENDSECT 4-2, 5-1
entry point offset 5-2
EQU statement 6-1 - 6-2
error, assembler 6-2 - 6-3
error messages, suppressing 1-3
executable module edition byte 5-2
expanding macro listings 3-2
expression evaluation 2-4 - 2-8
external
data references 9-1 - 9-3
names 4-1
program references 9-1-9-3
EXTERNAL reference 7-1

FAIL

directive 3-5

statement 6-2 - 6-3
FCB statement 7-1 - 7-2, 8-1
FCC statement 7-2 - 7-3, 8-1
FCS statement 7-2 - 7-3

Relocating Macro Assembler

Index

FDB statement 7-1 - 7-2, 8-1
features 1-1

field 2-2

file or device, opening 6-8
files to copy 1-2

filling memory 7-3

final address, printing 9-3
format of assembly listings 2-4

global names 2-3

header, macro 3-2
hexadecimal numbers 2-6

IF statement 6-3 - 6-4
IFEQ 6-3 - 6-4
IFGE 6-3 -64
IFGT 6-3 - 6-4
IFLE 6-3 - 6-4
IFLT 6-3-6-4
IFNE 6-3 - 64
IFP1 6-3 - 6-4
illegal symbolic names 2-8
index-register offsets 5-3, 8-1
initialized data 8-1 - 8-3
input file, reading 6-8
instruction counter 2-6
instructions

repeating 3-1-3-7,6-6 -6-7
integers 2-5

keyboard input 6-8

label field 2-2

labels (macro) 3-5 - 3-6
LIB directory 2-8, 2-10
library path, specifying 9-3

Relocating Macro Assembler

line

fields 2-2

maximum length 2-2
lines-per-page, setting 1-3
linking C-language functions 9-3
linkage map, printing 9-3
linker, starting 9-2
linker output 9-2
linking programs 9-1-9-3
listing

blank lines 6-6

code bytes 1-3

page 6-6

macro
arguments 3-3 - 3-§
body 3-2 - 3-3
expansion, suppressing 1-3
header 3-2
labels 3-5 - 3-6
terminator 3-2
MACRO directive 3-1
macros, documenting 3-7
memory, filling 7-3
MOQOD statement 5-2
multiplication functions 2-7

NAM statement 6-5
name, defining 6-5

PSECT 5-1

symbolic 2-6, 2-7 - 2-10
nesting macros 3-3
non-initialized data 8-1 - 8-2
null argument (macro) 3-4

Index

Relocating Macro Assembler Index

numbers
binary 2-6
decimal 2-5

hexadecimal 2-6
numeric expressions 2-4

opening files or devices 6-8
operand 2-4
Operand field 2-2,2-3 -2-4
operands, expression 2-5 - 2-6
operation field 2-2,2-3
operator 2-4
precedence 2-7
OPT statement 1-3, 6-5 - 6-6
options
assembler 1-3, 6-5 - 6-6
RLINK 9-2-9-3
OS89 statement 7-3 - 7-4
output, linker 9-2

PAG statement 6-6

page, starting new 6-6

page number 3-2

pointer locations §-2

precedence of operators 2-7

printing the symbol table 1-3

printer, top-of-form 1-3

program segment 5-1

program statements 4-1

programs, assembling 6-3 - 6-4

PSECT 4-1-4-3,5-1-5-3,9-3
statements 5-2

reading input files 6-8

register name 2-3

relocatable object file 2-1, 4-1, 9-1
repeating instructions 6-6 - 6-7

Relocating Macro Assembler

REPT statement 6-6 - 6-7
RLINK 2-8,4-1,9-1-9-3
options 9-2 - 9-3
output 9-2
starting 9-2
RMB statement 6-7
Root.a mainline module 8-2
RZB statement 7-3

segments 4-1
setting lines-per-page 1-3
SET statement 6-1 - 6-2
single constants 7-1 - 7-2
source file 2-2
SPC statement 6-6
specifying

library path 9-3

name, RLINK 9-2
stack storage 5-2
starting

RLINK 9-2

RMA -2
statements

ELSE 6-3-64

END 6-1

ENDC 6-3-6-4

ENDR 6-6 - 6-7

EQU 6-1-6-2

FAIL 6-2-6-3

FCB 7-1-7-2

FCC 7-2-7-3

FCS 7-2-7-3

FDB 7-1-7-2

IF 6-3-6-4

NAM 6-5

OPT 6-5-6-6

089 73-74

Index

Relocating Macro Assembler Index

PAG 6-6
REPT 6-6 - 6-7
RMB 6-7
RZB 7-3
SET 6-1-6-2
SPC 6-6
TTL 6-5
USE 6-8
statements
directive 6-1 - 6-8
PSECT 5-2
VSECT 54
static
data 9-3
storage area 9-3
storage, declare 6-7
storage file s 1-3
string, character 7-2 - 7-3
structure, macro 3-2 - 3-3
suppressing
conditional lines 1-3
error messages 1-3
macro expansions 1-3
symbol table 2-1
printing 1-3
symbolic name 2-2 - 2-3, 2-6,2-7 - 2-8, 6-1
assigning a sequential value 6-7
symbols
defining 2-9, 6-2
redefining 6-2
Sys.1 file 2-10
system calls
symbolic names 2-8 - 2-10
generating 7-3 - 7-4

Relocating Macro Assembler Index

terminator, macro 3-2
text string 7-2 - 7-3
title line 6-5
top-of-form signal 1-3
TTL statement 6-5
type/language byte 5-1

USE statement 6-8

variable storage
definitions 4-1
section 5-3 - 5-4
VSECT 4-1-4-3,5-1,6-7,7-1-7-2,8-1
directive 5-3-5-4
statements 5-4

writing
assembler listing 1-3
output 1-3

Utilities

Contents

Chapter 1 / INOGUCHION .cvevvevrveerirerrererermrivemreresseseerareereressassmresessnssssenssenes 171

Chapter 2 / Make UtIItY c..cveiveneniienrninnenc s 2-1
USING MEKE ..oocerecmcsimsinariisiressneseneresissiessssresissssnsssssssesonsassessorss 21
EXAMPIES 11ovviiirnincrnarennsncrsiieorirescsmessssissnnararesiocarerscsnsions 23

What is @ MAKefle?vvevirirenrrrrrrireenesisrasnersssassnersessssmsasserssssnines 23
Built-in Rules and Definitionscccocecvveveernrenierieeseenineeerecnenns 2-4

IMIACTOS ovvviiriierieiereseiesecesven s beseese s aensasesaassenssasesensssansssensase 23

Special MaCTOS ...cvccnrrivinernnininersrensessnesencnessesnserssessessasneneres. 2-0
RESEIVEA MACIOS ...ttt e e st aeaaseaneseenen 2T

COMMENLS ...t e e s 2-8
LONG LITNES ...ooviniviiieianeencrerenctiomimsecetecesanassesesesesrasssesereesessreeseses 20
How MK WOIKS ...covveereeciircrnirerreicninecreeeerreenesrsresereseesessessernvees 278
Notes aboUut MAKEcccoiinrivomminncinmin e 279
Examples of Makefiles ... siseseimeieensenseenense 2-10
EXAMPIE 1 ..voiicrirrriinierncrrsrcacrnrsniennnerisesreesessessssnssesesrersssarens 2-10
EXamPIE 2 oivviiriiiiiiniiin i e 2-11
EXAMPIE 3 ..ot et 2-11
EXAMPIE 4 ... reierenesnereiesis e sesscaress seoseronssesansocreres 2-12
EXAMPIE 5 ...t b ar 2-13

Chapter 3 / Touch UtHLY ...ooocererceccccececennceesesieiecvensiens. 371
EXAMPIES oottt e s et srsenes et sss ot e

Chapter 4 / Virtual Disk/RAM Disk DIiver ..., 4-

Chapter 1

Introduction

The OS-9 Level Two Development Pack includes three utilities:

Make: Helps maintain the current version of software by keeping
track of modifications to program source to determine the need
for recompiling, reassembling, or relinking files.

Touch: Updates the modification date of specified files.

Virtual Disk Driver/RAM Disk Driver: Creates a high-speed
storage system in your computer's RAM that simulates a disk
drive.

1-1

Chapter 2

Make Utility

The Make utility helps maintain the current version of software. It
uses built-in knowledge of OS-9 compilers, file types, and file naming
conventions to maintain up-to-date versions of your programs as you
develop them. By keeping track of modifications to program source,
make can determine the need to recompile, reassemble, and/or relink
the files necessary to create an object file.

Using Make
The syntax for Make is as follows:
make options targett [target2] [macros]

The target] argument specifies the program that Make is to create.
Make accepts multiple arguments (rargez2, target3,...,and so on). The
macros argument lets you specify macros that Make uses when
creating the new target program.

The options argument can be one of the following:
-? Displays the usage of Make.

-b Turns off built-in rules governing implicit file depend-
encies. Use this option if you are quite explicit about
your makefile dependencies and do not want Make to
assume anything.

-d Turns on the Make debugger and gives a complete listing
of the macro definitions, a listing of the files as it checks
the dependency list, and all the file modification dates.

2-1

Utilities Make Utility / 2

-fl=]path Specifies path as the makefile. If you omit this option,
Make searches for the file named Makefile in the current

directory.

-f causes Make to use the standard input instead of a
makefile.

-i Ignores errors. If you omit this option, Make stops

execution if an error code is returned after executing a
command line in a makefile.

-n Displays commands to standard output but does not
execute them.

-S Executes command without echo (silent mode). If you
omit this option, Make echoes commands in the makefile
to standard output.

-t Touches the files. Make opens the file for update and
then closes it. This updates the modification dates
without executing the commands.

-u Causes Make to execute the makefile commands.
-X Uses the cross-compiler/assembler.
-z Reads a list of Make targets from standard input.

-z=path Reads a list of Make targets from path.

You can include options on the command line when you run Make or
include them in the makefile. You can also define one or more macros
on a command line instead of a makefile or to override a macro def-
initton in a makefile. Enclose in quotes any macro definitions that
contain spaces or other delimiters. See the following section
"Macros".

2-2

Ultilities Make Utility | 2

Examples
make -f/d0/source/test.make -j test

This Make command creates a program called Test using the makefile
/d0/source/test. make. Make ignores any errors that occur,

make -s myprog

Make uses the file Makefile in the current directory as the makefile
for the program Myprog. Make does not echo commands during
execution.

What is a Makefile?

A makefile is a special type of procedure file that describes the
dependencies between files that make up the target program. The
makefile contains a sequence of entries that specifies dependencies
and commands to resolve the dependencies. A dependency entry
begins with the target name of the file or module followed by a colon
(:). This is then followed by a list of files that are prerequisites to
building the target file. This is called a dependency list.

In addition to the dependency entry, the makefile can contain
commands on how to update a particular target file (if it needs to be
updated). Make updates a target file only if it depends on files that
are newer than the target file. If Make cannot find the file, it assumes a
date of -01/00/00 00:00, indicating that the file needs updating. If you
do not specify update instructions, Make attempts to create a com-
mand line to perform the operation. Make recognizes a command line
because it begins with one or more spaces.

The following is a sample makefile:

program: Xxx.r yyy.r
¢ xxx.r yyy.r -xf=program
xxx.r: xxx.c /d0/defs/oskdefs.h
CCI XXX.C -1
yyy.r: yyy.c /dO/dets/oskdets.h

cc:yyy.c-r

2-3

Utilities Make Utility [2

This makefile specifies that the target file program is made up of two
relocatable files (.r suffix): xxx.r and yyy.r. These files are dependent

upon xxx.c and yyy.c, respectively, and both files are dependent on the
file oskdefs.h.

If either xxx.c or /dO/defs/oskdefs.h has a more recent modification
date than xxx.r, Make executes the command cc xxx.c -r. Likewise, if
either yyy.c or /d0/defsioskdefs.h has a more recent modification date
than yyy.r, Make executes the command cc yyy.c -r. If either of the
former commands is executed, Make also executes the command cc
XXX.T yyy.r -xf=program.

Built-in Rules and Definitions

Make uses the following conventions when determining file types or
in defining its rules:

Source Files Files with a suffix of either .a, .c, .f, or .p are
source files in assembly, C, Fortran, and
Pascal, respectively.

Relocatable Files Make determines a file to be relocatable if it
has the suffix .r. Relocatable files are made
from source files and are assembled or
compiled, if necessary, during a make.

Object Files Make determines a file to be an object file if
the file does not have a suffix. An object file
is made from a relocatable file and is linked,
if necessary, during a make.

Default Compiler Make's default compiler is cc.

Default Assembler Make's default assembler is the Relocatable
Macro Assembler (RMA).

2-4

Utilities Make Utility / 2

Default Linker Make's default linker is cc. You should only
use the default linker with programs that use
Cstart.

Default Directory Make uses the current directory (.) for all
files.

Macros

You can use macros within a makefile or on the command line. Use
the following form to specify a macro:

macro-name=expansion

Make then substitutes every occurrence of macro-name with the
expansion.

Macro names are prefixed with the dollar sign character ($). If you
want to specify a macro name longer than a single character, you must
enclose the name in parentheses. For example, $R refers to the macro
R and $(PFLAGS) refers to the macro PFLAGS. The macro names
$(B) and $B refer to the same macro, B. The macro name $BR refers
to the B macro also, followed by the character R.

Note: If you define & macro in your makefile and then
redefine it on the command line, the command line definition
overrides the definition in the makefile. You might find this
feature useful for compiling with special options.

Utilities Make Utility | 2

Special Macros

Make provides the following special macros:

Macro Definition

SDIR=path Make searches the directory, specified by
path, for all implicitly defined source files.
If you do not define SDIR within the
makefile, Make searches the current
directory.

RDIR=path Make searches the directory, specified by
path, for all implicitly defined relocatable
files. If you do not define RDIR within the
makefile, Make searches the current
directory.

ODIR=parh Make searches the directory, specified by
path, for all files that have no suffix or
relative pathlist (object files). The default is
the current execution directory.

CFLAGS=options Make uses the specified compiler oprions to
generate command lines.

RFLAGS=o0ptions Make uses the specified assembler options to
generate command lines.

LFLAGS=options Make uses the specified linker oprions to
generate command lines.

2-6

Utilities Make Utility | 2

Reserved Macros

Make expands the following macros when a command line associated
with a particular file dependency is forked. You might find these
macros useful when you need to be explicit about a command line but
have a target program with several dependencies. You can use these
macros only in a makefile command.

Macro Expands to:

$@ The name of the file to be made by the command

$* The prefix of the file to be made
$? The list of files that were found to be newer than the

target file on a given dependency line

Commands

You can specify more than one command for any dependency. Make
forks each command separately unless it is continued from the pre-
vious command (see Long Lines).

If you start a command line with the @ symbol, Make does not echo to
standard output. If you start a command line with a hyphen (-), Make
ignores any error codes returned on that line.

If your system runs out of memory while executing a command, you
can redirect the output of Make into a procedure file and execute the
procedure file.

Do not mix comments and commands.

2-7

Utilities Make Utility | 2

Comments

You can specify an entire line as a comment by placing an asterisk (¥}
as the first character in that tine. You can place comments at the end
of a line by preceding the comment with the pound sign character (#).

Make ignores blank lines within a makefile.

Long Lines

If you use lines longer than 256 characters or lines wider than your
screen, you need to place a space followed by a backslash (\) at the
end of each line to be continued. The continuation line must have a
space or tab as its first character.

For example:

Files ' aaa.r bbb.r cce.r ddd.r eee.r fff.r ggg.r\
hhh.r jii.r jjj.r

Make ignores leading spaces and tabs on non-command lines and
continuation lines.

How Make Works

Make starts by using the makefile to set up a table of dependencies.
When Make encounters a name on the left side of a colon, Make first
checks to see if it has encountered the name before. If Make has, it
connects the lists and continues. It treats every item on the right side
of the colon as a unique structure.

After reading the entire makefile, Make determines the target file (the
main file to be made) on the list. It then makes a second pass through
the subtable, It looks for object files that have no relocatable files in
their dependency lists and for relocatable files that have no source
files in their dependency lists.

2-8

Utilities Make Utility 1 2

If Make needs to find any source files or relocatable files to complete
the dependency lists, it looks for them in the directory specified by the
macros SDIR and RDIR (or RDIR's default .). Make looks in these
directories for files with the same name as their dependent file. For
example, if no source file is found for program.r, Make searches the
specified directory (RDIR or .) for program.a (or .c, .p, .f).

Make does a third pass through the list to get the file dates and
compare them. When Make finds a file that is newer than its
dependent file, it generates the necessary command or executes the
command given. Since 0S-9 only stores the time down to the closest
minute, Make remakes a file if its date matches one of its dependents.

Note: When Make generates a command line for the linker, it
looks at its list and uses the first relocatable file that it finds,
but only the first one. For example:

prog: X.r y.r z.r
generates the following:
CC X.r

It does not generate ee x.r y.r z.r Or cc prog.r

Notes about Make

If an object has more than one dependency, Make links the
dependency lists together. If the first dependency lists multiple
objects, then all the objects on that dependency line share the same set
of dependencies. This might or might not be correct, depending on
the situation. In the following example, the first makefile is correct,
and the second one creates some extra dependencies:

First makefile: x.r: defs.h

x.ry.rz.r: defs2.h
Second makefile: x.ry.rz.r: defs2.h

x.r: deis.h

2-9

Utilities Make Utility] 2

The first makefile specifies that xr is dependent on defs.# and defs2 .h.
It specifies y.r and z.r as dependent on defs2.h.

The second makefile specifies that all three .r files are dependent on
defsZ.h, and seems to specify only x.r as dependent on defs.s. Because
the second makefile lists all three .r files on the same dependency line,
they implicitly share in any future dependencies for any of the
individual files. Therefore, x.7, y.r, and z.r are all implicitly dependent
on defs.h.

Note: The Make language is very specific. Therefore, you
need to be careful when you use dummy files with names like
print. Unless a file is specifically an object file or you use the
-b option to turn off the implicit rules, use a suffix for your
dummy files (i.e. print.file and xxx.h for header files).

Examples of Makefiles

Example 1

program:; xxx.r yyy.r
CC XXX.r yyy.r -xf=program
xxX.r yyy.r: /d0/defs/oskdefs

This example shows a shorter version of the makefile shown earlier in
this chapter. This example makes use of Make's awareness of file de-
pendencies. Because the makefile makes no mention of C-language
files, Make looks in the directory specified by the macro definition
SDIR=path (in this case, the default of the current directory) and
adjusts the dependency list accordingly. Make also generates a com-
mand line to compile xxx.r and yyy.r if one or both need updating.

2-10

Utilities Make Utility 1 2

Example 2
program:

This simple makefile uses only one source file. Make assumes the
following from this simple command:

1. Because program has no suffix, Make assumes that it is in an
object file and therefore needs to rely on relocatable files to be
made.

2. Because there is no dependency list given, Make creates an entry
in the table for program.r.

3. After creating an entry for program.r, Make creates an entry for a
source file connected to the relocatable file.

If Make finds the file program.a, it checks the dates on the various
files and generates one or both of the following commands, if
required:

rma program.a -o=program.r { + RFAGS if used)
cc program.r (+ LFLAGS if used)

Example 3

* beginning

ODIR = /d0/cmds

RDIR =rels

UTILS = attr copy load dir backup dsave
SDIR = ../utils/sources

utils.files: $(UTILS)
touch utils.files

*end

2-11

Utilities Make Utility / 2

In this example, Make looks in the rels directory for attr.r, copy.r,
load.r, etc and looks in ../urils/sources for atr.c, copy.c, load.c and so
on, Make then generates the proper commands to compile and/or link
any of the programs that need to be made. If one of the files in the
utils directory is made, then Make forks the command touch util files
to maintain a current overall date.

Example 4

* beginning

ODIR = /h0/cmds

RDIR = rels

CFILES = domake.c doname.¢ dodate.c domac.c
RFILES = domake.r doname.r dodate.r

R2 = ..test/domac.r

RFLAGS =q
make: (RFILES) (R2) getfd.r
linker

$(RFILES): defs.h
$(R2): defs.h

cc $*.c-r=./test
print.file: (CFILES)

list $2? >/p

touch print.file
*end

This example is a makefile to create Make. This makefile looks for
the .r files (listed in RFILES) in the directory specified by RDIR (rels).
The only exception is ../test/domac.r, which has a complete pathlist
specified.

Even though getfd.r does not have any explicit dependents, Make
checks its dependency on gerfd.a. All of the source files are found in
the current directory.

2-12

Utilities Make Utility [2

Notice that you can use this makefile to make listings as well. By
typing make print.file on the command line, Make expands the macro
$? to mean all of the files that were updated since the last time
print file was updated. If you keep a dummy file called printfile in
your directory, it only prints out the newly made file. If no prinz file
exists, Make prints all the files.

Example 5§

See the makefile in the SOURCES directory of Disk 2 in the OS-9
Level Two Development Pack. This complete makefile is for use with
the updn.a and Isit.a examples in Chapter 11 of the "Relocatable
Macro Assembler" section of this manual.

2-13

Chapter 3

Touch Utility

The Touch utility updates the last modification date of a file. This
command is especially useful when used inside a makefile with Make.
Associated with every file is the date that the file was last modified.
The Touch utility simply opens a file and closes it, thereby updating
the time that the file was last modified with the current date.

If Touch cannot find the specified file, it creates the file with the
current date as the modification date.

The syntax for Touch is;

touch options filename

The options include any of the following:

-? Displays the usage of Touch

-C Does not create a file if Touch camnot find the
specified file

-q Does not stop execution if an error occurs

-X Searches the execution directory for the file

-z Reads the filenames from standard input

-z=path Reads the filenames from path

31

Utilities Touch Utility 1 3

Examples

touch -¢ /h0/doc/program
Touch searches for the specified file but does not create it if it does
not exist.

touch -cz

Touch reads the filenames from standard input. If it cannot find a
specified file, Touch does not create it. [CTRL][BREAK] at the
beginning of a line signals Touch to terminage.

touch -z=filelist

Touch reads filenames from filelist, a file containing 1 filename on
each line.

3.2

Chapter 4

Virtual Disk/RAM Disk Driver

The Virtual Disk Driver is a high-speed, general storage/retrieval
system that uses your computer'’s memory to simulate a fast disk
device. You can use the VDD to store frequently used files (such as
OS9DEFS) and programs to cut down on floppy disk access time. The
Virtual Disk Driver uses two to six pages of system address space and
allocates the amount of RAM specified in the descriptor (R0).

The VDD system consists of two modules: RO (the VDD descriptor)
and RAM (the driver).

Initializing VDD

You can initialize the Virtual Disk Driver by issuing an I$Attach call
for RO or by opening or creating a file on RO. You can also use INIZ
to perform the I$Attach call. The syntax for INIZ is as follows:

iniz rg

Note: Do not use I$Open and I$Create to initialize VDD even
though they both do an implicit I$Attach, because the 1$Close
call does an implicit I$Detach. If an I$Attach call is not made
before the file is opened, all data in the RAM disk is lost when
the file is closed.

When VDD is initialized, it obtains information about the total amount
of memory it is to allocate and the system memory block size from the
descriptor. VDD then initializes Sector zero, the bit map, and the root
directory. Once the Ram Disk is initialized, you can treat RO like any
other disk device.

4-1

Utilities Virtual Disk/IRAM Disk Driver

RO is a standard RBF device descriptor. You can choose the amount
of RAM used by VDD by changing the default sectors per track
(module offset $1B). To do so, use the debugger or reassemble R0
with the desired alteration. The size that VDD uses can be changed by
altering the number of surfaces (module offset $19).

Your development diskettes contain three versions of RO, a 96
kilobyte version, a 128 kilobyte version, and a 192 kilobyte version.
You can only use one version at a time,

4-2

Utilities

Index

access time, disk 4-1
arguments, macros 2-1
assembler 2-4

options 2-6

blank lines (Make) 2-8

CFLAGS (Make macro) 2-6
comments (Make) 2-8
compiler 2-4

options (Make) 2-6
cross-compiler/assembler (Make) 2-2
create file (Touch) 3-1

date, modification 3-1
debugger (Make) 2-1
default

assembler 2-4

compiler 2-4

directory 2-5

linker 2-5
dependencies 2-3, 2-9
dependency, line 2-7
directory 2-5

search 2-6
disk

access time 4-1

driver, virtual 4-1-4-2
displaying commands (Make) 2-2
dollar sign (Make) 2-5

Utilities Index

echoing commands (Make) 2-2

error (Touch) 3-1

error codes 2-7

errors, ignoring (Make) 2-2

execution directory, searching (Touch) 3-1

file
dates 2-3
dependencies 2-1, 2-3, 2-9
prefix 2-7
file touching 2-2
filename 2-7
filenames (Touch) 3-1
files
object 2-4
relocatable 2-4
source 2-4

initializing VDD 4-1

leading spaces (Make) 2-8
LFLAGS (Mzke macro) 2-6
line width 2-8
linker 2-5

options (Make) 2-6

macros 2-2, 2-5-2-7
arguments 2-1
reserved 2-7
special 2-6

maintain program 2-1 - 2-13

Utilities

Index

Make 2-1-2-13
conventions 2-4 - 2-5
debugger 2-1
language 2-10
macros 2-5-2-7
options 2-1-2-2
targets 2-2

makefile 2-2
path 2-2

modification date
Make 2-4
Touch 3-1

modifications 2-1 - 2-13

object files 2-4
ODIR (Make macro) 2-6
options
assembler 2-6
Make 2-1-2-2
compiler 2-6
linker 2-6

procedure file 2-3

program maintenance 2-1-2-13

RAM driver 4-1-4-2
RDIR (Make macro) 2-6

redirecting output (Make) 2-7

relocatable files 2-4

reserved macros (Make) 2-7
RFLAGS (Make macro) 2-6

SDIR (Make macro) 2-6

searching the directory 2-6

source files 2-4

Utilities

standard input
Make 2-2
Touch 3-1
standard output (Make) 2-7

target file, updating 2-3
Touch 3-1-3-2
touching files 2-2

virtual disk 4-1 - 4-2

Index

Commands

Contents

Chapter 1/ INroductioncoceovveeeivrceieieeer et ens e e

Chapter 2 / Command Referencecveeveiieieicrennininnererersraenesennes

MODPATCH ..ottt e irees bt s tes ettt snes s e

...

Chapter 1

Introduction

The CMDS directory of Disk 1 in the 0S-9 Level Two Development
System contains several commands to help in system operations.
These commands and their functions are:

Command Function

BINEX Converts a binary file into an S-Record file

DUMP Displays the physical data contents of a file or
device in both ASCII and hexadecimal form

EXBIN Converts an S-Record file into its binary form

LOGIN Provides login security on timesharing systems

MODPATCH Modifies modules residing in memory

MONTYPE Sets a system for the specified type of monitor

PARK Moves the heads of a hard disk in preparation for
moving the drive unit

SAVE Creates a file and writes a copy of the specified
memory module(s) into the file

SLEEP Suspends a process for a specified time

TSMON Supervises idle terminals and initiates login

TEE Copies standard input to multiple devices

VERIFY Checks module header parity and CRC values

1-1

Chapter 2

Command Reference

BINEX
Syntax: binex filenamel filename?
Function: Converts a binary file into an S-Record file.
Parameters:
filenamel The name of the file to convert
filename2 The name of the file in which to store the
converted code
Notes:

e Binex converts the specified OS-9 binary file (filenamel) to
an S-Record file and gives the new file the name specified by
filename2. If filenamel is a non-binary load module file, OS-9
prints a warning message and asks you if BINEX should
proceed anyway, Press Y to continue with the conversion.
Pressing any other key causes BINEX to terminate.

2-1

Commands Command Reference | 2

When you run BINEX, the program asks you for a program
name and & starting load address. It stores this information in
a header record. Although 0S-9 is position independent and
does not require absolute addresses, S-Record files do. The
following example illustrates a BINEX command, its prompts,
and possible user input.

binex /d0/cmds/scanner scanner.s1 [ENTER]

Enter starting address for file:
$100 [ENTER]

Enter name for header record:
scanner [ENTER)

To download the Scanner.sl file to a device (such as a PROM
programmer) using serial port /T1, type:

list scanner.st >/t1 [ENTER]

An S-Record is a type of text file that contains records
representing binary data in hexadecimal character form. Most
commercial PROM programmers, emulators, logic analyzers,
and similar RS-232 devices can directly accept this Motorola-
standard format. You can also use S-Record files to transmit
data over data links that can only handle character-type data
or to convert OS-9 assembler- or compiler-generated pro-
grams to load on non-08S-9 systems.

Example:

To convert a binary file named Zap to an S-Record file named Zap.sr,

type:

binex /d0/cmds/zap /d1/sr/zap.sr

2-2

Commands Command Reference ! 2

DUMP
Syntax: dump [rame]
Function: Displays the physical data contents of the specified

file or device in both ASCII and hexadecimal form .

Parameter:

name Either a file pathlist or a device name

Notes:

e If you do not specify a file or device, DUMP displays the
standard input path (the keyboard). Dump writes output to the
standard output path (the video display).

e Use DUMP to examine the contents of non-text files.

e The DUMP display adjusts to the type of screen you are
using. In 32- and 40-column screens, DUMP displays eight
bytes per line. In 80-column screens, DUMP displays 16 bytes
per line.

e DUMP displays data in both hexadecimal and ASCII
character format, If data bytes have non-displayable values,
DUMP displays them as periods (.).

e The addresses displayed by DUMP are relative to the
beginning of the file. Because memory modules are position-
independent and are stored in files exactly as they exist in
memory, the addresses shown on the dump correspond to the
relative load addresses of memory-module files.

2-3

Commands Command Reference | 2

Examples:

To display keyboard input in hex on the screen, type the following
command. Press [CTRL][BREAK]to return to the shell.

dump [ENTER]

Then, to display the contents of the diskette in Drive /D1, type:
dump @/d1 [ENTER]

The @ symbol causes OS-9 to treat the entire disk as a file.

Sample output, 32 columns:

DUMP SYS/password »/P [ENTER]

ADDR

0000
0008
0010
0018
0020
0028
0030
0038

ADDR
0040
0048
0050
0058
0060
0068
0070

01234567
8 S9ABCDETF
e o s ot S
2C2¢302C3132382C
2F44302F434D4453
2C2D2¢5348454C4C
0D55534552312C2C
312C3132382C2E2C
2E2¢5348454C4C0D
55534552322C2C32
2C3132382C232C23
01234567
8 9ABCDEF
=ttt
2¢5348454C4C0D55
534552332C2C332C
3132382C232C2E2C
5348454C4C0D5553
4552342¢2C342C31
32382C2E2C2E2C53
48454C4COD

0246

8ACE

++ + +

,,0,128,
/D0/CMDS
, ., SHELL
.USER1, ,
1,128, .,
., SHELL.
USER2, , 2
128, .,.
0246

BACE

++ + +

,SHELL.U
SER3, , 3,
128, ., .,
SHELL.US
ER4,,4,1
28,.,.,8
HELL.

2-4

Commands

Command Reference / 2

The first column indicates the starting address. The next eight
columns (00-EF) display data bytes in hexadecimal format. The final
column (0-E) displays data byes in ASCII format. The display shows
non-ASCII as periods in the ASCII character display section.

Sample output, 80-columns:

DUMP SYS/password >/P [ENTER]

RADDR
0000
0010
0020
0030
0040
0050
0060
0070

01
2c2¢
2C2E
312c
5553
2C53
3132
4552
4845

23
3o2c
2C53
3132
4552
4845
382C
342C
4Cc4C

45
3132
4845
as2¢
322c
4¢4c
2E2C
2C34
oD

€7 89 AB CD EF 02468BACE

382C
4c4cC
2E2C
2¢32
0D55
2E2C
2C3Aa

2rad
oD55
2E2C
2c31
5345
5348
3238

302F 434D
5345 5231
5348 454C
3238 2C2E
5233 2C2C
454¢ 4CoD
2C2E 2C2E

4453
2¢2C
4C0oD
2C2E
332c
5553
2€53

,,0,128, /DO/CMDS
, ., SHELL.USER], ,
1,128, ., ., SHELL.
USERZ,, 2,128, ., .
, SHELL .USER3, , 3,
128, .,.,SHELL.US
ER¢, 4,128, .,.,8
HELL.

Commands Command Reference | 2

EXBIN
Syntax: exbin filenamel filename?2
Function: Converts an S-Record file into its binary form
Parameters:
filenamel The name of the file to convert
filename?2 The name of the file in which to store the
converted code
Notes:

® EXBIN is the inverse operation of BINEX. It assumes the file
specified by filenamel is an S-Record format text file and
converts it to a pure binary form in the file specified by
filename2. The load addresses of each data record must
describe contiguous data in ascending order.

¢ EXBIN does not generate or check for the proper 0S-9
module headers, the header CRC check value, or the module
CRC check value required to load the binary file. Use the
IDENT or VERIFY commands to check the validity of the

modules.

Examples:

e To convert an S-Record file named Program.s1 to a binary file
named Program and store it in the commands file of the
current diskette, type:

exbin program.s1 cmds/program [ENTER]

2-6

Commands Command Reference / 2

LOGIN

Syntax:

login

Function: Provides login security on timesharing systems. LOGIN
automatically adjusts its output for 32- or 80-column displays.

Parameters: None

Notes:

The timesharing monitor, TSMON, automatically calls
LOGIN. You can also use LOGIN after initial login to change
a terminal's user.

LOGIN requests your name and password, which it checks
against a validation file. If the information is correct, LOGIN
sets up your system priority, ID, and working directories
according to information stored in the file. Then, LOGIN
executes the initial program (usually shell) specified in the
password file.

The LOGIN process terminates if you cannot supply a correct
user name and password after three attempts.

The validation file is /DD/SYS/password. The file contains
one or more variable-length text records, one for each user
name. Each record has the following fields (the file uses
commas as delimiters):

User name. The name can be a maximum of 32 characters,
including spaces. If the name field is empty, any name
matches.

Password. The password can be a maximum of 32 characters,
including spaces. If the password field is blank, the system
does not require the record's owner to type a password.

Commands Command Reference / 2

User index. This is the user ID number. It can be in the range
0 to 65535 (0 is the superuser or system manager). Both the
file security system and the system-wide user ID use this
number to identify all processes initiated by the user. The
system manager should assign a unique ID to each potential
user.

Priority. This is the initial process (CPU time) priority. It can
be in the range of 1 to 255.

Execution Directory. This is a pathlist showing the name
and location of the initial execution directory (usually
/DO/CMDS).

Working Directory. This is a pathlist showing the name and
location of the initial data directory (the specific user's
directory). The initial data directory is usually the ROOT
directory.

Execution Program. This is the name of the initial program
to execute (usually shell). Do not use shell command lines,
such as DIR or DCHECK,, as initial program names.

e Here is the system default validation file:

,,0,128,/DO/CMDS,.,SHELL
USERT1,,1,128,., SHELL
USER2,,2,128,.,.,.SHELL
USERS3,,3,128,.,.,SHELL
USER4,,4,128,.,.,SHELL

In this sample, the superuser's record, the first entry, contains
no user name or password. The ID number is 0, the initial
process priority is 128, the execution directory is /DO/CMDS,
and the ROOT directory is the initial data directory. The
initial program to execute is shell. The second entry is the
same except the user's name is the default USER1.

2-8

Commands Command Reference [2

e Touse LOGIN, type:

login [ENTER]
Prompts ask for your name and (optionally) a password. If
you answer correctly, the system completes your login,
LOGIN initializes the user number, working execution
directory, the working data directory, and executes a
specified program. It displays the date, time, and process
number. LOGIN adjusts its output format for 80- or 32-
column displays.

e Tokill the shell that called LOGIN, use EX., For example:
ex login [ENTER]
e Use the OS-9 text editor to edit Password and add users.

e Logging off the system terminates the program specified in
the password file. For most programs (including shell)
logging off involves typing an end-of-file character
(ICTRL][BREAK]) as the first character on a line.

e If Motd exists in the SYS directory, LOGIN displays its
contents (after a successful login).

Examples:

Following is possible user input and the screen display during LOGIN.
[ENTER]

0S-9 Timesharing system
Level Il RS VR. 02.00.01
87/04/10 08:35:44

User name?: superuser [ENTER]

Password: secret [ENTER] (your entry does not
Process #07 logged on 87/04/10 08:36:01 appear on the screen)
Welcome!

LOGIN then displays a message of the day from the Motd file.

Commands Command Reference | 2

MODPATCH

Syntax: modpatch [oprions] filename [options)

Function: modifies modules residing in memory.
MODPATCH reads a file and executes the
commands in the file to change the contents of
one or more modules.

Parameters:

filename The name of a file containing instructions for
MODPATCH

options One of the following options that change
MODPATCH's function

Options:

-S Silent mode, does not display patchfile command
lines as they are executed.

-w Does not display warnings, if any

-C Compares only, does not change the module

2-10

Commands Command Reference) 2

Notes:

Before using MODPATCH, you must create a patchfile to
supply the data to control MODPATCH's operation. This file
contains single-letter commands and the appropriate module
addresses. The commands are;

1 modulename Link to the module specified by
modulename.
¢ offset origval newval Change the byte at the offset

address specified by offset from
the value specified by origval to
the new value specified by
newval. If the original value
does not match origval,
MODPATCH displays a
message.

v Verify the module--update the
modules CRC . If you plan to
save the patched module to a
file that the system can load,
you must use this command,

m Mask IRQ's . Turns off interrupt
requests (for patching service
routines).

u Unmask IRQ's. Turns on

interrupt requests (for patching
service routines).

You can use the BUILD command or any word processing
program to create patchfiles.

Module byte addresses begin at 0. MODPATCH changes
values pointed to by an offset address (offset from 0) rather
than an absolute memory address.

2-11

Commands Command Reference | 2

e To view the contents of a memory module, use SAVE and
DUMP to copy the module to a file and display its contents.
Also use SAVE to copy the patched module to a disk file.

o Changing a memory module might not produce an immediate
effect. You have to duplicate the initialization procedure for
that module. This means, if the module loads during bootup,
you have to create a new boot file that includes the changed
module, then reboot using the new boot file.

o To use the patched module in future system boots, use SAVE
to store the module in the MODULES directory of your
system disk. You can then use OS9GEN to create a new
system disk using the patched module. If you are using the
patched module to replace another module, rename the
original module and then give the patched module the
original name.

e If you paich a module that is loaded during the system boot,
you can use COBBLER to make a new system boot that uses
the patched module.

Examples:

The following example shows the commands, the screen prompts, and
the entries you make to patch the standard 40-column term window
descriptor to be an 80-column screen rather than the standard 40-
¢olumn screen:

089: build termpatch [ENTER}
? 1term [ENTER]

? ¢ 002¢ 28 50 [ENTER]

? ¢ G030 01 02

? v [ENTER]

? [ENTER]

089: modpatch termpatch [ENTER]

2-12

Commands Command Reference [2

To change the size, columns, and colors of Device Window W1, create
the following procedure file and name it W180:

1wl

¢ 0030 01 02
¢ 002¢ 1b 50
¢ 002d Ob 18

If the W1 module is not already in memory, load it from the
MODULES directory of your system disk. Then, before initializing
W1, run MODPATCH:

modpatch w180 [ENTER]

Next, initialize W1:

iniz w1 [ENTER]
shell i=/w1& [ENTER]

Press [CLEAR] to display the new window with 80 columns, 24 lines,
and a white background.

2-13

Commands Command Reference / 2

MONTYPE

Syntax: montype type

Functipn: Sets your system for the type of monitor you are
using

Parameters:

type A single letter indicating the monitor type:
¢ for composite monitors or color televisions
r for RGB monitors

m for monochrome monitors or black and white
televisions

Notes:

e Different types of color monitors display colors differently. For
the best results, set your system to the type of monitor you are
using.

e If you are using a monochrome monitor or black and white
television, you can obtain a sharper image by setting your monitor
type to monochrome.

e Include the MONTYPE command in your system's Startup file to
automatically boot in the proper monitor mode.

e If you do not use MONTYPE, the system defaults to ¢ (composite
monitor).

Example:
To set your system for an RGB monitor, type:

montype r [ENTER]

2-14

Commands Command Reference | 2

To add a MONTYPE command to your existing Startup file, first use
BUILD to create the new command. For example:

build temp [ENTER]
montype r [ENTER]
[ENTER]

Next, append the file to Startup. Type:
merge startup temp > startup.new [ENTER]

Delete the temp file:

del temp [ENTER]
To enable the system to use Startup.new when booting, rename the
original Startup file:

rename Startup Startup.old

Then rename Startup.new:

rename Startup.new Startup

2-15

Commands Command Reference | 2

PARK
Syntax: park drive
Function; Moves the heads of a hard disk to the innermost

tracks in preparation for moving the drive unit.

Parameters:
drive The hard disk drive for which you want to park
the heads
Notes:
e Jarring your hard disk can cause its recording heads to bump

against the highly polished surface of the recording media,
destroying stored data. Such jarring can easily happen when you
move your hard disk drive.

PARK moves all of your disk's recording heads onto the
innermost tracks where information is not stored, and where such
inadvertent bumping cannot destroy data.

Always use PARK before relocating your hard disk or anytime
you think it might be bumped or jiggled.

After running PARK, turn off the system. Wait at least 15 seconds
before turning on the power again. When you do turn your system
on, the hard disk is immediately ready for use.

Your hard disk is a precision instrument, built to extremely close
tolerances. Always handle it carefully, even after parking its
heads.

2-16

Commands Command Reference | 2

Example:
To park the heads of your hard disk, type:
park /h0 [ENTER]

2-17

Commands Command Reference / 2

SAVE
Syntax: save filename modname [...]
Function: Creates a file and writes a copy of the specified

memory module(s) into the file

Parameters:
filename Is the name of the file you want to create
modname Secifies one or more modules to include in the
file
Notes:

e The module name(s) must exist in the module directory when
SAVEd. SAVE gives the new file all access permission except
public write.

e SAVE's default directory is the current data directory.
Generally, you should save executable modules in the default
execution directory.

® You can use SAVE to create a file of the commands you use
most often so that you can load all of these commands using
only one filename.

Examples:

To save a module named Wcount into a newly created file called
Workcount in the /DO/CMDS directory, type:

save /d0/cmds/workcount weount [ENTER]
The following command saves four modules (add, sub, mul and div)
into the new file called /D1/Math_pack.

save /d1/math_pack add sub mui div [ENTER]

2-18

Commands Command Reference / 2

SLEEP
Syntax: sleep tickcount
Function: Puts a process to sleep for the specified number of

clock ticks

Parameters:

Tickcount Can be any number in the range 1 to 65535

Notes:

e If you give SLEEP a value larger than 65535, 0S-9 reduces
the value by mod 65536. For example, 65536, and all the
multiples of 65536, become 0. A tick count of 95000 becomes
an actual tick count of 29464,

In other words, if you give SLEEP a value higher than 65535,
it reduces tickcount by subtracting the closest multiple of
655306 that is lower than your value.

e Use SLEEP to generate time delays or to break up jobs
requiring a large amount of CPU time. The duration of a tick
is 16.66 milliseconds.

® A tick count of 1 causes the process to give up its current time
slice. A tick count of 0 causes the process to sleep
indefinitely. (A signal sent to the process awakens it.)

Examples:

The following command puts the process to sleep for 25 ticks (416.50
milliseconds):

sleep 25 [ENTER]

2-19

Commands Command Reference | 2

The following command sequence causes LIST to start running as a
child process invoked from the shell, and as a background task.
SLEEP then puts the shell to sleep indefinitely. When LIST attempts to
find the file Nothing, which does not exist, it terminates and sends a
signal (the error status), which wakes up the shell.

list startup sys/motd nothing & sleep 0

A sample screen display follows:

&004
setime </term

WELCOME TO COLOR COMPUTER OS-9
-004
ERROR #216

059:
If an error does not occur, the shell continues to sleep. (Use [BREAK]

to wake the shell. Any keys you pressed while the shell was asleep are
then displayed.

2-20

Commands Command Reference / 2

TEE
Syntax: tee pathlist or devname |[...]
Function: Copies standard input to multiple devices
Parameters:
pathlist Is one or more paths for the input data to follow
devname Is one or more devices to which the system

directs the input data

Options: TEE can send output to any number of devices specified by
devname.

Notes: TEE is a filter that copies all text lines from its standard input
path to the specified output paths.

Examples:

The following command line uses a pipeline and TEE to send the
output listing of DIR simultaneously to the terminal, the printer, and a
disk file:

dir e ! tee />p /dO/dir.listing
Here, a pipeline takes the output of DIR E and sends it to the terminal

and TEE. TEE in turn sends the output to the printer and to a file called
/DO/Dir.listing.

2-21

Commands Command Reference / 2

In the following example, the pipeline and TEE send the output of an
assembler listing to a file (Pgm.list) and to the printer.

asm pgm.src | ! tee pgm.list /p [ENTER]

The next example broadcasts a message to the terminal.

echo WARNING SYSTEM DOWN IN 10 MINUTES ! tee />t1 [ENTER]

222

Commands Command Reference | 2

TSMON
Syntax: tsmon [devnhamel
Function: Supervises idle terminals and initiates the login

sequence for timesharing applications

Parameter:
devname Is the device for which you want login and
supervision capabilities
Notes:

e If you specify a devname, TSMON opens standard I/O paths
for that device. When you enter a carriage return, TSMON
automatically calls the LOGIN command. If the LOGIN fails
because the user cannot supply a valid user name or
password, control returns to TSMON, The LOGIN command
and its password file must be present for TSMON to work
correctly. (See the LOGIN command description.)

e Logging Off the System: Most programs terminate when you
enter an end-of-file marker ([CTRL][BREAK]) as the first
character on a command line. Pressing [CTRL][BREAK] causes
your terminal to log off the system and to return to TSMON.
TSMON runs the login sequence again when you press
[ENTER]

Examples;
The following command line activates /T1.

tsmon /A1& [ENTER]

The command must run concurrently in order to keep /TERM active.

2-23

Commands Command Reference / 2

VERIFY
Syntax: verify [u] < filenamel [>filename2)
Function: Checks to see if the module header parity and CRC

value of one or more modules on a file are correct

Parameters:
filenamel Is the name of the module to be checked
filename?2 Is the name for the verified module created with
the u option
Options:

u (update} copies the module(s) to a new module with the header
and parity and CRC values replaced with VERIFY's
computed values

Notes:

e VERIFY reads module(s) from the standard input and sends
output to the standard output. It sends messages to the
standard error path.

e VERIFY is dependent on the input redirection command. If
you fail to use the redirection symbol, VERIFY causes the
system to lock. To gain control of the system, press [BREAK].
You must always redirect the input path. If you use the u
option, you must also redirect the output to the new file you
want to create.

e Using the u (update) option causes VERIFY to copy the
module(s) to the standard output path with the module's
header parity and CRC values replaced with new computed
values. VERIFY, with the update option, does not set the
execute flag in the file attributes. Use ATTR to do this.

2-24

Commands Command Reference / 2

e If you do not use the u option, VERIFY does not copy the
module to standard output. VERIFY displays a message
indicating whether the module's header parity and CRC match
those computed by VERIFY.

Examples:

Because the following command line uses the u option, VERIFY
copies the edit module to a new module, Newedit, with the header
parity and CRC values replaced with VERIFY's computed values.

verify u </d0/cmds/edit >/d0/cmds/newedit [ENTER)]
The next command line checks the edit module. Because the command

does not specify the u option, VERIFY only displays a summary
message.

verify <edit [ENTER]

A possible screen display is:

Header parity is correct
CRC is correct

In the next command line, VERIFY checks Myprogram2, an invalid
module. Because the command does not specify the u option, VERIFY
does not copy the module to standard output, but displays a message.

verify <myprogram2 [ENTER]

The screen displays:

Header parity is INCORRECT!
CRC is INCORRECT!

2-25

Commands

Index

ASCII, file contents 2-3

binary file
converting to S-Record 2-1-2-2
converting from S-Record 2-6
BINEX command 2-1 -2-2
BUILD command 2-11, 2-15

changing modules 2-10 - 2-13

clock ticks 2-19

COBBLER command 2-12

command list 1-1

commands, patchfile 2-11

contents, file 2-3 - 2-5

converting binary to S-Record/binary 2-1-2-2
converting S-Record to binary 2-6

CPU time 2-8

CRC value 2-24 - 2-25

devices, copying input to 2-21 - 2-22
DIR command 2-21
directory
execution 2-8
SYS 2-9
working 2-8
DUMP command 2-3 - 2-5, 2-12

emulators 2-2
EX command 2-9
EXBIN command 2-6

Commands Index

execution
directory 2-8
program 2-8

file contents 2-3 - 2-5

File conversion, binary/S-Record 2-1 - 2-2
File, displaying contents 2-3 - 2-5

filter, TEE 2-21 - 2-22

hard disk, parking heads 2-16
hexadecimal form, file contents 2-3

input, standard 2-21 - 2-22

LIST command 2-20
logic analyzers 2-2
LOGIN command 2-23,2-7-2-9

memory modules, saving 2-18
modifying module 2-10 -2-13
module header parity, checking 2-24 - 2-25
modules

modifying 2-10 - 2-13

saving from memory 2-18

updating 2-24
MODULES directory 2-12
monitor, setting type 2-14 - 2-15
monochrome monitors 2-14
MONTYPE command 2-14 - 2-15

non-text files 2-3
OS9GEN command 2-12
parity, module header 2-24 -2-25

PARK command 2-16 - 2-17
password (LOGIN) 2-7

Commands Index

patchfile commands 2-11
paths 2-21 - 2-22

pipeline (TEE) 2-21 - 2-22
priority 2-8

process, putting to sleep 2-19
PROM programmers 2-2

reference, commands 1-1
RGB monitors 2-14

S-Record

from binary 2-1-2-2

to binary 2-6
SAVE command 2-12, 2-18
saving memory module 2-18
security, login 2-7 - 2-9
shell, killing 2-9
SLEEP command 2-19 - 2-20
standard

1/O paths 2-23

input 2-21 - 2-22
Startup file 2-15
suspending processes 2-19
SYS directory 2-9

TEE command 2-21 - 2-22
television 2-14

terminal, supervising 2-23
tick count 2-19

timesharing 2-7 - 2-9, 2-23
TSMON command 2-23
types of monitor 2-14 - 2-15

updating modules 2-24
user index (LOGIN) 2-8

Commands Index

validation file (LOGIN) 2-7
VERIFY command 2-24 - 2-25

working directory 2-8

0S-9
Technical
Reference

Contents

Chapter 1 System Organization 1-1
I/OSystem Modules 1-1
Color Computer OS-9 Modules 1-2
Kernel, Clock Module, and INIT 1-2
Input/Qutput Modulesoii... 1-3

'OManagerccooo oo in.. 1-3
File Managersooiiiiniiiinennnnnnn. 1-3
Device Driversoviiiiein i iriiiinneannn. 1-3
Device Descriptors 14
Shell ... e 1-4

Chapter 2 TheKernel 2-1
System Initialization 2-1
System Call Processingoviiiiiinnnnnnnn. 2-4

0S9Defs and Symbolie Names 2-4
Types of System Calls 2-4
Memory Management 2-5
Memory Useooviiiriniiiiiiiiiinen i, 2-5
Color Computer 0S-9 Typical Memory Map 2-7
Memory Management Hardware 2-7
Multiprogramming o 2-12
Process Creation 2-12
Process States 2-13
Execution Scheduling 2-14
Signals ...t 2-15
Interrupt Processingcccvivieei ..., 2-16
Logical Interrupt Polling System 2-17
Virtual Interrupt Processing 2-19

Chapter 3 Memory Modules 31
Module Types i 31
Module Formatciviiirnneernninnrinneanees. 3-1

Module Header 3-2
Module Bodyccoiiiiiiiiiii.... 3-2
CRCValuecoiiviiiiiiiiiiii i 3-2
Module Headers: Standard Information 3-3
SyneBytes ... 3-3
Module Size 3-3
Offset to Module Name 3-3
Type/Language Byte 3-4
Attributes/Revision Level Byte 3-4

Header Check 3-5

08-9 Technical Reference

Module Headers: Type-Dependent Information 3-5
Executable Memory Module Format 3-6
Chapter 4 08-9's Unified Input/Qutput System 4-1
O SystemModulesiivi..., 4-1
The VO Managerc.ccoiiiiiieiiiininno .. 4-2
File Managerscciiriieerennnnnnriiinrnens 4-3
File Manager Structure 4-3
Create,Open iiiiiii.. 4-4
Makdir ... 4-4
ChgDir ..o i e e e 44
Delete 4-5
Seek .. 4-5
Read 4-5
Write ..o e 4-6
Readln i i i 4-6
WriteLm 4-6
GetStat, PutStat0coiiiiiiiiineinn.. 4-6
Close ...t e 4-7
Interfacing with Device Drivers 4-7
Device Driver Modules 4-8
Device Driver Module Format 4-10
0S-9 Interaction With Devices 4-11
Suspend State (Level Two Only) 4-13
Device Descriptor Modules 4-15

Path Descriptorsoviiiiiiiiiiiinn i 4-18
Chapter 5 Random Block File Manager 5-1
Logical and Physical Disk Organization 5-1
Identification Sector LSNO) 5-2
Disk Allocation Map Sector (LSN 1) 5-3
ROOT Directorycociviniiiiiiiiiinnann. 5-3

File Descriptor Sector 5-3
Directories it i e 5-5
The RBF Manager Definitions of the Path Descriptor ..5-5
RBF-Type Device Descriptor Modules 5-8
RBF Record Locking 5-10
Record Locking and Unlocking 5-11
Non-Shareable Files 5-12
End-of-File Lock 5-12
Deadlock Detection 5-13
RBF-Type Device Driver Modules 5-13
The RBF Device Memory Area Definitions 5-13

RBF Device Driver Subroutines 5-16

Contents

Chapter 8 Sequential Character File Manager 6-1
SCF Line Editing Functions 6-1
Readand Write 6-1

Read Line and Write Line 6-2

SCF Definitions of the Path Descriptor 6-2
SCF-Type Device Descriptor Modules 6-6
SCF-Type Device Driver Modules 6-9

SCF Device Driver Subroutines 6-10

Chapter 7 The Pipe File Manager (PIPEMAN) 7-1
Chapter 8 SystemCalls 8-1
Calling Procedure coiiiiiiiiiinnn. 8-1
IFOSystem Calls ...ttt 8-2
System Call Descriptions 8-2

User Mode System Calls Quick Reference 8-3
System Mode Calls Quick Reference 8-5

User System Calls i, 8-7

/O User SystemCallscoovvviiiiiii i, 8-44
Privileged System Mode Calls 8-66

Get Status System Calls 8-112

Set Status System Callsooiivnin, 8-130
Appendices A-1
A Memory Module Diagramsccc00viiin A-1

B Standard Floppy Disk Format B-1

C SystemErrorCodescciiiiiiinnnnnan. C-1

Index

Chapter 1
System Organization

0S-9 is composed of a group of modules, each of which has a spe-
cific function. The following illustration shows the major mod-
ules. Actual module names are capitalized.

I/O System Modules

0S-9 KERNEL
T (0S9P1, 0S9P2) - Clock

(nput Qutput Manager

{IOMAN)
f I I —1
— |
Disk File Pipe File Cnar File
Manager Manager Manager Printer §10
(RBF) {Pipeman) {SCH)
— [[
L L | 1 1 —
Ram CC3Dnsk CC3Hdisk Pipe ACIAPak ModPak CC3I0
Ram Disk Disk Disk Dnver Driver O ver
Driver Oriver Driver (Pper)
) EEE = EL I
RBF Device Descriptors Pipe Descr SCF Device Descriptors
I) | A |
Vdgint Grflnt WindInt
CC310 GC310 CCao
Interface Intertace imerface
I [
Term._Vig
Desc GriDrv

Term_Win wllwil]we
Desc

0S-9 COMPONENT MODULE ORGANIZATION

OS-9 Technical Reference

Color Computer 0S-9 Modules
IOMAN Input/output management

INIT System initialization table

CLOCK Software routine time management
RBF Random block file management

SCF Sequential character file management

PIPEMAN Pipe file management
CC3DISK Color Computer disk driver
CC310 Color Computer input/output driver

The VDGINT (video display generator) provides both interface
functions and low-level routines for Color Computer 2 VDG

compatibility.

The GRFINT interface provides high-level graphics code interpre-
tation and interface functions.

The WINDINT interface contains all the functions of GRFINT,
along with additional support for Multiview functions. If you are
using Multiview, exclude GRFINT from the system.

Both WINDINT and GRFINT use the low-level driver GRFDRV
to perform the actual drawing on bitmap screens.

Term__VDG uses CC3IO and VDGINT. TERM_WIN and all
window descriptors (W, W1, W2, and so on) use CC3I0, WIN-
DINT, GRFINT, and GRFDRV modules.

Kernel, Clock Module, and INIT

The system’s first level contains the kernel, clock module, and
INIT.

The kernel provides basic system services, such as multitasking
and memory management. It links all other 08-9 modules into
the system.

The clock module is a software handler for the real-time clock
hardware.

INIT is an initialization table used by the kernel during system
startup. This table loads initial tasks and specifies initial table
sizes and initial system device names. It is loaded into RAM
(random access memory) by the 0S-9 bootstrap module Boot.
Boot also loads the OS9P2 and INIT modules during system
startup.

1-2

System Organization / 1

There are two ways to run boot:

® Using the DOS command with Color Disk BASIC, Ver-
sion 1.1, or later.

® Pressing the reset button after 08-9 is running.

Input/OQutput Modules

The remaining modules make up the 0S-9 I/O system. They are
defined briefly here and are discussed in detail in Chapter 4.

I/O Manager

The system’s second level (the level below the kernel) contains
the input/output manager, IOMAN. The I/O manager provides
common processing for all input/output operations. It is required
for performing any input/output supported by 0S-9.

File Managers

The system’s third level contains the file managers. File man-
agers perform I/O request processing for similar classes of /O
devices. There are three file managers:

RBF manager The random block file manager processes
all disk I/O operations.

SCF manager The sequential character file manager han-
dles all non-disk I/O operations that operate
one character at a time. These operations
include terminal and printer I/O.

PIPEMAN The pipe file manager handles pipes. Pipes
are memory buffers that act as files. Pipes
are used for data transfers between
processes.

Device Drivers

The system’s fourth level contains the device drivers. Device
drivers handle basic I/O functions for specific I/O controller hard-
ware. You can use pre-written drivers, or you can write your
own,

1-3

0S-9 Technical Reference

Device Descriptors

The system’s fifth level contains the device descriptors. Device
descriptors are small tables that define the logical name, device
driver, and file manager for each I/O port. They also contain port
initialization and port address information. Device descriptors
require only one copy of each I/O controller driver used.

Shell

The shell is the command interpreter. It is a program and not a
part of the operating system. The shell is fully described in the
0S-9 Commands manual.

1-4

Chapter 2

The Kernel

The kernel is the core of OS-9. The kernel supervises the system
and manages system resources. Half of the kernel (called
0OS9P1) resides in the boot module. The other half of the kernel
(called OS9P2) is loaded into RAM with the other 0S-9 modules.

The kernel’s main functions are:
® System initialization after reset
® Service request processing
® Memory management
® Multiprogramming management
® Interrupt processing

I/O functions are not included in the list because the kernel does
not directly process them. Instead, it passes I/O system calls to
the I/O Manager for processing.

System Initialization

After a hardware reset, the kernel initializes the system. This
involves:

1. Locating modules loaded in memory from the 0S-9 Boot file.
2. Determining the amount of available RAM.

3. Loading any required modules that were not loaded from the
0S-9 Boot file.

0S-9 Level Two cannot install new system calls using the 0S-9
Level One system call F$SSve. F$SSve does not work with a
Level Two user program because of the separation of system and
user address space.

2-1

0S-9 Technical Reference

OS9P3 can be used to tailor the system to fit specific needs. The
following listing is an example of how to use the OS9P3 module.

Yicroware (5-9 Asserhler 2.1 11/18/83 '6:86:81 Page 841
05-9 Level TWD V1.2, part 2 - 19-9 Systen Symbol Defiriticns
Brem

(MK
263

L R T T R s R e e e Ay

prerz ¢

g88°3 ¢ Module Header

[T AL

gias aalt Tyge set SysimeChoct

gige 8e8l Revs set Rebnt+

B90°7 08es 87CDOASE nod 188End,C58Nane, Type Revs,Colc, 256
899'8 998C 4r533971 05%Name fes "J93p3"

LN

pagzs ep2 4 feb 1 ediiion number

[TLK] uze defsfile

#0631 8ed2 level ece 2

60632 oot ¢

233 opt ¢

Bea4d

pap4e ERR AT EARA R EE RN R E AR RN AR EAR RN R ARG PR R R AR RRRAERRERIRARARI RS
10643+

gea4e Routire Colc

pae45s

gegde +

08847

peg48 0813 310CEee4 Cold leey Svelbl,per gel service -ouline
p9043 BR17 "@3F32 (53 F#5Svc 1nstall tew service
pepce #etA 39 rts

18051

faes2

DOBEY aat b ra bt b P EC R R AR R IR R R F R T O AR R R4 a 3
f9Bh4 #

0855+ Service Reutines Initialization Tasle
80856

16457

16958 #425 FSAWD equ 425 set up new cal
08459+ fde this te 2ne user o0s9defs file,

#dal

The Kernel / 2

#8s1
#d62
89663
d896¢

Migraware 05-9 Assenbler 2,1

pa13
ge13
881
1o1E

SyeTal eqL

28 feb

LELR ‘db

84 fcb
11418783

TSSAYHC
Sayhi-+-2
18

16:45: 81

Page 482

95-9 Level TWO V1.2, part 2 - 05-3 Systen Synbol Definitions

8258
16869
age7e
e
aeez2
4873
#ee74
#8875
paeTe
paLv?
£0e78
8879
peead
fe8!
gep82
#9683
[ITER
88885
8186
637
10488
86993
91094
#8691
pagg2
#8623
08334
26033
8896
1897
82898
#8493
parae
fee’

a3
421
8923
825
0028
8828
8320
faer
0833
1937
83n
pa3c
LY
8g42
8945
fg48

1043
BB5A

0958

*

*Service call Say Hello to user

*

+Input: U = Regusters pir
+ R$X,u = Message ptr (1f # senc de’aull)
¢ Yax message lenglh = 44 byles,

*

sQutput: Message sent to standard error path of user.

#Data:
+

D.Frec

rE44
2013
169E56
Ec2d
330808
9608
£626
19BEABZS
30808812
183738
3004
1#85E628
DESA
AGCB3E
143FB0
38

SayHi

Seytib

49B5E0EC helle

8

5184

lax
tre
idy
Idu
leau
lca
ldb
ldy
leax
089
leax
1dy
ldu
1d3
0s9

fee
fea

EMmoC

R$X,u
Saykib
[.Proc
PSSP,y
-48,.
D.SysTsk
PITASCy
4
ello,per
fiMove
f.u

14
D.Prac

gel mes, acdress
ara 1f rod defalld
get proc descr otr
get caller’s stack
root for message
systen’s task num
caller's tase num
sel byie count
destination ptr
Tes55 INiQ ¢SEr mEm

cet rax byte count
get proc desc pir

P$ApTH+2 u patk num of stde-r

[#dr.tln

write tess line

"Helo there user."

)

nodule CRC

23

0S-9 Technical Reference

48182 BESE 099:nc equ *
40183
88184 enc

8888e arror(s)

88828 warning(s)

$885E 88094 program bytes gerzeated
40628 89008 data bytes sllocated
$2884 “9372 bytes used for synbols

System Call Processing

System calls are used to communicate between OS-9 and assem-
bly-language programs for such functions as memory allocation
and process creation. In addition to I/O and memory manage-
ment functions, system calls have other functions. These include
interprocess control and timekeeping.

System calls use the SWI2 instruction followed by a constant
byte representing the code. You usually pass parameters for sys-
tem calls in the 6809 registers.

0S9Defs and Symbolic Names

A system-wide assembly-language equate file, called OS9Defs,
defines symbolic names for all system calls. This file is included
when assembling hand-written or compiler-generated code. The
0S-9 assembler has a built-in macro to generate system calls.
For example:

0S9 13$Read
is recognized and assembled as equivalent to:

SWI2
FCB [$%Read

The OS-9 assembly macro OS9 generates an SWI2 function. The
label I$Read is the label for the code $89.

Types of System Calls

System calls are divided into two categories, I/O calls and func-
tion calls.

24

The Kernel / 2

I/O calls perform various input/output functions. The kernel
passes calls of this type to the /O manager for processing. The
symbolic names for IO calls begin with I$. For example, the
Read system call is called I$Read.

Function calls perform memory management, multi-program-
ming, and other functions. Most are processed by the kernel. The
symbolic names for function calls begin with F$. For example,
the Link function call is called F$Link.

The function calls include user calls and privileged system mode
calls. (See Chapter 8, “System Calls”, for more information.)

Memory Management

Memory management is an important operating system function.
Using memory modules, OS-9 manages the logical contents of
memory and the physical assignment of memory to programs.

All programs that are loaded must be in the memory module for-
mat. This format allows 0S-9 to maintain a module directory of
all the programs in memory. The directory contains information
about each module, including its name and address and the
number of processes using it. The number of processes using a
module is called the module’s link count.

When a module’s link count is zero, 0S-9 deallocates its part of
memory and removes its name from the module directory.

Memory modules are the foundation of 0S-9’s modular software
environment. Advantages of memory management are:

® Automatic runtime linking of programs to libraries of
utility modules

® Automatic sharing of re-entrant programs

& Replacement of small sections of large programs into
memory for update or correction

Memory Use

0S-9 reserves some space at the top and bottom of RAM for its
own use. The amount depends on the sizes of system tables that
are specified in the INIT module.

2-5

0S-9 Technical Reference

0S-9 pools all other RAM into a free memory space. As the sys-
tem allocates or deallocates memory, it dynamically takes it
from or returns it to this pool. RAM does not need to be contig-
uous because the memory management unit can dynamically
rearrange memory addresses.

The basic unit of memory allocation is the 256-byte page. 0S-9
always allocates memory in whole numbers of pages.

The data structure that OS-9 Level Two uses to keep track of
memory allocation is a 256-byte bi¢ map. Each bit in this table
is associated with a specific page of memory. A cleared bit indi-
cates that the page is free and available for assignment. A set
bit indicates that the page is in use (that no RAM is free at that
address). OS-9 Level Two always allocates memory in 8192-byte
increments. This is the smallest memory block that the memory
management hardware supports.

08-9 automatically allocates memory when any of the following
occurs:

& Program modules are loaded into RAM
® Processes are created

® Processes execute system calls to request additional
RAM

® (0S-9 needs I'O buffers or larger tables

0S-9 also has inverse functions to deallocate memory allocated
to program modules, new processes, buffers, and tables.

In general, memory for program modules and buffers is allocated
from high addresses downward. Memory for process data areas is
allocated from low addresses upward.

Following, is a memory map of a typical system. Actual memory
sizes and addresses can vary depending on the exact system
configuration,

2-6

The Kernel |/ 2

Color Computer 0S-9 Typical Memory Map

+ $7FFFF
I/O Device Addresses
<« $7FF00
Reserved I/O Devices
+ $7FE80
Reserved Common Memory
<« $7FE00
0S-9 Kernel
<+ varies
Bottom of Memory
in a 128K System
<« $60000
Bottom of Memory
in a 512K System
<« $00000

Figure 2.1

Note: The high two pages of every logical address space
contain the defined areas I/O Device Addresses, Reserved
I/0 Devices, and Reserved Common Memory.

Memory Management Hardware

The 8-bit CPU in the Color Computer 3 can directly address only
64 kilobytes of memory using its 16 address lines (A0-A15). The
Color Computer 3’s Memory Management Unit (MMU) extends
the addressing capability of the computer by increasing the
address lines to 19 (A0-A18). This lets the computer address up
to 512 kilobytes of memory ($0-$7FFFF).

The 512K address space is called the physical address space. The
physical address space is subdivided into 8K blocks. The six high
order address bits (A13-A18) define a block number.

2.7

0S8 -8 Technical Reference

0S-9 creates a logical address space of up to 64K for each task
by using the FORK system call. Even though the memory
within a logical address space appears to be contiguous, it might
not be—the MMU translates the physical addresses to access
available memory. Address spaces can also contain blocks of
memory that are common to more than one map.

The MMU consists of a multiplexer and a 16 by 6-bit RAM
array. Kach of the 6-bit elements in this array is an MMU task
register. The computer uses these task registers to determine
the proper 8-kilobyte memory segment to address.

The MMU task registers are loaded with addressing data by the
CPU. This data indicates the actual location of each 8-kilobyte
segment of the current system memory. The task registers are
divided into two sets consisting of eight registers each. Whether
the task register select bit (TR bit) is set or reset, determines
which of the two sets is to be used.

The relation between the data in the task register and the gen-
erated addresses is as follows:

Bit D5 | D4 | D3 | D2 | D1 | DO
Corresponding
Memory Address | A18 | A17 | A16 | A15 | Al4 | A13

Figure 2.2

When the CPU accesses any memory outside the I/O and control
range (XFF00=XFFFF), the CPU address lines (A13-A15) and
the TR bit determine what segment of memory to address. This
is done through the multiplexer when SELECT is low. (See the
following table.)

When the CPU writes data to the MMU, A0-A3 determine the
location of the MMU register to receive the incoming data when
SELECT is high. The following diagram illustrates the operation
of the Color Computer 3’s memory management:

The Kernel / 2

DO-D5
CPU data
RAM
Al3-Al5
Din
TR bit
Multiplexer Dout | A13-A18
A0-A3 > RAO-RA3
WE
SELECT '
NG
7
Figure 2.3

The system uses the data from the MMU registers to determine
the block of memory to be accessed, according to the following
table:

TR MMU

Bit | Al5 Al4 Al13 AddressRange Address
0 0 ¢ 0 X0000-X1FFF FFAQ
0 o 0 1 X2000-X3FFF FFA1
0 0 1 0 X4000-X5FFF FFA2
0 0 1 1 X6000-X7FFF FFA3
0 1 0 0 X8000-X9FFF FFA4
0 1 0 1 XA000-XBFFF FFA5
0 1 1 0 XC000-XDFFF FFAG
0 1 1 1 XE000-XFFFF FFA7
1 ¢ 0 O X0000-X1FFF FFAS8
1 0 0 1 X2000-X3FFF FFA9
1 0 1 0 X4000-X5FFF FFAA
1 0 1 1 X6000-X7FFF FFAB
1 1 o 0 X8000-X9FFF FFAC
1 1 0 1 XA000-XBFFF FFAD
1 1 1 0 XC000-XDFFF FFAE
1 1 1 1 XE000-XFFFF FFAF

Figure 2.4

OS-9 Technical Reference

The translation of physical address to 8K-blocks is as follows:

_ Range pjock _Range poek
From To Number From To Number
00000 O1FFF 00 40000 41FFF 20
02000 O03FFF 01 42000 43FFF 21
04000 O5FFF 02 44000 45FFF 22
06000 O7FFF 03 46000 47FFF 23
08000 O9FFF 04 48000 49FFF 24
0A000 OBFFF 05 4A000 4BFFF 25
0C000 ODFFF 06 4C000 4DFFF 26
0E000 OFFFF 07 4E000 4FFFF 27
10000 11FFF 08 50000 51FFF 28
12000 13FFF 09 52000 53FFF 29
14000 15FFF 0A 54000 55FFF 2A
16000 17FFF 0B 56000 57FFF 2B
18000 19FFF 0C 58000 59FFF 2C
1A000 1BFFF 0D 5A000 5BFFF 2D
1C000 1DFFF OE 5C000 5DFFF 2E
1E000 1FFFF OF 5E000 5FFFF 2F
20000 Z21FFF 10 60000 61FFF 30
22000 23FFF 11 62000 63FFF 31
24000 25FFF 12 64000 65FFF 32
26000 27FFF 13 66000 67FFF 33
28000 29FFF 14 68000 69FFF 34
2A000 2BFFF 15 6A000 6BFFF 35
2C000 2DFFF 16 6C000 6DFFF 36
2E000 2FFFF 17 6E000 6FFFF 37
30000 31FFF 18 70000 71FFF 38
32000 33FFF 19 72000 73FFF 39
34000 35FFF 1A 74000 75FFF 3A
36000 37FFF 1B 76000 77FFF 3B
38000 39FFF 1C 78000 79FFF ac
3A000 3BFFF 1D 7A000 7BFFF 3D
3C000 3DFFF 1E 7C000 7TDFFF 3E
3E000 3FFFF 1F 7E000 TFFFF 3F
Figure 2.5

2-10

The Kernel / 2

In order for the MMU to function, the TR bit at $FF90 must be
cleared and the MMU must be enabled. However, before doing
this, the address data for each memory segment must be loaded
into the designated set of task registers. For example, to select a
standard 64K map in the top range of the Color Computer 3's
512K RAM, with the TR bit set to 0, the following values must
be preloaded into the MMU’s registers:

MMU |
Location | Data Data Address !
Address (Hex) (Bin) Range

FFAQ 38 111000 70000-71FFF

FFA1l 39 111001 72000-73FFF

FFA2 3A 111010 74000-75FFF

FFA3 3B 111011 76000-77FFF

FFA4 3C 111100 78000-79FFF

FFAS5 3D 111101 7A000-7BFFF

FFAS 3E 111110 7C000-7DFFF

FEA7 3F 111111 7EQ00-7FFFF

Figure 2.6

Although this table shows MMU data in the range $38 to 3F,
any data between $0 and $3F can be loaded into the MMU reg-
isters to select memory addresses in the range 0 to $7FFFF, as
illustrated by Figure 2.5.

Nermally, the blocks containing I/O devices are kept in the gys-
tem map, but not in the user maps. This is appropriate for time-
sharing applications, but not for process control. To directly
access [/O devices, use the F$MspBlk system call. This call
takes a starting block number and block count, and maps them
into unallocated spaces of the process’s address space. The sys-
tem call returns the logical address at which the blocks were
inserted.

For example, suppose a display screen in your system is allo-
cated at extended addresses $7A000-37DFFF (blocks 3D and
3E). The following system call maps them into your address
space:

ldb #2 number of blocks

ldx #3D starting block number
0sS F$MapBlk call MapBlk

stu I0Ports save address where mapped

2-11

0S8-9 Technical Reference

On return, the U register contains the starting address at which
the blocks were switched. For example, suppose that the call
returned $4000. To access extended address $7A020, write to
$4020.

Other system calls that copy data to or from one task’s map to
another are available, such as F$STABX and F$Move. Some of
these calls are system mode privileged. You can unprotect them
by changing the appropriate bit in the corresponding entry of
the system service request table and then making a new system
boot with the patched table.

Multiprogramming

08S-9 is a multiprogramming operating system. This means that
several independent programs called processes can be executed at
the same time. By issuing the appropriate system call to OS-9,
each process can have access to any system resource.

Multiprogramming functions use a hardware real-time clock.
The clock generates interrupts 60 times per second, or one every
16.67 milliseconds. These interrupts are called ticks.

Processes that are not waiting for some event are called active
processes. OS-9 runs active processes for a specific system-
assigned period called a time slice. The number of time slices
per minute during which a process is allowed to execute depends
on a process’s priority relative to all other active processes.
Many OS-9 system calls are available to create, terminate, and
control processes.

Process Creation

A process is created when an existing process executes a Fork
system call (F§Fork). This call’s main argument is the name of
the program module that the new process is to execute first (the
primary module).

Finding the Module. OS-9 first attempts to find the module in
the module directory. If it does not find the module, OS-9 usu-
ally attempts to load into memory a mass-storage file in the exe-
cution directory, with the requested module name as a filename.,

2-12

The Kernel | 2

Assigning a Process Descriptor. Once 0S-9 finds the module,
it assigns the process a data structure called a process descrip-
tor. This is a 64-byte package that contains information about
the process, its state (see the following section “Process States”),
memory allocations, priority, queue pointers, and so on. OS-9
automatically initializes and maintains the process descriptor.
The process itself cannot access the descriptor; it has no need to
do so.

Allocate RAM. The next step is to allocate RAM for the pro-
cess. The primary module’s header contains a storage size. 0S-9
uses this size unless the Fork system call requests a larger area.
OS-9 then attempts to allocate a memory area of the specified
size from the free memory space. The memory space does not
need to be contiguous.

Proceed or Terminate. If OS-9 can perform all of the previous
steps, it adds the new process to the active process queue for exe-
cution scheduling. If it cannot, it terminates the creation; the
process that originated the Fork is informed of the error.

Assign Process ID and User ID. 0S-9 assigns the new process
a unique number called a process ID. Other processes can com-
municate with the process by referring to its ID in various sys-
tem calls.

The process also has a user ID, which is used to identify all pro-
cesses and files belonging to a particular user. The user ID is
inherited from the parent process.

Process Termination. A process terminates when it executes
an Exit system call (F§Exit) or when it receives a fatal signal.
The termination closes any open paths, deallocates memory used
by the process, and unlinks its primary module.

Process States
At any instant a process can be in one of three states:
® Active—The process is ready for execution.

® Waiting—The process is suspended until a child process
terminates or until it receives a signal. A child process
is a process that is started {execution is begun by)
another process—a parent process.

OS-9 Technical Reference

® Sleeping—The process is suspended for a specific period
of time or until it receives a signal.

Each state has its own queue, a linked list of descriptors of pro-
cesses in that state. To change a process’s state, move its
descriptor to another queue.

The Active State. Each active process is given a time slice for
execution, according to its priority. The scheduler in the kernel
ensures that all active processes, even those of low priority, get
some CPU time.

The Wait State. This state is entered when a process executes a
Wait system call (F$Wait). The process remains suspended until
one of its child processes terminates or until it receives a signal.
(See the “Signals” section later in this chapter.)

The Sleeping State. This state is entered when a process exe-
cutes a Sleep system call (F$Sleep), which specifies the number
of ticks for which the process is to remain suspended. The pro-
cess remains asleep until the specified time has elapsed or until
it receives a wakeup signal.

Execution Scheduling

The 0S-9 scheduler uses an algorithm that ensures that all
active processes get some execution time.

All active processes are members of the active process queue,
which is kept sorted by process age. Age is the number of process
switches that have occurred since the process’s last time slice.
When a process is moved to the active process queue from
another queue, its age is set according to its priority—the higher
the priority, the higher the age.

Whenever a new process becomes active, the ages of all other
active processes increase by one time slice count. When the exe-
cuting process’s time slice has elapsed, the scheduler selects the
next process to be executed (the one with the next highest age,
the first one in the queue). At this time, the ages of all other
active processes increase by one. Ages never go beyond 255.

A new active process that was terminated while in the system
state is an exception. This process is given high priority because
it is usually executing critical routines that affect shared system
resources.

2-14

The Kernel | 2

When there are no active processes, the kernel handles the next
interrupt and then executes a CWA1 instruction. This procedure
decreases interrupt latency time (the time it takes the system to
process an interrupt).

Signals

A signal is an asynchronous control mechanism used for inter-
process communication and control. It behaves like a software
interrupt. It can cause a process to suspend a program, execute
a specific routine, and then return to the interrupted program.

Signals can be sent from one process to another process by the
Send system call (F$§Send). Or, they can be sent from OS-9 ser-
vice routines to a process.

A signal can convey status information in the form of a 1-byte
numeric value. Some signal codes (values) are predefined, but
you can define most. The signal codes are:

0

Kill (terminates the process, is non-
interceptable)

1 = Wakeup (wakes up a sleeping process)
2 = Keyboard terminate
3 = Keyboard interrupt
4 = Window change
128-255 User defined

When a signal is sent to a process, the signal is saved in the
process descriptor. If the process is in the sleeping or waiting
state, it is changed to the active state. When the process gets its
next time slice, the signal is processed.

Il

What happens next depends on whether or not the process has
set up a signal intercept trap (signal service routine) by execut-
ing an Intercept system call (F$lcpt).

If the process has set up a signal intercept trap, the process
resumes execution at the address given in the Intercept call. The
signal code passes to this routine. Terminate the routine with
an RTI instruction to resume normal execution of the process.

2-15

OS-9 Technical Reference

Note: A wakeup signal activates a sleeping process. It sets
a flag but ignores the call to branch to the intercept
routine.

If it has not set up a signal intercept trap, the process is termi-
nated immediately. It is also terminated if the signal code is
zero. If the process is in the system mode, 0S-9 defers the termi-
nation. The process dies upon return to the user state.

A process can have a signal pending (usually because the pro-
cess has not been assigned a time slice since receiving the sig-
nal). If it does, and ancther process tries to send it another
signal, the new signal is terminated, and the Send system call
returns an error. To give the destination process time to process
the pending signal, the sender needs to execute a Sleep system
call for a few ticks before trying to send the signal again.

Interrupt Processing

Interrupt processing is another important funection of the kernel.
08-9 sends each hardware interrupt to a specific address. This
address, in turn, specifies the address of the device service rou-
tine to be executed. This is called vectoring the interrupt. The
address that points to the routine is called the vector. It has the
same name as the interrupt.

The SWI, SWI2, and SWI3 vectors point to routines that read
the corresponding pseudo vector from the process’s descriptor
and dispatch to it. This is why the Set SWI system call
(F$SSWI) is local to a process; it only changes a pseudo vector in
the process deseriptor.

Hardware Vector

Table
Vector Address
SWI3 $FFF2
SWI2 $FFF4
FIRQ $FFF6
IRQ $FFF8
SWI $FFFA
NMI $FFFC

RESTART $FFFE

2.16

The Kernel | 2

FIRQ Interrupt. The system uses the FIRQ interrupt. The
FIRQ vector is not available to you. The FIRQ vector is reserved
for future use. Only one FIRQ generating device can be in the
system at a time.

Logical Interrupt Polling System

Because most OS-9 I/O devices use IRQ interrupts, 0S-9
includes a sophisticated polling system. The IRQ polling system
automatically identifies the source of the interrupt, and then exe-
cutes its associated user- or system-defined service routine.

IRQ Interrupt. Most OS-9 I/O devices generate IRQ interrupts.
The IRQ vector points to the real-time clock and the keyboard
scanner routines. These routines, in turn, jump to a special IRQ
polling system that determines the source of the interrupt. The
polling system is discussed in the next section, “Logical Inter-
rupt Polling System.”

NMI Interrupt. The system uses the NMI interrupt. The NMI
vector, which points to the disk driver interrupt service routine,
is not available to you.

The Polling Table. The information required for IRQ polling is
maintained in a data structure called the IRQ polling table. The
table has a 9-byte entry for each device that might generate an
IRQ interrupt. The table size is permanent and is defined by an
initialization constant in the INIT module. Each entry in the
polling table is given a number from 0 (lowest priority) to 255
(highest priority). In this way, the more important devices (those
that have a higher interrupt frequency) can be polled before the
less important ones.

Each entry has six variables:

Polling Address Points to the status register of the device.
The register must have a bit or bits that
indicate if it is the source of an interrupt.

Flip Byte Selects whether the bits in the device status
register indicate active when set or active
when cleared. If a bit in the flip byte is set,
it indicates that the task is active whenever
the corresponding bit in the status register
is clear.

2.17

08-9 Technical Reference

Mask Byte Selects one or more interrupt request flag
bits within the device status register. The
bits identify the active task or device.

Service Points to the interrupt service routine for
Routine Address the device. You supply this address,

Static Points to the permanent storage area
Storage Address required by the device service routine. You
supply this address.

Priority Sets the order in which the devices are
polled (a number from 0 to 255).

Polling the Entries. When an IRQ interrupt occurs, 0S-9
enters the polling system via the corresponding RAM interrupt
vector. It starts polling the devices in order of priority. OS-9
loads the status register address of each entry into Accumulator
A, using the device address from the table.

08S-9 performs an exclusgive-OR operation using the flip byte, fol-
lowed by a logical-AND operation using the mask byte. If the
result is non-zero, OS-9 assumes that the device is the source of
the interrupt.

085-9 reads the device memory address and service routine
address from the table, and performs the interrupt service
routine.

Note: If you are writing your own device driver, terminate
the interrupt service routine with an RTS instruction, not
an RTI instruction.

Adding Entries to the Table. You can make entries to the IRQ
(interrupt request) polling table by using the Set IRQ system
call (FSIRQ). Set IRQ is a privileged system call, OS-9 can exe-
cute it only in the system mode. 0S-9 is in system mode when-
ever it is running a device driver.

Note: The code for the interrupt polling system is located
in the I/O Manager module. The OS9P1 and OS9P2 mod-
ules contain the physical interrupt processing routines.

2-18

The Kernel | 2

Virtual Interrupt Processing

A virtual IRQ, or VIRQ, is useful with devices in Multi-Pak
expansion slots. Because of the absence of an IRQ line from the
Multi-Pak interface, these devices cannot initiate physical inter-
rupts. VIRQ enables these devices to act as if they were inter-
rupt driven. Use VIRQ only with device driver and pseudo device
driver modules. VIRQ is handled in the Clock module, which
handles the VIRQ polling table and installs the F§VIRQ system
call. Since the F$VIRQ system call is dependent on clock initial-
ization, the CC3GO medule forces the clock to start.

The virtual interrupt is set up so that a device can be inter-
rupted at a given number of clock ticks. The interrupt can occur
one time, or can be repeated as long as the device is used.

The F$VIRQ system call installs VIRQ in a table. This call
requires specification of a 5-byte packet for use in the VIRQ
table. This packet contains:

® Bytes for an actual counter
® A reset value for the counter

® A status byte that indicates whether a virtual interrupt
has occurred and whether the VIRQ is to be re-installed
in the table after being issued

F3VIRQ also specifies an initial tick count for the interrupt.
The actual call is summarized here and is described in detail in
Chapter 8.

Call: 089 F$VIRQ

Input: (Y) = address of 5-byte packet
(X) = 0 to delete entry, 1 to install entry
(D) = initial count value

Qutput: none
(CC) carry set on error
(IS) appropriate error code

The 5-byte packet is defined as follows:

Name Offset Function

Vi.Cnt $0 Actual counter

Vi.Rst $2 Reset value for counter
Vi.Stat $4 Status byte

2-19

08S-9 Technical Reference

Two of the bits in the status byte are used. These are:

Bit 0 - set if VIRQ occurs
Bit 7 - set if a count reset is required

When making an F$VIRQ call, the packet might require initial-
ization with a reset value. Bit 7 of the status byte must be
either set or cleared to signify a reset of the counter or a one-
time VIRQ call. The reset value does not need to be the same as
the initial counter value. When OS-9 processes the call, it writes
the packet address into the VIRQ table.

At each clock tick, O8-9 scans the VIRQ table and subtracts one
from each timer value. When a timer count reaches zero, 0S-9
performs the following actions:

1. Sets Bit 0 in the status byte. This specifies a Virtual IRQ.
2. Checks Bit 7 of the status byte for a count reset request.

3. If bit 7 is set, resets the count using the reset value. If bit 7
is reset, deletes the packet address from the VIRQ table.

When a counter reaches zero and makes a virtual interrupt
request, OS-9 runs the standard interrupt polling routine and
services the interrupt. Because of this, you must install entries
on both the VIRQ and DIRQ polling tables whenever you are
using a VIRQ.

Unless the device has an actual physical interrupt, install the
device on the IRQ polling table via the F$IRQ system call before
placing it on the VIRQ table.

If the device has a physical interrupt, use the interrupt’s hard-
ware register address as the polling address for the F$IRQ call.
After setting the polling address, set the flip and mask bytes for
the device, and make the F$IRQ call.

If the device is totally VIRQ-driven, and has no interrupts, use
the status byte from the VIRQ packet as the status byte. Use a
mask byte of %00000001, defined as ViIFlag in the defs file.
Use a flip byte value of 0. The following examples show how to
set up both types of VIRQ calls. The first example is taken from
an ACIA-type driver that has a physical interrupt found in a
status register, but that cannot be accessed by the processor if
used in the Multi-Pak. The second example is for a device with
no physical interrupt handling, all interrupts are handled
through the VIRQ.

2-20

The Kernel / 2

*+ VIRQ Example #1 - Device Driver pessessing real 1RG's

¥ Copyr.ght 1985,1386 by Microware Systems
+ (orporatior, Reproduced Under .icense

use defsfile

t actual mask byte for tarcware interrypt
[RQReq cet ~14A08888 Irterrupt Recusst

+ p*4set tp the actual Fardware status register
Status equ f

+ VIRD countdown valle
VIRACHT equ do the VIRQ on every tick

FEEEFF AR DR R T4
+ Static sterage offsets
+

org V.SCF room for sc® variables

VIRQBUF reb § suffer or fake interrupt from clock

MEM equ . Total static storage requirement

FERERFFEARANRRE

¢+ Module Header

mod MEND,NAM, DRIVR+0BJCT,REENT+1 ENT,MEN
fcb UPDAT,

fcb Edition Current Revision

CFFEERF IR RPFFFFLRERBRERI NN
* Driver entry jump table
ENT lbra INIT

lbra READ

ibra WRITE

lbra GETSTA

2-21

0S-9 Technical Reference

Ibra PUTSTA
bra TRMNAT

v Actual mask information far FSIRQ call for the
* hardware interrupt MASK fcb 8 no flup bits

+ fcb [RQReg Irq polling mask

» fcb 18 {higher) priority

FRAERARERER AR

s Init

+ Initialize the device

* Includes setting up the [RQ anc VIRG entries

*

INIT

+ Install [RQ polling Table Entry firs:
+ Use the hardware status register and the hardware
+ mask

ldd V.PORT,U get port address in D

add #Status point to hardware status byte

leax MASK,FCR get the hardware inierrupt mask

leay MIRG,P(R address of irterruat service routine
059 FSIRQ Add tc IRG polling table

bes INITY error - return 1t

[rstall VIRG 1n Clock Medule second
*

leay VIRGBUF,U gel the 5 byte VIRQ bu‘fer peinter

loa #$88 get reset flag for repeated VIRQ’s

sta V1.5tat,y put 11 1nio buffer

Idd #VIRQCNT get count or number of ticks for the VIRQ
std Vi.Rst,y put 1n yritial reset valee

1dx #1 put onto table

p53 F8VIZA make the service reguest

acs INITS Error - return 1t

INITI rts

READ

2-22

The Kernel / 2

WRITE
GETSTA
PYTSTA

EFEEXNXRFFSHERD

€ Subroutine TRMNAT
* Terminate device, including removal from tables
+

TRMNAT

t remove from VIRQ tanle first

ldx #8 remove from VIR table

leay VIRGBUF,U get address

0s9 F$VIRA remove modem from VIRQ table
+ next remove from [RQ tasle

ldx #0

153 FSIRQ remove moder from polling il
ris

REERRRAAFTHERROOPRERS

+ MIRQ
+ process Interrupt

+

UNE

¢ actual interrupt service rcutine

ris

erod Mocule Crc
PEND ecu *

» VIRG Example #2 - Device Driver without nardware interrupts

RERREEERERA R

+ STATIC STORAGE DEFINITICH

A

2-23

0S8 -9 Technical Reference

VIRABF rmb 5 auffer “or VIRQ
DMEM ecu .

*

¥

+

FREFEXR NI RERFEER R

Module Header

mod DEND,DNAN,DRIVR+0B.CT,REENT+REV,DENT,DMEH
fcb UPDAT. mode byte

fcb 3 EDITION BYTE

Driver entry table

DENT 1bra INIT 1n1tialize

*

*

¥

*

lbra READ

lbra WRITE

lbra GETSTAT get status
lbra SETSTAT set status
lbra TERM terminate

Mask information packet for FSIRQ call
NOTE: uses ihe virtual interrupt “lag, Vi.[Flag, for
the masktyte

DMSK fcb B no “lip bits

I

+
+
¥
+

+

fcb Vi.IFlag polling mask for VIRQ
fcb 18 priority

ERERRRRRIRRRAALY

INITIALIZE STORAGE AND COMTROLLER
[ncludes setting up the [R3 and VIR3 tanle entries

NIT

sel up IRQ tatle entry firsi

NOTE: uses the status register of the VIRQ buffer for
the interrupl stalus register since no haroware staius

register is availavle

leay VIRGBF+V1.5tat,U get address of status byle

2-24

The Kernel / 2

tfr y,d put 1t into D reg

ieay DIKQ,PCR get address of interrupl routine
leax DMSK,PCR get VIRQ mask info

0s9 FSIKQ :nstall onto table

bes INITS exit on error

* now sel up the VIKG teble entry

leay VIRGBF,U point 1o ike G-byte packet

lda #3808 get the reset flag to repeat VIRG's

sta Vi.5tat,y save 11 17 the buffer

ldd #VIRQCAT get the VIRG counter value

std Vi.Rst,y save 1t 1n the reset area of buffer
ldx #1 code 1o install the VIRQ

0s9 FSVIRA 1nstall on the table

bee THITS exit on error

INITY rte

READ
WRITE
GETETAT
PUTSTAT

AREERFRRERFREXRRRRFERAY

+ TERM - terminate the device and remave entries frem
v tables

TERM

+ rerove from VIRA table first
ldx #2 get zero to remeve from table
leay VIRGBF,U gel address of pactet
059 FSVIRG
+ then remove from IRQ tanle
ldx #8 cet zero to remave from table
059 F$IRQ

ris

X2 R R R R R R R R R S R R R R R R R R RN RS R R SRS XY |

2.25

08-9 Technical Reference

+ DIRG - interrupt service rodtine

+ NOTE: The service routine must be sure teo reset the
+ status byte of the VIRQ packet so that the interrupt
* looks as 1f 1t 15 cleared.

¥+

DIRG

Ida VIRGEF+Vi.Stat,U gel status byte
anda #$F-v1.[Flag mask off interrupt bit
sta VIRGBF+v1.Stat,U put 1t back

ris

EMCD
DEND equ

END

Chapter 3
Memory Modules

In Chapter 2, you learned that OS-9 is based on the concept that
memory is modular. This means that each program is considered
to be an individually named object.

You also learned that each program loaded into memory must be
in the module format. This format lets 0S-9 manage the logical
contents of memory, as well as the physical contents. Module
types and formats are discussed in detail in this chapter.

Module Types

There are several types of modules. Each has a different use and
function. These are the main requirements of a module:

® It cannot modify itself.

® It must be position-independent so that 0S-9 can load or
relocate it wherever space is available. In this respect,
the module format is the OS-9 equivalent of load records
used in older operating systems.

A module need not be a complete program or even 6809 machine
language. It can contain BASICO9 I-code, constants, single sub-
routines, and subroutine packages.

Module Format

Each module has three parts: a module header, a module body,
and a cyclic-redundancy-check value (CRC value).

3-1

08-9 Technical Reference

Module Header

Program
or
Constants

CRC Value

Figure 3.1

Module Header

At the beginning of the module (the lowest address) is the mod-
ule header. Its form depends upon the module’s use.

The header contains information about the module and its use.
This information includes the following:

e Size

® Type (machine code, BASIC09 compiled code, and so on)
o Attributes (executable, re-entrant, and so on)

¢ Data storage memory requirements

® Execution starting address

Usually, you do not need to write routines to generate the mod-
ules and headers. All OS-9 programming languages automati-
cally create modules and headers.

Module Body

The module body contains the program or constants. It usually
is pure code. The module name string is included in this area.
Figure 3.2 provides the offset values for calculating the location
of a module’s name. (See “Offset to Module Name”.)

CRC Value

The last three bytes of the module are the Cyclic Redundancy
Check (CRC) value. The CRC value is used to verify the integ-
rity of a module.

Memory Modules / 3

When the system first loads the module into memory, it per-
forms a 25-bit CRC over the entire module, from the first byte of
the module header to the byte immediately before the CRC. The
CRC polynomial used is $800FE3.

As with the header, you usually don’t need to write routines to
generate the CRC value. Most 0S-9 programs do this
automatically.

Module Headers: Standard Information
The first nine bytes of all module headers are defined as follows:

Relative
Address Use
$00,%501 Syne bytes ($87,$CD)
$02,$03 Module size
$04,$05 Offset to module name
$06 Module type/Language
$07 Attributes/Revision level
$08 Header check

Figure 3.2

Sync Bytes

The syne bytes specify the location of the module. (The first sync
byte is the start of the module.) These two bytes are constant.

Module Size

The module size specifies the size of the module in bytes
(includes CRC).

Offset to Module Name

The offset to module name specifies the address of the module
name string relative to the start of the module. The name string
can be located anywhere in the module. It consists of a string of
ASCII characters with the most significant bit set on the last
character.

3-3

08-9 Technical Reference

Type/Language Byte

The type/language byte specifies the type and language of the
module.

The four most significant bits of this byte indicate the type.
Eight types are pre-defined. Some of these are for 08-9’s inter-
nal use only. The type codes are given here (0 is not a legal type
code):

Code Module Type Name
$1x Program module Prgrm
$2x Subroutine module Sbrtn
$3x Multi-module (for future use) Multi
$dx Data module Data
$5x-$Bx User-definable module

$Cx 08-9 system module Systm
$Dx 08-9 file manager module FlMgr
$Ex 08S-9 device driver module Drivr
$Fx 08S-9 device descriptor module Devic

Figure 3.3

The four least significant bits of Byte 6 indicate the language
{denoted by x in the previous Figure). The language codes are
given here:

Code Language

$x0 Data (non-executable)

$x1 6809 object code

$x2 BASICO09 I-code

$x3 PASCAL P-code

$x4-$xF Reserved for future use
Figure 3.4

By checking the language type, high-level language runtime
systems can verify that a module is the correct type before
attempting execution. BASICQ9, for example, can run either I-
code or 6809 machine language procedures arbitrarily by check-
ing the language type code.

Attributes/Revision Level Byte

The attributes/revision level byte defines the attributes and revi-
sion level of the module.

34

Memory Modules / 3

The four most significant bits of this byte are reserved for mod-
ule attributes. Currently, only Bit 7 is defined. When set, it indi-
cates the module is re-entrant and, therefore, shareabie.

The four least significant bits of this byte are a revision level in
the range 0 to 15. If two or more modules have the same name,
type, language, and so on, OS-9 keeps in the module directory
only the module having the highest revision level. Therefore, you
can replace or patch a ROM module, simply by loading a new,
equivalent module that has a higher revision level.

Note: A previously linked module cannot be replaced until
its link count goes to zero.

Header Check

The header check byte contains the one’s complement of the
Exclusive-OR of the previous eight bytes.

Module Headers: Type-Dependent
Information

More information usually follows the first nine bytes of a module
header. The layout and meaning vary, depending on the module
type.

Module types $Cx-$Fx (system module, file manager module,
device driver module, and device descriptor module) are used
only by 0S-9. Their formats are given later in the manual.

Module types $1x through $Bx have a general-purpose executa-
ble format. This format is often used in programs called by
F$Fork or F$Chain. Here is the format used by these module

types:

3-5

08-9 Technical Reference

Executable Memory Module Format

Relative Check
Address Use Range
$00

— Sync Bytes ($87,$CD) -
$01
$02

— Module Size (bytes) —]
$03
$04

— Module Name Offset — header
$05 parity
$06 Type Language
$07 Attributes Revision module
$08 Header Parity Check CRC
$09

— Execution Offset —
$0A
$0B

— Permanent Storage Size —
$0C
$0D {Additional optional header

extensions)
Module Body
object code, constants,
and so on
CRC Check Value

Figure 3.5

3-6

Memory Modules / 3

As you can see from the preceding chart, the executable memory
has four extra bytes in its header. They are:

$09,50A Execution offset
$0B,$0C Permanent storage size

Execution Offset. The program or subroutine’s offset starting
address, relative to the first byte of the sync code. A module that
has multiple entry points (such as cold start and warm start)
might have a branch table starting at this address.

Permanent Storage Size. The minimum number of bytes of
data storage required to run. Fork and Chain use this number
to allocate a process’s data area.

If the module is not directly executed by a Fork or Chain system
call (for instance a subroutine package), this entry is not used by
0S-9. It is commonly used to specify the maximum stack size
required by re-entrant subroutine modules. The calling program
can check this value to determine if the subroutine has enough
stack space.

When OS-9 starts after a single system reset, it searches the
entire memory space for ROM modules. It finds them by looking
for the module header sync code ($87,3CD).

When OS-9 detects the header sync code, it checks to see if the
header is correct. If it is, the system obtains the module size
from the header and performs a 24-bit CRC over the entire mod-
ule. If the CRC matches, 0S-9 considers the module to be valid
and enters it into the module directory. All ROM modules that
are present in the system at startup are automatically included
in the system module directory.

After the module search, OS-9 links to the component modules it
found. This is the secret to 08-9’s ability to adapt to almost any
6809 computer. It automatically locates its required and optional
component modules and rebuilds the system each time it is
started.

3-7

Chapter 4

0S-9’s Unified
Input/Output System

Chapter 1 mentioned that 0S-9 has a unified /O system, con-
sisting of all modules except those on the kernel level. This chap-
ter discusses the I/O modules in detail.

I/0 System Modules

056 KERNEL
INIT] (0S9P1, 0SOP2)] Clock

input-Qutput Manager

(IOMAN)
1 I I 1
" [—]
Disk File Pipe File Char. File
Manager Manager Manager Printer $1G
(RBF) (Pipeman) (SCF)
— []
Ram CC3Disk CC3HdISK Pipe ACIAPak ModPak CC310
Ram Disk Disk Driver Driver Or ver
Driver Driver r'ver {Piper)
i ﬁiﬁ Pme @i @i
RBF Device Descriptors Pipe Descr. SCF Device Descnmors
—
Vdgint Grflnat windInt
CC3I0 CC310 CCalo
Interface Intgrface Interface
I I
Term_Vdg
Desc GrfDry

Term“Win
Desc

0S-9 COMPONENT MODULE ORGANIZATION

08-9 Technical Reference

The VDG Interface performs both interface and low level routines
for VDG Color Computer 2 compatible modes and has limited
support for high res screen allocation.

The GrfInt Interface provides the standard code interpretations
and interface functions.

The WindInt Interface, available in the Multi-view package, con-
tains all the functionality of GrfInt, along with additional sup-
port features. If you use WindInt, do not include Grflnt.

Both WindInt and GrfInt use the low-level driver GrfDrv to per-
form drawing on the bit-map screens.

Term__VDG uses CC3I0/Vdglnt while Term win and all win-
dow descriptors use CC3I0/WindInt/GrfInt)/GrfDrv modules.

The I/O system provides system-wide, hardware-independent I/O
services for user programs and 0S-9 itself. All I/O system calls
are received by the kernel and passed to the I/O manager for
processing.

The I'O manager performs some processing, such as the alloca-
tion of data structures for the /O path. Then, it calls the file
managers and device drivers to do most of the work. Additional
file manager, device driver, and device descriptor modules can be
loaded into memory from files and used while the system is
running.

The I/O Manager

The YO manager provides the first level of service of I/O system
calls, It routes data on I/O process paths to and from the appro-
priate file managers and device drivers.

The 'O Manager also maintains two important internal OS-9
data structures—the device table and the path table. Never mod-
ify the I/O manager.

When a path is opened, the /O manager tries to link to a mem-
ory module that has the device name given or implied in the
pathlist. This module is the device descriptor. It contains the
names of the device driver and file manager for the device. The
/O manager saves the names so later system calls can be routed
to these modules.

4.2

0S-9’s Unified Input/Output System | 4

File Managers

0S-9 can have any number of file manager modules. Each of
these modules processes the raw data stream to or from a class
of device drivers that have similar operational characteristics. It
removes as many unique characteristics as possible from I/O
operations. Thus, it assures that similar devices conform to the
08-9 standard I/O and file structure.

The file manager also is responsible for mass storage allocation
and directory processing, if these are applicable to the class of
devices it serves.

File managers usually buffer the data stream and issue requests
to the kernel for dynamic allocation of buffer memory. They can
also monitor and process the data stream, for example, adding
line-feed characters after carriage-return characters.

The file managers are re-entrant. The three standard 0S-9 file
managers are;

® Random block file manager: The RBF manager supports
random-access, block-structured devices such as disk sys-
tems and bubble memories. (Chapter 5 discusses the
RBF manager in detail.)

® Sequential Character File Manager: The SCF manager
supports single-character-oriented devices, such as CRTs
or hardcopy terminals, printers, and modems. (Chapter 6
discusses SCF in detail.)

® Pipe File Manager (PFIPEMAN): The pipe manager sup-
ports interprocess communication via pipes.

File Manager Structure

Every file manager must have a branch table in exactly the fol-
lowing format. Routines that are not used by the file manager
must branch to an error routine, that sets the carry and loads
Register B with an appropriate error code before returning. Rou-
tines returning without error must ensure that the carry bit is
clear.

0S-9 Technical Reference

* All routines are entered with:
* (Y} = Path Descriptor pointer
* (U) = Caller‘s register stack pointer

EntryPt equ «
lbra Create
lbra Open
lbra MakDir
lbra ChgDir
lbra Delete
lbra Seek
lbra Read
lbra Write
lbra ReadlLn
lbra Writeln
lbra GetStat
lbra PutStat
lbra Close

Create, Open

Create and Open handle file creating and opening for devices.
Typically, the process involves allocating any required buffers,
initializing path descriptor variables, and establishing the path
name. If the file manager controls multi-file devices (RBF),
gilrectory searching is performed to find or create the specified
1le.

Makdir

Makdir creates a directory file on multi-file devices. Makdir is
neither preceded by a Create nor followed by a Close. File man-
agers that are incapable of supporting directories need to return
carry set with an appropriate error code in Register B.

ChgDir

On multi-file devices, ChgDir searches for a directory file. If
ChgDir finds the directory, it saves the address of the directory
(up to four bytes) in the caller’s process descriptor. The descrip-
tor is located at P$DIO+2 (for a data directory) or P$DIO +8
(for an execution directory).

4-4

0S8-9’s Unified Input/Output System | 4

In the case of the RBF manager, the address of the directory’s
file descriptor is saved. Open/Create begins searching in the cur-
rent directory when the caller’s pathlist does not begin with a
slash (/). File managers that do not support directories should
return the carry set and an appropriate error code in Register
B.

Delete

Multi-file device managers handle file delete requests by initiat-
ing a directory search that is similar to Open. Once a device
manager finds the file, it removes the file from the directory.
Any media in use by the file are returned to unused status. In
the case of the RBF manager, space is returned for system use
and is marked as available in the free cluster bit map on the
disk. File managers that do not support multi- file devices
return an error.

Seek

File managers that support random access devices use Seek to
position file pointers of an already open path to the byte speci-
fied. Typically, the positioning is a logical movement. No error is
produced at the time of the seek if the position is beyond the
current “end of file”.

Normally, file managers that do not support random access
ignore Seek. However, an SCF-type manager can use Seek to
perform cursor positioning.

Read

Read returns the number of bytes requested to the user’s data
buffer. Make sure Read returns an EOF error if there is no data
available. Read must be capable of copying pure binary data, and
generally performs no editing on the data. Generally, the file
manager calls the device driver to actually read the data into
the buffer. Then, the file manager copies the data from the buffer
into the user’s data area to keep file managers device-
independent.

0S-9 Technical Reference

Write

The Write request, like Read, must be capable of recording pure
binary data without alteration. The routines for Read and Write
are almost identical with the exception that Write uses the
device driver’s output routine instead of the input routine. The
RBF manager and similar random access devices that use fixed-
length records (sectors) must often preread a sector before writ-
ing it, unless they are writing the entire sector. In 08-9, writing
past the end of file on a device expands the file with new data.

ReadLn

ReadLn differs from Read in two respects. First, ReadLn termi-
nates when the first end-of-line (carriage return) is encountered.
ReadLn performs any input editing that is appropriate for the
device. In the case of SCF, editing involves handling functions
such as backspace, line deletion, and the removal of the high-
order bit from characters.

WriteLn

WriteLn is the counterpart of ReadLn. It calls the device driver
to transfer data up to and including the first (if any) carriage
return encountered. Appropriate output editing can also be per-
formed. For example, SCF outputs a line feed, a carriage return
character, and nulls (if appropriate for the device). It also pauses
at the end of a screen page.

GetStat, PutStat

The GetStat (get status) and PutStat (put status) system calls
are wildcard calls designed to provide a method of accessing fea-
tures of a device (or file manager) that are not generally device
independent. The file manager can perform specific functions
such as setting the size of a file to a given value. Pass unknown
status calls to the driver to provide further means of device inde-
pendence. For example, a PutStat call to format a disk track
might behave differently on different types of disk controllers.

4-6

0S-9’s Unified Input/Qutput System |/ 4

Close

Close is responsible for ensuring that any output to a device is
completed. (If necessary, Close writes out the last buffer.) It
releases any buffer space allocated in an Open or Create. Close
does not execute the device driver’s terminate routine, but can
do specific end-of-file processing if you want it to, such as writ-
ing end-of-file records on disks, or form feeds on printers.

Interfacing with Device Drivers

Strictly speaking, device drivers must conform to the general for-
mat presented in this manual. The I/O Manager is slightly dif-
ferent because it only uses the Init and Terminate entry points.
Other entry points need only be compatible with the file man-
ager for which the driver is written. For example, the Read entry
point of an SCF driver is expected to return one byte from the
device. The Read entry point of an RBF driver, on the other
hand, expects Read to return an entire sector.

The following code is part of an SCF file manager. The code
shows how a file manager might call a driver.

4-7

0S-9 Technical Reference

AR SRS EE R ERE XN

« I0EXEC

* Execute Device’s Read/Write Routine

*

* Passed: (A) = Output character C(write)

* (X) = Device Table entry ptr

* (Y) = Path Descriptor pointer

* (U) = Offset of routine (D$Read,
DsWrited

+ Returns: CA) = Input char (read)

* (B) = Error code, CC set 1.f error

* Destroys B,CC

IDEXEC pshs a,x,y,u save registers

ldu V$STAT,x get static storage for draiver
ldx V$DRIV,x get driver module address

ldd MSEXEC,x and offset of execution entries
addd 5,5 offset by read/write

leax d,x absolute entiry address

lda ,s5+ restore char (for writel

jsr 0,x execute driver read/write

puls x,y,u,pc return (Ad=char, (B)=error

emcd Module CRC
Size equ * size of sequential file manager

Device Driver Modules

The device driver modules are subroutine packages that perform
basic, low-level I/O transfers to or from a specific type of 1/0
device hardware controller. These modules are re-entrant. So,
one copy of the module can concurrently run several devices that
use identical I/O controllers.

Device driver modules use a standard module header, in which
the module type is specified as code $Ex (device driver). The exe-
cution offset address in the module header points to a branch
table that has a minimum of six 3-byte entries.

Each entry is typically an LBRA to the corresponding subrou-
tine. The file managers call specific routines in the device driver
through this table, passing a pointer to a path descriptor and
passing the hardware control register address in the 6809 regis-
ters. The branch table looks like this:

4-8

0S-9’s Unified Input/Output System / 4

Code Meaning

+$00 Device initialization routine
+3%03 Read from device

+ $06 Write to device

+3$09 Get device status

+80C Set device status

+$0F Device termination routine

(For a complete description of the parameters passed to these

subroutines, see the “Device Driver Subroutines” sections in
Chapters 5 and 6.)

OS-9 Technical Reference

Device Driver Module Format

Relative Check
Address Use Range
$00

— Sync Bytes ($87,$CD) —
$01
$02

— Module Size (bytes) —
303
$04

- Module Name Offset — Header
$05 Parity
$06 Type Language
$07 Attributes Revision Module
$08 Header Parity Check CRC
$09

- Execution Offset —
$0A
$0B

L Permanent Storage Size @ —
$0C
$0D Mode Byte

— Module Body —

— CRC Check Value —

$0D Mode Byte - (D S PE PW PR E W R)

4-10

08-9’s Unified Input/Output System / 4

0S-9 Interaction With Devices

Device drivers often must wait for hardware to complete a task
or for a user to enter data. Such a wait situation occurs if an
SCF device driver receives a Read but there is no data is avail-
able, or if it receives a Write and no buffer space is available.
OS-9 drivers that encounter this situation should suspend the
current process (via F$Sleep). In this way the driver allows other
processes to continue using CPU time.

The most efficient way for a driver to awaken itself and resume
processing data is by using interrupt requests (IRQs). It is possi-
ble for the driver to sleep for a number of system clock ticks and
then check the device or buffer for a ready signal. The drawbacks
to this technique are:

e It requires the system clock to always remain active.

¢ It might require a large number of ticks (perhaps 20) for
the device to become ready. Such a case leaves you with
a dilemma. If you make the program sleep for two ticks,
the system wastes CPU time while checking for device
ready. If the driver sleeps 20 ticks, it does not have a
good response time.

An interrupt system allows the hardware to report to the CPU
and the device drivers when the device is finished with an opera-
tion. Using interrupts to its advantage, a device driver can set
up interrupt handling to occur when a character is sent or
received or when a disk operation is complete. There is a built-in
polling facility for pausing and awakening processes. Here is a
technique for handling interrupts in a device driver:

1. Use the Init routine to place the driver interrupt service call
(IRQSVC) routine in the IRQ polling sequence via an F$IRQ
system call:

ldd V.Port,u get address to poll
leax IRQPOLL,pcr point to IRG packet
leay IRQSVC,pcr point to IRQ routine
0SS F$¢IRQA add dev to poll sequence
bes Error abnormal exit if error

2. Ensure that driver programs waiting for their hardware, call
the sleep routine. The sleep routine copies V.Busy to
V.Wake. Then, it goes to sleep for some period of time.

4-11

0S-9 Technical Reference

3.

Sle

When the driver program wakes up, have it check to see
whether it was awakened by an interrupt or by a signal sent
from some other process.

Usually, the driver performs this check by reading the
V.Wake storage byte. The V.Busy byte is maintained by the
file manager to be used as the process ID of the process
using the driver. When V.Busy is copied into V.Wake, then
V.Wake becomes a flag byte and an information byte. A non-
zero Wake byte indicates that there is a process awaiting an
interrupt. The value in the Wake byte indicates the process
to be awakened by sending a wakeup signal as shown in the
following code:

lda V.Busy,u get proc 1D

sta V.Wake,u arrange for wakeup

andcc #*IniMasks prep for interrupts

ep50 ldx #0 or any other tick time

(if signal test)

0S9 Fs$Sleep await an [RQ

ldx D.Proc get proc desc ptr if
signal test

ldb P$Signal,x 1s signal present?
(1f signal test)

bne SigTest bra 1f so 1f signal
test

tst V.Wake,u IRQ oecur?

bne SleepSt0 bra if not

Note that the code labeled “if signal test” is only necessary
if the driver wishes to return to the caller if a signal is sent
without waiting for the device to finish. Also note that IRQs
and FIRQs must be masked between the time a command is
given to the device and the moving of V.Busy and V.Wake. If
they are not masked, it is possible for the device IRQ to
occur and the IRQSVC routine to become confused as to
whether it is sending a wakeup signal or not.

4-12

08-9’s Unified Input/Qutput System / 4

4. When the device issues an interrupt, 0S-9 calls the routine
at the address given in F$IRQ with the interrupts masked.
Make the routine as short as possible, and have it return
with an RTS instruction. IRQSVC can verify that an inter-
rupt has occurred for the device. It needs to clear the inter-
rupt to retrieve any data in the device. Then the V.Wake
byte communicates with the main driver module. If V.Wake
is non-zero, clear it to indicate a true device interrupt and
use its contents as the process ID for an F$Send system call.
The F$Send call sends a wakeup signal to the process. Here
is an example:

ldx V.Port,u get device address
tst ?? 15 it real interrupt from device?
bne IRQSVC90 bra to error 1f not
lda Data,x get data from device
sta 0,y
lda V.Wake,u
beq IRQSVCB0 bra 1f none
clr V.Wake,u clear 1t as flag to main
routine
ldb #S$Wake,u get wakeup signal
059 F$Send send signal to driver
IRASVC80 clrb clear carry bit (all 15 well)
rts
IRG5VC30 comb set carry bit (1s an IRG call)
rts

Suspend State (Level Two only)

The Suspend State allows the elimination of the F$Send system
call during interrupt handling. Because the process is already in
the active queue, it need not be moved from one queue to
another. The device driver IRQSVC routine can now wake up the
suspended main driver by clearing the process status byte sus-
pend bit in the process state. Following are sample routines for

the Sleep and IRQSVC calls:

lda D.Proc get process ptir
sta V.Wake,u prep for re-awzskening

enable device to IRQ, give command, etc.
bra Cmd50 enter suspend loop

Cmd30 ldx D.Proc gel ptr te process desc

4-13

0S-9 Technical Reference

lda P$5tate,x get state flag
ora #Suspend put prec 1n suspend state
sta P$State,x save it in proc desc
andcc #”IntMasks unmask 1nterruptis
ldx #1 give up time slice
0S9 F$Sleep suspend (1n active queue)
Cmd50 orcec #IntMasks mask interrupts while
changing state
ldx D.Proc get proc desc addr (if signal
test)
lda P#Signal,x get signal (if signal test)
beq SigProc bra if signal tec be handled
lda V.Wake,u true interrupt?
bne Cmd30 bra if not
andcc #*IntMasks assure interrupts unmasked

Note that D.Proc is a pointer to the process descriptor of the cur-
rent process. Process descriptors are always allocated on 258-
byte page boundaries. Thus, having the high order byte of the
address is adequate to locate the deseriptor. D.Proc is put in
V.Wake as a dual value. In one instance, it is a flag byte indi-
cating that a process is indeed suspended. In the other instance,
it is a pointer to the process descriptor which enables the
IRQSVC routine to clear the suspend bit. It is necessary to have
the interrupts masked from the time the device is enabled until
the suspend bit has been set. Making the interrupts ensure that
the IRQSVC routine does not think it has cleared the suspend
bit before it is even set. If this happens, when the bit is set the
process might go into permanent suspension. The IRQSVC rou-
tine sample follows:

ldy V.Port,u get dev addr

tst V.Wake,u is process awaiting
IRQ?

beq I[RASVCER no exit

clear device interrupt
exi1t if IRQ not from this device

lda V.Wake,u get process ptr

clrb

stb V.Wake,u clear proc waiting flag
tfr d.x get process descriptor ptr
lda P$State,x get state flag

anda # Suspend clear suspend state
sta P3$State,x save it

4-14

0S-9’s Unified Input/Output System / 4

clrb clear carry bit
rts

IRQSVCER comb set carry bit
rts

Device Descriptor Modules

Device descriptor modules are small, non-executable modules.
Each one provides information that associates a specific /O
device with its logical name, hardware controller address(es),
device driver, file manager name, and initialization parameters.

Unlike the device drivers and file managers, which operate on
classes of devices, each device descriptor tailors its functions to a
specific device. Each device must have a device descriptor.

Device descriptor modules use a standard module header, in
which the module type is specified as code $Fx (device descrip-
tor). The name of the module is the name by which the system
and user know the device (the device name given in pathlists).

The rest of the device descriptor header consists of the informa-
tion in the following chart:

Relative

Address(es) Use

$09,$0A The relative address of the file manager
name string address

$0B,$0C The relative address of the device driver
name string

80D Mode/Capabilities; D S PE PW PR E W R
{directory, single user, public execute, pub-
lic write, public read, execute, write, read)

$0E,$0F $10 The absolute physical (24-bit) address of the
device controller

$11 The number of bytes (n bytes) in the ini-
tialization table

$12,812+n Initialization table

When OS-9 opens a path to the device, the system copies the ini-
tialization table into the option section (PD.OPT) of the path
descriptor. (See “Path Descriptors” in this chapter.)

4-15

0S-9 Technical Reference

The values in this table can be used to define the operating
parameters that are alterable by the Get Status and Set Status
system calls (I$GetStt and I$SetStt). For example, parameters
that are used when initializing terminals define which control
characters are to be used for functions such as backspace and
delete.

The initialization table can be a maximum of 32 bytes long. If
the table is fewer than 32 bytes long, 0S-9 sets the remaining
values in the path descriptor to 0.

You might wish to add devices to your system. If a similar device
driver already exists, all you need to do is add the new hardware
and load another device descriptor. Device descriptors can be in
the boot module or they can be loaded into RAM from mass-stor-
age files while the system is running.

The following diagram illustrates the device descriptor format:

4-16

0S-9’s Unified Input/Quitput System | 4

Relative
Address

$00

$01
$02

$03
$04
$05
$06
$07
$08
$09

$0A
$0B

$0D
$O0E

$0F
$10

$11
$12,$12+n

Device Descriptor Format

Check
Use Range
Sync Bytes ($87,$CD) —
Module Size (bytes) —
Offset to Module Name — header
parity
F$ (Type) 8l (Lang)
Attributes Revision
module
Header Parity Check CRC

Offset to File Manager —
Name String

Offset to Device Driver —-
Name String

Mode Byte

Device Controller —
Absolute Physical Addr.

(24 bit)]

Initialization Table Size

(Initialization Table)

(Name Strings, and so on)

CRC Check Value

4-17

OS-9 Technical Reference

Path Descriptors

Every open path is represented by a data structure called a path
descriptor (PD). The PD contains the information the file man-
agers and device drivers require to perform /O functions.

PDs are 64 bytes long and are dynamically allocated and deallo-
cated by the I/0O manager as paths are opened and closed.

They are internal data structures, that are not normally refer-
enced from user or applications programs. The description of PDs
is presented here mainly for those programmers who need to
write custom file managers, device drivers, or other extensions to

08S-9.

PDs have three sections. The first section, which is ten bytes
long, is the same for all file managers and device drivers. The
information in the first section is shown in the following chart.

Path Descriptor: Standard Information

Relative Size
Name Address (Bytes) Use

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1 = read, 2 =
write, 3 = update

PD.CNT $02 1 Number of open paths using
this PD

PD.DEV $03 2 Address of the associated
device table entry

PD.CPR 3505 1 Current process ID

PD.RGS %06 2 Address of the caller’s regis-
ter stack

PD.BUF $08 2 Address of the 256-byte
data buffer (if used)

PD.FST $0A 22 Defined by the file manager

PD.OPT $20 32 Reserved for the Getstat/

Setstat options

PD.FST is 22-byte storage reserved for and defined by each type
of file manager for file pointers, permanent variables, and so on.

4-18

08-9’s Unified Input/Output System [4

PD.OPT is a 32-byte option area used for file or device operat-
ing parameters that are dynamically alterable. When the path is
opened, the 1’0 manager initializes these variables by copying
the initialization table that is in the device descriptor module.
User programs can change the values later, using the Get Status
and Set Status system calls.

PD.FST and PD.OPT are defined for the file manager in the
assembly-language equate file (SCFDefs for the SCF manager or
RBFDefs for the RBF manager).

4-19

Chapter 5

Random Block File Manager

The random block file manager (RBF manager) supports disk
storage. It is a re-entrant subroutine package called by the I/O
manager for I/O system calls to random-access devices. It main-
tains the logical and physical file structures.

During normal operation, the RBF manager requests allocation
and deallocation of 256-byte data buffers. Usually, one buffer is
required for each open file. When physical I/O functions are nec-
essary, the RBF manager directly calls the subroutines in the
associated device drivers. All data transfers are performed using
256-byte data blocks (pages).

The RBF manager does not deal directly with physical addresses
such as tracks and cylinders. Instead, it passes to the device
drivers address parameters, using a standard address called a
logical sector number, or LSN. LSNs are integers from 0 to n-1,
where n is the maximum number of sectors on the media. The
driver translates the logical sector number to actual cylinder/
track/sector values.

Because the RBF manager supports many devices that have dif-
ferent performance and storage capacities, it is highly parame-
ter-driven. The physical parameters it uses are stored on the
media itself.

On disk systems, the parameters are written on the first few
sectors of Track 0. The device drivers also use the information,
particularly the physical parameters stored on Sector 0. These
parameters are written by the FORMAT program that initial-
izes and tests the disk.

Logical and Physical Disk Organization

All disks used by 0S-9 store basic identification, file structure,
and storage allocation information on these first few sectors.

LSN 0 is the identification sector. LSN 1 is the disk allocation
map sector. LSN 2 marks the beginning of the disk’s ROOT
directory. The following section tells more about LSN 0 and LSN
1.

08-9 Technical Reference

Identification Sector (LSN 0)

LSN 0 contains a description of the physical and logical charac-
teristics of the disk. These characteristics are set by the FOR-
MAT command program when the disk is initialized.

The following table gives the 0S-9 mnemonic name, byte
address, size, and description of each value stored in this LSN 0.

Relative Size

Name Address (Bytes) Use

DD.TOT $00 3 Number of sectors on disk

DD.TKS $03 1 Track size (in sectors)

DDMAP $04 2 Number of bytes in the alloca-
tion bit map

DD.BIT $06 2 Number of sectors per cluster

DD.DIR $08 3 Starting sector of the ROOT
directory

DD.OWN $0B 2 Owner’s user number

DD.ATT $0D 1 Disk attributes

DD.DSK $0E 2 Disk identification (for internal
use)

DD.FMT $10 1 Disk format, density, number
of sides

DD.SPT $11 2 Number of sectors per track

DD RES $13 2 Reserved for future use

DD.BT $15 3 Starting sector of the boot-
strap file

DD.BSZ $18 2 Size of the bootstrap file (in
bytes)

DD.DAT $1A 5 Time of creation (Y:M:D:H:M)

DD.NAM $1F 32 Volume name in which the last

character has the most signifi-
cant bit set

DD.OPT $3F Path descriptor options

5-2

Random Block File Manager / 5§

Disk Allocation Map Sector (LSN 1)

LSN 1 contains the disk allocation map, which is created by
FORMAT. This map shows which sectors are allocated to the
files and which are free for future use.

Each bit in the allocation map represents a sector or cluster of
sectors on the disk. If the bit is set, the sector is considered to be
in use, defective, or non-existent. If the bit is cleared, the corre-
sponding cluster is available. The allocation map usually starts
at LSN1. The number of sectors it requires varies according to
how many bits are needed for the map. DD.MAP specifies the
actual number of bytes used in the map.

Multiple sector allocation maps allow the number of sectors/clus-
ter to be as small as possible for high volume media.

The FORMAT utility bases the size of the allocation map on the
size and number of sectors per cluster.

The DD.MAP value in LSN 0 specifies the number of bytes (in
LSN 1) that are used in the map.

Each bit on the disk allocation map corresponds to one sector
cluster on the disk. The DD.BIT value in LSN 0 specifies the
number of sectors per cluster. The number is an integral power
of 2 (1, 2, 4, 8, 16, and so on).

If a cluster is available, the corresponding bit is cleared. If it is
allocated, non-existent, or physically defective, the corresponding
bit is set.

ROOT Directory

This file is the parent directory of all other files and directories
on the disk. It is the directory accessed using the physical device
name (such as /D1). Usually, it immediately follows the Alloca-
tion Map. The location of the ROOT directory file descriptor is
gpecified in DD.DIR. The ROOT directory contains an entry for
each file that resides in the directory, including other
directories.

File Descriptor Sector

The first sector of every file is the file deseriptor. It contains the
logical and physical description of the file.

5-3

08S-9 Technical Reference

The following table describes the contents of the file descriptor.
Relative Size

Name Address (Bytes) Use

FD.ATT $00 1 File attributes: D S PE PW PR
E W R (see next chart)

FD.OWN $01 2 Owner’s user 1D

FD.DAT $03 5 Date last modified: (Y M D H
M)

FD.LNK $08 1 Link count

FD.SIZ $09 4 File size (number of bytes)

FD.CREAT $0D 3 Date created (Y M D)

FD.SEG $10 240 Segment list (see next chart)

FD.ATT. (The attribute byte) contains the file permission bits.
When set the bits indicate the following:

Bit 7 Directory

Bit 6 Single user
Bit 5 Public execute
Bit 4 Public write
Bit 3 Public read
Bit 2 Execute

Bit 1 Write

Bit 0 Read

FD.SEG (the segment list) consists of a maximum of 48 5-byte
entries that have the size and address of each file block in logical
order. Each entry has the block’s 3-byte LSN and 2-byte size (in
sectors). The entry following the last segment is zero.

After creation, a file has no data segments allocated to it until
the first write. (Write operations past the current end-of-file
cause sectors to be added to the file. The first write is always
past the end-of-file.)

If the file has no segments, it is given an initial segment. Usu-
ally, this segment has the number of sectors specified by the
minimum allocation entry in the device descriptor. If, however,
the number of sectors requested is more than the minimum, the
initial segment has the requested number.

5-4

Random Block File Manager / 5

Later expansions of the file usually are also made in minimum
allocation increments. Whenever possible, OS-9 expands the last
segment, instead of adding a segment. When the file is closed,
0S-9 truncates unused sectors in the last segment.

0S-9 tries to minimize the number of storage segments used in
a file. In fact, many files have only one segment. In such cases,
no extra Read operations are needed to randomly access any byte
in the file.

If a file is repeatedly closed, opened, and expanded, it can
become fragmented so that it has many segments. You can avoid
this fragmentation by writing a byte at the highest address you
want to be used on a file. Do this before writing any other data.

Directories

Disk directories are files that have the D attribute set. A direc-
tory contains an integral number of entries, each of which can
hold the name and LSN of a file or another directory.

Each directory entry contains 29 bytes for the filename, followed
by the three bytes for the LSN of the file’s descriptor sector. The
filename is left-justified in the field, with the most significant bit
of the last character set. Unused entries have a zero byte in the
first filename character position.

Every disk has a master directory called the ROOT directory.
The DD.DIR value in LSN 0 (identification sector) specifies the
starting sector of the ROOT directory.

The RBF Manager Definitions of the Path
Descriptor

As stated earlier in this chapter, the PD.FST section of the path
descriptor is reserved for and defined by the file manager. The
following table describes the use of this section by the RBF man-
ager. For your convenience, it also includes the other sections of
the PD.

5-5

OS-9 Technical Reference

Relative Size

Name Address (Bytes) Use
Universal Section (Same for all file managers and device drivers)
PD.PD $00 1 Path number
PD.MOD $01 1 Access mode
1 = read,
2 = write,
3 = update
PD.CNT $02 1 Number of open images (paths
using this PD)
PD.DEV $03 2 Address of the associated
device table entry
PD.CPR $05 1 Current process 1D
PD.RGS $06 2 Address of the caller's 6809
register stack
PD.BUF $08 2 Address of the 256-byte data
buffer (if used)
Relative Size
Name Address (Bytes) Use
The RBF manager Path Descriptor Definitions (PD.FST Section)
PD.SMF $0A 1 State flag:
Bit 0 =current buffer is
altered
Bit 1 = current sector is in
the buffer
Bit 2 = descriptor sector is
in the buffer
PD.CP $0B 4 Current logical file position
(byte address)
PD.SIZ $OF 4 File size
PD.SBL $13 3 Segment beginning logical sec-
tor number (LSN)
PD.SBP $16 3 Segment beginning physical

sector number (PSN)

5-6

Random Block File Manager |/ 5

Relative Size

Name Address (Bytes) Use

PD.S5Z $19 3 Segment size

PD.DSK $1C 2 Disk ID (for internal use only)

PD.DTB $1E 2 Address of drive table
Relative Size

Name Address (Bytes) Use

The RBF manager Option Section Definitions (PD,OPT Section)
(Copied from the device descriptor)

PD.DTP

PD.DRV
PD.STP
PD.TYP
PD.DNS
PD.CYL
PD.SID

PD.VFY
PD.SCT

PD.T0S

PD.ILV
PD.SAS
PD.TFM
PD.EXTEN

PD.STOFF

$20 1 Device class:
0 = 8CF
1 = RBF
2 = PIPE
3 = SBF
$21 1 Drive number (0..n)
$22 1 Step rate
$23 1 Device type
$24 1 Density capability
$25 2 Number of cylinders (tracks)
$27 1 Number of sides (surfaces)
$28 1 0 = verify disk writes
$29 2 Default number of sectors per
track
$2B 2 Default number of sectors per
track (Track 0)
$2D 1 Sector interleave factor
$2E 1 Segment allocation size
$2F 1 DMA transfer mode
$30 2 Path extension for record
locking
$32 1 Sector/track offsets

5.7

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use
{Not copied from the device descriptor):
PD.ATT $33 1 File attributes

(DSPEPWPRE WR)
PD.FD $34 File descriptor PSN
PD.DFD $37
PD.DCP $3A

PS.DVT $3E

Directory file descriptor PSN
File'’s directory entry pointer

Address of the device table
entry

N b W W

Any values not determined by this table default to zero.

RBF-Type Device Descriptor Modules

This section describes the use of the initialization table con-
tained in the device descriptor modules for RBF-type devices.
The following values are those the /O manager copies from the
device descriptor to the path descriptor.

5-8

Random Block File Manager / 5

Relative Size

Name Address (Bytes) Use
$0-$11 Standard device descriptor
module header
IT.DTP $12 1 Device type:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
IT.DRV $13 1 Drive number
IT.STP $14 1 Step rate
IT.TYP $15 1 Device type (see RBF path
descriptor)
IT.DNS $16 1 Media density:

Always 1 (double)
(see following information)

IT.CYL $17 2 Number of cylinders (tracks)

IT.SID 319 1 Number of sides

IT.VFY $1A 1 0 = Verify disk writes
1 = no verify

IT.SCT $1B 2 Default number of sectors per
track

IT.TOS $1D 2 Default number of sectors per
track (Track 0)

IT.ILV $1F 1 Sector interleave factor

IT.SAS $20 1 Minimum size of segment allo-

cation (number of sectors to be
allocated at one time)

IT.DRV is used to associate a 1-byte integer with each drive
that a controller handles. Number the drives for each controller
as 0 to n-1, where n is the maximum number of drives the con-

troller can handle.

59

OS-9 Technical Reference

IT.TYP specifies the device type (all types).
Bit 0 — 0 = 5-inch floppy diskette
Bit 5 — 0 = Non-Color Computer format

1 = Color Computer format
Bit 6 — 0 = Standard 0S-9 format

1 = Non-standard format
Bit 7 — 0 = Floppy diskette

1 = Hard disk

IT.DNS specifies the density capabilities (floppy diskette only).

Bit 0 — 0 = Single-bit density (FM)
1 = Double-bit density (MFM)
Bit 1 — 0 = Single-track density (5-inch, 48 tracks per
inch)
1 = Double-track density (5-inch, 96 tracks per
inch)

IT.SAS specifies the minimum number of sectors allowed at one
time.

RBF Record Locking

Record locking is a general term that refers to methods designed
to preserve the integrity of files that can be accessed by more
than one user or process. The OS-9 implementation of record
locking is designed to be as invisible as possible. This means
that existing programs do not have to be rewritten to take
advantage of record locking facilities. You can usually write new
programs without special concern for multi-user activity.

Record locking involves detecting and preventing conflicts during
record access. Whenever a process modifies a record, the system
locks out other procedures from accessing the file. It defers
access to other procedures until it 1s safe for them to write to the
record. The system does not lock records during reads; so, multi-
ple processes can read the record at the same time.

5-10

Random Block File Manager / 5

Record Locking and Unlocking

To detect conflicts, 0S-9 must recognize when a record is being
updated. The RBF manager provides true record locking on a
byte basis. A typical record update sequence is:

059 I$Read program reads record
RECORD IS LOCKED

pragram updates record

0S9 [$Seek reposition to record
059 [$Write record is rewritten
RECORD IS RELEASED

When a file is opened in update mode, any read causes locking
of the record being accessed. This happens because the RBF
manager cannot determine in advance if the record is to be
updated. The record stays locked out until the next read, write,
or close.

However, when a file is opened in the read or execute modes, the
system does not lock accessed records because the records cannot
be updated in these two modes.

A subtle but important problem exists for programs that interro-
gate a data base and occasionally update its data. If you neglect
to release a record after accessing it, the record might be locked
up indefinitely. This problem is characteristic of record locking
systems and you can avoid it with careful programming.

Only one portion of a file can be locked out at a time. If an
application requires more than one record to be locked out, open
multiple paths to the same file and lock the record accessed by
each path. RBF notices that the same process owns both paths
and keeps them from locking each other out.

5-11

08-9 Technical Reference

Non-Shareable Files

Sometimes (although rarely), you must create a file that can
never be accessed by more than one user at a time. To lock the
file, you set the single-user (s) bit in the file’s attribute byte. You
can do this by using the proper option when the file is created,
or later using the 0S-3 ATTR command. Once the single-user
bit is set, only one user can open the file at a time. If other users
attempt to open the file, Error 253 is returned. Note however,
that non-shareable means only one path can be opened to a file
at one time. Do not allow two processes to concurrently access a
non-gshareable file through the same path.

More commonly, you need to declare a file as single-user only
during the execution of a specific program. You can do this by
opening the file with the single-user bit set. For example, sup-
pose a process is sorting a file. With the file's single-user bit set,
0S-9 treats the file exactly as though it had a single-user attrib-
ute. If another process attempts to open the file, OS-9 returns
Error 253.

You can duplicate non-shareable paths by using the I$Dup sys-
tem call. This means that it can be inherited, and therefore
accessible to more than one process at a time. Single-user means
that the file can be opened only once.

End-of-File Lock

A special case of record locking oceurs when a user reads or
writes data at the end of a file, creating an EOF Lock. An EQF
Lock keeps the end of the file locked out until a process performs
a READ or WRITE that is not at the end of the file. It prevents
problems that might otherwise occur when two users want to
simultaneously extend a file. The EOF Lock is the only case in
which a WRITE call automatically causes portions of a file to be
locked out. An interesting and useful side effect of the EOF Lock
function occurs if a program creates a file for sequential output.
As soon as the program creates the file, EOF Lock is set and no
other process can pass the writer in processing the file. For
example, if an assembler redirects a listing to a disk file, and a
spooler utility tries to print a line from the file before it is writ-
ten, record locking makes the spooler wait and stay at least one
step behind the assembler.

Random Block File Manager / 5

Deadlock Detection

A deadly embrace, or deadlock, typically occurs when two pro-
cesses attempt to gain control of two or more disk areas at the
same time. If each process gets one area (locking out the other
process), both processes become permanently stuck. Each waits
for a segment that can never become free. This situation is not
restricted to any particular record locking scheme or operating
system.

When a deadly embrace occurs, RBF returns a deadlock error
(Error 254) to the process that caused 0S-9 to detect the dead-
lock. To avoid deadlocks, make sure that processes always access
records of shared files in the same sequence.

When a deadlock error oceurs, it is not sufficient for a program
to retry the operation that caused the error. If all processes use
this strategy, none can ever succeed. For any process to proceed,
at least one must cancel operation to release its control over a
requesting segment.

RBF-Type Device Driver Modules

An RBF-type device driver module contains a package of subrou-
tines that perform sector-oriented I/O to or from a specific hard-
ware controller. Such a module is usually re-entrant. Because of
this, one copy of one device driver module can simultaneously
run several devices that use identical I/O controllers.

The /O manager allocates a permanent memory area for each
device driver. The size of the memory area is given in the device
driver module header. The I/O manager and the RBF manager
use some of this area. The device driver can use the rest in any
manner. This area is used as follows:

The RBF Device Memory Area Definitions

Relative Size

Name Address (Bytes) Use

V.PAGE $00 1 Port extended address bits
A20-A16

V.PORT $01 2 Device base address (defined

by the I/O manager)

5-13

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use

V.LPRC $03 1 ID of the last active process
{not used by RBF device
drivers)

V.BUSY $04 1 ID of the current process using

driver (defined by RBF)
0 = no current process

V.WAKE $05 1 ID of the process waiting for
I/O completion (defined by the
device driver)

V.USER $06 0 Beginning of file manager spe-
cific storage
V.NDRV $06 1 Maximum number of drives

the controller can use (defined
by the device driver)

$07 8 Reserved
DRVBEG $0F 0 Beginning of the drive tables
TABLES $OF DRVMEN*N Space for number of tables
reserved (n)
FREE 0 Beginning of space available
for driver

These values are defined in files in the DEFS directory on the
Development Package disk.

TABLES. This area contains one table for each drive that the
controller handles. (The RBF manager assumes that there are as
many tables as indicated by V.NDRV.) Some time after the
driver Init routine is called, the RBF manager issues a request
for the driver to read LSN 0 from a drive table by copying the
first part of LSN 0 (up to DD.SIZ) into the table. Following is
the format of each drive table:

5-14

Random Block File Manager | 5

Relative Size

Name Address (Bytes) Use

DD.TOT $00 3 Number of sectors.

DD.TKS $03 1 Track size (in sectors).

DD.MAP $04 2 Number of bytes in the alloca-
tion bit map.

DD.BIT $06 2 Number of sectors per bit
(cluster size).

DD.DIR %08 3 Address (LSN) of the ROOT
directory.

DD.OWN $0B 2 Owner’s user number.

DD_ATT $0D 1 Digk access attributes
(DSPE PWPRE WR).

DD.DSK $OE 2 Disk ID (a pseudo-random
number used to detect diskette
swaps).

DD.FMT $10 1 Media format.

DD.SPT $11 2 Number of sectors per track.

(Track 0 can use a different
value specified by IT.TOS in
the device descriptor.)

DD.RES $13 2 Reserved for future use.

DD.SIZ $15 0 Minimum size of device
descriptor.

V.TRAK $15 2 Number of the current track

(the track that the head is on,
and the track updated by the
driver).

V.BMB $17 1 Bit-map use flag:
0 = Bit map is not in use.
(Disk driver routines
must not alter V.BMB.)

V.FILEHD $18 2 Open file list for this drive.

5-15

0OS8-9 Technical Reference

Relative Size

Name Address (Bytes) Use

V.DISKID $1A 2 Disk ID.

V.BMAPSZ $1C 1 Size of bitmap.

V.MAPSCT §1D 1 Lowest reasonable bitmap
sector.

V.RESBIT $1E 1 Reserved bitmap sector.

V.SCTKOF $1F 1 Sector/track byte.

V.SCOFST $20 1 Sector offset split from
V.SCTKOF.

V.TKOFST $21 1 Track offset split from
V.SCTKOF.

RESERVED $22 4 Reserved for future use.

DRVMEN $26 Size of each drive table.

The format attributes (DD.FMT) are these:

Bit BO = Number of sides
0 = Single-sided
1 = Double-sided

Bit B1 = Density
0 = Single-density
1 = Double-density

Bit B2 = Track density
Single (48 tracks per inch)
Double (96 tracks per inch)

O
I

RBF Device Driver Subroutines

Like all device driver modules, RBF device drivers use a stan-
dard executable memory module format.

The execution offset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically
a long branch (LBRA) to the corresponding subroutine. The
branch table is defined as follows:

5-16

Random Block File Manager | 5

ENTRY LBRA
LBRA
LBRA
LBRA
LBRA
LBRA

INIT
READ
WRITE
GETSTA
SETSTA
TERM

Initialize drive
Read sector
Write sector

Get status

Set status
Terminate device

Ensure that each subroutine exists with the C bit of the condi-
tion code register cleared if no error occurred. If an error oceurs,
set the C bit and return an appropriate error code Register B.

The rest of this chapter describes the RBF device driver subrou-
tines and their entry and exit conditions,

5-17

OS8-9 Technical Reference

Init mitiatizes a device and the device’s memory
area.

Entry Conditions:

Y = address of the device descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

e If you want OS-9 to verify disk writes, use the Request
Memory system call (F§SRqMem) to allocate a 258-byte
buffer area in which a sector can be read back and verified
after a write.

® You must initialize the device memory area. For floppy
diskette controllers, initialization typically consists of:

1. Initializing V.NDRV to the number of drives with which
the controller works

2. Initializing DD.TOT (in the drive table) to a non-zero
value so that Sector 0 can be read or written

3. Initializing V.TRAK to $FF so that the first seek finds
Track 0

4. Placing the IRQ service routine on the IRQ polling list,
using the Set IRQ system call (F$IRQ)

5. Initializing the device control registers (enabling inter-
rupts if necessary)

® Prior to being called, the device memory area is cleared (set
to zero), except for V.PAGE and V.PORT. (These areas con-
tain the 24- bit device address.) Ensure the driver initial-
izes each drive table appropriately for the type of diskette
that the driver expects to be used on the corresponding
drive.

5-18

Random Block File Manager (5

Read Readsa 256-byte sector from a disk and

places it in a 256-byte sector buffer.

Entry Conditions:

B
X
Y
U

= MSB of the disk’s LSN

= LSB of the disk’s LSN

= address of the path descriptor

= address of the device memory area

Exit Conditions:

CC
B

= carry set on error
= error code (if any)

Additional Information:

® The following is a typical routine for using Read:

1.

Get the sector buffer address from PD.BUF in the path
descriptor.

. Get the drive number from PD.DRV in the path

descriptor.

. Compute the physical disk address from the logical sec-

tor number.

. Initiate the Read operation.

5. Copy V.BUSY to V.WAKE. The driver goes to sleep and

waits for the I/O to complete. (The IRQ service routine is
responsible for sending a wakeup signal.) After awaken-
ing, the driver tests V.WAKE to see if it is clear. If it
isn’t clear, the driver goes back to sleep.

® Whenever you read LSN 0, you must copy the first part of
this sector into the proper drive table. (Get the drive num-
ber from PD.DRV in the path descriptor.) The number of
bytes to copy is in DD.SIZ. Use the drive number (PD.DRV)
to compute the offset for the corresponding drive table as
follows:

5-19

OS-9 Technical Reference

LDA PD.DRV,Y Get the drive number

LDB #DRVMEN Get the s1ze of a
drive table

MUL

LEAX DRVBEG,U Get the address of
the first table

LEAX D,X Compute the address
of the table

5-20

Random Block File Manager / 5

Write writesa 256-byte sector buffer to a disk.

Entry Conditions:

B
X
Y

U

= MSB of the disk LSN

= LSB of the disk LSN

= address of the path descriptor

= address of the device memory area

Exit Conditions:

CC = carry set on error

B

= error code

Additional Information:

1.

Following is a typical routine for using Write:

Get the sector buffer address from PD.BUF in the path
descriptor.

2. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the logical sector

number,

. Initiate the Write operation.

5. Copy V.BUSY to V.WAKE. The driver then goes to sleep

and waits for the I/O to complete. (The IRQ service routine
sends the wakeup signal.) After awakening, the driver tests
V.WAKE to see if it is clear. If it is not, the driver goes
back to sleep. If the disk controller cannot be interrupt-dri-
ven, it is necessary to perform a programmed I/O transfer.

. If PF.VFY in the path descriptor is equal to zero, read the

sector back in and verify that it is written correctly. Verifi-
cation usually does not involve a comparison of all of the
data bytes.

If disk writes are to be verified, the Init routine must
request the buffer in which to place the sector when it is

read back. Do not copy LSN 0 into the drive table when
reading it back for verification.

5-21

0S-8 Technical Reference

® Use the drive number (PD.DRV) to compute the offset to
the corresponding drive table as shown for the Read
routine.

5-22

Random Block File Manager | 5

Getstats and Setstats

Reads or changes device’s operating parameters.

Entry Conditions:

U = address of the device memory area
Y = address of the path descriptor
A = status code

Exit Conditions:

B = error code (if any)
CC = carry set on error

Additional Information:

e Get/set the device’s operating parameters (status) as speci-
fied for the Get Status and Set Status system calls. Getsta
and Setsta are wild card calls.

® It might be necessary to examine or change the register
stack that contains the values of the 6809 register at the
time of the call. The address of the register stack is in
PD.RGS, which is located in the path descriptor. You can
use the following offsets to access any value in the register

stack:
Relative

Reg. Addr. Size 6809 Reg.
R$CC $00 1 Condition Code Reg.
R$D $01 2 Register D
R$SA $01 1 Register A
R3B $02 1 Register B
R$DP $03 1 Register DP
R$X $04 2 Register X
R$Y $06 2 Register Y
R$U $08 2 Register U
R$PC $0A 2 Program Counter

® Register D overlays Registers A and B.

5-23

OS-9 Technical Reference

Term Terminate a device.

Entry Conditions:
U = address of the device memory area

Exit Conditions:
CC = carry set on error
B = error code (if any)
Additional Information:

¢ This routine is called when a device is no longer in use in
the system (when the link count of its device descriptor
module becomes zero).

e Following is a typical routine for using Term:
1. Wait until any pending I/O is completed.
2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.
4

. If the Init routine reserved a 256-byte buffer for verify-
ing disk writes, return the memory with the Return
Sysmem system call (F$SRtMem).

5-24

Random Block File Manager | 6

IRQ Service Routine

Services device interrupts.

Additional Information:

® The IRQ Service routine sends a wakeup signal to the pro-
cess indicated by the process ID in V.WAKE when the I/O
is complete. It then clears V.WAKE as a flag to indicate to
the main program that the IRQ has indeed occurred.

® When the IRQ service routine finigshes servicing an inter-
rupt it must clear the carry and exit with an RTS
instruction.

o Although this routine is not included in the device driver
module branch table and is not called directly by the RBF
manager, it is a key routine in interrupt-driven drivers. Its
function is to:

1. Service the device interrupts (receive data from device or
send data to it). The IRQ service routine puts its data
into and get its data from buffers that are defined in the
device memory area.

2. Wake up a process that is waiting for I/O to be com-
pleted. To do this, the routine checks to see if there is a
process ID in VWAKE (if the bit is non-zero); if so, it
sends a wakeup signal to that process.

3. If the device is ready to send more data, and the output
buffer is empty, disable the device’s ready to transmit
interrupts.

5-25

08-9 Technical Reference

Boot (Bootstrap Module)
Loads the boot file into RAM.

Entry Conditions:

None

Exit Conditions:

D = size of the boot file (in bytes)

X = address at which the boot file was loaded into memory
CC = carry set on error

B = error code (if any)

Additional Information:

The Boot module is not part of the disk driver. It is a sepa-
rate module that is stored on the boot track of the system
disk with OS9P1 and REL.

The bootstrap module contains one subroutine that loads
the bootstrap file and related information into memory. It
uses the standard executable module format with a module
type of $C. The execution offset in the module header con-
tains the offset to the entry point of this subroutine.

The module gets the starting sector number and size of the
OS9Boot file from LSN 0. OS-9 allocates a memory area
large enough for the Boot file. Then, it loads the Boot file
into this memory area.

Following is a typical routine for using Boot:

1. Read LSN 0 from the disk into a buffer area. The Boot
module must pick its own buffer area. LSN 0 contains
the values for DD.BT (the 24-bit LSN of the bootstrap
file), and DD.BSZ (the size of the bootstrap file in bytes).

2. Get the 24-bit LSN of the bootstrap file from DD.BT.

3. Get the size of the bootstrap file from DD.BSZ. The Boot
module is contained in one logically contiguous block
beginning at the logical sector specified in DD.BT and
extending for DD.BSZ/256 + 1 sectors.

5-26

Random Block File Manager / &

4. Use the OS-9 Request Sysmem system call (F§SRqMem)
to request the memory area in which the Boot file is
loaded.

5. Read the Boot file into this memory area.

6. Return the size of the Boot file and its location. Boot file
is loaded.

5-27

Chapter 6

Sequential Character
File Manager

The Sequential Character File Manager (SCF) supports devices
that operate on a character-by-character basis. These include
terminals, printers, and modems.

SCF is a re-entrant subroutine package. The I/O manager calls
the SCF manager for I/O system handling of sequential, charac-
ter-oriented devices. The SCF manager includes the extensive 1/0
editing functions typical of line-oriented operation, such as:

® backspace

® line delete

¢ line repeat

® auto line feed

® gscreen pause

® return delay padding

The SCF-type device driver modules are CC310, PRINTER, and
RS-232. They run the video display, printer, and serial ports
respectively. See the 0S-9 Commands manual for additional
Color Computer I/0 devices.

SCF Line Editing Functions

The SCF manager supports two sets of read and write functions.
I$Read and I$Write pass data with no modification. I$ReadLin
and I$WritLn provide full line editing of device functions.

Read and Write

The Read and Write system calls to SCF-type devices correspond
to the BASIC09 GET and PUT statements. While they perform
little modification to the data they pass, they do filter out key-
board interrupt, keyboard terminate, and pause character. (Edit-
ing is disabled if the corresponding character in the path
descriptor contains a zero.)

6-1

0S-9 Technical Reference

Carriage returns are not followed by line feeds or nulls automat-
ically, and the high order bits are passed as sent/received.

Read Line and Write Line

The Read Line and Write Line system calls to SCF-type devices
correspond to the BASIC09 INPUT, PRINT, READ, and WRITE
statements. They provide full line editing of all functions enabled
for a particular device.

The system initializes I$ReadLn and I$WritLn functions when
you first use a particular device. (OS-9 copies the option table
from the device descriptor table associated with the specific
device.)

Later, you can alter the calls—either from assembly-language
programs (using the Get Status system call), or from the key-
board (using the TMODE command). All bytes transferred by
Readln and Writln have the high order bit cleared.

SCF Definitions of the Path Descriptor

The PD.FST and PD.OPT sections of the path descriptor are
reserved for and used by the SCF file manager.

The following table describes the SCF manager’s use of PD.FST
and PD.OPT. For your convenience, the table also includes the
other sections of the PD.

The PD.OPT section contains the values that determine the line
editing functions. It contains many device operating parameters
that can be read or written by the Set Status or Get Status sys-
tem call. Any values not set by this table default to zero.

Note: You can disable most of the editing functions by set-
ting the corresponding control character in the path
descriptor to zero. You can use the Set Status system call
or the TMODE command to do this. Or, you can go a step
further by setting the corresponding control character value
in the device descriptor module to zero.

To determine the default settings for a specific device, you can
inspect the device descriptor.

Sequential Character File Manager / 6

Relative Size

Name Address (Bytes) Use
Universal Section (Same for all file managers)
PD.PD $00 1 Path number
PD.MOD $01 1 Access mode:
1 = read
2 = write
3 = update
PD.CNT $02 1 Number of open images (paths
using this PD)
PD.DEV $03 2 Address of the associated
device table entry
PD.CPR $05 1 Current process ID
PD.RGS $06 2 Address of the caller’s 6809
register stack
PD.BUF $08 2 Address of the 256-byte data

buffer (if used)

Relative Size

Name Address (Bytes) Use
SCF Path Descriptor Definitions (PD.FST Section)
PD.DV2 $0A 2 Device table address of the sec-
ond (echo) device
PD RAW $0C 1 Edit flag:
0 = raw mode
1 = edit mode
PD.MAX $0D 2 Read Line maximum character
count
PD.MIN $OF 1 Devices are mine if cleared
PD.STS $10 2 Status routine module address
PD.STM $12 2 Reserved for status routine

0S5-9 Technical Reference

Relative Size Use
Name Address (Bytes)

SCF Option Section Definition (PD.OPT Section)

(Copied from the device descriptor)

PD.DTP $20 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
PD.UPC $21 1 Case:
0 = upper and lower
1 = upper only
PD.BSO $22 1 Backspace:

0 = backspace
1 = backspace, space and
backspace

PD.DLO $23 1 Delete:
0 = backspace over line
1 = carriage return, line

feed
PD.EKO $24 1 Echo:
0 = no echo
PD.ALF $25 1 Auto line feed:
0 = no auto line feed
PD.NUL $26 1 End-of-line null count;

n = number of nulls ($00)
sent after each carriage

return or carriage return
and line feed (n = $00-$FF)

PD.PAU $27 1 End of page pause:

0 = no pause
PD.PAG $28 1 Number of lines per page
PD.BSP $29 1 Backspace character
PD.DEL $2A 1 Delete-line character

6-4

Sequential Character File Manager / 6

Relative Size

Name Address (Bytes) Use
SCF Option Section Definition continued (PD.OPT Section)
PD.EOR $2B 1 End-of-record character (End-

of-line character) Read only.
Normally set to $0D:

0 = Terminate read-line
only at the end of the
file

PD.EOF $2C 1 End-of-file character (read
only)

PD.RPR $2D 1 Reprint-line character

PD.DUP $2E 1 Duplicate-last-line character

PD.PSC $2F 1 Pause character

PD.INT $30 1 Keyboard-interrupt character

PD.QUT $31 1 Keyboard-terminate character

PD.BSE $32 1 Backspace-echo character

PD.OVF $33 1 Line-overflow character (bell
CInG)

PD.PAR $34 1 Device-initialization value
(parity)

PD.BAU $35 1 Software setable baud rate

PD.D2P $36 2 Offset to second device name
string

PP.XON $38 1 ACIA XON char

PD XOFF $39 1 ACIA XOFF char

PD.ERR $3A 1 Most recent I/O error status

PD.TBL $3B 2 Copy of device table address

PD.PLP $3D 2 Path descriptor list pointer

PD.PST $3F 1 Current path status

6-5

0S-9 Technical Reference

PD.EOF specifies the end-of-file character. If this is the first
and only character that is input to the SCF device, SCF returns
an end-of-file error on Read or Readln.

PD.PSC specifies the pause character, which suspends output to
the device before the next end-of-record character. The pause
character also deletes any type-ahead input for Readln.

PD.INT specifies the keyboard-interrupt character. When the
character is received, the system sends a keyboard terminate
gignal to the last user of a path. The character also terminates
the current I/O request (if any) with an error identical to the
keyboard interrupt signal code.

PD.QUT specifies the keyboard-terminate character. When this
character is received, the system sends a keyboard terminate
signal to the last user of a path. The system also cancels the
current /O request (if any) by sending error code identical to the
keyboard interrupt signal code.

PD.PAR specifies the parity information for external serial
devices.

PD.BAU specifies baud rate, word length and stop bit informa-
tion for serial devices.

PD.XON contains either the character used to enable transmis-
sion of characters or a null character that disables the use of
XON.

PD.XOFF contains either the character used to disable trans-
mission of characters or a null character that disables the use of
XOFF.

SCF-Type Device Descriptor Modules

The following chart shows how the initialization table in the
device descriptors is used for SCF-type devices. The values are
those the I/0 manager copies from the device descriptor to the
path descriptor.

An SCF editing function is turned off if its corresponding value
is set to zero. For example, if IT.EOF is set to zero, there is no
end-of-file character.

6-6

Sequential Character File Manager / 6

Relative Size

Name Address (Bytes) Use
(header) $00- Standard device descriptor
11 module header
IT.DVC 312 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
IT.UPC $13 1 Case:
0 = upper- and lowercase
1 = uppercase only
IT.BSO 314 1 Backspace:
0 = backspace

1 = backspace, then space
and backspace

IT.DLO 815 1 Delete:
0 = backspace over line
1 = carriage return

IT.EKO $16 1 Echo:

0 = echo off
IT.ALF $17 1 Auto line feed:

0 = auto line feed disabled
IT.NUL $18 1 End-of-line null count
IT.PAU $19 1 Pause:

0 = end-of-page pause

disabled

IT.PAG $1A 1 Number of lines per page
IT.BSP $1B 1 Backspace character
IT.DEL $1C 1 Delete-line character
IT.EOR $1D 1 End-of-record character
IT.EQF $1E 1 End-of-file character
IT.RPR $1F 1 Reprint-line character

6-7

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use

IT.DUP $20 1 Duplicate-last-line character

IT.PSC $21 1 Pause character

IT.INT $22 1 Interrupt character

IT.QUT $23 1 Quit character

IT.BSE $24 1 Backspace echo character

IT.OVF $25 1 Line-overflow character (bell)

IT.PAR $26 1 Initialization value—used to
initialize a device control reg-
ister when a path is opened to
it (parity)

IT.BAU $27 1 Baud rate

IT.D2P $28 2 Attached device name string
offset

IT.XON $2A 1 X-ON character

IT.XOFF $2B 1 X-OFF character

IT.COL $2C 1 Number of columns for display

IT.ROW 32D 1 Number of rows for display

IT.WND $2E 1 Window number

IT.VAL $2F 1 Data in rest of descriptor is
valid

IT.STY $30 1 Window type

IT.CPX 331 1 X cursor position

IT.CPY $32 1 Y cursor position

IT.FGC $33 1 Foreground color

IT.BGC $34 1 Background color

IT.BDC $35 1 Border color

6-8

Sequential Character File Manager | 6

SCF-Type Device Driver Modules

An SCF-type device driver module contains a package of subrou-
tines that perform raw (unformatted) data I/O transfers to or
from a specific hardware controller. Such a module is usually re-
entrant so that one copy of the module can simultaneously run
several devices that use identical I/0O controllers. The
I/0 manager allocates a permanent memory area for each con-
troller sharing the driver.

The size of the memory area is defined in the device driver mod-
ule header. The I/O manager and SCF use some of the memory
area, The device driver can use the rest in any way (typically as
variables and buffers). Typically, the driver uses the area as
follows:

Relative Size

Name Address (Bytes) Use
V.PAGE $00 1 Port extended 24 bit address
V.PORT $01 2 Device base address (defined
by the I/O manager)
V.LPRC $03 1 ID of the last active process
V.BUSY $04 1 ID of the active process
{defined by RBF):
0 = no active process
V.WAKE $05 1 ID of the process to reawaken

after the device completes I/O
(defined by the device driver):
0 = no waiting process

V.USER $06 0 Beginning of file manager
specific storage
V.TYPE $06 1 Device type or parity
V.LINE $07 1 Lines left until the end of the
page
V.PAUS $08 1 Pause request:
0 = no pause requested
V.DEV?2 $09 2 Attached device memory area
V.INTR $0B 1 Interrupt character

6-9

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use

V.QUIT $0C 1 Quit character

V.PCHR $0D 1 Pause character

V.ERR $0E 1 Error accumulator

V.XON $OF 1 XON character

V.XOFF $10 1 XOFF character

V.KANJI $11 1 Reserved

V.KBUF $12 2 Reserved

V.MODADR $14 2 Reserved

V.PDLHD $16 2 Path descriptor list header

V.RSV $18 5 Reserved

V.SCF $1D 0 End of SCF memory
requirements

FREE $1D 0 Free for the device driver to
use

V.LPRC contains the process ID of the last process to use the
device. The IRQ service routine sends this process the proper sig-
nal if it receives a quit character or an interrupt character.
V.LPRC is defined by SCF.

V.BUSY contains the process ID of the process that is using the
device. (If the device is not being used, V.BUSY contains a zero.)
The process ID is used by SCF to prevent more than one process
from using the device at the same time. V.BUSY is defined by
SCF.

SCF Device Driver Subroutines

Like all device drivers, SCF device drivers use a standard exe-
cutable memory module format.

The execution offset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically
an LBRA to the corresponding subroutine. The branch table is
defined as follows:

6-10

Sequential Character File Manager / 6

ENTRY LBRA INIT Initialize driver
LBRA READ Read character
LBRA WRITE Write character
LBRA GETSTA Get status
LBRA SETSTA Set status=
LBRA TERM Terminate device

If no error occurs, each subroutine exits with the C bit in the
Condition Code Register cleared. If an error occurred, each sub-
routine sets the C hit and returns an appropriate error code in
Register B.

The rest of this chapter describes these subroutines and their
entry and exit conditions.

6-11

0S-9 Technical Reference

Il’lit Initializes device control registers, and
enables interrupts if necessary.

Entry Conditions:

Y = address of the device descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

® Prior to being called, the device memory area is cleared (set
to zero), except for V.PAGE and V.PORT. (V.PAGE and
V.PORT contain the device address.) There is no need to
initialize the part of the memory area used by the I/O

manager and SCF.
® Follow these steps to use Init:

1. Initialize the device memory area.

2. Place the IRQ service routine on the IRQ polling list,

using the Set IRQ system call (F$IRQ).

3. Initialize the device control registers.

6-12

Sequential Character File Manager / 6

Read Reads the next character from the input
buffer.

Entry Conditions:

Y = address of the path descriptor
U = address of the device memory area

Exit Conditions:

A = character read
CC = carry set on error
B = error code (if any)

Additional Information:
® This is a step by step description of a Read operation:
1. Read gets the next character from the input buffer.

2. If no data is ready, Read copies its process ID from
V.BUSY into V.WAKE. It then uses the Sleep system
call to put itself to sleep.

3. Later, when Read receives data, the IRQ service rou-
tine leaves the data in a buffer. Then, the routine
checks V.WAKE to see if any process is waiting for the
device to complete I/O. If so, the IRQ service routine
sends a wakeup signal to the waiting process.

® Data buffers are not automatically allocated. If a buffer is
used, it defines it in the device memory area.

6-13

0S-9 Technical Reference

Write Sends a character (places a data byte in
an output buffer) and enables the device
output interrupts.

Entry Conditions:

A = character to write
Y = address of the path descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

o If the data buffer is full, Write copies its process ID from
V.BUSY into V.WAKE. Write then puts itself to sleep.

Later, when the IRQ service routine transmits a character
and makes room for more data, it checks V.WAKE to see if
there is a process waiting for the device to complete I/O. If
there is, the routine sends a wakeup signal to that process.

® Write must ensure that the IRQ service routine that starts
it begins to place data in the buffer. After an interrupt is
generated, the IRQ service routine continues to transmit
data until the data buffer is empty. Then, it disables the
device’s ready-to-transmit interrupts.

e Data buffers are not allocated automatically. If a buffer is
used, define it in the device memory area.

6-14

Sequential Character File Manager | 6

Getsta and Setsta

Gets/sets device operating parameters (status) as
specified for the Get Status and Set Status system
calls. Getsta and Setsta are wildcard calls.

Entry Conditions:

A = depends on the function code

Y = address of the path descriptor

U = address of the device memory area
Other registers depend on the function code.

Exit Conditions:

B = error code (if any)
CC = carry set on error
Other registers depend on the function code

Additional Information:

® Any codes not defined by the I/O manager or SCF are
passed to the device driver.

® You might need to examine or change the register stack
that contains the values of the 6809 registers at the time of
the call. The address of the register stack can be found in
PD.RGS, which is located in the path descriptor.

® You can use the following offsets to access any value in the
register packet:

Relative Size
Name Address (Bytes) 6809 Register
R3$CC $00 1 Condition Codes Register
R$D $01 0 Register D
R$A $01 1 Register A
R$B $02 1 Register B
R$DP $03 1 Register DP
R$X $04 2 Register X
RSY $06 2 Register Y
R3U $08 2 Register U
R3$PC $0A 2 Program Counter

The function code is retrieved from the R$B on the user stack.

6-15

OS-9 Technical Reference

Term Terminates a device. Term is called when a
device is no longer in use (when the link
count of the device descriptor module
becomes zero).

Entry Conditions:

U = pointer to the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:
® To use Term:

1. Wait until the IRQ service routine empties the output
buffer.

2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.

® When Term closes the last path to a device, OS-8 returns
to the memory pool the memory that the device used. If the
device has been attached to the system using the I$Attach
systemn call, OS-9 does not return the static storage for the
driver until an I$Detach call is made to the device. Mod-
ules contained in the Boot file are never terminated, even if
their link counts reach 0.

6-16

Sequential Character File Manager /| 6

IRQ Service Routine

Receives device interrupts. When I/0 is complete, the
routine sends a wakeup signal to the process identi.
fied by the process ID in V. WAKE. The routine also
clears V.WAKE as a flag to indicate to the main pro-
gram that the TRQ has occurred.

Additional Information:

® The IRQ Service Routine is not included in device driver
branch tables, and is not called directly by SCF. However, it
is a key routine in device drivers.

® When the IRQ Service routine finishes servicing an inter-
rupt, the routine must clear the carry and exit with an
RTS instruction.

® Here is a typical sequence of events that the IRQ Service
Routine performs:

1.

Service the device interrupts (receive data from the
device or send data to it). Ensure this routine puts its
data into and get its data from buffers that are defined
in the device memory area.

Wake up any process that is waiting for I'O to complete.
To do this, the routine checks to see if there is a pro-
cess ID in V.WAKE (a value other than zero); if so, it
sends a wakeup signal to that process.

If the device is ready to send more data, and the output
buffer is empty, disable the device’s ready-to-transmit
interrupts.

If a pause character is received, set V.PAUS in the
attached device storage area to a value other than zero.
The address of the attached device memory area is in
V.DEV2.

V.PAUS in the attached device storage area to non-zero

value. The address of the attached device memory area
is in V.DEV2.

If a keyboard terminate or interrupt character is
received, signal the process in V.LPRC (last known
process) if any.

6-17

Chapter 7

The Pipe File Manager
(PIPEMAN)

The Pipe file manager handles control of processes that use
paths to pipes. Pipes allow concurrently executing processes to
send each other data by using the output of one process (the
writer) as input to a second process (the reader). The reader gets
input from the standard input. The exclamation point (!) opera-
tor specifies that the input or output is from or to a pipe. The
Pipe file manager allocates a 256-byte block and a path descrip-
tor for data transfer. The Pipe file manager also determines
which process has control of the pipe. The Pipe file manager has
the standard file manager branch table at its entry point:

PipeEnt lbra Create
lbra Open
lbra MakDir
lbra ChgDir
lbra Delete
lbra Seek
lbra PRead
lbra PWrite
lbra PRdLn
lbra PWrLn
lbra Getstat
Ibra Putstat
lbra Close

You cannot use MakDir, ChgDir, Delete, and Seek with pipes. If
you try to do so, the system returns ESUNKSVC (unknown ser-
vice request). Getstat and Putstat are also no-action service rou-
tines. They return without error.

Create and Open perform the same functions. They set up the
256-byte data exchange buffer, and save several addresses in the
path descriptor.

The Close request checks to see if any process is reading or writ-
ing through the pipe. If not, OS-9 returns the buffer.

PRead, PWrite, PRdLn, and PWrLn read data from the buffer
and write data to it.

OS-9 Technical Reference

The ! operator tells the Shell that processes wish to communicate
through a pipe. For example:

procl ! proc?2

In this example, shell forks Procl with the standard cutput path
to a pipe, and forks Proc2 with the Standard input path from a

pipe.
Shell can also handle a series of processes using pipes. Example:
procl ! proc2 ' proc3 ! proc4 (ENTER

The following outline shows how to set up pipes between
processes:

Open /pipe save path in variable x
Dup path #1 save stdout in variable y
Dup x make path available
Fork proct put pipe 1n stdout
(Dup uses lowest available)
Close #1 make path available
Dup y restore stdout
Close y make path available
Dup path #8 save stdin 1n Y
Close #0 make path available
Dup x put pipe 1n stdin
Fork 2 fork process 2
Close #8 make path avallable
Dup vy restore stdin
Close x no longer needed
Close y no longer needed

72

The Pipe File Manager (PIPEMAN) | 7

Example: The following example shows how an application can
initiate another process with the stdin and stdout routed

through a pipe.

Open /pipet save
Open /pipe2 save
Dup 8 save
Dup 1 save
Close @ make
Close 1 make
Dup a make
Dup b make

Fork new process
Close @ make
Close 1 make
Dup x

Dup y
Return a&b

path 1n variable a
path in variable b
stdin 1n variable x
stdout in variable y
path available

path available

pipel stdin

pipe2 stdout

path available
path availahle

restore stdin
restore stdout
return pipe path numbers to caller

Chapter 8
System Calls

System calls are used to communicate between the OS-9 operat-
ing system and assembly-language programs. There are two
major types of calls—I/O calls and function calls.

Function calls include user mode calls and system mode calls.

Each system call has a mnemonic name. Names of I/O calls start
with I$. For example, the Change Directory call is I$ChgDir.
Names of function calls start with F$. For example, the Allocate
Bits call is F$AIllBit. The names are defined in the assembler-
input conditions equate file called OS9Defs.

System mode calls are privileged. You can execute them only
while O0S-9 is in the system state (when it is processing another
system call, executing a file manager or device driver, and so
on).

System mode calls are included in this manual primarily for pro-
grammers writing device drivers and other system-level
applications.

Calling Procedure

To execute any system calls, you need to use an SWI2
instruction:

1. Load the 6809 registers with any appropriate parameters.

2. Execute an SWI2 instruction, followed immediately by a con-
stant byte, which is the request code. In the references in
this chapter, the first line is the system call name (for exam-
ple Close Path) and the second line contains the call’s mne-
monic name (for example I$Close), the software interrupt
Code 2 (103F), and the call’s request code (for example, 8F)
in hexadecimal.

3. After OS-9 processes the call, it returns any parameters in
the 6809 registers. If an error occurs, the C bit of the condi-
tion code register is set, and Register B contains the appro-
priate error code. This feature permits a BCS or BCC
instruction immediately following the system call to branch
either if there is an error or if no error occurs.

0S-9 Technical Reference

As an example, here is the Close system eall;

LDA PATHNUM

SWIz2
FCB $8F
BCS ERROR

You can use the assembler’s OS9 directive to simplify the call, as
follows.

LDA PATHNUM
gs9 [$Close
BCS ERROR

The ASM assembler allows any combination of upper- or lower-
case letters. The RMA assembler, included in the 0S-9 Level
Two Development Pak, is case sensitive. The names in this man-
ual have been spelled with upper and lower case letters, match-
ing the defs for RMA.

I/O System Calls

08-9’s /O calls are easier to use than many other systems’ I'O
calls. This is because the calling program does not have to allo-
cate and set up file control blocks, sector buffers, and so on.

Instead, OS-9 returns a 1-byte path number whenever a process
opens a path to a file or device. Until the path is closed, you can
use this path number in later I/O requests to identify the file or
device.

In addition, OS-9 allocates and maintains its own data struc-
tures; s0, you need not deal with them.

System Call Descriptions

The rest of this chapter consists of the system call descriptions.
At the top of each description is the system call name, followed
by its mnemonic name, the SWI2 code and the request code.
Next are the call’s entry and exit conditions, followed by addi-
tional information about the code where appropriate.

In the system call descriptions, registers not specified as entry
or exit conditions are not altered. Strings passed as parameters
are normally terminated with a space character and end-of-line
character, or with Bit 7 of the last character set.

8-2

System Calls / 8

If an error oecurs on a system call, the C bit of Register CC is
set, and Register B contains the error code. If no error occurs,
the C bit is clear, and Register B contains a value of zero,

User Mode System Calls Quick Reference

Following is a summary of the User Mode System Calls refer-
enced in this chapter:

F$AllBit
F$Chain
F$CmpNam
F$CpyMem
FS$CRC
F$DelBit
F$Exit
F$Fork
F$GBIKkMp
F$GModDr
F$GPrDsc
F$lcpt
F$ID
F$Link
F$Load
F$Mem
F$NMLink

F$NMLoad

F$Perr
F$PrsNam
F$SchBit

Sets bits in an allocation bit map
Chains a process to a new module
Compares two names

Copies external memory

Generates a cyclic redundancy check
Deallocates bits in an allocation bit map
Terminates a process

Starts a new process

Gets a copy of a system block map
Gets a copy of a module directory
Gets a copy of a process descriptor
Sets a signal intercept trap

Returns a process ID

Links to a memory module

Loads a module from mass storage
Changes a process’s data area size

Links to a module; does not map the mod-
ule into the user’s address space

Loads a module but does not map it into the
user’s address space

Prints an error message
Parses a pathlist name

Searches a bit map

83

OS8-9 Technical Reference

F$Send
F§Sleep
F$SPrior
F$SSWI
F$STime
F$SUser
F$Time
F$UnLink
F$UnLoad
F$Wait
I$Attach
I$Chgdir
I$Close
I$Create
I$Delete
I$DeletX
I$Detach
I$Dup
1$GetStt
I$MakDir
I$Open
I$Read
I$ReadLn
I$Seek
I$SetStt
I$Write
I$WritLn

Sends a signal to a process
Suspends a process

Sets a process’s priority

Sets a software interrupt vector
Sets the system time

Sets the user ID number
Returns the current time
Unlinks a module

Unlinks a module by name
Waits for a signal

Attaches an I/O device
Changes a working directory
Closes a path

Creates a new file

Deletes a file

Deletes a file from the execution directory

Detaches an I/O device
Duplicates a path

Gets a device’s status

Creates a directory file

Opens a path to an existing file
Reads data from a device

Reads a line of data from a device
Positions a file pointer

Sets a device's status

Writes data to a device

Writes a data line to a device

8-4

System Calls / 8

System Mode Calls Quick Reference

Following is a summary of the System Mode Calls referenced in

this chapter:
F$Alarm
F$All64

F$AIIHRAM

F$Alllmg
F$AllPrc
F$SAIIRAM
F$AIITsk
F$AProc
F$Boot
F$BtMem
F$ClrBlk
F$DATLog

F$Dellmg
F$DelPrc
F$DelRAM
F$DelTsk
F$ELink

F$FModul
F$Findé4
F$FreeHB
F$FreeLB
F$GCMDir
F$GProcP

Sets up an alarm

Allocates a 64-byte memory block
Allocates high RAM

Allocates image RAM blocks
Allocates a process descriptor
Allocates RAM blocks

Allocates a process task number
Enters active process queue
Performs a system bootstrap
Performs a memory request bootstrap
Clears the specified block of memory

Converts a DAT block offset to a logical
address

Deallocates image RAM blocks
Deallocates a process descriptor
Deallocates RAM blocks
Deallocates a process task number

Links modules using a module directory
entry

Finds a module directory entry
Finds a 64-byte memory block
Gets a free high block

Gets a free low block

Compacts module directory entries

Gets a process’s pointer

8-5

08-9 Technical Reference

F$IODel
F$I0Qu
F$IRQ
F$LDABX
FSLDAXY
FS$LDDDXY
F$MapBlk
F$Move
F$NProc
F$RelTsk
F$ResTsk
F$Ret64
F3$SetImg
F$SetTsk
F$SLink
F$SRqMem
F$SRtMem
F$SSve
F$STABX
F$VIRQ

F$VModul

Deletes an 1/0 module

Puts an entry into an /O queue
Makes an entry into IRQ polling table
Loads Register A from 0,X in Task B
Loads A[X,[Y]]

Loads DID + X,[Y]]

Maps the specified block

Moves data to a different address space
Starts the next process

Releases a task number

Reserves a task number

Returns a 64-byte memory block

Sets a process DAT image

Sets a process’s task DAT registers
Performs a system link

Performs a system memory request
Performs a system memory return
Installs a function request

Stores Register A at 0,x in Task B

Makes an entry in a virtual IRQ polling
table

Validates a module

8-6

User System Calls / 8

User System Calls

Allocate Bits Sets bits in an
0S9 F$AllBit 103F 13 allocation bit map

Entry Conditions:

D = number of the first bit to set
X = starting address of the allocation bit map
Y = number of bits to set

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

e Bit numbers range from 0 to n-1, where n is the number of
bits in the allocation bit map.

e Warning: Do not issue the Allocate Bits call with Register
Y set to 0 (a bit count of 0).

8-7

0S8-9 Technical Reference

Chain Loads and executes a
. new primary module
089 F§Chain 103F 05 without creating a new
process
Entry Conditions:
A = language/type code
B = size of the data area (in pages); must be at least one
page
X = address of the module name or filename
Y = parameter area size (in bytes); defaults to zero if not
specified
U = starting address of the parameter area

Error Output:

CC = carry set on error

B

= error code (if any)

Additional Information:

Chain loads and executes a new primary module, but does
not create a new process. A Chain system call is similar to
a Fork followed by an Exit, but it has less processing over-
head. Chain resets the calling process program and data
memory areas and begins executing a new primary module.
It does not affect open paths. This is a user mode system
call.

Warning: Make sure that the hardware stack pointer (Reg-
ister SP) is located in the direct page before Chain exe-
cutes. Otherwise the system might crash or return a
suicide attempt error. This precaution also prevents a sui-
cide in the event that the new module requires a smaller
data area than that in use. Allow approximately 200 bytes
of stack space for execution of the Chain system call.

Chain performs the following steps:

1. It causes 08-9 to unlink the process’s old primary
module.,

8-8

User System Calls / 8

D

PC
CC

08-9 parses the name string of the new process’s pri-
mary module (the program that is to be executed first).
Then, it causes OS8-9 to search the system module
directory to see if a module with the same name, type,
and language is already in memory.

If the module is in memory, it links to it. If the module
is not in memory, it uses the name string as the path-
list of a file to load into memory. Then, it links to the
first module in this file. (Several modules can be loaded
from a single file.)

It reconfigures the data memory area to the size speci-
fied in the new primary module’s header.

It intercepts and erases any pending signals.

The following diagram shows how Chain sets up the
data memory area and registers for the new module.

« Y (highest address)
Parameter Area

« X,5P

Data Area

Direct Page

« U,DP (lowest address)

= parameter area size
= module entry point absolute address
= F=0, I=0; others are undefined

Registers Y and U (the top-of-memory and bottom-of-memory
pointers, respectively) always have values at page boundaries. If
the parent process does not specify a size for the parameter area,
the size (Register D) defaults to zero. The data area must be at
least one page long.

(For more information, see the Fork system call.)

OS-9 Technical Reference

Compare Names compares two strings
0S9 F$CmpNam 103F 11 for a match

Entry Conditions:

B = length of stringl
X = address of stringl
Y = address of string2

Exit Conditions:

CC = carry clear if the strings match

Additional Information:

® The Compare Names call compares two strings and indi-
cates whether they match. Use this call with the Parse
Name system call. The second string must have the most
significant bit (Bit 7) of the last character set.

8-10

User System Calls / 8

Copy External Reads external memory
into the user’s buffer

Memory for inspection

0S89 F$CpyMem

103F 1B

Entry Conditions:

D = DAT image pointer

X = offset in block to begin copy
Y = byte count

U = caller’s destination buffer

Error Qutput:

CC = C bit set on error
B = appropriate error code

Additional Information:

e You can view any system memory through the use of the
Copy External Memory call. The call assumes X is the
address of the 64K space described by the DAT image
given.

® If you pass the entire DAT image of a process, place a value
in the X Register that equals the address in the process
space. If you pass a partial DAT image (the upper half),
then place a value in Register X that equals the offset from
the beginning of the DAT image ($8000).

® The support module for this call is OS9p2.

8-11

OS-9 Technical Reference

CRC Calculates the CRC of
0S9 F$CRC 103F 17 a module

Entry Conditions:

X = starting byte address
Y = number of bytes
U = address of the 3-byte CRC accumulator

Exit Conditions:
Updates the CRC accumulator.

Additional Information:

® The CRC call calculates the CRC (cyclic redundancy count)
for use by compilers, assemblers, or other module
generators.

® The calculation begins at the starting byte address and con-
tinues over the specified number of bytes.

¢ You need not cover an entire module in one call, since the
CRC can be accumulated over several calls. The CRC accu-

mulator can be any 3-byte memory area. You must initial-
ize it to $FFFFFF before the first CRC call.

® When checking an existing module CRC, the calculation
should be performed on the entire module (including the
module CRC). The CRC accumulator will contain the CRC
constant bytes if the module CRC is correct.

¢ If the CRC of a new module is to be generated, the CRC is
accumulated over the module (excluding CRC). The accu-
mulated CRC is complemented then stored in the correct
position in the module.

¢ Be sure to initialize the CRC accumulator only once for
each module checked by CRC.

812

User System Calls / 8

Deallocate Bits Clears allocation map
0S9 F$DelBit 103F 14 bits

Entry Conditions:

D = number of the first bit to set
X = starting address of the allocation bit map
Y = number of bits to set

Exit Conditions: None

Additional Information:

® The Deallocate Bits call clears bits in the allocation bit
map pointed to by Register X. Bit numbers are in the
range 0 to n-1, where n is the number of bits in the alloca-
tion bit map.

® Warning: Do not call Deallocate Bits with Register Y set
to 0 (a bit count of 0).

8-13

OS-9 Technical Reference

Exit Terminates the calling
0S9 F$Exit 103F 06 process

Entry Conditions:
B = status code to return to the parent

Exit Conditions:

The process is terminated.

Additional Information:

® The Exit system call is the only way a process can termi-
nate itself. Exit deallocates the process’s data memory
area, and unlinks the process’s primary module. It also
closes all open paths automatically.

® The Wait system call always returns to the parent the sta-
tus code passed by the child in its Exit call. Therefore, if
the parent executes a Wait and receives the status code, it
knows the child has died. This is a user mode system call.

® Exit unlinks only the primary module. Unlink any module
that is loaded or linked to by the process before calling
Exit.

8-14

User System Calls / 8

FOI’k Creates a child process
0S9 F$Fork 103F 03

Entry Conditions:

A = language/type code

B = size of the optional data area (in pages)

X = address of the module name or filename (See the follow-
ing example.)

Y = size of the parameter area (in pages); defaults to zero if
not specified

U = starting address of the parameter area; must be at
least one page

Exit Conditions:

X = address of the last byte of the name + 1 (See the fol-
lowing example.)
A = new process I0 number

Error Output:
B = error code (if any)
CC = carry set on error

Additional Information:

® Fork creates a new process, a child of the calling process.
Fork also sets up the child process’s memory and 6809 reg-
isters and standard I/O paths.

® Before the Fork call:
[T/E[s[T][s$0D]

4
X

8-15

08-9 Technical Reference

® After the Fork call:
[T[E[s|T]$oD |

4
X

® This is the sequence of Fork’s operations:

1.

2a.

0S-9 parses the name string of the new process’s pri-
mary module (the program that 0S-9 executes first).
Then, it searches the system module directory to see if
the program already is in memory.

The next step depends on whether or not the program is
already in memory. If the program is in memory, 0S-9
links the module to the process and executes it.

. If the program is not in memory, OS-9 uses the name

as the pathlist of the file that is to be loaded into mem-
ory. Then, the first module in this file is linked to and
executed. (Several modules can be loaded from one file.)

08-9 uses the primary module’s header to determine
the initial size of the process’s data area. It then tries
to allocate a contiguous RAM area of that size. (This
area includes the parameter passing area, which is cop-
ied from the parent process’s data area.)

The new process’s data memory area and registers are
set up as shown in the following diagram. 0S-9 uses
the execution offset given in the module header to set
the program counter to the module’s entry point.

- Y

Parameter Area <« X,SP (highest address)

Data Area

Direct Page

U,DP (lowest address)

8-16

User System Calls / 8

D size of the parameter area
PC module eniry point absolute address
CC = F=0,1=0, other condition code flags are undefined

Registers Y and U (the top-of-memory pointer and bottom-
of-memory pointer, respectively) always have values at page
boundaries.

As stated earlier, if the parent does not specify the size of
the parameter area, the size defaults to zero. The minimum
overall data area size is one page.

When the shell processes a command line, it passes a
string in the parameter area. This string is a copy of the
parameter part of the command line. To simplify string-
oriented processing, the shell also inserts an end-of-line
character at the end of the parameter string.

Register X points to the start byte of the parameter string.
If the command line includes the optional memory size
specification (#n or #nK), the shell passes that size as the
requested memory size when executing the Fork.

If any of the preceding operations is unsuccessful, the Fork
is terminated and OS-9 returns an error to the caller.

The child and parent processes execute at the same time
unless the parent executes a Wait system call immediately
after the Fork. In this case, the parent waits until the child
dies before it resumes execution.

Be careful when recursively calling a program that uses
the Fork system call. Another child can be created with
each new execution. This continues until the process table
becomes full.

Do not fork a process with a memory size of 0.

8.17

OS-9 Technical Reference

Get System Gets a copy of the
BlO Ck Map system block map
0S9 F$GBIkKMp 103F 19

Entry Conditions:
X = pointer to the 1024 -byte buffer

Exit Conditions:

D = number of bytes per block ($2000) (MMU block size
dependent)
Y = system memory block map size

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® The Get System Block Map call copies the system’s memory
block map into the user’s buffer for inspection. The 0S-9
MFREE command uses this call to find out how much free
memory exists.

¢ The support module for this call is OS9p2.

8-18

User System Calls / 8

Get Module Gets a copy of the
: system module
Directory rectory

F$GModDr 103F 1A

Entry Conditions:

X = pointer to the 2048-byte buffer
Y = end of copied module directory
U = start address of system module directory

Error OQutput:

CC = carry set on error
= error code (if any)

Additional Information:

¢ The Get Module Directory call copies the system’s module
directory into the user’s buffer for inspection. The OS-9
MDIR command uses this call to read the module
directory.

® The support module for this call is OS9p2.

8-19

0S-9 Technical Reference

Get Process Gets a copy of the
: process’s process
Descriptor Reccrinton

F$GPrDsc 103F 18

Entry Conditions:

A
X

= requested process ID
= pointer to a 512-byte buffer

Error Qutput:

cC

B

carry set on error
error code (if any)

(i

Additional Information:

The Get Process Descriptor call copies a process descriptor
into the calling process’s buffer for inspection. The data in
the process descriptor cannot be changed. The 0S-9 PROCS
command uses this call to get information about each exist-
Ing process.

The support module for this call is OS9p2.

8-20

User System Calls / 8

Interc ept Sets a signal intercept

089 F$lcpt 103F 09

trap

Entry Conditions:

X
U

address of the intercept routine
starting address of the routine’s memory area

(Il

Exit Conditions:

Signals sent to the process cause the intercept routine to be
called instead of the process being killed.

Additional Information:

Intercept tells OS-9 to set a signal intercept trap. Then,
whenever the process receives a signal, 0S-8 executes the
process’s intercept routine.

Store the address of the signal handler routine in Register
X and the base address of the routine’s storage area in
Register U.

Once the signal trap is set, 0S-9 can execute the intercept
routine at any time because a signal can occur at any
time.

Terminate the intercept routine with an RTI instruction.

If a process has not used the Intercept system call to set a
signal trap, the process terminates if it receives a signal.

This is the order in which F$lcpt operates:

1. When the process receives a signal, OS-9 sets Registers
U and B as follows:

U = starting address of the intercept routine’s
memory area
B = signal code fprocess’s termination status)

Note: The value of Register DP cannot be the
same as it was when the Intercept call was
made.

2. After setting the registers. 0S-9 transfers execution to
the intercept routine.

8-21

0S-9 Technical Reference

Get ID Return’s a caller’s
0S9 F$ID 103F 0C process ID and user ID

Entry Conditions:

None

Exit Conditions:

A
Y

= process ID
= yser ID

Additional Information:

The process ID is a byte value in the range 1 to 255. 0S-9
assigns each process a unique process ID.

The user ID 1s an integer from 0 to 63535. It is defined in
the system password file, and is used by the file security
system and a few other functions. Several processes can
have the same user ID.

On a single user system (such as the Color Computer 3,
the user ID is inherited from CC3go, which forks the initial
shell.

8-22

User System Calls / 8

Link Links to a memory

0S9 F$Link 103F 00 module that has the
specified name,

language, and type

Entry Conditions:

A = typellanguage byte
X =address of the module name (See the following
example.)

Exit Conditions:

A = typellanguage code

B = atiributes / revision level (if no error)

X = address of the last byte of the module name + 1 (See
the following example.)

Y = module entry point absolute address

U = module header absolute address

Error QOutput:

CC = C bit set if error encountered

Additional Information:

® The module’s link count increases by one whenever Link
references its name. Incrementing in this manner keeps
track of how many processes are using the module.

e If the module requested is not shareable (not re-entrant),
only one process can link to it at a time,

® Before the Link call:
IT[E[S]T][s0D]

4
X

o After the Link call:
IT|E[S][T][$0D]

4
X

8-23

08-9 Technical Reference

® This is the order in which the Link call operates:

1. 0OS-9 searches the module directory for a module that
has the specified name, language, and type.

2. If 0OS-9 finds the module, the address of the module’s
header is returned in Register U, and the absolute
address of the module’s execution entry point is
returned in Register Y. (This, and other information is
contained in the module header.)

e If OS-9 doesn’t find the module—or if the type/language
codes in the entry and exit conditions don’'t match—0S-9
returns one of the following errors:

« Module not found
» Module busy (not shareable and in use)
= Incorrect or defective module header

8-24

User System Calls / 8

Load Loads a module or
0S89 F$Load 103F 01 modules from a file

Entry Conditions:

A = languageltype code; 0 = any language/type
X = address of the pathlist (filename) (See the following
example.)

Exit Conditions:

A = languageltype code

B = attributes / revision level (if no error)

X = address of the last byte of the pathlist (filename) + 1
(See the following example.)

Y = primary module entry point address

U = address of the module header

Error OQutput:

CC = carry set if error encountered

Additional Information;

¢ The Load call loads one or more modules from the file spec-
ified by a complete pathlist or from the working execution
directory (if an incomplete pathlist is given).

® The file must have the execute access mode bit set. It also
must eontain one or more with proper module headers.

® 0S-9 adds all modules loaded to the system module direc-
tory. It links the first module read. The exit conditions
apply only to the first module loaded.

® Before the Load call:
/Iploj/falclc]T[s[rR]c]V[soD]

Y
X

8-25

0S-9 Technical Reference

After the Load call:
L/Iplof/[afclc][T][s[R[c[V]smD]

4
X

® Possible errors:

Module directory full

Memory full

Errors that occur on the Open, Read, Close, and Link
system calls

8-26

User System Calls / 8

Memory Changes process’s data
0S9 F$Mem area size
103F 07

Entry Conditions:

D = size of the new memory area (in bytes),
0 = return current size and upper bound

Exit Conditions:

Y = address of the new memory area upper bound
D = actual size of the new memory (in bytes)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

¢ The memory call expands or contracts the process’s data
memory area to the specified size. Or, if you specify zero as
the new size, the call returns the current size and upper
boundaries of data memory.

® 0S-9 rounds off the size to the next page boundary. In allo-
cating additional memory, 0S-9 continues upward from the
previous highest address. In deallocating unneeded mem-
ory, it continues downward from that address.

827

0S-9 Technical Reference

Link to a module Linkstoa module;
, does not map the
?(S}%FﬁNMLmk module into the user’s
address space
Entry Conditions:
A = typellanguage byte
X = address of the module name

Exit Conditions:

A = typellanguage code

B = module revision

X = address of the last byte of the module name+1; any
trailing blanks are skipped

Y = storage requirement for the module

Error Output:

CC = carry set on error
B = error code if any

Additional Information:

e Although this call is similar to F$Link, it does not map
the specified module into the user’s address space but does
return the memory requirement for the module. A calling
process can use this memory requirement information to
fork a program with a maximum amount of space.
FENMLink can therefore fork larger programs than can be
forked by F$Link.

8-28

User System Calls / 8

Load a module Loads one or more
modules from a file but
?(%%Fé%NMLoad does not map the
module into the user’s
address space

Entry Conditions:

A = typellanguage byte
X = address of the pathlist

Exit Conditions:

A = ype/language code

B = module revision

X = address of the last byte of the pathlist+1
Y = storage requirement for the module

Error Qutput:

CC = carry set on error
B = error code if any

Additional Information:

@ [f you do not provide a full pathlist for this call, it attempts
to load from a file in the current execution directory.

¢ Although this call is similar to F$Load, it does not map
the specified module into the user’s address space but does
return the memory requirement for the module. A calling
process can use this memory requirement information to
fork a program with a maximum amount of space.
F$NMLoad can therefore fork larger programs than can be
forked by F$Load.

08-9 Technical Reference

Pl‘int Error Writes an error
0S89 F$Perr 103F OF message to a specified
path

Entry Conditions:

B = error code

Error Qutput:
CC = carry set on error
B = error code (if any)
Additional Information:

® Print Error writes an error message to the standard error
path for the specified process. By default, OS-9 shows:

ERROR #decimal number

¢ The error reporting routine is vectored. Using the Set SVC
system call, you can replace it with a more elaborate
reporting module.

8-30

User System Calls / 8

Parse Name Scans an input string
0S9 F$PrsNam 103F 10 for a valid OS-9 name

Entry Conditions:
X = address of the pathlist (See the following example.)

Exit Conditions:

X = address of the optional slash + 1

= address of the last character of the name +1
= trailing byte (delimiter character)

= length of the name

Y
A
B

Error Output:
CC = carry set

B = error code
Y = address of the first non-delimiter character in the
string

Additional Information:

® Parses, or scans, the input text string for a legal 0S-9
name. It terminates the name with any character that is
not a legal name character.

® Parse Name is useful for processing pathlist arguments
passed to new processes.

® Because Parse Name processes only one name, you might
need several calls to process a pathlist that has more than
one name. As you can see from the following example,
Parse Name finishes with Register Y in position for the
next parse.

o If Register Y was at the end of a pathlist, Parse Name
returns a bad name error. It then moves the pointer in Reg-
ister Y past any space characters so that it can parse the
next pathlist in a command line.

8-31

0S-9 Technical Reference

¢ Before the Parse Name call:

[/ipfol/[rlaly [R]ofL]L bbb]
X

After the Parse Name call:
[/[Djof[/|P[A]Y|R[O[L{L|b[b]b |

4 4 B=2
X Y

8-32

User System Calls { 8

Search Bits Searches a specified
. memory allocation bit
0S9 F$SchBit 103F 12 map for a free memory
block of a specified
size

Entry Conditions:

starting bit number
starting address of the map
bit count (free bit block size)
ending address of the map

Cr
I

Error Output:
CC = C bit set

Exit Conditions:

D = starting bit number
Y = bit count

Additional Information:

® The Search Bit call searches the specified allocation bit
map for a free block (cleared bits) of the required length.
The search starts at the starting bit number. If no block of
the specified size exists, the call returns with the carry set,
starting bit number, and size of the largest block.

8-33

0S8-9 Technical Reference

Send Sends a signal to a
0S9 F$Send 103F 08 specified process

Entry Conditions:

A = destination’s process 1D
B = signal code

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The signal code is a single byte value in the range 0
through 255.

® If the destination process is sleeping or waiting, 0S-9 acti-
vates the process so that the process can process the signal.

® If a signal trap is set up, F$Send executes the signal pro-
cessing routine (Intercept). If none was set up, the signal
terminates the destination process, and the signal code
becomes the exit status. (See the Wait system call.) An
exception is the wakeup signal; that signal does not cause
the signal intercept routine to be executed.

¢ Signal codes are defined as follows:

0 = System terminate
(cannot be intercepted)

1 = Wake up the process
2 = Keyboard terminate
3 = Keyboard interrupt

128-255 = User defined

® If you try to send a signal to a process that has a signal
pending, OS-9 cancels the current Send call, and returns
an error. Issue a Sleep call for a few ticks; then, try again.

® The Sleep call saves CPU time. See the Intercept, Wait,
and Sleep system calls for more information.

8-34

User System Calls / 8

Sleep Temporarily turns off
0S9 F$Sleep 103F 0A the calling process

Entry Conditions:

X

= One of the following:
sleep time (in ticks)
0 (sleep indefinitely)
1 (sleep for the remainder of
the current time slice)

Exit Conditions:

X

= sleep time minus the number of ticks that the process
was asleep

Error Output:

CC

B

carry set on error
error code (if any)

Additional Information:

If Register X contains 0, OS-9 turns the process off until it
receives a signal. Putting a process to sleep is a good way
to wait for a signal or interrupt without wasting CPU time,

If Register X contains 1, OS-9 turns the process off for the
remainder of the process’'s current time slice. It inserts the
process into the active process queue immediately. The pro-
cess resumes execution when it reaches the front of the
queue.

If Register X contains an integer in the range 2-255, 0S8-9
turns off the process for the specified number of ticks, n. It
inserts the process into the active process queue after n-I
ticks. The process resumes execution when it reaches the
front of the queue. If the process receives a signal, it awak-
ens before the time has elapsed.

When you select processes among multiple windows, you
might need to set sleep for two ticks.

8-35

OS-9 Technical Reference

Set Priority Changes the priority
0S9 F$SPrior 103F 0D of a process

Entry Conditions:

A = process ID
B = priority
owest

1
highest

0
265

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® Set Priority changes the process’s priority to the priority
specified. A process can change another process’s priority
only if it has the same user ID.

8-36

User System Calls / 8

Set SWI Sets the SWI2 and
0S9 F$SSWI 103F OE SWI3 vectors

Entry Conditions:

A = SWI type code

X = address of the user software interrupt routine
Exit Conditions:

CC = carry set on error

B = error code (if any)
Additional Information:

® Sets the interrupt vectors for SWI, SWI2 and SWI3
instructions.

e Each process has its own local vectors. Each Set SWI call
sets one type of vector according to the code number passed
in Register A:

1 = 8SWI
2 = SWI2
3 = SWIS

® When OS-9 creates a process, it initializes all three vectors
with the address of the 0S-9 service call processor.

® Warning: Microware-supplied software uses SWI2 to call
08-9. If you reset this vector, these programs cannot work.
If you change all three vectors, you cannot call OS-9 at all.

8-37

0S-9 Technical Reference

Set Time Sets the system time
0S9 F$STime 103F 16 and date

Entry Conditions:
X = relative address of the time packet

Error OQutput:
CC = C bit set

B = error code

Additional Information:

e Set Time sets the current system date and time and starts
the system real-time clock. The date and time are passed
in a time packet as follows.

Relative
Address Value

year
month
day
hours
minutes
seconds

Then, the call makes a link system call to find the clock. If
the link is successful, OS-9 calls the clock initialization.
The clock initialization:

Tl WK =D

1. Sets up hardware dependent functions

2. Sets up the F$Time system call via F$SSvc

8-38

User System Calls | 8

Set User ID Changes the current
user ID without

Number checking for errors or

F$SUser 103F 1C checking the ID

number of the caller

Entry Conditions:
Y = desired user ID number

Error Qutput:
CC = carry set on error
B = error code (if any)
Additional Information:

® The support module for this call is OS9p1.

8-39

0S-9 Technical Reference

Time Gets the system date
0S9 F$Time 103F 15 and time

Entry Conditions:
X = address of the area in which to store the date and time
packet
Exit Conditions:
X = date and time

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® The Time call returns the current system date and time in
the form of a 6-byte packet (in binary). 0S-9 copies the
packet to the address passed in Register X.

e The packet looks like this:

Relative
Address Value
0 year
1 month
2 day
3 hours
4 minutes
5 seconds

® Time is a part of the clock module and it does not exist if
no previous call to F$Time has been made.

8-40

User System Calls / 8

Unlink Unlinks (removes

. from memory) a
0S89 F$UnLink 103F 02 module that is not
in use and that has
a link count of 0

Entry Conditions:
U = address of the module header

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

¢ Unlink unlinks a module from the current process’s
address space, decreases its link count by one and, if the
link count becomes zero, returns the memory where the
module was located to the system for use by other
processes.

® You cannot unlink system modules or device drivers that
are in use.

® Unlink operates in the following order:

1. Unlink tells OS-9 that the calling process no longer
needs the module.

2. 08S-9 decreases the module’s link count by one.

When the resulting link count is zero, 0S-9 destroys
the module.

If any other process is using the module, the module’s
link count cannot fall to zero. Therefore, OS- does not
destroy the module.

® If you pass a bad address, Unlink cannot find a module in
the module directory and does not return an error.

8-41

08-9 Technical Reference

Unlink Decrements a specified
module’s link count,

A MOdule and removes the

By Name module from memory if

F$UnLoad 103F 1D :;;JZ erlfeosultmg link count

Entry Conditions:

A = module type

X = pointer to module name
Error Output:

CC = carry set on error

B = error code (if any)
Additional Information:

® This system call differs from Unlink in that it uses a
pointer to the module name, instead of the address of the
module header.

® The support module for this call is OS9p2.

8-42

User System Calls / 8

Wait Temporarily turns off a
0S9 F$Wait 103F 04 calling process

Entry Conditions: None

Exit Conditions:

A
B

= deceased child process’s ID
= deceased child process’s exit status code (if no error)

Error Output:

CC = carry set on error

B

= error code if any

Additional Information:

The Wait call turns off the calling process until a child pro-
cess dies, either by executing an Exit system call, or by
receiving a signal. The Wait call helps you save system
time.

08S-9 returns the child’s process’s ID and exit status to the
parent. If the child died because of a signal, the exit status
byte (Register B) contains the signal code.

If the caller has several children, 0S-9 activates the caller
when the first one dies. Therefore, you need to use one Wait
system call to detect the termination of each child.

0S-9 immediately reactivates the caller if a child dies
before the Wait call. If the caller has no children, Wait
returns an error. (See the Exit system call for more
information.)

If the Wait call returns with the carry bit set, the Wait
function was not successful. If the carry bit is cleared, Wait
functioned normally and any error that occurred in the
child process is returned in Register B.

8-43

0S-9 Technical Reference

I/0 User System Calls

Attach Attaches a device to

the system or verifies
OS9 I$Attach 103F 80 device attachment

Entry Conditions:

A = access mode
X = address of the device name string

Exit Conditions:

X = updated past device name

U = address of the device table entry
Error Output:

B = error code (if any)

CC = carry set on error

Additional Information:

e Attach does not reserve the device. It only prepares the

device for later use by any process.

e 0OS-9 installs most devices automatically on startup. There-
fore, you need to use Attach only when installing a device
dynamically or when verifying the existence of a device. You

need not use the Attach system call to perform routine I/O.

® The access mode parameter specifies the read and/or write

operations to be allowed. These are:

Use any special device capabilities
Read only

Write only

Update (read and write)

0
1
2
3

8-44

1/0 User System Calls / 8

® Attach operates in this sequence:

1.

2a.

0OS-9 searches the system module to see if memory con-
tains a device descriptor that has the same name as the
device.

0S-9’s next operation depends on whether or not the
device is already attached. If OS-9 finds the descriptor
and if the device is not already attached, OS-9 links the
device’s file manager and device driver. It then places
the address of the manager and the driver in a new
device table entry. OS-9 then allocates any memory
needed by the device driver, and ecalls the driver’s ini-
tialization routine which initializes the hardware.

. If OS-9 finds the descriptor, and if the device is already

attached, OS-9 verifies the attachment.

8-45

OS-9 Technical Reference

Change DiI‘GCtOl‘y Changes the working

. directory of a process
089 I$Chgdir 103F 86 to a directory specified
by a pathlist

Entry Conditions:

A = access mode

X = address of the pathlist
Exit Conditions:

X = updated past pathlist

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

¢ [f the access mode is read, write, or update, 0S-9 changes
the current data directory. If the access mode is execute,
OS-9 changes the current execution directory.

® The calling process must have read access to the directory
specified (public read if the directory is not owned by the
calling process).

® The access modes are:

= Read

Write

Update (read and write)
Execute

Lo DD
I

8-46

1I/O User System Calls / 8

Close Path Terminates an I/0 path
089 I$8Close 103F 8F

Entry Conditions:
A = path number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e Close Path terminates the I/0O path to the file or device
specified by path number. Until you use another Open,
Dup, or Create system call for that path, you can no longer
perform I/O to the file or device.

® If you close a path to a single-user device, the device
becomes available to other requesting processes. 0S-9 de-
allocates internally managed buffers and descriptors.

e The Exit system call automatically closes all open paths.
Therefore, you might not need to use the Close Path system
call to close some paths.

® Do not close a standard I/O path unless you want to change
the file or deviee to which it corresponds.

® Close Path performs an implied I$Detach call. If it causes
the device link count to become 0, the device termination
routine is executed. See I[$Detach for additional
information.

8-47

0S8 -9 Technical Reference

Create File Creates and opens a
0S89 I$Create 103F 83 disk file

Entry Conditions:

A = access mode (write or update)
B = file attributes
X = address of the pathlist; (See the following example.)

Exit Conditions:

A = path number
X = address of the last byte of the pathlist + 1; skips any
trailing blanks (See the following example.)

Error OQutput:

CC = carry set on error
B = error code (if any)

Additional Information:

e 0S-9 parses the pathlist and enters the new filename in the
specified directory. If you do not specify a directory, OS-9
enters the new filename in the the working directory.

¢ 0S-9 gives the file the attributes passed in Register B,
which has bits defined as follows:
Bit Definition
Read
Write
Execute
Public read
Public write

Public execute
Shareable file

® The access mode parameter passed in Register A must have
the write bit set if any data is to be written. These access
codes are defined as follows: 2 = write; 3 = update. The
mode affects the file only until the file is closed.

TR W~ D

8-48

1/ User System Calls / 8

You can reopen the file in any access mode allowed by the
file attributes. (See the Open system call.)

Files opened for write can allow faster data transfer than
those opened for update because update sometimes needs to
pre-read sectors.

If the execute bit (Bit 2) is set, the file is created in the
working execution directory instead of the working data
directory.

Create File causes an implicit I$Attach call. If the device
has not previously been attached, the device’s initialization
routine is called.

Later 1/0O calls use the path number to identify the file,
until the file is closed.

0S-9 does not allocate data storage for a file at creation.
Instead, it allocates the storage either automatically when
you first issue a write or explicitly by the Setstat
subroutine.

If the filename already exists in the directory, an error
occurs. If the call specifies a non-multiple file device (such
as a printer or terminal), Create behaves the same as
Open.

You cannot use Create to make directories. (See the Make
Directory system call for instructions on how to do make
directories.)

Before the Create File call:
[/|Dplo]/[w]|O|R|K|$0D]

4
X

After the Create File call:
l/]DJo]/[w[O[R[K]$0D]

'y
X

8-49

0S-9 Technical Reference

Delete File Deletes a specified disk
0S89 I$Delete 103F 87 file

Entry Conditions:
X = address of the pathlist (See the following example.)

Exit Conditions:

X = address of the last byte of the pathlist ~ 1; any trail-
ing blanks are skipped (See the following example.)

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® The Delete File call deletes the disk file specified by the
pathlist. The file must have write permission attributes
(public write, if the calling process is not the owner). An
attempt to delete a device results in an error. The caller
must have non-shareable write access to the file or an error
results.

Example:
Before the Delete File call:

/Dol /[w]o]R[K[p[B]B[M] E[M[O]s$0D]
X

After the Delete File call:
/Iplof/]wlolrR]K[e][b][w[M[E]M]O]s0D]

4
X

8-50

I'O User System Calls / 8

Delete A File Deletes a file from the
0S9 I$DeletX 103F 90 current data or current

execution directory
Entry Conditions:

A = qceess mode
X = address of the pathlist

Exit Conditions:

X = address of the last byte of the pathlist+1; any trailing
blanks are skipped

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The Delete A File call removes the disk file specified by the
selected pathlist. This function is similar to I§Delete except
that it accepts an access mode byte. If the access mode is
execute, the call selects the current execution directory.
Otherwise, it selects the current data directory.

e If a complete pathlist is provided (the pathlist begins with
a slash (/), the access mode the call ignores the access
mode.

® Only use this call to delete a file. If you attempt to use
I$DeletX to delete a device, the system returns an error.

8-51

0S8-9 Technical Reference

Detach Device Removes a device

from the system
0S9 I$Detach 103F 81 device tabie

Entry Conditions:
U = address of the device table eniry

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

® The Detach Device call removes a device from both the sys-
tem and the system device table, assuming the device is not
being used by another process. You must use this call to
detach devices attached using the Attach system call.
Attach and Detach are both used mainly by the I0 man-
ager. SCF also uses Attach and Detach to set up its second
device (echo device).

o This is the sequence of the operation of Detach Device:

1. Detach Device calls the device driver’s termination rou-
tine. Then, OS-9 deallocates any memory assigned to
the driver.

2. 0O8-9 unlinks the associated device driver and file man-
ager modules.

3. 0OS-9 then removes the driver, as long as no other mod-
ule is using that driver.

8-52

I/0 User System Calls / 8

Duplicate Path Returns a synonymous
0S9 I$Dup 103F 82 path number

Entry Conditions:
A = old path number (number of path to duplicate)

Exit Conditions:

A = new path number (if no error)

Error Output:

B = error code (if error encountered)
CC = carry set on error

Additional Information:

® The Duplicate Path returns another, synonymous path
number for the file or device specified by the old path
number.

® The shell uses the Duplicate Path call when it redirects
ro.

® System calls can use either path number (old or new) to
operate on the same file or device.

® Make sure that no more than one process is performing IO
on any one path at the same time. Concurrent I/O on the
same path can cause unpredictable results with RBF files.

® The I$Dup call always uses the lowest available path num-
ber. This lets you manipulate standard I/O paths to contain
any desired paths.

8-53

08-9 Technical Reference

Get Status Returns the status of a
0S9 1$GetStt 103F 8D file or device

Entry Conditions:

A = path number

B = function code
Error Qutput:

CC = carry set on error

B = error code (if any)
Additional Information:

® The Status is a wildcard call. Use it to handle device
parameters that:

« Are not the same for all devices
» Are highly hardware-dependent
¢ Must be user-changeable

® The exact operation of the Get Status system call depends
on the device driver and file manager associated with the
path. A typical use is to determine a terminal’s parameters
for such functions as backspace character and echo on/off.
The Get Status call is commonly used with the Set Status
call.

e The Get Status function codes that are currently defined
are listed in the “Get Status System Calls” section.

8-54

110 User System Calls / 8

Make Directory Cre.ates and initializes
0S9 I$MakDir 103F 85 a directory

Entry Conditions:
B = directory attributes
X = address of the pathlist
Exit Conditions:
X = address of the last byte of the pathlist +1; Make Direc-
tory skips trailing blanks.
Error Output:

error code (if any)
carry set on error

B
CC
Additional Information:

® The Make Directory call creates and initializes a directory
as specified by the pathlist. The directory contains only two
entries, one for itself (.} and one for its parent directory (..)

® 0S-9 makes the calling process the owner of the directory.

® Because the Make Directory call does not open the direc-
tory, it does not return a path number.

® The new directory automatically has its directory bit set in
the access permission attributes. The remaining attributes
are specified by the byte passed in Register B. The bits are
defined as follows:

Bit Definition

Read

Write

Execute
Public read
Public write
Public execute
Single-user
Don't care

SN WO

8-55

08-9 Technical Reference

e Before the Make Directory call:
[/IpJol/[N[E[W[D[I]|R]S$0D |

'y
X

After the Make Directory call:
[V IpJo]/[NJE[W[D]1[R] $0D |

4
X

8-56

1/0 User System Calls / 8

Open Path Opens a path to an

existing file or device
089 I$Open 103F 84 as specified by the

pathlist

Entry Conditions:

A = access mode (D S PE PWPRE WR)
X = address of the pathlist (See the following example.)

Exit Conditions:

A = path number
X = address of the last byte of the pathlist + 1

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:
® 0OS-9 searches for the file in one of the following:

+ The directory specified by the pathlist if the pathlist
begins with a slash.

+ The working data directory, if the pathlist does not
begin with a slash.

* The working execution directory, if the pathlist does not
begin with a slash and if the execution bit is set in the
access mode.

® (OS-9 returns a path number for later system calls to use to
identify the file.

® The access mode parameter lets you specify which read
and/or write operations are to be permitted. When set, each
access mode bit enables one of the following: Write, Read,
Read and Write, Update, Directory I/O.

® The access mode must conform to the access permission
attributes associated with the file or device. (See the Cre-
ate system call) Only the owner can access a file unless
the appropriate public permission bits are set.

8-57

08-9 Technical Reference

® The update mode might be slightly slower than the others
because it might require pre-reading of sectors for random
access of bytes within sectors.

e Several processes (users) can open files at the same time.
Each device has an attribute that specifies whether or not
it is shareable.

e Before the Open Path call:
[/ [plo/lafclciT|s[P[a]Y]s0D]

4
X

After the Open Path call:
[/[pJol/Jalclc]r[s]Pla]Y]soD]

4
X

o If the single-user bit is set, the file is opened for single-user
access regardless of the settings of the file’s permission
bits.

® You must open directory files for read or write if the direc-
tory bit (Bit 7) is set in the access mode.

® Open Path always uses the lowest path number available
for the process.

IiO User System Calls / 8

Read Reads n bytes from a
0S9 I$Read 103F 89 specified path

Entry Conditions:

A
Y
X

= path number
= number of bytes to read
= address in which to store the data

Exit Conditions:

Y

= number of bytes read

Error Output:

B

= error code (if any)

CC = carry set on error

Additional Information:

The Read call reads the specified number of bytes from the
specified path. It returns the data exactly as read from the
file/device, without additional processing or editing. The
path must be opened in the read or update mode.

If there is not enough data in the specified file to satisfy
the read request, the call reads fewer bytes than requested
but an end-of-file error is not returned. After all data in a
file is read, the next I$Read call returns an end-of-file
error.

If the specified file is open for update, the record read is
locked out on RBF-type devices.

The keyboard terminate, keyboard interrupt, and end-of-file
characters are filtered out of the Entry Conditions data on
SCF-type devices unless the corresponding entries in the
path descriptor have been set to zero. You might want to
modify the device descriptor so that these values are ini-
tialized to zero when the path is opened.

8-59

0S-9 Technical Reference

® The call reads the number of bytes requested unless Read
encounters any of the following:

* An end-of-file character
* An end-of-record character (SCF only)

* An error

8-60

I/O User System Calls / 8

Read Line With Re.a(.is a text line with
Editing editing

0859 I$ReadLn 103F 8B

Entry Conditions:

A
X
Y

= path number
= address at which to store data
= maximum number of bytes to read

Exit Conditions:

Y

= number of bytes read

Error Output:

B

= error code (if any)

CC = carry set on error

Additional Information:

Read Line is similar to Read. The difference is that Read
Line reads the input file or device until it encounters a car-
riage return character or until it reaches the maximum
byte count specified, whichever comes first. The Read Line
also automatically activates line editing on character ori-
ented devices, such as terminals and printers. The line
editing refers to auto line feed, null padding at the end of
the line, backspacing, line deleting, and so on.

SCF requires that the last byte entered be an end-of-record
character (usually a carriage return). If more data is
entered than the maximum specified, Read Line does not
accept it and a PD.OVF character (usually a bell) is
echoed.

After one Read Line call reads all data in a file, the next
Read Line call generates an end-of-file error.

(For more information about line editing, see “SCF Line
Editing Functions” in Chapter 6.)

8-61

0S-9 Technical Reference

Seek Repositions a file

0S89 I$Seek 103F 88

pointer

Entry Conditions:

A
X
U

= path number
= MS 16 bits of the desired file position
= LS 16 bits of the desired file position

Error Output:

CC = carry set on error

B

= error code (if any)

Additional Information:

The Seek Call repositions the path’s logical file pointer, the
32-bit address of the next byte in the file to be read from or
written to.

You can perform a seek to any value, regardless of the file’s
size. Later writes automatically expand the file to the
required size (if possible). Later reads, however, return an
end-of-file condition. Note that a seek to Address 0 is the
same as a rewind operation.

0S-9 usually ignores seeks to non-random access devices,
and returns without error.

On RBF devices, seeking to a new disk sector causes the
internal disk buffer to be rewritten to disk if it has been
modified. Seek does not change the state of record locking.

8-62

I/O User System Calls / 8

Set Status Sets the status of a file
089 I$SetStt 103F 8E or device

Entry Conditions:

A = path number
B = function code
Other registers depend on the function code.

Error Output:

B = error code (if any)
CC = carry set on error
Other registers depend on the function code.

Additional Information:

® Set Status is a wildcard call. Use it to handle device
parameters that:

* Are not the same for all devices
» Are highly hardware-dependent
* Must be user-changeable

® The exact operation of the Set Status system call depends
on the device driver and file manager associated with the
path. A typical use is to set a terminal’s parameters for
such functions as backspace character and echo on/off. The
Set Status call is commonly used with the Get Status call.

e The Set Status function codes that are currently defined
are listed in the “Set Status System Calls” section.

8-63

05-9 Technical Reference

Write Writes to a file or
0S9 I$Write 103F 8A device

Entry Conditions:

A = path number
X = starting address of data to write
Y = number of bytes to write
Exit Conditions:
Y = number of bytes written

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® The Write system call writes to the file or device associated
with the path number specified.

® Before using Write, be sure the path is opened or created
in the Write or Update access mode. OS-9 writes data to
the file or device without processing or editing the data.
08-9 automatically expands the file if you write data past
the present end-of-file.

8-64

110 User System Calls / 8

Write Line Writes to a file or
. device until it
089 I$WritLn 103F 8C encounters a carriage
return

Entry Conditions:
A = path number
X = address of the data to write
Y = maximum number of bytes to write

Exit Conditions:

Y = number of bytes written

Error Output:

B
CC

error code (if any)
carry set on error

Additional Information:

e Writes to the file or device that is associated with the path
number specified.

® Write Line is similar to Write. The difference is that Write
Line writes data until it encounters a carriage return char-
acter. It also activates line editing for character-oriented
devices, such as terminals and printers. The line editing
refers to auto line feed, null padding at the end of the line,
backspacing, line deleting, and so on.

® Before using Write Line, be sure the path is opened or cre-
ated in the write or update access mode.

o (For more information about line editing, see “SCF Line
Editing Functions” in Chapter 6.)

8-65

0OS8-9 Technical Reference

Privileged System Mode Calls

Set an alarm Sets an alarm to ring

0S9 F$Alarm 103F 1E g‘]ﬁebe“ at a specified

Entry Conditions:

X = relative address of time packet

Error OQutput:

CC = carry set on error
B = appropriate error code

Additional Information:

¢ When the system reaches the specified alarm time, it rings

the bell for 15 seconds.

e The time packet is identical to the packet used in the
F$STime call. See F$STime for additional information on

the format of the packet.

e All alarms begin at the start of a minute and any seconds

in the packet are ignored.

® The system is limited to one alarm at a time.

8-66

Privileged System Mode Calls / 8

Allocate 64 Dynamically allocates

64-byte blocks of
0S9 F$All64 103F 30 memory

Entry Conditions:

X = base address of the page table; 0 = the page table has
not been allocated

Exit Conditions:

A = block number
X = base address of the page table
Y = address of the block

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

e The Allocate 64 system call allocates the 64-byte blocks of
memory by splitting pages {256-byte sections) into four
sections.

® 0S-9 uses the first 64 bytes of the base page as a page
table. This table contains the page number (most signifi-
cant byte of the address) of all pages in the memory struec-
ture. If Register X passes a value of zero, the call allocates
a new base page and the first 64-byte memory block.

& Whenever a new page is needed, a Request System Memory
system call (F$SRqMem) executes automatically.

® The first byte of each block contains the block number.
Routines that use the Allocate 64 call should not alter this
byte.

8-67

0OS-9 Technical Reference

® The following diagram shows how seven blocks might be

allocated:

Base Page »

Any Memory Page

Any Memory Page

X
Page Table Block 4
(64 bytes)
(64 bytes)
X X
Bloek 1 Block 5
(64 bytes) {64 bytes)
X X
Block 2 Block 6
(64 bytes) (64 bytes)
X X
Bloeck 3 Block 7
(64 bytes) (64 bytes)

Privileged System Mode Calls / 8

Allocate High Allocate system
RAM memory from high

physical memory
0S9 F$AlHRam 103F 53

Entry Conditions:
B = number of blocks

Error Output:
CC = carry set on error
B = appropriate error code

Additional Information:

e This call searches for the desired number of contiguous free
RAM blocks, starting its search at the top of memory.
F$AllHRam is similar to FEAIIRAM except F$SAIIRAM
begins its search at the bottom of memory.

@ Screen allocation routines use this call to provide a better
chance of finding the necessary memory for a screen.

0S-9 Technical Reference

Allocate Image Allocates RAM
blocks for process
0S89 F$Alllmg 103F 3A DAT image

Entry Conditions:

A = starting block number

B = number of blocks

X = process descriptor pointer
Exit Conditions:

CC = carry set on error

B = error code (if any)
Additional Information:

® Use the Allocate Image system call to allocate a data area
for a process. The blocks that Allocate Image defines might
not be contiguous.

® The support module for this system call is OS9p1.

8-70

Privileged System Mode Calls / 8

Allocate Process Alocates and
DESCI‘iptOl’ initializes a 512-byte

process descriptor
089 F$§AllPrc 103F 4B

Entry Conditions: None

Exit Conditions:

U = process descriptor pointer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

® The process descriptor table houses the address of the
descriptor. Initialization of the process descriptor consists
of clearing the first 256 bytes of the descriptor, setting up
the state as a system state, and marking as unallocated as
much of the DAT image as the system allows—typically,
60-64 kilobytes.

e The support module for this system call is OS9p2. The call
also branches to the F$SRqMem call.

8-71

0S-9 Technical Reference

Allocate RAM

OS9 F$AIIRAM 103F 39

Entry Conditions:
B = number of blocks

Exit Conditions:

CC = C bit set on error

B = appropriaie error code

Additional Information:

Searches the
memory block map
for the desired
number of
contiguous free
RAM blocks

® The support module for this system call is OS9p1.

8-72

Privileged System Mode Calls / 8

Allocate P roCeSS Determines whether

08S-9 has assigned a
Task Number task number to the
0S9 F$AllTsk 103F 3F specified process

Entry Conditions:
X = process descriptor pointer

Error OQutput:

CC = C bit set
B = appropriate error code

Additional Information:

o If the process does not have a task number, 0S-9 allocates
a task number and copies the DAT image into the DAT
hardware.

® The support module for this call is OS9pl. Allocate Process
Task number also branches to F$ResTsk and F$SetTsk.

8-73

0S-9 Technical Reference

Insert Process Inserts a process into
0S9 F$AProc 103F 2C the queue for execution

Entry Conditions:

X

= address of the process descriptor

Error Output:

CC

B

carry set on error
error code (if any)

([

Additional Information:

The Insert Process system call inserts a process into the
active process queue so that OS-9 can schedule the process
for execution.

0O8-9 sorts all processes in the queue by process age (the
count of how many process switches have occurred since the
process’s last time slice). When a process is moved to the
active process queue, OS-9 sets its age according to its
priority—the higher the priority, the higher the age.

An exception 1s a newly active process that was deactivated
while in the system state. OS-9 gives such a process higher
priority because the process usually is executing critical
routines that affect shared system resources.

8-74

Privileged System Mode Calls / 8

Bootstrap System Links either the

module named Boot
0S9 F$Boot 103F 35 or the module

specified in the INIT
module

Entry Conditions: None

Error OQutput:

CC = C bit set on error
B = appropriate error code

Additional Information:

® When it calls the linked module, Boot expects to receive a
pointer giving it the location and size of an area in which
to search for the new module.

® The support module for this call is OS9pl. Bootstrap Sys-
tem also branches to the F$Link and F§VModul system
calls.

875

08-9 Technical Reference

Bootstrap Allocates the
requested memory

Mem()ry RequeSt (rounded to the

0S9 F$BtMem 103F 36 nearest block) as

contiguous memory

in the system’s

address space
Entry Conditions:

D = byte count requested

Exit Conditions:
D = byte count granted
U = pointer to memory allocated
Error Output:
CC = C bit set on error
B = appropriate error code
Additional Information:
® This call is identical to F$SRqMem.
¢ The Bootstrap Memory Request support module is OS9p1.

8-76

Privileged System Mode Calls / 8

Clear SpeCiﬁed Marks blocks in the
Block process DAT image as

unallocated
089 F$CIrBlk 103F 50

Entry Conditions:

B = number of blocks
U = address of first block

Exit Conditions: None

Additional Information:

e After Clear Specified Block deallocates blocks, the blocks
are free for the process to use for other data or program
areas. If the block address passed to Clear Specified Block
is invalid or if the call attempts to clear the stack area, it
returns E$IBA.

@ The support module for the call is OS9p2.

877

OS-9 Technical Reference

DAT to Logical
Address

0S9 F$DATLog 103F 44

Entry Conditions:
B = DAT image offset
X = block offset
Exit Conditions:
X = logical address

Error Output:
CC = C bit set on error

B = appropriate error code

Additional Information:

Converts a DAT image
clock number and
block offset to its
equivalent logical
address

¢ Following is a sample conversion:

|

2000 - 2FFF

1600 - 1FFF

0 - FFF

Input: B = 2
X = $0329

Output: X = $2329

® The support module for this call is OS9p1.

8-78

Privileged System Mode Calls / 8

Deallocate Image Deallocates image
0S9 F$Dellmg 103F 3B

Entry Conditions:

A = number of starting block
B = block count
X = process descriptor pointer

Error Qutput:

CC = C bit set on error
B = gppropriate error code

Additional Information:

® This system call deallocates memory from a process’s
address space. It frees the RAM for system use and frees
the DAT image for the process. Its main use is to let the

system clean up after a process death.

e The support module for this call is OS9p2.

8-79

0S-9 Technical Reference

Deallocate Returns a process
Proce SS descriptor’s memory to

. a free memory pool
Descriptor

0OS9 F$DelPrc 103F 4C

Entry Conditions:
A = process ID

Error OQutput:

CC = C bit set on error

B = appropriate error code
Additional Information:

® Use this call to clear the system scratch memory and stack
area associated with the process.

® The support module for this call is OS9p2.

8-80

Privileged System Mode Calls / 8

Deallocate RAM Clears a block’s RAM
blOCkS In Use flag in the

system memory block
0S9 F$DelRAM 103F 51 map
Entry Conditions:
B = number of blocks
X = starting block number
Exit Conditions: None

Additional Information:

® The Deallocate RAM Blocks call assumes the blocks being
deallocated are not associated with any DAT image.

® The support module for this call is OS9p2.

8-81

08-9 Technical Reference

Deallocate Task Releases the task

number that the
Number process specified by
OS9 F$DelTsk 103F 40 the passed descriptor
pointer

Entry Conditions:
X = process descriptor pointer

Error Qutput:
CC = C bit set on error
B = appropriate error code
Additional Information:
¢ The support module for this call is 0S9p1.

8-82

Privileged System Mode Calls / 8

Link Using Performs a link using a
Module Directory pointer to a module

directory entry
Entry
OS89 F$ELink 103F 4D

Entry Conditions:

B = module type

X = pointer to module directory entry
Exit Conditions:

U = module header address

Y = module entry point
Error Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

® This call differs from Link in that you supply a pointer to
the module directory entry rather than a pointer to a mod-
ule name.

® The support module for this call is OS9pl.

8-83

O0S-9 Technical Reference

Find Module Returns a pointer to
Directory Elltl'y the module directory

0S9 F$FModul 103F 4E

entry

Entry Conditions:

A
X
Y

= module type
= pointer to the name string
= DAT image pointer (for name)

Exit Conditions:

A
B
X
U

= module type

= module revision number

= updated name string; (if Register A contains 0 on
entry)

= module directory entry pointer

Error Output:

CC = C bit set on error

B

= appropriate error code

Additional Information:

The Find Module Directory Entry call returns a pointer to
the module directory entry for the first module that has a
name and type matching the specified name and type. If
you pass a module type of zero, the system call finds any
module.

The support module for this call is OS9p1.

8.84

Privileged System Mode Calls / 8

F ind 64 Returns the address
0S9 F$Find64 103F 2F gfof:g“'byte memory

Entry Conditions:

A = block number

X = address of the block
Exit Conditions:

Y = address of the block
CC = carry set if block not allowed or not in use

Additional Information:

® OS-9 uses Find 64 to find path descriptors when given
their block number. The block number can be any positive
integer.,

8-85

0S-9 Technical Reference

Get Free ngh Searches the DAT

image for the
BIOCk highest set of
0S89 F$FreeHB 103F 3E contiguous free

blocks of the
specified size

Entry Conditions:

B = block count

Y = DAT image pointer
Exit Conditions:

A = starting block number

Error Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

e The Get Free High Bloek eall returns the block number of
the beginning memory address of the free blocks.

¢ The support module for this system call is OS9p1.

8-86

Privileged System Mode Calls | 8

Get Free Low Searches the DAT
image for the lowest set

BIOCk of contiguous free

0S9 F$FreeLLB 103F 3D b}ocks of the specified
size

Entry Conditions:

B = block count

Y = DAT image pointer
Exit Conditions:

A = starting block number

Erxrror Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

® The Get Free Low Block call returns the block number of
the beginning memory address of the free blocks.

® The support module for this system call is OS9p1.

8-87

08-9 Technical Reference

Compact Module Compacts the entries in
Directory the module directory

0S89 F$GCMDir 103F 52
Entry Conditions: None
Exit Conditions: None

Additional Information:

e This function is only for internal OS-9 system use. You
should never call it from a program.

8-88

Privileged System Mode Calls / 8

Get Process Gets a pointer to a
Pointer process
F$GProcP 103F 37

Entry Conditions:
A = process ID

Exit Conditions:

B = pointer to process descriptor (if no error}

Error Output:

CC = carry set on error

B = error code (If an error occurs (E$BPrcID))

Additional Information:

® The Get Process Pointer call translates a process ID num-
ber to the address of its process descriptor in the system
address space. Process descriptors exist only in the system
task address space. Because of this, the address returned
only refers to system address space.

® The support module for this call is OS9p2.

8-89

0S-9 Technical Reference

I/0 Delete Deletes an I/0 module
0S9 F$IODel 103F 33 that is not being used

Entry Conditions:
X = address of an I'O module

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The I/O Delete deletes the specified I/O module from the
system, if the module is not in use. This system call is
used mainly by the 'O MANAGER, and can be of limited
or no use for other applications.

® This is the order in which I/0 Delete operates:

1. Register X passes the address of a device descriptor
module, device driver module, or file manager module.

2. 08-9 searches the device table for the address.

3. If OS-9 finds the address, it checks the module’s use
count, If the count is zero, the module is not being
used; O0S-9 deletes it. If the count is not zero, the mod-
ule is being used; OS-9 returns an error.

e I/O Delete returns information to the Unlink system call
after determining whether a device is busy.

8-90

Privileged System Mode Calls / 8

1I/0 Queue Inserts the calling
process into another

0S9 F$10Qu 103F 2B process’s /0O queue,
and puts the calling
process to sleep

Entry Conditions:

A = process number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The IO Queue call links the calling process into the I/O
queue of the specified process and performs an untimed
sleep. The IO Manager and the file managers are primary
and extensive users of I/O Queue.

® Routines associated with the specified process send a wake-
up signal to the calling process.

8-91

0S-9 Technical Reference

Set IRQ Adds a device to or

089 F$IRQ 103F 2A

removes it from the
polling table

Entry Conditions:

D
X

Y
U

= address of the device status register
= 0 (to remove a device) or the address of a packet (to
add a device)
® the address at X is the flip byte
¢ the address at X +1 is the mask byte
® the address at X +2 is the priority byte
= address of the device IRQ service routine
= address of the service routine’s memory area

Error Output:

CC = carry set on error

B

= error code (if any)

Additional Information:

Set IRQ is used mainly by device driver routines. (See
“Interrupt Processing” in Chapter 2 for a complete discus-
sion of the interrupt polling system.)

Packet Definitions:

The Flip Byte. Determines whether the bits in the device
status register indicate active when set or active when
cleared. If a bit in the flip byte is set, it indicates that the
task is active whenever the corresponding bit in the status
register is clear (and vice versa).

The Mask Byte. Selects one or more bits within the device
status register that are interrupt request flag(s). One or
more set bits identify which task or device is active.

The Priority Byte. Contains the device priority number (0
= lowest priority, 255 = highest priority).

8-92

Privileged System Mode Calls / 8

Load A From Loads A from 0,X in
Task B task B

F$LDABX 103F 49

Entry Conditions:
B = task number
X = pointer to data
Exit Conditions:
A = byte at 0,X in task address space

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

@ The value in Register X is an offset value from the begin-
ning address of the Task module. The Load A From Task B
call returns one byte from this logical address. Use this
system call to get one byte from the current process’s mem-
ory in a system state routine.

8-93

08-9 Technical Reference

Get One Byte Loads A from (X, [Y]]
F$LDAXY 103F 46

Entry Conditions:

X = block offset
Y = DAT image pointer

Exit Conditions:
A = contents of byte at DAT image (Y) offset by X

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The Get One Byte system call gets the contents of one byte
in the specified memory block. The block is specified by the
DAT image in (Y), offset by (X). The call assumes that the
DAT image pointer is to the actual block desired, and that
X is only an offset within the DAT block. The value in Reg-
ister X must be less than the size of the DAT block. 0S-9
does not check to see if X is out of range.

8-94

Privileged System Mode Calls / 8

Get TWO Bytes Loads D from
F$SLDDDXY 103F 48 [D+X],[Y]

Entry Conditions:

D = Offset to the offset within the DAT image
X = Offset within the DAT image
Y = DAT image poinfer

Exit Conditions:
D = contents of two bytes at [D+X\Y]

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® Get Two Bytes loads two bytes from the address space
described by the DAT image pointer. If the DAT image
pointer is to the entire DAT, then make D+ X equal to the
process address for data. If the DAT image is not the entire
image (64K), then you must adjust D+ X relative to the
beginning of the DAT image. Using D+ X lets you keep a
local pointer within a block, and also lets you point to an
offset within the DAT image that points to a specified block
number.

8-95

OS-9 Technical Reference

Map Speclfic Maps the specified

Block block(s) into
unallocated blocks of

F$MapBlk 103F 4F Process space

Entry Conditions:
X = starting block number
B = number of blocks
Exit Conditions:
U = address of first block

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® The system maps blocks from the top down. It maps new
blocks into the highest available addresses in the address
space. See Clear Specified Block for information on
unmapping.

8-96

Privileged System Mode Calls / 8

Move Data Moves data bytes from
one address space to
F$Move 103F 38 another

Entry Conditions:

A = source task number

B = destination task number
X = source pointer

Y = byte count

U = destination pointer

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® You can use the Move Data system call to move data bytes
from one address space to another, usually from system to
user, or vice versa.

® The support module for this call is OS9pl.

8-97

0S-9 Technical Reference

Next Process Executes the next

process in the active
089 F$NProc 103F 2D process queue
Entry Conditions: None

Exit Conditions:
Control does not return to caller.

Additional Information:

e The Next Process system call takes the next process out of
the active process queue and initiates its execution. If the
queue contains no process, OS-9 waits for an interrupt, and
then checks the queue again.

® The process calling Next Process must already be in one of
the three process queues. If it is not, it becomes unknown
to the system even though the process descriptor still exists
and can be displayed by a PROCS command.

8-98

Privileged System Mode Calls / 8

Release A Task Releases a specified
DAT task number from
F$RelTsk 103F 43 use by a process,
making the task’s DAT
hardware available for
use by another task

Entry Conditions:

B = task number

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:
® The support module for this call OS9pl.

8-99

0S8-9 Technical Reference

Reserve Task Reserves a DAT task
Number number

F$ResTsk 103F 42
Entry Conditions: none

Exit Conditions:

B = task number (if ne error)

Error Qutput:

CC = carry set on error

B = error code if an error oceurs
Additional Information;

® The Reserve Task Number call finds a free DAT task num-
ber, reserves it, and returns the task number to the caller.
The caller often then assigns the task number to a process.

® The support module for this call is OS9pl.

8-100

Privileged Systerm Mode Calls / 8

Return 64 Deallocates a 64-byte
0S9 F$Ret64 103F 31 block of memory

Entry Conditions:

A = block number
X = address of the base page

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® See the Allocate 64 system call for more information.

8-101

08-9 Technical Reference

Set Process DAT Copies all or part of
Image the DAT image into a

process descriptor
F$Setlmg 103F 3C

Entry Condition:

A = starting image block number
B = block count

X process descriptor pointer

U = new image pointer

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

¢ While copying part or all of the DAT image, this system
call also sets an image change flag in the process descrip-
tor. This flag guarantees that as a process returns from
the system call. The call updates the hardware to match
the new process DAT image.

® The support module for this call is OS9p1.

8-102

Privileged System Mode Calls / 8

Set Process Task writes to the hardware
DAT Registers DAT registers

F$§SetTsk 103F 41

Entry Conditions:

X = pointer to process descriptor

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

e This system call sets the process task hardware DAT regis-
ters, and clears the image change flag in the process
descriptor. It also writes to DAT RAM the process’s seg-
ment address information.

® The support module for this call is OS9pl.

8-103

0S-9 Technical Reference

System Link Adds a module from

. outside the current
F$SLink 103F 34 address space into the

current address space

Entry Conditions:
A = module type
X = module name string pointer
Y = name string DAT image pointer

Exit Conditions:

A = module type

B = module revision (if no error)
X = updated name string pointer
Y = module entry point

U = module pointer

Error Output:
CC = carry set on error
B = error code (If an error occurs)

Additional Information:

® The I/O System uses the System Link call to link into the
current process’s address space those modules specified by a
device name in a user call. User calls such as Create File
and Open Path use this System Link.

® The support module for this call is OS9pl.

8-104

Privileged System Mode Calls / 8

Request System Allocates a block of

memory of the
Memory specified size from the
0S89 F$SRgqMem 103F 28 top of available RAM
Entry Conditions:

D = byte count

Exit Conditions:
U = starting address of the memory area
D = new memory size
Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® The Request System Memory call rounds the size request
to the next page boundary.

@ This call allocates memory only for system address space.

8-105

08-9 Technical Reference

Return System Deallocates a block of
Memory contiguous pages
0S9 F$SRtMem 103F 29

Entry Conditions:

U = starting address of memory to return; must point to an
even page boundary
D = number of bytes to return

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:
® Register U must point to an even page boundary.

® This call deallocates memory for system address space only.

8.106

Privileged System Mode Calls / 8

Set SVC Adds or replaces a

0S9 F$SSve 103F 32 system call

Entry Conditions:
Y = address of the system call
initialization table
Error Output:
CC = C bit set
B = error code
Additional Information:

® Set SVC adds or replaces a system call, which you have
written, to OS-9’s user and system mode system call tables.

® Register Y passes the address of a table, which contains the
function codes and offsets, to the corresponding system call
handler routines. This table has the following format:

Relative Use

Address
$00

Function Code <« First entry
801 . Offset From Byte 3
$02 To Function Handler
$03 Function Code < Second entry
$04 _ Offset From Byte 6
$05 To Function Handler

More Entries <« More entries

$80 <« End-of-table mark

8-107

0S-9 Technical Reference

@ If the most significant bit of the function code is set, 0S-9
updates the system table.

If the most significant bit of the function code is not set,
0OS-9 updates the system and user tables.

e The function request codes are in the range $29-$34. IO
calls are in the range $80-$90

® To use a privileged system call, you must be executing a
program that resides in the system map and that executes
in the system state.

¢ The system call handler routine must process the system
call and return from the subroutine with an RTS
instruction.

® The handler routine might alter all CPU registers (except
Register SP).

® Register U passes the address of the register stack to the
system call handler as shown in the following diagram:

Relative Name
Address
U-»| CC $00 R$CC
$01 R$D
A $01 R$A
B $02 R$B
DP $03 R$DP
X $04 R3$X
$06 REY
U $08 R$U
PC $0A RS$PC

Codes $70-$7F are reserved for user definition.

8-108

Privileged System Mode Calls / 8

Store A Byte Stores A at 0,X in
In A Task Task B

F$STABX 103F 4A

Entry Conditions:

A = byte to store
B = destination task number

X = logical destination address
Error Qutput:

CC = carry set on error

B = error code (if any)
Additional Information:

® This system call is similar to the assembly language
instruction “STA 0,X”. The difference is that in the system
call, X refers to an address in the given task’s address
space, instead of the current address space.

® The support module for this system call is OS9pl.

8-109

0S-9 Technical Reference

Install virtual Installs a virtual
interrupt interrupt handler
routine

0S9 F$VIRQ 103F 27

Entry Conditions:

D = initial count value
X = 0 to delete entry

1 to install entry
Y = address of 5-byte packet

Error Qutput:
CC = carry set on error
B = appropriate error code

Additional Information:

o Install VIRQ for use with devices in the Multi-Pak Expan-
sion Interface. This call is explained in detail in Chapter 2.

8-110

Privileged System Mode Calls / 8

Validate Module Checks the module

header parity and CRC
0S9 F$VModul 103F 2E bytes of a module

Entry Conditions:
D = DAT image pointer
X = new module block offset
Exit Conditions:
U = address of the module directory entry

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® If the values of the specified module are valid, 0S-9
searches the module directory for a module with the same
name. If one exists, OS-9 keeps in memory the module that
has the higher revision level. If both modules have the save
revision level, 0S-9 retains the module in memory.

8-111

0S8-9 Technical Reference

Get Status System Calls

You use the Get Status system calls with the RBF manager sub-
routine GETSTA. The OS-9 Level Two system reserves function
Codes 7-127 for use by Microware. You can define Codes 128-255
and their parameter-passing conventions for your own use. (See
the sections on device drivers in Chapters 4, 5, and 6.)

The Get Status routine passes the register stack and the speci-
fied function code to the device driver.

Following are the Get Status functions and their codes.

SS.0PT

(Function code $00). Reads the option section of the path
descriptor, and copies it into the 32-byte area pointed to by Reg-
ister X

Entry Conditions:

A = path number
B =$00
X = address to receive status packet

Error Output:

CC carry set on error
B error code (if any)

Additional Information:

® Use SS.OPT to determine the current settings for editing
funetions, such as echo and auto line feed.

"

8-112

System Calls / 8

SS.RDY

(Function code $01). Tests for data available on SCF-supported
devices

Entry Conditions:

A = path number
B =3%01

Exit Conditions:

If the device is ready:
CC = carry clear
B =800

If the device is not ready:
CC = carry set
B = $F6 (E§SRNDY)

Error Output:

CC = carry set
B = error code

SS.SIZ

(Function code $02). Gets the current file size on a RBF-sup-
ported devices only

Entry Conditions:

A = path number
B =302

Exit Conditions:

X = most significant 16 bits of the current file size
U = least significant 16 bits of the current file size

Error Output:

CC = carry set on error
B = error code (if any)

8-113

0S-9 Technical Reference

SS.POS

(Function code $05). Gets the current file position (RBF-sup-
ported devices only)

Entry Conditions:

A = path number
B =805

Exit Conditions:

X = most significant 18 bits of the current file position
U = least significant 16 bits of the current file position
Error Output:
CC = carry set on error
B = error code (if any)
SS.EOF

(Function code $086). Tests for the end of the file (EQF)
Entry Conditions:

A = path number
B =3%06

Exit Conditions:
If there is no EOF;

CC = carry clear
B =$00
If there is an EOF:
CC = carry set
B = $D3 (E$EOF)

Error Output:

CC = carry set
B = error code

8-114

System Calls / 8

SS.DevNm
(Function Code $0E). Returns a device name
Entry Conditions:

A = path number
B = $0E
X = address of 32-byte buffer for name

Exit Conditions:
X = address of buffer, name moved to buffer

SS.DSTAT
(Function code $12). Returns the display status
Entry Conditions:

A = path number
B = $12

Exit Conditions:

A = color code of the pixel at the cursor address
X = address of the graphics display memory
Y = graphics cursor address; X = MSB, Y = LSB

Additional Information:

e This function is supported only with the VDGINT module
and deals with VDG-compatible graphics screens. See
SS.AAGBTf for information regarding Level Two operation.

8-115

0S-9 Technical Reference

SS.JOY
(Function code $13). Returns the joystick values
Entry Conditions:

A = path number
B =813
X = joystick number

0 = (right joystick)
1 = (left joystick)

Exit Conditions:

A = fire button down
0 = none
1 = Button 1
2 = Button 2

3 = Button 1 and Button 2
X = selected joystick x value (0-63)

Y = selected joystick y value (0-63)
Note: Under Level 1, the following values are returned by
this call:
A = fire button status

$FF = fire button is on
$00 = fire button is off

8-116

System Calls / 8

SS.AlfaS

(Function code $1C). Returns VDG alpha screen memory
information

Entry Conditions:
A = path number

B =3%1C
Exit Conditions:
A = caps lock status

$00 = lower case

$FF = upper case
X = memory address of the buffer
Y = memory address of the cursor

Additional Information:

e SS.AlfaS maps the screen into the user address space. The
call requires a full block of memory for screen mapping.
This call is only for use with VDG text screens handled by
VDGINT.

® The support module for this call is VDGINT.

¢ Warning: Use extreme care when poking the screen, since
other system variables reside in screen memory. Do not
change any addresses outside of the screen.

8-117

08-9 Technical Reference

SS.Cursr

(Function code $25). Returns VDG alpha screen cursor
information

Entry Conditions:

A = path number
B =825
Exit Conditions:
A = character code of the character at the current cursor
address
X = cursor X position (column)
Y = cursor Y position (row)

Additional Information:

® 5S.Cursr returns the character at the current cursor posi-
tion. It also returns the X-Y address of the cursor relative
to the current device’s window or screen. SS.Cursr works
only with text screens.

® The support module for this call is VDGINT.

8-118

System Calls / 8

S8.ScSiz
{(Function code $26). Returns the window or screen size
Entry Conditions:

A = path number
B =826

Exit Conditions:

X = number of columns on screen/window
Y = number of rows on screen/window

Additional Information:

® Use this call to determine the size of an output screen. The
values returned depend on the device in use:

For non-CCIO devices, the call returns the values follow-
ing the XON/XOFT bytes in the device descriptor.

For CCIQ devices, the call returns the size of the window
or screen in use by the specified device.

For window devices. the call returns the size of the cur-
rent working area of the window.

® The support modules for this call are VDGINT, GrfInt, and
WindInt.

8-119

08-9 Technical Reference

SS.KySns
(Function code $27). Returns key down status
Eniry Conditions:

A = path number
B =827
Exit Conditions:
A = keyboard scan information

Additional Information:

¢ Accumulator A returns with a bit pattern representing
eight keys. With each keyboard scan, 0S9 updates this bit
pattern. A set bit (1) indicates that a key was pressed since
the last scan. A clear bit (0) indicates that a key was not
pressed. Definitions for the bits are as follows:

Bit Key

0

or (CLEAR]
or

(&) (up arrow)
(+] (down arrow)
(left arrow)
(right arrow)
Space Bar

~IOYOUTH WO N

The bits can be masked with the following equates:

SHIFTBIT equ %00000001
CNTRLEIT equ %00000010
ALTERBIT equ %00000100
UPBIT equ %00001000
DOWNBIT equ %00010000
LEFTBIT equ %00100000
RIGHTBIT equ %01000000
SPACEBIT equ %10000000

® The support module for this call is CC3I0.

8-120

System Calls / 8

SS.ComSt

(Function code $28). Return serial port configuration
information

Entry Conditions:

A = path number
B = $28

Exit Conditions:
Y = high byte: parity

low byte: baud rate
(See the Setstat call SS.ComSt for values)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The SCF manager uses this call when performing an
SS.Opt Getstat on an SCF-type device. User calls to
S8.ComSt do not update the path descriptor. Use the
SS.OPT Getstat call for most applications, because it auto-
matically updates the path descriptor.

8-121

0S-9 Technical Reference

SS.MnSel

(Fun

ction code $87). Requests that the high-level menu handler

take control of menu selection

Entry Conditions:

A = path number

B = §87
Exit Conditions:

A = menu ID (if valid selection)

0 (if invalid selection)

B = itern number of menu (if valid selection)
Error Output:

CC = carry set on error

B = error code (if invalid selection)
Additional Information:

After detecting a valid mouse click (when the mouse is
pointing to a control area on a window), a process needs to
call SS.MnSel. This call tells the enhanced window inter-
face to handle any menu selection being made. If accumula-
tor A returns with 0, then no selection has been made. The
calling process needs to test and handle other returned
values.

A condition where Register A returns a valid menu ID
number and Register B returns 0 signals the selection of a
menu with no items. The application can now take over and
do a special graphics pull down of its own. The menu title
remains highlighted until the application calls the
SS.UMBar SetStat to update the menu bar.

The support module for this call is WindInt.

8-122

System Calls / 8

SS.Mouse
(Function code $89). Gets mouse status
Entry Conditions:
A = path number
B =$%89
X = data storage area address
Y = mouse port select:
0 = automatic selection
1 = right side
2 = left side
Exit Conditions:
X = data storage area address
Error Output:
CC = carry set on error
B = error code (if any)

8-123

0S-9 Technical Reference

Additional Information:

SS.Mouse returns information on the current mouse and its
fire button. The following list defines the 32-byte data
packet that SS.Mouse creates:

Pt.Valid rmb 1 Is returned info valid? (0=no,
1=yes)

Pt.Actv rmb 1 Active side (0 = off, 1 = right, 2 =
left)

Pt.ToTm rmb 1 Timeout initial value

Pt.TTTo rmb 1 Time until timeout

rmb 2 RESERVED
Pt. TSSt rmb 2 Time since counter start
Pt.CBSA rmb 1 Current button state (Button A)
Pt.CBSB rmb 1 Current button state (Button B)
Pt.CCtA rmb 1 Click count (Button A)
Pt.CCtB rmb 1 Click count (Button B)
Pt.TTSA rmb 1 Time this state counter (Button A)
Pt.TTSB rmb 1 Time this state counter (Button B)
Pt.TLSA rmb 1 Time last state counter (Button A)
Pt.TLSB rmb 1 Time last state counter (Button B)
rmb 2 RESERVED
Pt.BDX rmb 2 Button down frozen Actual X
Pt.BDY rmb 2 Button down frozen Actual Y
Pt.Stat rmb 1 Window pointer type location
Pt.Res rmb 1 Resolution (0-640 by 0=10/1=1)
Pt.AcX rmb 2 Actual X value
Pt.AcY rmb 2 Actual Y value
Pt.WRX rmb 2 Window relative X
Pt.WRY rmb 2 Window relative Y
Pt.Siz equ . Packet size 32 bytes
SPt.SRX rmb 2 System use, screen relative X
SPt.SRY rmb 2 System use, screen relative Y
SPt.Siz equ . Size of packet for system use

Button Information:

Pt.Valid. The valid byte gives the caller an indication of
whether the information contained in the returned packet
is accurate. The information returned by this call is only
valid if the process is running on the current interactive
window. If the process is on a non-interactive window, the
byte is zero and the process can ignore the information
returned.

8-124

System Calls / 8

Pt.Actv. This byte shows which port is selected for use by
all mouse functions. The default value is Right (1). You can
change this value with the SS.GIP Setstat call.

Pt.ToTm. This is the initial value used by Pt.TTTo.

Pt.TTTo. This is the count down value (as of the instant
the Getstat call is made). This value starts at the value
contained in the Pt.ToTm and counts down to zero at a rate
of 60 counts per second. The system maintains all counters
until this value reaches 0, at which point it sets all
counters and states to 0. The mouse scan routine changes
into a quiet mode which requires less overhead than when
the mouse is active. The timeout begins when both buttons
are in the up (open) state. The timer is reinitialized to the
value in Pt.ToTm when either button goes down (closed).

Pt.TSSt. This counter is constantly increasing, beginning
when either button is pressed while the mouse is in the
quiet state. All counts are a number of ticks (60 per sec-
ond). The timer counts to $FFFF, then stays at that value
if additional ticks occur.

Pt.CBSA. These flag bytes indicate the state of the button
Pt.CBSB. at the last system clock tick. A value of 0 indi-
cates that the button is up (open). A value other than zero
indicates that the button is down (closed). Button A is
available on all Tandy joysticks and mice. Button B is only
available for products that have two buttons.

The system scans the mouse buttons each time it scans the
keyboard.

Pi.CCtA. This is the number of clicks that have occurred
Pt.CCtB. since the mouse went into an active state. A
click is defined as pressing (closing) the button, then releas-
ing (opening) the button. The system counts the clicks as
the button is released.

Pt.TTSA. This counter is the number of ticks that have
Pt.TTSB. occurred during the current state, as defined by
Pt.CBSx. This counter starts at one (counts the tick when
the state changes) and increases by one for each tick that
occurs while the button remains in the same state (open or
closed).

8-125

OS-9 Technical Reference

Pt.TLSA. This counter is the number of ticks that have
Pt.TLSB. occurred during the time that a button is in a
state opposite of the current state. Using this count and
the TTSA/TTSB count, you can determine how a button
was in the previous state, even if the system returns the
packet after the state has changed. Use these counters,
along with the state and click count values, to define any
type of click, drag, or hold convention you want.

Reserved. Two packet bytes are reserved for future expan-
sion of the returned data.

Position Information:

Pt.BDX. These values are copies of the Pt.AcX and Pt.AcY
Pt.BDY. values when either of the buttons change from an
open state to a closed state.

Pt.Stat. This byte contains information about the area of
the screen on which the mouse is positioned. Pt.Valid must
be a value other than 0 for this information to be accurate.
If Pt.Valid is 0, this value is also 0 and not accurate. Three
types of areas are currently defined:

0 = content region or current working area of the
window

1 = control region (for use by Multi-View)

2 = off window, or on an area of the screen that is not

part of the window

Pt.Res. This value is the current resolution for the mouse.
The mouse must always return coordinates in the range of
0-639 for the X axis and 0-191 for the Y axis. If the system
is so configured, you can use the high-resolution mouse
adapter which provides a 1 to 1 ratio with these values plus
1. If the adapter is not in use, the resolution is a ratio of 1
to 10 on the X axis and 1 to 3 on the Y axis. The keyboard
mouse provides a resolution of 1 to 1. The values in Pt.Res
are:

0

1

Pt.AcX. The values read from the mouse returned in the
Pt.AcY. resolution as described under Pt.Res.

low res (x:10, y:3)
high res (x,y:1)

8-126

System Calls / 8

Pt.WRX. The values read from the mouse minus the
Pt.WRY. starting coordinates of the current window’s
working area. These values return the coordinates in num-
bers relative to the type of screen. For example, the X axis
is in the range 0-639 for high-resolution screens and 0-319
for low resolution screens. You can divide the window rela-
tive values by 8 to obtain absolute character positions.
These values are most helpful when working in non-scaled
modes.

The support modules for this call are CC310, Grflnt, and
WindlInt.

SS.Palet
(Function code $91). Gets palette information
Entry Conditions:

A = path number
B =$91
X = pointer to the 16-byte palette information buffer

Exit Conditions:
X = pointer to the 16-byte palette information buffer

Additional Information:

® SS.Palet reads the contents of the 16 screen palette regis-

ters, and stores them in a 16-byte buffer. When you make
the call, be sure the X register points to the desired buffer
location. The pointer is retained on exit. The palette values
returned are specific to the screen on which the call is
made.

The support modules for this call are VDGINT, Grflnt, and
WindInt.

8-127

OS-9 Technical Reference

SS.SeTyp

(Function code $93). Returns the type of a screen to a calling
program.

Entry Conditions:

A = path
B =%93

Exit Conditions:

A = screen type code

1 = 40 x 24 text screen
= 80 x 24 text screen
= not used
not used
640 x 192, 2-color graphics screen
320 x 192, 4-color graphics screen
640 x 192, 4-color graphics screen
320 x 192, 16-color graphics screen

Q0 ~1 OO WD
Il

Additional Information:

® Support modules for this system call are GrfInt and
WindInt.

8-128

System Calls / 8

SS.FBRgs

(Function code $96). Returns the foreground, background and
border palette registers for a window.

Entry Conditions:
A = path number

B =89
Exit Conditions:

A = foreground pulette register number

B = background paletie register number (if carry clear)

X = least significant byte of border palette register number
Error Output:

B = error code if any

CC = carry set on error

Additional Information:
¢ Support modules for SS.FBRgs are GrfInt and Windint.

SS.DFPal

(Function code $97). Returns the default palette register
settings.

Entry Conditions:
A = path number
B =$97

X = pointer to 16-byte data space
Exit Conditions:

X = default palette data moved to user space
Error Output:

B = error code, if any
CC = carry set on error

8-129

0S-9 Technical Reference

Additional Information:

® You can use SS.DFPal to find the values of the default pal-
ette registers that are used when a new screen is allocated
by GrfInt or WindInt. The corresponding SetStat can alter
the default registers. This GetStat/SetStat pair is for sys-
tem configuration utilities and should not be used by gen-
eral applications.

Set Status System Calls

Use the Set Status system calls with the RBF manager subrou-
tine SETSTA. The OS-9 Level Two system reserves function
Codes 7-127 for use by Microware. You can define Codes 200-255
and their parameter-passing conventions for your own use. (See
the sections on device drivers in Chapters 4, 5, and 6.)

Following are the Set Status functions and their codes.

SS.OPT

(Function code $00). Writes the option section of the path
descriptor

Entry Conditions:

A = path number
B =300
X = address of the status packet

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

¢ SS.OPT writes the option section of the path descriptor
from the 32-byte status packet pointed to by Register X.
Use this system call to set the device operating parameters,
such as echo and line feed.

8-130

System Calls / 8

SS.SIZ

(Function code $02). Changes the size of a file for RBF-type
devices

Entry Conditions:
A = path number

B =8$02
X = most significant 16 bits of the desired file size
U = least significant 16 bits of the desired file size

Error Qutput:

CC = carry set on error
B = error code (if any)

SS.RESET

(Function code $03). Restores the disk drive head to Track 0 in
preparation for formatting and error recovery (use only with
RBF-type devices)

Entry Conditions:

A = path number
B =$03
Error OQutput:
CC = carry set on error
B = error code (if any)

8-131

08 -9 Technical Reference

SS.WTRK

(Function code $04). Formatis (writes) a track on a disk (RBF-
type devices only)

Entry Conditions:

A = path number
B = $04
U = track number (least significant 8 bits)

X = address of the track buffer
Y = side/density

Bit B0 = side
0 = Side 0
1 = Side 1
Bit B1 = density
0 = single
1 = double
Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

® For hard disks or floppy disks that have a “format entire
diskette command,” SS.WTRK formats the entire disk only
when the track number is zero.

8-132

System Calls / 8

S8.8QD

(Function code $0C). Starts the shutdown procedure for a hard
disk that has sequence-down requirements prior to removal of
power. (Use only with RBF-type devices.)

Entry Conditions:

A = path number
B =8$0C

Exit Conditions: None

SS.KySns
(Function code $27). Turns the key sense function on and off

Entry Conditions:

A = path number
B =827
X = key sense swilch value

0 = normal key operation
1 = key sense operation

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

@ When SS.KySns switches the keyboard to key sense mode,
the CC3I0 module suspends transmission of keyboard char-
acters to the SCF manager and the user. While the com-

puter is in key sense mode, the only way to detect key press
is with SS.KySns.

¢ The support module for this call is CC310.

8-133

0S8-9 Technical Reference

SS.ComSt

(Function code $28). Used by the SCF manager to configure a
serial port

Entry Conditions:

A = path number

B =828

Y = high byte: parity
low byte: baud rate

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

Baud Configuration. The high order byte of Y determines the
baud rate, the word length, and number of stop bits. The byte is
configured as follows:

PDBAU |l 716l5lal3l2l1lol
L]

Baud rate
Reserved
Word length
Stop bits
Stop bits:
0=1
1 =2
Word length:
00 = 8 bit
01 = 7 bit
Baud rate:
0000 = 110
0001 = 300
0010 = 600
0011 = 1200
0100 = 2400
0101 = 4800
0110 = 9600
0111 = 19200
1xxx = undefined

8-134

System Calls / 8

e Parity Configuration. The low order byte of Y determines
parity. The byte is configured as follows:

PD.BAU ITIGI?ILI;i3\2|1IPI

Special use

Parity
Parity:
xx0 = none
001 = odd {ACIAPAK and MODPAK only)
011 = even (ACIAPAK and MODPAK only)
101 = transmit: mark
receive: ignore
111 = transmit: space

receive: ignore

® The SCF manager uses SS.ComSt to inform a driver that
serial port configuration information has been changed in
the path descriptor. After calling SS.ComSt, a user routine
must call the SS.OPT SetStat to correctly update the path
descriptor.

® This call is for the use of the SCF manager. Use SS.OPT
for changing baud, stop bit, and parity values.

SS.Close

(Function code $2A). Informs a device driver that a path is
closed.

Additional Information:

This call is used internally by 0S-9s SCF file manager and is
not available for user programs. It can be used only by device
drivers and file managers.

8-135

08 -9 Technical Reference

SS.AAGBf
(Function code $80). Reserves an additional graphics buffer
Entry Conditions:

A = path number
B =3%80

Exit Conditions:

X = buffer address
Y = buffer number (1-2)

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS AAGBf allocates an additional 8K graphics buffer. The
first buffer (Buffer 0) must be allocated by using the DIS-
PLAY GRAPHICS command. To use the DISPLAY GRAPH-
ICS command, send control code $0F to the standard
terminal driver. SS.AAGBf can allocate up to two addi-

tional buffers (Buffers 1 and 2), one at a time.

® After calling SS.AAGBYf, Register X contains the address of

the new buffer, Register Y contains the buffer number.

® To deallocate all graphics buffers, use the END GRAPHICS

control code.

® When SS.AAGBf allocates a buffer, it also maps the buffer
into the application’s address space. Each buffer uses 8K of
the available memory in the application’s address space.
Also, if S8.DStat is called, Buffer 0 is also mapped into the
application’s address space. Allocation of all three buffers

reduces the application’s free memory by 24K.
® The support module for this call is VDGINT.

8-136

System Calls / 8

SS.SLGBf
(Function code $81). Selects a graphics buffer
Entry Conditions:

A = path number
B =881
X =300 select buffer for use
$01-8FF select buffer for use and display
Y = buffer number (0-2)
Exit Conditions:
X = unchanged from entry
Y = unchanged from entry
Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:
® Use DISPLAY GRAPHICS to allocate the first graphics

buffer. Use SS.AAGBf to allocate the second and third
graphics buffers.

Save each return address when writing directly to a screen.
It is not necessary to save return addresses when using
operating system graphics commands.

SS.SLGBf does not update hardware information until the
next vertical retrace (60Hz rate). Programs that use
SS.AAGBf to change current draw buffers need to wait long
enough to ensure that OS-9 has moved the current buffer to
the screen.

The screen shows the buffer only if the buffer is selected as
the interactive device. If the device does not possess the
keyboard, OS-9 stores the information until the device is
selected as the interactive device. When the device is
selected as the interactive device, the display shows the
selected device’s screen.

The support module for this call is VDGINT.

8-137

0S-9 Technical Reference

SS.MpGPB

(Function code $84). Maps the Get/Put buffer into a user
address space

Entry Conditions:

A = path number

B = $84

X = high byte: buffer group number
low byte: buffer number

Y = action to take

1 = map buffer
0 = unmap buffer
Exit Conditions:

X = address of the mapped buffer
Y = number of bytes in buffer

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:
¢ The support modules for this call are GrfInt and WindInt,.

e SSMpGPB maps a Get/Put buffer into the user address
space. You can then save the buffer to disk or directly mod-
ify the pixel data contained in the buffer. Use extreme care
when modifying the buffer so that you do not write outside
of the buffer data area.

8-138

System Calls / 8

SS.WnSet
(Function code $86). Set up a high level window handler
Entry Conditions:

A = path number
B = $86
X = window data poinder (if Y =WT.FSWin or WT.Win)
Y = window type code
Error Quiput:
CC = carry set on error
B = error code (if any)

Additional Information:

® The C language data structures for windowing are defined
in the wind.h file in the DEFS directory of the system disk.

® The support module for this call is WindlInt.

SS.SBar
(Function code $88). Puts a scroll block at a specified position
Entry Conditions:

A = path number

B =888

X = horizontal position of scroll block

Y = vertical position of scroll block
Error Output:

CC = carry set on error

B = error code (if any)

Additional Information:

® WT.FSWin-type windows have areas at the bottom and
right sides to indicate their relative positions within a
larger area. These areas are called scroll bars. SS.SBar
gives an application the ability to maintain relative posi-
tion markers within the scroll bars. The markers indicate

8-139

0OS-9 Technical Reference

the location of the current screen within a larger screen.
Calling SS.SBar, updates both scroll markers.

® The support module for this call is WindInt.

SS.Mouse

(Function code $89). Sets the sample rate and button timeout
for a mouse

Entry Conditions:
A = path number
B =889
X = mouse sample rate and timeout

most significant byte = mouse sample rate
least significant byte = mouse timeout

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e SS. Mouse allows the application to define the mouse
parameters. The sample rate is the number of clock ticks
between the actual readings of the mouse status.

® The support module for the call is CC3IO0.

8-140

System Calls / 8

$S.MsSig

(Function code $8A). Sends a signal to a process when the
mouse button is pressed

Entry Conditions:

A = path number

B =8%8A

X = user defined signal code {low byte only)
Error OQutput:

CC = carry set on error

B = error code (if any)

Additional Information:

® SS.MsSig sends the process a signal the next time a mouse
button changes state (from open to closed). Once SS.MsSig
sends the signal, the process must repeat the Setstat each
time that it needs to set up the signal.

® Processes using SS.MsSig should have an intercept routine
to trap the signal. By intercepting the signal, other pro-
cesses can be notified when the change occurs. Therefore,
the other processes do not need to continually poll the
mouse.

® The SS.Relea Setstat clears the pending signal request, if
desired. It also clears any pending signal from SS.SSig.
Because of this, if you want to clear only one signal, you
must reset the other signal after calling 88.MsSig.

¢ The support module for this call is CC310.

§-141

0S-9 Technical Reference

SS.AScrn

(Function code $8B). Allocates and maps a high-resolution
screen into an application address space

Entry Conditions:

A = path number

B =$8B

X = screen type
0 = 640 x 192 x 2 colors (16K)
1 = 320 x 192 x 4 colors (16K)
2 = 160 x 192 x 16 colors (16K)
3 = 640 x 192 x 4 colors (32K)
4 = 320 x 192 x 186 colors (32K)

Exit Conditions:

X = application address space of screen
= screen number (1-3)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e SS.AScrn is particularly useful in systems with minimal
memory when you want to allocate a high resolution graph-
ics screen with all screen updating handled by a process.

® This call uses VDGInt (GRFINT is not required).

® All screens are allocated in multiples of 8K blocks. You can
allocate a maximum of three buffers at one time. To select
between buffers, use the SS.DSern Setstat call.

® Screen memory is allocated but not cleared. The application
using the screen must do this.

® Screens must be allocated from a VDG-type device—a
standard 32-column text screen must be available for the
device.

e The support module for this call is VDGINT.

8-142

System Calls / 8

SS.DScrn

(Function code $8C). Causes VDGINT to display a screen that
was allocated by SS.AScrn

Entry Conditions:

A = path number

B = $8C

Y = screen number (1-3)
Error Qutput:

CC = carry set on error

B = error code (if any)

Additional Information:

¢ SS.DScrn shows the requested screen if the requested
screen is the current interactive device.

¢ The support module for this call is VDGINT.

8-143

0S-9 Technical Reference

SS.FSern

(Function code $8D). Frees the memory of a screen allocated
by SS.AScrn

Entry Conditions:

A = path number
B = $8D
Y = screen number (1-3)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® Do not attempt to free a screen that is currently on the
display.

® SS.FScrn returns the screen memory to the system and
removes it from an application’s address space.

® The support module for this call is VDGINT.

8-144

System Calls / 8

SS.PScrn
(Function code $8E). Converts a screen to a different type

Entry Conditions:

A = path number

B = $8E

X = new screen type
0 = 640 x 192 x 2 colors {16K)
1 = 320 x 192 x 4 colors (16K)
2 = 160 x 192 x 16 colors (16K)
3 = 640 x 192 x 4 colors (32K)
4 = 320 x 192 x 16 colors (32K}

Y = screen number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS.PSern changes a screen allocated by SS.AScrn to a new
screen type. You can change a 32K screen to either a 32K
screen, or a 16K screen. You can change a 16K screen only
to another 16K screen type. SS.PScrn updates the current
display screen at the next clock interrupt.

e However, if you change a 32K screen to a 16K screen, 0S-9
does not reclaim the extra 16K of memory. This means
that you can later change the 16K screen back to a 32K
screen.

¢ The support module for this call is VDGINT.

8-145

0S8 -9 Technical Reference

SS.Montr
(Function code $92). Sets the monitor type
Entry Conditions:

A = path number
B =892
X = monitor type
= color composite
1 = analog RGB
2 = monochrome composite
Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS.Montr loads the hardware palette registers with the
codes for the default color set for three types of monitors.
The system default initializes the palette for a composite

color monitor.

® The monochrome mode removes color information from the

signals sent to a monitor.

® When a composite monitor is in use, a conversion table
maps colors from RGB color numbers. In RGB and mono-
chrome modes, the system uses the RGB color numbers

directly.

® The support modules for this call are VDGINT and GrfDrv.

8-146

System Calls / 8

SS.GIP

(Function code $94). Sets the system wide mouse and key
repeat parameters

Entry Conditions:

A = path number
B =%94
X = mouse resolution; in the most significant byte
0 = low resolution mouse
1 = optional high resolution adapter
= mouse port location; in the least significant byte
1 = right port
2 = left port
Y = key repeat start constant; in the most significant byte

= key repeat delay; in the least significant byte
00XX = no repeat

FFFF = unchanged
Error Output:
CC = carry set if error
B = error code, if any

Additional Information:

® Because this function affects system-wide settings, it is
best to use it from system configuration utilities and not
from general application program.

@ The support module for this call 1s CC3IO.

8-147

0S-9 Technical Reference

SS.UMBAR

(Function code $95). Requests the high level menu manager to
update the menu bar.

Entry Conditions:

A = path number
B = $95

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

® An application can call SS.UMBar when it needs to redraw
menu bar information, such as when it enables or disables
menus, or when it completes a window pul! down and needs
to restore the menu.

¢ The support module for this call is WindInt.

8-148

System Calls / 8

SS.DFPal

(Function code $97). Sets the default palette register values
Entry Conditions:

A = path number
B =897
X = pointer to 16 bytes of palette data
Exit Conditions:
X unchanged, bytes moved to system defaults

CC carry set on error
B error code (if any)

Additional Information:

® Use SS.DFPal to alter the system-wide palette register
defaults. The system uses these defaults when it allocates a
new screen using the DWSet command.

® Because this function affects system wide settings, it is
best to use it from system configuration utilities, not gen-
eral application programs.

8-149

0S-9 Technical Reference

SS.Tone

(Function code $98). Creates a sound through the terminal
output device.

Entry Conditions:

A = poth number

B =%98

X = duration and emplitude of the tone
LSB = duration in ticks (60-sec) in the range 0-255
MSB = amplitude of tone in the range 0-63

Y = relative frequency counter (0=Ilow, 4095=high)

Exit Conditions:

These are the same as the entry conditions. There are no
error conditions.

Additional Information:

® This call produces a programmed IO tone through the
speaker of the monitor used by the terminal device. You can
make the call on any valid path open to term or to a win-
dow device.

® The system does not mask interrupts during the time the
tone is being produced.

¢ The frequency of the tone is a relative number ranging
from 0 for a low frequency to 4095 for a high frequency.
The widest variation of tones occurs at the high range of
the scale.

8-150

Appendix A

Memory Module Diagrams

Executable Memory Module Format

Relative Check
Address Use Range
$00

— Sync Bytes ($87,8CD) —
301
$02

— Module Size (bytes) —
$03
$04

— Module Name Offset — header
$05 parity
$06 Type Language
$07 Attributes Revision

module

$08 Header Parity Check CRC
$09

— Execution Offset —
$0A
$0B

I Permanent Storage Size = —|
$0C
30D (Additional optional header

extensions located here)
Module Body
object code, constants,
and so on
_ 1

CRC Check Value

0S-9 Technical Reference

Device Descriptor Format

Relative Check
Address Use Range
$00

— Sync Bytes ($87.$CD) —
$01
$02

— Module Size (bytes) —
$03
$04

\— Offset to Module Name — header
$05 parity
$06 $F (Type) $1 (Lang)

Q7 Attribut Revisi

$ ributes vision Module
$08 Header Parity Check CRC
$09

— Offset to File Manager —
30A Name String
$0B

— Offset to Device Driver —

Name String

$0D Mode Byte
$0E

— Device Controller —
$OF Absolute Physical Addr.

— (24 bit) —
$10
$11 Initialization Table Size
$12$12+n (Initialization Table)

{Name Strings, and so on)
CRC Check Value

Memory Module Diagrams | Appendix A

INIT Module Format

Relative Check
Address Use Range
$00
— Sync Bytes ($87,$CD) —
$01
02
$ - Module Size (bytes) —
$03
04
8 L Module Name Offset — header
$05 parity
$06 $F (Type) $1 (Lang)
07 Attributes Revision
3 . Module
$08 Header Parity Check CRC
09
$ — Forced Limit of Top
$0A of Free RAM _‘
b—— S
$0B
$0C #IRQ Polling Table Entries
$0D #Device Table Entries
$OE
— Offset to Startup —
$OF Module Name String
$10 |
S Offset to Default Mass —
$11 Storage Device Name String
$12
— Offset to Bootstrap —
$13 Module Name String
$14-n Name Strings

CRC Check Value

A-3

Appendix B
Standard Floppy Disk Format

Color Computer 3

Physical Track Format Pattern
Bytes Value

Format (Dec) (Hex)
Header pattern 32 4E
(once per track) 12 00
3 F5
1 FC
32 4E
Sector pattern 12 00
(repeated 18 times) 3 Fs

track number ((-34)

1 side number (0-1)
1 sector number (1-18)
1 sector length code (1)
2 CRC

22 41E

12 00
3 F5
1 FB

256 data area

2 CRC

24 4E

Trailer pattern N 4E (fill to index mark)

(once per track)

B-1

Appendix C
System Error Codes

The error codes are shown in both hexadecimal and decimal. The
error codes listed include OS-9 system error codes, BASIC error
codes, and standard windowing system error codes.

Code Code Meaning
HEX DEC

$01 001 UNCONDITIONAL ABORT — An error occurred
from which OS-9 cannot recover. All processes
are terminated.

$02 002 KEYBOARD ABORT — You pressed to
terminate the current operation.

$03 003 KEYBOARD INTERRUPT — You pressed

either to cause the current operation
to function as a background task with no video

display or to cause the current task to terminate.

§B7 183 ILLEGAL WINDOW TYPE — You tried to
define a text type window for graphics or used
illegal parameters.

$B8 184 WINDOW ALREADY DEFINED — You tried to
create a window that is already established.

$B9 185 FONT NOT FOUND — You tried to use a win-
dow font that does not exist.

$BA 186 STACK OVERFLOW — Your process (or pro-
cesses) requires more stack space than is avail-
able on the system.

$BB 187 ILLEGAL ARGUMENT — You have used an
argument with a command that is inappropriate.

$BD 189 ILLEGAL COORDINATES — You have given
coordinates to a graphics command which are
outside the screen boundaries.

$BE 190 INTERNAL INTEGRITY CHECK — System
modules or data are changed and no longer
reliable.

$BF 191 BUFFER SIZE IS TOO SMALL — The data you
assigned to a buffer is larger than the buffer.

08-9 Technical Reference

Code
HEX DEC
$CO 192
$C1 193
$C2 194
$C3 195
$C4 196
$C8 200
$C9 201
SCA 202
$CB 203
3CC 204
$CD 205
$CE 206

Code Meaning

ILLEGAL COMMAND — You have issued a
command in a form unacceptable to 0S-9.

SCREEN OR WINDOW TABLE IS FULL — You
do not have enough room in the system window
table to keep track of any more windows or
screens.

BAD/UNDEFINED BUFFER NUMBER — You
have specified an illegal or undefined buffer
number.

ILLEGAL WINDOW DEFINITION — You have
tried to give a window illegal parameters.

WINDOW UNDEFINED — You have tried to
access a window that you have not yet defined.

PATH TABLE FULL - 0OS-9 cannot open the
file, because the system path table is full.

ILLEGAL PATH NUMBER — The path number
is too large, or you specified a non-existent path.

INTERRUPT POLLING TABLE FULL — Your
system cannot handle an interrupt request,
because the polling table does not have room for
more entries.

ILLEGAL MODE — The specified device cannot
perform the indicated input or output function.

DEVICE TABLE FULL — The device table does
not have enough room for another device.

ILLEGAL MODULE HEADER — 0S-9 cannot
load the specified module because its sync code,
header parity, or Cyclic Redundancy Code is
incorrect.

MODULE DIRECTORY FULL — The module
directory does not have enough room for another
module entry.

C-2

System Error Codes /| C

Code
HEX DEC
$CF 207
$D0 208
$D1 209
$D2 210
$D3 211
$D4 212
$D5 213
$D6 214
$D7 215
$D8 216
$Dg9 217
$DA 218
$DB 219

Code Meaning

MEMORY FULL — Process address space is full
or your computer does not have sufficient memory
to perform the specified task.

ILLEGAL SERVICE REQUEST — The current
program has issued a system call containing an
illegal code number.

MODULE BUSY — Another process is already
using a non-shareable module.

BOUNDARY ERROR — 08-9 has received a
memory allocation or deallocation request that is
not on a page boundary.

END OF FILE — A read operation has encoun-
tered an end-of-file character and has
terminated.

RETURNING NON-ALLOCATED MEMORY —
The current operation has attempted to deallo-
cate memory not previously assigned.

NON-EXISTING SEGMENT — The file struc-
ture of the specified device is damaged.

NO PERMISSION — The attributes of the speci-
fied file or device do not permit the requested

access.

BAD PATH NAME — The specified pathlist con-
tains a syntax error, for instance an illegal
character.

PATH NAME NOT FOUND — The system can-
not find the specified pathlist.

SEGMENT LIST FULL — The specified file is
too fragmented for further expansion.

FILE ALREADY EXISTS — The specified file-
name already exists in the specified directory.

ILLEGAL BLOCK ADDRESS — The file struc-
ture of the specified device is damaged.

C-3

0S-9 Technical Reference

Code
HEX DEC
$DC 220
$DD 221
$DF 223
$EO 224
$E2 226
SE3 227
$E4 228
$E5 229
$E6 230
$E7 231
$E8 232
$E9 233
$EA 234

Code Meaning

PHONE HANGUP-DATA CARRIER DETECT
LOST — The data carrier detect is lost on the
RS-232 port.

MODULE NOT FOUND — The system received
a request to link a module that is not in the
specified directory.

SUICIDE ATTEMPT — The current operation
has attempted to return to the memory location
of the stack.

ILLEGAL PROCESS NUMBER — The specified
process does not, exist,.

NO CHILDREN — The system has issued a wait
service request but the current process has no
dependent process to execute.

ILLEGAL SWI CODE — The system received a
software interrupt code that is less than 1 or
greater than 3.

PROCESS ABORTED — The system received a
signal Code 2 to terminate the current process.

PROCESS TABLE FULL — A fork request can-
not execute because the process table has no
room for more entries.

ILLEGAL PARAMETER AREA — A fork call
has passed incorrect high and low bounds.

KNOWN MODULE — The specified module is
for internal use only.

INCORRECT MODULE CRC — The CRC for the
module being accessed is bad.

SIGNAL ERROR — The receiving process has a
previous, unprocessed signal pending.

NON-EXISTENT MODULE — The system can-
not locate the specified module.

C-4

System Error Codes / C

Code
HEX DEC
3EB 235
$EC 236
$ED 237
$EE 238
$EF 239

Code Meaning

BAD NAME — The specified device, file, or mod-
ule name is illegal.

BAD MODULE HEADER — The specified mod-
ule header parity is incorrect.

RAM FULL — No free system random access
memory is available: the system address space is
full, or there is no physical memory available
when requested by the operating system in the
system state.

UNKNOWN PROCESS ID — The specified pro-
cess ID number is incorrect.

NO TASK NUMBER AVAILABLE — All avail-
able task numbers are in use.

Device Driver Errors

I/O device drivers generate the following error codes. In most
cases, the codes are hardware-dependent. Consult your device
manual for more details.

Code
HEX DEC
$F0 240
$F1 241
$F2 242
$F3 243
$F4 244

Code Meaning

UNIT ERROR — The specified device unit
doesn’t exist,

SECTOR ERROR — The specified sector number

is out of range.

WRITE PROTECT — The specified device is

write-protected.
CRC ERROR — A Cyclic Redundancy Code error

occurred on a read or write verify.

READ ERROR — A data transfer error occurred
during a disk read operation, or there is a SCF
(terminal) input buffer overrun.

0OS-9 Technical Reference

Code
HEX DEC
3F5 245
$F6 246
8F7 247
$F8 248
$Fr9 249
$FA 250
$FB 251
$FC 252
3FD 253
$FE 254

Code Meaning

WRITE ERROR — An error occurred during a
write operation.

NOT READY — The device specified has a not
ready status.

SEEK ERROR — The system attempted a seek
operation on a non-existent sector.

MEDIA FULL — The specified media has insuf-
ficient free space for the operation.

WRONG TYPE — An attempt is made to read
incompatible media (for instance an attempt to
read double-side disk on single-side drive).

DEVICE BUSY — A non-shareable device is in

use.

DISK ID CHANGE — You changed diskettes

when one or more files are open.

RECORD IS LOCKED-OUT — Another process
is accessing the requested record.

NON-SHAREABLE FILE BUSY — Another pro-
cess is accessing the requested file.

/O DEADLOCK ERROR — Two processes have
attempted to gain control of the same disk area
at the same time.

C-6

Index

ACIAPAK 8-135
active process 2-12 - 2-13
queue 2-14, 8-98
state 2-13 - 2-14
address
find 64K block 8-85
lines 2-7
polling 2-17
space, add module 8-104
age, process 2-14
alarm, set 8-66
allocate
high RAM
image 8-70
memory 8-76
memory blocks
8-68
process descriptor 8-71
process task number
8-73
RAM 8-72
allocation
bit map 8-7
map sector 5-1
of memory 2-5 - 2-7
polling 2-17
allocation map

8-69

8-67 -

clear 8-13

disk 5-3
alpha screen

cursor 8-118

memory 8-117
ASM assembler 8-2
assembler, RMA 8-2
attach a device 8-44 - 8-45
attribute

byte 5-5,

file 5-12

background color, get 8-129
bell, set alarm 8-66
bit map 2-5

allocation 8-7

bit map (cont’d.)
search memory
allocation 8-33
block
allocate system
memory 8-106
deallocate system
memory 8-106
map into process
space 8-96
number 2-7
scroll 8-139
block map, system 8-18
boot
file, load 5-26
module, link 8-75
booting OS-9 1-3
bootstrap
memory request 8-76
system 8-75
border color, get 8-129
buffer
map (Get/Put) 8-138
reserve graphics 8-136
button
state, mouse 8-124 -
8-125, 8-126
timeout, mouse 8-140
byte
attribute 5-5
deallocate 64-byte
block 8-101
get from memory
block 8-94
get two bytes 8-95
read from path 8-59 -
8-60
store in task 8-109
calling process
insert in I/O queue 8-91
terminate 8-14
turn off 8-35, 8-43
CC3DISK 1-2

0S-9 Technical Reference

CC3GO module 2-19

CC3I0 1-2,6-1
chain 8-8 - 89
change

device operating
parameters 5-23
directory 8-46
character
read SCF input 6-13
write, SCF 6-14
ChgDir 4-4
child process 2-13
create 8-15 - 8-17
clear specified block 8-77
click 8-126
CLOCK 1.2
clock
module 1-2, 2-19
real-time 2-12, 2-17
close
file 4.7
path 8-47, 8-135
codes
signal 2-15
system error C-1
command interpreter 1-4
communication,
interprocess 2-16
compact module directory
8-88
compare strings 8-10
compatibility with Level
One 2-1
concurrent execution 7-1 -7-3
copy external memory 8-11
count, link 2-5
counter start, mouse 8-124
CPU 2-7
time 4-11
CRC
calculate 8-12
validate module
value 3-1-3-3
create
directory 8-55 - 8-56

8-111

create (cont'd.)
file B8-48 - 8-49
current
data directory 8-51
execution directory 8-51
cursor positioning 4-5
cyclic redundancy check 3-1 -
3-3

DAT
hardware 8-99
registers 8-103
to logical address 8-78
data
available, SCF test

8-113
directory 8-51
stream 4-3

transfer, pipes 7-1 - 7-3
move in memory 8-97
DAT image 8-70
conversion 8-78
copy into process
descriptor 8-102
deallocate block 8-77
high block 8-86
low block 8-87
pointer 8-95
DAT task number
release 8-99
reserve 8-100
date
get system 8-40
set. 8-38
deadlock 5-13
deadly embrace 5-13
deallocate
image RAM blocks 8-79
map bits 8-13
process descriptor 8-80
RAM blocks 8-81
task number 8-82
default palette registers
8-129, 8-149
delete file 8-50 - 8-51

Index

descriptions, system call 8-2
descriptor
get process
path 4-18
pointer 8-82
process 2-13
detach device 8-52
device
add or remove from
polling table 8-92
attach 8-44 - 8-45
attachment, verify
- 8-45
controller 5-15
control registers,
initialize 6-12
control registers, SCF
6-12
descriptor 1-4, 4-2, 4-17,
A-2
detach 8-52
modules 5-15
modules, RBF 5-8 - 5-10
modules, SCF 6-6 - 6-8
name, get 8-115
open path to 8-57 - 8-58
operating parameters,
RBF 5-23
operating parameters,
SCF 6-15
status 2-17 - 2-18, 8-63
status, get 8-54
table 4-2, 8-52
terminate, RBF 5-24
terminate, SCF 6-16
write to 8-64 - 8-65
device driver 1-3, 4-11
close path 8-135
modules 4-8
name 5-15

8-20

8-44

SCF 6-9 - 6-17

SCF subroutines 6-10 -
6-17

subroutines, RBF 5-16 -
5-27

device driver modules,
RBF 5-13 - 5-17
device interrupt 5-25
SCF 6-17
directory
attribute byte 5-5
change 8-46
disk 5-5
entry, module 8-83
get module 8-19
make 8-55-8-56
module 2-12, 8-88
disk
directories 5-5
sector read 5-19, 5-21
disk allocation map 5-3
sector 5-1
diskette format B-1
display
screen 8-143
status, get 8-115
drag 8-126
drive head, restore 8-131
duplicate path 8-53

editing, line 6-1, 8-61
end-of-file, test for 8-114
equate file 2-4
equivalent logical address
8-78
error
codes, system C-1-C-6
message, write 8-30
print 8-30
exclamation point, pipes 7-1 -
7-3
execute
mode 5-11
system calls
execution
directory 8-51
offset, module 3-7
exit calling process 8-14
external memory, read 8-11

8-1-82

08-9 Technical Reference

fatal signal 2-13
file
attribute byte 5-12
closing 4-7
create 4-4, 5-12, 8-48 -
8-49
deadlock 5-13
delete 4-5, 8-50 - 8-51
descriptor 5-3 - 5-4
execute mode 5-11
get pointer position
8-114
line reading/writing 4-6
load module 8-29
locking 5-12
non-shareable 5-12
opening 4-4
open path 8-57 - 8-58
permission bits 5-4
pipe 7-1-7-3
pointer 4-5, 8-62
position, RBF 8-114
read 5-1, 4-5
sharing 5-12
size, get 8-114
status, get 8-54, 8-114
update mode 5-11
write line to 8-64 - 8-65
writing 4-6
file manager 1-3
modules 4-3
name 5-15
find
64-byte block 8-85
module directory
entry 8-84
fire button 8-123 - 8-127
FIRQ 4-12
interrupt 2-17
flag, RAM In Use 8-81
flip byte 2-17
floppy diskette format B-1
foreground color, get 8-129
FORK 2-8
fork, child process 8-15 - 8-17

FORMAT 5-2
format
device descriptor 4-17,
A-2
INIT module A-3
memory module 3-6 -
3-7,A-1
of device driver
modules 4-10
track 8-132
function
calls 2-4 - 2-5, 8-1
key sense 8-133

get
a byte 8-94
free high block 8-86
free low block 8-87
ID 8-22
process pointer 8-89
status 8-54
Status system calls
8-112 - 8-130
system time 8-40
Get/Put buffer, map 8-138
GETSTA 8-112
SCF 6-15
GetStat 4-6
Getstats 5-23
graphics buffer
reserve 8-136
select 8-137
graphics interface 1-2
GRFINT 1-2

handler routine, virtual
interrupt 8-110

hard disk shutdown 8-133

hardware
controller, SCF 6-9
DAT registers 8-103
vector 2-16

header
module 3-1 - 3-2
parity 8-111

Index

header (cont’d.)
pattern, floppy
diskette B-1
high block, memory search
8-86
high-level
menu handler 8-122
menu manager 8-148
window handler 8-139
high-resolution
mouse adapter 8-126
screen, allocate 8-142
hold, button 8-126
O
calls 2-4 - 2-5,8-1
device accessing 2-11
module, delete 8-90
path, close 8-47
queue, insert calling
process 8-91
/O system 1-3 - 1-4
calls 2-1, 8-2
system modules 1-1 -
1-4, 4-1
transfers 4-8
ID
return caller’s
process 8-22
set user 8-39
identification sector 5-1
image, allocate 8-70
INIT 1-2, 5-18
INIT module 2-17
format A-3
link 8-75
Init, SFC 6-12
initialization table, SCF
device 6-6 - 6-8
initialize device memory 5-18
input buffer, read SCF
character 6-13
insert process 8-74
install virtual interrupt
8-110
intercept, set signal 8-21

interface
graphics
VDG 4-2
Windint 4-2
interprocess
communication 2-15
interrupt
device 5-25
enable, SCF 6-12
FIRQ 2-17
processing 2-1
IOMAN 1-2
IRQ 4-12
add/remove device from
polling table 8-92
interrupt 2-17
polling 2-17
polling table 2-18
service routine 5-25
IRQSVC routine 4-13
IRQSV 4-11

1-2

joystick value, get 8-116
kernel 1-2
key
repeat parameters,
set 8-147
sense function 8-133
status, get 8-120
keyboard scan 2-17

language byte 3-4
line
editing 6-1, 8-61
reads 4-6, 8-61
writes 4-6, 8-65
link
to memory module 8-23
- 8-24, 8-28
using module directory
entry 8-83
link count 2-5
decrease 8-42

OS-9 Technical Reference

load
boot file 5-26
byte from memory
block 8-94
from task offset 8-93
module 8-25 - 8-26, 8-29
two bytes 8-95
lock, end-of-lock 5-12

locking

files 5-12

record 5-10 - 5-11
logical

address space 2-6, 2-8
sector number 5-1
LSN 5"2’ 5'5

macro 2-4
MAKDIR 4-4
make directory 8-55 - 8-56
manager
file 1-3
random block 1-3
sequential file 1-3
map
block 8-96
search allocation 8-33
mask byte 2-18
memory
allocate 8-76
allocate blocks 8-67 -
8-68
allocate high RAM
change process data
size 8-27
deallocate 2-5
find low block 8-87
free screen 8-144
map 2-6
module format 3-6 - 3-7,
A-1
module, link 8-23 - 8-24
move data 8-97
page 2-5
pool 8-80
request, bootstrap 8-76

8-69

memory (cont’d.)
segment 2-8
memory allocation 2-5 - 2-7
memory block 2-7
find 64K 8-85
get byte 8-94
get high 8-86
map 8-81
map, search 8-72
memory management 2-1, 2-5
-2-12
unit 2-7 - 2-8
menu
manager, update
request 8-148
selection 8-122
message, write error
MMU registers 2-8
mnemonic name, LSN 5-2
MODPAK 8-135
module
add into address
space 8-104
body 3-1-3-2
clock 2-19
CRC calculate 8-12
decrease link count 8-42
delete I/O module 8-90
device descriptor 5-15
device driver 4-8
file manager 4-3
finding 2-12
format 3-1 - 3-8
link 8-28
link count, decrease
8-42
linking 1-2
load 8-25 - 8-26, 8-29
load and execute
primary 8-8-8-9
name 3-3
RBF-type device
drivers 5-13 - 5-17
SCF device descriptor
6-6 - 6-8

8-30

Index

module (cont’d.)
types 3-1, 3-5
unlink 8-41
validate 8-111
module directory 2-5, 2-12
compact 8-88
entry, link using 8-83
find 8-84
get 8-19
pointer 8-84
module header 3-1 - 3-3, 5-15
SCF device driver 6-9
monitor, set type 8-146
mouse
button state 8-125
button timeout 8-140
click 8-122
coordinates 8-127
countdown 8-125
countup 8-125
parameters, set 8-147
port 8-125
resolution 8-126
screen position 8-126
send signal to process 8-
141
status, get 8-123
timeout 8-124
window working area
8-127
move data 8-97
multiplexer 2-8
multiprogramming 2-12 -
2-16
management 2-1
multitasking 1-2

name parse 8-31 - 8-32
names, compare 8-10
next process 8-98

NMI interrupt 2-17
non-shareable file 5-12
number, path 8-53

open

file 8-48-8-49

path 8-57 - 8-38
operation of memory

management 2-8 - 2-12

08-9

Level One

compatibility 2-1

modules 1-2

scheduler 2-14 - 2-15
08S9P3 2-1

module 2-2

packet size 8-124
palette, get information 8-127
palette register 8-129
set default 8-149
settings 8-129
parameters, mouse and key
repeat 8-147
parent
directory 5-3
process 2-13
parity 8-136
parse name 8-31 - 8-32
path
close 8-47, 8-135
duplicate 8-53
open 8-57 - 8-58
read bytes 8-59 - 8-60
table 4-2
path descriptor 4-18, 5-5 -
read option section
8-112
SCF 6-2-6-6
write option section
8-130
permanent storage size,
module 3-7
physical address space 2-7
pipe file manager 4-3
PIPEMAN 1-2-1-3, 4-3
pipes 4-3,7-1-7-3

0S-8 Technical Reference

process descriptor 2-13 -
2-14, 8-102
deallocate 8-80
descriptor, allocate 8-71
get 8-20
pointer 8-82
processes
active 2-12
data size, change 8-27
process ID 2-13
return caller’s
pseudo vector 2-16
PutStat 4-6

RAM 2-5-2-7
allocate 8-63, 8-72
allocate blocks 8-70
allocation 2-13
blocks, deallocate 8-81
blocks, deallocate
image 8-79
interrupt vector 2-18
random
access 5-1
block file manager
4-3

8-22

1-3,

RBF
change file size 8-131
format track 8-132
get file size 8-114
manager 4-3
tables 5-14 - 5-17
read
bytes 8-59 - 8-60
device operating
parameters 5-23
disk sector 5-19
external memory 8-11
input character, SCF
6-13
line 6-2, 8-61
mode 5-11
gystem call 6-1
real-time clock 2-12, 2-17
record locking 5-10

reference
System Mode calls
8-6
User Mode system
calls 8-3 - 8-4
registers
DAT 8-103
MMU 2.8
release a task 8-99
request system memory
8-105
reserved memory 2-5 - 2.7
reserve task number 8-100
return
64 bytes 8-101
system memory 8-106
RMA assembler 8-2
ROOT directory 5-3, 5-5
RTS instruction 2-18

8-5 -

SCF
configure serial port
8-134 - 8-135
data available test
8-113
device control
registers 6-12
Getsta 6-15
manager 4-3
path descriptor 6-2 - 6-6
terminate device 6-16
scheduler, 0S-9 2-14 - 2-15
screen
allocate high-
resolution 8-142
convert type 8-145
display 8-143
free memory 8-144
mouse position §-126
palette 8-127
size, get 8-119
type 8-128, 8-142, 8-145
scroll block, install 8-139
search bits 8-33

Index

sector 5-3
pattern, floppy
diskette B-1
seek, file pointer 8-62
segment, memory 2-8
select graphics buffer 8-137
send signal 8-34
sequential character
file manager 1-3, 4-3
/'O 6-1
serial port configuration
8-121
service
request processing 2-1
routine, IRQ 5-25
set
alarm 8-66
date 8-38
IRQ 8-92
priority 8-36
process DAT image
8-102
process task DAT
registers 8-103
status 8-63
SVC 8-107 - 8-108
SWI 8.37
time 8-38
user [D 8-39
Setstats 5-23
Set Status system calls
- 8-150
shareable bit 3-5
sharing, file 5-12
shell 1-4
shutdown hard disk 8-133
signal 2-15 - 2-16
codes 2-15
fatal 2-13
from mouse to
process 8-141
intercept trap 2-15 -
2-16
intercept, set 8-21
send to process 8-34

8-130

single-user

attribute 5-12

bit, files 5-12
size

of screen 8-119

of window 8-119
sleep

calling process 8-35
sleeping process 2-14, 2-16
slices, time 2-12
sound, create 8-150
speaker, create sound 8-150
state

active 2-13

of button 8-126

sleeping 2-14

suspend 4-13

waiting 2-13
static storage address 2-18
status

display 8-115

get, SCF 6-15

get mouse 8-123 - 8-127

of key 8-120

register 2-17

set, SCF' 6-15
status, get 8-54
status, set 8-63
store byte in a task 8-109
string, scan input 8-31 - 8-32
strings, compare 8-10
subroutines

RBF device driver 5-16 -

5-27
SCF device drivers 6-10
- 6-17

suspend

bit 4-13 - 4-14

state 4-13
SWI, set 8-37
SWI2 instruction 2-4
symbolic names 2-4
sync byte 3-3
synonymous path number,

return 8-53

0S-9 Technical Reference

system

block map, get 8-18

boot 1-3

bootstrap 8-75

date, get 8-40

device, attach 8-44

error codes C-1 - C-6

initialization 2-1

link 8-104

mode call reference 8-5 -
8-6

time, get 8-40

system call

add 8-107 - 8-108

descriptions 8-2, 2-4

execution 8-1 - 8-2

get status 8-112 - 8-130

mnemonics names 8-1

User Mode reference 8-3
-84

system memory

system modules

table

task

task

allocate high RAM 8-69

block map 8-81

deallocate 8-106

module directory, get
8-19

request 8-105

1-1-14

device 8-52

IRQ polling 2-18

RBF 5-14 - 5-17

SCF device descriptor
6-6 - 6-8

VIRQ 2-20

map 2-12

offset, load from 8-93
register 2-8

release 8-99

store byte 8-109
number 8-73

DAT 8-100
deallocate 8-82

terminal, create sound 8-150

terminate
a device 5-24
calling process 8-14
SCF device 6-16
ticks 4-11
time
CPU 4-11
get system 8-40
set 8-38
sharing 2-11
slice 2-16, 2-12
timeout, mouse 8-124
track
format 8-132

restore drive head 8-131

trailer pattern, floppy
diskette B-1
trap, signal intercept 2-15 -
2-16
type
convert screen 8-145
of screen 8-128
set monitor 8-146
window screen 8-142

unlink module 8-41 - 8-42
update mode 5-11
user calls 2-5
user ID 2-13
set 8-39
User Mode system calls
reference 8-3 - 8-4

validate module 8-111
VDG 1-2
alpha screen cursor
8-118
alpha screen memory
8-117
interface 4-2
vector
pseudo 2-16
set SWI 8-37
vectoring 2-16

10

Index

verify device attachment
8-44 - 8-45
video display generator 1-2
VIRQ 2-19 - 2-20
polling table 2-19 - 2-20
virtual interrupt, install
8-110

wait
calling process 8-43
state 2-13 - 2-14
waiting process 2-13
wildcard 4-6
WINDINT 1-2
Windint interface 4-2
window
descriptors 1-2
high-level handler 8-139
pointer location 8-124
screen, type 8-142
size, get 8-119
type 8-145
working area, mouse
8-127

working directory, change
8-46
write
character to SCF
output 6-14
disk sector 5-21
path descriptor 8-130 -
8-131
to file or device 8-64
write line 8-65
line system call 6-2

11

9108 V8

Z0L9. SEXIL ‘YoM 1404
uoijelodion Apue] Jo UoISIAIg Y

MOVHS OiIavyd

	Cover
	OS-9 Level Two Development System
	Contents
	USA Limited Warranty
	Interactive Debugger
	Table of Contents
	Chapter 1/ Introduction
	Calling Debug
	Basic Concepts

	Chapter 2/ Expressions
	Constants
	Special Names
	Register Names
	Operators
	Forming Expressions
	Indirect Addressing

	Chapter 3/ Debug Commands
	Calculator Commands
	Dot and Memory Examine/Change Commands
	Incrementing Dot
	Decrementing Dot
	Changing Dot
	Changing Dot's Contents

	Register Examing/Change Command
	Breakpoint Commands
	Setting Breakpoints
	Removing Breakpoints

	Program Setup and Run Commands
	GOTO Command
	LINK Command

	Utility Commands
	Clearing Memory
	Displaying Memory
	Searching Memory
	Shell Command
	Quitting Debug

	Chapter 4/ Using Debug
	Sample Program
	Using Debug
	Patching Programs
	Patching OS-9 Component Modules

	Chapter 5/ Debug Command and Error Codes
	Debug Command Summary
	Dot Commands
	Register Commands
	Program Setup and Run Commands
	Breakpoint Commands
	Utility Commands

	Debug Error Codes

	Index
	A-B-C
	C-D
	D-G-H-I-K-L-M
	N-O-P-Q-R-S
	T-V-W

	Screen Editor
	Table of Contents
	Chapter 1/ Introduction
	Modes of Operation
	Starting Scred
	Available options

	Chapter 2/ The Termset File
	Modifying the Termset File
	The Termset File Format
	The Termset Fields

	Chapter 3/ Command Mode
	Changing to the Edit Mode
	Changing to the Inser t Mode
	Manipulating the Edit Buffer
	Saving Text
	Removing Text
	Searching for Strings
	Changing Strings
	Using Wild Cards
	Miscellaneous Commands
	Exiting Scred

	Chapter 4/ Edit Mode
	Getting Help
	Controlling the Cursor
	Scrolling the Screen
	Moving to a Specific Line
	Finding a String
	Replacing Strings
	Deleting Text
	Inserting or Replacing a Single Character
	Cutting and Pasting
	Editing Lines
	Display the Status Line

	Chapter 5/ Insert Mode
	Chapter 6/ Quick Reference
	Command Mode
	Edit Mode
	Cursor Movement Commands
	Cut and Paste Commands

	Insert Mode

	Index
	A-B-C
	C
	C-D-E-F-G-H-I
	I-J-K-L-M-N-O-P
	Q-R-S-T
	U-V-W

	Relocating Macro Assembler
	Table of Contents
	Chapter 1/ Introduction
	Installation
	Using the RMA
	Available Options

	Chapter 2/ General Information
	Source File Format
	The Label Field
	The Operation Field
	The Operand Field
	The Comment Field

	The Assembly Listing Format
	Evaluation of Expressions
	Expression Operands
	Expression Operators
	Symbolic Names

	Symbolic Names for System Calls
	The DEFS Directory
	The LIB Directory

	Chapter 3/ Macros
	Macro Structure
	Macro Arguments
	Special Arguments

	Automatic Internal Labels
	Documenting Macros

	Chapter 4/ Program Sections
	Program Section Declarations

	Chapter 5/ Program Section Directives
	PSECT Directive
	VSECT Directive
	CSECT Directive

	Chapter 6/ Assembler Directive Statements
	END Statement
	EQU an SET Statements
	FAIL Statement
	IF, ELSE, abd ENDC Statements
	NAM and TTL Statements
	OPT Statement
	PAG and SPC Statements
	REPT and ENDR Statement
	RMB Statement
	USE Statement

	Chapter 7/ Pseudo-Instructions
	FCB and FDB Statements
	FCC and FCS Statements
	RZB Statement
	OS9 Statement

	Chapter 8/ Accessing the Data Area
	Using Non-Initialized Data
	Using Initialized Data

	Chapter 9/ Using the Linker
	Running the Linker
	Available Options

	Chapter 10/ Error Messages
	Chapter 11/ Examples
	LSIT
	UpDn

	Appendix A/ 6809 Instructions and Addressing Modes
	Index
	A-B
	C-D
	D-E-F
	F-G-H-I-K-L
	L-M-N
	N-O-P-R
	R-S
	S
	T-U-V-W

	Utilities
	Table of Contents
	Chapter 1/ Introduction
	Chapter 2/ Make Utility
	Using Make
	Examples

	What is a Makefile?
	Built-in Rules and Definitions
	Macros
	Special Macros
	Reserved Macros
	Commands
	Comments
	Long Lines

	How Make Works
	Notes about Make
	Examples of Makefiles
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Chapter 3/ Touch Utility
	Examples

	Chapter 4/ Virtual Disk/RAM Disk Driver
	Initializing VDD

	Index
	A-D
	E-F-I-M
	M-O-P-R-S
	S-T-V

	Commands
	Table of Contents
	Chapter 1/ Introduction
	Chapter 2/ Command Reference
	BINEX
	DUMP
	EXBIN
	LOGIN
	MODPATCH
	MONTYPE
	PARK
	SAVE
	SLEEP
	TEE
	TSMON
	VERIFY

	Index
	A-B-C-D-E
	E-F-I-L-M-N-O-P
	P-R-S-T-U
	V-W

	Divider
	OS-9 Technical Reference
	Table of Contents
	Chapter 1/ System Organization
	I/O System Modules
	Color Computer OS-9 Modules
	Kernel, Clock Module, and INIT
	Input/Output Modules
	I/O Manager
	File Managers
	Device Drivers

	Shell

	Chapter 2/ The Kernel
	System Initialization
	System Call Processing
	OS9Defs and Symbolic Names
	Types of System Calls

	Memory Management
	Memory Use
	Color Computer OS-9 Typical Memory Map
	Memory Management Hardware

	Multiprogramming
	Process Creation
	Process States
	Execution Scheduling
	Signals

	Interrupt Processing
	Logical Interrupt Polling System

	Virtual Interrupt Processing
	VIRQ Example #1

	Chapter 3/ Memory Modules
	Module Types
	Module Format
	Module Header
	Module Body
	CRC Value

	Module Headers: Standard Information
	Sync Bytes
	Module Size
	Offset to Module Name
	Type/Language Byte
	Attributes/Revision Level Byte
	Header Check

	Module Headers: Type-Dependent Information
	Executable Memory Module Format

	Chapter 4/ OS-9's Unified Input/Output System
	I/O System Modules
	The I/O Manager
	File Managers
	File Manager Structure
	Create, Open
	Makdir
	ChgDir
	Delete
	Seek
	Read
	Write
	ReadLn
	WriteLn
	GetStat, PutStat
	Close

	Interfacing with Device Drivers
	Device Driver Modules
	Device Driver Module Format

	OS-9 Interaction With Devices
	Suspend State (Level Two only)
	Device Descriptor Modules
	Device Desciptor Format

	Path Desciptors

	Chapter 5/ Random Block File Manager
	Logical and Physical Disk Organization
	Identification Sector (LSN 0)
	Disk Allocation Map Sector (LSN 1)
	Root Directory
	File Descriptor Sector

	Directories
	The RBF Manager Definitions of the Path Descriptor
	RBF-Type Device Driver Modules
	The RBF Device Memory Area Definitions
	RBF Device Driver Subroutines
	Init
	Read
	Write
	Getstats and Setstats
	Term
	IRQ Service Routine
	Boot (Bootstrap Module)

	Chapter 6/ Sequential Character File Manager
	SCF Line Editing Functions
	Read and Write
	Read Line and Write Line
	SCF Definitions of the Path Descriptor

	SCF-Type Device Descriptor Modules
	SCF-Type Device Driver Modules
	SCF Device Driver Subroutines
	Init
	Read
	Write
	Getsta and Setsta
	Term
	IRQ Service Routine

	Chapter 7/ The Pipe File Manager (PIPEMAN)
	Chapter 8/ System Calls
	Calling Procedure
	I/O System calls
	System Call Descriptions
	User Mode System Calls Quick Reference
	System Mode Calls Quick Reference
	User System Calls
	Allocate Bits
	Chain
	Compare Names
	Copy External Memory
	CRC
	Deallocate Bits
	Exit
	Fork
	Get System Block Map
	Get Module Directory
	Get Process Descriptor
	Intercept
	Get ID
	Link
	Load
	Memory
	Link to a Module
	Load a Module
	Print Error
	Parse Name
	Search Bits
	Send
	Sleep
	Set Priority
	Set SWI
	Set Time
	Set User ID Number
	Time
	Unlink
	Unlink a Module by Name
	Wait

	I/O User System Calls
	Attach
	Change Directory
	Close Path
	Create File
	Delete File
	Delete A File
	Detach Device
	Duplicate Path
	Get Status
	Make Directory
	Open Path
	Read
	Read Line With Editing
	Seek
	Set Status
	Write
	Write Line

	Privileged System Mode Calls
	Set an Alarm
	Allocate 64
	Allocate High RAM
	Allocate Image
	Allocate Process Descriptor
	Allocate RAM
	Allocate Process Task Number
	Insert Process
	Bootstrap System
	Bootstrap Memory Request
	Clear Specified Block
	DAT to Logical Address
	Deallocate Image RAM Blocks
	Deallocate Process Descriptor
	Deallocate RAM Blocks
	Deallocate Task Number
	Link Using Module Directory Entry
	Find Module Directory Entry
	Find 64
	Get Free High Block
	Get Free Low Block
	Compact Module Directory
	Get Process Pointer
	I/O Delete
	I/O Queue
	Set IRQ
	Load A From Task B
	Get One Byte
	Get Two Bytes
	Map Specific Block
	Move Data
	Next Process
	Release A Task
	Reserve Task Number
	Return 64
	Set Process DAT Image
	Set Process TASk DAT Registers
	System Link
	Request System Memory
	Return System Memory
	Set SVC
	Store a Byte in A Task
	Install Virtual Interrupt
	Validate Module

	Get Status System Calls
	SS.OPT
	SS.RDY
	SS.SIZ
	SS.POS
	SS.EOF
	SS.DevNm
	SS.DSTAT
	SS.JOY
	SS.AlfaS
	SS.Cursr
	SS.ScSiz
	SS.KySns
	SS.ComSt
	SS.MnSel
	SS.Mouse
	SS.Palet
	SS.ScType
	SS.FBRgs
	SS.DFPal

	Set Status System Calls
	SS.OPT
	SS.SIZ
	SS.RESET
	SS.WTRK
	SS.SQD
	SS.ComSt
	SS.Close
	SS.AAGBf
	SS.SLGBf
	SS.MpGPB
	SS.WnSet
	SS.Mouse
	SS.MsSig
	SS.A.Scrn
	SS.DScrn
	SS.FScrn
	SS.PScrn
	SS.Montr
	SS.GIP
	SS.UMBAR
	SS.DFPal
	SS.Tone

	Appendix A/ Memory Module Diagrams
	Executable Memory Module Format
	Device Descriptor Format
	INIT Module Format

	Appendix B/ Standard Floppy Disk Format
	Color Computer 3

	Appendix C/ System Error Codes
	001-191
	192-206
	207-219
	220-234
	235-239
	Device Driver Errors
	240-244
	245-254

	Index
	A-B-C
	C-D
	D-E
	F-G-H
	H-I-J-K-L
	L-M
	M-N-O-P
	P-R-S
	S
	S-T-U-V
	V-W

	Back Cover

