0S-9
Commands
Reference

08-9® Level Two Operating System
©1983, 1986 Microware Systems Corporation.
Licensed to Tandy Corporation.
All Rights Reserved.

0S-9 Commands:
©1986 Tandy Corporation
and Microware Systems Corporation.
All Rights Reserved.

Reproduction or use, without express written permission
from Tandy Corporation or Microware Systems
Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in preparation of
this manual to assure its accuracy, neither Tandy
Corporation nor Microware Systems Corporation assumes
any liability resulting from any errors in or omissions
from this manual, or from the use of the information
contained herein.

Contents

Chapter 1 Introduction 1-1
TheKernelco i, 1-1
The Input/Output Manager 1-2

Device Drivers i, 1-2
Device Descriptorsc.ooiiiiiiiiiiii .. 1-2
TheShell i 1-3
Going On ... e e e 1-3

Chapter 2 The OS-9 File System 2-1
Input/Output Paths o .. 2-1
Disk Directories, 2-2

Subdirectories i i 2-3
DiskFiles ... e 2-3
SECtOrS vt e e 2-4
TextFiles e 2-5
Random-Access Data Files 2-6
ProcedureFiles i, 2-6
Executable Program Module Files 2-7
Miscellaneous File Usecooiviiinvviione, 2-8
The File Security System 2-8
Examining and Changing File Attributes 2-9
Record Lockout 2-11
Device Namescciiiiiiiiiiiiiiinnnnn.. 2-12

Chapter 3 Advanced Features of the Shell 3-1
More About Command Line Processing 3-1
Command Modifierscooviiiiiiiiiiinenennnn. 3-3

Execution Modifiersccciiiiiiia.... 3-3
Alternate Memory Size Modifier 3-3
I/0 Redirection Modifiers 3-4
Command Separatorscccovviieenn... 3-5
Sequential Execution Using the

Semicoloniiiiii e 3-6
Concurrent Execution Using the

Ampersand i, 3-6
Combining Sequential and Concurrent

Executions i, 3-7
Using Pipes: the Exclamation Mark 3-7
Raw Disk Input/Output 3-8

Command Groupingcviiiiiininrnennnn. 3-9

Shell Procedure Files ..., 3-10

Built-in Shell Commands and Options 3-11
Running Compiled Intermediate Code Programs 3-12
Chapter 4 Multiprogramming and Memory
Managementcoeviiiinieenennn. 4-1
Processor Time Allocation and Timeslicing 4-1
ProcessStates i 4-2
Creation of Processescovviiiinnnennnnnn. 4-3
Basic Memory Management Functions 4-5
Loading Program Modules Into Memory 4-6
Deleting Modules From Memory 4-7
Loading Multiple Programs 4-8
Chapter 5 Useful System Information
and Functions 5-1
File Managers, Device Drivers, and Descriptors 5-1
The Sys Directorycooieieeriiiiiiinnenennn. 5-2
The Startup File o i, 5-3
The CMDS Directorycciviiiiiniennanennn. 5-3
Making New System Diskettes 5-3
Technical Information for the RS-232 Port 5-4 .
Chapter 6 System Command Descriptions 6-1
Organization of Entries oot 6-1
Command Syntax Notations 6-1
Command Summaryccouiiniriineeennaean, 6-3
Chapter 7 Macro Text Editor 7-1
OV VIBW . ot e ettt et e e e 7-1
TextBuffers i 7-1
EditPointerscoiiiiiieeriiiiiiinnenn 7-1
Entering Commandscoovin.n. LU T-2
Control Keys ...ttt e 7-2
Command Parametersc.covivieneeennn. 7-3
Numeric Parametersooian. 7-3
String Parameterscccciiienennann. 7-4
Syntax Notationcccoiiiiiiiiiiiiinnn.. 7-4
Getting Started it 7-4
Edit Commandsc.ooeviiniiiniiiiiiiiaan 7-6
Displaying Text ...t 7-6
Manipulating the Edit Pointer 7-7

Inserting and Deleting Lines 7-10

Searching and Substituting 7-13

Miscellaneous Commands 7-14

Manipulating Multiple Buffers 7-17

Text File Operationsccvvivne.... 7-18

Conditionals and Command Series Repetition 7-21

Edit Macrosccoiiiiiiiiiiiiniannnn. 7-25

MacroHeaderscooiiiiinno.... 7-25

UsingMacrosccoovviiiiiiiiinnnnnnann. 7-26

Macro Commandsccvvvineinnnnnen... 7-28

Sample Session 1ccoiiiiiiiiiiii 7-32

Sample Session 2 i 7-38

Sample Session 3 i 7-40

Sample Session 4 i 7-45

Sample Session 5 i 7-49

Edit Quick Reference Summary 7-55

EditCommandscoviiiiiinnn... 7-55

Pseudo Macrosc.oiviiiiiiinnnnnnnn.. 7-57

Editor Exror Messagesccvuureunuennn.. 7-59
Appendices

A OS9ErrorCodesiviiiiiiininunnnnn. A-1

Device Driver Errorscccooun... A-5

B Color Computer 2 Compatibility B-1

Alpha Mode Displayccoviiiiiinnnnn... B-3

Using Alpha Mode Controls with Windows B-3

Alpha Mode Command Codes B-4

Graphics Mode Displaycoovvvneen.... B-6

Graphics Mode Selection Codes B-6

Graphics Mode Control Commands B-7

Display Control Codes Summary B-9

C OS9KeyboardCodescccuvvuuun.. C-1

D OS-9 Keyboard Control Functions D-1

Index

Chapter 1

Introduction

Getting Started With OS-9 contains the information you must
know to use the system. However, the handbook reveals only a
small part of 0S-9’s capabilities. To learn about all of its fea-
tures, you need to know more about how OS-9 works. This intro-
duction provides such basic background information.

The Kernel

At the center of the 0S-9 system is a module (program) called a
kernel. (See the following illustration.) The kernel provides basic
system services, such as multitasking and memory management.
It links other system modules and serves as the system adminis-
trator, supervisor, and resource manager.

Figure 1
Term is your keyboard and video.
T1 and T2 are additional terminals.
P is a printer.
M1, M2, and M3 are modems.

1-1

0S-9 Commands Reference

The Input/Output Manager

Although the kernel manages 0S-9, it does not directly process
the input and output of data among the other modules and your
computer hardware (printers, disk drives, terminals, and so on).
Instead the kernel passes this responsibility to the input/output
manager, IOMAN.

IOMAN has three submanagers: a character file manager, a pipe
file manager, and a disk file manager. The responsibilities of
these managers are as follows:

The Character Handles the transfer of data between 0S-9

File Manager and character devices (devices that operate
on a character-by-character basis, such as
terminals, printers, or modems). The
sequential character file manager (SCF) can
handle any number or type of such devices.

The Pipe File Handles communication between processes
Manager or tasks. Pipes let you use the output of one
process as the input of another process.

The Disk File This Random Block File Manager (RBF)

Manager handles the transfer of data to and from
block-oriented, random access devices, such
as a disk drive system.

Device Drivers

CC3I0, PIPER, and CC3DISK are device drivers. These files con-
tain code that transforms standard data into a form acceptable
to a particular device, whether it is a terminal, printer, modem,
disk drive, any other device, or another file. PIPES transfers
data between processes.

Device Descriptors

Term, T1, P, M1, DO, and so on, are device descriptors. These
files describe the devices connected to the system. They contain
device initialization data as well as code that directs 0S-9 to the
physical addresses of the ports to which devices are connected.

Introduction | 1

The Shell

The kernel, in conjunction with IOMAN and its associated man-
agers and modules, make up the OS-9 operating system. These
modules handle all of the system’s functions. However, OS-9
needs directions before it can accomplish useful tasks.

Directions to the system have two sources: commands and appli-
cations or computer language programs.

Before commands are useful to the kernel, the shell must inter-
pret them. It analyzes commands and converts them into code
that the kernel can understand.

Some application programs and computer languages also use the
shell’s functions. Others can access the kernel directly and do not
need to go through the shell.

Going On

Chapters 2 through 5 contain detailed information on the opera-
tion of the O0S-9 system illustrated in Figure 1. These chapters
more fully describe the composition of files and directories. They
tell about advanced features of commands and of the shell and
contain information on multiprogramming and memory
management.

Chapter 6 contains descriptions of the 0S-9 commands. Chapter
7 tells you how to use 0S-9’s Macro Text Editor.

1-3

Chapter 2

The 0S-9 File System

Input and output refer to the data your computer system
receives and the data that it sends. OS-9 can receive (input)
data from a keyboard, disk files, modems, and other terminals. It
can send (output) data to all of these devices—except the key-
board—and to a video display.

0S-9 receives and sends data in the same format, regardless of
whether the destination is a file or a device. It overcomes the dif-
ferences in the devices by defining a standard for them and using
device drivers to make each device conform to the standard. The
result: a much simpler and more versatile input/output system.

Input/Output Paths

The base of 0S-9’s unified I/O system is an organization of
paths. Input/output paths are, in effect, software links between
files. (Remember, 0S-9 thinks of all devices as files.)

Individual device drivers process data so that it conforms to the
hardware requirements of the device involved. Data transfer is in
streams of 8-bit bytes that can be either bidirectional (read/
write) or unidirectional (read only or write only), depending on
the device, how you establish the path, or both. A byte is a unit
of computer data. (A byte may contain the code for one alphabet
character.) A bit is a binary digit and has a value of either 0 or
1.

0S-9 does not require the data it manages to have any special
format or meaning. The meaning of the data is determined by
the programs that use it.

Some of the advantages of such a unified I/O system are:

@ Programs operate correctly regardless of the /O devices
selected.

e Programs are highly portable from one computer to
another, even when the computers have different types of
I/0 devices.

@ You can redirect I/O to alternate files or devices when
you run a program, without having to alter the program.

2-1

0S-9 Commands Reference

® You can easily create and install new or special device
driver routines.

Disk Directories

A directory is a storage place for other directories and files. It
contains the information about the directories and files assigned
to it so that OS-9 can easily find and access the data they
contain.

Each disk has its own directory system. For example, a typical
system diskette, diagrammed partially and simply, might look
like this:

DO (Drive /DQ)

|

/D0 ROOT Directory

v v

SYS Startup CMDS

Errmsg

. Lo

copy list dir del format

The ROOT directory of /DO—the ROOT from which the rest of
the disk’s file system grows—contains a file called Startup and
two directories, SYS and CMDS.

SYS and CMDS, in turn, contain files: SYS contains Errmsg,
and CMDS contains Copy, List, Dir, Del, and Format. All these
files and directories, and many more, come built into the O0S-9
system.

0OS-9 organizes each directory area into 32-byte records. The
first 29 bytes contain filename characters. The first byte of the
name has its sign bit (the leftmost or most significant bit) set.
When you delete a file, it is not immediately destroyed. Rather,
the deletion process sets the first character position of the record
to zero, and OS-9 no longer recognizes the record. Although the
file contents still exist, they are no longer accessible to you or
08-9. Subsequent file creations overwrite deleted records.

2-2

The OS-9 File System [2

The last three bytes of a record make up a 24-bit binary number
that is the logical sector number pointing to the file descriptor
record. Logical sectors are numbered with reference to the
sequence of their use, rather than their physical location on a
disk. See “Disk Files” for more information on disk organization.

You create directories using the MAKDIR command and can
identify them by the D (directory) attribute. (See “Examining
and Changing File Attributes”.) MAKDIR initializes each direc-
tory with two entries having the names “” and “.”. These
entries contain the logical sector numbers of the directory and
its parent directory, respectively.

You cannot use the COPY and LIST commands (as described in
Getting Started With 0S-9) with directories. Instead, use DSAVE
and DIR.

You cannot delete directories directly. You must first empty a
directory of files, convert it into a standard file, and then delete
it. However, the DELDIR command performs all these functions
automatically.

Subdirectories

A subdirectory is a directory residing in another directory.
Actually, all directories you create are subdirectories, since all
directories branch from the ROOT directory. However, because
the system automatically creates the ROOT directory when you
format a disk, this manual does not consider directories residing
in the ROOT directory to be subdirectories.

Subdirectories can contain files and other subdirectories. In
effect, OS-9 catalogues files and directories in much the same
way that you might put files pertaining to a particular subject
in a file cabinet drawer. With OS-9, you can have as many direc-
tory levels as your disk storage space permits.

Disk Files

A disk file is a logical block of data. (Logical means that
although the data might not actually exist in a contiguous block,
OS-9 treats it as though it does.) A file can contain a program,
text, a command, a computer language, or any other form of
code. Every time you ask OS-9 to store data on a disk, you must
specify a filename for that block of data. Both you and the sys-
tem must then use the filename to access the data.

2-3

0S-9 Commands Reference

The system stores all files as an ordered sequence of 8-bit bytes.
The file can be any size from O bytes to the maximum capacity
of the storage device and can be expanded or shortened as
desired.

When OS-9 creates or opens a file, it establishes a file pointer for
it. OS-9 addresses bytes within the file in the same manner it
addresses memory, and the file pointer holds the address of the
next byte to write or read. 0S-9’s read and write functions
always update the pointer as the system transfers data.

This pointer function lets assembly-language programmers and
high-level language programmers reposition the file pointer. To
expand a file, write past the previous end of the file. Reading up
to the last byte of a file causes the next read request to return
an end-of-file status.

0S-9’s file system also uses a universal organization for all I/O
devices. This feature means that application programs can treat
each hardware device similarly. The following section gives basic
information about the physical file structure used by 0S-9. (For
more information, see the OS-9 Level Two Technical Reference
manual.)

Sectors

The data contained in a file is stored in one or more sectors (disk
storage units). These file sectors have both a logical and a physi-
cal arrangement. The logical arrangement numbers the sectors
in sequence. The physical arrangement can be in any order
based on the actual location of a sector on a disk’s surface. For
instance, Logical Sector 1 might be located at Physical Sector
10, and Logical Sector 2 might be located at Physical Sector 19.

Each sector contains 256 data bytes. The first sector of every file
(Logical Sector Number 0 or LSN 0) is called the file descriptor.
It contains the logical and physical description of the file. The
disk driver module links sector numbers to physical track/sector
numbers on a disk.

A sector is the smallest physical unit of a file that OS-9 can
allocate for storage. On the Color Computer, a sector is also the
smallest file unit. (To increase efficiency on some larger-capacity
disk systems, 0S-9 uses uniform-sized groups of sectors, called
clusters, as the smallest allocatable unit. A cluster is always an
integral power of two—2, 4, 8, and so on.)

24

The OS-9 File System / 2

05-9 uses one or more sectors of each disk as a bitmap (usually
starting at LSN 1) in which each data bit corresponds to one
cluster on the disk. The system sets and clears bits to indicate
which clusters it is using, which clusters are defective, and
which clusters are free for allocation. The Color Computer
default floppy disk system uses this format:

® Double-density recording on one side
e 35 tracks per diskette

@ 18 sectors per track

® One sector per cluster

Each 0S-9 file has a directory entry that includes the filename
and the logical sector number of the file’s file descriptor sector.
The file descriptor sector contains a complete description of its
file, including:

e Attributes

@ Owner

Date and time created
@ Size
@ Segment list (description of data sector blocks)

Unless the file size is 0, the file uses one or more sectors/clusters
to store data. The system groups data sectors into one or more
adjacent blocks called segments.

Text Files

Text files contain variable-length lines of ASCII characters. A
carriage return (ASCII code 0D hexadecimal or 13 decimal) ter-
minates each line. Text files contain such data as program
source code, procedure files, messages, and documentation.

Programs usually read text files sequentially. Almost all high-
level languages (such as BASIC09) support text files.

Use LIST to examine the content of text files.

2-5

0S-9 Commands Reference

Random-Access Data Files

Random-access files consist of sequences of records, with each
record the same length. A program can find any record’s begin-
ning address by multiplying the record number by the number of
bytes used for each record. This feature allows direct access of
any record.

Usually, high-level languages let you subdivide records into
fields. Each field can have a fixed length and use. For example,
the first field of a record can be 25 text characters in length, the
next field can be two bytes in length and used to hold 16-bit
binary numbers, and so on.

08-9 does not directly process records. It only provides the basic
file functions used by high-level languages to create and handle
random-access files.

Programmers use high-level languages like BASIC09, Pascal,
and C to create random-access data files. For instance, in
BASIC09 and Pascal, GET, PUT, and SEEK functions operate
on random-access files.

Procedure Files

Procedure files are disk files that contain commands. You can
use them to execute a series of commands by typing and enter-
ing a single command name.

Your System Master diskette contains one procedure file named
Startup. You can create your own procedure files using the
BUILD command, copying input from the keyboard to a file, or
by using a text editor program. For instance, suppose you have
three disk drives, /D0, /D1, and /HO. You could create three very
simple procedures to allow you to look at the directories of these
disks by typing and entering a simple two-character command.

To create a procedure file to look at the directory of /D1, type:

build p1
display @C (ENTER]
dir /d1
display @A (ENTER)

2-6

The OS-9 File System [2

The first line creates a file named P1 (print directory for Drive
/D1). When you press [ENTER), a question mark appears on the
screen telling you that 0S-9 is waiting for input. Type the rest
of the lines. Finally, press at the beginning of a line to
tell OS-9 that the input is complete. 0OS-9 closes the file.

Now, to see the contents of Drive /D1, type p1 (ENTER). The com-
mand display 6C clears the video screen. The command
display @A causes the cursor to drop down one line on the
screen.

Use your imagination. Almost anything you can do from the key-
board, you can do with a procedure file. However, remember that
0S-9 looks only in the current data directory for a procedure
file, unless you provide a full pathlist to the procedure. Also,
0S-9 must be able to find any command in the current execution
directory that is part of a procedure file. If the current execution
directory does not contain the commands you need, change it,
either from the keyboard or as part of your procedure file.

Executable Program Module Files

08-9 program modules are executable program code, generated
by an assembler or compiled by a high-level language. A file can
contain one or more program modules.

Each module has a standard format that includes the object code
(the executable portion of the module), a module header that
describes the type and size of the module, and a CRC (Cyclic
Redundancy Checksum) value. The system stores program mod-
ules in files in the same structure in which they load into mem-
ory. Because OS-9 programs are position-independent, they do
not require specific memory addresses for loading.

For OS-9 to load program module(s) from a file, the file execute
attribute must be set, and each module must have a valid mod-
ule header and CRC value. If you or the system alters a program
module in any way (either as a file or in memory), its CRC
check value becomes incorrect, and 0S-9 cannot load the module.

If a file contains two or more modules, OS-9 treats them as a
group and assigns contiguous memory locations for them.

0S-9 Commands Reference

Using LIST on program files or any other files that contain
binary data, causes a jumbled display of random characters and
an error message.

Miscellanecus File Use

OS-9’s basic file functions are so versatile that you can devise
almost unlimited numbers of special-purpose file formats for
particular applications that require formats not discussed here
(text, random-access, and so on).

The File Security System

Each file and directory has properties called ownership and attri-
butes that determine who can access the file and how they can
use it.

0S-9 automatically stores the user number associated with the
creation of a file. The system considers the owner of the number
to be the owner of the file.

Security functions are based on access attributes. There are
eight attributes, each of which can be turned off or on indepen-
dently. When the D (directory) attribute is on for a file, that file
is a directory. (Only MAKDIR can set the D attribute for a file.)
When the S (single-user) attribute is on, only one program or
user can access the file at a time.

2-8

The OS-9 File System / 2

The other six attributes control whether the file can be read
from, written to, or executed by either the owner or the public
(all other users.) When on, these six attributes function as

follows:

Owner read
permission

Owner write
permission

Owner execute
permission

The owner can read from the file. Use this
permission to prevent binary files from
being used as text files.

The owner can write to the file or delete it.
Use this permission to protect important
files from accidental deletion or
modification.

The owner can load the file into memory
and execute it. To be loaded, the file must

contain one or more valid 0S-9 memory
modules.

Public read
permission

Anyone can read and copy the file.

Public write
permission

Anyone can write to or delete the file.

Public execute
permission

Anyone can execute the file.

For example, if a file has all permissions on except write permit
to public and read permit to public, the owner has unrestricted
access to the file. Other users can execute it but cannot read,
copy, delete, or alter it.

Examining and Changing File Attributes

You can use the DIR command, with the E (entire) option, to
examine the security permissions of all files in a particular
directory. An example of output using DIR E on the current data
directory is:

Directory of 10:20:44

Owner Last modified Attributes Sector Bytecount Name

6567 0S9Boot

[86/87/31 1436 ----r-wr A

@ 86/87/31 1437 d-ewrewr 71 568 CMDS

@ 86/07/31 1442 d-ewrewr 188 88 SYS

g 86/07/3%1 1409 ------ wr 1Bd 55 startup

2-9

0S-9 Commands Reference

The Attributes column shows which attributes are on by listing
one or more of the following codes.

r
I—> owner read
> owner write

d s e w r e w
= owner execute

—= public read

> public write

.—> public execute

—> single-user

> directory
For example, the first file shows:

- er-wre

This means that (1) The file is not a directory. (2) It is share-
able. (3) The public cannot execute it or (4) write to it, but can
(5) read it. (6) The owner cannot execute the file, but can (7)
write to it, and (8) can read it.

To examine the attributes of a particular file, use ATTR. Typing
ATTR followed by a filename shows you the file’s current attri-
butes, for example:

attr file2
A possible screen display is:
---wr-wr

To change a file’s attributes use ATTR and a filename, followed
by a list of one or more attribute abbreviations. However, you
must own a file before you can change its attributes.

2-10

The OS-9 File System / 2

The following command enables public write and public read per-
missions and removes the execute permission for both the owner
and the public:

attr file2 pw pr -e -pe (ENTER]

Note: In order to protect data stored in directories, the D
attribute behaves somewhat differently from the other attri-
butes. You cannot use ATTR to turn on the D attribute—
only MAKDIR can do that—and you can use ATTR to turn
off D only if the directory is empty.

Record Lockout

When two or more processes use the same file simultaneously,
they might attempt to update the file at the same time, causing
unpredictable results. When you open a file in the update mode,
08-9 eliminates the problem of simultaneous use by locking the
sections of the file. The lock covers any disk sectors containing
the bytes last read by each process accessing the file. If one pro-
cess attempts to access a locked portion of a file, OS-9 puts the
process to sleep until the locked area is free.

08-9 moves the lock and frees the area when it reads from or
writes to another area. The system removes a lock on a file when
the process associated with the lock closes its path to the file. A
process can have only one lock on a file, but it can have locks on
more than one file.

You can lock an entire file by activating its single user bit. (See
the earlier section “Examining and Changing File Attributes.”)
When the single user bit is on, only one process can open a path
to the file at a time. Attempts by other processes to access the
file result in an error.

2-11

0S-9 Commands Reference

Device Names

Each physical I/O device supported by OS-9 has a unique name.
The following list describes some of the device names supported
by the system. Your system diskette already contains several of
these devices. You can define others to use with CONFIG.

D0_358
D1_358
D2_358
D3_358
DDD0_35S8
D0_40D
D1_40D
D2_40D
DDD0_40D
D1_80D
D2_80D

P

TERM

T1

T2

T3

M1

M2

A
w1

Floppy Disk Drive /D0, single sided, 35
cylinders.

Floppy Disk Drive /D1, single sided, 35
cylinders.

Floppy Disk Drive /D2, single sided, 35
cylinders.

Floppy Disk Drive /D3, single sided, 35
cylinders.

Default Disk Drive /DO, single sided, 35
cylinders.

Floppy Disk Drive /D0, double sided, 40
cylinders.

Floppy Disk Drive /D1, double sided, 40
cylinders.

Floppy Disk Drive /D2, double sided, 40
cylinders.

Default Disk Drive /D0, double sided, 40
cylinders.

Floppy Disk Drive /D1, double sided, 80
cylinders.

Floppy Disk Drive /D2, double sided, 80
cylinders.

a printer using the RS-232 serial port

your computer keyboard and video display

a terminal port using the standard RS-232
port

a terminal using the optional RS-232
communications pak

a terminal using the optional RS-232
communications pak

a modem using an optional 300 baud modem
pak

a modem using an optional 300 baud modem
pak

a generic window descriptor

window device Number 1

2-12

The OS-9 File System / 2

w2 window device Number 2
W3 window device Number 3
w4 window device Number 4
W5 window device Number 5
W6 window device Number 6
W7 window device Number 7

Although OS-9 and your computer can access all these devices,
your original diskette does not configure it to do so. For informa-
tion on configuring your system, see Chapter 7 of Getting
Started With OS-9.

Because device names are at the root of the file system, you can
use them only as the first part of a pathlist. Always precede the
name of a device with a slash.

When you refer to a non-disk device, for example a terminal or
printer, use only the device name. /P, for instance, is the full
allowable pathlist for a printer.

Note: An I/O device name is actually the name of an 0S-9
device descriptor that you precede with a slash (/). OS-9
automatically loads device descriptors during the OS-9 boot
sequence. You can add or delete other device descriptors
while the system is running or add device descriptors to the
bootfile using CONFIG.

2-13

Chapter 3

Advanced Features of the Shell

This chapter discusses the advanced capabilities of the shell. In
addition to basic command line processing, the shell facilitates:

e Input/output redirection, including filters

Memory allocation

Multitasking (concurrent execution)
® Procedure file execution
@ Built-in commands

You can use these advanced capabilities in many combinations.
Following are several examples. Study the basic rules, use your
imagination, and explore.

More About Command Line Processing

The shell is a program that reads and processes command lines,
one at a time, from the computer’s input device (usually your
keyboard). It parses (scans) each line to identify and process any
of the following parts that might be present:

@ A program, procedure file, or built-in command
® Parameters to be passed to the program
e Execution modifiers to be processed by the shell

For some commands, only the keyword (the program, procedure
file, or command name) must be present. Other commands have
required or optional parameters. As well, a command line can
include modifiers that influence the operation of the command.
0S-9 features that affect command execution are:

Execution Let you increase the amount of random access

Modifiers memory (RAM) available for a command. Also
lets you redirect input to a process, output from
a process, or both.

Command Let you enter more than one command on a line,

Separators perform concurrent execution of commands, or
connect the input or output of one command to
another command.

3-1

0S-9 Commands Reference

Command Lets you group all the commands that you want
Grouping affected by command modifiers or separators.

Note: The next section, “Command Modifiers,” provides
details on these features.

Once the shell identifies the keyword, it processes any modifiers.
It then assumes the remaining text consists of parameters,
which it passes to the program being called.

When the shell receives a built-in command, it immediately exe-
cutes it. If it receives a command that is not built in, it searches
for the appropriate program and then runs it as a new process.
The keyword must be the first entry in any line.

While the program is running, the shell deactivates itself. At the
termination of the program, the shell reactivates and accepts the
next input. This cycle continues until the shell detects an end-of-
file in the input path. It then terminates its own execution. You
can input an end of file from the keyboard by pressing

(SHIFT J(BREAK].

Following is a sample shell command line that calls the
assembler.

In this example:

ASM is the keyword.

sourcefile, 1, and -o are the
parameters passed to
ASM.

>/P is a modifier that
redirects the output (the
listing) to the system’s
printer.

#12k is a modifier that
asks the system to assign
12K bytes of memory
instead of a smaller default
amount

Ml

|
asm sourcefile 1 -o >/p #12k

3-2

Advanced Features of the Shell | 3

Command Modifiers

Add command modifiers to a command line to change the way in
which the command functions. Modifiers let you tailor OS-9 com-
mands to your specifications. Type them in a command line after
the keyword and either before or after other parameters you
might be using.

The shell processes command modifiers before it executes a pro-
gram. If it detects an error in any of the modifiers, it stops exe-
cution and reports the error.

The shell strips command modifiers from the part(s) of the com-
mand line passed to the program as parameters. Therefore, you
cannot use the characters reserved as modifiers (# ;! < > &)
inside other parameters.

Execution Modifiers

Execution modifiers alter the amount of memory commands have
available, or they redirect command input or cutput.

Alternate Memory Size Modifier. When the shell invokes a
command program, it allocates the minimum amount of working
RAM (random access memory) specified in the program’s module
header.

Note: All executable programs include a module header
which holds the program’s name, size, memory require-
ments, and other information. For information on viewing
the contents of a module header, see the IDENT command.

You might want to increase a command’s default memory size.
You can assign memory either in 256-byte pages or in 1024-byte
increments. To add memory in pages, use the modifier #n, where
n is the number of pages. To add memory in 1024-byte incre-
ments, use the modifier #nK, where n is the number of 1024-
byte increments.

The following two examples have identical results:

copy #8 filel file2 (8 x 256 2048 bytes)
copy #2K filel file2 (2 x 1024 = 2048 bytes)

Il

3-3

0S-9 Commands Reference

1/0 Redirection Modifiers. Input/output redirection modifiers
reroute a program’s I/O from the standard path to alternate files
or devices.

One of 0S-9’s advantages is that its programs use standard 1/0
paths rather than individual, specific file, or device names. You
can easily redirect the I/O to any file or device without altering
the program itself.

Programs that normally receive input from a terminal or send
output to a terminal use one or more of these three standard I/0
paths:

e Standard input path—Routes data from the terminal’s
keyboard to programs. The standard input path is Path
Number 0.

Use the less-than symbol (<) to redirect data to this
path.

e Standard output path—Routes data from programs to
the terminal’s display. The standard output path is Path
Number 1.

Use the greater-than symbol (>) to redirect data from
this path.

e Standard error output path—Routes routine status
messages (prompts and errors) to the terminal’s display.
(The name error output path is somewhat misleading,
since many kinds of messages in addition to error mes-
sages travel the path.) The standard error path is Path
Number 2.

Use two greater-than symbols (>>) to redirect data
from this path.

When you use a redirection modifier in a command line, follow it
immediately with a pathlist for the substitute device. For exam-
ple, you can use LIST to redirect the contents of a file called
Correspondence from the terminal to the printer, by typing:

list correspondence >/p [ENTER

The shell automatically creates, opens, and closes files referenced
by redirection modifiers as needed. The system immediately
restores normal I/QO paths at the completion of any com-
mand using redirection modifiers.

3-4

Advanced Features of the Shell | 3

In the next example, the shell redirects DIR’s output—a list of
files in the MEMOS directory—to the file /D1/Savelisting:

dir /dB@/memos >/d1/savelisting

You can now view the contents of Savelisting by typing:

list /d1/savelisting

08S-9 displays the file contents in a format similar to a directory
listing.

Directory of /d@/memos
CMDS SYS startup
0S9Boot

You can use one or more redirection modifiers before the pro-
gram’s parameters, after the program’s parameters, or both.
However, use each modifier only once in a command.

The following example shows how you can use all of the redirec-
tion modifiers together to start BASIC09 on a device window and
redirect all input and output to it:

basic®9 <>>>/w1 [ENTER

When you redirect multiple paths, you must use the redirection
symbols in the proper order as shown here:

Legal Tlegal
<> /wl >< lwl
<>> /wl >>< fwl
>>> /wl >>< /wl

Command Separators. You can include more than one com-
mand on a command line by using command separators. Com-
mand separators cause multiple commands to execute either
sequentially or concurrently, depending on the separator you
use.

Sequential execution means that one program must complete its
function and terminate before the shell lets the next program
execute. Concurrent execution means that two or more programs
begin execution and run simultaneously.

3-5

0S-9 Commands Reference

Sequential Execution Using the Semicolon. Using a semi-
colon between commands on one line causes them to execute
sequentially. For instance:

copy myfile /di/newfile; dir >/p [ENTER]

This command causes the shell to: (1) execute the COPY com-
mand, (2) enter a waiting state until COPY terminates, then
awake, and (3) execute DIR.

If an error occurs in any program, the shell does not execute
subsequent commands, regardless of the state of the SHELL
command’s X (stop on error) option.

Here are two more examples of commands using the semicolon:

copy oldfile newfile; del oldfile; list newfile

dir /d1/myfile; list temp >/p; del temp (ENTER]

Commands separated by semicolons are in fact separate and
equal child processes of the shell.

Note: When one process creates another process, 0S-9 calls
the creator the parent process and the created process the
child process. The child can become a parent by creating
yet another process.

Concurrent Execution Using the Ampersand. You can use
the ampersand (&) to cause multiple commands to run at the
same time. Each command you specify runs as a separate child
process of the shell. That is, for each process, the shell creates a
separate shell to handle the operation. When the process is com-
plete, the child shell terminates, or dies.

While more than one process is running, 0S-9 divides execution
time equally among the processes.

The number of programs that can run at the same time varies.
It depends on the amount of free memory in the system and the
memory requirements of the programs being executed.

An example of a simple command line using the & separator is:

dir >/p& (ENTER

Advanced Features of the Shell / 3

The shell begins to run DIR, sending output to the printer. At
the same time it displays both the number of the forked process
(DIR) and a new prompt, like this:

&0807
059:

To fork a process means to create a process as a branch of
another process—a subroutine.

After using the ampersand to fork a background process, you
can then enter another command, which the shell executes while
output from your original command continues to go to the
printer. This means you don’t waste time waiting for OS-9 to fin-
ish a task. At times, the keyboard might not seem to respond to
your typing, because characters do not appear on the screen.
However, 0S-9 stores the characters in the keyboard buffer and
displays them as soon as the shell can accept input again.

If you have several processes running simultaneously and want
information about them, use the PROCS command.

Combining Sequential and Concurrent Executions. You can,
if you want, use both the concurrent and sequential command
separators in one command line. For example:

dir >/p& list filel& copy filel file2; del temp

Because the & modifier joins the DIR, LIST, and COPY com-
mands, these commands run concurrently. But, because a semi-
colon precedes the DEL command, DEL does not run until the
other commands terminate.

Using Pipes: The Exclamation Mark. You can use the excla-
mation mark (!) to construct pipelines for 0S-9 commands. Pipe-
lines consist of two or more concurrently executing programs
with standard input paths, and standard output paths or both,
connected to each other with pipes.

Pipes are the primary means of transferring data from process
to process. They are vital to interprocess communications. Pipes
are first-in, first-out buffers, or holding areas for data.

~

3-7

0S-9 Commands Reference

The shell automatically buffers and synchronizes I/O transfers
using pipes. A single pipe can direct data to several destinations
or readers, and can receive data from several sources, or writers
on a first-come, first-serve basis. An end-of-file occurs if a pro-
gram attempts to read from a pipe when writers are not avail-
able to send data. Conversely, a write error occurs if a program
attempts to write to a pipe when readers are not available.

Pipelines are created by the shell when it processes an input line
with one or more pipe separators (1). For each pipe separator, the
shell directs the standard output of the program on the left of
the pipe separator to the standard input of the program on the
right of the separator. The shell creates an individual pipe for
each pipe separator in the command line. For example:

update <master_file ! sort ! write_report

>/p (ENTER

This command redirects input from a path called Master_file to
a file named Update. The output of Update becomes the input for
the program Sort. The output of Sort, in turn, becomes the input
for the program Write_report. Finally, the command redirects
output from Write_report to the printer. The shell executes all
programs in a pipeline concurrently. The pipes synchronize the
programs so the output of one never gets ahead of the input
request of the next program. This synchronization means that
data cannot flow through a pipeline any faster than the slowest
program can process it.

Raw Disk Input/Output. OS-9 has a special pathlist function
to perform raw physical input/output operations on a disk. The
pathlist consists of the device name, immediately followed by the
“@” character.

This command causes OS-9 to treat the entire diskette in Drive
/DO as one logical file. The operation reads each byte of each sec-
tor, without regard to actual file structure. Commands such as
DIR, ATTR, and MFREE use this feature to access sectors of
disks that are not part of file data areas, such as header sectors.

Warning: When using this raw access, use extreme cau-
tion. Because you can write on any sector, you can easily
damage file or directory structures and lose data. Using @
defeats any file security and record locking systems.

3-8

Advanced Features of the Shell | 3

To convert a byte address to a logical sector number when using
@, multiply the sector number by 256. Conversely, the logical
sector number of a byte address is the byte address, modulo 256.

Command Grouping

You can enclose sections of command lines in parentheses to per-
mit modifiers and separators to affect an entire set of programs.
The shell processes the material in the parentheses by recur-
sively calling itself to execute the enclosed command list.

For example, if you want to send directory listings of the ROOT
directory of Drive /D0 and then the ROOT directory of Drive /D1
to the printer, you can type either:

dir /d@ >/p; dir /d1 >/p [ENTER)

or.

(dir /d@; dir /d1) >/p [ENTER]

The results are identical except that the system keeps the printer
continuously in the second example. In the first example, another
user could steal the printer between DIR commands.

You can group commands to cause programs to execute both
sequentially and concurrently with respect to the shell that ini-
tiated them. For instance:

(del filel; del file2; del file3)& [ENTER)

Here, the shell does the overall deleting process concurrently
with whatever else you tell it to do, because you're using &.
However, the shell deletes the three specified files sequentially
because you're using semicolons within the parentheses.

Suppose you have a program named Makeuppercase that con-
verts lowercase characters to uppercase and a program named
Transmit that sends data to another computer, you can use a
command line like this:

(dir cmds; dir sys) ! makeuppercase ! transmit

The shell processes the output. of the first DIR command and
then the second. It sends all the DIR output to Makeuppercase,
and Transmit sends all the output to another computer.

3-9

0S-9 Commands Reference

Shell Procedure Files

The shell is a re-entrant program. This means it can be simulta-
neously executed by more than one process. Like most other OS-
9 programs, the shell uses standard I/O paths for routine input
and output.

08S-9’s shell offers you a special feature, a time and effort saver
called a procedure file. A procedure file is a related group of
commands, and when you run the file, you execute all the
commands.

Other names for procedure file processing are batch and back-
ground processing. A procedure file becomes new input for the
shell. By running a procedure file, you're using the shell to cre-
ate a new shell, a subshell that accepts and carries out the com-
mands in the procedure file.

Note: If you plan to use the same command sequences
repeatedly, create a procedure file to do the job by using
BUILD.

When you enter any command line, the shell looks for the speci-
fied program in memory or in the execution directory. If it can-
not find the program there, it searches the data directory for a
file with the specified name. If it finds the file, the shell auto-
matically interprets it as a procedure file, and creates the sub-
shell, which executes the commands listed in the procedure file.

Procedure files can also let the computer execute a lengthy
series of programs while it is unattended, or even while it is run-
ning other programs.

There are two ways to run a procedure file. For instance, to exe-
cute a procedure file called Mailsequence, type either:

shell mailsequence [ENTER

or

mailﬁe‘quence ENTER

Both commands do the same thing: create a subshell to run the
commands you’ve built into your Mailsequence procedure file.

To run a procedure file in a concurrent mode, use the ampersand
(&) modifier. As long as memory is available, you can run any
number of files concurrently.

3-10

Advanced Features of the Shell | 3

You can even build procedure files to sequentially or concurrently
execute other procedure files.

Note: If you use procedure files to run programs you don’t
intend to monitor closely, you can redirect standard output
and standard error output to another file. Later you can
review the file’s contents. Output redirection eliminates the
annoying output of shell messages on your terminal at ran-
dom times.

Built-in Shell Commands and Options

The shell has a number of built-in commands and options.
Whenever you use one of these functions, the shell executes it
without loading it or creating a new process to execute it.

You can execute built-in functions alone, use them at the begin-
ning of a command line, or use them following any program sep-
arator. You can separate adjacent built-in commands by spaces
or commas.

The built-in commands and their functions are:

CHD pathlist Changes the data directory to the directory
specified by the pathlist.

CHX pathlist Changes the execution directory to the direc-
tory specified by the pathlist.

EX modname Directly executes the module named. This
function deletes the shell process so that it
ceases to exist and executes the new module in
its place. Use EX to replace the executing
shell with the program specified by modname.
You can also use EX without a module name
to eliminate the current shell, for example, a
shell you initialized in a window (see below).

i=devname Makes a shell an immortal shell. This means
that when the shell ends, due to an EOF, OS-9
restarts it. Each time the shell restarts, it has
the same data and execution directories. To
kill an immortal shell, use EX to “chain” to a
null process, such as:

ex [ENTER]

3-11

0S-9 Commands Reference

* text

kill procID

setpr proclD
number
X

-X

P

Waits for any process to terminate.

Allows you to make a comment. The shell does
not process text following the asterisk. Use
this function to label operations in a procedure
file.

Stops the specified process.

Changes the specified process’s priority
number.

Causes the shell to cease operation whenever
an error occurs (a system default).

Causes the shell to continue operation when
an error occurs. Use this function in procedure
files to enable the shell to continue to other
commands if one command process fails
because of a system error.

Turns the shell prompt and messages on (a
system default).

Inhibits the shell prompt and messages. Use
this option in procedure files to disable screen
display. Be sure to turn the prompt and mes-
sage function back on afterward.

Makes the shell copy all input lines to output.
Use this function with a procedure file to
cause command lines to display as they
execute.

Sets the system so that it does not copy input
lines to output (a system default).

Running Compiled Intermediate
Code Programs

Before the shell executes a program, it checks the program mod-
ule’s language type. If it is not 6809 machine language, the shell
calls the appropriate run-time system for that module.

3-12

Advanced Features of the Shell | 3

For instance, if you have BASIC09 on your OS-9 system and
want to run a BASIC09 I-code module called Adventure, you can

type:
basicP9 adventure

or:
adventure [ENTER
or:

runb adventure [ENTER

In the last example, the shell uses the RUNB module to inter-
pret the Adventure I-code module.

3-13

Chapter 4

Multiprogramming and
Memory Management

One of 0S-9’s most valuable capabilities is multiprogramming—
sometimes called timesharing or multitasking. This feature lets
your computer run more than one process at the same time.
Multiprogramming can be a time saving advantage in many sit-
uations. For example, you can edit one program while the system
prints another. Or you can use your Color Computer to control a
household alarm system, lighting, and heating and at the same
time use it for routine work or entertainment.

0S-9 uses multiprogramming regularly for internal functions.
You can use it by putting an ampersand at the end of a com-
mand line. Doing this causes the shell to run your command as
a background, or concurrent, task.

To run several processes simultaneously, OS-9 must coordinate
its input/output system and CPU time and allocate its memory
as needed. This chapter gives you some basic information about
how OS-9 manages its resources to optimize system efficiency
and make efficient multiprogramming a reality.

Processor Time Allocation
and Timeslicing

CPU time is the most precious resource of a computer. If the
CPU is busy with one task it cannot perform another. For exam-
ple, many processes must wait for you to enter information from
the terminal. While the process is waiting, your computer’s CPU
must also wait. Your computer is limited by your typing speed.

On many systems there is no way around such a bottle neck.
However, OS-9 is more efficient. It assigns CPU time to pro-
cesses only as they need it.

To do this, OS-9 uses timeslicing. Timeslicing, as described in
the following paragraphs, lets all active processes share CPU
time.

A real-time clock interrupts the Color Computer’s CPU 60 times
each second. The interruption points are called ticks, and the
spaces between ticks are called timeslices.

0S-9 Commands Reference

08S-9 allocates timeslices to each process. At any tick it can sus-
pend execution of one process and begin execution of another.
This starting and stopping of processes does not affect their
execution.

How often OS-9 gives a process timeslices depends on the pro-
cess’s priority relative to the priority of other active processes.
You can access priority using a decimal number from 0 through
255, where 255 is the highest priority.

0S5-9 automatically gives the shell a priority of 128. Because
child processes inherit their parents’ priorities, the shell’s child
processes also have priorities of 128. You can find a process’s
priority with the PROCS command, and can change it using the
SETPR command.

You cannot compute the exact percentage of CPU time assigned
to any particular process, because there are some dynamic vari-
ables involved, such as the time the process spends waiting for
I/O devices. But you can approximate the percentage by dividing
the process’s priority by the sum of the priority of all active
processes:

process’s CPU share = priority of the process

sum of the priorities
of all active processes.

Note: Timeslicing happens so quickly that it looks as if all
processes execute simultaneously and continuously. If, how-
ever, the computer becomes overloaded with processing, you
might notice a delay in response to input from the termi-
nal. Or, you might notice that a procedure program takes
longer than usual to run.

Process States

The CPU time allocation system automatically assigns each pro-
cess one of three states that describes its current status. Process
states are important for coordinating process execution. A pro-
cess can have only one state at any instant, although state
changes can be frequent. The states are:

@ Active—Applies to processes currently able to work—
that is, those not waiting for input or for anything else.
These are the only processes assigned CPU time.

4-2

Multiprogramming and Memory Management / 4

@ Waiting—Applies to processes that the system suspends
until another process terminates. This state allows coor-
dination of sequential process execution. The shell, for
example, is in the waiting state during the execution of a
command it has initiated.

@ Sleeping—Applies to a process suspending itself for a
specified time, or until receipt of a signal. (Signals are
internal messages that coordinate concurrent processes.)
This is the typical state of processes waiting for input/
output operations.

The shell does not assign CPU time to sleeping or wait-
ing processes. It waits until they become active. The
PROCS command gives information about process states.

Creation of Processes

If a parent process creates more than one child process, the chil-
dren are called siblings with respect to each other. If you exam-
ine the parent/child relationship of all processes in the system, a
hierarchical lineage becomes evident. In fact, this hierarchy
resembles a family tree. (The family concept makes it easy to
describe relationships between processes.) OS-9 literature uses
the family concept extensively in describing 0S-9’s multipro-
gramming functions.)

08-9’s fork function automatically performs the sequence of oper-
ations required to create a new process and initially allocate
resources to it.

If for any reason, fork cannot perform any part of the sequence,
the system stops and fork sends its parent an error code. The
most frequent reason for failure is the unavailability of required
resources (especially memory), or the inability of the system to
find the specified program.

A process can create many processes, subject only to the availa-
bility of unassighed memory. When the parent issues a fork
request to OS-9, it must specify certain information:

e A primary module—The name of the program to be
executed by the new process. The program can already
be present in memory, or 0S-9 can load it from a disk
file with the same name.

4-3

0S-9 Commands Reference

@ Parameters—Data to be passed to and used by the new
process. OS-9 copies this data to part of the child pro-
cess’s memory area. (Parameters frequently pass file-
names, initialization values, and other information.)

The new process inherits some of its parent’s properties,
including:

@ A user number—For use by the file security system to
identify all processes belonging to a specific user. (This
is not the same as the process ID, which identifies a pro-
cess.) OS-9 obtains this number from the system pass-
word file when a user logs on. The system manager is
always User 0.

e Standard input and output paths—The three paths:
input, output, and error, used for routine input and out-
put. Most paths can be shared simultaneously by two or
more processes.

® Current directories—The data directory and the execu-
tion directory.

@ Process priority.
As part of the fork operation, 0S-9 automatically assigns:

® A process ID, a number in the range 1 to 255 that iden-
tifies the process. Each process has a unique number.

@ Enough memory to support the new process. In 0S-9, all
processes share a memory address. OS-9 allocates a data
area for the process’s parameters and variables and a
stack for each process’s use. It needs a second memory
area in which to load the process if it does not reside in
memory.

4-4

Multiprogramming and Memory Management | 4

In summary, each new process has:
® A primary module
@ Parameters
® A user number
® Standard I/O paths
® Current directories
® A priority
@ An ID number

® Memory

Basic Memory Management Functions

Memory management is an important 0OS-9 function. 0S-9 auto-
matically allocates all system memory to itself and to processes,
and also keeps track of the logical contents of memory (the pro-
gram modules that are resident in memory at any given time).
The result is that you seldom need to bother with the actual
memory addresses of programs or data.

The operating system and each process have individual address
spaces. Each address space has the potential to contain up to 64
kilobytes of RAM memory. Using memory management unit
(MMU) hardware, OS-9 moves memory into and out of each
address space as required for system operations.

Although each unit is subject to the 64K maximum program
size, you can run several processes simultaneously and utilize
more than 64K overall. The system logically assigns RAM mem-
ory in 256-byte pages, but the MMU’s hardware block size is
8K. Each of these physical blocks has an extended address that
is called a block number. For example, the 8K physical block
residing at address $3C000 to $3DFFF is Block Number $3C.

Within an address space, OS-9 assigns memory from higher
addresses downward for program modules and from lower
addresses upward for data areas. The following chart shows this
organization:

4-5

0S-9 Commands Reference

highest address
program modules
(RAM or ROM)

unused space
(RAM or empty)

data areas
(RAM)

lowest address

Loading Program Modules into Memory

When performing a fork operation, OS-9 first attempts to locate
the requested program module by searching the module direc-
tory, which has the address of every module present in memory.
The 6809 instruction set supports a type of program called re-
entrant code, which means that processes can share the code of a
program simultaneously.

Since almost all OS-9 family software is re-entrant, the system
can make the most efficient use of memory. For example, suppose
that OS-9 receives a request (from a process) to run BASIC09
(which requires 22 kilobytes of memory), but has already loaded
it into memory for another process. Because the software is re-
entrant, OS-9 does not have to load it again and use another
22K of memory. Instead the new process shares the original
BASICO09 by including the location of the BASIC09 module in its
memory map.

08-9 automatically keeps track of how many processes are using
each program module, and deletes the module when all processes
using it terminate.

If the requested program does not yet reside in memory, 0S-9
uses its name as a pathlist (filename) and attempts to load the
program from disk.

Multiprogramming and Memory Management | 4

Every program module has a module header describing the pro-
gram and its memory requirements. OS-9 uses the header to
determine how much memory the process needs for variable stor-
age. The module header includes other information about its pro-
gram, and is an essential part of the OS-9 machine language
operation.

You can also place commands or programs into memory using
the LOAD command. Doing so makes the program available to
08-9 at any time, without having to be loaded from disk. A pro-
gram is physically loaded into memory only if it does not already
reside there.

LOAD causes OS-9 to copy the requested module from a file into
memory, verifying the CRC (Cyclic Redundancy Check). If the
module is not already in the module directory, OS-9 adds it.

If the program module is already in memory, the load process
still begins in the same way. But, when O0S-9 attempts to add
the module to the module directory and notices that the module
is already there, it merely increments the known module’s link
count (the number of processes using the module).

When 0S-9 loads multiple modules in a single file, it associates
them logically in the memory management system. You cannot
deallocate any of the group modules until all modules have zero
link counts. Similarly, linking to one module within a group
causes all other modules in the group to be mapped into the pro-
cess’s address space.

Deleting Modules From Memory

UNLINK is the opposite of LOAD. It decreases a program mod-
ule’s link count by one. When the count becomes zero (presum-
ing that the module is no longer used by any process), OS-9
deletes the module, deallocates its memory, and removes its
name from the module directory.

Warning: Never use the UNLINK command on a program
or a module not previously installed using LOAD. Unlink-
ing a module you did not LOAD (or LINK) might perma-
nently delete it when the program terminates. The shell
automatically unlinks programs loaded by fork.

4-7

0S-9 Commands Reference

Suppose you plan to use the COPY command ten times in a row.
Normally, the shell must load COPY each time you enter the
command. But if you load the COPY module into memory and
then enter your string of commands, you don’t have to wait for
the system to load and unload COPY repeatedly. When you fin-
ish using COPY, use UNLINK to unlock the module from mem-
ory. The sequence looks like this:

load copy (BVER)

copy filel filela [ENTER
copy file2 file2a (ENTER]
copy file3 file3a [ENTER]
copy filed4 file4a (ENTER)

copy file5 fileDa [ENTER
copy file6 fileGa [ENT
copy file7 file7a {(ENT
copy file8 file8a [ENTE
copy file9 file9a [ENTER
copy filel® filel@a ENTER]
unlink copy

It is important to use UNLINK when you no longer need the
program. Otherwise, the program continues to occupy memory
that might be used for other purposes.

m

e lmlirm
m
D||o}| =

Warning: Be careful not to unlink modules that are in use,
because OS-9 deallocates the memory used by the module
and destroys its contents. All programs using the unlinked
module crash.

Loading Multiple Programs

Because all OS-9 program modules are position-independent, you
can have more than one program in memory at the same time.
Since position-independent code (PIC) programs don’t have to be
loaded into specific, predetermined memory addresses to work
correctly, you can load them at different memory addresses at
different times.

PIC programs require special types of machine language
instructions that few computers have. The ability of the 6809
microprocessor to use PIC programs is a powerful feature and
one of the greatest aids toward multiprogramming. You can load
any number of program modules until available system memory
is full.

4-8

Multiprogramming and Memory Management | 4

08-9 automatically loads each program module at non-overlap-
ping addresses. (Most operating systems write over the previous
program’s memory when loading a new program.) OS-9’s tech-
nique means that you do not need to be concerned with absolute
memory addresses.

49

Chapter 5

Useful System Information
and Functions

The 0S-9 system must load many parts of the operating system
during startup and system operation. Therefore, on a floppy disk
system, you must keep the system diskette in Drive /DO.

Two files used during the system startup operation, OS9Boot
and Startup, must remain in the system diskette’s ROOT direc-
tory. Other files on the system diskette are organized into two
directories: CMDS (commands) and SYS (other system files). You
can also create other files and directories on the system diskette.
0S-9 always creates the initial data directory, or ROOT direc-
tory, when you format a diskette.

File Managers, Device Drivers, and
Descriptors

The bootstrap (instructions that initialize 0S-9) loads a file
called OS9Boot into RAM memory at startup. This file contains
file managers, device drivers and descriptors, and any other mod-

ules that permanently reside in memory. For instance, the
0S9Boot file might contain these modules:

0S9p2 0S-9 Kernel

INIT System Initialization Table

IOMan 08-9 input/output manager

RBF Random block (disk) file manager

SCF Sequential character (terminal) file manager
PipeMan Pipeline file manager

Piper Pipeline driver

Pipe Pipeline device descriptor

CC3I0o Keyboard/video graphics device driver
VDGINT 32x16 screen subroutines

GRFINT Windowing subroutines

PRINTER Printer device driver

SIO RS-232 serial port device driver
CC8Disk Disk driver

Do, D1 Disk device descriptor

TERM Terminal device descriptor

T1 RS-232 serial port device descriptor
P Printer (serial) device descriptor
P1 Printer (serial) device descriptor

5-1

0S-9 Commands Reference

Clock Real-time clock module

CC3GO System startup process

W - W7 Window device descriptors W, W1, W2, W3,
W4, W5, W6, W7

08-9 stores the modules loaded during the system startup with
a minimum of fragmentation. To include additional modules, cre-
ate new bootstrap files using the OS9GEN command or the
CONFIG program supplied with 0S-9. You cannot unlink a mod-
ule loaded as part of the bootstrap.

After booting, when the system switches the boot block into its
own address space, any non-system files included in the boot-
strap decrease the memory available in the system mode. It is
best to place optional modules in a separate file and load them
as part of the system startup procedure. One example is the
shell. Never include the shell as part of a system boot file in
08S-9 Level Two systems.

The Sys Directory

The 08-9 SYS directory contains a number of important files:
® Errmsg is the error message file.
@ Helpmsg contains syntax and usage information.

@ Stdfonts contains the standard software fonts for use on
graphic windows.

@ Stdpats__2, Stdpats__4, and Stdpats__16 contain screen
background and fill patterns for 2, 4, and 16 color graph-
ics screens, respectively.

® Stdptrs contains graphic pointer images for use with a
mouse.

These files, and the SYS directory itself, are not required to boot
08-9, but you do need them if you plan to use the ERROR or
HELP commands, or if you intend to use text, or mouse pointers
on graphic windows. You can also add other system-wide files of
a similar nature.

Useful System Information and Functions / 5

The Startup File

The Startup file (/DO/startup) is a shell procedure file that OS-9
automatically processes as part of the system boot. You can
include any legal shell command line in the Startup file. Many
people include SETIME to start the system clock. If this file is
not present, the system starts correctly, but the system time is
not accurate.

The CMDS Directory

The directory /DO/CMDS is the system-wide command directory
normally shared by all users as their working execution direc-
tory. The shell resides in the CMDS directory. The system start-
up process CC3go makes CMDS the initial execution directory.
You can add your own programs to the CMDS directory and have
them execute in the same manner as the original system
commands.

Making New System Diskettes

Getting Started With OS-9 told you how to create new system
diskettes using the CONFIG utility. There are other ways to cre-
ate system diskettes and either add or subtract capabilities. The
following information provides guidelines on how to do this. For
more detailed instructions see the descriptions of the CONFIG,
OS9GEN, and COBBLER commands in this manual.

Before starting any of the following procedures, you need a
blank, formatted diskette on which to place your system files.
Then, choose one of the following methods to update your
system:

@ Use the OS9GEN command to add modules to the exist-
ing OS9Boot file.

@ Use CONFIG to select the modules you want to include
in the OS9Boot file.

5-3

0S-9 Commands Reference

If you choose to use CONFIG, the utility creates a complete sys-
tem during the process. If you use OS9GEN, follow these steps:

1. Create the OS9Boot file using OS9GEN.
2. Create or copy the Startup file.

3. Copy the CMDS and SYS directories and the files they
contain.

You can perform these steps manually or do them automatically
by using one of these methods:

® Creating and using a shell procedure file

@ Using a shell procedure file generated by DSAVE

Technical Information for the RS-232 Port

You can operate the RS-232 port or the printer at all standard
baud rates from 110 baud to 19200 baud. (The default rate is
9600 baud for /t2, and 600 baud for /p.) The default format used
is 8 data bits, no parity, and 1 stop bit.

Use the XMODE command to set the port’s baud rate, parity,
word length, stop bits, end-of-line delay, auto line feed, and so
forth. To examine the printer’s current settings, type:

xmode /p (ENTER

Then, if you want to make changes, use XMODE with informa-
tion from the following chart. Select the parameter you want
from the left column of each chart, and then select the corre-
sponding number from the “Value to Use” column and write it
down. After you select the proper value from each chart, add
them together to obtain a final value for XMODE. All values
must be hexadecimal.

5-4

Useful System Information and Functions / 5

Stop Bits Word Length Baud Rate
Number of Value Word Value Bits Per Value
Stop Bits to Use Length |to Use Second to Use
1 Stop Bit 0 7 Bits 20 110 BPS 0

300 BPS 1

2 Stop Bits 80 8 Bits 0 600 BPS 2
1200 BPS 3

2400 BPS 4

4800 BPS 5

9600 BPS 6

19200 BPS 7

For instance, to set the printer parameters to one stop bit, a
word length of seven bits, and a baud rate of 600, select 0 from
the Stop Bits chart, 20 from the Word Length chart, and 2 from
the Baud Rate chart. Add the values together:

0+ 20+ 2 =22
The command to set the printer port for this configuration is:

xmode /p baud=22 (ENTER]

When you use XMODE to set baud, parity, and stop bit values,
you are actually setting the bits of a special byte to certain val-
ues. OS-9 uses these values to determine how to handle subse-
quent input/output operations. A bit is a binary digit and can be
either 1 or 0. A byte consists of eight bits and can represent a
value between 0 and 255.

The following chart shows the bits that control baud rate, word
length, and stop bits for input/output operations on a specified
device.

5-5

0S-9 Commands Reference

Bit 7 6 5 4 3

210

I——ﬁ Baud rate

Reserved
Word length
Stop bits

If the stop bit value = 0, stop bits = 1

If the stop bit value = 1, stop bits = 2

If the word length value = 00, word length = 8 bits

If the word length value = 01, word length = 7 bits

If the baud rate value = 0, baud rate = 110

If the baud rate value = 1, baud rate = 300

If the baud rate value = 2, baud rate = 600

If the baud rate value = 3, baud rate = 1200

If the baud rate value = 4, baud rate = 2400

If the baud rate value = 5, baud rate = 4800

If the baud rate value = 6, baud rate = 9600

If the baud rate value = 7, baud rate = 19200

(/t2 ACIAPAK only)
If the baud rate value = 7, baud rate = 32000

(/t1 SIO only)

Use XMODE TYPE=value to set parity, MDM (modem) kill, and
the not ready delay. Value is a hexadecimal value you calculate
from the following chart:

Parity MDM Kill Not Ready Delay

Type of Value Kill Value Not Ready Value
Parity {to Use Switch |to Use Delay to Use
None 0 On 10 0 seconds 0
Mark AQ Off 0 1 second 1
Space EO 2 seconds 2
Even 60 3 seconds 3
Odd 20 \ v
v A4
v v
v
15 seconds F

Useful System Information and Functions / 5

Select a value from each chart, and add them together to get a
final TYPE value. For instance, to select even parity, MDM kill
off, and a not ready delay of 10 seconds, select these values and
add them:

60 + 0 + A = 6A
To set the new values, type:

xmode /p type=6a [ENTER)

The following chart shows the bits that control parity, the
modem Kkill switch, and the not ready delay.

Bit 7 6 5 4 3 2 10
| I

—] e—_—

> Not ready delay
(printer only)

MDM kill switch (ACIAPAK/
MODPAK devices)

'——> Parity

If the parity value is 000, then parity = none
If the parity value is 101, then parity = MARK, no check
If the parity value is 111, then parity = SPACE, no check

If the MDM kill switch value is 0, then DCD loss = no kill
If the MDM kill switch value is 1, then DCD loss = kill

The value of the not ready delay bits equals the number of
seconds delay.

Imn

o

For more information on setting other parameters, such as the
end-of-line delay (null count), see the XMODE command refer-
ence in Chapter 6.

5-7

Chapter 6

System Command Descriptions

This chapter contains alphabetical descriptions of the commands
supplied with 0S-9. Ordinarily, you call the commands from the
shell, but you can also call them from most other programs in
the 0S-9 family—including BASIC09 and the Macro Text Editor.

Warning: Do not attempt to use OS-9 Level One commands
with the 0S-9 Level Two system or to use Level Two com-
mands with the Level One system.

Organization of Entries
Each command entry includes:
® The name of the command

e A syntax line, which shows you the format and spelling
to use when you type the command

@ A brief definition of what the command does

@ Information about any options available with the
command

e Notes about the command and how to use it

@ One or more examples of command use

Command Syntax Notations

08-9 requires that you enter the various parts of a command in
the correct order and in the correct format. An example of the
proper syntax follows the command name.

The syntax line always begins with the name of the command.
Occasionally, that’s all you need (except for pressing (ENTER]). But
other commands either require, or can accept, parameters (vari-
ables that give instructions to 0S-9).

Some syntaxes include variables (shown in italics) that you
replace with specific parameters. For instance, the BUILD com-
mand syntax is:

build filename (ENTER]

6-1

OS-9 Commands Reference

BUILD is the command name. You type it exactly as shown.
However, filename is a variable. Replace it with the actual name
you want to give to the file you are creating. If you want to cre-
ate a file named Myfile, type:

build myfile [ENTER
Pressing (ENTER) executes the command.

Common variables are:

arglist

devname
commandname
dirname
filename
hex
hhimmi/ss
modname
n

number
opts
paramlist
pathlist
permission
proclD
text

tickcount

value

yy/mm/dd

arglist (argument list) is similar to paramlist,
but it includes command names as well as
command parameters.

device name (/P, /TERM, /M1)
command name

directory name

file name

a hexadecimal number
hour/minutes/seconds

name of a memory module

a decimal number

a numeric value

options

a list of parameters

a complete path to a directory or file
file permission abbreviations
process ID number

a string of characters

a numeric value representing system clock
ticks

a numeric value

year/month/day

6-2

System Command Descriptions / 6

[] Brackets indicate that the material within them is optional
and not necessary for the execution of the command.

... An ellipsis indicates that you can repeat the material imme-
diately preceding the ellipsis. For instance, [filename][...] means
that you can specify more than one filename to the command.
Following is the syntax for the DISPLAY command:

display hex[...]

This means you can include more than one hex number with
DISPLAY, such as:

display 54 48 49 53 28 49 53 20 41 2@ 53 45 43
52 45 54 28 4D 45 53 53 41 47 45 [ENTER)

Command syntaxes do not include the shell’s built-in options (for
instance I/O redirection) because the shell filters out its options
before it passes the command line to the program being called.

Command Summary
This section describes the format and use of OS-9 commands.

The following list is a summary of these commands:

ATTR Changes a file’s attributes

BACKUP..... Makes a copy of a diskette

BUILD....... Builds a text file

CHD......... Changes the working data directory

CHX Changes the working execution directory

CMP......... Compares files

COBBLER ... Makes an OS9Boot file

CONFIG Creates a system diskette to your specifications

COoPY........ Copies data

DATE Displays the system date and (optionally) the
time

DCHECK Checks a disk file structure

DEINIZ Deinitializes a device previously initialized with
INIZ

DEL Deletes a file or files

DELDIR Deletes a directory’s files, then deletes the
directory

DIR.......... Displays the names of all files in a directory

DISPLAY..... Displays the characters represented by hexadeci-
mal values

DSAVE....... Generates a procedure file to copy files

6-3

0S-9 Commands Reference

ECHO Echoes text to the screen

EDIT Calls the 0S-9 Macro Text Editor

ERROR Displays a description of the last error code

EX........... Causes the shell process to execute another
process

FORMATPrepares a disk for data storage

FREE........ Displays the amount of free space on a disk

HELP........ Displays the syntax and use of commands

IDENT....... Displays OS-9 module identification

INIZ Initializes and attaches devices

KILL Terminates a process

LINK Links a module into memory

LIST......... Lists the contents of disk data files

LOAD........ Loads a module into memory

MAKDIR Creates a directory

MDIR........ Displays the names of the modules in memory

MERGE...... Copies and combines files

MFREE...... Displays a list of free RAM

MODPATCH . . Makes changes to a module in memory
MONTYPE ... Establishes the type of monitor in use
OS9GEN Builds and links a bootstrap file

PROCS Displays the names of the current processes

PWD......... Displays the name of the current data directory

PXD......... Displays the name of the current execution
directory _

RENAME Changes the name of a file or directory

SETIME Activates and sets the system clock

SETPR....... Sets a process’s priority

SHELL Creates a child shell to process one or more
commands

TMODE Changes the terminal’s operating mode

TUNEPORT Adjusts the loop delay for the baud rate of /P or
/T1 devices

UNLINK Unlinks memory modules

WCREATE ... Creates a window

XMODE Displays or changes a device’s initialization
parameters

6-4

System Command Descriptions / 6

ATTR

Syntax: attr filename [permission)

Function: Lets you examine or change a file’s security
permissions.

Parameters:
filename The name of the file you want to examine or
change.
permission One or more of the following attribute options.
Options:

The file permission abbreviations you can use are:

-d Changes a file directory file to not a non-directory
file.

8 Specifies that the file is not single-user and can serve
only one user at a time.

r Specifies that only the owner can read the file.

w Specifies that only the owner can write to (change)
the file.

e Specifies that only the owner can execute the file.

pr Specifies that the public (anyone) can read the file.
pPw Specifies that the public (anyone) can write to the file.
pe Specifies that the public (anyone) can execute the file.

-a Tells ATTR not to display the attributes. Use this
option when you wish to change attributes without
displaying them.

6-5

0S-9 Commands Reference

Notes:
© To use ATTR, type the command name followed by the

name of the file you want to change. Next, type a list of the
permissions to turn on or off. Turn a permission on by typ-
ing its abbreviation or off by typing its abbreviation pre-
ceded by a minus sign. ATTR has no effect on permissions
you do not name.

If you do not specify any permissions, ATTR displays the
file’s current attributes.

You cannot change the attributes of a file you don’t own.
User 0 can change the attributes of any file in the system.

Use ATTR to change a directory into a file after deleting
all the directory’s files. You cannot change a file to a direc-
tory with ATTR. (See MAKDIR.)

Examples:

® To remove public read and write permission from a file

named Myfile, type:
attr myfile -pr -pw (ENTER]

@ To give read, write, and execute permission to everyone for

the file Myfile, type:
attr myfile r w e pr pw pe (ENTER]

e To display the current permissions of a file named Datalog,

type:
attr datalog

6-6

System Command Descriptions / 6

BACKUP

Syntax: backup [optslldevnamellldevnameZ]

Function: Copies all data from one disk to another.

Parameters:

devnamel
devname?2
opts

Options:

#nK

Notes:

The drive containing the disk files you want to
back up.

The drive containing the disk to which you
want to transfer the files.

One or more of the following options.

Cancels the backup if a read error occurs.

Lets you backup a diskette using only one
drive.

Tells BACKUP not to verify the data written
to the destination diskette.

Increases to n the amount of memory that
BACKUP can use. Increasing the amount of
memory assigned to BACKUP speeds the pro-
cedure. n can be either in pages of 256 bytes
or in kilobytes (1024 bytes). Include K to indi-
cate kilobytes.

e BACKUP performs a sector by sector copy, ignoring file
structures. In all cases, the devices specified must have the

same format

(size, density, and so forth) and the destina-

tion disk must not have defective sectors.

6-7

0S-9 Commands Reference

@ If you omit both device names, the system assumes you are

copying from /D0 to /D1. If you omit only the second device
name, OS-9 performs a single-drive backup on the specified
drive.

The following demonstrates a complete backup of /DO to
/D1. In the example, the diskette in Drive /D1 is a format-
ted diskette with the name MYDISK. Scratched, which
appears in one of the following messages, means erased.
You type:

backup (ETER)

The screen display and your input are:

Ready to backup from /d@ to /d1 ?:
MYDISK
is being scratched
oK?: (Y]
Sectors copied: $8276
Verify pass
Seciors verified: $8276

Following is an example of a single-drive back up. BACKUP
reads a portion of the source diskette (the diskette you are
copying) into memory. It then prompts you to remove the
source diskette and put the destination diskette (the
diskette receiving the copy) into the drive.

After BACKUP writes to the destination diskette, remove
the destination diskette and put the source diskette back
into the drive. Continue swapping as prompted until
BACKUP copies the entire diskette.

Giving BACKUP as much memory as possible means you
have to make fewer diskette exchanges. If enough free mem-
ory is available, you can assign up to 56 kilobytes for the
backup operation. An Error 207 means that your computer
does not have the specified amount of memory free. To
assign 32 kilobytes to backup, type:

backup /d@ #32k

6-8

System Command Descriptions | 6

The screen display and your responses are as follows:

Ready to backup from /d@ to d@ ?:

Ready Destination, hit a key:
MYDISK .

is being scratched

oK?:

Ready Source, hit a key:
Ready Destination, hit a key:
Ready Source, hit a key:
Ready Destination, hit a key:

l

Ready Destination, hit a key:
Sectors copied: $8276

Verify pass

Sectors verified: $08276

In this procedure, the dollar symbol ($) indicates hexadeci-
mal numbers. BACKUP copied 276 hexadecimal (or 630
decimal) sectors.

Examples:
e To back up the diskette in Drive /D2 to the diskette in
Drive /D3, type:

backup /d2 /d3

@ To back up from Drive /D0 to Drive /D1, without verifica-
tion, type:

backup -v [ENTER

6-9

0S-9 Commands Reference

BUILD

Syntax: build filename

Function: Builds a text file by copying input from the stan-
dard input device (the keyboard) into the file specified by
filename.

Parameters:

filename The name of the file you are creating.

Notes:

@ BUILD creates a file, naming it filename. It then displays a
question mark (?) and waits for you to type a line. When
you type a line and press [EnTEr]), BUILD writes the line to
the disk.

® When you finish entering the lines for the new file, press
(ENTER], without any preceding text, to close the file and ter-
minate the operation.

@ The following example demonstrates how to build a text file
named Newfile:

build newfile

? THE POWERS OF THE 0S-9 (ENTER)
? DPERATING SYSTEM ARE TRULY (ENTER)

? FANTASTIC.
?

@ To view the newly created file, type:

list newfile [ENTER

6-10

System Command Descriptions / 6

The screen displays:

THE POWERS OF THE 05-9
OPERATING SYSTEM ARE TRULY
FANTASTIC.

Examples:

@ To create a new file called Small_file and put into it what-
ever you type at the keyboard, type:

build =small_file
@ To direct whatever you type to the printer, type:

build /p [ENTER)

@ You can use BUILD to transfer, or redirect, data from one
file to another. Instead of the keyboard, this example uses a
file named Mytext file for the input device. The output
device is Terminal 1.

build <mytext /11

6-11

0S-9 Commands Reference

CHD
CHX

Syntax: chd pathlist
chx pathlist

Function: CHD changes the current working (data) directory,
and CHX changes the current execution directory.

Parameters:
pathlist Specifies the directory for the current working
or execution directory.
Notes:

e CHD and CHX do not appear in the CMDS directory
because they are built into the shell.

Examples:

® To change the current working (data) directory to the PRO-
GRAMS data directory located on the diskette in Drive
/D1, type:

chd /dt1/programs

@ To change the execution directory to the parent directory of
the current execution directory, type:

chx .. [ENTER

e To change the execution directory to TEXT _PROGRAMS,
a subdirectory of BINARY._FILES, type:

chx binary_files/text_programs

6-12

System Command Descriptions / 6

@& To return the execution directory and the data directory
back to the default directories, type:

chx /d@/cmds; chd /d@
Or, if you are using a hard disk, type:
chx /h@/cmds; chd /h@

6-13

0S-9 Commands Reference

CMP

Syntax: cmp filenamel filename2

Function: Opens two files and compares the binary values of
corresponding data bytes in the files. If CMP encounters any
differences in the file, it displays the file offset (address) and
the values of the bytes from each file.

Parameters:

filenamel are the files to compare.
filename2

Notes:

® The comparison ends when CMP encounters an end-of-file
marker in either file. CMP then displays a summary of the

number of bytes compared and the number of differences
found.

Examples:

@ To compare two files named Red and Blue, type:

emp red blue
Following is a sample screen display:

Differences

byte #1 #2
00000013 0 a1
ppaeaR22 B B1
gpoooo2A 9B AB
poooEa2B 3B 36
gooopo2cC 6D 65

Bytes compared: 0000002D
Byles different: 00000085

6-14

System Command Descriptions / 6

@ To compare two files that are identical, such as Redl and
Red2, type:

cmp red! red2
The screen display might be:

Differences
None

Bytes compared: po0EHB2D
Bytes different: 00000000

6-15

0S-9 Commands Reference

COBBLER

Syntax: cobbler devname

Function: Creates the OS9Boot file required on any 0S-9 boot
diskette.

Parameters:

devname The disk drive containing the diskette on

which you want to create a new OS9Boot file.

Notes:

COBBLER creates the new OS9Boot file with the same
modules loaded during the most recent bootstrap. (To add
modules to the bootstrap file, use OS9GEN.) COBBLER
also writes the OS-9 kernel on Track 34 and excludes these
sectors from the diskette allocation map. If any files are
present on these sectors, COBBLER displays an error
message.

The new boot file must be contiguous on the diskette. For
this reason, you should use COBBLER only with a newly
formatted diskette. If you use COBBLER on a diskette that
does not have a storage block large enough to hold the boot
file, COBBLER destroys the old boot file, and OS-9 cannot
boot from that diskette.

To change device attributes permanently, use XMODE
before using COBBLER.

Examples:

To save the attributes of the current device on the system
diskette, type:

cobbler /d@

6-16

System Command Descriptions | 6

If you use COBBLER on a diskette that is not newly format-
ted, the screen displays:

WARNING - FILECS) OR KERNEL
PRESENT ON TRACK 34 - THIS
TRACK NDOT REWRITTEN

6-17

0OS-9 Commands Reference

CONFIG

Syntax: config

Function: Lets you create a system diskette that includes only
the device drivers and commands you select. CONFIG auto-
matically adjusts its screen display for either 32- or 80-column
display.

Notes:
@ When executed, CONFIG displays menus of all I/O options

and system commands. You select only those options and
commands you want to include on a new system diskette.

Creating such a system diskette lets you make the most
efficient use of computer memory and system diskette
storage.

The CONFIG utility is on the BASIC09/CONFIG diskette.
Copy this diskette, using the 0S-9 BACKUP command.
Make the copy your working diskette. Keep the original in
a safe place to use for future backups. After you boot your
system, you can put the working copy of the BASIC09/
CONFIG diskette in drive /d0. Then, type these commands:

chx /d8/cmds; chd /d@/modules [ENTER)

CONFIG does not require initial parameters. You establish
parameters during the operation of the command. Be sure
the execution directory is /DO/CMDS before executing
CONFIG.

You could save time by using BACKUP to create a system
disk, using CONFIG to create a new boot file, and then
deleting unwanted commands. However, this process causes
fragmentation of diskette space and results in slower disk
access. CONFIG causes no fragmentation.

6-18

System Command Descriptions | 6

® The MODULES directory of the BASIC09/CONFIG diskette
contains all the device drivers and device descriptors sup-
ported by OS-9. The filename extension describes the type
of file, as noted in the following table:

Extension Module Type

.dd Device Descriptor module
dr Device Driver module
o Input/Output subroutine module
.hp Help file
dw Window Device Descriptor module
dt Terminal Device Descriptor module
.mn File Manager module

Examples:

The following steps take you through the complete CONFIG
process:

1. With the BOOT/CONFIG diskette in the current drive,
type:
config

2. CONFIG asks whether you want to use one or two disk
drives. Press (7] for single- or (2) for two-drive operation.

If you specify one drive, continue with Step 3.
If you specify two drives, a display asks you to:
ENTER NAME OF SOURCE DISK:
Type /d@
A display now asks you to:
ENTER NAME OF DEST. DISK:

Type /41

3. After a pause to build a descriptor list, the program dis-
plays a list of the various devices from the MODULES
directory. Use and to move to a device. To include
the device on the system diskette, press once. CONFIG
displays an X by the selected device. To exclude a selected
device, press (5] again to erase the X,

6-19

0S-9 Commands Reference

A special help command provides information about each
device. To display information about the current device (the
device indicated by the arrow (—)), press (H).

The list of devices might require more than one screen. Use
to move ahead page by page and to move back.

The devices you can select and their descriptions are listed
in Chapter 2 under the section “Device Names.”

You must select a “D0” device as your first disk drive.
Select from the list of D devices for other floppy disk drives.
Select P to use a printer with 0S-9, T1 to use a terminal,
M1 to use a modem, and so on.

. After selecting the devices you desire, press (D). The screen

displays, ARE YOU SURE (Y/N) ? If you are satisfied with
your selections, press [¥]. If you want to make changes,

press (N).

. To use your computer keyboard and video display, you must

select either TERM_VDG or TERM_WIN. You use
TERM__VDG for a 32-column display. For a TERM window
that enables you to select character displays up to 80-col-
umns, select TERM_WIN.

. CONFIG builds a boot list from the selected devices and

their associated drivers and managers in the MODULES
directory of the current drive. It next displays two clock
options:

1 - 60HZ (AMERICAN POWER)
2 - 58HZ C(EURDPEAN POWER)

. If you live in the United States, Canada, or any other coun-

try with 60hz electrical power, press (1). If you live in a
country with 50hz power, press (2).

If you have a single disk drive, a screen prompt asks you to
swap diskettes and press (C]). When asked for the SOURCE
diskette, insert the BASIC09/CONFIG diskette. When
asked for the DESTINATION diskette, insert the diskette
that is to be your new 0S-9 system diskette.

If you have more than one drive, a screen prompt asks you
to insert a blank formatted diskette (the DESTINATION
diskette) in the destination drive. The rest of the boot file
creation is automatic.

6-20

System Command Descriptions / 6

8. After creating the boot file, CONFIG displays a menu of the
commands you can include on your system diskette. You
have the following choices:

[Nlo Commands, Stop Now - Do not add any commands

[Flull Command Set — Add all 0S-9 commands
from the current CMDS
directory

[Ilndividually Select — Select commands one by
one

[H] Receive Help — Get help on the command
set

Press (n] if you want to transfer a new boot file to a
diskette on which you have previously copied the OS-9 sys-
tem. If you have only one disk drive, this procedure is
quicker than using the CONFIG utility to complete the
entire system transfer, because it requires fewer disk
swaps.

Press to make an exact copy of the CMDS directory on
your source diskette with a new boot file.

Press (1) to individually select commands to copy on the
new diskette. The (1) option displays a menu similar to the
device selection screen. Press to select or exclude com-
mands, and use the arrow keys to move among the com-
mands in the menu. CONFIG selects files marked with an
X for inclusion on the new system diskette. If a command
does not have an X beside it, CONFIG excludes it from the
new system diskette.

9. If you have a multi-drive system, a prompt appears asking
you to insert your OS-9 system diskette in the destination
drive. Press the space bar. The process finishes the CON-
FIG operation, and returns to OS-9.

If you have a single-drive system, you swap diskettes dur-
ing the final process. This time, the SOURCE diskette is
the OS-9 System diskette. The DESTINATION diskette is
the system diskette you are creating. The number of swaps
depends on the number of options you select.

Note: When using CONFIG you do not have to use
your system diskette as the source diskette to install
the commands. The program can use any diskette
that contains a CMDS directory.

6-21

0S-9 Commands Reference

COPY

Syntax: copy pathlistl pathlist2 [opts]

Function: Copies data from one file or device to another file or

device.
Parameters:
pathlistl The name of the existing file or device from
which you want to copy.
pathlist2 The name of the device or file to receive the
copy. If you are copying data to a file, the file
must not already exist.
Options:
-8 Causes COPY to perform a single-drive copy

operation. pathlist2 must be a full pathlist if
you use -8. In a single-drive procedure, COPY
reads a portion of the source disk into memory
and then asks you to exchange the source and
the destination diskette and press (). COPY
might ask you to exchange diskettes several
times before it completes duplicating the
entire file.

#nl[K] Allows the use of more memory for the COPY
procedure. If you specify K, n represents the
amount of memory you want to use, in units of
1024 bytes. If you do not specify K, n repre-
sents the number of 256-byte memory pages.
Using this option can increase speed and
reduce the number of diskette swaps required
for single-drive copies.

- copwy Kok -W = desdiactio,

[e
Tk

1

/622

System Command Descriptions / 6

Notes:

@ If pathlist? is a disk file, COPY automatically creates it. Data

can be of any type, and COPY does not modify the file in any
way.

COPY does not add important codes (for example, line feeds).
Use LIST instead of COPY when sending a text file to a ter-
minal or printer.

Following is an example of the screen display and your
responses for COPY using a single drive:

copy /dB/cat /d@/animals/cat -s #32k (ENTER)
Ready DESTINATION, hit C to continue:
Ready SOURCE, hit C to continue:

Ready DESTINATION, hit C 1o continue:

v

A4

This example assigns 32 kilobytes of memory for COPY to
use. If enough free memory is available, you can specify up
to 56 kilobytes. Copy continues asking you to swap the
source and destination diskettes until the transfer is
complete.

Examples:

@ To copy Filel to File2 using 15K of memory, type:

copy filel file2 #15k (ENTER)

@ To copy the News file on the diskette in Drive /D1 to a new

file named Messages on the diskette in Drive /D0, type:
copy /d1/joe/news /d@/peter/messages

6-23

0S-9 Commands Reference

DATE

Syntax: date [t]
Function: Displays the current date.

Options:
t Causes the time to appear with the date.

Notes:

@ Following is an example of how to use SETIME to set a new
date and time for the system and how to use DATE to
check system date and time:

setime
A possible screen display and your responses follows:

yy/mm/dd hh.mm.ss
Time? B86/068/22 14.19.880

date [ENTER

August 22, 1986

date t

August 22, 1986 14.20.20

Examples:

® To display the system date and time, type:

date t
@ To direct the DATE command’s output to the printer, type:

date t >/p

6-24

System Command Descriptions / 6

DCHECK

Syntax: dcheck [-opts] devname

Function: Checks a disk’s file structure.

Parameters:
devname
opts

Options:

-8

-b

-p
-w = pathlist
-m

-0

Notes:

The disk drive to check.

One or more of the following options.

Counts the number of directories and files and
displays the results. This option causes
DCHECK to check only the file descriptors for
accuracy.

Suppresses listing of unused clusters (clusters
allocated but not in the file structure).

Prints pathlists for questionable clusters.
Specifies a path to a directory for work files.
Saves allocation map work files.

Prints DCHECK’s valid options.

® Sometimes the system allocates sectors on a disk that are
not actually associated with a file or with the disk’s free
space. This situation can happen if you remove a disk from
a drive while files are open. You can use DCHECK to
detect this condition, as well as check the general integrity
of directory/file links.

6-25

0S-9 Commands Reference

After verifying and printing some vital file structure
parameters, DCHECK follows pointers down the disk’s file
system tree to all directories and files on the disk. As it
does so, it verifies the integrity of the file descriptor sec-
tors, reports any discrepancies in the directory/file links,
and builds a sector allocation map from the segment list
associated with each file. If any file descriptor sectors
(FDS) describe a segment with a cluster not within the file
structure of the disk, DCHECK displays a message like
this:

**+ Bad FD segment ($xxxxxx-$yyyyyy) for file:
(pathlist)

This message indicates that a segment starting at sector
xxxxxx and ending at sector yyyyyy is not on the disk. If
any of the file descriptor sectors are bad, the entire FD
might be defective. DCHECK does not update the alloca-
tion map for corrupt FDS.

While building the allocation map, DCHECK also ensures
that each disk cluster appears once and only once in the file
structure. If it discovers duplication, DCHECK displays a
message like this:

Cluster $xxxxxx was previously allocated

This message indicates that DCHECK has found cluster
xxxxxx more than once in the file structure. DCHECK
reprints the message each time a cluster appears in more
than one file.

Then, DCHECK compares the newly created allocation map
with the allocation map stored on the disk and reports any
differences with messages like these:

Cluster $xxxxxx in allocation map bui not in file
structure

Cluster $xxxxxx in file structure but not in
allocation map

The first message indicates that sector number xxxxxx
(hexadecimal) is not part of the file system, but the disk’s
allocation map has assigned it. FORMAT might exclude
some sectors from the allocation map because they are
defective.

6-26

System Command Descriptions / 6

The second message indicates that the cluster starting at
sector xxxxxx is part of the file structure, but the disk’s
allocation map has not assigned it. Later operations might
allocate this cluster, overwriting the contents of the cluster
with data from the newly allocated file. (Clusters that
DCHECK previously allocated can have this problem.)

@ DCHECK builds its disk allocation map in a file called
pathlis/ DCHECKpp0, where pathlist is specified by the -w
option and pp is the process number in hexadecimal. Each
bit in this bitmap file corresponds to a cluster of sectors on
the disk. If you use the -p option, DCHECK creates a sec-
ond bitmap file (pathlist2/DCHECKppl) that has a bit set
for each cluster DCHECK finds as “previously allocated” or
“in file structure but not in allocation map.” DCHECK
then makes another pass through the directory structure to
determine the pathlists for these questionable clusters. You
can save the bitmap work files by specifying the -m option
on the command line.

@ For best results, DCHECK should have exclusive access to
the disk being checked. Otherwise, the command might be
fooled by a change in the disk allocation map while
DCHECK is building a bitmap file. DCHECK cannot pro-
cess disks with more than 39 levels of directories.

@ -p causes DCHECK to make a second pass through the file
structure and print pathlists for clusters that are not in the
allocation map but are allocated or existing in a file
structure.

-w tells DCHECK where to place its allocation map work
file(s). The specified pathlist must be a full pathlist for a
directory. (DCHECK uses directory /D0 if you do not spec-
ify -w.) If you doubt the structure integrity of the diskette
being checked, do not place the allocation map work files on
that diskette.

Examples:

@ The following two examples demonstrate DCHECK
sessions:

dcheck /d2

6-27

0S-9 Commands Reference

A sample screen display might be:

Volume - ’My system disk’ on device /d2
$009A bytes in allocation map

1 sectior per cluster

$000276 total sectors on media

Sector $0060002 is start of Root directory
FD

$0010 sectors used for id, allocation map
and Root directory

Building allocation map work file...
Checking allocation map file..

‘My system disk’ file structure is intact

1 directory
2 files

dcheck -mpw=/d2 /d@ [ENTER]

A sample screen display might be:

Volume - ‘System disketie’ on device /d@
$0046 bytes in allocation map

1 seclior per cluster

$00022A iotal seciors on media

Sector $000002 is start of Rool directory
FD

$0010 sectors used for id, allocation map
and Root directory

Building allocation map werk file...

Cluster #80040 was previously allocaled

*** Bad FD segment ($111111-$23A6F8) for
file: /DB/TEXT/junky.file

Checking allocation map file...

Clusier $000038 in file structure but not
in allocation map

Clustier $06003B in file structure but not
in allocation map

Cluster $6001B9 in allocation map bul not
in file structure

Cluster $EG001BB in allocation map but not
in file struciure

6-28

System Command Descriptions / 6

Pathlists for questionable clusters:
Cluster $006038 in path: /d@/0S9boot
Cluster $00803B in path: /dB6/0S9boot
Cluster $0008840 in path: /d8/0S9boot
Cluster $000040 in path: /d@/test/
double.file

1 previously allocated clusters found

2 clusters in file structure but not in
allocation map

2 clusters in allocation map but not in
file structure

1 bad file descriptor sector

‘System diskette’ file structure is noti
intact

5 directories

25 files

6-29

0S-9 Commands Reference

DEINIZ

Syntax: deiniz devname I...]

Function: Deinitializes and detaches a device.

Parameter:
devname The name of one or more devices you want to
deinitialize.
Notes:

® Use DEINIZ with INIZ. For example, you can use INIZ to
initialize a window, then redirect information to the win-
dow. View the information by pressing until it
appears. When you no longer need the window, use DEINIZ
to remove the window and return its memory to the
system.

® DEINIZ performs an 0S-9 I$Detach call for all specified
devices.

Example:

To deinitialize the /wl (Window 1) device after it has been ini-
tialized, type:

deiniz w1 [ENTER

6-30

System Command Descriptions | 6

DEL

Syntax: del [-x] filename I...]

Function: Deletes the file(s) specified.

Parameter:
filename The name of the file to delete. Include as many
filenames as you want.
Option:
-X Causes DEL to assume the file is in the cur-
rent execution directory.
Notes:

® You can delete only files for which you have write
permission.

You can delete a directory in two ways: (1) Delete all the
files in the directory, change it to a non-directory file using
ATTR, then use DEL to remove the directory, or (2) Use the
DELDIR command.

e The following example shows what appears on the screen
when you display a directory, delete one of the directory’s
files, then display the directory again:

dir /d1

directory of /d1 14.29.46
myfile newfile

del newfile [ENTER)
dir /d1

directory of /d1 14.38.37
myfile

6-31

0S-9 Commands Reference

Examples:

® To delete files named Text_program and Test_program,
type:

del text_program test_program

@ To delete a file on a drive other than the current working
drive, use a complete pathlist, such as:

del /d1/number_five

@ To delete a file named Cmds.subdir in the current execu-
tion directory, type:

del -x cmds.subdir

6-32

System Command Descriptions / 6

DELDIR

Syntax: deldir dirname

Function: Deletes all subdirectories and files in a directory;
then, deletes the directory itself.

Parameter:
dirname The pathlist to the directory you want to
delete.
Notes:

e DELDIR is a convenient alternative to individually deleting
all the files and subdirectories from a directory before
deleting the directory itself.

® When DELDIR runs, it displays a prompt after the com-
mand line:

deldir oldfiles

Deleting directory file.

List directory, delete directory, or quit ?
Cl/d/q)

Pressing causes a DIR E command to run so you can
see the directory files before DELDIR removes them.

Pressing (0] starts the deletion process.
Pressing (@] cancels the command.

e The directory to be deleted might include other directories,
which in turn might include other directories, and so forth.
In this case, DELDIR begins with the lower directories and
works its way upward.

You must have write permission to delete any files and
directories in this substructure. If not, DELDIR terminates
when it encounters the first file for which you don't have
write permission.

6-33

0S-9 Commands Reference

® DELDIR automatically calls DIR and ATTR. Therefore,
these files must reside in the current execution directory.

6-34

System Command Descriptions | 6

DIR

Syntax: dir [optslldirname or pathlist]

Function: Displays a formatted list of filenames in a directory.
The output format adjusts itself for 80- or 32-column displays.

Parameters:
dirname The name of the directory you want to view.
pathlist The pathlist to the directory you want to view.
opts Either or both of the following options.
Options:

If you don't specify any parameters, DIR shows the current
data directory.

X Displays the current execution directory.

e Displays the entire description for each file:
size, address, owner, permissions, date and
time of last modification.

Examples:

e To display the current data directory, type:
dir

@ To display the current execution directory, type:

dir x [ENTER

e To display the entire description of all files in the current
execution directory, type:

dir x e [ENTER

6-35

0S-9 Commands Reference

@ To display the parent of the current data directory, type:

dir ..
@ To display a directory named NEWSTUFF, type:
dir newstuff

@ Following is a sample 80-column DIR display using the e
option:

dir e
The screen might display:
Directory of . 16:56:12

Owner Last modified Attributes Sector Bytecount Name

2F B5/05/20 1631 ------ wr A 3A6C 059Boot
0 B85/85/20 1345 d-ewrewr 48 646 CMDS

§ 85/85/20 1350 d-ewrewr 177 Al SYS

0 85/65/28 1351 ----r-wr 192 E startup
§ 85/85/28 1351 d-ewrewr 194 E6 DEFS

@ Following is an 80-column DIR display using no options:
dir
The screen might display:
Directory of . 16:58:37

0S9Boot CMDS SYS startup
DEFS

6-36

System Command Descriptions / 6

e Following is a 32-column DIR display using the e option:
dir e

Directory of . 16:52:04
Modified on Owner Name
Atir Sector Size
85/05/28 1643 2F 0S9Boot
------ wr A 3A6C
85/05/20 1345] CMDS
d-ewrewr 48 640
85/05/26 13560] SYS
d-ewrewr 177 AG
85/85/28 1351 2 startup
----r-wr 192 E
85/05/28 1351] DEFS
d-ewrewr 194 E@

® Following is a 32-column DIR display using no options:

dir [ENTER

Directory of . 16:52:29
0S9Boot CMDS SYS
startup DEFS

6-37

0S-9 Commands Reference

DISPLAY

Syntax: display hex[...]

Function: Reads one or more hexadecimal numbers (you type
as parameters), converts them to ASCII characters, and
writes them to the standard output (normally the screen).

Parameters:

hex A list of one or more hexadecimal numbers.

Notes:

e Use DISPLAY to send special characters (such as cursor
and screen control codes) to terminals and other 1/0
devices.

e Following is an example of a command and the resulting
output. ABCDEF are ASCII characters corresponding to
hex 41 42 43 44 45 46.

display 41 42 43 44 45 46 (ENTER]
ABCDEF

Examples:

@ To reroute a form feed (hex 0C) to the printer, type:

display 6C >/p
@ To ring the bell through the video speaker, type:

display 87 (ENTER]

6-38

System Command Descriptions / 6

DSAVE

Syntax: dsave [optsl[devnamelldirname] > pathlist

Function: Copies or backs up all files in one or more
directories.

Parameters:
devname The drive on which the source directory exists.
If you do not specify devname DSAVE assumes
Drive /DO.
dirname The name of the destination directory. Use

CHD to make the current directory the direc-
tory to receive the copies.

pathlist A command procedure file in which DSAVE
stores its output.

opts One or more of the following options.
Options:
-b Makes the destination or target diskette a sys-

tem diskette by copying the source diskette’s
OS9Boot file, if present.

-1 Indents for directory levels.

-1 Tells DSAVE not to process directories below
the current level.

-m Tells DSAVE not to include MAKDIR com-
mands in the procedure file it creates.

-sinteger Sets memory for the copy parameter to integer
kilobytes.

-v Verifies copies by forking to CMP after copying
each file.

6-39

0S-9 Commands Reference

Notes:

DSAVE does not directly affect the system. Instead, it gen-
erates a procedure file that you execute later to do the
work.

When you run DSAVE, it creates a procedure file (a file of
commands). You then execute the newly created file by typ-
ing its pathlist. The procedure contains all the commands
to create and change directories as needed in order to copy
the specified directory. DSAVE copies the files in the cur-
rent data directory. It also copies the current data direc-
tory subdirectories, unless you specify the -1 option.

To use DSAVE, first change the data directory to the direc-
tory you wish to copy. Execute DSAVE by specifying the
drive from which to copy and then redirecting output to a
file to receive the copy commands. Be sure to name a file
that does not already exist.

When DSAVE completes the procedure, use CHD to change
to the data directory to receive the copied files. Then, exe-
cute the procedure file.

If DSAVE encounters a directory file, it automatically
includes MAKDIR and CHD commands in the output
before generating COPY commands for files in the subdirec-
tory. The procedure file exactly replicates all levels of the
file system from the current data directory downward.

If the current data directory is the ROOT directory of the
disk, DSAVE creates a procedure file that backs up the
entire disk file by file. This is useful when you need to copy
a number of files from either disks formatted differently or
from floppy diskettes to a hard disk.

Examples:

In the following series of commands, CHD positions you in
the ROOT directory of /D2, the directory to be copied.
Then, DSAVE makes the procedure file Makecopy. Using
CHD /D1 causes the copy to go in the /D1 ROOT directory.
The final command executes the procedure file.

6-40

System Command Descriptions / 6

chd /d2 (ENTER)

dsave /d2 >/d8/makecopy [ENIER)
chd /d1

/dB/makecopy [ENTER)

e The following command copies all files from /D0 to /D1. It
pipes the procedure file output of DSAVE into a shell for
immediate execution.

dsave /d# /d1 ! shell [ENTER)

@ The following command lets you view the output generated
by a DSAVE command. It uses 48 kilobytes of memory and
indents directories. Because output goes to the screen, this
command does not create a procedure file to copy any files:

dsave -s548 -i [ENTER

® This command operates in the same manner as the pre-
vious command. However, because it specifies a procedure
file pathlist, it stores the generated commands in a proce-
dure file rather than displaying them on the screen:

dsave -s548 -i > copyfile (ENTER)

6-41

0S-9 Commands Reference

ECHO

Syntax: echo text

Function: Echoes text to the screen.

Parameters:

text The character or characters you type.

Notes:

® Use ECHO to generate messages in shell procedure files or
to send an initialization character sequence to a terminal.
The text should not include punctuation characters used by
the shell.

® The following example prints the message LISTING ERROR
MESSAGES to the screen and lists the file SYS/errmsg to the
printer as a background task.

echo LISTING ERROR MESSAGES; list sys/
errmsg >/pé& (ENTER)

Examples:

@ To display a message on the screen, type:

echo This text is echoing (ENTER]
@ To echo text to the console, type:

echo >/term **WARNING DATA ON DISK WILL BE
LOST (ENTER]

@ The following combines the ECHO and LIST commands to
echo the entered text to the printer and to direct the con-
tents of the Trans file to the printer.

echo >/p LISTING OF TRANSACTION; list trans
>/pé ENTER

6-42

System Command Descriptions | 6

ERROR

Syntax: error errnumber [...]

Function: Displays the text error message that corresponds
with the specified OS-9 error number.

Parameters:

errnumber Is an OS-9 error code in the range 1-255.

Notes:

@ ERROR opens the Errmsg file in the SYS directory and
reads through the file for an error code that matches the
specified number. It then displays the text that corresponds
to the error code.

® The Errmsg file contains descriptions of the standard OS-9
errors. The order of the file is arranged to provide quick
access to operation system error descriptions.

Example:
@ To display a description of the 0S-9 error Numbers 215 and
216, type:
error 215 216
The screen displays:

215 - Bad Path Name
216 - Path Name Not Found

6-43

0S-9 Commands Reference

EX

Syntax: ex filename

Function: Starts a process by chaining from the current shell
to the new process. Chaining means that execution control is
turned over to the new process.

Parameters:
filename The name of the program or module you want
to execute.

Notes:

Because EX is a built in Shell command, it does not appear
in the CMDS directory.

Using EX causes the shell from which you are operating to
terminate. If the new process also terminates and you do
not have another shell running on another terminal or win-
dow, OS-9 is left without any processes, and you must
reboot your computer and 0S-9.

If a shell is running on another window or device, you can
restart a new shell from that window or device. For
instance, if you use EX to initialize BASIC09 from /TERM
then exit BASIC09, /TERM is dead and cannot accept key-
board input. However, if you also have a shell operating in
a window, you can type the following from that window:

shell i=/termé& [ENTER

This reinitializes a shell on /TERM. It can now accept key-
board input and OS-9 commands.

Use EX to save memory when the shell is not needed, for
instance when using BASIC09.

System Command Descriptions / 6

® If you use EX on a command line with other commands, it
must be the last command. Any commands following EX
are not processed.

Example:

© To run BASIC09 without a resident shell, type:
ex basic@9

6-45

0S-9 Commands Reference

FORMAT

Syntax: format devname [name] [opis]

Function: Establishes and verifies an initial file structure on
a floppy diskette or a hard disk. You must format all disks
before you can use them on an OS-9 system.

Parameters:

devname The drive name of the disk you want to
format.

name The name you want to assign the newly for-
matted disk. Enclose the disk name in double
quotation marks.

opts One or more of the following options.

Options:

1 Writes system format information only, does
not physically format disk.

r Causes the format to proceed automatically,
without issuing prompts.

1 Formats single-sided. Use with single-sided
drives or single-sided diskettes in double-sided
drives.

2 Causes a double-sided format. Use with
double-sided drives and double-sided diskettes.

‘eylinders’ The number of cylinders (in decimal) that you
want formatted.

:interleave: The number of the sector interleave value (in

decimal).

6-46

System Command Descriptions / 6

Notes:

® Be sure the disk you want to format is NOT write-
protected. Otherwise, FORMAT generates error code #242
(write protect), and the system returns to the OS-9 prompt
without formatting the diskette.

@ If you are formatting a hard disk, first type:
tmode -pause

This command turns off the screen pause function. Other-
wise, the process stops whenever the sector verification pro-
cess fills the display screen. If you forget to turn off the
screen pause, press the space bar whenever the screen fills.
Execution then continues.

When formatting finishes, type:
tmode pause

This re-establishes the screen pause function.
® The formatting process works this way:

1. FORMAT physically initializes a disk and divides
its surface into sectors.

2. FORMAT reads back and verifies each sector. If a
sector fails to verify after several attempts, FOR-.
MAT excludes it from the initial free space on the
diskette. As verification proceeds, the process dis-
plays track numbers.

3. FORMAT writes the disk allocation map, ROOT
directory, and identification sector to the first few
sectors of Track 0. These sectors must not be
defective.

@ FORMAT asks for a disk volume name, which can be up to
32 characters long and can include spaces or punctuation.
(Later, you can use the FREE command to display the
name.)

6-47

0S-9 Commands Reference

For step-by-step instructions on formatting, refer to Getting
Started With OS-9.

Examples:

To format a diskette in Drive /D1, type:

format /di

To format a diskette in Drive /D1 with the name Test Disk
and without prompts, type:

format /d1 r "test disk" (ENTER)
To format hard Disk /HO, type:

imode -pause [ENTER
format /h® [ENTER
tmode pause [ENTER

To format a double-sided diskette in Drive /D2 with 27 cyl-
inders and the name Database, type:

format /d1 2 "“database™ ‘27’

6-48

System Command Descriptions | 6

FREE

Syntax: free [devname]

Function: Displays the number of unused sectors (256-byte
storage areas) on a disk drive. These sectors are available for
new files or for expanding existing files.

Parameters:
devname The disk drive for which you want to display
the number of free sectors.
Notes:

® The device name you specify must be a disk drive. FREE
also displays the disk’s name, creation date, and cluster
size. If you don’t specify a drive, FREE selects the drive
that contains the current data directory.

® The cluster size for the Color Computer is one sector.
Examples:

@ To display the number of free sectors on the current disk,
type:

free [ENTER
The screen is similar to this:

"“COLOR COMPUTER DISK’’ created on: 83/05/28
Capacity: 638 sectors (1-sector clusters)
15 Free sectors, largest block 12 seciors

® To display the number of free sectors on the diskette in
Drive /D1, type:

free /d1

6-49

0S-9 Commands Reference

A sample screen display is:

"DATA DISK" created on: 83/06/16
Capacity: 630 sectors (1-sector clusters)
445 Free seclors, largest block 442 sectiors

6-50

System Command Descriptions / 6

HELP

Syntax: help [command namel] [-?]

Function: Displays the use and syntaxes of OS-9 commands.

Parameters:
command The command(s) for which you want help.
name Include as many command names as you want.
-? Gives a list of help topics.

Notes:

© HELP uses a file named Helpmsg, which is located in the
SYS directory on your system diskette.

Examples:

® To obtain help for the BACKUP command, type:
help backup

The screen displays:

Syntax: backup [ellsll-vildevilldevl
Usage: Copies all data from one device to
another

® If you try to obtain help for a non-existent command, HELP
displays an error message. For instance, if you type:

help me

me: no help available
@ You can also obtain help for the HELP command. Td do so,
type:
help help
The screen displays:

Syntax: Help [subjectl[-7]
Usage: Give on-line help to users

Will prompt if no subjects given
Opts: ~-? give list of help topics

6-51

0S-9 Commands Reference

IDENT

Syntax: ident filename [opts]

Function: Displays header information for memory modules.

Parameters:
filename

opts
Options:

-m

-y

-X

Notes:

The name of the file or module for which you
want to view identification information.

One or more of the following options.

Causes IDENT to assume that filename is a
module in memory

Tells IDENT not to verify module cyclic redun-
dancy check

Causes IDENT to assume that filename is in
the execution directory

Displays the following module information on a
single line: the edition byte (first byte after
module name), the type/language byte, the
module CRC and the module name. A period
(.) indicates that the CRC verifies. A question
mark (?) indicates that the CRC does not
verify.

e IDENT displays the module size, CRC bytes (with verifica-
tion), and—for program and device driver modules—the exe-
cution offset and the permanent storage requirement bytes.

6-52

System Command Descriptions | 6

® IDENT displays and interprets the type/language and
attribute revision bytes. IDENT displays the byte immedi-
ately following the module name because most Microware®-
supplied modules set this byte to indicate the module
edition.

e IDENT displays all modules contained in a disk file.
Examples:

@ To display header information for a file named Ident that
resides in computer memory, type:

ident -m ident
The screen might display:

Header for: IDENT

Module size:$086E7 #1767
Module CRC: $548BB2 (Good)

Hdr parity: $C9

Exec. off: $0230 #573
Data Size: $8§99C #2460
Edition: $07 #7

Ty/La At/Rv:is$11 $81
Prog mod, 6809 obj, re-en, R/0

In the example, Hdr parity = header parity; Exec. off =
execution offset; Data size = permanent storage require-
ments; Edition = first byte after module name; Ty/La At/
Rv = type/language attribute/revision; and Prog mod,
6809 obj, re-en = module type, language, attribute.

@ To display header information for the OS9Boot file,type:
ident /D@/0S9boot -s

6-53

0S-9 Commands Reference

The display might include:

17 $CO
67 $C8B
12 $C1
27 $D1
6 $E1
82 $F1
82 $F1
82 $F1
11 $D1
14 $E1
1 $C1
3 $C1
83 $F1
83 $F1
83 $F1
83 $F1
83 $F1
83 $F1
83 $F1
83 $F1
83 $F1
11 S$E1
82 $F1
12 $E1
83 $F1
4 $D1
2 $E1
80 $F1
9 3$C1
3 s$11

Since the -s

first line of the output, for instance, 17 =
(first byte after name), $C0 =

$F2922F
$8B2322
$2E9EDB
$B665E3
$055580
$FC1918
$9F 4210
$EGB118
$10A3FA
$8524F 1
$B53D94
$792B7E
$ABSAES
$7AB2DB
$C3E38A
$948878
$36016B
$0AE2B6
$123B9A
$1CF164
$B71DF5
$C8FB73
$9EB55D
$CC3EA4
$FE3BAE
$ADG718
$5B2B56
$CCOBAF
$BE9Q3F4
$CA1F99

0Ss2p2
Init
[0OMan
RBF
CC3Disk
D@

D1

DD

SCF
CC3I0
VDGInt
Grfint
TERM

W

W1

W2

W3

W4

WS

W6

W7
ACIAPAK
T2
PRINTER
P
PipeMan
Piper
Pipe
Clock
CC3Go

option appears in the command line, IDENT
displays each module’s information on a single line. In the

edition byte
type/language byte,

$A366DC = CRC value, . = OK CRC check, and OS9p2 =
module name.

6-54

System Command Descriptions / 6

INIZ

Syntax: iniz devname [...]
Function: Initializes the specified device driver.

Parameters:

devname The name of one or more devices to initialize.

Notes:

@ You can use INIZ in the Startup file or at the system start-
up to initialize devices and allocate their static storage at
the top of memory to reduce memory fragmentation.

@ INIZ attaches the specified device to 0S-9, places the device
address in a new device table entry, allocates the memory
needed by the device driver, and calls the device driver ini-
tialization routine. INIZ does not reinitialize a device that
you or the system previously installed.

@ If you change the printer (/p) to a non-shareable device (a
device that is not re-entrant), do not initialize it with INIZ.

Examples:

e To initialize the /P (printer) and /T2 (terminal 2) devices,
type:

iniz p t2 [ENTER

6-55

0S-9 Commands Reference

KILL

Syntax: kill procID

Function: Terminates the process specified by procID.

Parameters:
proclD The ID number of the process to kill.
Notes:
@ Unless you are the Super User (User Number 0), you can

only terminate a process that has your user number. (Use
PROCS to obtain the process ID numbers.) The Super User
can terminate any process.

If a process is waiting for /O, you cannot cancel it until the
current I/0 operation terminates. Therefore, if you KILL a
process and PROCS shows it still exists, it is probably wait-
ing to receive a line of data from a terminal.

Because KILL is a built-in shell command, it does not
appear in the CMDS directory.

Examples:

To KILL the process with the ID number 5, type:

kill 5 (ENTER)

The following commands: (1) use PROCS to determine that
the ID number of the process to be killed is 3, (2) termi-
nate process 3, and (3) use PROCS to confirm that KILL
has cancelled the process.

6-56

System Command Descriptions / 6

procs | ENTER

User Mem Stack
Id PId Number Pty Age Sts Signl Siz Pir Primary Module

2 1 f 128 128 $80] 3 $78B2 Shell
3 5 f 128 128 ¢88 B 2 $74AC Tsmon
4 5 B 128 128 $89 6 $B5F3 Procs
5 0 [128 129 ¢80 g 3 $6FE2 Shell
kill 3 IENIEHI
procs
User Mem Stack

Id PId Number Pty Age Sts Signl Siz Ptr Primary Module
2 1 b 128 128 $80 § 3 $78B2 Shell
3 5 B 128 128 ¢80 8 6 $45F3 Procs
5 1 § 128 129 ¢80) 3 $6FE2 Shell

6-57

0S-9 Commands Reference

LINK

Syntax: link modname
Function: Locks a previously loaded module into memory.

Parameters:

modname The name of the memory module to link.

Notes:

@ If the module is not already in memory, you must use
LOAD prior to using LINK. The link count of the module
increases by one each time the system links it. Use
UNLINK to unlock the module when you no longer need it.

Examples:

@ To lock the Edit module into memory, type:
link edit

6-58

System Command Descriptions / 6

LIST

Syntax: list filename l...]

Function: Lists the contents of a text file or files.

Parameters:
filename The name of the file you want to list. Include
as many filenames on one line as you want, up
to the maximum line length of 199 characters.
Notes:

® LIST copies text lines from a file to the standard output
path. The program terminates upon reaching the end-of-file
of the last input path. If you specify more than one file,
LIST copies the files in the order in which you list them.

@ Use LIST to examine or print text files.

@ Do not LIST executable files. Doing so can cause your sys-
tem to lock or crash. To view executable files, use DUMP.

Examples:

@ To list the contents of the Startup file to the printer, type:
list /d@/startup >/p&

The ampersand makes the printing job a concurrently exe-
cuted task.

e To list three files to the screen, type:

list /d1/userS/document /d@/myfile /dB/
bob/text (ENTER] ’

® To copy everything you type at the keyboard to the printer,
type:

list /term >/p [ENTER

6-59

0S-9 Commands Reference

To go back to the standard output path (the video display)
press (CTAL) BREAK].

@ The following commands create a file called Animals, con-
sisting of six entries. LIST, with the filename Animals as a
parameter, displays the contents of the new file.

build animals
? cat (ENTER]

cow [ENTER)

dog (ENTER)
elephant
bird

fish

list animals (ENTER

The screen displays:

cat

cow

dog
elephant
bird
fish

6-60

System Command Descriptions | 6

LOAD

Syntax: load pathlist
Function: Loads a module (program) from a file into memory.

Parameters:

pathlist Specifies the module to load.

Notes:

® LLOAD opens the path you specify, then loads into memory
one or more modules from it. The process adds the names of
the new modules to the module directory. If LOAD finds
that a specified module has the same name and type as a
module already in memory, it keeps the module with the
highest revision level.

@ If the pathlist for LOAD does not include a drive name,
LOAD uses the current execution directory. To LOAD a
module from a directory other than the current execution
directory, specify a full pathlist, beginning with a drive
name if applicable.

Examples:

@ In the following example, MDIR displays the names of mod-
ules currently resident in memory. Then, LOAD loads the
Edit module into memory. MDIR again lists memory mod-
ules, and this time shows that Edit is successfully added to
memory.

mdir [ENTER

6-61

0S-9 Commands Reference

The screen display is similar to the following:

Module Directory at 12:49:52

REL Boot
I0OMan RBF

DD SCF
TERM W

W4 WS

T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basic@9 GrfDrv

load edit [ENTER
mdir [ENTER

The screen displays:

Module Directory
REL Boot
[OMan RBF
DD SCF
TERM W
W4 WE
T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basic#9 GrfDrv

0s9p1 0S9p2
CC3Disk Do
cc3Ia VDGInt
W1 W2

W6 W7

P PipeMan
CC3Go CC3HDisk
Date Delniz
Echo Iniz
MDir Merge
Setime Tmode
at 12:51:12

DS9p1 0s9p2
CC3Disk Do
CC3I0 VDGInt
W1 W2

We W7

P PipeMan
CC3Go CC3HDisk
Date Delniz
Echo Iniz
MDir Merge
Setime Tmode
Edit

Init
D1
Grflnt
W3
ACIAPAK
Piper
Ha@

Del
Link
Mfree
Unlink

Init
D1
Grflnt
W3
ACIAPAK
Piper
H@

Del
Link
Mfree
Unlink

6-62

System Command Descriptions / 6

MAKDIR

Syntax: makdir pathlist or dirname

Function: Creates a directory according to the pathlist given.
You must have write permission for the parent directory of the
directory you are creating.

Parameters:
pathlist The path to the directory you want to create.
dirname The name of the directory you want to create.
Notes:

e When MAKDIR initializes the new directory, the directory
contains only the “.” and “..” files.

® MAKDIR enables all permissions for the directory it
creates.

e To follow OS-9 convention, capitalize all directory names.

Examples:

@ To create a directory on Drive /D1, use the directory’s full
pathlist from the root, such as:

makdir /d1/STEVE/PROJECT (ENTER)

® To create a directory called DATAFILES within the current
data directory, type:

makdir DATAFILES

® To create a directory called SAVEFILES in the parent of
the current directory, type:

makdir ../SAVEFILES (ENTER)

6-63

0S-9 Commands Reference

MDIR

Syntax: mdir [e]

Function: Displays the names of modules currently in mem-
ory. MDIR automatically adjusts its output for 32- or 80-
column displays.

Options:

e Causes a full listing of the extended physical
address (block number and offset within the
block), size, type, revision level, re-entrant
attribute, user count, and name of each mod-
ule. MDIR shows numbers in hexadecimal.
The display adjusts for 80 or 32 columns.

Notes:

® Many of the modules displayed by MDIR are OS-9 system
modules and are not executable as programs. Always
check the module type code before running a module
with which you are not familiar.

Examples:

® Because MDIR adjusts to either 32 or 80 columns, the fol-
lowing command produces a full module listing in either
format:

mdir e
The 80-column display of MDIR e is:
Module Directory at £3:03:53

Block Offset Size Typ Rev Atir Use Module Name

6-64

System Command Descriptions / 6

DA O PO DO ® DO O GG — — —» s o2 A oA A A A a ah am E h o L s s s s L e a3 s T

E30
1600
200
EA1
ECF
1862
2A8BD
2F 83
2F33
2Fe3
2F93
3549
40DA
4DC1
59B3
59F8
SA3A
5A7D
5ACH
5B#3
5B46
5B89
5BCC
SCaF
5FC4
68083
617D
6189
63D2
63FA
64240
6594

5F2
8CE
9CB
A4
AEG
E4B
ECF
EF1
FSB
F87
FD6
FFA

108
ED9
CA1
2k
993
1228
476
30
30
30
5B6
B91
CE7
BF2
45
42
43
43
43
43
43
43
43
3B5
3F
174
3C
219
28
26
174
1AA
5F2
2DC
FD
76
A5
365
84
22
6A
2C
4F
24
2F1

C1
ce
Co
ca
1
D1
E1
F1
F1
F1
D1
E1
C1
C1
F1
F1
F1
F1
F1
F1
F1
F1
F1
E1
F1
E1
F1
D1
E1
F1
C1
"
"
"
"
11
!
i
11
"
i
"
1
"
™

a e —h A 3 A a3 oA % % % ah 3 A % 3 b R % A eud amh A ok h —3 o R L 3 kA A 3 ek = e = A D Q0 -

S 5 3 3 3 S 3 O3 O3 O3 O3 O 3 O3YOF3FOSZFO3FT3F 33O O3OFOTZOS OB S S

“ 3 3 % 3 3 3 3 3 3 3 03 3 .

—_ s oy

(23]
[s+]

= 0 — — Do s =

s e
,Em M W SRR WSS SmW DN DSDO O S s s =TS

Boot
059p1
0S9p2
Init
I0Man
RBF
CC3Disk
D@

D1

DD

SCF
Cc3In
VDGInt
Grflint
TERM

W

W1

W2

W3

4

WS

WG

W7
ACIAPAK
T2
PRINTER
P
PipeMan
Piper
Pipe
Clock
CC3Go
Shell
Copy
Date
Delniz
Del

Dir
Display
Echo
Iniz
Link
List
Load
MDir

6-65

0S-9 Commands Reference

® The 32-column display of MDIR is:

[sp R p I e N e DR e) BN p B e 3]

12EB
1353
153E
1857
1974
1A8C
1D8D

68
1EB
319
11D
118
3681

2D

1
1
1
1
1
1
1

b e B B B B e |

- m = =

o

Merge
Mfree
Procs
Rename
Setime
Tmode
Unlink

Module Directory at #3:06:49

Blk Ofst Size Ty Rv At Uc Name

3F
3F
3F

1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

D@6

E30
1008

200

EA1

ECF
1862
2A8D
2F@3
2F33
2F63
2F93
3549
40DA
4DC1
59B3
59F8
5A3A
S5A7D
SACH
5B63
5B46
5B89
SBCC
5COF
SFC4
6003
617D
61B9
63D2
63FA
6420

12A
1D0
EDS
CA1
2E
993
1228
476
30
38
38
5B6
B91
CE7
BF2
45
42
43
43
43
43
43
43
43
3B5
3F
17A
3C
219
28
26
174

C1
C1
ce
Co
co
C1
D1
E1
F1
F1
F1
D1
E1
C1
C1
F1
F1
F1
F1
Fi
F1
F1
F1
F1
E1
F1
E1
F1
D1
E1
F1
C1

1
1
8
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

53T IOT T OTOIOYNOI;INTIOFIOTYTOTOOY OOy

2

=2 S 0= 2 U a S hhhos = =

oamsS

Oow>»o s

REL
Boot
0sep1
0S9p2
Init
I0Man
RBF
CC3Disk
D@

D1

DD

SCF
CC3ID
VDGInt
Grflint
TERM

W

W1

W2

W3

W4

WS

W6

W7
ACIAPAK
T2
PRINTER
P
FipeMan
Piper
Pipe
Clock

6-66

System Command Descriptions / 6

OO OO —

6594

5F2
8CE
9CB
A4
AEG
E4B
ECF
EF1
F5B
F87
FD6
FFA
12EB
1353
153E
1857
1974
1A8C
1D8D

1AA
5F2
2DC
FD
76
AS
365
84
22
6A
2¢
4F
24
2F 1
68
1EB
319
11D
118
301
2D

11
11
11
11
11
11
11
11
11
1"
1
1"
11
11
1
11
11
11
11
11
11

G G VOO G VU U QU QU G O AT U I O QT (S QI Qe §

AT ITTINTIII;;I;IITIIII .

SN NSNS S

aas s e s e S —

CC3Go
Shell
Copy
Date
DEIniz
Del
Dir
Display
Echo
Iniz
Link
List
Load
MDir
Merge
Mfree
Procs
Rename
Setime
Tmode
Unlink

6-67

0S-9 Commands Reference

MERGE

Syntax: merge [filenamel]l...]

Function: Copies files to the standard output path. By redi-
recting the output of the MERGE command, you can combine
several files into one file, or direct several files to the printer.

Parameters:

filename Specifies the files to combine.
Notes:

e Use MERGE to combine several files into a single output
file. It copies data in the order in which you type the
filenames.

® MERGE does not output line editing characters (such as
the automatic line feed).

@ You normally use MERGE with the standard output redi-
rected to a file or device.

e You can use MERGE to append or copy any type or mix-
ture of files to another device.

Examples:

e To merge four files into a new file called Combined.file, and
send the results to the new file instead of to the video dis-

play, type:

merge filel file2 file3 filed >combined.file

e To merge two files, and send the output to the printer, type:

merge compile.list asm.list >/P [ENTER

6-68

System Command Descriptions / 6

MFREE

Syntax: mfree

Function: Displays a list of memory areas not presently in use
and, therefore, available for assignment.

Notes:

e MFREE displays the block number, physical (extended)
beginning and ending addresses, and the size of each con-
tiguous area of unassigned RAM. It gives the size in num-
ber of blocks and in kilobytes. The block size is 8 kilobytes
per block. Free memory for user data areas does not need to
be contiguous because the MMU can map scattered free
blocks to be logically contiguous.

Examples:

@ Type this command:

mfree [ENTER

The screen shows a display similar to this:

Blk Begin End Blks Size

16 12080 16FFF 1 8K
18 180600 1DFFF 3 24K
20 200080 3FFFF 16 128K

Total: 28 160

6-69

0S-9 Commands Reference

MODPATCH

Syntax: modpatch [options] filename [options]

Function: modifies modules residing in memory. MODPATCH
reads a patchfile and executes the commands in the patchfile
to change the contents of one or more modules.

Parameters:
filename The name of a file containing instructions for
MODPATCH
options One of the following options that change MOD-
PATCH’s function
Options:
-8 Silent mode, does not display patchfile com-
mand lines as they are executed.
-w Does not display warnings, if any
-c Compares only, does not change the module

6-70

System Command Descriptions | 6

Notes:

@ Before using MODPATCH, you must create a patchfile to
supply the data to control MODPATCH’s operation. This file
contains single-letter commands and the appropriate mod-
ule addresses. The commands are:

1 modulename

¢ offset origuval rewval

Link to the module specified
by modulename.

Change the byte at the offset
address specified by offset from
the value specified by origval
to the new value specified by
newval. If the original value
does not match origval, MOD-
PATCH displays a message.

Verify the module—update the
modules CRC. If you plan to
save the patched module to a
file that the system can load,
you must use this command.

Mask IRQ’s. Turns off inter-
rupt requests (for patching
service routines).

Unmask IRQ’s. Turns on inter-
rupt requests (for patching
service routines).

@ You can use the BUILD command or any word processing
program to create patchfiles.

® Module byte addresses begin at 0. MODPATCH changes
values pointed to by an offset address (offset from 0) rather
than an absolute memory address.

6-71

0S8-9 Commands Reference

To view the contents of a memory module, use SAVE and
DUMP to copy the module to a file and display its contents.
Also use SAVE to copy the patched module to a disk file.

Changing a memory module might not produce an immedi-
ate effect. You have to duplicate the initialization procedure
for that module. This means, if the module loads during
bootup, you have to create a new boot file that includes the
changed module, then reboot using the new boot file.

To use the patched module in future system boots, use
SAVE to store the module in the MODULES directory of
your system disk. You can then use OS9GEN to create a
new system disk using the patched module. If you are
using the patched module to replace another module,
rename the original module and then give the patched
module the original name.

If you patch a module that is loaded during the system
boot, you can use COBBLER to make a new system boot
that uses the patched module.

Examples:

The following example shows the commands, the screen prompts,
and the entries you make to patch the standard 40-column term
window descriptor to be an 80-column screen rather than the
standard 40-column screen:

0S9:build termpatch (ENTER]
? 1 term (ENTER)

? ¢ 002c 28 50 (ENTER)

? c 0030 01 02

? v [ENTER
? (ENTER

0S9: modpatch termpatch

6-72

System Command Descriptions / 6

To change the size, columns, and colors of Device Window W1,
create the following procedure file and name it W180:

I wi

c 0030 01 02
¢ 002c 1b 50
¢ 002d Ob 18

If the W1 module is not already in memory, load it from the
MODULES directory of your system disk. Then, before initializ-
ing W1, run MODPATCH:

modpaich w180
Next, initialize W1:

iniz w1 [ENTER
shell i=/w1& [ENTER

Press to display the new window with 80 columns, 24
lines, and a white background.

6-73

0S-9 Commands Reference

MONTYPE

Syntax: montype fype

Function: Sets your system for the type of monitor you are
using

Parameters:
Parameters:
type A single letter indicating the monitor type:
¢ for composite monitors or color televisions
r for RGB monitors
m for monochrome monitors or black and
white televisions
Notes:

@ Different types of color monitors display colors differently.
For the best results, set your system to the type of monitor
you are using.

e If you are using a monochrome monitor or black and white
television, you can obtain a sharper image by setting your
monitor type to monochrome.

& Include the MONTYPE command in your system’s Startup
file to automatically boot in the proper monitor mode.

e If you do not use MONTYPE, the system defaults to ¢ (com-
posite monitor).

Example:

To set your system for an RGB monitor, type:

moniype r [ENTER

6-74

System Command Descriptions / 6

To add a MONTYPE command to your existing Startup file, first
use BUILD to create the new command. For example:

build temp [ENTER
montype r (ENTER
ENTER

Next, append the file to Startup. Type:
merge startup temp > startup.new (ENTER)
Delete the temp file:

del temp

To enable the system to use Startup.new when booting, rename
the original Startup file:

rename Startup Startup.old
Then rename Startup.new:

rename Startup.new Startup

6-75

0S-9 Commands Reference

OS9GEN

Syntax: os9gen devname [opts]

Function: Creates and links the required OS9Boot file to a
diskette making it a bootable diskette.

Parameters:

devname

opts
Options:

-8

#nl[K]

Notes:

The disk drive containing the diskette to
receive the new boot file.

One or more of the following options.

Causes OS9GEN to use only one drive to gen-
erate the boot file. In a single-drive operation,
OS9GEN reads the modules from the source
diskette and asks you to exchange diskettes
and press as it reads and copies the
modules.

reserves n kilobytes of memory for use by the
OS9GEN command. By setting aside as much
memory as possible, you can increase the
speed of OS9GEN and, on single-drive sys-
tems, reduce the number of diskette swaps. If
you type K after #n, the memory specified by
n is in kilobytes (1024 bytes), otherwise n is
in 256-byte pages.

® 0S9Boot files can only exist on contiguous sectors. There-
fore, use OS9GEN only with newly formatted diskettes. If
0S9Boot is fragmented, the system warns you not to use
the diskette to bootstrap OS-9.

6-76

System Command Descriptions / 6

@ OS9GEN creates a working file called Tempboot on the
device specified by devname. Next, it reads filenames (path-
lists) either from the keyboard (the standard input path) or
redirected from a file. If you enter names manually,
OS9GEN does not display a prompt. Type each filename
and press (ENTER). After typing the last filename and press-

ing [ENTER], press (ENTER) again, or press [CTAL)(BREAK] to com-
plete the list.

OS9GEN opens each file and copies it to Tempboot. The
process repeats until it reaches a blank line or an end-of-
file marker. All of the modules listed in Chapter 5 are not
required in a boot file. These modules must be included in
a boot File:
089p2, Init, I0Man, RBF, SCF, CC3IO, VDGInt (or
Grflnt), CC3Disk, DO, TERM, Clock, CC3GO.

@ You must have RENAME in the current execution directory
or in memory for OS9GEN to work properly.

@ With all input files copied to Tempboot, OS9GEN deletes
the OS9Boot file, if it exists. It renames Tempboot as
0S9Boot, and writes the file’s starting address and size in
the diskette’s Identification Sector (LSN 0) for use by the
0S-9 bootstrap firmware. 0S-9 writes its kernel on diskette
Track 34. If there is not room for the kernel, an error mes-
sage appears, and the operation terminates.

@ If you have only one drive, you can generate a new boot file
more easily using the CONFIG utility. CONFIG is
designed to make custom system diskettes using either sin-
gle- or multiple-drives.

Examples:

@ The following commands manually install a boot file on
device /D1 that is an exact copy of the OS9Boot file on
device /D0. The first command line runs OS9GEN, the sec-
ond enters the name of the file to install, and the third
enters an end-of-file marker.

os9gen /d1
/dB/o0s9boot

6-77

0S-9 Commands Reference

The following commands let you manually install a boot file
on device /D1 that is a copy of the OS9Boot file on device
/D0 and the modules stored in the files /D0/Tape.driver and
/D2/Video.driver. Line 1 executes OS9GEN. Line 2 enters
the main boot filename. Lines 3 and 4 enter the names of
the two additional files, and Line 5 enters an end-of-file
marker.

os9gen /d1
/dB/0s9boot
/d@/tape.driver
/d2/video.driver

The following commands generate a new boot file on Drive
/D1 that includes all the old boot file modules. Line 1 uses
BUILD to create a file called Bootlist. The next three lines
enter the names of the three files into Bootlist. Line 5 ter-
minates BUILD, and Line 6 runs OS9GEN with input
redirected from the new Bootlist file.

build /d@/bootlist (ENTER)

? /dB/os9boot (ENTER]

? /d@/tape.driver (ENTER]

? /d@/video.driver (ENTER]

?

os9gen /d1</dB/bootlist ENTER)

To install a custom boot file on a single-drive system, build
a Bootlist to drive the OS9GEN program. You need a direc-
tory that contains the required file managers, device driv-
ers, descriptors, and other files for the boot file. For
example, to make a new boot file containing only the
/TERM, /D0, /D1, and /P devices, first build a Bootlist such
as:

6-78

System Command Descriptions / 6

build /dB/bootlist
term_vdg.dt
p. dd (ENTER]
d@_35s.dd [ENTER)
d1_35s.dd [ENTER)
0=9p2 (ENTER]

Init

[OMan (ENTER)

RBF .mn (ENTER]
CC3Disk.dr
SCF.mn
CC3I0.dr
vdgint.io
printer.dr
clock.6@hz [ENTER

cc3go [ENTER

Then use OS9GEN to create the new boot file on a separate
diskette by typing:

os9gen /df -s #25K </d@/booilist

This command causes OS9GEN to use only one drive, 25K
of buffer space, and the filenames previously stored in the
Bootlist file.

You can expand this basic bootlist file to include other stan-
dard OS-9 modules such as window device descriptors, other
disk drivers, descriptors, and terminal or modem
descriptors.

All of the standard bootlist modules are contained in the
MODULES directory on the BASIC09/CONFIG diskette.

6-79

0S-9 Commands Reference

PROCS

Syntax: procs [e]

Function: Displays a list of the processes running on the sys-
tem. PROCS automatically adjusts its output for 32-or 80-
column displays.

Options:
e Causes PROCS to display the processes of all
users.
Notes:

@ Normally PROCS lists only processes having the user’s ID.
The list is a snapshot taken at the instant PROCS exe-
cutes. Processes switch states rapidly, usually many times
per second.

© PROCS shows the user and process ID numbers, priority,
state (process status), memory size (in 256 byte pages), pri-
mary program module, and standard input path.

@ PROCS adjusts its output for 80 or 32 columns.
Examples:

® Because PROCS automatically adjusts for either 32- or 80-
column displays, the following command can produce either
format:

procs e [ENTER

6-80

System Command Descriptions / 6

Following is a possible 32-column display of PROCS:

Age Sta

Primary

128 $80
Shell
128 ¢80
Basic@9
128 ¢80
Procs
128 $80¢
Shell
129 $88

Id PId User# Pty
Sigl Mem StPir
2 1] 128
) 3 $78E2

3 6) 128
[16 $74B2

4 2] 128
@ 6 $05F3

5) 8 128
[3 $6FB2

6)) 128
1] 3 $68E2

Shell

Following is a possible 80-column display of PROCS:

User

Id PId Number Pty Age Sis Signl Siz Pir

Mem Stack
Primary Module

128 128 ¢80
128 128 $8¢
128 128 ¢80
128 129 488
128 129 $80
128 128 480

3 $7882 Shell
16 $74B2 Basich9
3 $72E2 Shell
3 $6FB2 Shell
3 $68E2 Shell
6 $05F3 Procs

6-81

0S8-9 Commands Reference

PWD
PXD

Syntax: pwd
pxd

Function: PWD shows the path from the ROOT directory to
the current data directory. PXD shows the path from the
ROOT directory to the current execution directory.

Notes:

® 0OS-9 keeps a current data directory and current execution
directory for each process. Use PWD and PXD to show
where your current data and execution directories are
located on the disk or disks you are using.

Examples:
® The following example uses a full pathlist. CHD changes

the current data directory to the MANUALS directory.
chd /d1/steve/textfiles/manuals

To display the full path to the data directory, type:
pwd

The screen displays the data directory path:
/D1/STEVE/TEXTFILES/MANUALS

® The following commands cause the current data directory
to move up one level in the directory hierarchy and then
display the data directory.

chd .. (ENTER
pwd (ENTER

/D1/STEVE/TEXTFILES

6-82

System Command Descriptions / 6

@ The following commands change the current data directory
to the parent directory and then display the current data
directory.

chd .. [ENTER
pwd [ENTER

/D1/STEVE

@ The following command displays the current execution
directory, CMDS.

pxd [ENTER

/DB/CMDS

6-83

0S-9 Commands Reference

RENAME

Syntax: rename pathlist filename

Function: Gives the specified file or directory a new name.

Parameters:
pathlist The current name of the file or directory.
filename The new name.

Notes:

@ You must have write permission for the file.
Examples:

® To change a file’s name from Blue to Purple, type:

rename blue purple
® To rename a file in the USER9 directory of Drive /D3, type:

rename /d3/user9/test temp

e In the following example, DIR displays the names of the
files in the current data directory. RENAME changes the
filename Animals to Mammals. Another DIR command
shows that RENAME has performed properly.

dir
The screen displays:

Directory of . 16:22:53
myfile animals

rename animals mammals [ENTER
dir [ENTER

6-84

System Command Descriptions | 6

The screen now shows:

Directory of . 16:23:22
myfile mammals

6-85

0S-9 Commands Reference

SETIME

Syntax: setime [yy/mm/dd hh:mml[:ss]]

Function: Sets the system date and time, and activates the
real time clock.

Parameters:
yy The year in a two-digit format (86 for 1986).
mm The month in a one or two-digit format (01 or
1 for January, 12 for December).
dd The day of the month in a one- or two-digit
format, such as 21. '
hh The hour in a one- or two-digit, 24-hour for-
mat (15 for 3 p.m.).
mm Minutes in a one- or two-digit format, such as
03, 5, or 55.
8s Seconds in a one- or two-digit format, such as
04, 5, or 25.
Options:

Specifying seconds in the new time entry is optional.
Notes:
® You can include the date and time parameters. If you do

not, SETIME asks you for them.

® Numbers are one- or two- decimal digits using the space,
colon, semicolon, or slash as delimiters.

@ The CC3go module starts the clock on system startup, so
multitasking is possible without use of the SETIME utility.

6-86

System Command Descriptions | 6

@ If you do not set the date and time when booting 0S-9, the
system cannot accurately update the “Last modified” date
and time for files.

Examples:

® To set the date and time to August 15, 1986, 3:45 p.m.,
type:

setime 86,08,15,15,45 [ENTER)

e To set the same date using a slightly different but equally
acceptable format, type:

setime 86/88/15 15/45/08 ENTER)

6-87

0S-9 Commands Reference

SETPR

Syntax: setpr procID number

Function: Changes the CPU priority of a process. The priority
of a process determines the CPU time allotted to it under
multi-tasking conditions.

Parameters:
proclD The number of the process for which you want
to change the priority.
number The new priority number.
Notes:

@ The process priority number is a decimal number in the
range 1 (lowest priority) to 255. If you need information
about the process ID number and current priority, use
PROCS.

@ You can use SETPR only on processes that have your user
number.

@ SETPR does not appear in the CMDS directory because it
is built into the shell.

@ A Super User (User 0) can set any process priorities.
Examples:

@ To set or change the priority of Process 8 to 250, type:
setpr 8 258

6-88

System Command Descriptions | 6

@ In the following commands PROCS displays process ID
numbers and other information. Then, SETPR sets Process
3 to a priority of 255. The final command confirms the
change.

procs [ENTER

Following is a sample screen display:

User Mem Stack
Id PId Number Pty Age Sts Signl Siz Ptr Primary Modele
2 1 B 128128 ¢80 @ 3 $78E2 Shell
3 6 f 128128 ¢80 0 16 $74B2 Basicl9
4 2 B 128128 ¢80 @ 6 $05F3 Procs
5t g 128128 ¢88 0 3 $6FB2 Shell
6 1 § 128129 ¢86 6 3 $68E2 Shell

setpr 3 255
oo

User Mem Stack
Id PId Number Pty Age Sts Signl Siz Ptr Primary Module
B 128 128 $80 f 347882 Shell
§ 255 128 $80 B 16 $74B2 Basicl9
g 128 128 $80 § 3 $72E2 Shell
g 128 129 ¢8d 6 3 $6FB2 Shell
g 128 129 ¢80 f 3 $68E2 Shell
f 128 128 $80 I 6 $85F3 Procs

6-89

0S§-9 Commands Reference

SHELL

Syntax: shell arglist

Function: The shell is 0S-9’s command interpreter program. It
reads data from its standard input path, processes it and
sends the output to its standard output path, and sends error
messages (and some prompts) via the standard error output.
Any or all of these paths may be redirected. It interprets the
data as a sequence of commands. The function of the shell is
to initiate and control execution of other OS-9 programs.

Parameters:
arglist The commands, parameters, and options given
SHELL in a command line.
Notes:
@ The shell reads and interprets one text line at a time from

the standard input path until it reaches an end-of-file
marker. At that time it terminates itself.

When another program calls the shell, a special case occurs
in which the shell takes the argument list as its first line
of input. If this command line consists of built-in com-
mands only, the shell reads and processes more lines. Oth-
erwise, control returns to the calling program after the
shell processes the single command line.

When operating from the shell, you do not need to specify
the SHELL command to execute a program, a command, or
a built-in shell function. Using SHELL before a command
causes the existing shell to fork an-additional shell, which
then forks the specified process, such as:

shell dir e

Issuing a command without SHELL causes the existing
shell to fork the specified process, such as:

dir e (ENTER

6-90

System Command Descriptions | 6

The following two commands also have identical effects:

shell x [ENTER
x | ENTER

© The shell command separators are:

&
!

Sequential execution separator
Concurrent execution separator

Pipeline separator

ENTER]) end-of-line (sequential execution separator)

@ The Shell command modifiers are:

<

>
>>
<>
<>>

>>>

Redirect standard input

Redirect standard output

Redirect standard error output

Redirects standard input and standard output

Redirects standard input and standard error
output

Redirects standard output and standard error
output

<>>> Redirects standard input, standard output and

standard error output

#n Set the process memory size in pages
#nK Set the program memory size in 1 kilobyte units.
@ The following built-in Shell command parameters tell 0OS-9
to:
chd pathlist Change the data directory
kill procID Send the termination signal to
process
setpr proclD Change the specified process

number priority

6-91

0S-9 Commands Reference

chx pathlist Change the execution directory
i=devicename Create an immortal process

w Wait for any process to die

p Turn on prompting

P Turn off prompting

t Echo input lines to standard output
-t Not echo input lines

-X Not terminate on an error

X Terminate on error

* Not process the following text

@ See Chapter 3 for more information on the operation of the
shell.

6-92

System Command Descriptions | 6

TMODE

Syntax: tmode [pathnum] [paramlisi] [...]

Function: Displays or changes the initialization parameters of
the terminal. TMODE automatically adjusts its output for 32-
or 80-column displays.

Common uses include changing baud rates and control key

definitions.

Parameters:

pathnum

paramlist
Options:
upe

-upc
bsb

-bsb

bsl

One of the standard path numbers:

.0 = standard input path
.1 = standard output path
.2 = standard error output path

One of the following options.

Displays uppercase characters only. Lowercase
characters automatically convert to uppercase.

Displays both upper- and lowercase characters.

Causes a backspace to erase characters. Back-
space characters echo as a backspace-space-
backspace sequence. This setting is the system
default.

Causes backspace not to erase. Only a single
backspace echoes.

Enables backspace over a line. Deletes lines by
sending backspace-space-backspace sequences
to erase a line (for video terminals). This set-
ting is the system default.

6-93

0S-9 Commands Reference

-bsl

echo

-echo
If

null=n

pause

-pause

pag=n

bsp=~h
del=h

eor=~h

eof=h

Disables backspace over a line. To delete a line,
TMODE prints a new line sequence (for hard-
copy terminals).

Input characters echo on the terminal. This
setting is the system default.

Turns off the echo default.

Turns on the auto line feed function. Line
feeds automatically echo to the terminal on
input and output carriage returns. The auto
line feed setting is the system default.

Turns off the auto line feed default.

Sets the null count—the number of null ($00)
characters transmitted after carriage returns

for the return delay. The value 7 is in decimal.
The default is 0.

Turns on the screen pause. This setting sus-
pends output when the screen fills. See the
pag parameter for a definition of screen size.
Resume output by pressing the space bar. This
setting is the system default.

Turns off the screen pause mode.

Sets the length of the video display page to n
(decimal) lines. This setting affects the pause
mode.

Sets the backspace character for input. The
value £ is in hexadecimal. The default is 08.

Sets the delete line character for input. The
value 4 is in hexadecimal. The default is 18.

Sets the end-of-record (carriage return) char-
acter for input. This setting requires a value
in hexadecimal. The default is 0D.

Sets the end-of-file character for input. The
value 4 is in hexadecimal. The default is 1B.

6-94

System Command Descriptions | 6

reprint=h

dup=~h

psc=~h

abort=~h

quit=~

bse=~h

bell=h

type=h

Sets the reprint line character. The value 4 is
in hexadecimal.

Sets the character to duplicate the last input
line. The value A is in hexadecimal. The
default is 01.

Sets the pause character. The value of the
character is in hexadecimal. The default is 17.

Sets the terminate character (normally CON-
TROL C). The value of the character is in
hexadecimal.

Sets the quit character (normally CONTROL
E). The value of the character is in
hexadecimal.

Sets the backspace character for output. The
value 2 is in hexadecimal. The default is 08.

Sets the bell (alert) character for output. The
value £ is in hexadecimal. The default is 07.
For external devices, use type for ACIA (asyn-
chronous communications interface adapter)
initialization values (hexadecimal). The
default is 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes for
these are:

000 = no parity

101 = MARK parity transmitted, no
checking

111 = SPACE parity transmitted, no
checking

011 = even parity (available only with
the external ACIA pak and Mod-
pak devices)

001 = odd parity (available only with
the external ACIA pak and Mod-
pak devices)

6-95

0S-9 Commands Reference

xon=Ah

xoff=~h

baud=~h

Bit 4 selects auto-answer modem support fea-
tures.

1 =on
0 = off

See “Technical Information for the RS232
Port” in Chapter 5 for more information.

For TERM-VDG, the type byte has a different
use:

Bit 0 specifies a machine with true low-
ercase capability. Set Bit 0 to turn on
true lowercase.

For TERM-WIN, use a value of 80 to specify a
window device.

Sets the character to be used as a signal for
resuming transmission of data after an xoff
signal is received. Default is 0 (not active).

Sets the character to be used for stopping data '
transmission. Default is 0 (not active).

Sets the baud rate, word length, and stop bits
for a software-controllable interface. The codes
for the baud rate are:

0=110 3=1200 6= 9600
1=300 4=2400 7=19200 (ACIAPAK only)
2=600 5=4800 7=232000 (SIO only)

Bits 0-3 determine the baud rate.
Bit 4 is reserved for future use.
Bits 5-6 determine the word length:
00 = 8 bits
01 = 7 bits
Bit 7 determines the number of stop bits:
0 = 1 stop bit
1 = 2 stop bits

See “Technical Information for the RS232
Port” in Chapter 5 for further information.

6-96

System Command Descriptions / 6

Notes:

You can specify any number of parameters from the options
list, separating them by spaces or commas. If you don’t
specify parameters, TMODE displays the current values of
the available options.

You can use a period and a number to specify the pathnum-
ber on which to read or set options. If you don’t specify a
path, TMODE affects the standard input path.

TMODE works only if a path to the file/device is open. Use
XMODE to alter device descriptors and set device initial
operating parameters.

TMODE can also alter the baud rate, word length, stop
bits, and parity for devices already initialized.

If you use TMODE in a procedure file, you must specify one
of the standard output paths (.1 or .2). This procedure is
necessary, because the command redirects the SHELL’s
standard input path to come from a disk file. (You can use
TMODE only on SCFMAN-type devices.) For example, to
set lines per page for standard output, use this line:

TMODE .1 pag=24 (ENTER)

Examples:

The following command line sets the terminal to display
upper- and lowercase, sets the null count to 4, and turns on
the screen pause function.

tmode -upec 1f null=4 pause (ENTER]

The next command sets the screen page length (number of
lines) to 24, turns on the screen pause function and the
backspace-over-line function, and sets the backspace charac-
ter value to 8 and turns off the echo default.

tmode pag=24 pause bsl -echo bsp=8 (ENTER]

6-97

0S-9 Commands Reference

TUNEPORT

Syntax: tuneport [device] [-s = value]

Function: Lets you test and set delay loop values for the cur-
rent baud rate and select the best value for your printer or

terminal.
Parameters:
device The device you want to test, either your
printer (/p) or terminal (/t1).
value A new delay loop value.
Options:
5= Sets a new delay loop value.
Examples:
@ The following command provides a test operation for your

printer.

tuneport /p [ENTER

After a short delay, TUNEPORT displays the current baud
rate and sends data to the printer to see if it is working
properly. The program then displays the current delay value
and asks for a new value. Enter a decimal delay value and
press (ENTER). Again, TUNEPORT sends data to the printer
as a test. Continue this process until you find the best
value. When you are satisfied, press instead of enter-
ing a value at the prompt. A closing message displays your
new value.

Use the same process to set a new delay loop value for the
/T1 terminal. ;

6-98

System Command Descriptions /| 6

® The following command line sets the delay loop value for
your printer to 255.

tuneport /p -5=255

Use such a command on future system boots to set the opti-
mum delay value determined with the TUNEPORT test
function. Then, using OS9GEN or COBBLER, generate a
new boot file for your system diskette. You can also use the
-s option with TUNEPORT in your system Startup file to
set the value.

6-99

0S-9 Commands Reference

UNLINK

Syntax: wunlink modname [...]

Function: Tells OS-9 that the named memory module(s) is no
longer needed by the user.

Parameters:

modname One or more modules you want to unlink.
Options:

In one command line, you can specify as many modules as you
want to unlink.

Notes:

® Whether OS-9 destroys the modules and reassigns their
memory depends on whether the module is in use by other
processes. Each process using a module increases its link-
count by one. Each UNLINK you issue decreases its link-
count by 1. When the link-count reaches 0, OS-9 deallo-
cates the module.

@ You should unlink modules whenever possible to make most
efficient use of available memory resources. Modules you
have loaded and linked might need to be unlinked twice to
remove them from memory.

6-100

System Command Descriptions / 6

@ Warning: Never attempt to unlink a module you didn’t load
or link, and never unlink a module that is in use by pro-
grams (displayed by the PROCS command).

Examples:

@ To unlink three modules named Pgml, Pgmb5, and Pgm99,

type:

unlink pgm! pgmS pgm99 (ENTER)

® In the following command sequence, MDIR first displays
the modules in memory. The next command unlinks the
edit module. The output of the final command (MDIR)
shows that UNLINK is successful—Edit no longer appears

on the list.
mdir

A possible screen display is:

Module Directory at 08:61:08

REL Boot
[0Man RBF

DD SCF
TERM W

W4 W5

T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basicl9 GrfDrv

unlink edit [ENTER
mdir [ENTER

0s9pt
CC3Disk
cc3io
W1

W6

P
CC3Go
Date
Echo
MDir
Setime
Edit

0s9p2
D@
VDGInt
W2

W7
PipeMan
CC3HDisk
DEIniz
Iniz
Merge
Tmode

Init
D1
Grflnt
W3
ACIAPAK
Piper
HB

Del
Link
Mfree
Unlink

6-101

0S-9 Commands Reference

The new screen display is:

Module Directory at #8:83:15

REL Boot 059p1 0s9p2 Init
[0Man RBF CC3Disk D8 D1

DD SCF CC310 VDGInt Grflnt
TERM W W1 W2 W3

W4 WS We W7 ACIAPAK
T2 PRINTER P PipeMan Piper
Pipe Clock CC36Go CC3HDisk HE
Shell Copy Date Delniz Del
Dir Display Echo Iniz Link
List Load MDir Merge Mfree
Procs Rename Setime Tmode Unlink

Basicf9 GriDry

6-102

System Command Descriptions |/ 6

WCREATE

Syntax: wcreate /wpath [-s=type]l xpos ypos xsize
ysize foreground background [border]

Function: Initializes and creates a window.

Parameters:

lwpath The window device name of the window you
are creating (W, W1, W2, W3, and so on).

xpos The x co-ordinate (in decimal) for the starting
position of the upper left corner of the screen.

ypos The y co-ordinate (in decimal) for the starting
position of the upper left corner of the screen.

xsize The horizontal size of the screen in columns; 1
to 80 (in decimal) for screen types 2, 5, and 7,
and 1 to 40 (decimal) for screen types 1, 6,
and 8.

ysize The vertical size of the screen in lines, in the
range 1 to 24 (in decimal).

foreground The window foreground color.

background The window background color.

border An optional window border color. The default
is black.
Options:
-s=type The screen type, chosen from the following
list:

Type Description

40-column hardware text screen
80-column hardware text screen
640 x 192 two-color screen
320 x 192 four-color screen

o UIN
o

6-103

0S-9 Commands Reference

7= 640 x 192 four-color screen
8 = 320 x 192 sixteen-color screen

If you use the -s=type option, you must spec-
ify a border color in the command line. The -s
option is only used to create a window on a
new screen. When creating additional windows
on the currently displayed screen, omit the -s
and border color options.

-z Directs WCREATE to accept input from the
standard input (redirected from a file).

-? Produces a help message for the command.

Examples:

@ To create a full screen, 80-column text window on /wl,
type:
wcreate /wl -s=2 0 0 80 24 7 4 1
@ To create two windows (/w2 and /w3) on a 640 x 192 graph-
ics screen in which /w2 is the upper left of the display and

/w3 is the right half of the display, first use build to create
an input file:

build wfile (ENTER)

? /w2 -s=07 @ @ 40 12 7 4 1 [ENTER)
? /w3 48 0 40 24 4 7 [ENTER)

? (ENTER]

Then, create the windows using Wfile as input:

wcreate -z < wfile ENTER

6-104

System Command Descriptions / 6

e You can use the -z option to create windows in your system
startup file. For example, the following startup file sets up
several windows, along with the usual SETIME.

lock the shell in memory and set the time
link shell
setime < /1

* create the new windows

wcreate -z

» set up an 8B-column full window for /wil
/wl -s=2 0 0 80 24 7 4 1

* set up a 40 column full window for /w2
/w2 -s=1 0 0 40 24 7 4 1

* set up /w3 and /w4 as halves of a

*640 x 192 display

/w3 -s=7 0 0 46 24 7 4 1

/wd 48 0 48 24 4 7

*# the following blank line terminates input
* from wcreatle

* get the graphics fonts loaded
merge sys/stdfonts > /wi

Now, when the system boots, it has four windows defined,
besides TERM. As shown, you can use an asterisk as the
first character on a line in order to allow comments in the
file.

6-105

0S-9 Commands Reference

XMODE

Syntax: xmode devname [paramlist]

Function: Displays or changes the initialization parameters of
any SCF-type device such as the video display, printer,
RS-232 port, and others. XMODE automatically adjusts its
output for 32- or 80-column displays.

Common uses include changing baud rates and control key
definitions.

Parameters:
pathnum The device name to change, such as /term,
/w1, [t2, and so on.
paramlist One of the following options.
Options:
upc Displays uppercase characters only. Lowercase
characters automatically convert to uppercase.
-upc Displays both upper- and lowercase characters.
bsb Causes a backspace to erase characters. Back-
space characters echo as a backspace-space-
backspace sequence. This setting is the system
default.
-bsb Causes backspace not to erase. Only a single
backspace echoes.
bsl Enables backspace over a line. Deletes lines by
sending backspace-space-backspace sequences
to erase a line (for video terminals). This set-
ting is the system default.
-bsl Disables backspace over a line. To delete a line,

you must print a new line sequence (for hard-
copy terminals).

6-106

System Command Descriptions / 6

echo

-echo
If

null=n

pause

-pause

pag=n

bsp=~h
del=~h

eor=nh

eof=h
reprint=~A

dup=~h

Input characters echo on the terminal. This
setting is the system default.

Turns off the echo default.

Turns on the auto line feed function. Line
feeds automatically echo to the terminal on
input, and they output carriage returns. The
auto line feed setting is the system default.

Turns off the auto line feed default.

Sets the null count—the number of null ($00)
characters transmitted after carriage returns

for the return delay. The value n is in decimal.
The default is 0.

Turns on the screen pause. This setting sus-
pends output when the screen fills. See the
pag parameter for a definition of screen size.
Resume output by pressing the space bar. This
setting is the system default.

Turns off the screen pause mode.

Sets the length of the video display page to n
(decimal) lines. This setting affects the pause
mode.

Sets the backspace character for input. The
value 4 is in hexadecimal. The default is 08.

Sets the delete line character for input. The
value £ is in hexadecimal. The default is 18.

Sets the end-of-record (carriage return) char-
acter for input. This setting requires a value
in hexadecimal. The default is 0D.

Sets the end-of-file character for input. The
value % is in hexadecimal. The default is 1B.

Sets the reprint line character. The value A is
in hexadecimal.

Sets the character to duplicate the last input
line. The value % is in hexadecimal. The
default is O1.

6-107

0S-9 Commands Reference

psc=h

abort=~h

quit=~

bse=*#h
bell=Hh

type=nh

Sets the pause character. The value of the
character is in hexadecimal. The default is 17.

Sets the terminate character (normally CON-
TROL C). The value of the character is in
hexadecimal.

Sets the quit character (normally CONTROL
E). The value of the character is in
hexadecimal.

Sets the backspace character for output. The
value A is in hexadecimal. The default is 08.

Sets the bell (alert) character for output. The
value A is in hexadecimal. The default is 07.

For external devices, use type for ACIA (asyn-
chronous communications interface adapter)
initialization values (hexadecimal). The
default is 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes for
these are:

000 = no parity

101 = MARK parity transmitted, no
checking

111 = SPACE parity transmitted, no
checking

011 = even parity (available only with
the external ACIA pak and Mod-
pak devices)

001 = odd parity (available only with

the external ACIA pak and Mod-
pak devices)

Bit 4 selects auto-answer modem support fea-
tures.

1 =on
0 = off

See “Technical Information for the RS232
Port” in Chapter 5 for more information.

6-108

System Command Descriptions | 6

baud=h

xon="h

xoff=h

For TERM-VDG, the type byte has a different
use:

Bit 0 specifies a machine with true low-
ercase capability. Set Bit 0 to turn on
true lowercase.

For TERM-WIN, use a value of 80 to specify a
window device.

Sets the baud rate, word length, and stop bits
for a software-controllable interface. The codes
for the baud rate are:

0=110 3=1200 6= 9600

1=300 4=2400 7=19200 (ACIAPAK
only)

3=600 5=4800 7=32000 (SIO only)

Bits 0-3 determine the baud rate
Bit 4 is reserved for future use
Bits 5-6 determine the word length:

00 = 8 bits
01 = 7 bits

Bit 7 determines the number of stop bits:
0 = 1 stop bit

1 = 2 stop bits.

See “Technical Information for the RS232
Port” in Chapter 5 for further information.

Sets the character to be used as a signal for
resuming transmission of data after an xoff
signal is received. Default is O (not active).

Sets the character to be used for stopping data
transmission. Default is 0 (not active).

6-109

0S-9 Commands Reference

Notes:

XMODE is similar to TMODE, but there are differences.
TMODE operates only on open paths, so its effect is tempo-
rary. XMODE updates the device descriptor. Its change per-
sists as long as the computer is running, even if you or the
system repeatedly open and close the paths to the device.

If you use XMODE to change parameters and the COB-
BLER program to make a new system diskette or to re-
make the boot tracks on the current system diskette, the
process permanently changes the parameters on the new
system diskette.

XMODE requires that you specify a device name. If you do
not specify parameters, XMODE displays the present value
for each parameter. You can use any number of parameters,
separating them with spaces or commas.

Examples:

The following command sets the term (video) for upper- and
lowercase, the null count to 4, the backspace character
value to 1F hexadecimal, and turns on the screen pause
function.

xmode /ierm -upc null=4 bse=1F pause (ENTER]

6-110

Chapter 7

Macro Text Editor

Overview

The OS-9 Macro Text Editor is a powerful, easy-to-learn text-
preparation system. Use it to prepare text for letters and docu-
ments or text to be used by other OS-9 programs, such as the
assembler and high-level languages. The text editor includes the
following features:

@ Compact size

® Capability of having multiple read and write files open
at the same time

® All OS-9 commands usable inside the text editor

@ Adjustable workspace size

@ Repeatable command sequences

@ Edit macros (special utility functions)

e Multiple text buffers

® Powerful commands
The Macro Text Editor is about 5 kilobytes in size and requires
at least 2K bytes of free RAM to run.
Text Buffers

As you enter text, the editor places it in a temporary storage
area called a text buffer. A text buffer acts as a scratch pad for
saving text that you can manipulate with various edit com-
mands. The Macro Text Editor can use multiple text buffers, one
at a time.

A buffer in use is called the edit buffer. Edit also has another
default buffer called the secondary buffer. As well, you can create
additional buffers up to the capacity of your computer’s memory.

Edit Pointers

The Macro Text Editor has an edit pointer that identifies your
position in the buffer, in a manner similar to holding your place
in a book with your finger.

0S-9 Commands Reference

The pointer is invisible to you, but Edit commands can reposi-
tion it and display the text to which it points. Each buffer has its
own edit pointer, and you can move from buffer to buffer without
losing your place in any of them.

Entering Commands

The Macro Text Editor is interactive. This means you and the
editor carry on a two-way conversation. You issue a command,
and the editor carries out the command and displays the result.
When you are through making changes, you can save your
edited file, then press (@) to quit editing.

When the editor displays E: on the screen, it is waiting for you
to type a command. You type a line that includes one or more
commands, then press (ENTER). Edit carries out the commands and
again displays E:.

If you enter more than one command on a line, separate the
commands with a space. If, however, a space is the first charac-
ter on a line, the editor considers the space to be an insert com-
mand and not a separator.

Correct a typing error by backspacing over it or by deleting the
entire line. Note, you cannot correct a line after pressing (ENTER].

Control Keys

You can use the same special control keys with Edit that you
use with OS-9. See Appendix D for a complete listing of these
keys. Following is a list of some of the control keys that are espe-
cially useful with Edit:

Control Key(s) Function

Repeats the previous input line.

Terminates the editor and returns to com-
mand entry mode.

(D) Displays the current input on the next line.

Backspaces and erases the previous

or character.

Macro Text Editor [/ 7

Control Key(s) Function
(@ Interrupts the editor and returns to com-

mand entry mode.

Temporarily halts the data output to your

terminal so that you can read the screen
before the data scrolls off. Qutput resumes
when you press any other key.

or Deletes the line.

CTAL) (BREAK Terminates the editor, and returns to com-

mand entry mode.

Command Parameters

There are two types of edit parameters, “numeric” and “string.”

Numeric Parameters. Numeric parameters specify an amount,
such as the number of times to repeat a command or the number
of lines affected by a command. If you do not specify a numeric
parameter, the editor uses the default value of one. Specify all
other numeric parameters in one of the following ways.

Enter a positive decimal integer in the range 0 to
65,535. For example:

0

10
5250
65532
31

Enter an asterisk (*) as a shorthand for ¢!/ (all the way
to the beginning, all the way to the end, all of the lines,
and so on). To the editor, an asterisk means infinity. Use
the asterisk to specify all remaining lines, all charac-
ters, or repeat forever.

Use a numeric variable. (See “Parameter Passing” later
in this chapter.)

7-3

0S-9 Commands Reference

String Parameters. String parameters specify a single charac-
ter, group of characters, word, or phrase. Specify string parame-
ters in either of the following ways.

@ Enclose the group of characters with delimiters (two
matching characters). You can use any characters, but
they must match. If one string immediately follows
another, separate the two with a single delimiter that
matches the others. For example:

“string of characters™
/STRING/

: my name is Larry :

"first string”second string™
/string 1/ string 2/

® Use a string variable. (See “Using Macros” later in this
chapter.)

Syntax Notation

Syntax descriptions indicate what to enter and the order in
which to do it. The command name is first; type it exactly as
shown. Follow the command name with the correct parameters.
Enter each as it is described in the section on parameters.

The syntax descriptions for each command use the following
notations:

n = numeric parameter

str = string parameter

0 = space character. When you see [J, press the space bar.
text = one or more characters terminated by pressing

Getting Started
From the OS-9 prompt, start Edit by typing:

edit [ENTER

Enter a command when the screen shows E:.

You can quit Edit at any time by pressing (@) (EvTEr). The Q com-
mand terminates the editor and returns you to the 0S-9 Shell,
which responds with the 059: prompt.

7-4

Macro Text Editor /| 7

Following is a list of ways you can start the editor, including the
effect of each. The examples call a file that already exists oldfile.
They call a file to be created newfile.

EDIT

EDIT newfile

EDIT oldfile

EDIT oldfile
newfile

0S-9 loads the editor and starts it. The com-
mand does not establish an initial read or
write files, but you can perform text file opera-
tions by opening files after the editor is
started.

0S-9 loads the editor and starts it, creating
the file called newfile. Newfile is the initial
write file. There is no initial read file. How-
ever, you can open files to read later.

08-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates a file
called SCRATCH as the initial write file.
When you end the edit session, OS-9 deletes
oldfile and renames SCRATCH to oldfile. This
gives the appearance of oldfile being updated.

Note: The two 0S-9 utilities DEL and
RENAME must be present on your system if
you wish to start the editor in this manner.

08S-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates newfile—
the initial write file. The terms oldfile and
newfile refer to any properly constructed OS-9
pathlist.

7-5

0S-9 Commands Reference

Edit Commands

Displaying Text

Ln

Lists (displays) the next n lines, starting at
the current position of the edit pointer. The
edit pointer position does not change.

1 [ENTER]

displays the current line. If the edit pointer is
not at the beginning of the line, only the por-
tion of the line to the right of the edit pointer
shows on the screen.

13 (ENTER]

displays the current line and the next two
lines.

L+ (ENTER)

displays all text from the current position of
the edit pointer to the end of the buffer.

The L command displays text regardless of
which verify mode is in effect.

Displays the n lines that precede the edit
pointer. The position of the edit pointer does
not change. For example:

x (ENTER)

displays any text on the current line that pre-
cedes the edit pointer. If the edit pointer is at
the beginning of the line, the command dis-
plays nothing.

x3 [ENTER)

displays the two preceding lines and any text
on the current line that precedes the edit
pointer,

The X command displays text regardless of
which verify mode is in effect.

7-6

Macro Text Editor | 7

Manipulating the Edit Pointer

CTRL or
on an external
terminal

Moves the edit pointer to the beginning (first
character) of the text buffer. The screen shows
the up arrow when you hold down and
press (7). For example,

moves the edit pointer to the beginning of the
buffer.

Moves the edit pointer to the end (last charac-
ter) of the buffer. For example,

/ [ENTER)

moves the edit pointer past the end of the
buffer.

Moves the edit pointer to the beginning of the
next line and displays it. Use this command to
go through text one line at a time. You can
look at each line, correct any mistakes, and
then move to the next line.

77

0S-9 Commands Reference

+n

-1l

Moves the edit pointer either to the end of the
line or forward n lines and displays the line.
Entering a value of zero moves the edit pointer
to the end of the current line. For example:

+0 [ENTER

Entering a value other than zero moves the
pointer forward n lines and displays the line.
For example,

+ (ENTER]

moves the pointer to the next line and displays
the line. This command performs the same

function as [ENTER .
+10 (ENTER

moves the pointer ahead 10 lines and displays
the line.

¥
moves the edit pointer to the end of the buffer.

Moves the edit pointer either to the beginning
of the line or backward n lines. For example:

-0 (ENTER)

moves the edit pointer to the beginning of the
line and displays the line. Entering a value
other than zero moves the edit pointer back n
lines. For example,

- [ENTER]

moves the edit pointer back one line and dis-
plays the line.

-5 (ENTER)

moves the edit pointer back five lines and dis-
plays the line.

-+ (ENTER)

moves the edit pointer to the beginning (top)
of the buffer and displays the first line.

7-8

Macro Text Editor / 7

>n

<1

Moves the edit pointer to the right n charac-
ters. Use this command to move the edit
pointer to some position in the line other than
the first character. For example,

> [ENTER]

moves the edit pointer to the right one
character.

>25 [ENTER

moves the edit pointer to the right 25
characters.

>
moves the edit pointer to the end of the buffer.

Moves the edit pointer to the left n characters.
Use this command to move the edit pointer to
some position in a line other than the first
character. For example:

< (ENTER]

moves the edit pointer to the left one
character.

<1 ENTER

moves the edit pointer to the left 10
characters.

<+ [ENTER]

moves the edit pointer to the beginning of the
buffer.

7-9

0S-9 Commands Reference

Inserting and Deleting Lines

(text

In str

Preceding text lines with a space inserts the
text as a new line ahead of the edit pointer.
The position of the edit pointer does not
change. For example,

Olnsert this line

inserts the line.

[OLine one [ENTER
NLine two [ENTER
[Line three |[ENTER

inserts three lines.

Inserts a line of n copies of the specified string
immediately before the position of the edit
pointer. The position of the edit pointer does
not change. For example,

148 /+/ [ENTER

inserts a line containing 40 asterisks. You can
also use the “I” command to insert a line con-
taining a single copy of the string. This func-
tion is important when you want to use a
macro to insert lines, since the space bar can-
not be used within a macro. For example,

i"Line to inserti" [ENTER

inserts the line.

7-10

Macro Text Editor | 7

Deletes (removes) n lines from the edit buffer,
starting with the current line. This command
displays the lines to be deleted. For example:

d (ENTER]

deletes the current line, regardless of the posi-
tion of the edit pointer, and displays it.

d4 [ENTER]

deletes the current line and the next three
lines.

d* (ENTER)

deletes everything from the current line to the
end of the buffer.

Kills (deletes) n characters, starting at the
current position of the edit pointer. This com-
mand displays all deleted characters. For
example,

k
deletes the character at the edit pointer.

k4 (ENTER)

deletes the character at the current position of
the edit pointer and the next three characters.

k+ [ENTER]

deletes everything from the current position of
the edit pointer to the end of the buffer.

7-11

0S-9 Commands Reference

En str

Extends n lines by adding a string to the end
of each line. E extends a line, displays it, and
then moves the pointer past it. For example,

e/this is a commenti/ {ENTER

adds the string “this is a comment” to the end
of the current line and moves the edit pointer
to the next line.

e3/xx | ENTER

adds the string xx to the end of the current
line and the next two lines. It moves the
pointer past these lines.

Unextends (deletes) the remainder of a line

. from the current position of the pointer. Use U

to remove extensions, such as comments, from
a line. For example,

u (ENTER)

deletes all the characters from the current
position of the pointer up to the end of the cur-
rent line.

For some practice in using the commands that display text,
manipulate the edit pointer, and insert and delete lines, turn to
Sample Session 1 in this chapter.

7-12

Macro Text Editor | 7

Searching and Substituting

Sn string

Cn stringl
string2

Searches for the next n occurrences of string.
When Edit finds an occurrence, it displays the
line and moves the edit pointer to the line. If
Edit does not find the string or if all the
occurrences have been found, the edit pointer
does not move. For example,

s/my string/

searches for the next occurrence of “my
string”.

53"strung out' [ENTER

searches for the next three occurrences of
“strung out”.

s*/seek and find/

searches for all occurrences of “seek and find”
between the edit pointer and the end of the
text.

Changes the next n occurrences of stringl to
string2. When Edit finds stringl, it moves the
edit pointer past it and changes stringl to
string2, then it displays the updated line. If it
does not find siringl it displays “NOT
FOUND.” If all the occurrences have been
found, the edit pointer does not move. For
example,

c/this/that/ (ENTER)

changes the next occurrence of “this” to
“that”. \

c2/in/out/

changes the next two occurrences of “in” to
111 tH
out”.

c*!seek and find!sought and

found! [ENTER

changes all occurrences of “seek and find”
that are between the edit pointer and the end
of text to “sought and found”.

7-13

0S-9 Commands Reference

Sets the SEARCH/CHANGE anchor to Col-
umn n. To find a string that begins in a spe-
cific column, set the anchor to the column
position before using the search command to
find it. If you do not include a value for n, Edit
assumes Column 1. For example:

= (ENTER)

finds a string only if it begins in Column 1.

a2g

finds a string only if it begins in Column 20.
If you use the A command to set the anchor,
this setting remains in effect only for the cur-
rent command line. After Edit executes the
command, the anchor automatically returns to
its normal value of zero.

For some practice in using the commands that search and substi-
tute, turn to Sample Session 2 in this chapter.

Miscellaneous Commands

Tn

Tabs (moves) the edit pointer to Column n of
the current line. If n exceeds the line length,
this command extends the line with spaces.
For example,

t [ENTER]

moves the edit pointer to Column 1 of the cur-
rent line.

t5 [ENTER)

moves the edit pointer to Column 5 of the cur-
rent line.

7-14

Macro Text Editor | 7

SHELL
command
line

Lets you use any OS-9 command from within
the editor. The remainder of the command line
following .SHELL passes to the OS-9 Shell for
execution. For example,

.shell dir /d1

calls the OS-9 Shell to display the directory of
D1.

.shell basic@9 (ENTER]
starts BASICO09.

.shell edit oldfile newfile [ENTER]
restarts the editor.

Adjusts the amount of memory available for
buffers and macros. If the workspace is full
and the editor does not allow you to enter
more text, increase the workspace size. If you
need only a small amount of the available
workspace, decrease the workspace size so that
other OS-9 programs can use the memory. For
example, ~

mS@80
sets the workspace size to 5000 bytes.

m10060
sets the workspace size to 10000 bytes.

Before leaving Edit, you can increase the
workspace. This decreases the time the editor
takes to copy the input file to the output file,
because the editor can read and write more
data at one time. Edit changes memory in
256-byte pages. For the M command to have
any effect, a new workspace size must differ
from the current size by at least 256 bytes.
The M command does not let you deallocate
any workspace that Edit needs for buffers or
macros.

7-15

0S-9 Commands Reference

SIZE

Vmode

Displays the size of the workspace and the
amount that has been used. For example:

.5ize

521 15328

52] is the amount of workspace Edit uses for
buffers and macros. 15328 is the amount of
available memory.

Ends editing and returns to the 0S-9 Shell. If
you specified files when you started, Edit
writes the text in Buffer 1 to the initial write
file (specified when you start Edit). Next it
copies the remainder of the initial input file
(specified when you start Edit) to the initial
write file. The editor then terminates, and
control returns to the 0S-9 Shell.

Turns the verify mode on or off. Edit always
starts with the verify mode on. Therefore, the
editor displays the results of all the commands
for which verify is appropriate. If you do not
want to see the results of commands, turn off
the verify mode by specifying 0 (zero) for
mode. To turn verify back on, specify any non-
zero number. For example,

v@ (ENTER

turns off the verify mode.

v2 [ENTER)

turns on the verify mode.

v13 [ENTER

turns on the verify mode.

If the verify mode is on when you switch to a
macro, it remains on. If you turn off verify
while in the macro, it is restored when you
return to the editor.

7-16

Macro Text Editor / 7

Manipulating Multiple Buffers

.DIR

Bn

Displays the directory of the editor’s buffers
and macros. For example:

BUFFERS:
$ g (secondary buffer)
* 1 (primary buffer)
& (another buffer)

MACROS:

MYMACRO

LIST

carPy

Makes buffer n the primary buffer. When you
switch from one buffer to another, the old one
becomes the secondary buffer, and the new one
becomes the primary buffer. For example,

bs (ENTER]

makes Buffer 5 the primary buffer. If Buffer 5
does not exist, Edit creates it.

Puts (moves) n lines into the secondary buffer.
This command removes the lines from the pri-
mary buffer, starting at the position of the
edit pointer, and inserts them into the second-
ary buffer before the current position of the
edit pointer. It displays the text that is moved.
For example,

p (ETER]

moves one line to the secondary buffer.

S (EITER)

moves five lines to the secondary buffer.

p+ (ETER)

moves all lines that are between the current
position of the edit pointer and the end of text
to the secondary buffer.

7-17

0S-9 Commands Reference

Gn Gets (moves) n lines from the secondary
buffer. This command takes the lines from the
top of the secondary buffer and inserts them
into the primary buffer before the current
position of the edit pointer. Edit then displays
the moved lines. When used with the P com-
mand, G moves text from one place to another.
For example,

5 (ETER)

gets one line from the secondary buffer.

g5 (E7TER)

gets five lines from the secondary buffer.

g+ [EFER)

gets all lines from the secondary buffer.

For some practice in using miscellaneous commands and the
commands that manipulate multiple buffers, turn to Sample Ses-
sion 3 in this chapter.

Text File Operations

This section of the manual describes the group of commands
related to reading and writing 0S-9 text files.

NEW Gets new text. Use .NEW when editing a file
that is too large to fit into the editor’s work-
space. .NEW writes out all lines that precede
the current line, then appends an equal

" amount of new text to the end of the buffer.

.NEW always writes text to the initial output
file (created when you start the editor) and
always reads text from the initial input file
(specified when you start the editor).

If you have finished editing the text currently
in the buffer, you can “flush” this text and fill
the buffer with new text by moving the edit
pointer to the bottom of the buffer and then
using the .NEW command. For example:

/ .new [ENTER

7-18

Macro Text Editor /| 7

READ sir

If you wish to retain part of the text that is
already in the buffer, move the edit pointer to
the first line you wish to retain and then type
.new. This command “flushes” all lines that
precede the edit pointer. It then tries to read
in new text that is the same size as the por-
tion flushed out.

Prepares an OS-9 text file for reading. str
specifies the pathlist. For example.

.read "myfile"

closes the current input file and opens
“myfile” for reading.

You can specify an empty pathlist. For
example,

.read "' [ENTER

closes the current input file and restores the
initial input file (specified when you start the
editor) for reading.

An open file remains attached to the primary
buffer until you close the file. You can have
more than one input file open at any time by
using the .READ command to open them in
different buffers.

To read these files, switch to the proper buffer,
and then use the R command to read from
that buffer’s input file. To close a file, you
must be in the same buffer where the file was
opened.

7-19

0S-9 Commands Reference

WRITE str

Opens a new file for writing. The string speci-
fies the pathlist for the file you wish to create.
For example,

.write "newfile" [ENTER

closes the current write file and creates one
called “newfile”. You can specify an empty
pathlist. For example:

.write "' [ENTER

closes the current write file and restores the
initial write file (specified when you start the
editor).

.WRITE attaches a new write file to the pri-
mary buffer that remains attached until you
close the file. You can have more than one
write file open by using .WRITE to open them
in different buffers. To write these files, switch
to the proper buffer. To close a file, you must
be in the same buffer where the file was
opened.

Reads (gets) n lines of text from the buffer’s
input file. It displays the lines and inserts
them before the current position of the edit
pointer. For example,

r [ENTER]

reads one line from the input file.

r 1@ [ENTER

reads 10 lines from the input file.
r¥
reads the remaining lines from the input file.

If a file contains no more text, the screen
shows the *END DOF FILE+* message.

7-20

Macro Text Editor /| 7

Writes n lines to the output file, starting with
the current line. It displays all lines that are
deleted from the buffer. For example,

w (ENTER)

writes the current line to the output file.

w5 [ENTER]

writes the current line and the next four lines
to the output file.

w [ENTER]

writes all lines from the current line to the
end of the buffer to the output file.

For some practice in using the commands that read and write
08S-9 text files, turn to Sample Session 4 in this chapter.

Conditionals and Command Series Repetition

When a command cannot be executed, the editor sets an internal
flag, and the screen shows *FAIL*. For example, if you try to
read from a file that has no more text, the editor sets the fail
flag. A set fail flag means that the editor cannot execute any
more commands until Edit encounters one of the following:

@ The end of a command line typed from the keyboard.

@ The end of the current loop. Any loops that are more
deeply nested are skipped. (See the repeat command.)

@ A colon (:) command. Since loops nested deeper than the
current level are skipped, any occurrences of : that are
in a more deeply nested loop are also skipped.

7-21

0S-9 Commands Reference

Following are the commands and conditions that set the fail flag:

< Trying to move the edit pointer beyond the
beginning of the edit buffer.

> Trying to move the edit pointer beyond the +
end of the buffer.

S,C Not finding a string that was searched for.

G No text left in the secondary buffer.

R No text left in the read file.

P,W No text left in the primary buffer.

If you specify an asterisk for the repeat count on these com-
mands, Edit does not set the fail flag, because an asterisk usu-
ally means continue until there is nothing more to do. The
following commands explicitly set the fail flag if some condition
is not true.

EOF Tests for end-of-file. .EOF succeeds if there is
no more text to read from a file. Otherwise, it
sets the fail flag.

.NEOF Tests for not end-of-file. .NEOF succeeds if
there is text to read from the file. Otherwise,
it sets the fail flag.

.EOB Tests for end-of-buffer. .EOB succeeds if the
edit pointer is at the end of the buffer. Other-
wise, it sets the fail flag.

.NEOB Tests for not end-of-buffer. NEOB succeeds if
the edit pointer is not at the end of the buffer.
Otherwise, it sets the fail flag.

EOL Tests for end-of-line. This test succeeds if the
edit pointer is at the end of the line. Other-
wise, it sets the fail flag.

.NEOL Tests for not end-of-line. .NEOL succeeds if
the edit pointer is not at the end of the line.
Otherwise, it sets the fail flag.

ZERO n Tests for zero value. .ZERO succeeds if n
equals zero. Otherwise, it sets the fail flag.

7-22

Macro Text Editor /| 7

.STAR n

STR sir

NSTR str

[commands]n

Tests for star (asterisk). .STAR succeeds if n
equals 65,535 (“*”). Otherwise, it sets the fail
flag.

Tests for string match. .STR succeeds if the
characters at the current position of the edit
pointer match the string. Otherwise, it sets
the fail flag.

Tests for string mismatch. NSTR succeeds if
the characters at the current position of the
edit pointer do not match the string. Other-
wise, it sets the fail flag.

Exits and succeeds. This is an unconditional
exit from the innermost loop or macro. The
fail flag clears after the exit.

Exits and fails. This is an unconditional exit
from the innermost loop or macro. The fail
flag sets after the exit.

Repeats the commands n times. Left and right
brackets form a loop that repeats the enclosed
commands n times. (The loop must be
repeated at least once.) If you enter the loop
command from the keyboard, it must all be on
one line. If it is part of a macro, however, it
can span several command lines. For example,

(13 5 [ENTER)

repeats the L command five times.

Note: This is not the same as L5, which executes the L
command only once and has 5 as its parameter.

[+]*

Displays lines starting with the next line up
to the end of the buffer and moves the edit
pointer to the end of the buffer.

This command repeats until the operation
reaches the end of the buffer. Then, when the
command tries to move the edit pointer past
the end of the buffer, Edit sets the fail flag,
terminates the loop, then clears the fail flag.

7-23

0S-9 Commands Reference

: commands

Executes the commands following the colon
based on the state of the fail flag. For
example:

FAIL FLAG CLEAR Skips all commands
that follow the colon (:)
up to the end of the cur-
rent loop or macro.

FAIL FLAG SET Clears the fail flag, and
executes the commands
that follow the colon (3).

Below is a command line that deletes all lines
that do not begin with the letter A.

(CTRLJ(7) [.nmeob [.str"A"™ + : d 1
1+ [ENTER]

(*] moves the edit pointer to the beginning of
the buffer. The outer loop tests for the end of
the buffer and terminates the loop when it is
reached.

The inner loop tests for A at the beginning of
the line. If there is an A, the + command is
executed. Otherwise, it executes the D
command.

Below is a command that searches the current
line for “find it”. If the command finds the
text, it displays the line. Otherwise, the com-
mand line fails and the screen shows
* FAIL =,

[.eol vB -8 v .f : .str"find it"

-0 .s : [>1 1+ (ENTER)

.EOL V0 -0 V .F tests to determine if the edit
pointer is at the end of the line. If it is, Edit
turns off the verify mode to prevent -0 from
displaying the line. Then it turns verify back
on, and .F' ends the loop.

7-24

Macro Text Editor | 7

If the edit pointer is not at the end of the line,
the .STR command searches for “find it” at the
current position of the edit pointer. If it is at
the end of the line, Edit executes the -0 .S
commands. This execution moves the edit
pointer back to the beginning of the line, dis-
plays the line, and terminates the loop. Other-
wise, the > command moves the edit pointer
to the next position in the line.

The brackets prevent the command from fail-
ing and terminating the main loop if the end
of the buffer is reached.

Edit Macros

Edit macros are commands you create to perform a specialized
or complex task. For example, you can replace a frequently used
series of commands with a single macro. First, save the series in
a macro. Then each time you need it, type a period followed by
the macro’s name and parameters. The editor responds as if you
had typed the series of commands.

Macros consist of two main parts, the header and the body. The
header gives the macro a name and describes the type and order
of its parameters. The body consists of any number of ordinary
commands. (Except for a space character and [ENTER), you can use
any command in a macro).

Note: Macros cannot create new macros.

To create a macro, first define it with the .MAC command. Then
enter the header and body in the same manner as you enter text
into an edit buffer. When you are satisfied with the macro, close
its definition by pressing (@) (ENTER). This command returns you
to the normal edit mode.

Macro Headers. A macro header must be the first line in each
macro. It consists of a name, and a “variable list” that describes
the macro’s parameters, if there are any. The name consists of
any number of consecutive letters and underline characters. Fol-
lowing are possible macro names:

del_all

trim_spaces

LIST
CHANGE_X_TO_Y

7-25

0S-9 Commands Reference

Although you can make a macro name any length, it is better to
keep it short, because you must spell it the same way each time
you use it. You can use upper- and lowercase letters or a
mixture.

Using Macros. Like other commands, you can give parameters
to macros so that they are able to work with different strings
and with different numbers of items. Macros are unable to use
parameters directly. Instead, Edit passes the parameters on to
the commands that make up the macro.

To pass the macro’s parameters to these commands, use the
variable list in the macro header to tell each command which of
the macro’s parameters to use. Each variable in the variable list
represents the value of the macro parameter in its corresponding
position. Use the corresponding variable wherever the parame-
ter’s value is needed.

The two types of variables are numeric and string. A numeric
variable is a variable name preceded by the # character. A
string variable is a variable name preceded by a $ character.
Variable names, like macro names, are composed of any number
of consecutive letters and underline characters. Examples of
numeric variables are:

#N
#ABC
#LONG_NUMBER_VARIABLE

Examples of string variables are:

3A

$B
$STR
$STR_A

$lower_case_variable_name

The function of the edit macro below is the same as that of the S
command, to search for the next n occurrences of a string.

7-26

Macro Text Editor /| 7

The first line of the macro is the macro header. It assigns the
macro’s name as SRCH. It also specifies that the macro needs
one numeric parameter (#N) and one string parameter ($STR).
The entire body of the macro is the second line. This example
passes both of the macro’s parameters to the S command, which
does the actual searching.

SRCH #N $STR
S #N $5TR

Here is an example of how to execute this macro:

.SRCH 15 "string"

In the next example, the order of the parameter is reversed.
Therefore, when executing the macro, use the reverse order. The
macro structure is:

SRCH $STR #N
S #N $5TR

Specify the parameters for the “S” command in the proper order
since it is only the “SRCH” macro that is changed. The following
example shows how to execute this macro. The order of the
parameters corresponds directly to the order of the variables in
the variable list.

.SRCH "string" 15

7-27

0S-9 Commands Reference

Macro Commands

Although macro editing has the same functions as text editing,
the macro mode also includes some special commands. The
macro commands you can use are as follows:

! text

Jnacro name

MAC str

Places comments inside a macro. Ignores the
remainder of the line following the ! command.
This command lets you include, as part of a
macro, a short description of what it does.
Comments can help you remember the func-
tion of a macro. For example:

!

<">! Move the pointer to the top of the
buffer.

1*! Display all lines of text.
!

In this example there are four comments. Two
are empty, and two describe the commands
that precede them.

Executes the macro specified by the name fol-
lowing the period (.). For example:

.mymacro (ENTER]

.list

.trim * " [ENTER]

.merge " file_a " file b b" (ENTER]

Creates a new macro or opens the definition of
an existing one so that it can be edited. To
create a new macro, specify an empty string.
For example,

.mac'" [ENTER

creates a new macro and puts you into the
macro mode.

7-28

Macro Text Editor | 7

.SAVE sirl
str2

SEARCH n
str

The screen shows M: instead of E: when the
editor is in the macro mode. To edit a macro
that already exists, specify the macro’s name.
For example,

.mac "mymacro"
opens the macro “MYMACROQ” for editing.

When a macro is open, edit it, or enter its def-
inition with the same commands you use in a
text buffer. After you edit the macro, press (@]
to close its definition and return to the
edit mode. The first line of the macro must
begin with a name that is not already used in
order to close the definition and return to
Edit.

Saves macros on an 0S-9 file. Strl specifies a
list of macros to be saved. Separate the macro
names with spaces. Str2 specifies the pathlist
for the file on which you want to save the
macros. For example:

.save "mymacro"myfile" [ENTER

saves the macro “MYMACRO?” on the file
“MYFILE”.

.save "maca macb macc'"mfile' [ENTER

saves the macros “MACA,” “MACB,” and
“MACC” on the file “MFILE”.

Searches the text file buffer for the specified
string. When a match is found, it stops and
displays that line. The n option permits a
search for the nth occurrence of a string
match. This command is the same as S n str.

7-29

0S-9 Commands Reference

LOAD sir

DEL str

DIR

.CHANGE n
strl str2

Loads macros from an 0S-9 file. As each
macro loads, Edit verifies that no other macro
already exists with the same name. If one
does, the macro with the duplicate name does
not load, and Edit skips to the next macro on
the file. Edit displays the names of all macros
it loads. For example,

.load "macrofile' [ENTER

loads the macros in the file called
MACROFILE.

.load "myfile"
loads the macros in the file called MYFILE.

Deletes the macro specified by the string. For
example,

.del "mymacro"
deletes the macro called MYMACRO.

.del "list"
deletes the macro called LIST.

Displays the current edit buffer area. All edit
buffers and macros currently in memory are
displayed.

Changes the occurrence of strl to str2. The n
option permits n occurrences of strl to be
changed to str2.

7-30

Macro Text Editor /| 7

Q Ends a macro edit session and returns you to
the normal edit mode. For example:

Search_and.Delete #N $STR

'This example MACRO is used to
Icheck

'the string at the beginning of
fan #N number of lines. If the
!'string matches, it will delete
tthat line from the text buffer
ffile.

!

!NOTE: The way the editor
!'processes a MACRD causes it to
!see any parameters in the outer
'loop first. Thus, the #N
!parameter is processed before
'the STR parameter.

1

[~1 tMove to start of

fedit buffer
[!'start of outer loop
.neob ltest for buffer end
[!'stari of inner loop
.nstr $stir 'test for not string
Imatch
+ '!'go to next line if

'no match
'if flag clear skip
Inext command

D !delete line if flag
lset

] '!end of inner loop

1#N 'end of outer loop

' End of Macro

For practice in using macro commands, turn to Sample Session 5
in this chapter.

7-31

0S-9 Commands Reference

Sample Session 1

Clear the buffer by deleting its contents.
You Type: (CTRL)(7) D+ (ENTER)
Screen Shows: AD#*

Insert three lines into the buffer. Begin each line with a space,
which is the command for inserting text.
You Type: OMY FIRST LINE
OMY SECOND LINE

OMY THIRD LINE [ENTER)
Screen Shows: MY FIRST LINE

MY SECOND LINE
MY THIRD LINE

Move the edit pointer to the top of the text. The editor always
considers the first character you type a command.

Note: always shows * on the screen. Typing -+ also
moves the edit pointer to the beginning of a buffer.

You Type:
n

Screen Shows:

List (display) the first line you inserted into the buffer.
You Type: L
L

Screen Shows:
MY FIRST LINE

Display the first two lines you inserted into the buffer.

You Type: L2

Screen Shows: L2
MY FIRST LINE
MY SECOND LINE

Move to the next line and display it.

You Type:

Screen Shows: MY SECOND LINE
Move to the next line and display it.

You Type:

Screen Shows: MY THIRD LINE

7-32

Macro Text Editor /| 7

Using L, display text beginning at the position of the edit

pointer.
You Type: L
Screen Shows: L

MY THIRD LINE
Insert a line into the buffer.

Note: In the next sample you see that the insert comes
before the current position of the edit pointer.

You Type: OINSERT A LINE

Screen Shows: INSERT A LINE

The following command line consists of more than one command.
moves the edit pointer to the top of the text. L dis-
plays the text, and the asterisk (+) following L indicates that text
is displayed through to the end of the buffer.

You Type: CTRL)(7)L+ (ENTER
Screen Shows: AL x

MY FIRST LINE
MY SECOND LINE
INSERT A LINE
MY THIRD LINE

Show the position of the edit pointer.
You Type: L

Screen Shows: L
MY FIRST LINE

Move the edit pointer forward two lines and display the lines.
You Type: +2
Screen Shows: +2
INSERT A LINE

Display all lines from the edit pointer to the end of the buffer.

You Type: L+
Screen Shows: L*

INSERT A LINE
MY THIRD LINE

Move the edit pointer to the end of the buffer.

You Type: /
Screen Shows: /

Determine if the edit pointer is at the end of text. Since the
screen shows no more lines, the edit pointer is at the end-of-text.

You Type: L*
Screen Shows: L«

7-33

0S-9 Commands Reference

Insert two more lines.

You Type: OFIFTH LINE
OLAST LINE
Screen Shows: FIFTH LINE
LAST LINE

Move the edit pointer back one line, and display the line.
You Type: -2
-2

Screen Shows:
FIFTH LINE

Move the edit pointer back two lines, and display the line.
You Type: -3
-3

Screen Shows:
MY SECOND LINE

Move the edit pointer three characters to the right and display
the remainder of the line.

Note: You must put spaces between commands.

You Type: >3 L
Screen Shows: >3 L
SECOND LINE

Display the characters that precede the edit pointer on the cur-
rent line.

You Type: X
Screen Shows: X
MY
Move the edit pointer to the end of the current line.
You Type: +0
Screen Shows: +

Determine if the edit pointer is at the end of the line. It is, since
the screen shows no lines.

You Type: L

Screen Shows: L

Display the characters that precede the edit pointer on the cur-
rent line.
You Type: X
Screen Shows: X
MY SECOND LINE

7-34

Macro Text Editor | 7

Move the edit pointer back to the beginning of the current line.

You Type:
Screen Shows:

-8 [ENTER]
-0
MY SECOND LINE

Determine if the edit pointer is at the beginning of the line.
Since the screen shows no lines, the pointer is at the beginning.

You Type:
Screen Shows:

X [ENTER]
X

Go to the beginning of the text.

You Type:
Screen Shows:

Insert a line of 14 asterisks.
You Type:
Screen Shows:

Insert an empty line.
You Type:
Screen Shows:

(CTRL)(7) (ENTER)
"

I14!%" (ENTER)
I14ll*ll

LA R EEERRREEESER]

[' [ENTER

[rmn

Move to the top of the text, and display all lines in the buffer.

You Type:
Screen Shows:

(CTRO(7)L » (ENTER)
AL*

LE R R EREERERESEREE.]

MY FIRST LINE
MY SECOND LINE
INSERT A LINE
MY THIRD LINE
FIFTH LINE
LAST LINE

Move the edit pointer forward two lines.

You Type:
Screen Shows:

Extend the line with XXX.
You Type:
Screen Shows:

Display the current line.

+2 (ENTER]
+2
MY FIRST LINE

E* XXX (ENTER]
E" XXX"

MY FIRST LINE XXX

7-35

0S-9 Commands Reference

Note: The previous E command moved the edit pointer to
the next line.
You Type: L
Screen Shows: L
MY SECOND LINE

Extend three lines with YYY.
You Type: E3"OvYYy"
Screen Shows: E3"™ yyy"
MY SECOND LINE YYY
INSERT A LINE YYY
MY THIRD LINE YYY

Move back 2 lines.
You Type: -2
Screen Shows: -2
INSERT A LINE YYY

Move the edit pointer to the end of the line and then move the
edit pointer back four characters. Display the current line, start-
ing at the edit pointer.

You Type: +0 <4 L
Screen Shows: +@ <4 L
YYY

Truncate the line at the current position of the edit pointer. This
command removes the YYY extension.
You Type: U
Screen Shows: U
INSERT A LINE

Go to the top of the text and display the contents of the buffer.
You Type: (CTRL)(7) L+ [ENTER]
Screen Shows: AL

LR R R RS X R

MY FIRST LINE XXX

MY SECOND LINE YYY
INSERT A LINE

MY THIRD LINE YYY

FIFTH LINE

LAST LINE

7-36

Macro Text Editor / 7

Delete the current line and the next line.

You Type: D2
Screen Shows: D2

LR R E R EREX X EE SRS

Move the edit pointer forward two lines.

You Type: +2
Screen Shows: +2

INSERT A LINE

Delete this line.
You Type: D

Screen Shows: D
INSERT A LINE

Display the current line.

You Type: L

Secreen Shows: L
MY THIRD LINE YYY

Move the edit pointer to the right three characters and display
the text.
You Type: >3 L
Screen Shows: >3 L
THIRD LINE YYY

Kill (delete) the 11 characters that constitute THIRD LINE.

You Type: K11
Screen Shows: K11
THIRD LINE
Go to the beginning of the line and display it.
You Type: -
Screen Shows: -8
MYy YYY

Concatenate (combine) two lines. Move the edit pointer to the
end of the line; delete the character at the end of the line; move
the edit pointer back to the beginning of the lines. Display the
line.
You Type: +0 K -8
Screen Shows: g K -0
MY YYYFIFTH LINE

Separate the two lines by inserting an end-of-line character.

You Type: 6 1/ 7
Screen Shows: 26 1/ /
My YYY

7-37

0S-9 Commands Reference

Note: The end of line character is inserted before the current
position of the edit pointer.

You Type: L
Screen Shows: L
FIFTH LINE

Sample Session 2

Clear the buffer by deleting its contents.
You Type: (CTRL)(7) D+ [ENTER]

Insert lines.

You Type: JONE TWO THREE 1.8
OONE
OTWO
OOOTHREE
OJONE TWO THREE 2.0
OONE
0OTWO
OOOTHREE

JONE TWO THREE 3.8
Screen Shows: ONE TWO THREE 1.8

ONE
TWO
THREE
ONE TWO THREE 2.8
ONE
TWD
THREE
ONE TWD THREE 3.8

Go to the top of the text, and display all lines in the buffer.
You Type: (CTRC)(7] L+ (ENTER)
Screen Shows: ALx

ONE TWO THREE 1.0
ONE
TWO
THREE
ONE TWO THREE 2.8
ONE
TWO
THREE
ONE TWO THREE 3.0

7-38

Macro Text Editor | 7

Search for the next occurrence of TWO.
You Type: S "TWo"
Screen Shows: SUTWO"
ONE TWO THREE 1.0

Search for all occurrences of TWO that are between the edit
pointer and the end of the buffer.
You Type: S*/TWD/
Screen Shows: S*/TWO/
ONE TWO THREE 1.0
TWO
ONE TWO THREE 2.8
TWO
ONE TWO THREE 3.8

Go to the top of the buffer, and change the first occurrence of
THREE to ONE.

You Type: C/THREE/ONE/
Screen Shows: A C/THREE/ONE/

ONE TWO ONE 1.8

Move the edit pointer to the top of the buffer. Set the anchor to
Column 2, and then use the search command to find each occur-
rence of TWO that begins in Column 2. Skip all other
occurrences.

You Type: A2 S+/TWO/
Screen Shows: A A2 S*/TWD/

TWO

TWO

Move the edit pointer to the top of the buffer. Set the anchor to
Column 1, and change each occurrence of ONE that begins in
that column to XXX. ‘

Note: ONE in Line 1 is not changed, since it does not begin
in Column 1.
You Type: AC*/ONE/ XXX/ {ENTER)
Screen Shows: " ACH*/ONE/XXX/
XXX TWO ONE 1.0
XXX
XXX TWO THREE 2.8
XXX
XXX TWO THREE 3.8

7-39

0S-9 Commands Reference

Go to the top of the buffer, and display the text.
You Type: (CTRL)(7)L + [ENTER)
Screen Shows: L#

XXX TWO ONE 1.9
XXX
TWO
THREE
XXX TWO THREE 2.0
XXX
TWO
THREE
XXX TWD THREE 3.0

Change the remaining ONE to XXX.

Note: The anchor is no longer set. It is reset to zero after
each command is executed.
You Type: C/ONE/ XXX/ (ENTER]
Screen Shows: C/ONE/XXX/
XXX TWD XXX 1.8

Move to the beginning of the current line.
You Type: -
Screen Shows: -0
XXX TWO XXX 1.0

Change three occurrences of XXX to ZZZ.
You Type: C3/XXx/222/
Screen Shows: C3/XXXx/22z2/
22Z TWO XXX 1.8
2zZZ TWO 22Z 1.8
222

Sample Session 3

Clear the buffer by deleting its contents:
You Type: (CTRL)(7) D* (ENTER)

7-40

Macro Text Editor | 7

Display the directory of buffers and macros. The dollar sign ($)
identifies the secondary buffer as Buffer 0. The asterisk (*) iden-
tifies the primary buffer as Buffer 1. Edit has no macros defined.
This is the initial environment when you start Edit.

You Type: .DIR
Screen Shows: .DIR
BUFFERS:
$ 2
* 1
MACROS:
Insert some lines into Buffer 1 so that later you 'dentify it.
You Type: OBUFFER ONE 1.8
OBUFFER ONE 2.8
OBUFFER ONE 3.8
OBUFFER ONE 4.0
Screen Shows: BUFFER ONE 1.8
BUFFER ONE 2.0
BUFFER ONE 3.0
BUFFER ONE 4.8
Display the text in Buffer 1.
You Type: L

Screen Shows: AL+
BUFFER ONE 1.0
BUFFER ONE 2.8
BUFFER ONE 3.8
BUFFER ONE 4.0

Make Buffer 0 the primary buffer. Buffer 1 becomes the second-
ary buffer.

You Type: BO
Screen Shows: Bo

Display the directory of buffers and macros.

Note: The symbols identifying the buffers are now reversed.

You Type: .DIR
Screen Shows: .DIR

BUFFERS:
$ 1
*]

MACROS:

7-41

0S-9 Commands Reference

Insert some lines into Buffer 0.

AW

You Type: OBUFFER ZERO
OBUFFER ZERD
OBUFFER ZERD
OBUFFER ZERD

Screen Shows: BUFFER ZERD
BUFFER ZERD
BUFFER ZERD
BUFFER ZERO

Display the text in Buffer 0.
You Type: (CTRL)(7] L+ [ENTER)
Screen Shows: AL

BUFFER ZERO
BUFFER ZERO
BUFFER ZERO
BUFFER ZERO

Switch to Buffer 1.

LT L R T

AWM

L R R

You Type: B
Screen Shows: B
Display the text in Buffer 1.
You Type: (CTRL)(7) L+ [(ENTER]
Screen Shows: nLw
BUFFER ONE 1.
BUFFER ONE 2.
BUFFER ONE 3.
BUFFER ONE 4.
Move the edit pointer to Line 3 in this buffer.
You Type: +2
Screen Shows: +2
BUFFER ONE 3.
Switch to Buffer 0.
You Type: B
Screen Shows: BE
Display the text in Buffer 0.
You Type: L«
Screen Shows: L*
BUFFER ZERD 1.
BUFFER ZERD 2.
BUFFER ZERD 3.
BUFFER ZERO 4.

LI B R

LI I S

oD ES

mjjm
=
=
m
o)

m
=
=
m
s

m

ej

p=el

7-42

Macro Text Editor [7

Move the edit pointer to Line 2 in this buffer.
You Type: +
Screen Shows: +
BUFFER ZERO 2.8

Switch to Buffer 1.
You Type: B

Screen Shows: B

Display the text in Buffer 1 from the current position of the edit
pointer.

Note: The position of the edit pointer has not changed since
you switched to Buffer 0.
You Type: L+
Screen Shows: L+
BUFFER ONE 3.8
BUFFER ONE 4.8

Switch to Buffer 0.
You Type: BO

Screen Shows: B

Display the text in Buffer 0 from the current position of the edit
pointer.

Note: The position of the edit pointer has not changed since
you switched to Buffer 1.
You Type: L+
Screen Shows: L*
BUFFER ZERD 2.
BUFFER ZERDO 3.
BUFFER ZERD 4.8

Delete the contents of Buffer 0.
You Type: D*

Screen Shows: AD+

[\

BUFFER ZERO
BUFFER ZERD
BUFFER ZERO
BUFFER ZERO 4.

w n -
[SIS

Make Buffer 1 the primary buffer and Buffer 0 the secondary
buffer.

You Type: B

Screen Shows: B

7-43

0S-9 Commands Reference

Move two lines from the primary buffer (Buffer 1) into the sec-
ondary buffer (Buffer 0).
You Type: (CTRL](7) P2 [ENTER]
Screen Shows: ~pP2
BUFFER ONE 1.0
BUFFER ONE 2.8

Switch to Buffer 0, and show that the lines were moved to it.

You Type: BO(CTRL(7]L *
Screen Shows: BOAL +

BUFFER ONE 1.0
BUFFER ONE 2.0

Switch to Buffer 1. Go to the bottom of the buffer, and get the
text out of the secondary buffer.

You Type: B/G+*

Screen Shows: B/G+
BUFFER ONE 1.0
BUFFER ONE 2.8

Show the contents of the buffer.

Note: The order of the lines is changed as a result of mov-
ing the text.

You Type: (CTRL](7)L + (ENTER)

Screen Shows: ALs
BUFFER ONE 3.0
BUFFER ONE 4.8
BUFFER ONE 1.8
BUFFER ONE 2.0

Move two lines into the secondary buffer.
You Type: P2
Screen Shows: p2

BUFFER ONE 3.0
BUFFER ONE 4.

Move to the bottom of the buffer, and get the lines back out of
the secondary buffer.

=

You Type: /G*

Screen Shows: /G*
BUFFER ONE 3.0
BUFFER ONE 4.9

7-44

Macro Text Editor | 7

Show that the order of the lines is restored.

You Type:
Screen Shows:

Sample Session 4

[CROT)L

L*

BUFFER ONE
BUFFER ONE
BUFFER ONE
BUFFER ONE

AW -
[T

Clear the buffer by deleting its contents:

You Type:

Enter some lines of text.
You Type:

Sereen Shows:

(CTRL)(7]D+ (ENTER}

OLINE ONE

OSECOND LINE OF TEXT (ENTER)
OTHIRD LINE OF TEXT (ENTER)
OFOURTH LINE

OFIFTH LINE

OLAST LINE
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

FIFTH LINE

LAST LINE

Open the file Oldfile for writing.

You Type:
Screen Shows:

Write all lines to the file.
You Type:
Screen Shows:

Close the file.
You Type:
Screen Shows:

JWRITE"oldfile" [ENTER]
JWRITE"oldfile"

(CTRL)(7 W+ (ENTER]
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE
FIFTH LINE
LAST LINE

END OF TEXT»

WRITE// [ENTER)
WRITE//

7-45

0S-9 Commands Reference

Verify that the buffer is empty.

You Type: CTRL)(7]L + (ENTER
Screen Shows: AL+
Open the file Oldfile for reading.
You Type: .READ"oldfile"
Screen Shows: .READ"oldfile"
Create a new file called Newfile for writing.
You Type: .WRITE"newfile"
Screen Shows: JWRITE"newfile"

Read four lines from the input file. The screen shows the lines as
they are read in.

You Type: R4
Screen Shows: R4
LINE ONE

SECOND LINE DOF TEXT
THIRD LINE OF TEXT
FOURTH LINE

Read all the remaining text from the file. The screen shows the
lines. When there is no more text, the screen shows the *END OF
FILE+* message.

You Type: R*
Screen Shows: R *
FIFTH LINE
LAST LINE

END OF FILE+

Go to the top of the buffer, and display the text to make sure it
is inserted into the buffer.

You Type: (CTRL)(7]L+ (ENTER
Screen Shows: AL
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

FIFTH LINE

LAST LINE

7-46

Macro Text Editor / 7

Write three lines to the output file, and display the lines.

You Type: W3
Screen Shows: W3
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT

Move to the next line and display it.

You Type: *
Screen Shows: +
FIFTH LINE

Show that when writing lines, the editor starts at the current
line and not at the top of the buffer.

You Type: W
Screen Shows: W
FIFTH LINE

Go to the top of the buffer, and display the text to be sure that
the lines were written to the output file.

You Type: (CTRL) L+
Secreen Shows: ALx
FOURTH LINE
LAST LINE
Clear the buffer.
You Type: (CTRL)(7JD+
Screen Shows: AD«
FOURTH LINE
LAST LINE

Switch to Buffer 2. Open the input file Oldfile, and read two
lines from if.

You Type: B2 .READ™oldfile"™ R2 [ENTER)
Screen Shows: B2 .READ"oldfile" R2
LINE ONE

SECOND LINE OF TEXT

Switch to Buffer 1. Open the input file Oldfile and read one line
of text.

You Type: B .READ"oldfile" R [ENTER]
Screen Shows: B .READ"oldfile"™ R
LINE ONE

7-47

0S-9 Commands Reference

Switch to Buffer 2, and read one line.

Note: Your place in the file was not lost.

You Type: B2 R
Screen Shows: B2 R

THIRD LINE OF TEXT
Switch to Buffer 1, and read one line of text.

Note: Your place in the file was not lost.

You Type: B R
Screen Shows: B R

SECOND LINE OF TEXT
Switch to Buffer 2, and delete its contents.

You Type: B2 (CIRL)7)D+ (ENTER
Screen Shows: B2 ~D»
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT

Insert some extra lines into the buffer.

You Type: DEXTRA LINE ONE [ENTER)
DEXTRA LINE TWO [ENTER
Screen Shows: EXTRA LINE ONE

EXTRA LINE TWO

Try to write B2 buffer to file. It fails because you have not
opened a file in this buffer.
You Type: (CTRL)(7JW+ [ENTER]
Screen Shows: Al
#FILE CLOSED+

Close the file for Buffer 1, and return to Buffer 2.

You Type: B .WRITE// B2
Screen Shows: B .WRITE// B2
Open the old “write” file for reading, and then read it back in.
You Type: .READ"newfile" R+
Screen Shows: .READ"newfile' R+
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

END OF FILE=

7-48

Macro Text Editor /| 7

Display the contents of the buffer.

Note: It read the file into the beginning of the buffer, since
that was the position of the edit pointer.

You Type: (ERLJ(T]L *
Screen Shows: AL x
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

EXTRA LINE ONE
EXTRA LINE TWO

Sample Session 5
Delete all text from the edit buffer.

You Type: (CTRL)(7)D=*
Insert three lines.
You Type: OLINE ONE

OLINE TWD
OLINE THREE

Screen Shows: LINE ONE
LINE TWO
LINE THREE
Create a new macro using an empty string.
You Type: .MAC//
Screen Shows: M:

Display the contents of the macro mode, which is now open.

Note: The E prompt is now M.

You Type: CRO(TL
Screen Shows: AL w
Define the macro.
You Type: OF IND
DS"TND"
Screen Shows: FIND
S*TWO™
Display the contents of the macro.
You Type: (CTRL(T]L +
Screen Shows: AL x
FIND
S"TWO"

7-49

0S-9 Commands Reference

Close the macro’s definition.

You Type: e}
E:

Screen Shows:

Display the directory of buffers and macros.

You Type: .DIR
Screen Shows: .DIR
BUFFERS:
$]
* 1
MACRDS:
FIND
Display the contents of the edit buffer.
You Type: {CTRL)(7)L * [ENTER)
Screen Shows: AL
LINE ONE
LINE TWO
LINE THREE
Use the FIND macro to find the string TWO.
You Type: .FIND
Screen Shows: .FIND
LINE TWO
Reopen the definition of the FIND macro.
You Type: .MAC/FIND/
Screen Shows: .MAC/FIND/
M:
Show that the macro is still intact.
You Type: [CTRL)(7 L * (ENTER]
Screen Shows: AL#
FIND
S"TWO"

Add the numeric parameter and the string parameter to the
macro’s header.
You Type: C/FIND/FIND #N $STR/ [ENTER)
Screen Shows: C/FIND/FIND #N $STR/
FIND #N $STR

Move to the second line of the macro.

You Type: + [ENTER
Screen Shows: +
S"TWO™

7-50

Macro Text Editor / 7

Give the macro’s parameters to the S command. Now the FIND
macro will perform the same function as the S command.

You Type: C/"TWO"™/ #N $STR/
Screen Shows: C/"TWD"™/ #N $STR
S #N $STR
Close the macro’s definition.
You Type: a
Screen Shows: E:
Display the contents of the edit buffer.
You Type: (CTRU(TL *
Screen Shows: AL x
LINE ONE
LINE TWO
LINE THREE
Use the FIND macro to find the next two occurrences of LINE.
You Type: .FIND 2 /LINE/ [ENTER)
Screen Shows: .FIND 2 /LINE/
LINE ONE
LINE TWO
Create a new macro.
You Type: .MAC//
Screen Shows: .MAC//
M:

Define the macro FIND_LINE, which performs the same func-
tion as the S command except that it returns the edit pointer to
the head of the line after finding the last occurrence of STR.

You Type: OF IND_LINE #N $STR
Screen Shows: FIND_LINE #N $STR
You Type: 0s #N $STR
Screen Shows: S #N $STR
Turn off the verify mode.
You Type: ove
Screen Shows: ve
Move the edit pointer to the first character of the current line.
You Type: -0
Screen Shows: -0

7-51

0S-9 Commands Reference

Close the macro’s definition.

You Type: Q
Screen Shows: Q
E:
Display the contents of the edit buffer.
You Type: (CTRL)(7)L * (ENTER)
Screen Shows: ALx
LINE ONE
LINE TWD
LINE THREE
Use the FIND_LINE macro to search for the string TWO.
You Type: LFIND_LINE/TWO/
Screen Shows: LFIND_LINE/TWO/
LINE TWO

Show that the FIND_LINE macro left the edit pointer at the
head of the line.

You Type: L
Screen Shows: L
LINE TWO
Create a new macro.
You Type: .MAC//
Screen Shows: .MAC//
M:

7-52

Macro Text Editor/ 7

Use the exclamation point () command to comment itself. Type
the following:

[] CONVERT._TO_LINES #N

0 ! This is a comment

] ! (ENTER)

O ! This macro converts the next n

U ! space characters to new line

O ! characters.

O ve ' Turn verify mode off

O I'to prevent intermediate results
U ! from being displayed.
0
0t ! Begin loop
[0 .SEARCH/ / !Search for the space character.
ARV ! Insert empty line (new line character).
- I Back up one lime.
ders vt ! Delete the next space character.
gL+ !Show line, move past it.
071 #N End of loop. Repeat #N times,
Close the macro’s definition.
You Type: Q
Screen Shows: aQ
E:
Display the contents of the edit buffer.

You Type: (CTRL)(7 L + [ENTER)
Screen Shows: ALw

LINE ONE

LINE TWO

LINE THREE

Convert all space characters to new line characters.

Note: The loop stops when the C command in the macro
cannot find a space to delete.

You Type: .CONVERT_TO_LINES =*
Screen Shows: L.CONVERT_TO_LINES *

LINE

LINE

LINE

7-53

0S-9 Commands Reference

Display the contents of the edit buffer.
You Type: (CTRL)(7)L * (ENTER)
Screen Shows: AL
LINE
ONE
LINE
TWO
LINE
THREE

7-54

Macro Text Editor | 7

Edit Quick Reference Summary

EDIT

EDIT newfile

EDIT oldfile

EDIT oldfile
newfile

0S-9 loads the editor and starts it without
creating any read or write files. Perform text-
file operations by opening files after the editor
is running.

0S-9 loads the editor and starts it. If newfile
does not exist, Edit creates it and makes it the
initial write file. Although this command does
not create an initial read file, you can open
read files after starting Edit.

0S-9 loads the editor and starts it, making
the initial read file oldfile. The editor creates
a new file called SCRATCH as the initial
write file. When the edit session is complete,
Edit deletes oldfile and renames SCRATCH to
oldfile.

0S-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates a file
called newfile as the initial write file.

Edit Commands

MACRO

O

+n
-n

+0

Executes the macro specified by the name fol-
lowing the period (.).

Places comments inside a macro, and ignhores
the remainder of the command line.

Inserts a line before the current position of the
edit pointer.

Moves the edit pointer to the next line, and
displays it.

Moves the edit pointer forward n lines and dis-
plays the line.

Moves the edit pointer backward n lines and
displays the line.

Moves the edit pointer to the last character of
the line.

7-55

0S-9 Commands Reference

or [J for

external
terminals

/

[commands] n

A0

Bn
Cn strl str2
Dn

En str

Gn

In sir

Ln

Moves the edit pointer to the first character of
the current line and displays it.

Moves the edit pointer forward n characters.
Moves the edit pointer backward n characters.

Moves the edit pointer to the beginning of the
text.

Moves the edit pointer to the end of the text.

Repeats the sequence of commands between
the two brackets n times.

Skips to the end of the innermost loop or
macro if the fail flag is not on,

Sets the SEARCH/CHANGE anchor to Col-
umn n, restricting searches and changes to
those strings starting in Column n. This com-
mand remains in effect for the current com-
mand line.

Returns the anchor to the normal mode of
searching so that strings are found regardless
of the column in which they start.

Makes buffer n the primary buffer.
Changes the next n occurrences of strl to str2.
Deletes n lines.

Extends (adds the string to the end of) the
next n lines.

Gets n lines from the secondary buffer, start-
ing from the top. Inserts the lines before the
current position in the primary buffer.

Inserts a line containing n copies of the string
before the current position of the edit pointer.

Kills n characters starting at the current
position of the edit pointer.

Lists (displays) the next n lines, starting at
the current position of the edit pointer.

7-56

Macro Text Editor | 7

Pn

Rn

Sn str

Tn

Vmode -
Wn
Xn

Changes workspace (memory) size to n bytes.

Puts (moves) n lines from the position of the
edit pointer in the primary buffer to the posi-
tion of the edit pointer in the secondary buffer.

Quits editing (and terminates editor). If you
specified a file(s) when you entered Edit,
Buffer 1 is written to the output file. The
remainder of the input file is copied to the out-
put file. All files are closed.

Reads n lines from the buffer’s input file.

Searches for the next n occurrences of the
string.

Tabs to Column n of the present line. If n is
greater than the line length, Edit extends the
line with space.

Unextends (truncates) a line at the current
position of the edit pointer.

Turns the verify mode on or off.
Writes n lines to the buffer’s output file.

Displays n lines that precede the edit position.
The current line is counted as the first line.

Pseudo Macros

.CHANGE n

strl str2
DEL str
DIR
EOB
EOF
.EOL

F

LOAD sitr

Changes n occurrences of strl to str2.

Deletes the macro specified by sir.

Displays the directory of buffers and macros.
Tests for the end of the buffer.

Tests for the end of the file.

Tests for the end of the line.

Exits the innermost loop or macro and sets the
fail flag.

Loads macros from the path specified in the
string.

7-57

0S-9 Commands Reference

MAC str

.NEOB
NEOF
NEOCL
NEW

NSTR str

.READ str

S

SEARCH n
str

SAVE stri
str2

SHELL
command line

SIZE

STAR n
STR str

WRITE str

ZERO n
[
1

Opens the macro specified by the string for
definition. If you give an empty string, Edit
creates a new macro.

Tests for not end of buffer.
Tests for not end of file.
Tests for not end of line.

Writes all lines up to the current line to the
initial output file, and then attempts to read
an equal amount of text from the initial input
file. The text read-in is appended to the end of
the edit buffer.

Tests to see if string does not match the char-
acters at the current position of the edit
pointer.

Opens an OS-9 text file for reading, using
string as the pathlist.

Exits the innermost loop or macro and suc-
ceeds (clears the fail flag).

Searches for n occurrences of str.

Saves the macros specified in strl on the file
specified by the pathlist in s#r2.

Calls OS-9 shell to execute the command line.

Displays the size of memory used and the
amount of memory available in the workspace.

Tests to see if n equals asterisk (infinity).

Tests to see if siring matches the characters at
the current position of the edit pointer.

Opens an OS-9 text for writing, using str as a
pathlist.

Tests n to see if it is zero.
Starts at a macro loop; press [CTRL)(E).
Ends at a macro loop; press [CTRL)(9).

7-58

Macro Text Editor /| 7

[~]

Moves edit pointer to beginning of buffer;

press [CTRL)(7].

Editor Error Messages

BAD MACRO

NAME

BAD
NUMBER

BAD VAR
NAME

BRACKET
MISMATCH

BREAK

DUPL
MACRO

END OF
FILE

*FILE
CLOSED*

MACRO IS
OPEN

MISSING
DELIM

NOT FOUND

You did not begin the first line in a macro
with a legal name. You can close the definition
of a macro after you give it a legal name.

You have entered an illegal numeric parame-
ter, probably a number greater than 65,535.

You have specified an illegal variable name,
omitted the variable name, or included a $ or
character in the commands parameter list.

You have not entered brackets in pairs or the
brackets are nested too deeply.

You pressed or E to interrupt the edi-
tor. After printing the error message, the edi-
tor returns to command entry mode.

You attempted to close a macro definition with
an. existing macro name. Rename the macro
before trying to close its definition.

You are at the end of the edit buffer.

You tried to write to a file that is not open.
Either specify a write file when starting the
editor from OS-9, or open an output file using
the .WRITE pseudo macro.

You must close the macro definition before
using the command.

The editor could not find a matching delimiter
to complete the string you specified. You must
put the entire string on one line.

The editor cannot find the specified string or
macro.

7-59

0S-9 Commands Reference

UNDEFINED
VAR

WHAT ??

WORKSPACE
FULL

You used a variable that is not specified in the
macro’s definition parameter list. A variable
parameter can be used only in the macro in
which it is declared.

The editor does not recognize a command. You
typed a command that does not exist or mis-
spelled a name.

The buffer did not have room for the text you
want to insert. Increase the workspace, or
remove some text.

7-60

Appendix A

0S-9 Error Codes

The following table shows OS-9 error codes in hexadecimal and
decimal. Error codes other than those listed are generated by
programming languages or user programs.

0S-9 Error Codes

Code
HEX DEC Code Meaning

$01 001 UNCONDITIONAL ABORT. An error occurred
from which OS-9 cannot recover. All processes
are terminated.

$02 002 KEYBOARD ABORT. You pressed to
terminate the current operation.

303 003 KEYBOARD INTERRUPT. You pressed
either to cause the current opera-

tion to function as a background task with no
video display or to cause the current task to
terminate.

$B7 183 ILLEGAL WINDOW TYPE. You tried to
define a text type window for graphics or used
illegal parameters.

$B8 184 WINDOW ALREADY DEFINED. You tried to
create a window that is already established.

$B9 185 FONT NOT FOUND. You tried to use a win-
dow font that does not exist.

$BA 186 STACK OVERFLOW. Your process (or pro-
cesses) requires more stack space than is
available on the system.

$BB 187 ILLEGAL ARGUMENT. You have used an
argument with a command that is
inappropriate.

$BD 189 ILLEGAL COORDINATES. You have given
coordinates to a graphics command which are
outside the screen boundaries.

A-1

0S-9 Commands Reference

Code Meaning

Code
HEX DEC
$BE 190
$BF 191
$CO 192
$C1 193
$C2 194
$C3 195
$C4 196
$C8 200
$C9 201
$CA 202
$CB 203
$CC 204

INTERNAL INTEGRITY CHECK. System
modules or data are changed and no longer
reliable.

BUFFER SIZE IS TOO SMALL. The data you
assigned to a buffer is larger than the buffer.

ILLEGAL COMMAND. You have issued a
command in a form unacceptable to 0S-9.

SCREEN OR WINDOW TABLE IS FULL. You
do not have enough room in the system win-
dow table to keep track of any more windows
or screens.

BAD/UNDEFINED BUFFER NUMBER. You
have specified an illegal or undefined buffer
number.,

ILLEGAL WINDOW DEFINITION. You have
tried to give a window illegal parameters.

WINDOW UNDEFINED. You have tried to
access a window that you have not yet defined.

PATH TABLE FULL. OS-9 cannot open the
file because the system path table is full.

ILLEGAL PATH NUMBER. The path number
is too large, or you specified a non-existent
path.

INTERRUPT POLLING TABLE FULL. Your
system cannot handle an interrupt request,
because the polling table does not have room
for more entries.

ILLEGAL MODE. The specified device cannot
perform the indicated input or output function.

DEVICE TABLE FULL. The device table does
not have enough room for another device.

0OS-9 Error Codes / A

Code Meaning

Code
HEX DEC
$CD 205
$CE 206
$CF 207
$D0 208
$D1 209
$D2 210
$D3 211
$D4 212
$D5 213
$D6 214
$D7 215
$D8 216

ILLEGAL MODULE HEADER. 08S-9 cannot
load the specified module because its sync
code, header parity, or cyclic redundancy code
is incorrect.

MODULE DIRECTORY FULL. The module
directory does not have enough room for
another module entry.

MEMORY FULL. Process address space is full
or your computer does not have sufficient mem-
ory to perform the specified task.

ILLEGAL SERVICE REQUEST. The current
program has issued a system call containing
an illegal code number.

MODULE BUSY. Another process is already
using a non-shareable module.

BOUNDARY ERROR. 0S-9 has received a
memory allocation or deallocation request that
is not on a page boundary.

END OF FILE. A read operation has encoun-
tered an end-of-file character and has
terminated.

RETURNING NON-ALLOCATED MEMORY.
The current operation has attempted to deallo-
cate memory not previously assigned.

NON-EXISTING SEGMENT. The file struc-
ture of the specified device is damaged.

NO PERMISSION. The attributes of the speci-
fied.file or device do not permit the requested
access.

BAD PATH NAME. The specified pathlist con-
tains a syntax error, for instance an illegal
character.

PATH NAME NOT FOUND. The system can-
not find the specified pathlist.

A-3

0S-9 Commands Reference

Code Meaning

Code
HEX DEC
$D9 217
$DA 218
$DB 219
$DC 220
$DD 221
$DF 223
$EO 224
$E2 226
$E3 227
$E4 228
$E5 229
$E6 230
$E7 231

SEGMENT LIST FULL. The specified file is
too fragmented for further expansion.

FILE ALREADY EXISTS. The specified file-
name already exists in the specified directory.

ILLEGAL BLOCK ADDRESS. The file struc-
ture of the specified device is damaged.

PHONE HANGUP - DATA CARRIER
DETECT LOST. The data carrier detect is lost
on the RS-232 port.

MODULE NOT FOUND. The system received
a request to link a module that is not in the
specified directory.

SUICIDE ATTEMPT. The current operation
has attempted to return to the memory loca-
tion of the stack.

ILLEGAL PROCESS NUMBER. The specified
process does not exist.

NO CHILDREN. The system has issued a
wait service request but the current process
has no dependent process to execute.

ILLEGAL SWI CODE. The system received a
software interrupt code that is less than 1 or
greater than 3.

PROCESS ABORTED. The system received a
signal Code 2 to terminate the current
process.

PROCESS TABLE FULL. A fork request can-
not execute because the process table has no
room for more entries.

ILLEGAL PARAMETER AREA. A fork call
has passed incorrect high and low bounds.

KNOWN MODULE. The specified module is
for internal use only.

0S-9 Error Codes | A

Code Meaning

Code
HEX DEC
$E8 232
$E9 233
$EA 234
$EB 235
$EC 236
$ED 237
$EE 238
$EF 239

INCORRECT MODULE CRC. The cyclic
redundancy code for the module being
accessed is bad.

SIGNAL ERROR. The receiving process has a
previous, unprocessed signal pending.

NON-EXISTENT MODULE. The system can-
not locate the specified module.

BAD NAME. The specified device, file, or mod-
ule name is illegal.

BAD MODULE HEADER. The specified mod-
ule header parity is incorrect.

RAM FULL. No free system random access
memory is available: the system address space
is full, or there is no physical memory avail-
able when requested by the operating system
in the system state.

UNKNOWN PROCESS ID. The specified pro-
cess ID number is incorrect.

NO TASK NUMBER AVAILABLE. All avail-
able task numbers are in use.

Device Driver Errors

T/O device drivers generate the following error codes. In most
cases, the codes are hardware-dependent. Consult your device
manual for more details.

Code
HEX DEC Code Meaning
$F0 240 UNIT ERROR. The specified device unit
doesn’t exist.
$F1 241 SECTOR ERROR. The specified sector number
is out of range.
$F2 242 WRITE PROTECT. The specified device is

write-protected.

A-5

0S-9 Commands Reference

Code Meaning

Code
HEX DEC
$F3 243
$F4 244
$F5 245
$F6 246
$F7 247
$F8 248
$F9 249
$FA 250
$FB 251
$FC 252
$FD 253

CRC ERROR. A cyclic redundancy code error
occurred on a read or write verify.

READ ERROR. A data transfer error occurred
during a disk read operation, or there is a
SCF (terminal) input buffer overrun.

WRITE ERROR. An error occurred during a
write operation.

NOT READY. The device specified has a not
ready status.

SEEK ERROR. The system attempted a seek
operation on a non-existent sector.

MEDIA FULL. The specified media has insuf-
ficient free space for the operation.

WRONG TYPE. An attempt is made to read
incompatible media (for instance an attempt to
read double-side disk on single-side drive).

DEVICE BUSY. A non-shareable device is in
use.

DISK ID CHANGE. You changed diskettes
when one or more files are open.

RECORD IS LOCKED-OUT. Another process
is accessing the requested record.

NON-SHARABLE FILE BUSY. Another pro-
cess is accessing the requested file.

A-6

Appendix B

Color Computer 2 Compatibility

Color Computer 3 0S-9 Level Two provides compatibility with
the Color Computer 2 and 0OS-9 Level One by letting you use the
video display in the Alphanumeric mode (including Semigraphic
box graphics) and in the Graphics mode. To control the display,
it has many built-in functions that you activate using ASCIL
control characters. Any program written in a language using
standard output statements (such as PUT in BASIC) can use
these functions. Color Computer BASIC09 has a Graphics Inter-
face Module that can automatically generate most of these codes
using BASIC09 RUN statements.

The Color Computer’s display system uses a separate memory
area for each Display mode. Therefore, operations on the Alpha
display do not affect the Graphics display and vice-versa. You can
select either display with software control. (See Gelting Started
With Extended Color BASIC for more detailed information.)

The system interprets 8-bit characters sent to the display
according to their numerical values, as shown in this chart:

Character Mode/Function

Range

(Hex)

00 - OE Alpha—Cursor and screen control.

OF - 1D Graphics—Drawing and screen control.

1B Alpha, Graphics—Changing Palette colors.
Alpha mode:

1B 31 2 h change cursor color
1B 31 ¢ h change foreground color
1B 31 d h change background color

where h is a hex number from 0 to 3F (0 to
63 decimal) which determines the color.

B-1

0S-9 Commands Reference

Character Mode/Function

Range
(Hex)
Graphics mode:
1B3lprh changes foreground/
background color
where pr is a palette register # (0 - F,
hex)
where h is a hex number from 0 to 3F (0
to 63 decimal) which determines the
color.
20-5F Alpha—Uppercase characters.
60 - 7F Alpha—Lowercase characters.
80 - FF Alpha—Semigraphic patterns.

The device driver CC3IO calls a subroutine module named
VDGInt to handle all text and graphics for the Color Com-
puter 2 compatibility mode.

Color Computer 2 Compatibility /| B

Alpha Mode Display

The Alpha mode is the standard operational mode. Use it to dis-
play alphanumeric characters and semigraphic box graphics. Use
it also to simulate the operation of a typical computer terminal
with functions for scrolling, cursor positioning, clearing the
screen, deleting lines, and so on.

The Alpha mode assumes that each 8-bit code the system sends
to the display is an ASCII character. If the high-order bit of the
code is clear, the system displays the appropriate alphanumeric
character. If the high-order bit is set, OS-9 generates a Semi-
graphic 6 graphics box. See Getting Started With Extended Color
BASIC for an explanation of semigraphic functions.

The standard 32-column Alpha mode display is handled by the
I/0 subroutine module VDGInt. CC3IO calls this module
(included in the standard boot file) to process all text and semi-
graphic output.

The following chart provides codes for screen display and cursor
control. You can use the functions from the OS-9 system prompt
by typing DISPLAY, followed by the appropriate codes. For
instance, to clear the screen, type:

display fc
To position the cursor at column 16, Line 5 and display the word
HELLO, type:

display 82 38 25 48 45 4c 4c 4f

You can also use the following codes in a language, such as
BASIC09. To do so, use decimal numbers with the CHR$ func-
tion, such as:

print ;hr$(02);chr$(48);Chr$(37);chr$(72)
schr$(69);chr$(76);¢chr$(76);chr$(79)
Using Alpha Mode Controls with Windows

The control functions in the following chart also function prop-
erly under the high resolution windowing systems. References to
“screen” are also references to windows.

B-3

0S-9 Commands Reference

Alpha Mode Command Codes

Hex

Code

Decimal
Control Control
Code

Name/Funection

$01

$02

$03

$04

01

02

03

04

HOME—Returns the cursor to the upper left
corner of the screen.

CURSOR XY-—Moves the cursor to character
X of line Y. To arrive at the values for X and
Y, add 20 hexadecimal to the location where
you want to place the cursor. For example, to
position the cursor at Character 5 of Line 10
(hexadecimal A), do these calculations:

5
+ 20
= 25 hexadecimal

0A
+ 20
= 2A hexadecimal

The two coordinates are $25 and $2A.

ERASE LINE—Erases all characters on the
line occupied by the cursor.

CLEAR TO END OF LINE—Erases all
characters from the cursor position to the
end of the line.

B-4

Color Computer 2 Compatibility /| B

Hex Decimal

Control Control

Code Code Name/Function

$05 05 CURSOR ON-OFF—Allows alteration of the
cursor based on the value of the next
character. Codes are as follow:

Default

Hex Dec Char Function Color
$20 32 space Cursor OFF
$21 33 ! Cursor ON Blue
$22 34 “ Cursor ON Black
$23 35 # Cursor ON
$24 36 $ Cursor ON
$25 37 % Cursor ON
$26 38 & Cursor ON
$27 39 ¢ Cursor ON
$28 40 { Cursor ON
$29 41) Cursor ON
$2A 42 * Cursor ON

$06 06 CURSOR RIGHT—Moves the cursor to the
right one character position.

$07 07 BELL—Sounds a bell (beep) through monitor
speaker.

$08 08 CURSOR LEFT—Moves the cursor to the left
one character position.

$09 09 CURSOR UP-—Moves the cursor up one line.

$0A 10 CURSOR DOWN (linefeed)—Moves the
cursor down one line.

$0C 12 CLEAR SCREEN—Erases the entire screen,
and homes the cursor (positions it at the
upper left corner of the screen).

$0D 13 RETURN-—Returns the cursor to the
leftmost character on the line.

$0E 14 DISPLAY ALPHA—Switches the screen from

Graphic mode to Alphanumeric mode.

0S-9 Commands Reference

Graphics Mode Display

Use the Graphics mode to display high-resolution 2- or 4-color
VDG graphics. The Graphics mode includes commands to set
color, plot and erase individual points, draw and erase lines,
position the graphics cursor, and draw circles.

You must execute the display graphics command before using
any other Graphics mode command. This command displays the
graphics screen and sets a display format and color.

The first time you enter the display graphics command, OS-9
allocates a 6144-byte display memory. There must be at least
that much contiguous free memory available. (You can use
MFREE to check free memory.) The system retains the display
memory until you give the end graphics command, even if the
program that initiated the Graphics mode finishes. Always use
the end graphics command to release the display memory when
you no longer need the Graphics mode.

Graphics mode supports two basic formats. The 2-color format
has 256 horizontal by 192 vertical points (G6R mode). The 4-
color format has 128 horizontal by 192 vertical points (G6C
mode). Either mode provides both color sets. Regardless of the
resolution of the selected format, all Graphics mode commands
use a 256 by 192 point coordinate system. The X and Y coordi-
nates are always positive numbers. Point 0,0 is the lower left cor-
ner of screen.

Many commands use an invisible graphics cursor to reduce the
output required to generate graphics. You can explicitly set this
cursor to any point by using the set graphics cursor command.
You can also use any other commands that include x,y coordi-
nates (such as set point) to move the graphics cursor to the speci-
fied position.

Any graphics function that draws on the graphics screen
requires that the VDGInt module is loaded into memory during
the system boot.

Graphics Mode Selection Codes

Code Format
00 256 x 192 two-color graphics
01 128 x 192 four-color graphics

B-6

Color Computer 2 Compatibility | B.

Color Set and Foreground Color Selection Codes

2-Color Format I 4.Color Format
Char Back- Fore- Back- Fore-
ground ground ground ground
00 Black Black Green Green
Color 01 Black Green Green Yellow
Set 0 02 Green Blue
03 Green Red
04 Black Black Buff Buff
Color 05 Black Buff Buff Cyan
Set 1 06 Buff Magenta
07 Buff Orange
08 Black Black
Color 09 Black Dark Green
Set 2 10 Black Med. Green
11 Black Light Green
12 Black Black
Color 13 Black Green
Set 3 14 Black Red
15 Black Buif

Graphics Mode Control Commands

Hex Decinial
Control Control

Name/Function

Code Code
$0F 15
$10 16

DISPLAY GRAPHICS—Switches the screen
to the Graphics mode. Use this command
before any other graphics commands. The
first time you use it, the system assigns a 6-
kilobyte display buffer for graphics. If 6K of
contiguous memory isn’t available, OS-9 dis-
plays an error. Follow the display graphics
command with two characters specifying the
Graphics mode and color/color set,
respectively.

PRESET SCREEN—Presets the entire
screen to the color code passed by the next
character.

0S-9 Commands Reference

Hex
Control
Code

Decimal
Control
Code

Name/Function

$11

$12

$13

$14

$15

$16

$17

$18

17

18

19

20

21

22

23

24

SET COLOR—Sets the foreground color (and
color set) to the color specified by the next
character but does not change the Graphics
mode.

END GRAPHICS—Disables the Graphics
mode, returns the 6K byte graphics memory
area to OS-9 for other use, and switches to
Alpha mode.

ERASE GRAPHICS—Erases all points by
setting them to the background color, and
positions the graphics cursor at the desired
position.

HOME GRAPHICS CURSOR—Moves the
graphics cursor to coordinates 0,0 (the lower
left corner).

SET GRAPHICS CURSOR—Moves the
graphics cursor to the given x,y coordinates.
For x and y, the system uses the binary
value of the two characters that immediately
follow.

DRAW LINE--Draws a line in the fore-
ground color from the graphics cursor posi-
tion to the given x,y coordinates. For x and y,
the system uses the binary value of the two
characters that immediately follow. The
graphics cursor moves to the end of the line.

ERASE LINE-—Operates the same as the
draw line function, except that OS-9 draws
the line in the background color, thus erasing
the line.

SET POINT—Sets the pixel at point x,y to
the foreground color. For x and y, the system
uses the binary values of the two characters
that immediately follow. The graphics cursor
moves to the point set.

B-8

Color Computer 2 Compatibility /| B

Hex Decimal

Contrel Control

Code Code Name/Function

$19 25 ERASE POINT—Operates the same as the
set point function, except that OS-9 draws the
point in the background color, thus erasing
the point.

$1A 26 DRAW CIRCLE—Draws a circle in the fore-
ground color using the graphics cursor as the
center point and using the the binary value
of the next character as the radius.

$1C 28 ERASE CIRCLE—Operates the same as the
draw circle function, except that OS-9 draws
the circle in the background color, thus eras-
ing the circle.

$1D 29 FLOOD FILL—painis with the foreground

color, starting at the graphics cursor position
and extending over adjacent pixels having the
same color as the pixel under the graphics
cursor.

Note: When you call FILL the first time, it requests alloca-
tion of a 512-byte stack for the fill routine. The system does
not return this memory until you terminate graphics with
the end graphics command.

Note: The chart uses hexadecimal codes for compatibility
with the 0S-9 DISPLAY command.

Display Control Codes Summary

Dec Hex 2nd Byte 3rd Byte Function

1st Byte
00 00
01 o1
02 02
03 03

Null
Home alpha cursor

Column +32 Row+32 Position alpha cursor

Erase line

B-9

0S-9 Commands Reference

1st Byte

Dec Hex 2nd Byte 3rd Byte Function

04 04 Erase to End of line
05 05 Cursor Code Alter Cursor

06 06 Move cursor right

07 07 Sound terminal bell
08 08 Move cursor left

09 09 Move cursor up

10 0A Move cursor down

11 0B Erase to End of Screen
12 0C Clear screen

13 0D Carriage return

14 OE Select Alpha mode
15 OF Mode Color Code Select Graphics mode
16 10 Color Code Preset screen

17 11 Color Code Select color

18 12 Quit Graphics mode
19 13 Erase screen

20 14 Home Graphics cursor
21 15 X Coord Y Coord Move graphics cursor
22 16 X Coord Y Coord Draw line to x/y

23 17 X Coord Y Coord Erase line to x/y

24 18 X Coord Y Coord Set point at x/y

25 19 X Coord Y Coord Clear point at x/y

26 1A Radius Draw circle

28 1C Radius Erase circle

29 1D Flood Fill

B-10

Appendix C

0S-9 Keyboard Codes

Key Definitions With Hexadecimal Values

NORM SHFT CTRL |NORM SHFT CTRL |NORM SHFT CTRL
0 30 0 30 -- @ 40 60 NULOO |[p 70 P 50 DLE 10
130! 21 | 7C |a 61 A 41 SOHOl |q 71 Q 51 DC1 11
2 32 “ 22 00 |b 62 B 42 STX 02 [r 72 R 52 DC2 12
3 33 # 23 " 7E |¢ 63 C 43 ETX 03 |s 73 S 53 DC3 13
4 3¢ $§ 24 00 |d 64 D 44 EOQOT 04 |t 74 T 54 DC4 14
5 35 %.25 00 |e 65 E 45 EMDO5 |u 75 U 55 NAK15
6 36 & 26 00 |f 66 F 46 ACK 06 (v 76 V 56 SYN 16
7 37 27 ~ 5E |g 67 G 47 BEL 07 {w 77 W 57 ETB 17
8 38 (28 [5B |h 68 H 48 BSP 08 |[x 78 X 58 CAN 18
9 39) 29 1] 8D |i 69 I 49 HT 09 |y 79 Y 59 EM 19
: 3A * 2A 60 |j 6A J 4A LF O0A |z TA Z 5A SUMI1A
; 3B + 2B 00 |k 6B K 4B VT 0B
, 2C < 3C { 7B |l 6C L 4C FF 0C
- 2D = 3D 5F |m 6D M 4D DR 0D
2E > 3E } 7D {n 6E N 4E CO OE
/ 2F ? 38F \ 5C lo 6F O 4F CI OF
Function Keys
NORM SHFT CTRL
BREAK 05 03 1B
ENTER 0D 0D 0D
SPACE 20 20 20
<« 08 18 10
- 09 19 11
v 0A 1A 12
4 0C 1C 13

C-1

Appendix D

0S-9 Keyboard Control

Functions

Key Definitions for Special Functions and Characters

Key
Combination Control Function or Character
ALT Alternate key—Sets the high order bit on a
character. Press char.

Use as a control key.

or [CIAL)(E) Stops the program currently executing.

] Generates an underscore (_).

o Generates a left brace ().

) Generates a right brace (}).

B Generates a reverse slash (\).

Generates an end-of-file (EOF). This
sequence is the same as pressing on a
standard terminal.

or Generates a backspace.

or Deletes the entire current line.

or Interrupts the video display of a running

program. This sequence reactivates the
shell and then runs the program as a back-
ground task.

Upper-/lowercase shift lock function.

Generates a vertical bar (|) in reverse video.

Generates a tilde () character.

Generates an up arrow or caret ().

Generates a left bracket (D.

(€TRL)(9) Generates a right bracket (]).

D-1

0S-9 Commands Reference

Com{){i?’ation Control Function or Character
Repeats the previous command line.
(CTRL](D) Redisplays the command line.

Temporarily halts output to the screen.
Press any key to resume output.

Enable/Disable Keyboard mouse.

Change screens.

Change screens in reverse order.

Index

ACIAPAK 5-6, 5-7, 6-96
active state 4-2
address 2-4

memory 4-5
allocate memory for devices

6-55

alpha mode B-3

select B-10
alphanumeric mode B-1
ampersand separator 3-6
append files 6-68
application program 1-3
arglist 6-2
ASCIT 2-5

control characters B-1

convert 6-38
ASM 3-2
asterisk, editor 7-3
-ATTR 2-10, 6-5
attribute 2-5, 2-8, 2-10, 6-5
auto-answer modem 6-96,

6-108

background
color B-7
process 3-7
task 4-1
screen 5-2
backspace 6-93
character 6-94, 6-106,
6-107
editor 7-2
over line 6-93, 6-106
BACKUP 54, 6-7
backup a directory 6-39
BASIC09 2-5, 2-6, 3-13, B-1
baud rate 5-4, 5-5, 5-6, 6-96,
6-98, 6-109
begin a window 6-103
bell
character 6-95, 6-108
sound B-10

bit 2-1
stop b5-5, 5-6
user 2-11
bitmap 2-5
block
number 4-5
devices 1-2
bootstrap 5-1
file 5-2
box graphics B-3
brackets 6-3
buffer 3-7, 7-2
edit 7-1
secondary 7-1
text 7-1
BUILD 2-6, 3-10, 6-10, 6-71,
6-75
built-in commands 3-1, 3-11
byte 2-1

carriage return B-10
CC3Disk 5-1
CC3Go 5-2
CC3I0 5-1,B-2
chaining programs 6-44
change
attributes 2-10, 2-11
directory 6-12, 6-91,
6-84
file name 6-84
priority 3-12, 6-88
system parameters 6-93
character
ASCII 2-5
delete 6-107
devices 1-2
backspace 6-94, 6-106,
6-107
bell 6-95, 6-108
delete line 6-94, 6-107
dup 6-95, 6-107
end-of-file 6-94, 6-107

OS-9 Commands Reference

character (cont’d)
end-of-record 6-94,
6-107
lowercase B-1
pause 6-95, 6-108
quit 6-95, 6-108
reprint 6-95, 6-107
terminate 6-95, 6-108
uppercase B-2
CHD 3-11, 6-12
check disk structure 6-25
child process 3-6, 4-2
CHX 3-11, 6-12
circle
draw B-9
erase B-9, B-10
clear
screen B-5
to end-of-line B-4
clock 5-2
cluster 2-4, 2-5
CMDS directory 5-1, 5-3, 5-4
CMP 6-14
COBBLER 6-16, 6-72
code
alpha mode control B-4
cursor B-5
object 2-7
position-independent 4-8
re-entrant 4-6
color
background B-7
foreground B-7, B-8
select B-10
set, graphics B-7
combine files 6-68
command
grouping 3-2, 3-9
help 6-51
interpreter 6-90
line 3-1, 3-2
parameters, editor 7-3
separator 3-1, 3-5
summary, editor 7-55

command codes
alpha mode B-4
graphics B-7
commandname 6-2
commands
ASM 3-2
ATTR 2-10, 2-11, 6-5
BACKUP 6-7
BUILD 2-6, 3-10, 6-10,
6-71, 6-75
built-in 3-11
CHD 3-11, 6-12
CHX 3-11, 6-12
CMP 6-14
COBBLER 6-16, 6-72
CONFIG 5-2, 5-3, 5-4,
6-18
COPY 2-3, 3-6, 4-8, 6-22
DATE 6-24
DCHECK 6-25
DEINIZ 6-30
DEL 6-31
DELDIR 2-3, 6-33
DIR 2-6, 2-9, 6-35
DISPLAY 6-38
DSAVE 6-39
DUMP 2-8, 6-72
ECHO 6-42
edit macro 7-28
editor 7-2
ERROR 5-2, 6-43
EX 3-11, 6-44
FORMAT 6-46
FREE 6-49
GET 2-6
HELP 6-51
i 3-11
IDENT 3-3, 6-52
INIZ 6-55
KILL 3-12, 6-56
LINK 6-58
LIST 2-3, 2-5, 2-8, 3-4,
6-59
LOAD 4-7, 6-61

Index

commands (cont’d)
MAKDIR 2-3, 2-11,
6-63
MDIR 6-64
MERGE 6-68
MFREE 6-69
MODPATCH 6-70
MONTYPE 6-74
0S9GEN 5-2, 5-3, 6-76
p 3-12
‘PROCS 3-7, 4-2, 6-80
PUT 2-6
PWD 6-82
PXD 6-82
RENAME 6-84
RUNB 3-13
SEEK 2-6
SETIME 5-3, 6-86
SETPR 3-12, 6-88
SHELL 3-6, 6-90
t 3-12
TMODE 6-93
TUNEPORT 6-98
UNLINK 4-7, 4-8,
6-100
w 3-12
WCREATE 6-103
x 3-12
XMODE 5-4, 5-5, 5-7,
6-106
comment, in a program 3-12
compare files 6-14
concurrent
execution 3-5,6-91
mode 3-10
process 3-9
task 4-1
CONFIG 5-2, 5-3, 5-4, 6-18
control
characters, ASCII B-1
keys, editor 7-2
convert to ASCII 6-38
COPY 2-3, 3-6, 4-8, 6-22

copy
a directory 6-39

diskettes 6-7
CPU 4-1
priority 6-88
CRC 2-7,6-71
create
a directory 6-63
afile 6-10
0S9Boot. 6-16, 6-76
process 3-6
system diskette 5-3, 5-4,
6-16, 6-18, 6-76
current
directory 4-4, 6-12
processes 6-80
cursor
on/off B-5
codes B-5
control B-1, B-4
graphics B-6, B-8
home B-4
move B-5, B-10
cyclic redundancy checksum
2-7

data format 2-1
data output, halt 7-3
ddta
redirect 3-4
input/output 1-2
passing 4-4
process 2-1
sending 2-1
transfer 2-1
DATE 6-24
date 2-5
set 6-86
day 6-2
DCHECK 6-25
deallocate a device 6-30
DEINIZ 6-30
DEL 6-31
delay, not ready 5-6
DELDIR 2-3, 6-33

0S-9 Commands Reference

delete
a character 6-107
a directory 6-33
aline 7-3
a memory module 4-7,
6-100
files 6-31
line character 6-94,
6-107
lines, editor 7-10
descriptor
device 1-2
file 2-3
detach a device 6-30
device
allocate memory 6-55
block-oriented 1-2
character 1-2
deallocate 6-30
descriptor 1-2, 5-1
driver 1-2, 2-1, 5-1
driver initialization
6-55
name 2-12,2-13
window 2-12 - 2-13
devname 6-2
DIR 2-6, 2-9, 6-35
directory 2-2, 2-3

cluster 2-4

file 2-3, 2-4

IO 3-8
initialization 6-46
names 2-12
ownership 2-8
sector 2-4
structure, check 6-25
raw I/O 3-8

unused sectors 6-49

diskette

copy 6-7
density 2-5
tracks 2-5
system 2-2

DISPLAY 6-38
display

a directory 6-35
current processes 6-80
date and time 6-24
error message 6-43
execution directory 6-82
file contents 6-59

free memory 6-69
graphics B-7

help 6-51

memory module names

attribute 2-8
change 6-12, 6-91
change name 6-84
CMDS 5-1, 5-3, 5-4

6-64
messages 6-42
on next line 7-2
text, editor 7-6

copy 6-39 unused disk sectors 6-49
create 6-63 working directory 6-82
current 4-4, 6-12 double density 2-5
delete 6-33 draw
list 6-35 a circle B-9
module 4-6 aline B-8, B-10
ownership 2-8 drivers, device 1-2
SYS 5-1,5-4 DSAVE 6-39
view 6-82 DUMP 2-8, 6-72
working 6-12 dup character 6-95, 6-107
dirname 6-2 duplicate
disable echo 6-94, 6-107 last line 6-95

line 6-107

Index

ECHO 6-42
echo 6-92
enable/disable 6-94,
6-107
edit
buffer 7-1
commands, EDIT 7-5
pointer 7-1, 7-2, 7-7
EDIT, editor 7-5
editor 7-1
backspace 7-2
command summary
7-55
command syntax 7-4
commands 7-2
control keys 7-2
delete lines 7-10
error messages 7-59
getting started 7-4
insert lines 7-10
interrupt 7-3
numeric parameters 7-3
quick reference 7-55
searching 7-13
substituting 7-13
terminate 7-2
text file operations 7-18
using the asterisk 7-3
ellipsis 6-3
enable echo 6-94, 6-101
end graphics B-8
end-of-file
terminate 7-2
character 6-94, 6-101
end-of-line
clearing B-4
erase B-10
end-of-record character 6-94,
6-107
erase
a circle B-9, B-10
a line B-10
graphics B-8
line B-4, B-8, B-9
point B-9

erase (cont'd)
to end-of-line B-10
Errmsg 5-2
ERROR 5-2, 6-43
error 3-12, 6-92
message file 5-2
messages, editor 7-59
output 6-91
path 3-4
establish a directory 6-63
EX 3-11, 6-44
exclamation mark separator
3-8
execute
a program 6-90
permission 2-9, 2-10
execution
concurrent 3-5, 6-91
modifier 3-1, 3-3
sequential 3-5, 3-6, 6-91

fields 2-6

file 2-2-2-4
attribute 2-8
change name 6-84
compare 6-14

copy 6-22
create 6-10
delete 6-31

descriptor 2-3
descriptor sector 2-5
display contents 6-59
load in memory 6-61
merge 6-68
manager 5-1
0OS9Boot 5-4
ownership 2-8
pointer 2-4
procedure 2-6, 3-10,
3-11
random access 2-6
security 2-8
single-user 2-8
size 2-5

0S-9 Commands Reference

file (cont’d)

Startup 2-6, 5-1, 5-3,

5-4

text 2-5
filename 2-3, 6-2
fill portion of screen B-9
flood fill B-9, B-10
floppy disk names 2-12
fonts 5-2
foreground color B-7, B-8
fork 3-7, 4-6

request 4-3
FORMAT 6-46
FREE 6-49

generate messages 6-42
GET 2-6
getting started, editor 7-4
graphic window fonts 5-2
graphics B-1
color set B-7
command codes B-7
cursor B-6, B-8
mode, select B-10
end B-8
erase B-8
medium resolution B-6
VDG B-6
group 2-7
grouping, commands 3-9

halt data output 7-3
hardware 1-2
header
information 6-52
module 2-7, 3-3, 4-7
HELP 6-51
hex 6-2
hexadecimal code display
6-38
home
alpha cursor B-9
cursor B-4
hours 6-2

I-code 3-13
/0
paths 3-4
transfers 3-8
raw 3-8
ID, process 4-4
IDENT 3-3, 6-52
images, pointer 5-2
immortal
process 6-91
shell 3-11
INIT 5-1
initialize
a disk 6-46
a window 6-103
INIZ 6-55
input 2-1
lines 3-12
path 3-4
redirect 6-91
standard 4-4
insert lines, editor 7-10
interpreter, commands 6-90
interprocess communication
3-7
interrupt editor 7-3
IOMAN 1-2,1-3, 5-1

kernel 1-1,1-2

keyboard 1-1

keyword 3-1 - 3-3

KILL 6-56

kill 3-12
a directory 6-33, 6-33
files 6-31

length
of video page 6-94
word 5-5, 5-6, 6-96,

6-109

line
backspace 6-93, 6-106
delete, editor 7-3
draw B-8, B-10
duplicate 6-95

Index

line (cont’d)
duplication 6-107
erase B-4, B-8, B-9,
B-10
syntax 6-1
linefeed 6-94, 6-107
lines, command 3-1
LINK 6-58
LIST 2-3, 2-5, 2-8, 3-4, 6-59
list
a directory 6-35
current processes 6-80
memory module names
6-64
segment 2-5
with program files 2-8
LOAD 4-7,4-7, 6-61
lock a module 6-58
lockout 2-11
logical sector 2-3, 2-4
lowercase 6-93, 6-106
characters B-2

machine language 3-12
macro text editor 7-1
macros, edit 7-25
MAKDIR 2-11, 2-3, 6-63
management, memory 4-5
manager

pipe 1-2

random block 1-2
mark space 6-95, 6-108
MDIR 6-64
MDM kill 5-6, 5-7
medium resolution graphics

B-6 ‘

memory

address 4-5

allocation 3-1

display free 6-69

load a file into 6-61

management 1-1, 4-5

size modifier 3-3
memory modules

lock 6-58

memory modules (cont’d)
unlink 6-100
deleting 4-7
display names 6-64

MERGE 6-68

messages with ECHO 6-42

messages, error 6-43

MFREE 6-69

minutes 6-2

MMU 4-5

mode, alpha B-3

mode
alphanumeric B-1
concurrent 3-10
semigraphic B-1

modem 1-1, 5-6, 5-7
auto-answer 6-108
name 2-12

modifier 3-1 - 3-3
execution 3-1, 3-3
memory size 3-3
redirection 3-5

modname 6-2

MODPAK 5-7

MODPATCH 6-70, 6-71, 6-72,

6-73

module 1-3
deleting memory 4-7
directory 4-6
header 2-7, 3-3, 4-7
header information 6-52
loading 4-7
lock in memory 6-58
primary 4-3
program 2-7
unlink 4-8

month 6-2

MONTYPE 6-74, 6-75

move cursor B-4, B-5, B-10

multiprogramming 4-1

multitasking 1-1

name
device 2-12, 2-13
modem 2-12

0S-9 Commands Reference

name {(cont’d)

printer 2-12

program 3-3

terminal 2-12
next line, display 7-2
not ready delay 5-6
notations, syntax 6-1
null count 6-94, 6-107
number

priority 3-12

user 2-8,4-4
numeric parameters, editor

7-3

object code 2-7
operating system 1-3
opts 6-2
0OS9Boot 5-1, 5-4
create 6-16, 6-76
0S9Gen 5-2, 5-3, 6-72, 6-76
0S9p2 5-1
output 2-1
error 6-91
path 3-4,4-4
redirect 3-11, 6-91
owner 2-5, 2-8

page length, video 6-107
pages 3-3
paint B-9
parameter 3-1,4-4
change system 6-93
command editor 7-3
paramlist 6-2
parent process 4-2
parity 5-6, 5-7, 6-95, 6-108
passing data 4-4
pathlist 6-2
paths 2-1
O 34
output 4-4
standard 3-4, 6-93
patterns, semigraphic B-2

pause 6-94
character 6-95, 6-108
screen 6-107
permission 6-2
execute 2-9, 2-10
read 2-9, 2-10
write 2-9, 2-10
physical sector 2-4
PIC 4-8
pipe 1-2, 3-7, 5-1
pipelines 3-7, 3-8
PIPEMAN 5-1
Piper 5-1
point
erase B-9
set B-8, B-10
pointer
edit 7-1,7-2
editor 7-7
file 2-4
images 5-2
port 1-2
port, RS-232 5-4, 6-109
position alpha cursor B-9
position-independent 2-7
code 4-8
prepare a disk 6-46
preset screen B-7
previous line repeat 7-2
primary module 4-3
PRINTER 5-1
printer 1-1,1-2
name 2-12
test 6-98
priority
number 3-12
change 6-88
process 4-2, 4-4
procedure file 2-6, 3-10, 3-11
process
background 3-7
chaining 6-44
child 3-6
create 3-6
current 6-80

Index

process (cont’d)
data 2-1
fork 3-7
ID 44
memory size 6-91
priority 4-2, 4-4
properties 4-4
sibling 4-3
state 4-2
terminate 6-56
time sharing 4-1
processor time 4-1
proclD 6-2
PROCS 3-7, 4-2, 6-80
program
application 1-3
chaining 6-44
comments in 3-12
execution 6-90
modules 2-7
name 3-3
size 3-3
prompt 3-12
prompting 6-92
properties, process 4-4
public 2-9, 2-10
PUT 2-6
PWD 6-82
PXD 6-82

quick reference, editor 7-55
quit character 6-95, 6-108

RAM 4-5
random access 1-2
files 2-6
random block file manager
1-2
rate, baud 5-4, 5-5, 5-6, 6-96,
6-98, 6-109
raw I/O 3-8
RBF 5-1
read 2-1, 2-11, 2-4
permission 2-10, 2-9
readers 3-8

record 2-2, 2-6
lockout 2-11
redirect
data 3-4
input 6-91
output 6-91
redirection 3-1
modifiers 3-4, 3-5
output 3-11
symbols 3-5
re-entrant code 4-6
remove
directory 6-33
files 6-31
memory module
RENAME 6-84
repeat previous line 7-2
reprint character 6-95, 6-107
reserved characters 3-3
ROOT 2-2, 2-3
route data 3-4
RS-232 5-1, 5-4, 6-96, 6-109
run-time module 3-12
RUNB 3-13

6-100

SAVE 6-72

SCF 5-1

screen
alpha B-5
background 5-2
clear B-5
control B-1
pause 6-94, 6-107
preset B-7

scroll pause 6-94, 6-107

searching, editor 7-13

secondary buffer 7-1

seconds 6-2

sector 2-4
copy 6-7
displayed unused 6-49
file descriptor 2-5
logical 2-3

0S-9 Commands Reference

security
file 2-8
permission 6-5
SEEK 2-6
segment list 2-5
select
alpha mode
color B-10
graphics mode
semicolon, sequential
execution 3-6
semigraphic
mode B-1
patterns B-2
sending data 2-1
separator 3-1
ampersand 3-6
command 3-5
exclamation mark 3-8
sequential execution 3-5, 3-6,
6-91
set a window 6-103
set a point B-8, B-10
set priority 3-12
SETIME 5-3, 6-86
SETPR 6-88
share time 4-1
shell 1-3,3-1-3-3, 3-8, 6-3
SHELL 3-6, 6-90
show
a directory 6-35
error message 6-43
execution directory 6-82
file contents 6-59
free memory 6-69
header information 6-52
memory module
names 6-64
working directory 6-82
sibling processes 4-3
sign bit 2-2
simultaneous execution 3-5
single-user file 2-8
SIO 5-1

B-10
B-10

size
file 2-5
process memory 6-91
program 3-3
slash in device names 2-13
sleeping 4-3
software fonts 5-2
sound bell B-10
standard input 4-4, 6-93
standard paths 3-4, 6-93
start a window 6-103
Startup 2-2, 2-6, 5-1, 5-3,
5-4, 6-75
state 4-2, 4-2
Stdfonts 5-2
Stdpats 5-2
Stdptrs 5-2
stop bit 5-5, 5-6
string parameters, editor 7-4
subdirectory 2-3
delete 6-33
submanager 1-2
subshell 3-10
substituting, editor 7-13
summary, commands 6-3, 6-4
super user 6-56
switch screen B-5
symbols, redirection 3-5
syntax 6-1
SYS directory 5-1, 5-4
system
administrator 1-1
date 6-86
disk create 5-3, 5-4
parameters 6-93
priority 6-88
time 6-86
system diskette 2-2
create 6-16, 6-18, 6-76

task, background 4-1
term 1-1

TERM 5-1
TERM-VDG 6-96
TERM-WIN 6-109

10

Index

terminal name 2-12
terminals 1-2
terminate
a character 6-95, 6-108
a process 6-56
the editor 7-2
on error 6-92
test delay loop 6-98
text 6-2, B-2
buffers 7-1
display, editor 7-6
editing 7-1
file operations, editor
7-18
files 2-5
tick 4-1, 4-2
tickcount 6-2
time 2-5, 6-24
sharing, process 4-1
CPU 4-1
processor 4-1
set 6-86
timeslice 4-1, 4-2
TMODE 6-93
tracks 2-5
transfer, /O 3-8
transferring data 3-7
TUNEPORT 6-98
turn on
cursor B-5
echo 6-92
prompting 6-92
type 5-7
ACIA 6-96, 6-108
of window 6-103
value 5-7

UNLINK 4-7, 4-8, 6-100
unused disk sectors 6-49
update mode 2-11
uppercase 6-93, 6-106
characters B-2

user
bit. 2-11
number 2-8, 4-4

value 6-2
type 5-7
variable 6-1
VDG graphics B-6
video 1-1
page length 6-94, 6-107
view
current processes 6-80
error messages 6-43
working directory 6-82

waiting state 4-3
WCREATE 6-103
window 5-2
alpha mode controls B-3
descriptor 2-12
initialization 6-103
type 6-103
word length 5-5, 5-6, 6-96,
6-109
working directory 6-12
write 2-1, 2-4, 2-11
permission 2-9, 2-10

XMODE 5-4, 5-5, 6-106

year 6-2

11

