TRS-80 Color Computer

e e e e s P

o R e e e s St Sy o R ——
£ - T T i e T - T rm—————

0S-9 Program Development

READ ME FIRST

All computer software is subject to change, correction, or improvement as the manu-
facturer receives customer comments and experiences. Radio Shack has estab-
lished a system to keep you immediately informed of any reported problems with
this software, and the solutions. We have a customer service network including rep-
resentatives in many Radio Shack Computer Centers, and a large group in Fort
Worth, Texas, to help with any specific errors you may find in your use of the pro-
grams. We will also furnish information on any improvements or changes that are
“cut in” on later production versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(2) 1f you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(8) As we furnish updates or “patches”, and you update your software, you must
keep an accurate record of the current version numbers on the logs below.
(The version number will be furnished with each update.)

Keep this card in your manual at all times, and refer to the current version numbers
when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSIONLOG

01.01.00

Change of address

Change of address

NEW ADDRESS OLD ADDRESS NEW ADDRESS

OLD ADDRESS

Name

Company
Address

City

Phone (

State

Zip

Company
Address

City

Phone (

State

Zip

Name

Company

Address

City

Phone (

State

Zip

Name

Company

Adaress

City

Phone (

State

Zip

PLACE
STAMP
HERE

Software Registration

Data Processing Dept.

P.O. Box 2910

Fort Worth, Texas 76113-9965

PLACE
STAMP
HERE

Software Registration

Data Processing Dept.

P.O. Box 2910

Fort Worth, Texas 76113-9965

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK
COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROM A
RADIQ SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL

STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS

AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the
“Equipment’’), and any copies of Radio Shack software included with the Equipment or licensed
separately (the “‘Software’) meets the specifications, capacity, capabilities, versatility, and other
requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating
environment in which the Equipment and Software are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

For a period of ninety (90) calendar days from the date of the Radio Shack sales document
received upon purchase of the Equipment, RADIO SHACK warrants to the original CUSTOMER that
the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY [S ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT
BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS,
RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOCATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the
Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect
is discovered during the stated warranty period, the defective Equipment must be returned to a
Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or
Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The
original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the
correction of the defect by repair, replacement, or refund of the purchase price, at RADIO
SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair
expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of
the Software, except as provided in this paragraph. Software is licensed on an "'AS IS’ basis,
without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software
manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the
Radio Shack sales document received upon license of the Software. The defective Software shall
be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio
Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to
give any warranties of any nature on behalf of RADIO SHACK.

Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above
limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY
TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS
OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT"' OR “‘SOFTWARE"’ SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK,
INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR
ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE “EQUIPMENT"' OR "'SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF ANY BREACH OF THIS WARRANTY OR N ANY MANNER ARISING OUT OF OR
CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT"
OR “SOFTWARE"".)
continued

NOTWITHSTANDING 1E ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY
HEREUMDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE
AMOUNT PAID BY CUSTOMER FCR THE PARTICULAR "'EQUIPMENT OR ""SOFTWARE"
INVOLVED.

RADIO SHACK shall not be ltable fur anv damages caused by delay in delivering or furnishing
Equipment and’or Seftware.

No action arising out of any claimed breach of this Warranty cr transactions under this Warranty
may be brought more than two (2} years after the cause of acticn has accrued or more than four
(4) years after the date of the Hadio Shack saies document for the Equipment or Software,
whichever first occurs.

Some states do not allow the limitation or excrusion of incidental ¢r consequentiai damages, so the
above limitation(s) or exclusion(s) may nct apply to CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTGMER a non-exciusive, paid-up license to use the RADIO SHACK Software
on one computer, subject to tre foliowing provisions:

G.

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the
Software.

Title to the medium on which the Scitware 1s recorded (cassette and/or diskette) or stored (ROM)
is transferred to CUSTOMER, but not title to the Sortware.

CUSTOMER may use Seoftwarz on one host computer and access that Software through one or
more terminais if the Software permits this function.

CUSTUMER sha!* not use, miake, manufacture, or reproduce copies of Software except for use on
one computer and as is spectfically provideg in this Software License. Customer is expressly
prohibited from disassembling the Software

CUSTOMER is permitted to make additional copies of the Software only for backup or archival
purposes or if additional copies are required in the operation of one computer with the Software,
but only to the extent the Software allows a backup copy to be made. However, for TRSDOS
Software, CUSTOMER is permitted *o make & limited number of additional copies for
CUSTOMER’S own use.

CUSTOMER may resell or distribute unmocified copies of the Software provided CUSTOMER has
purchased one copy of the Software for each cne sold or distributed. The provisions of this
Software License shall also be applicable to third paities receiving copies of the Software from
CUSTOMER.

All copyright notices shall be retained on ali copies of the Softwars.

APPLICABILITY OF WARRA.{TY

A

The terms and conditions of this Warranty wre applicable as between RADIO SHACK and
CUSTOMER to either a sale oy the Equipment and/or Scftware License to CUSTOMER or to a
transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

The limitations of liability and Warranty previsions herein shall inure to the benefit of RADIO
SHACK, the author, owner and/or licensor of the Software and any manufacturer of the Equipment
sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the eriginal CUSTOMER specific iegal rights, and the original
CUSTOMER may have other rights whicn vary from state to state

GETTING STARTED WITH OS-9

OS-9 OPERATING SYSTEM

For The 64K TRS-80 Color Computer
includes an Editor and Assembler

Radio Ffhaek

A DIVISION OF TANDY CORPORATION
FORT WORTH, TEXAS 76102

0S-9 Operating System: © 1983 Microware Systems
Corporation and Motorola Incorporated.
All Rights Reserved. Licensed to Tandy Corporation.

Getting started with OS-9:
© 1983 Tandy Corporation and Microware Systems
Corporation.
All Rights Reserved.

UNIX is a trademark of Bell Laboratories.
TRS-80 is a registered trademark of Tandy Corporation.

Reproduction or use, without express written permission from
Tandy Corporation or Microware Systems Corporation of any
portion of this manual is prohibited. While reasonable efforts
have been taken in the preparation of thrs manual to assure its
accuracy, Tandy Corporation and Microware Systems Corpo-
ration assumes no liability resulting from any errors or omis-
sions in this manual, or from the use of the information
contained herein.

10 9 8 7 6 5 4 3 2 |1

To Our Customers. ..

Congratulations on purchasing the OS-9 Disk Operating Sys-
tem for your 64K TRS-80 Color Computer. You’ll find OS-9
powerful and simple to use. It is structured after the famous
UNIX operating system that is used at many colleges and uni-
versities today.

How to Use This Manual. . .

This manual is written for beginners although experienced pro-
grammers will also find it useful in starting up OS-9. It explains
the important things you need to know:

* How to run an easy test on your disk drives.
* How to start OS-9.

* How to use important commands.

* What to do in case of trouble.

For more detailed information on OS-9, you can read these
0OS8-9 manuals:

0S-9 Commands. Explains the concepts and commands of OS-9.

OS-9 Program Development. Explains how to use:

» OS-9’s text editor to enter programs or to prepare text
such as letters and documents.

* OS-9’s Assembler.*
* OS-9’s Interactive Debugger to debug your assembly

language programs.*

0S-9 Technical Information. Provides all the information nec-
cssary to install, maintain, expand or write assembly-language
programs for OS-9.*

*These manuals assume that you are familiar with the 6809
architecture, instruction set, and assembly language.

Table of Contents

Chapter 1
Chapter 2
Chapter 3
Chapter 4

Chapter 5
Chapter 6
Chapter 7

What Is OS-9?.....ccoooiii . 1
Before You Start OS-9 5
Starting Up OS-9...............ol. 7
Formatting Disks and

Making Backups 11
Exploring The OS-9 File System...... 17
In Case Of Trouble....................... 27
And There’s More......................... 31

1/WHAT IS 0S-9?

What is OS-9? That’s a simple question with an interesting
answer. However, before you can understand OS-9, you need to
understand operating systems.

What Is an Operating System?

An operating system acts as a manager for the computer. It
sends information to the disk drives, printers and video. It man-
ages the storage space on the disks and in memory. It also
answers your commands.

This illustration shows the relationship between the operating
system and the hardware. (Hardware is the computer, drives
and printer.) It also shows how application programs and lan-
guages fit into the picture.

COMPUTER

OPERATING SYSTEM

5 I3

APPLICATIONS LANGUAGES

Application Programs are practical uses for the computer,
such as creating and maintaining a mailing list.

Languages let you write your own application programs.

Back To OS-9

0S8-9 is a versatile operating system for the 64K TRS-80 Color
Computer. It is based on the UNIX operating system developed
by Bell Laboratories Inc. UNIX is widely used on larger com-
puters especially in colleges and universities.

0OS-9 opens many new doors by expanding the Color Comput-
er’s capabilities. OS-9 offers sophisticated features that are nor-
mally available only in much larger computers. Among these are:

Multi-Level Filing System

Like most operating systems, OS-9 lets you store information
on disk in a “*file”” and index these files with a directory. OS-9,
however, goes one step further by letting you create a hierarchy
of directories and files.

Multiuser/Multitasking Operation

Multiuser means that more than one person can use the system
at the same time. The number of users is limited by the number
of terminals. The TRS-80 Color Computer can have one ter-
minal; this means that two people can use OS-9 at the same
time. One person on the Color Computer and one on the
terminal.

Multitasking means that two or more tasks (programs) can run
at the same time. For example, with OS-9 you could print
reports and enter information at the same time.

Device-independent Input/Output System

0OS-9 uses a very efficient method for inputting and outputting
information. It expects all input to come from the ‘‘standard
input device” and all output go to the *‘standard output device.”
On the Color Computer, OS-9 expects all input to come from
the keyboard/console and all output to go to the video display.

You can easily “‘redirect’ the standard /O devices to other
devices such as printers or disks. This means that an OS-9 pro-
gram needs only one output routine and one input routine.
From there you can redirect them to another device. This saves
time for the programmer and space on the disk because pro-
grams can be shorter.

This manual provides step-by-step instructions for getting OS-
9 started on your Color Computer. It includes a sample session
to help you become familiar with some of the most common
0S-9 commands and features. We do not cover all OS-9 fea-
tures here, but you can find detailed information in the other
0OS8-9 manuals.

To run OS-9, you must have a 64K TRS-80 Color Computer
that has at least one floppy disk drive. The OS-9 standard sys-
tem disk includes modules to support the following TRS-80
Color Computer hardware:

* 64K RAM

» Keyboard

* Alphanumeric Video Display
* Color Graphics Display

* Disk Drives (1 or 2)

* Joysticks (1 or 2)

» Serial Printer*

* RS-232C Communications Port
* Optional supported hardware

We hope you enjoy your journey with OS-9!

2/BEFORE YOU START OS-9

Before you start OS-9, we suggest you run a simple test pro-
gram to make sure your disk drives are still well ““tuned.’” This
test checks the speed of the drive. A disk drive speed should be
about 300 RPM (rotations per minute). Even though we submit
our disk drives to a rigorous quality assurance test before they
are sent to you, the drive speed may begin to vary after use.
This makes disks harder to read.

You can check your drive’s speed at home with the following
procedure:

1. Make sure that the disk system is properly connected
to the computer. Turn on the TV. Next, turn on the
computer and disk drives.

2. Insert the disk labeled OS-9 BOOT into Drive 0.

3. At the OK prompt, type:

RUN "*" (ENTER
This starts the OS-9 Utility program.

4. The screen shows:

b BOOT 089
t TEST DISK DRIVE

Press (T) to start the disk drive test.
5. The test program prompts:
*¥*SELECT DRIVE @ - 3 OR "BREAK"#**

Enter a (@) to test Drive 0.

6. The screen shows the drive speed. The speed may
change slightly during the test; this is normal. This test
accepts speeds from 298.0 to 303.5 rpm. If the speed
is in this range, the screen continues to display the
speed.

If the speed is unacceptable, the screen changes color
and displays one of these messages:

DISK SPEED NEEDS ADJUSTING, TOO FAST

or
DISK SPEED NEEDS ADJUSTING TOO SLOW

If one of these messages appears, take your disk drive
to your Radio Shack Service Center for adjustment.

To exit the test, press (BREAK) and the test prompt reappears. If
you have only one drive, remove the OS-9 BOOT disk and
place it in its protective sleeve.

If you have a second drive and wish to test it, remove the OS-9
BOOT disk from Drive 0 and place it in Drive 1. Press (1) at the
test prompt, and the screen shows the drive speed. Exit the test
by pressing and remove the OS-9 BOOT disk.

Place the disk in its protective sleeve and store it in a safe place.
You may want to run this test periodically. How often you
decide to run it depends on how much you use your drives.

3/STARTING UP OS-9

The way to start OS-9 depends on the version of your comput-
er’s disk ROM. The version number appears on the first line of
the dialog when you start up your disk system:

DISK EXTENDED COLOR
BASIC 1.x <---- Version Number

If your computer is Version 1.0, the startup procedure differs
from that of Versions 1.1 and later. Versions 1.1 or later have the
DOS command, which automatically boots OS-9. Version 1.0

does not and must use a special command.

Be sure your disk system is properly connected. Turn on the TV.
Then turn on the disk drives and the computer.

Starting OS-9 With Version 1.0

1. Insert the disk labeled OS-9 BOOT into Drive 0.
2. At the OK prompt, type:
RUN "*" (ENTER

This starts the OS-9 Utility program.

3. The following appears:

B BOOT 089
t TEST DISK DRIVE

Press (B) to boot OS-9.
4. The boot utility prompts:

INSERT 0689 DISKETTE
INTO DRIVE @ AND PRESS A KEY

Remove the OS-9 BOOT disk and place the OS-9 SYSTEM

MASTER disk in Drive 0. Press any key except break and
OS-9 starts.

Starting Up with Version 1.1 or Later

1. Insert the disk labeled OS-9 SYSTEM MASTER into
Drive 0.

2. At the OK prompt, type:
DOS (ENTER
This starts OS-9. If the DOS command returns a syntax error
(?SN ERROR), be sure you entered the command correctly.

If DOS still returns the error, then you probably have version
1.0; use the previous procedure.

Entering the Date

After OS-9 displays its startup message, the time prompts
displays:

YY/MM/DD HH:MM:SS
TIME 7

Enter the date and time in the form shown. For example:
86/03/18 13:22 (ENTER

sets the date as March 19, 1986 and the time as 1:22 pm. Enter
the time in 24-hour notation; the seconds (:SS) are optional.

When you enter the date, the OS-9 prompt appears:
089:
0S-9 is now in control and ready to accept a command.

Note: You should always keep the OS-9 System Disk in
Drive 0 while running OS-9.

Turning Off the System

Before turning off your disk system, remove all disks from the
drives. Turn off the printer (if connected), the disks, the com-
puter and then the TV.

4/ FORMATTING DISKS AND
MAKING BACKUPS

As you know from using the Color Disk BASIC, you need to
“format’" disks into a **file cabinet™ orgainzation before using
them. In the same manner, you must format disks before using
them with OS-9.

0S8-9’s disk format, however, is slightly different from that of
the Color Disk BASIC. Because of this, neither can read the
other’s disk.

This chapter shows how to format disks so that you can usc

them with OS-9. It also shows you how to make backup copies
of them.

The OS-9 Boot disk uses Color Disk BASIC’s format. To make
a backup of it, usc the DSK INI command to format a blank

disk and the BACKUP command to make a copy of the Boot
disk. Always store your original disks in a safe place.

Single-Drive Users

1. Be sure your computer and all peripherals (TV., disk drive,
printer) are turned on. Start OS-9 as described earlicr in the
previous chapter.

2. Get a blank disk. Be sure the write-protect notch is not
covered by a foil tab.

3. At the OS9: prompt, type:

format /D@ (ENTER

11

12

Format displays the message:

CoLOR COMPUTER DISK FORMATTER 1.2
FORMATTING DRIVE /DD

Y (YES) OR N (NO)

READY?

Remove your OS-9 SYSTEM MASTER disk and place the
blank disk in Drive 0. Type Y.

. After formatting the disk, Format prompts for a disk name.

The name is not important at this point, so enter any letter.
For example:

S (ENTER

0OS-9 begins verifying the disk. The screen shows the track
number in hexadecimal notation as it is verified.

- When the formatting is complete, the OS9: prompt appears.

Note: You cannot make a backup on a disk with errors. If
any errors occurred during the formatting, try again.
Remove the blank disk from Drive 0 and replace the
OS-9 SYSTEM MASTER disk. Repeat steps 2-5. If OS-9
still reports errors on the disk, use another disk.

. Remove the formatted disk from Drive 0 and replace the

0S-9 SYSTEM MASTER disk. Type:
BACKUP /D@ #4@K (ENTER
Backup prompts:

READY TO BACKUP FROM /DB TO /D@

T

Press (Y) to begin the backup.

. The following prompt appears:
READY DESTINATION, HIT A KEY

Remove the OS-9 SYSTEM MASTER disk and place the
formatted disk (destination disk) in Drive 0. Press any key.
0S-9 displays the message:

S <----(disk name)
1S BEING SCRATCHED
OK 71

Press (Y) and the backup begins.
. Backup alternately prompts you to:

READY SOURCEs HIT A KEY
Place the OS-9 SYSTEM MASTER disk in Drive 0
and press any key.
(source = master disk)

or

READY DESTINATION:s HIT A KEY
Place the formatted disk in Drive 0 and press any key.
(destination = formatted disk)

. When the backup is complete, the screen displays the num-
ber of sectors copied and and the number of sectors verified.
These numbers should match.

Keep your OS-9 System backup disk in Drive 0. Store the orig-
inal disk in a safe place. Use it only to make backups.

13

Two-Drive Users

14

1. Be sure your computer and all peripherals are turned on.
Start OS-9 as described earlier in the previous chapter.

2. Get a blank disk. Be sure the write-protect notch is not
covered by a foil tab. Insert the disk into Drive 1.

3. At the OS9: prompt, type:
format /D1 (ENTER

Format displays the message:

COLOR COMPUTER DISK FORMATTER 1.2
FORMATTING DRIVE /D1

Y O(YES) OR N (NO)

READY?

Press (Y). After formatting the disk, Format prompts you for
a disk name. The name is not important at this point, so enter
any letter. For example:

5 (ENTER

0OS-9 begins verifying the disk. The screen shows the track
number in hexadecimal notation as it is verified.

4. When the formatting is complete, the OS9: prompt appears.

Note: You cannot make a backup on a disk with errors. If
any errors occurred during the formatting, try again.
Remove the blank disk from Drive 0 and replace the
0OS-9 SYSTEM MASTER disk. Repeat steps 2-5. If OS-9
still reports errors on the disk, use another disk.

5. Type:

BACKUP (ENTER

Backup prompts:

READY TO BACKUP FROM /D@ TO /D1

-
[

Press (V). OS-9 displays the message:

g (disk name)
IS5 BEING SCRATCHED
OK 7:

Press (Y) and the backup begins.

6. When the backup is complete, the screen shows the number
of sectors copied and the number of sectors verified. These
numbers should match.

Remove your OS-9 SYSTEM MASTER disk from Drive 0 and
move the OS-9 System backup disk from Drive 1 to Drive 0.
Store the original disk in a safe place. Use it only to make
backups.

Note to Two-Drive Customers: You can format disks to
use in your second drive (data disks) by following steps
1-3. You can store information on the data disk instead of
your OS-9 System Disk.

15

5/EXPLORING THE OS-9 FILE
SYSTEM

0S-9 stores information in disk ‘“‘files,” much as you might
store a memo or other information in a file folder. The disk files,
however, in addition to containing ordinary information such as
memos, lists, lines of data, and the texts of documents, can also
contain complete programs.

As an aid to organization, OS-9 also gives you the option of
collecting groups of files in “‘directories,” just as in an office
you might organize files into categories and group them
together in labeled file cabinet drawers. A directory might look
like this:

directory

‘ file1 ’ ‘ file 2 , ‘ file3 ’

These directories are organized ‘‘hierarchically;,” similar to a
tree or pyramid. This means that each OS-9 directory can con-
tain another directory.

17

The OS-9 system starts at the “‘system device directory.” This
directory contains a directory entry for each device, such as the
keyboard/display, disk drives, printer, and optional terminal.
The system device directory looks like this:

System
Device

Directory

The P is the printer, DO is the first disk drive, TERM is the
keyboard/display, DI is the second drive, and T1 is a terminal
connected to the RS-232C serial port. (Even if you don’t have
the actual device, your directory still has the entry.)

18

The disk drives, (/DO and /D1), are the only devices that can
form their own “*tree’ by storing other directories and files.
Each drive has a “‘root” directory which is the beginning of

its tree.

The following illustration shows a typical OS-9 System with a

disk in both drives:

System
Device
Directory

o @

(TERM >

D1
ROOT
DIRECTORY,

‘

{ svs) DEFS (startup) <CMDS> {08 9Boot) {PAYROLL) <MEMOS>

OSQDefs

H

—

éALAR@ (saes) (acor)

LA Ll @

The disk in Drive 0 is the OS-9 System disk. Its root directory

contains two files (startup and

0S-9Boot) and three sub-

directories (SYS, DEFS and CMDS). The sub-directories con-
tain another level of files. All of these files are necessary to

run OS-9.

The disk in Drive | is an imaginary data disk containing three
levels of directories. OS-9 lets you organize your files with as
many Jevels of directories as you need and have room for.

Notice that all device and directory names are capitalized and
filenames are lower-case. This is a customary practice that lets

you easily recognize directory
mandatory.

names; however, it is not

19

20

Before looking at the OS-9 directory; we suggest you type the
following command to get into the upper/lower case mode.
(0S-9 normally displays upper-case letters only.) At the OS-9
prompt:

tmode -upc

0S-9 now displays lower-case characters. The Color Computer
displays upper-case characters as dark letters on a light back-
ground. Lower-case letters display in reverse mode, that is,
light letters on a dark background.

This manual shows all commands and file names in lower-case
and directory names in upper-case.

Note to Two-Drive Customers: The examples in this

chapter specify Drive 0. You can use Drivel by specify-
ing /D1 instead of /DO as shown.

To see the contents of the OS-9 System disk’s root directory,
type the following at the OS-9 prompt:

dir /DO (ENTER
0S-9 displays:
DIRECTORY OF ., @0:27:37
0S8Boot CMDS 5YS
DEFS startup
This shows the first level directory on the OS-9 System disk. To

see an example of a second level directory, look at the CMDS
directory. Type:

dir /D@/CMDS (ENTER

0S-9 lists the contents of the CMDS directory. The CMDS
directory contains all the commands for OS-9.

0S-9 uses “‘pathnames” to locate files and directories. Path-
names describe the path to be taken. For example:

/D@B/CMDS

tells OS-9 that ““CMDS”’ is located in the DO device directory.
Look at this pathname:

/DI/MYFILES/testrProyg
0S-9 looks for the file ““‘testprog’ in the directory MYFILES
which is a subdirectory of device /D1. We know that *‘testprog”

is a file because it is shown in lower-case letters.

You can position yourself in another directory by using the Chd
command. For example, to move to the DEFS directory, type:

chd /DB/DEFS
Now display the directory, using the Dir command:

dir (ENTER
The Dir command always lists the contents of the current direc-
tory if another is not specified (for example dir /DO/CMDS).
Therefore, OS-9 displays the contents of the DEFS directory.

If you can’t remember which directory you are in, you can find
out with the Pwd command (print working directory). Type:

Pwid (ENTER

0OS-9 tells you that you are in the /DO/DEFS directory. Move
back to the /DO root directory by typing:

chd /D@ (ENTER

Creating and Deleting Your Own Directories

Now that you’ve seen some OS-9 files and directories, you
probably want to know how to create —and delete — your own.

21

Creating Directories

You use the Makdir command (make directory) to create direc-
tories. For example:

makdir BUSINESS (ENTER

creates a directory in the current directory (/DO) called BUSI-
NESS. You can use the Dir command and see that BUSINESS
has been created. (Remember, we recommend using all upper-
case letters for directory names.)

You can create directories to organize your files by projects,
applications, users, and so on. Here are some sample directory

names:
DEE PAYROLL GROSS.SALESTEXAS
X10.PROJECT TESTFILES JIMS.FILES

You can also create subdirectories (directories that reside in
another directory). For example:

makdir /D@/BUSINESS/PAYROLL (ENTER

creates a directory called PAYROLL in the BUSINESS
directory.

Deleting Directories

To delete a directory, use the Deldir command (delete direc-
tory). If you want to delete the PAYROLL directory, type this
command:

deldir /D@/BUSINESS/PAYROLL (ENTER
0S-9 asks:

LIST DIRECTORY s DELETE DIRECTORY s
Ok QUIT 7
(L/D/Q)

Type @ to delete the directory. OS-9 deletes all files in
the PAYROLL directory and then deletes the PAYROLL
directory.

22

Important Notes about Deleting Directories

Keep these points in mind when deleting directories:

» Before you delete a directory, be sure to move all impor-
tant files to another directory or you will lose them. The
Deldir command removes all files in the directory
being deleted.

* All sub-directories of the directory being deleted will be
lost.

* You cannot position yourself in a directory that is being
deleted. This includes subdirectories of that directory.
Position yourself in a directory higher in the hierarchal
tree (use the Chd command to reposition).

23

Creating and Manipulating Files

24

Although you will normally create files with application pro-
grams, you can use the Build command to create simple files.
To start the file, type:

build /DO/BUSINESS/filel (ENTER

This creates a file called “filel”” in the BUSINESS directory.
The screen shows a question mark (?) indicating that OS-9 is
waiting for you to insert information into the file. Type the
following:

? This is the first file that
? we created,
7 (ENTER

The (ENTER) on the last line tells OS-9 to end the file and return
the OS-9 prompt. The Dir command shows the new file:

dir /DO/BUSINESS (ENTER

Use the List command to display the contents of the file. For
example:

list /D@/BUSINESS/filel (ENTER

displays the following:

This is the first file that
we created.,

The Copy command lets you duplicate a file. To duplicate /D0/
BUSINESS/filel to the file /DO/BUSINESS/file2, type:

copy /D@/BUSINESS/filel /DB/BUSINESS/
fileZ (ENTER

This tells OS-9 to create a file called ““file2”” and copy the con-
tents from ‘‘filel” to *‘file2.)” The first file (filel) is left
untouched. To see exactly what the Copy command accom-
plished, list the contents of “‘file2”’ Type:

list /DB/BUSINESS/file2 (ENTER

0OS-9 displays:

This is the first file that
we created,

Notice that ““file2” is indeed a copy of *“filel” You can also
copy a file to another directory. For example:

copy /DO/BUSINESS/filel /DO/filel (ENTER

copies the file /DO/BUSINESS/filel to file /DO/filel. Even
though the filenames are the same, the files are unique because
their pathnames are different. Use the Dir command to see that
“filel” exists in both directories.

0S-9 also lets you rename files:

reviame /DB/filel samplefile (ENTER

This command changes the filename /DO0/filel to “*samplefile”
It is important to note that this does not duplicate the file, it sim-
ply changes the name. Therefore the file /DO/filel does not
cxist after the above command is exccuted. Try listing /DUO/
filel:

list /DB/filel (ENTER

0S-9 returns an Error #216, which means that OS-9 could not
find the file. Now list /DO/samplefile:

list /DB/samplefile (ENTER

and OS-9 shows you its contents:

This is the first file that
we created,

Remember, if you want to duplicate a file, use the Copy
command.

You can also delete files by using the Del command. To delete
the file /DO/samplefile, type:

del /D@/samplefile (ENTER

and OS-9 deletes *‘samplefile” from the /DO directory.
25

6/In Case Of Trouble. ..

0OS-9 tells you if an error has occurred. Most errors are the
result of making a mistake while entering the command, such
as misspelling a command or omitting a parameter.

When an error occurs, OS-9 displays error messages similar to
this:

ERROR #2186
The number represents a specific type of error. This type of
message, however, does not explain the problem. To print a
descriptive message when an error occurs you can use the OS-
9 Printerr command. To activate this command, type:
printerr (ENTER
Now OS-9 displays errors like this:

ERROR #2186
- PATHNAME NOT FOUND

The OS-9 error messages fall into three catagories: operator,
hardware or software.

An operator error tells you that you are asking the computer to
do something it can’t do.

Perhaps the most common error is typing a command incor-
rectly. For example, suppose you type this Dir command:

dirr (ENTER
0OS-9 gives you this error message:

ERROR #2186
- PATHNAME NOT FOUND

27

28

You simply need to type the command again, spelling it
correctly:

dir (ENTER

Another common operator error is trying to store too much
information on a disk. For example, if you are in the middle of
storing information and run out of disk space, OS-9 warns:

ERROR #248
- MEDIA FULL

Either use another disk or delete some files and/or directories,
thereby, freeing disk space.

A hardware error warns you of a hardware problem, usually a
flawed disk or a faulty disk drive. For example, if you tell OS-9
to display the directory (Dir command), and the disk was for-
matted with TRSDOS, the Color Computer Disk System’s
Operating System, OS-9 displays the message:

ERROR #241
- BECTOR ERROR

Repeat the command, using an OS-9 formatted disk. Remem-
ber. 0OS-9 can’t read Color Computer Disk System’s disks.
0S-9 can read only those disks formatted by OS-9.

Other hardware errors may occur such as write or read errors.
Always try another diskette first. If the problems continue, con-
tact your Radio Shack Service Center.

A software error warmns you of a problem in your application
program. For example, suppose your application program tries
to open a file in a directory where a file by that name already
exists. OS-9 displays the message:

ERROR #218
- FILES ALREADY EXISTS

Automatic Printerr Routine

You will probably find it more helpful to have OS-9 print a
descriptive error message by using the Printerr command. Nor-
mally the Printerr command is only active until you reset/reboot
the system.

To make it automatic on your OS-9 system, you can add the
Printerr command to the “*startup’ file. Follow these steps:

1. Display the “‘startup’ file, by typing:
list /DB/startur (ENTER

Write down the contents. If you have a printer, you can
redirect the listing to it by typing:

list /DB/startup >/P (ENTER

2.Rename “‘startup” to a temporary file:

rename /DB/startup startur,tempr (ENTER

3. Create a new startup file:

build startur (ENTER

7

0S-9 is now ready to build a new *‘startup”” file. First,
enter the lines that you copied from the original file.
Then add these lines:

echo (ENTER
printerr (ENTER

echa Print Error Routine Now Active
ENTER
ENTER

These lines activate the Printerr routine and print a
message that the Print Error Routine is now active.
The (ENTER) on the line by itself tells OS-9 to end the
file.

4. Press the reset button to load the new “‘startup’ file.

Now, Printerr is a permanent part of your startup file.
29

7/ AND THERE’S MORE.. ..

You've just begun to scratch the surface of OS-9. This chapter
discusses some of the other ways you can use OS-9, through
more commands, concepts, and programs that are becoming
available.

More Commands
The following summarizes some useful OS-9 commands:
copy — single drive (-s option)

Copies a file from one disk to another using only one drive. For
example:

copy /DB/BUSINESS/filel /D@/newfile -5
ENTER

Copy alternately prompts you to ready the destination or source
disk and press (© to continue.

date

Displays the current system date. If you specify the t option, the
0S-9 also displays the time. For example:

date (ENTER
displays the current system date,
date t (ENTER

displays the current system date and time.

31

32

free

Tells you the amount of free space remaining on a disk. OS-9
displays the name of the disk and the date it was created. Next,
it displays the total capacity of the disk (in sectors —a sector is
equal to 256 bytes or characters), the number of unused sectors,
and the largest block available. (A block is an area of contig-
uous scctors.) Type:

free (ENTER
and OS-9 displays the amount of free space on the disk in Drive
0 by default. To sec how much memory is free on the disk in
Drive 1, type:

free /D1 (ENTER

mfree
Displays the amount of available memory in your OS-9 system.
The screen displays the amount as “‘pages’” of memory. A page
is equal to 256 bytes. The address is shown for each contiguous
set of pages as well as a total for the pages available. To see how
much memory is available in your system, type:

mfree (ENTER
setime
Lets you set the system time and date. Type:

setime
and OS-9 prompts:

YY/MM/DD HH:iMM:E5
TIME 7

To set the date as March 19, 1983, at 4:15 PM, enter:

83/@3/19 16:15 (ENTER
The seconds are optional.

For more information on OS-9 commands, see 0OS-9
Commands.

Command Modifiers

0S-9 offers a way for you to customize commands for your
needs. You can add modifiers to almost any command line. The
following briefly explains these modifiers.

Alternate Memory Size. You can specify the amount of mem-
ory to be set aside for the command by using the number sign
symbol (#). Very often this speeds up execution of a program.

1/0 Redirection. These modifiers let you reroute a program’s
standard 1/0O paths to alternate files or devices. For example, a
program that normally displays to the screen can easily output
to the printer instead without changing the program and vice
versa. The 1/O redirection modifier symbols are <, >, and
>>.

Concurrent Execution. You can run two or more programs at
the same time. The ampersand (&) tells OS-9 to start running
that program and display another prompt. At that time you can
start another program to run at the same time as the first.

Pipes. Pipes transfer data between programs. The output of
program| becomes the input for program2. The exclamation
point (!) symbolizes a pipe.

For more information on OS-9 assembly language and system
calls see the manual, OS-9 Technical Information. For infor-
mation on OS-9 high-level languages. check with your Radio
Shack dealer.

33

0S-9 Languages

34

0OS-9 lets you use a number of different languages that were
previously not available for the Color Computer.

The OS-9 Assembler comes with your OS-9 system. It lets you
write assembly language programs in 6809 code for your OS-9
system.

High Level Languages can also be used with OS-9. New lan-
guages are constantly being developed, such as BASIC and
Pascal.

0S-9 System Calls can be used for easy communication
between your assembly language program and OS-9.

For more information on OS-9 assembly language and system
calls see the manual, OS-9 Technical Information. For infor-
mation on OS-9 high-level languages, check with your Radio
Shack dealer.

TRS-80°

Addendum to "Getting Started with 0S-9" Manual
Catalog No. 26-3030

Please note the following change in the manual:

Page 6, step 6 -- The acceptable test speeds for the disk drive
test should be from 295.5 to 304.5 rpm.

875-9396

Radio fhaek

i

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK
COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROM A
RADID SHATK COMPANY-DWNED COMPUTER CENTER, RETAIL

STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS

AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER DBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the
“Equipment'*), and any copies of Radio Shack software included with the Equipment or licensed
separately (the 'Software') meets the specifications, capacity, capabilities, versatility, and other
requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating
environment in which the Equipment and Software are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document
received upon purchase of the Equipment, RADIO SHACK warrants to the original CUSTOMER that
the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY 1S ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT
BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS,
RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the
Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect
is discovered during the stated warranty period, the defective Equipment must be returned to a
Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or
Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The
original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the
correction of the defect by repair, replacement, or refund of the purchase price, at RADIO
SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair
expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of
the Software, except as provided in this paragraph. Software is licensed on an “AS IS™ basis,
without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software
manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the
Radio Shack sales document received upon license of the Software. The defective Software shall
be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio
Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to
give any warranties of any nature on behalf of RADIO SHACK.

Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above
limitation(s) may not apply to CUSTOMER.

‘ Il. LIMITATION OF LIABILITY

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY
TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS
OR DAMAGE CAUSED DR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT"" OR “'SOFTWARE"' SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK,
INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR
ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE "EQUIPMENT" OR ""SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, DR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR
CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT"

OR "SOFTWARE".]
continued

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY
HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE
AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR “‘EQUIPMENT'" OR ‘‘SOFTWARE"
INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing
Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty
may be brought more than two (2) years after the cause of action has accrued or more than four
(4) years after the date of the Radio Shack sales document for the Equipment or Software,
whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the
above limitation(s) or exclusion(s) may not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software
on one computer, subject to the following provisions:

G.

Except as otherwise provided in this Software License, applicable copyright laws shall apply ta the
Softwars. y

Title to the medium on which the Software Is recorded (cassette and/or diskette) or stored (ROM)
is transferred to CUSTOMER, but not title to the Software.

CUSTOMER may use Software on one host computer and access that Software through one or
more terminals if the Software permits this function,

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on
one computer and as is specifically provided in this Software License. Customer Is expressly
prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival
purposes or if additional copies are required in the operation of one computer with the Software,
but only to the extent the Software affows a backup copy lo be made. However, for TRSDOS
Software, CUSTOMER is permitted to make a limited number of additional copies for
CUSTOMER'S own use.

CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has
purchased one copy of the Software for each one sold or distributed. The provisions of this
Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

Alt copyright notices shall be retained on ali copies of the Software.

APPLICABILITY OF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and
CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a
transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO
SHACK, the author, owner nd/or licensor of the Software and any manufacturer of the Equipment
sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original
CUSTOMER may have ather rights which vary from state to state.

0S-9 Commands

0S-9 Operating System: 1983 Micrownare Systems
Corporation and Motorola Incorporated.
All Rights Reserved.
Licensed to Tandy Corporation.

0OS-9 Commands:
1983 Tandy Corporation
and Microware Systems Corporation.
All Rights Reserved.

UNIX is a trademark of Bell Laboratories.
TRS-80 is a registered trademark of Tandy Corporation.

Reproduction or use. without express written permission from
Tandy Corporation or Microware Systems Corporation of any
portion of this manual is prohibited. While reasonable cfforts have
been taken in the preparation ot this manual to assure its accuracy,
Tandy Corporation and Microware Systems Corporation assumes no
liability resulting from any errors or omissions in this manual, or
from the use of the information contained herein.

10987654321

Introduction

This Manual is designed to acquaint you, with your OS-9
Operating System. OS-9 greatly expands the capabilities of
your TRS-80 Color Computer,

0S-9 is based on the UNIX operating system. often
acclaimed as the operating system of the future because of its
versatility, unique structure. usefulness, and user-friendli-
ness. UNIX is widely used on large computers, and now sys-
tems like OS-9 bring UNIX's clear advantages to owners of
smaller computers.

0S-9 was developed by the same people who designed the
6809 microprocessor chip, the ““heart™ of the TRS-80 Color
Computer. Unlike many other microprocessors. the 6809 is
fully capable of running state-of-the-art software like OS-9.
That kind of close compatibility is a rcal plus for the user.

The OS-9 Operating System has many advanced features,
which you'll learn about in this manual. By the time you've
finished reading and experimenting on your computer, you'll
be familiar with. and ready to take advantage of OS-9 fea-
tures like:

® Friendly user interface and environment

® Multi-user/multi-tasking realtime operating
capabilities

@ Extensive support for structural, modular
programming

® Decvice-independent interrupt-driven input/output
system

® Multi-level, fast random-access directory and
file system

® Rcadily expandable and adaptable design

We suggest that you read the manual chapter by chapter, ex-
perimenting with OS-9°s features and commands as you go.
But if you're a computer veteran. and you feel you're ready
to begin using O8-9 without any further information about it,
you can jump ahead to Chapter 6. *OS-9 COMMANDS™".

iii

Whether you're a novice or a veteran you've made a wise
choice with OS-9, and it won’t be long before you discover
for yourself its many advantages.

Contents

Chapter 1: Introduction to the Shell i

1.1 Command Structure !
1.2 Common Command Formats. 3
1.3 Using the Video Display and Keyboard 5
1.4 Sending Output to the Printer 8
Chapter 2: The OS-9 File System .. I
2.1 The Unified /O System. oo .. 11
2.2 Organization of the File System 12
2.3 DIreCtorics ..o 16
2.4 The File Security System. 22
2.5 Reading and Wlmng, fromFiles 24

Chapter 3: Advanced Features of the Shell = s

3.1 More About Command Line Processing. 31
3.2 Execution Modifiers.o oo o oo 32
3.3 Command Separators Lo oL 35
3.4 Command Grouping. 38
3.5 Built-in Shell Commands and Option: 39
3.6 Shell Procedure Fileso oo oo 41
3.7 Error Reporting o 42
3.8 Running Compiled Intermediate Code Programs ... 43
3.9 Editing startup for Timesharing Systems 44

Chapter 4: Multiprogramming and

Memory Management 15
4.1 Processor Time Allocation and Timeslicing 45
4.2 Process States. ..o 47
4.3 Creation of New Processes ..o o oo ... 48
4.4 Basic Memory Management Functions. 50

Chapter 5: Use of the System Disk............ 55

5.1 The OS-9 Boot Fileo 55
5.2 The SYS Dircctory. 56
5.3 The startup File ..o oo 56
5.4 The CMDS Directory. oot 57
5.5 The DEFS Dircctory ... oo 57
5.6 Changing System Disks oo 57
5.7 Making New System Disks 58

Chapter 6: System Command Descriptions .. s

Appendix A:
Appendix B:
Appendix C:
Appendix D:

vi

6.1 Organization of Entries 59
6.2 Command Syntax Notations 59
6.3 Command Summary., 60
6.4 Command Descriptions 60
Error Codes 121
Display System Functions 125
Keyboard Codes 133

Keyboard Control Functions ... i3

1/Introduction to the Shell

The “*shell’” is the part of OS-9 that accepts commands from
the keyboard. It's designed to provide a convenient, flexible,
and easy-to-use interface between you and the powerful func-
tions of the system.

You automatically enter the shell each time you start up
0S-9. When you see the “*OS-9:°" prompt, that means the
shell is active and waiting for input — for your commands
through the keyboard.

Note: It doesn’t matter whether you use upper-case or
lower-case letters — or a combination of both — in
your commands; OS-9 recognizes and handles both.

1.1 Command Structure

Commands — which are really programs for the computer to
run — can include one or more words, but thcy always begin
with the name of a program. The program can be one of a
number of things, for instance:

® The name of a machine language program on disk.
(Applics to cxpericnced users, too, you'll almost al-
ways usec commands from the OS-9 disk. OS-9’s
commands are listed and explained in Chapter 6.)

® The name of a machine language program already in
memory.

® The name of an cxecutable program compiled by a
high-level language like BASIC09, Pascal, or C (See
Section 3.8.)

® The name of a procedure file. (See Section 3.6.)

When OS-9 reccives a command, the shell searches for the
appropriate program in this sequence:

I. Memory.

[N

. The *‘execution directory’, which contains OS-9’s

command programs. (0S-9's execution directory is
usually CMDS.)

3. The user’s “data directory’”, in which the user can
store program files as well as text files. When OS-9
processes a file from the data directory. it runs it as
a procedure file, assuming that the file contains
several commands, or procedures. OS-9 will run
them sequentially, just as if the commands had been
manually typed in one by one.

As soon as 0S-9 locates the program, it runs it.

Command Parameters

The program specified in the command can be followed by
onc or more “parameters’’, variables which give the compu-
ter more specific instructions to follow. OS-9 automatically
passes the parameters to the program called up by the shell
when you enter your tull command line. For example, in the
command line:

list filel (ENTER

List s the name of a program that displays the contents of a
text file, and filcl — the specified parameter — is the name
of the file whose contents are to be displayed.

Note: Parameters are always separated from the com-
mand line. and from cach other, by spaces; therefore
parameter names themselves cannot contain spaces.
Chapter 6 discusses parameters for each of OS-9’s
commands.

Some commands have more than one parameter. For in-
stance, the Copy command makes an exact copy of a file. It
requires two parameters: the name of the file to be copied,
and the name of the file that will be the copy. So if you want
to copy a file called startup, and call the copy newstartup,
your command line reads:

copy startup newstartur (ENTER

Other parameters let you select built-in command options.
For instance, the Dir command by itself simply shows the

name of all files in the user’s current data directory — the
directory in which the user is positioned when giving the
command.

But if you add the ¢ (for “‘entire”’) option as a parameter, like
this:

dir e (ENTER

then the output includes not only the names of the files, but
also complete statistics about each file the date and time

created, size, security codes. and so forth.

The Dir command can also accept as a parameter the name of
a particular dircctory on the system. For example, the com-
mand line:

dir SY5 (ENTER

produces a list of all files in the SYS directory. And the com-
mand line:

dir 85YS e (ENTER
gives complete information about cach file in SYS.
dir 8Y8 e >/P (ENTER

gives complete information about cach file in SYS and rc-
directs it to the printer.

Note: A command line can also include one or more
“modificrs™ — specifications used by the shell to alter
the program’s standard input/output files or memory
assignments. (Sce Chapter 3.)

1.2 Common Command Formats

This section includes examples of command formats most
commonly used with OS-9, and examples of how each com-
mand might look as it's entered into the computer. Para-
meters in brackets are optional: others are necessary parts of
the command.

FORMAT: c¢hd DIRECTORY NAME
EXAMPLE: chd /D@/5YS (ENTER

Moves the user from the current working directory into the
directory specified as a parameter. in this case /DO/SYS.

FORMAT: makdir DIRECTORY NAME
EXAMPLE: makedir /D@/EMPLOYEES (ENTER

Creates a new directory, in this case called /DO/EM-
PLLOYEES. You'll often want to follow this command with a
Chd command to make the new directory your current work-
ing dircctory.

FORMAT: pwd (ENTER)
EXAMPLE: /D@/BUSINESS/PAYROLL

Shows the full path from the directory PAYROLL. to the
current working directory.

FORMAT: dir /DO/[filename] [e] [x]
EXAMPLE: dir PAYROLL e (ENTER

Lists the names of all files contained in the current working
directory if you don’t specify another. In this case. the
PAYROLL directory is specified. The e option gives com-
plete statistics about each file in the dircctory. The x option
lists files in an exccution directory rather than a data
directory.

Note: When you're using a command that affects direc-
torics — and Chd. Makdir and Dir arc good examples
—— make sure you specify the name of a directory and
not a single file; otherwise, the command won’t work.
Remember: a file contains lines of text or a singie pro-
gram. and a directory is a collection of files and sub-
ordinate directories.

FORMAT: copy filecnamel filename 2

EXAMPILE: cory memos newmemos (ENTER

Creates a new file — in this case newmemos — and then
copies all data from memos. into it. The original file isn't
affected.

FORMAT: dcl filename

EXAMPLE: del letters (ENTER

Deletes — destroys — the specified file.

FORMAT: frecc DEVICENAME

EXAMPLE: free /D1 (ENTER

Shows how much free space remains on the specitied device,
in this case the disk on drive 1.

FORMAT: list filename
EXAMPLE: list .Junk (ENTER

Displays on the terminal the contents — the text — of the
specitied file.

FORMAT: rename filenamel filename2
EXAMPLE: revame stuff miscellanyv (ENTER

Changes the name of a file. In this case. the file formerly
called stuff is now named miscellany.

1.3 Using the Video Display and Keyboard

0S-9 has many features which expand the capability of the
Color computer’s video display and keyboard. With OS-9,
for instance:

® The video display has upper/lower case, screen

pause. and graphics functions.

® The keyboard can generate all ASCII characters.
(Appendix C lists all characters and codes you can
gencerate from the keyboard.)

® The keyboard has a type-ahead feature that lets you
enter data before it's requested by a program. But,
only if" the disk drives are not being accessed by a
program.

® The video display and keyboard together can be dealt
with as a file. OS-9 refers to them as a file called
/term.

Video Display Functions

The Color Computer normally uses only upper-case letters. If
you want lower-case letters (for instance, if you'd like to be
able to send them to the printer). you can turn off the upper-
case function with a command called tmode -upc. You then
see lower-case letters represented on the screen in reverse
video (try Dir as an example) — green letters on a black
background instead of the usual black letters on a green back-
ground. To return to all upper-case letters, use the command
tmode upce.

Note: Sce the Keyboard Shift and Control Functions
section for important information about shift lock
behavior.

The display’s screen pause feature stops programs after they
display 16 lines. Press any key to continue program output.
You can turn screen pause off and on by using. respectively.,
the tmode -pause and tmode pause commands.

The display system also has a complete set of commands to
emulate commercial data terminals, plus a complete set of
graphics commands. (They re described in detail in Appendix
B.)

Keyboard Shift and Control Functions

With 0S-9, several Color Computer keys have new and use-
ful functions.

The (SHIFD) key works something like its counterpart on a
typewriter., letting you select upper-case or lower-case charac-
ters. The shift lock function, which affects only letter charac-
ters. is normally on. producing upper-case letters. To obtain a

lower-case letter when the shift lock is on. use the (SHIFT
key.

To turn off the shift lock function. press and (0)
simultancously. Then your keyboard generates lower-case
characters, and. if you want upper-case, you use the
key. Again pressing (CLEAR) and (0) simultaneously turns the
shift lock back on.

Note: The tmode upe function affects shift lock be-
havior. When you're in the upe mode, upc overrides
both the (SHIFD key and the shift lock function, and
you get only upper-case characters. In order for the
key and lock function to work, you should be
in -upc.

Several key combinations, when pressed simultaneously,
generate “‘control functions™ from the keyboard. The (CLEAR)
(0) combination, which reverses shift lock state, is a good
example. Other control functions. and the key combinations
that generate them. include:

(A) — Repeats previous input line. Displays,
but doesn’t process. the last line entered, and posi-
tions the cursor at the end of the line. Press (ENTER
to enter the line, or edit the line by backspacing. If
you edit, you can press (A) again to display
the cdited line.

CLEAR) (D) — Redisplays present input on the next

line.

CLEAR) (W) — Temporarily halts output to the display
so you can read the screen before the data scrolls
off. Press any single key to resume output.

CLEAR) (E) — Stops the current running program. (The
BREAK) key performs the same function.)

— Interrupts the video display of a run-
ning program. reactivating the shell while the pro-
gram runs as a background task. This function is
often referred to as CONTROL C.

— Sends an end-of-file message to
programs that read input from the terminal instead of
from a disk. Often referred to as the ESCAPE func-
tion, this key combination must be the first character
on a line in order to be recognized.

— Deletes the entire current line. This
function is often referred to as CONTROL X. The
alone, which backspaces and erases single char-
acters, is commonly known as CONTROL H.

NOTE: The (CLEAR) key is used as a control key by
0S-9. Thus, if you wanted to send a CONTROL Q
function, you would press (CLEAR) (@) simuitaneously.

1.4 Sending Output to the Printer

Most commands and programs normally send their output to
the Color Computer’s video display. But if you want output
to be printed. add this at the end of a command line:

/P

The =" character tells the shell to redirect output to the
printer through the Color Computer’s RS-232 serial 1/0 port,
which has the device name "*/P”.

If for example, you want the output from the Dir command to
£o to the printer, type:

dir /P (ENTER

Technical Information for the RS-232 Port

The RS-232 port can be operated at all standard baud rates,
from 110 baud to 2400 baud. (The default speed is 600
baud.) The character format used is 1 start bit, 8 data bits (no
parity). I stop bit.

You can use the Xmode command to set the port’s baud rate,
end-of-line delay, auto line feed, and so forth. To examine
the printer’s current settings, type:

xmode /P (ENTER

Then, if you want to make changes, use the Xmode command
and information from this chart:

Baud Rate Code
110 0
300 |
600 2
1200 3
2400 4

If you want, for instance, to sct the port to 1200 baud. and
the end-of-line delay (null count) to 4 character times, type:

xmode /P baud=3 null=4 (ENTER

2/The OS-9 File System

This chapter gives you information about some of the most
important clements of the OS-9 system. It acquaints you with
the ways in which OS-9 deals with input and output, and with
the structure and characteristics of the entire OS-9 file
system.

2.1 The Unified Input/Output System

0S-9 has a unified input/output system in which data trans-
fers to all VO devices are performed in almost exactly the
same way, regardless of the particular hardware devices
involved.

It might scem that the different operational characteristics of
the 1O devices would make this difficult: after all Jine print-
ers and disk drives behave very differently. However, OS-9
overcomes most of these differences by defining a sct of stan-
dardized logical functions for all devices and by making the
devices conform to these conventions, using software routines
to climinate hardware dependencies wherever possible. The
result: a much simpler and more versatile input/output
system.

0S5-9°s unified VO system is based on logical entities called
1/O paths™. Paths are, in cffect. “software channels™ that
can be routed from a program to a disk to any other /O
device. or even to another program.

Data transferred through paths is processed by OS-9 to con-
form to the hardware requirements of the specific I/O device
ivolved. Data transfers can be cither bidirectional (read/
write) or unidirectional (read only or write only). depending
on the device and/or how you establish the path.

Data transferred through a path is a stream of 8-bit binary
bytes that have no specific type or value: what the data
actually represents depends on how it’s used by cuach pro-
gram. This is important because it means that OS-9 doesn’t
require data to have any special format or meaning.

11

Some of the advantages of OS-9°s unified 1/0 system arc:

@ Programs will operate correctly regardless of the par-
ticular VO devices selected and used when the pro-
gram is actually executed.

® Programs arc highly portable from onc computer to
another, cven when the computers have different
kinds of /O devices.

® [/O can be redirected to alternate files or devices
when the program is run. without having to alter the
program.

® New or special device-driver routines can casily be
created and installed by the user.

2.2 Organization of the File System

12

Disks are multifile devices that store data — both text and
programs — in scparate logical entities called files. OS-9
handles files in a number of ways designed to help you orga-
nize information casily and well.

For instance. with OS-9. groups of files can be collected into
directories, much as in an office file folders pertaining to a
particular subject can be gathered into a file cabinet drawer.
Directories can in turn be collected into larger directories, just
as several file cabinet drawers are gathered into a single file
cabinet. and so forth. With OS-9, you can have a virtually
limitless number of directory levels. with cach directory con-
taining other directorics and/or files.

When you're working with OS8-9°s files and directorics —
both the ones that come built in to the system and the ones
you create — it’s important to remember this multi-level
“‘hierarchical’” organization.

In effect, it lets you build an upside-down tree. branching out
as you go down. That way, each user on your system can
privately organize material without affecting anyone elsc’s
material. You can organize your own matcrial in particularly

useful ways. And both the system itself and its users can
casily locate stored material.

An OS-9 System Disk contains names of. and linkages to. all
system /O entities in the hicrarchy. For example. a typical
System Disk. diagrammed partially and simply, might look
like this:

Svstem Deviee Directory

h
P

—

10 TERM DI Tl
DO Root Directory D1 Root Directory
. ! ' T -
Dll-,PS startup CMDS PAYROLL MEMOS
[1
0S-9Dets SALES ACCOUNTING
T e .
Copy list dir del chris

HOURLY SALARIED
1

1
I [[

do_mn /ol m n /

Note: It's customary to capitalize directory names and
to use lower-case for file names: that way. vou can tell
at a glance what's a directory and what's a file.

In the diagram. P is the printer: DO is the first disk drive;
TERM is the keyboard and video display: D1 is a second disk
drive: and T1 is the Color Computer’s RS-232 serial port.

The “root directory™ of DO — the “root”™ from which the
rest of the disk’™s file system “grows™ — contains a file
called startup and two other directories, DEFS and CMDS.

Those directories. in wurn. contain files — DEES contains a
file called OS-9Defs and CMDS contains four files: copy.
list, dir, and del. All these files and directories — and many
more — come built in to the OS-9 system.

The system diagrammed here also has a second disk. with its
own root directory. (Root directories are automatically cre-
ated when vou initialize a disk using the format command.)
Here the user has created directories called PAYROLL and
MEMOS. PAYROLL. in turn, contains two other directories.

13

Names

Pathlists

14

cach of which contain two files. The MEMOS directory con-
tains two dircctories. one of which contains a file.

Each file, directory, and physical I/O device on the system —
whether it’s built in or added by you — has its own name.
When you're doing the naming. there are scveral things to
keep in mind.

Names can include from | to 29 characters. all of which arc
used for matching. Each name must begin with an upper- or
lower-case letter, followed by any combination of the follow-
ing characters:

Upper-case letters (A-Z)
Lower-case letters (a-7)
Decimal digits (0-9)
Underscoring ()
Period (.)

Some legal names, therefore, are:

raw.data.2

REPORTS

X.x

project __ review.backup
RJJONES

M101968

File and dircctory names like the following ones are not legal:

I90CTOBER (because it doesn’t begin with a letter)

max:min (because = isn’t a legal character for
names)

.DATA (because it doesn’t begin with a letter)

open orders (because a name can’t contain a spacc)

When you want to access anything on the system — to open
a path — you have to give OS-9 a description of the routing
of the path. You provide the information in the form of a
“pathlist’’, a list of names from the root directory down to
the file you want to access.

Device Names

If, for instance — again using the diagram — you want to
access the chris file on the disk in Drive |, you construct a
pathlist by reading from the root directory to the file, listing
the ““stops along the way’", and separating them with slashes,
like this:

/DI/MEMOS/SALES/chris

0S8-9 uses the pathlist sequentially, from left to right, to de-
termine that the file you want is on Device DI, in the
MEMOS directory. in the SALES (subldirectory; and that its
name is chris.

0S-9's hierarchical organization and pathlist convention help
you access what you need quickly and efficiently — and also
mean that you can, if you want, have two files of the same
name. as long as they’re in separate directorics; that way, of
course. their pathlists are different.

Note: Under some circumstances, you can take a
“*shorteut™ to a file, directory, or device name. See
Working Directories in Scction 2.3.

Each physical /O device supported by the system has a
unique name, defined when the system is set up and un-
changeable while the system is running. Most of the device
names used for the Color Computer are on the diagram. But
in addition to P, DO, TERM. DI, and Tt, the Color Compu-
ter also uses PIPE.

Device names can be used only as the first part of a pathlist,
since they're at the root of the file system. In any pathlist,
always precede the name of a device with a slash.

When you're referring to a non-disk device — a terminal or

printer. for example — use only the device name: /P, for
instance, is the full allowable pathlist for a printer.

15

2.3 Directories

Using Directories

16

Note: IO device names are actually the names of the
device descriptor modutes OS-9 keeps in an internal
structure called the module durectory. (See the 0S8-9
Technical Information manual for more information.)
The module directory is automatically set up during the
0S-9 startup sequence, and is updated as modules are
added or deleted while the system is running.

On OS-9_ directories. which are collections of files. are in
reality themselves files -— “superfiles™, but still files and
are processed by the same IO functions used with regular

files.

To understand how directories work. assume that the disk in
drive one (7 DI77) is freshly formatted so that it has only a
root directory. You can use the Build command to create a
test file you call filel on /DI1. Build prints out =777 as a
prompt to indicate that it’s waiting for you to enter a text
linc. Tt places cach line into the text file until you enter an
cmpty line with only a carriage return. like this:

build /D1/filel (ENTER)

? This is the first file that (ENTER)
T we’‘re creating., (ENTER)

7 (ENTER)

If you use the Dir command. which lists the files i a diree-
tory. it now indicates the existence of the new file:

dir /D01 (ENTER)
Directory of /DI i3
filel

L
pac
o
)
jia}

You can use the list command to display the text stored in the
file:

list /D1/filel (ENTER)

This is the first file
that we ' 're creating.

Suppose you again use the build command to create two
more text files:

build /D1/file2 (ENTER

P This is the second file (ENTER
? that we’'re creating, (ENTER)
(ENTER)

3

build /D1/f1le3 (ENTER

? This is another file. ‘ENTER
7 (ENTER)

Now 1f vou use the Dir command: 1t shows
three file names:

dir /D1 (ENTER)
Directary of / DI 15:52:29
filel fileZ filed
Creating Directories

Fo create a directory on the system, use the Makdir com-
mand, With Makdir, vou can create a virtually unlimited
number of directories on a disk.

Suppose that for now you want to create in the /D1 root
directory a new directory called NEWDIR. You type:

makdir /D1/NEWDIR (ENTER)

and the new directory is antomatically part of the D1 root
directory. You can check it using Dir:

dir /D1 (ENTER

Directory of /D1 16:04:31
filel fileZ file3
NEWDIR
Now suppose vou wunt to create a new ftle - a copy of

filel. You want to call filel.copy. for instance — in the new
dircctory. Usc the Copy command. like this:

17

copy /D1/f1l1el/Di/NEWDIR/filel.
copry (ENTER)

Note. that the second pathlist now has three names: the name
of the root directory (D1, the name of the next lower direc-
tory 1n the hierarchy (NEWDIR}. and then the actual filename
(filel.copy). Here's what the structure looks like now:

D1 Root Directory

T T 1
NEWDIR filel file2 file3
filel.copy

You can use Dir command 10 see the name of the file in the
new directory:

dir /D1/NEWDIR (ENTER)

Directory of /DI/NEWDIR 15:29:29
filel.cor:

IUs pussible to use Makdir to create additional new dirce-
tories in NEWDIR, and so on. Your only limit is disk space
availability.

Note: A file and the directory it’s in must reside on the
same device. That is, all the elements in a single path-
list must be on the same disk.

Deleting Directories

18

To delete a directory, it's first necessary to remove all the
files it contains. If you délete a directory while it still con-
tains files. OS-9 has no way — no path to access thosc files,
or to return their storage to the storage pool.

Deleting a directory involves three steps:

1. Deleting all files in the directory with the del
command.

2. Using the Attr command to reverse the directory
attribute. turning the dircctory into a regular file.
(See Section 2.4, The File Security System.)

3. Deleting the former directory — now a regular file
— using the Del command.

It's not a difficult process, but there’s an easier way: use the
Deldir command to perform all three steps automatically.

Working Directories

When you're using OS-9. you'rc always associated with two
directories: a “*data directory’” and an *‘execution directory.”’
While you're using them, they're known as your *“working™’
or “current’” directorics. The double association allows pro-
gram files — executable files — to be organized scparately
from data files.

Immediately after startup, OS-9 sets the data directory to be
the root directory of the system disk drive (usually /D0O) and
the execution directory to be the built-in CMDS directory on
the same drive.

Note: On timesharing systems, the Login command
selects the user’s initial data and execution directories
according to specifications in the system password file.

While you're on the system. OS-9 automatically selects one
or the other of your two working directories. depending on
the usage of the pathlist:

® |t searches the execution directory when it attempts
to run or to load into memory files assumed to be
executable programs. (This means that programs to
be run as commands or loaded into memory must be
in the execution directory.)

® [t uses the data directory for all other references,
such as text files.

Using Working Directories. Knowing about working direc-
tories — current directories — can let you take *‘shortcuts™
as you write out pathlists, and lets OS-9 find what you want

more quickly:
® [f the command you'rc using rclates to a file or a
device not in your working directory. or in your

working directory but above you in the hierarchy,

19

20

it's necessary to use a complete pathlist, starting at
the root, for instance with /D0 or /DI.

® But if you're trying to access a file or device within
your working directory, below you on the hierarchy,
you can start your pathlist immediately below your
working dircctory: the rest of the pathlist is implied.

For example. if your current data directory begins with /DO,
and you want to reach a file called baseball in the directory
whose root is /D1, you usc its full pathlist, which might be:

/D1/PETE/GAMES/baseball
in your command line.

But if your current data directory is /DI/PETE/GAMES and
you want to access baseball. you simply include in your com-
mand the filename:

baseball

The full pathlist is implied. and processing begins with your
current data directory.

Pathlists using working directories can also specity additional

lower-level directories and files. For instance. if your current

directory is still /DI/PETE/GAMES, you can type:
ACTION/racind

in your command line, and this pathlist is implied:

/D1/PETE/GAMES/ACTION/racing

If your current execution directory is /DO/CMDS, and your
current data directory is /DO/JJONES. and you type

copy filel fileZ2 (ENTER

as your command line, in its search 0S-9 expands both im-
plied pathlists to their fullest. Written out completely, they
look like this:

/DO/CMDS/copy /DU/JONES/tilel /DO/JJONES/file2

Changing Working Directories. You c.an make any direc-
tory for which you have access permission your working
directory. The built-in shell commands Cidond Chx indepen-
dently change the current data directory we! the current exe-
cution directory, respectively.

Follow the Chd and Chx comeuands with - pathlist that de-
seribes the new directory to which you want to go. It vour
pathlist begins with a device name. OS 9wl begin its scarch
at the device directory level - up at the oo Otherwise. s
search will start at the current director

For instance, suppose vour current data directory is DO!
JOHN and vou want to make DI'MY DATAFILES your
current data directory. Type:

chd /7DL/MY . DATAF TLES (ENTER!

But if you're already in /DI MY .DATAHILLES, and you want
to move to a subdirectory called FERFILES. then vou simp-
Iy type:

chd FEB.FILES (ENTER:

and the tull pathlist DIMY. DATAFL LS FEBFILES - -
is implied. Usc the Chx command in evacthy the same way
yvou use Chd.

Anonymous Directory Names. Sometimes its useful to be
able to refer to your current directory. or to a higher-level
directory. but you may not know the full pathlist to use. Or

vou may want merely to save typing time.

In cither case. OS-9 makes special “"name substitutes™
available:

® ‘The name .77 refers to the current directory

® The namie 7077 refers to the ““parent™ of the current
directory (the next highest-level directory in the path)

® The name .77 refers to the directory two levels up.
and so on

You can use the names in place ol pathlists and-or as the first
names in pathlists. Some examples:

21

dir . (ENTER

lists filenames in the current data directory.
dir .. (ENTER

lists names in the current data directory’s parent directory.
del +./temr (ENTER

deletes the file called temp from the current data directory’s
parent directory.

The substitute names refer to cither the cxecution or data
directories, depending on the context in which the names are
used. For example, if **.."" is used in a pathlist of a file
which is cxecutable, it represents the parent directory of the
exccution dircctory. Similarly, if **.”7 is used in a pathlist
describing a program’s input file, it represents the current
data dircctory.

2.4 The File Security System

22

Every file and directory has properties called “*ownership™
and “attributes’’, which determine who may access the file
and how it may be used.

0S-9 automatically stores with each file the user number
associated with the process that created it. This user is consi-
dered to be the owner of the file.

Usage of security functions are based on attributes that define
how and by whom the file can be accessed. There are a total
of eight attributes. each of which can be turned *“off”™" or
“on’" independently. When the ~*d’" attribute is on. it indi-
cates that the file is a dircctory. The ‘s’ attribute means that
the file is sharable — that more than one program can read
from the file at the same time.

The other six attributes control whether the file can be read,
written to, or executed, by either the owner or the “*public’”’
(all other users). Specifically, these six attributes are:

Write permission for owner: If it’s on, the owner may
write to the file or delete it. This permission can be
used to protect important files from accidental deletion
or modification.

Read permission for owner: If it’s on, the owner is
allowed to read from the file. This can be used to pre-
vent “‘binary’” files from bemng used as “‘text’ files.

Execute permission for owner: If it’s on. the owner
can load the file into memory and cxccute it. The file
must contain one or more valid OS-9-format memory
modules in order to be loadable.

Werite permission for public: If it’s on. any other user
may write to or delete the file.

Read permission for public: If it's on, any other user
may read (and possibly copy) the file.

Execute permission for public: If it’s on, any other
user may execute the file.

For example. if a particular file has all permissions on except

“write permit to public

2

and “‘read permit to public’’, the

owner has unrestricted access to the tile. and other users can
exccute it, but not read. copy. delete, or alter it.

Examining and Changing File Attributes

You can use the Dir command. with the e (entire) option, to

exami

ne the security permissions of all files in a particular

directory. An cxample of output from the Dir e command
used on the current data directory is:

Owner

- s =

Directory of . 10:20:44

Last Modified Attributes Sector Brtecount Name
83/05/29 1del --e--e-r a7 4z filel
83/1@/12 @215 S -WP-WT 48 43 filel
B3/04/29 2335 ~S-—~-WT 51 22 filed
83/01/06 1619 d--wr-wr 6D 800 NEWDIR

The “*Auributes™ column shows which attributes are current-

ly on

by the presence or absence of particular characters in

this format:

23

dsewrewr

The character positions correspond. from left to right. to:
directory, sharable. public execute. public write. public read.
owner execute. owner write, owner read

Use the Attr command to examine or change the attributes of
a particular file. Typing Attr followed by a filename shows
you a file’s current attributes. for example:

attr fileZ (ENTER

~S-WTewr

Reading the attributes from left to right. you can sec that
file2: is not a directory: is sharable; can’t be exccuted by the
public but can be written to and read by the public: and can
be exccuted. written to, and read by its owner.

If you use Attr and a filename followed by a list of one or
more attribute abbreviations. the file’s attributes will be
changed accordingly (if. of course. it’s legal for you to make
the changes). For instance the command:

attr fileZ Ppw Pr -e -pe (ENTER)

cnables public write and public read permissions and removes
execute permission for both the owner and the public.

Note: The d attribute behaves somewhat differently
from the other attributes, in order to protect data stored
in directories. You can’t usc Attr to turn on the d attri-
butc — only Makdir can do that --- and you can use
Attr to turn d off only if the directory is empty.

2.5 Reading and Writing from Files

24

0S8-9 uses single type and format for all files. cach of which
stores an ordered sequence of 8-bit bytes. OS-9 isn’t usually
sensitive to the contents of files for most functions. A given
file can store a machine language program, characters of text,
or almost anything clsc. Data is written to and read from files
exactly as it’s given. The file can be any size. from zero up

File Usage in OS-9

to the maximum capacity of the storage device, and can be
expanded or shortened as desired.

When a file is created or opened, a “file pointer™ is estab-
lished for it. Bytes within the file arc addressed like memory,
and the file pointer holds the ““address™ of the next byte in
the file to be written to or read from. The OS-9 “‘read’™ and
“write”" service functions always update the pointer as data
transfers are performed. so that successive read or write op-
erations perform sequential data transfers.

If you're an advanced user of the system, and particularly if
you're using high-level languages, OS-9 is ¢ven more versa-
tile than usual. There are certain functions that allow you to
reposition the file pointer.

To expand a file, you can simply writc past the previous end
of the file. Reading up to the last byte of a file causes the
next read request to return an end-of-file status.

Even though there is physically only one type of file, the
logical usage of files in OS-9 covers a broad spectrum. Be-
cause all OS-9 files have the same physical type, you can usc
commands such as Copy. Del, and so forth, with any file,
regardless of its logical usage. Similarly. a particular file can
be treated as having ditferent logical usages at different times
by different programs. The main usages of files discussed
here are:

Text

Random access data
Executable program modules
Directories

Miscellancous

Text Files. These files contain variable-length sequences —
lines — or ASCII characters. Each line is terminated by a
carriage return character (ASCI code 0D or decimal 13).

Text files are used for program source code. procedure files,
messages. documentation, and many other purposes. The
Text Editor operates on this file format.

26

Text files are usually read sequentially. and are supported by
almost all high-level languages (such as BASICO9 read and
write statements). Even though it’s possible to randomly ac-
cess data at any location within a text file, it’s rarely done in
practice becausc lines vary in length and it’s hard to locate
the beginning of each line without actually reading the data to
find carriage return characters.

You can cxamine the content of text files by using the List
command.

Random-Access Data Files. Random-access data files are
created and used primarily from within high-level languages
like BASICQ9, Pascal, C, and Cobol. In BASIC09 and Pas-
cal, get, put, and seek functions operate on random-access
files.

Each file is organized as an ordered sequence of records.
Each record is exactly the same length, so if a record’s
numerical index is given, the record’s beginning address
within the file can be computed by multiplying the record
number by the number of bytes used for each record. Records
can, therefore be directly accessed in any order.

In most cascs, the high-level language allows each record to
be subdivided into fields. Each field generally has a fixed
length and usage for all records within the file. For example,
the first field of a record may be defined as being 25 text
characters, the next field may be two bytes long and used to
hold 16-bit binary numbers, and so on.

It’s important to understand that OS-9 itself doesn’t directly
process or deal with records other than by providing the basic
file functions required by all high-level languages to create
and use random-access files.

Executable Program Module Files. These files are used to
hold program modules generated by the assembler or com-
piled by high-level lahguages. Each file can contain one or
more program modules.

0OS-9 program modules resident in memory have a standard
module format that, besides the object code, includes a
“‘module header’™ and a CRC check value. Program modules

stored in files contain exact binary copies of the programs as
they’ll exist in memory, and not one byte more. Unlike many
other operating systems, OS-9 doesn’t require a “‘load record”
system because OS-9 programs are position-independent and
therefore don’t have to be loaded into specific memory
addresses.

In order for OS-9 to load the program module(s) from a file,
the file itself must have execute permission set, and each
module must have a valid module beader and Cylic Redun-
dancy Checksum (CRC) value. If a program moduie is altered
in any way. either as a file or in memory, its CRC check
value is incorrect and OS-9 refuses to load the module. The
verify command can check the correctness of the CRC
values, and update them to corrected values if necessary.

If a file has two or more modules, they’re treated as indepen-
dent entities after loading and they reside at different memory
regions.

If you attempt to use the List command on program files, or
any other files that contain binary data, the result is 2 jumbled
display or random characters and effects. Use the Dump com-
mand to safely examine the contents of this kind of file in
hexadecimal and controlled ASCII format.

Directories. Directories — which are, in effect. “*superfiles’™
— play a key role in the OS-9 file system. Section 2.3 of this
chapter describes how they're used by various OS-9 features.
Directories can be created only by the Makdir command, and
can be identified by the d attribute.

Each directory is organized into 32-byte records. Each record
can be an entry in the directory. The first 29 bytes of the
record is a string of characters that is the file name. The last
character of the name has its sign bit (most significant bit)
sct. If the record isn’t in use, the first character position has.
the value zero. The last three bytes of the record is a 24-bit
binary number that’s the logical sector number where the file
header record is located.

The Makdir command initializes all records in a new direc-
tory to be unused entries except for the first two entries.
These entries have the names “*."" and **.."" along with the

27

logical sector numbers of the directory and its parent direc-
tory, respectively.

The commands Copy and List won't work with dircctories,
Instead, use Dir. Directories also can’t be deleted directly,
but must first be emptied and turned into regular files.

Miscellaneous File Usage. OS-9’s basic file functions are so
versatile that it’s possible to devise an almost unlimited num-
ber of special-purpose file formats for particular applications,
formats which don’t fit into any of the categories discussed
here.

Examples of special file usage include COBOL Indexed Se-
quential (ISAM) files and some special word processor file
formats which allow random access of text lincs. As men-
tioned earlier most OS-9 utility commands work with any file
format, including these special types. In general, the Dump
command is the preferred method for examining the contents
of unusually formatted files.

Physical File Organization

28

0S-9’s file system implements universal logical organization
for all /O devices that effectively climinates most hardware-
related considerations for most applications. This scction
gives basic information about the physical file structure used
by OS-9. (For more information, sce the 0S-9 Technical In-

Sformation manual.)

.

Each OS-9 file compriscs one or more *‘sectors’”, which are
the physical storage units of disk systems. Each sector con-
tains 256 data bytes. Disks are numbered sequentially starting
with sector 0, track 0. This number is called a *logical scector
number’’, or LSN. The mapping of logical sector numbers to
physical track/sector numbers is done by the disk driver
module.

A scctor is the smallest allocatable physical unit on a disk
system. However, to increase cfficiency on some larger-
capacity disk systems, OS-9 uses uniform-sized groups of
sectors, called “‘clusters’ . as the smallest allocatable unit.
Cluster sizes are always an integral power of two (2, 4, 8,
and so on.) One sector of each disk is used as a bitmap

(usually LSN 1), in which each data bit corresponds to one
cluster on the disk. The bits are set and cleared to indicate
which clusters are in use. which are defective, and which are
free for allocation to files.

The Color Computer disk system uses this format:

® Double-density recording on one side
® 35 tracks per disk

® |8 sectors per track

® One sector per cluster

On 0S-9, each file has a directory entry which includes the
filename and the logical sector number of the file’s *file de-
scriptor sector’’. which contains a complete description of the
file, including:

attributes

owner

date and time created

size

segment list (description of data sector blocks)

Unless the file size is zero, the f{ile will have one or more
sectors/clusters used to store data, The data sectors are
grouped into one or more contiguous blocks called
“‘segments.”’

29

3/Advanced Features Of The Shell

Chapter | of this manual introduced basic shell functions and
commands. This chapter discusses the more advanced
capabilities of the shell. In addition to basic command line
processing, the shell has functions that facilitate:

® [nput/Output redircction, including filters
® Memory allocation

® Multitasking (concurrent execution)

® Procedure file exceution

® Built-in commands

You can usc these advanced capabilitics in a virtually un-
limited combination of ways. Of course, it's impossible to
give more than a representative sct of examples here — but
you're encouraged to study the basic rules, use your imagina-
tion, and explore the possibilitics on your own.

3.1 More About Command Line Processing

The shell is a program that reads and processes command
lines, one at a time, from its input path (usually your
keyboard). Each line is first scanned (or ““parsed’”) in order
to identify and process any of the following parts which may
be present:

® A program. procedure file. or built-in command
name (“verbs™)

® Paramcters to be passed to the program

® Exccution modifiers to be processed by the shell

Only the verb (the program. procedure file. or command
name) need be present; the other parts are optional. After the
shell identifies the verb, it processes the modifiers. Any other
text not yet processed is assumed to be parameters and is
passed to the program being called.

If the verb is a built-in shell command (sce Section 3.5), the
shell simply executes it. If it’s not built in. the shell searches

31

for the appropriate program. and. when it finds it, runs it as a
NCW Process.

Then the shell deactivates itself until the program being called
terminates, at which time the shell takes the next input. The
cycle continues until the shell detects an end-of-file in the
input path. Then the shell terminates its own execution.
Here's a sample shell command line which calls the assembler:

asm sourcefile 1 -o /P #12k (ENTER

In this example:

asm is the verb

sourcefile 1 -0 are parameters passed to Asm

/P i1s a modifier which redirects the
output (the listing) to the system’s
printer

12K is a modificr which requests that

the process be assigned 12K bytes
of memory instcad of its (smaller)
default amount

Note: The verb should always be the first entry in any
line.

3.2 Execution Modifiers

Exccution modifiers tailor OS-9 commands to your specifica-
tions. Type them in o command line after the verb. and cither
before or after any parameters you're using.

Exccution modifiers are processed by the shell before the
program is run. 1f the shell deteets an error in any of the
modifiers. the run is aborted and the error reported.

Characters which compose modifiers are stripped from the
part(s) of the command linc passed to the program as para-

meters. Therefore, the characters reserved for use as modi-
fiers (# : ! << > &) can’t be used inside parameters.

Alternate Memory Size Modifier

When the shell involves a command program it allocates the
program the minimum amount of working RAM memory spe-
cified in the program’s module header. (A module header is
part of all executable programs and holds the program’s
name. size, memory requirements, and other information.)

Sometimes it’s desirable to increase this default memory size.
You can assign memory either in 256-byte pages by using the
modifier #n where n is the decimal number of pages, or in
1024-byte increments by using the modifier #nK. The two
examples below have identical results:

cory #8 filel fileZ (ENTER
cory #ZK filel fileZ? (ENTER

Each command line specifics that memory size is to be 2048
bytes. In the first command. 82256 =2048: in the sccond.
241024 =2048.

I/O Redirection Modifiers

Input/Output redirection modifiers reroute a program’s stan-
dard /0 paths to alternate files or devices.

One of 0S-9's great advantages is that its programs use stan-
dard 1/0 paths rather than individual. specific file or device
names. 1t's fairly simple to redirect the VO to any file or
device without altering the program itsclf.

Programs which normally reccive input from a terminal. or
send output to a terminal, use one or more of these three

stundard /O paths:

® Standard input path: Passes data from the terminal’s
keyboard to the program.

® Standard output path: Outputs data from the program
to the terminal’s display.

33

® Standard error output path: Outputs routine status
messages — prompts and crrors, for instance — to
the terminal’s display. (The name ‘‘crror output
path™™ is somewhat misleading, since many kinds of
messages besides errors travel the path.)

Correspondingly, OS-9 offers you three redirection modifiers:
® < redirects the standard input path
® > redirects the standard output path
® >> redirects the standard error output path

When you usc a redirection modifier in a command line, fol-
low it immediately with a pathlist describing the file or device
to or from which the I/0 is to be redirected.

For example, if you want to redirect the standard output of
the List command to write the contents of a file called corres-
pondence to the printer instead of to the terminal, type:

list correspondence >/P (ENTER

Files referenced by 1/0 redirection modifiers are automatical-
ly opened. created, or closed (as appropriate) by the shell. In
the next example. the output of the Dir command — a list of
files in the directory MEMOS — is redirected to the file /D1/
savelisting:

DIR /DO/MEMOS :»/Dil/savelisting
(ENTER)

Then, if the list command is used on the file /D 1/savelisting,
the redirected output from the Dir command is displayed like
this:

list /D1i/savelisting (ENTER
Directory of /D@O/MEMDS 10:15:00
JacKson moeller Jones

Redirection modifiers can be used before and/or after the
program’s parameters. but cach modifier can be used only
once in a command. After the program specified in the com-
mand is run, the redircction modifier terminates with it; when

you run the program again, it will use its standard /O paths
unless you again specify otherwise.

Note: When processes are crcated, they inherit their
parent processes” standard 1/O paths. Therefore, when
the shell creates processes. they inherit its standard
paths.

3.3 Command Separators

A single shell input line can request exccution of more than
one program. These programs can be executed scquentially or
concurrently. “*Sequential exccution™ means that one pro-
gram must complete its function and terminate before the next
program is allowed to begin execution. “*Concurrent cxecu-
tion’” means that several programs are allowed to begin ex-
ccution and run simultancously.

Sequential Execution

Programs cntered on separate command lines arc exccuted sc-
quentially. But OS-9 lets you save time by specifying on a
single command line several commands to be executed se-
quentially. You simply separate cach full command from the
next with a semi-colon.

For instance:

copy myfile /Dl/newfilesy dir =/P
ENTER

According to this command, the shell first exccutes the Copy
command. Then it enters the ““waiting’” state until Copy ter-
minates, at which time it executes Dir.

If an error is returned by any program, the shell doesn’t ex-
ccute subsequent commands on the same line, regardless of
the state of the x (abort on error) option. Otherwise. ; and
ENTER) urc identical command separators.

Here are two more examples of commands using the semi-
colon scparator:

35

copy oldfile newfile? del oldfiles

list newfile (ENTER

dir /JDI/MYFILESY list temp /P53
del temp (ENTER

Note: In a command line with semi-colon separators,
even though commands are listed in a particular se-
quence and executed in that sequence. they are in fact
all separate and cqual child processes of the shell.

Concurrent Execution

36

The second kind of command separator is the ampersand (&)
which specifies concurrent execution. The first program you
specify is run as a separate, child process of the shell. But the
shell doesn’t wait for it to finish before processing the next
command.

The concurrent execution separator is the way you specify
multiprogramming (running two or more programs simul-
tancously). With the & directing the shell to divide CPU time
cqually between the processes you name in your command
line.

The number of programs that can run at the same time isn’t
fixed. It depends on the amount of frec memory in the system
versus the memory requirements of the programs to be run.

An cxample of a simple command line using the & separator
is:

dir /P& (ENTER

The shell begins to run Dir sending output to the printer. It
immediately displays both the number of the new process and
a new prompt for you, like this:

&aa7
059:

You can then enter another command. which will also be
exccuted while output from your command continues to go to
the printer. That's a real timesaver for you. You don’t spend
unproductive time waiting for OS-9 to finish a task.

Pipes and Filters

Note: If you have several processes running simul-
tancously. and want information about them. you can
use the procs command.

You can. if you want, usc both the concurrent and sequential
command separators in a single command line, like this:

dir /P& list filell cory filel
file2s del temr (ENTER

Because they're joined by & modifiers, the Dir. List, and
Copy programs run concurrently. But the Del program
doesn’t run until the others arc terminated because the com-
mand line contains a semi-colon to specify scquential execu-
tion for Del.

The third kind of command separator is !, which is used to
construct ““pipelines’”. Pipelines consist of two or more con-
current programs whose standard input and/or output paths
connect to cach other using ““pipes™.

Pipes are the primary means by which data is transferred from
process to process — they're vital to interprocess com-
munications. Pipes are first-in, first-out butfers. ““holding
areas’ for data.

/0 transters using pipes are automatically buffered and syn-
chronized. A single pipe can have several “readers™ and
several ““writers™. Multiple writers send. and multiple read-
ers accept. data to/from the pipe on a first-come. first-served
basis. An end-of-file occurs if an attempt is made to read
from a pipe when there are no writers available to send data.
Conversely, a write crror occurs if an attempt is made to
write to a pipe with no available readers.

Pipclines are created by the shell when it processes an input
line with one or more ! separators. For cach !, the standard
output of the program named to the left of the ! is redirected
through a pipe to the standard input of the program named to
the right of the !. Individual pipes are created for cach ! in the
command line. For example:

37

urpdate <master.file ' sort
write_reeort >/P (ENTER)

Here, the Update program has its input redirected (from its
standard input. the keyboard) to become muaster_file. The
standard output from that first command. because of the !,
becomes the standard input for the program sort. The output
of sort, in turn — because of another ! — becomes the stan-
dard input for the program write__report, which has its stan-
dard output redirected to the printer.

All programs in a pipeline are executed concurrently. The
pipes automatically synchronize the programs so the output of
one never “gets ahead™™ of the input request of the next pro-
gram in the pipeline. This means that data can’t flow through
a pipeline any faster than the slowest program can process it.

Programs which are specifically designed to process data us-
ing a pipeline or multiple pipelines are often called “*filters™.
The Tee command. which uses pipes to allow data to be
simultancously “broadcast™ from a single input path to
several output paths, is a useful filter.

Some of the most useful applications of pipelines are jobs like
character sct conversion, print file formatting, data compress-
ion/decompression.

3.4 Command Grouping

Sections of shell input lines can be enclosed in parentheses.
This permits modifiers and separators to be applied to an en-
tire sct of programs.

The shell processes the material in the parentheses by calling
itself recursively to execute the enclosed program list.
For example. if you want the “table of contents™ of the root

directory of drive 0 and then the root directory of drive 1 to
go directly to the printer, you can type cither:

dir /D@ >/P3s dir /D1 /P (ENTER

or:
(dir /D@5 dir /D1) /P (ENTER

The results are identical. The only difference is that the print-
er is “kept™” continuously in the second example. In the first
example, another user could **steal™ the printer in between
the Dir commands.

You can use command grouping to cause a group of programs
to be executed sequentially. but also concurrently with re-
spect to the shell that initiated them. For instance:

(del fileli del fileZj del file3)&
(ENTER)

Here. the shell does the overall deleting process concurrently
with whatever clse you tell it to do, because you're using the
&. However, the shell deletes the three specified files
sequentially because vou're using the semicolon within the
parentheses.

A uscful extension of this form is to construct pipelines
consisting of both sequential and concurrent programs. For
instance:

(dir CMDS3 dir SY5) ! maKeuprpercase
I transmit (ENTER)

The shell first processes the output of the first Dir command
and then the sccond. Then it sends all the Dir output together
to makeuppercase: then all the output, still together. is
transmitted.

3.5 Built-in Shell Commands and Option:

When processing input lines. the shell looks for several spe-
cial names of commands or option switches that are built into
the shell.

These commands are exceuted without loading a program and
creating a new process, and generally affect how the shell

39

40

operates. They can be used at the beginning of a command
line, or following any program separator -— o, &. or L.

Two or more adjacent built-in commands can be separated by

spaces or commas.

The built-in commands and their functions are:

chd pathlist

chx pathlist

ex modname

kill prociD

setpr prociD

changes the working data directory to the
directory specified by the pathlist.

changes the working exceution directory
to the directory specified by the pathlist.
directly exceutes the module named.
This transforms the shell process so that
it ceases to exist, and a new module be-
gins execution in its place.

waits for any process to terminate.
allows you to make a “‘comment’.
Whatever text you specify isn't pro-
cessed by the shell.

aborts the process spectfied.

number changes the process’s priority
number.

causes the shell to abort on any error.
causces the shell not to abort on crror.

turns the shell prompt and messages on
(detauft).

inhibits the shell prompt and messuages.

makes the shell copy all input lines to
output.

docsn’™t copy input lines to output
(default).

The Chd and Chx commands switch the shell’s working
directory and. by inheritance. any subsequently created child
process.

The Ex command is used where the shell is needed to initiate
execution of a program without the overhead — for instance
time spent and memory tied up — of a suspend shell process.
The module named is processed according to standard shell
operation, and modifiers can be used.

3.6 Shell Procedure Files

The shell is a reentrant program. which means that it can be
simultancously exccuted by more than one process. Like most
other OS-9 programs. the shell uses standard 1/0 paths for
routine input and output.

0S-97s shell offers you a special feature. a time and effort
saver called a “*procedure file’”. A procedure file is a related
group of commands, all of which you can execute simply by
running the one procedure file.

For example. the Deldir command is a procedure file that
comes with the OS8-9 system. It’s actually a sequential string
of commands (Del, Attr, and again Del), but you cxecute
them all with the single command Deldir. This technique is
sometimes called “*batch™ or **background™ processing.

‘Note: If you have occasion to enter the same command
sequences repeatedly, you can build your own proce-
dure files by using the Build command.

A procedure file becomes, new input for the shell. By run-
ning a procedure file. you're using the shell to create a new
shell, a ““subshell™ which accepts and carries out the com-
mands in the procedure file.

When you enter any command line, if the shell can’t find the
specified program in memory or in the execution directory, it
searches the data directory for a file with the specified name.
If it finds the file, the shell automatically interprets it as a

41

procedure file, and creates the subshell, which executes the
commands listed in the procedure file.

Besides eliminating repetitive manual entry of commonly
used command sequences, procedure files can allow the com-
puter to execute a lengthy series of programs while it's un-
attended, or even while it's running other programs. That. of
course, frees you to do other things.

To run a procedure tile — for instance, one you've created
and called mailsequence — type cither:

shell mailseaguence (ENTER
or

mailseguence (ENTER

Both do exactly the same thing: create a subshell which runs
the commands you’ve built into your mailsequence procedure
file.

If you want to run a procedure file in a concurrent mode. use
the ampersand (&) modifier. OS-9 doesn’t place any con-
straints on the number of procedure files you can run concur-
rently, as long as there’s memory available.

You can even butld procedure files so that they themselves
cause sequential or concurrent execution of other procedure
files.

Note: I you're using procedure files to run programs
you don’t intend to monitor closely. it's useful to re-
member that you can redirect standard output and stan-
dard crror output to another file. Later you can review
the file’s contents. Output redirection eliminates the
sometimes-annoying output of shell messages on your
terminal at random times.

3.7 Error Reporting

42

Many programs (including the shell) use OS-9°s standard
error reporting function, which displays an error number on

the error output path. (The standard error codes are listed in
Appendix A of this manual.) If, you want you can execute
the Printer command. It replaces the smaller, built-in error
display routine with a larger (and slower) routine that looks
up descriptive error messages from a text file called /DO/SYS/
crrmsq. Once you run the printer command. it can’t be turned
off. Also, its effect is system-wide.

Programs called by the shell can return an error code in the
B register (otherwise B should be cleared) on termination.
This type of crror, as well as crrors detected by the shell
itself, causes an error message to be displayed, and proces-
sing of the command linc or procedure file to be terminated,
unless the X (don’t abort on error) built-in command has been
executed.

3.8 Running Compiled Intermediate Code
Programs

Before the shell executes a program, it checks the program
module’s language type. If it isn’t 6809 machine language.
the shell calls the appropriate run-time system for that
module.

For instance. if you have BASIC09 on your OS-9 system,
and want to run a BASIC09 I-code module called adventure.,
you can type this command:

BASICO®9 adventure (ENTER)
or you can accomplish the same thing by typing:
aduenture (ENTER)

Both-command lines automatically call the BASICO9 run-
time system.

43

3.9 Editing startup for Timesharing Systems

44

Your OS-9 system has a procedure file called startup, which
among other things. asks you for the date and time cach time
you usc the system.

It you're sctting up your Color Computer as a timesharing
system — that is. if vou're adding a terminal to it — you
should alter the startup file so that whoever is using the other
terminal will have appropriate access to the system.

Use the List command to look at the present contents of start-
up. Remember the contents. Then use the build command to
create a startup procedure file, exactly like the original one
except that you add this line at the end:

tsmarn /T18 (ENTER)

(You still have to press (ENTER) again to signal an end-of-
file.) The tsmon command is the system’s timesharing moni-
tor. and opens standard 1/0 paths for the terminal, in addition
to running the login sequence.

4/Multiprogramming And
Memory Management

One of the most valuable capabilitics of OS-9 is multipro-
gramming. which is sometimes called timesharing or multi-
tasking. This lets your computer run more than one program
at the same time. Multiprogramming can be a tremendous
advantage in many situations. For example. you can be edit-
ing onc program while another is being printed. Or you can
use your Color Computer to control houschold automation
and be able to use it at the same time for routine work and
entertainment.

0S-9 uses this capability all the time for internal functions.
The simple way for you to usc it is by putting the & character
at the end of a command line the & causes the shell to run
your command as a ““background’’, or concurrent task (see
Chapter 3).

In order to allow several programs to run simultancously and
without interference, OS-9 performs many coordination and
resource allocation functions. The major system resources
OS-9 manages are:

® The input/output system

® CPU time

® Mcmory
The input/output system is discussed in Chapter 3. This chap-
ter is designed to give you some basic information about how
0S-9 uses CPU time and memory to optimize system

throughput, and to make efficient multiprogramming a
reality.

4.1 Processor Time Allocation and Timeslicing

CPU time is a precious resource that must be allocated wisely
to maximize the computer’s throughput.

Many programs by their nature spend time waiting. For ex-
ample an interactive program, has to wait for the user to enter

45

46

information from the terminal. Meanwhile, the program can’t
accomplish anything. It can only wait.

On most systems, programs tic up CPU time while they're
waiting. But mulftiprogramming systems like OS-9 are far
more cfficient than that. They assign CPU time to only those
programs that can cifectively use the time.

08-9 uses a technique called ““timeslicing,”” which allows all
active processes to share CPU time. Timeslicing uses both
hardware and software functions, and works this way: On
0S-9. a real-time clock interrupts the Color Computer’s CPU
60 times cach second. The interruption points are called
ticks™", and the spaces between ticks are timeslices.

Those timeslices — 60 cvery sccond — are allocated to the
different processes on the system. At any tick, OS-9 can sus-
pend execution of one program and begin execution of
another. (The starting and stopping of programs doesn’t affect
their execution.)

How frequently OS-9 gives a program timeslices depends on
the program’s assigned priority. relative to the assigned prior-
ity of other active processes. Process priority is expressed as
a decimal number from O through 255, with O representing
the highest priority and 255 the lowest.

0S-9 automatically gives the shell program a priority of 0.
Since child processes inherit their parents’ priorities, the
shell’s child processes all have priorities of 0. You can, if
you want, find a process’s priority number by using the Procs
command. You can change the priority number by using the
Setpr command.

It's not possible to compute exactly the percentage of CPU
time assigned to any particular process, because of dynamic
variables such as time the process spends waiting for /O de-
vices. But you can roughly approximate the percentage by
dividing the process’s priority number by the sum of the
priority numbers of all active processes:

process’s CPU share = process priority number

sum of priority numbers
of all active processes.

Note: Timeslicing happens so quickly that it looks to a

human obscrver as if all processes are being executed

simultancously and continuously. If, however, the com-

puter becomes overloaded with processing work. you

may notice a delay in response to input from the ter-

minal. Or you may notice that a “batch™ program is

taking longer than usual to run.

4.2 Process States

The CPU time allocation system automatically assigns pro-
arams/processes one of three ““states™ that describe their cur-

rent status. Process states are also important for coordinating

process execution. A process can be in only one state at any

instant.
are:
)
°
®

although state changes may be frequent. The states

Active — Applies to processes currently able to
work - that is. not waiting for input or for anything
clse. These are the only processes assigned CPU
time.

Waiting — Applics to processes which are sus-
pended until another process terminates. This state is
used to coordinate execution of sequential progrims.
The shell. for example. is in the waiting state during
the time a command program it's mitiated 1s running.

Sleeping Applies to processes suspended by self-
request for a spectfied time interval, or until receipt
of a “signal™ . (Signals are internal messages used o
coordinate concurrent processes.) This is the typical
state of programs waiting Tor input-output operations.

Sleeping and waiting processes aren’t assigned CPU time un-
til they change to the active state.

Note: The Procs command gives information about pro-

Cess states.

47

4.3 Creation of New Processes

48

First, some terminology: when one process creates another
process, the creator is called the ““parent process™ . and the
newly created process s called the “child process™. The new
child can itself become a parent by creating vet another
process.

If a parent process creates more than one child process. the
children arce called “*siblings™™ with respect to cach other. Iff
the parent/child relationship of all processes in the system is
examined. a hicrarchical lincage becomes evident. In fact,
this hicrarchy is a tree structure that resembles a family tree.
(The ““family™ concept makes it casy to describe rela-
tionships between processes. So. it's used extensively in de-
scriptions ol OS-9°s multiprogramming functions.)

The sequence of operations required (o Credate @ new process
and initially allocate resources to it is automatically per-
formed by OS-9°s ““fork™ function.

If for any reason any part of the sequence can’t be performed,
the fork is aborted and the prospective parent is passed an
appropriate crror code. The most frequent reason for failure is
unavailablity of required resources (especially memory)., or
inability of the system to find the specified program.

A process can create many new processes, subject only to the
limitation of the amount of unassigned memory available.

When the parent issues a fork request to OS-9. it must
specify certain information:

® A primary module. the name of the program to be
exceuted by the new process. The program can
alrcady be present in memory, or OS-9 can load it
from a disk file having the same name.

® Paramcters. data specilied by the parent to be passed
to and used by the new process. This data 1s copied
to part of the child process’™s memory arca. (Param-
cters are frequently used to pass file names, in-
itialization values, and other information.)

The new process also

“inherits™” copies of certain of its par-

ent’s properties. These are:

As part

A user number, which is used by the file security
system and is used to identify all processes belonging
to a specitfic user. (This is not the same as the *“pro-
cess 1D, which identifies a specific process.) This
number is usually obtained from the system pass-
word file when a user logs on. The system manager
is always user 0.

Standard input and output paths, the three paths (in-
put. output. crror) used for routine input and output.
Most paths can be shared simultancously by two or
MOre Processes.

Current (working) directories, the data directory and
the execution directory.

Process priority, which determines what proportion

of CPU time the process receives.
of the fork operation. 08-9 automatically assigns:

A process 1D number. from | to 255, Each process
has a unique 1) number. usctul for both the system
and the user. Process 1D numbers have no rela-
tionship with the process priority numbers. Whether
an 1D number is Tow or high makes no difference.

Memory. enough for the new process to be able to
run. In OS-9_ all processes share a single address in
memory. A data arca. used for the program’s param-
cters, variables and stack is allocated for cach pro-
cess's exclusive use. A second memory arca may
also be needed to load the program if it’s not resident
I memory.

49

In summary . cach new process has assoctated with it - from

one source or another:

® A primary module
® Paramcters

® A\ uscr number

® Stundard 1O paths
® Current directories
® A priority

® An 1D number

® NMemony

4.4 Basic Memory Management Functions

50

Memory management is an important OS-9 function. QS-9
automatically allocates all system memory to itself and to
processes, and also keeps track of the logical contents of
memory (meaning which program modules are resident in
memory at any given tme). The result is that you seldom
have to be bothered with the actual memory addresses ol
programs or data.

Within the address space. memory is assigned from higher
addresses downward for program modules. and from lower
addresses upward for data arca. as shown below:

highest address

program modules

(RAM or ROM)

unused space
(RAM or empty)

data arcas

(RANTD)

lowest address

Loading Program Modules into Memory

When performing a fork operation, OS-9 first attempts to lo-
cate the requested program module by searching the “*module
directory™ . which has the address of every module present in
memory. The 6809 instruction set supports a type of program
called ““reentrant code™ . which means that the exact **copy™
of a program can be shared by two or more different proces-
ses simultancously without affecting cach other, provided that
cach ““incarnation™ of the program has an independent mem-
ory area for its own variables.

Almost all 0S-9 family software is reentrant, and can make
the most efficient use of memory. For instance, BASIC09
requircs 22K bytes of memory in order to be loaded. Suppose
that OS-9 receives a request (from a process) to run
BASICO09Y. but has already caused it to be loaded into memory
at the request of another process. OS-9 doesn’t have to cause
another copy to be loaded. using another 22K of memory.
Instcad both processes share the same copy of BASIC09.

0S-9 automatically keeps track of how many processes are
using cach program module and deletes the module when all
processes using the module have terminated. This frees the
modules memory for other uses.

If the requested program module isn't already in memory,
0S-9 uses its name as a pathlist (filename) and attempts to
load the program from disk.

Every program module has a “"module header™ describing the
program and its memory requirements. OS-9 uses the header
to determine how much memory for variable storage should
be allocated to the process. The module header also includes
other important descriptive information about the program,
and is an essential part of OS-9 operation at the machine lan-
guage level. (For detailed description of memory modules
and module headers. check the O8-9 Technical Information
manual.)

Programs can also be explicitly loaded into memory using the

Load command. As with ““fork™". the program is actually
loaded only if it 1sn't already in memory.

51

52

If the module isn’t in memory, 08-9 copies the requested
module from the file into memory and verifies the CRC. If the
module isn 't already in the module directory. OS-9 adds it to the
dircctory. This process is repeated until all the modules in the
file are loaded, the 64K memory limit is exceeded. or until a
module with an invalid format is cncountered. OS-9 always
links to the first module read from the file.

If the program module is alrcady in memory. the load process
still begins in the same wayv: OS-9 loads the module from the
file and verities the CRC. But then when it attempts to add
the module to the module directory. and notices that the mod-
ule is already known there, it merely increments the known
module’s link count — the number of processes using the
module.

You can use Load to “lock™ a program into memory. That's
a timesaver if you need to use the same program repeatedly.
With Load the program is kept continuously in memory. OS-
9 doesn’t have to take the time to load it cach time you use it.

The oppostte of Load is the Unlink command. which de-
creases a program module’s link count by one. When this
count becomes zero, indicating that the module is no longer
used by any process. the module is deleted. Its memory is
deallocated and its name is removed from the module direc-
tory. The Unlink command is generally used in conjunction
with the Load command. (Programs loaded by ““fork™ are
automatically unlinked when the program terminates).

Suppaose, for instance, vou're planning to usc the Copy com-
mand 10 times in a row. Normally the Copy program is
loaded cach time vou enter the Copy command. But it you
lock the Copy module mto memory, and then enter your
string ol commands, you won’'t have to wait while Copy is
loaded and unloaded repeatedly. You'll finish your work
more quickly. When vou're done. use Unlink to unlock the
module from memory. The sequence looks like this:

load copy (ENTER)

corv filel filela 'ENTER!
cory file? fileZa IENTER
corpy file3d filelda (ENTER!
cory Tiled fileda 'ENTERI
copy fileS fileSa 'ENTER)
copy fileG fileGa 'ENTER
cory file?7 file7a |ENTER]
cory fileB fileBa (ENTER
cory file® file9a ENTER
corpy filel@ filel@a ENTER)
unlink corw (ENTER)

[t's important to use Unlink after the proeram 1s no longer
needed: otherwise the program continues to occupy memory
which could be used tor other purposces.

Note: Be very careful not to unlink modules in use by
any process, or you'll cause the memory used by the
module to be deallocated. and its contents destroyed.
The result is a user’s nightmare: all programs using the
unlinked module crash.

Loading Multiple Programs:

Another important aspect of program loading is the ability to
have two or more programs resident inomemory at the same
time. This is possible because all OS-9 program modules are
written as “Tposition-independent code™ 0 or TTPICTT PIC
programs don’t have to be loaded into specific. predetermined
memory addresses to work correctly. They can theretore be

loaded at different memory addresses at different times.

PIC programs require special types of machine language in-
structions which few computers have. The ability of the 6809
MICTOProCcessor to use this type of program is one of its most
powertul features, and one of the greatest aids toward multi-
programming.

Since more than one progriaum can reside In memory. you can
therefore use the Load command two or more times (or have
a single tile contain several memory modules). and cach
program module 1s automatically loaded at different. non-

53

overlapping addresses. (Most other operating systems write
over the previous program’s memory whenever a new pro-
eram is loaded).

This technique also means that vou don’t have to be directly
concerned with absolute memory addresses.

Note: Any number of program modules can be loaded
until available system memory is full,

Memory Fragmentation

Even though PIC programs can be loaded initially at any
address where free memory is available. program modules
can’t be relocated dynamically afterwards. That means that
once a program is loaded. 1t must remain at the address at
which 1t was originally loaded.

This characteristic can lead to a sometimes troublesome phe-
nomenon called ““memory fragmentation”™ . When a program
is loaded, it's assigned the first sufficiently large block of
memory at the highest address possible in the address space.
If several program modules are lToaded. and subsequently one
or more modules located o between other modules is un-
linked there™l be several fragments of free memory space.
The sum of the sizes of the free memory spaces may be quite
large. But because they're scattered. there won't be enough
free space in a single block to load a program module larger
than the largest free space.

The Mirce command shows the location and size ol cach un-
used memory arca, and the Mdir ¢ command shows the
address, size. and link (use) count of cach module in the
address space. You can use both commands to detect frag-
mentation. And you can usually ““defragment” memory by
unlinking scattered modules and reloading them. (Make cer-
tain nonc of the modules is in use before doing so.)

5/Use Of The System Disk

OS-9 systems use o system disk o Joad many parts ot the
operating system during system startup, and to provide files
Irequently used during normal system operations. Theretore.
the system disk 1s generadly Rept in disk drive zero ¢ DOy

when the system s runnimg.

Two liles used durig the systen startup operation. OSYBoot
and startup are provided and must eman in the system disk’s
root directory . Other files on the svstem disk are organized
into three directories: CMDS icommands). DEEFS (system-
wide defintonsy, and SYS (other system tiles). Sall other
files and directories created by the system manager and or
users can also reside on the systemy disk. (These frequently

include cach user’s mitial data directory)

5.1 The OS9BOOT File

The file called OS9Boot is loaded into RAN memory by the
“hootstrap™” routine located v the OS-9 tirmware. It icludes
file managers, device drivers and desenptors. and any other
modules which are permanently resident m memory . The OS-
9 System Master Disks OS9Boot tile contains these modules:

10N an OS-9 input output manager
RBL Rundom block (disky file manager
SCH Sequential character (terminal)
file manager
PipeMan Pipeline file manuager
Piper Pipeline driver
Pipe Pipeline deviee deseriptor
10 Keyvboard video graphics deviee driver
PRINTIER Printer deviee driver
RS232 RS-232 seral port deviee driver
CCDisk Disk driver
DO D D20 DA Disk deviee deseriptor
TERM Terminal deviee desceriptor
P Printer device descriptor
Tl RS-232 serial port device desceriptor
Shell Input Output commands intertace modute

N
i

Pt Printer (serial) device descriptor
Clock Reul-time clock module
SYSGO Svystem startup process

You can create new bootstrap files. which can include addi-
tional modules. by using the OS9Gen command. Any module
loaded as part of the bootstrap can’t be unlinked, and is
stored in memory with a minimum of fragmentation. You
may find it advantageous to include in the OS9Boot file any
module you use constantly during normal system operation.

5.2 The SYS Directory

The directory /DO/SYS contains two important files:

® password (the system password file - see the Login
command)
® crrmsq (the error message file - see 3.7)

These files. and the SYS directory itsell. aren™t absolutely
required to boot OS-9. but they're needed if you plan to use
Login. Tsmon. or Printerr. You can add other system-wide
files of a similar nature, if you want to.

5.3 The startup File

The title -DOrstartup is a shell procedure file which i1s auto-
matically processed immediately after system startup. You
can include in startup any legal shell command line. Many
people choose to include Setime to start the system clock. If
this file isn't present. the system will still start correctly but
you have to run Setime manually.

5.4 The CMDS Directory

The directory /DO/CMDS is the system-wide command object
code directory, normally shared by all users as their working
exccution directory. The vital shell program is part of CMDS.
The system startup process “sysgo™ makes CMDS the initial
execution directory.

5.5 The DEFS Directory

The directory /DOV/DEFS contains assembly language source
code files. They in turn contain common system-wide sym-
bolic definitions normally included in assembly language pro-
grams by means of the OS-9 assembler “*use™ directive. The
presence and use of this directory is optional, but highly rec-
ommended for any system used for assembly language pro-
grams. The files commonly contained in this directory are:

® OS9Defs Main system-wide definition file
® RBFDefs — RBF file manager definition file
® SCFDefs SCF file manager definition file
® SysType — System types definition file

5.6 Changing System Disks

Most OS-9 users prefer to leave the system disk in place
while the system is running, particularly with multiuser sys-
tems. Leaving it in place guarantees that it won’t be taken
away just when someone is using it.

If you do remove the disk and begin to use another one. let
08S-9 know where you want to be on the new disk by using
the Chd and Chx commands. (For directions, see Chapters 2
and 6.) Those commands set both working dircctory pointers
— data and execution — for the new disk.

57

In general, it's unwise to remove a disk and insert another
while any files are open. And it’s just plain dangerous to your
data to make a disk exchange it any files on the first disk are
open in the “write™ or “update™ modes.

5.7 Making New System Disks

To make a system disk. 1t's necessary to do these four things:
. Format the new disk

2. Create and link the OSY9Boot file by using the
0S9Gen or Cobbler command

3. Create or copy the startup file

4. Copy the CMDS and SYS directories. and the files
they contain

You can perform steps 2 through 4 manually, or do them
automatically by using any onc of these methods:

® (Create and use a shell procedure file

® Usce a shell procedure file generated by the Dsave

command

® Use the Backup command

6/System Command Descriptions

This chapter contains alphabetical descriptions of cach of the
command programs supplicd with OS-9. The commands are
ordinarily called using the shell, but can also be called from
most other programs in the OS-9 family. including BASIC09.
Interactive Debugger, Macro Text Editor, and others. Unless
otherwise noted, the programs described in this section are
designed to run as individual processes.

6.1 Organization of Entries

Each command entry is organized to include:
® The name of the command

® A syntax” line, which shows vou what format, or
Tsyntax™ to use when you type the command

A brief definition of what the command does

Further details about the command and how to use it

Information about any options available with the
command

® Onc or more examples of command usage

6.2 Command Syntax Notations

It's important to enter the various parts of a command in the
correct order. and in the correct format. The syntax line in
cach command description helps you do that by showing you
exactly what cach command requires.

The syntax line always begins with the name of the com-
mand. Occasionally. that's all you'll need (except, of course.
for pressing (ENTER)). But other commands cither require, or
will accept. parameters - variables which give instructions
to OS-9. And many commands offer you built-in options.

59

The syntax line gives you that information by using these
notations:

Italics — halics indicates a variable for you to supply, for
instance the name of a file (filename). a directory (direc-
tory name), or a complete path to a file or directory (path-
name). Some other variables are: devices (devaame),
memory modules (nodname), process D numbers (pro-
cID). options (options). a list ol parameters (paramlist).,
and text (rexr). (Ina command situation, fext means a
character string terminated by an end-of-line.) Another
variable you will encounter is arglist. or argument [ist.
Similar to paramlist. but is generally broader in scope.
including modifiers, program specifications and so forth.

| | — Brackets indicate that the material within them is
optional to the command.

. — An cllipsis indicates that the material immediately pre-
ceding can be repeated within the command. For instance,
[filename|[...] means that you can. specify more than one
filename to the command.

The command syntax doesn’t include the shell’s built-in op-
tions (for instance 1O redirection), because the shell filters
out its options before the command line is passed to the pro-
gram being called.

6.3 System Commands

60

This section describes the format and use of OS-9 commands.

The following list is a summary of these commands:

Attr Change file attributes

Backup Make disk backup

Binex Convert binary to s-record

Build Build text file

Chd Change working data directory

Chx Change working execution directory
Cmp File comparison utility

Cobbler Make bootstrap file

Copy Copy data

Date Display system date and time
Dcheck Check disk file structure

Del Delete a file

Deldir Delete all files in a directory system
Dir Display file names in a directory
Display Display converted characters

Dsave Generate procedure file to copy files
Dump Formatted file dump

Echo Echo text to output path

Exbin Convert s-record to binary

Format Initialize disk media

Free Display frec space on device

Ident Print OS-9 module identification
Kill Abort a process

Link Link module into memory

List List contents of disk file

Load Load module(s) into memory

Login Timesharing system log-in

Makdir Create directory file

Mdir Display module directory

Merge Copy and combine files

Mfree Display free system RAM memory
0S9Gen Build and link a bootstrap file
Printerr Print full-text error messages

Procs Display processes

Pwd Print working dircctory

Pxd Print execution directory

Rename Change file name

Save Save memory module(s) on a file
Setime Activate and sct system clock

Setpr Set process priority

Sleep Suspend process for period of time
Shell 0S-9 command interpreter

Tee Copy standard input to multiple output paths
Tmode Change terminal operating mode
Tsmon Timesharing monitor

Unlink Unlink memory module

Verity Verify or update module header and CRC
Xmode Examine or change device initialization mode

61

ATTR

ATTR filename

62

[permission abbreviations |

Examines or changes the security permissions of a file.

To enter the command. type Attr followed by the name of the
file whose security permissions are to be changed. Then type
a list of permissions which are to be turned on or off. A
permission is turncd on by giving its abbreviation, or turned
off by preceding its abbreviation with a minus sign. Permis-
sions not explicitly named are not affected. If no permissions
are given, the current file attributes will be printed.

You can’t change the attributes of a file you don’t own. User
zero. can change the attributes of any file in the system.

File permission abbreviations are:

d Directory

S Shareable file

r Read permit to owner

w Write permit to owner

¢ Exccute permit to owner
pr Read permit to public
pw Write permit to public
pe Execute permit to public

You can use the Attr command to change a directory to a file
if all entrics have been deleted from it. You can’t change a
file to a directory with this command (see Makdir).
Examples:

attr myfile ~-pr -pw (ENTER
removes rcad and write permissions from the public.

attr myfile r w e pr Pw re (ENTER

gives the file’s owner. and the public, read. write and execute
permissions.

attr datalog (ENTER

~S-W=Wr

Since the command doesn’t specify permissions, Attr displays
the current permissions of the Datalog file.

BACKUP

BACKUP [e] [s] [-v] [devname] [devname]
Physically copies all data from onc device to another.

A physical copy is performed. sector by sector, without re-
gard to file structures. In almost all cases, the devices speci-
fied must have exactly, the same format (size. density, and so
forth) and must not have defective scctors.

If you omit both device names. the names /D0 and /D1 are
assumed. If you omit only the sccond device name, a single-

unit backup will be performed on the drive specified.

Options arc:

e Exits if any read error occurs
S Prints single-drive prompt message
-V Does not verify

#nK Allow more memory (n=amount of memory),
and therefore speed up the backup procedure

Examples:
backur /D2 /D3 (ENTER

makes a backup of the diskette in Drive 2 on to the diskette in
Drive 3.

backur -u (ENTER)

assumes the names DO and DI, and makes the appropriate
backup without veritication.

63

64

bhackur (ENTER

Readvy to BACKUP from /D@ to
/D1 ?: Y (ENTER)
MYDISK
is beind scratched
OR 7 ¥
Number of sectors corpied: $02706
Yerify rass
Number of sectors verified: %0276

This example shows a complete interchange between the
Backup command and the user who entered it. In the example
/D1, the destination disk, is named MYDISK. **Scratched™
means ‘‘crased’.

The following is an example of a single-drive backup. Back-
up recads a portion of the source disk into memory and then
prompts you to remove the source disk and put the destination
disk into the drive. Then Backup writes on the destination
disk. Then you remove the destination disk and put the source
disk back into the drive. This continues until Backup copies
the entire disk. Giving Backup as much memory as possible
will necessitate fewer disk exchanges.

backup /D@ #32K (ENTER

Ready to BACKUP from /D@ to

Dg 7 ¥
Ready DESTINATION: hit a Kev:
MYDISK
is bheing scratched
OK 7: ¥

Ready SOURCE: hit a Kev:
Ready DESTINATION, hit a Kev:
Ready SOURCE:s hit a Kev:
Ready DESTINATION, hit a Kev:

(several repetitions)

Ready DESTINATION, hit a Kev:
Number of sectors coried: $0270
Yerify pPass

Number of sectors verified: $02706

BINEX
EXBIN

BINEX filenamel filename2
EXBIN filenamel filename2

Binex converts a binary file into an S-Record file, and Exbin
converts an S-Record file into a binary file.

An S-Record file is a type of text file that contains records
representing binary data in hexadecimal character form. This
Motorola-standard format is often directly accepted by com-
mercial PROM programmers, emulators, logic analyzers and
similar devices that are RS-232-interfaced. It can also be use-
ful for transmitting files over data links that can handle only
character-type data: or to convert OS-9 assembler- or com-
piler-generated programs to load on non-0S-9 systems.

Binex converts filenamel, an OS-9 binary format file. to a
new tile named filename?2 in S-Record format. If you invoke
Binex on a non-binary load module file, OS-9 prints a warn-
ing message and asks you i Binex should proceed anyway. A
YT response means yes: any other answer will terminate the
program. S-Records have a header record to store the pro-
gram name for informational purposes, and cach data record
has an absolute memory address which is not meaningful to
0S5-9 since it uses position-independent code. However, the
S-Record format requires them. so Binex will prompt the user
for a program name and starting load address. For example:

binex /D@/CMDSE/scanmnmer scanner.Sli
(ENTER)

Evter starting address for files:
$108

Evter name for header record:
scanner

To download the program to a device such as a PROM pro-
grammer (for example. using serial port /T1), type:

list scanmer.81 »/T1 (ENTER

65

BUILD

BUILD filename

66

Exbin is the inverse operation: filenamel is assumed to be an
S-Record format text file which Exbin converts to pure binary
form on a new file called filename2. The load addresses of
each data record must describe continguous data in ascending
order.

Exbin docsn’t generate or check for the proper OS-9 module
headers or CRC check value required to actually load the
binary headers or CRC check value required to actually load
the binary file. You can use the Ident or Verify commands to
check the validity of the modules if they're to be loaded or
run.

Example:

exbin prodram.51 CMDS/Prodram
ENTER

Builds short text files by copying the standard input path into
the file specified by filename. Build creates a file according
to the filename parameter, then displays a 27" prompt to
request an input line. Each line entered is written to the out-
put path (the file). Entering a line consisting of only a car-
riage return terminates Build.

Examples:
build small_file (ENTER

creates a new file called small _ file and puts into it whatever
you type at the keyboard.

build /P (ENTER
directs whatever you type to the printer.

buwild <mytext /T1 (ENTER

Using Build, you can also transfer, or redirect, material from
one file to another. Instead of the keyboard, the standard in-
put path is the first file you name in the command. The out-
put path is the second. In this example. the mytext file
becomes the input path, and is copied to Terminal 1. the out-
put path.

huwild newfile (ENTER

T THE POWERS OF THE 08-9

7 OPERATING SYSTEM ARE TRULY (ENTER
FANTASTIC,

ENTER

)

)

list newfile (ENTER

THE POWERS OF THE 05-9
OPERATING SYSTEM ARE TRULY
FANTAGSTIC,

This example shows an interchange between Build and the
user. After building newfile, the user employs the List com-
mand to check the contents of the newly built file.

CHD
CHX

CHD pathname or directory name
CHX pathname or directory name

Chd changes the current data directory. and Chx changes the
current execution directory.

Many commands in OS-9 work with user data such as text
files, programs and so forth. These commands assume that
a file is located in the working data directory. Other OS-9
commands assume that a file is in the working execution
directory.

67

CMP

The Chd and Chx commands don’t appear in the CMDS
directory, because they're built in to the shell.

Examples:
chd /D1/PROGRAMS (ENTER

change the current data directory the PROGRAMS data dircc-
tory located on the diskette in drive 1. This example shows
the use of a pathname.

chx ++ (ENTER

moves the user to the directory immediately above the current
exccution directory.

chx binarv._.files/text_pProdraims
ENTER

is another example of the use of a pathname to change
another execution directory.

chx /D@/7CMDSs chd /D1 (ENTER

changes both the execution and data directorics.

CMP filenamel: filename2

68

Opens two files and performs a comparison of the binary
values of the corresponding data bytes of the filcs.

If any differences are encountered, the file oftfset (address)
and the values of the bytes from cach file are displayed in
hexadecimal.

The comparison ends when an end-of-tile marker is encoun-
tered on cither file. Cmp then displays a summary of the
number of bytes compared and the number of differences
found.

COBBLER

Examples:
cmPp red blue (ENTER
Differences

bvte #1 #2

DeRQ0013 v 01
Vit B® B1
DRQOBAZA 9B AB
DORQDOEB 3B 36
0000002C 6D 63

Bvytes compared: QORQRA2D
Bytes different: 20002 DS

cmP red red (ENTER
Differences
NDI'IE e

Bytes compared: 2RQBQA2D
Bvtes different: rgryrdraurdeln]

COBBLER devname

Creates the OS-9BOOT file required on any disk from which
0OS-9 is to be bootstrapped.

The boot file consists of the same modules which were loaded
into memory during the most recent bootstrap. (To add mod-
ules to the bootstrap file use the OS9Gen command.) Cobbler
also writes the OS-9 kernel on the first fifteen sectors of track
34, and excludes these sectors from the diskette allocation
map. I any files are present on these sectors, Cobbler will
display an crror message.

The boot file must fit into one contiguous block on the disk-
ette. For this rcason, Cobbler is normally used on a freshly
formatted diskette. It Cobbler is used on a diskette without a

69

COPY

contiguous block of storage large enough to hold the boot
file, the old boot file may be destroyed. and OS-9 won’t be
able to boot from that diskette until it's reformatted.

Example:
cobbler /D@ (ENTER

WARNING - FILE(S) OR KERNEL
PRESENT ON TRACK 34 - THIS
TRACK NOT REWRITTEN

Saves current device attributes on the current system disk.

Note: This command is often used after Xmode to per-
manently change device attributes.

COPY pathname pathname [-s]

70

Copies data from the first file or device specified to the
second.

The first file or device must already exist. The second file is
automatically created if the second pathname is a file on a
diskette. Data can be of any type and is not modified in any
way as it’s copied.

Copy transfers data using large block reads and writes until it
reaches an end-of-file marker on the input path. Because
block transfers arc used, normal output processing of data
doesn’t occur on character-oriented devices such as terminals
and printers. Therefore it's better to use List Copy when a
file consisting of text is to be sent to a terminal or printer.
With Copy. important codes (¢.g. line feed) won’t be added.

The -s option causes Copy to perform a single-drive copy
operation. The second pathname must be a full one if you use
-s. In a single-drive procedure, Copy reads a portion of the
source disk into memory. Then you remove the source disk
and put the destination disk into the drive, and enter a **C”’

DATE |t]

then Copy writes on the destination disk. with the process
continuing until the entire file is copied.

Using the shells alternate memory size modificr to give a
large memory space increases speed and reduces the number
of media exchanges required for single-drive copies

Examples:
copy filel file2 #15K (ENTER
copies filel to file2 giving 15K of memory.

cory /D1/J0E/views /DO/PETER
messades (ENTER

copies the news file on the diskette in Drive | to the mes-
sages file on the diskette in Drive 0.

copy /TERM /P (ENTER

sends — copics to the printer of anything you type into the
console.

corpy /D@/cat /D@/animals/cat
-5 #37K (ENTER)

Ready DESTINATION: hit C to
continues ¢

Ready SOURCE: hit C to continue: ¢

Ready DESTINATION: hit C to
continue: ©

This is an example of the alternating method used in a single-
drive copy operation.

Displays the current date. and. if vou use the t option. the
current system time.

71

DCHECK

Examples:

date t
displays the system date and time
date t */P (ENTER
directs the command’s output to the printer.

setime (ENTER)

YY/MM/DD HH.MM,L.S5S
TIME? 81/04/715 14,19.0¢@

date (ENTER

Arril 15, 1981

date t (ENTER
Arril 15, 1981 14.20.20

This sequence illustrates setting a new date and time for the
system by using the Setime command. and then using Date
and 1t’s t option to check system date and time.

DCHECK [-opts| devname

72

Checks disk file structure.

1U's possible for sectors on a diskette to be marked as being
allocated, but in fact not to be actually associated with a file
or the diskette’s free space. This can happen if a diskette is
removed from a drive while files are still open. or if a dircc-
tory which still contains files is deleted. Dcheck is a diagnos-
tic you can use to detect this condition, as well as to check
the general integrity of the directory/file linkages.

Dcheck is given the drive number of the diskette to be
checked as a parameter. After verifying and printing some
vital file structure parameters. Dcheck follows pointers down
the diskette’s file system trec to all directories and files on the

diskette. As it does so. it verifies the integrity of the file
descriptor sectors, reports any discrepancies in the directory/
file linkages, and builds a sector allocation map from the seg-
ment list associated with cach file. If any file descriptor scc-
tors (FDS) describes a segment with a cluster not within the
file structure of the diskette. Dcheck reports a message like
this:

(pathname)

This indicates that a segment starting at sector xxxxxy and
There’s a good chance the entire FD is bad if any of its seg-
ment descriptors is bad. The allocation map is not updated for
corrupt FDs.

While building the allocation map. Dcheck also makes sure
that cach diskette cluster appears once and only once in the
file structurc. If it discovers duplication, Dcheck displays a
message like:

Cluster $Sxxxxvye was previously allocated

This message indicates that Dcheck has found cluster xvxxxy
at least once before in the file structure. The message may be
printed more than once it a cluster appears in a segment in
more than one file.

Then Dcheck compares the newly created allocation map with
the allocation map stored on the diskette, and reports any
differences in messages like:

Cluster $xvxvavy in allocation map but not in file
structure

Cluster $xvvawy in file structure but not in allocation
map

The first message indicates that sector number vvvrey (hexa-
decimal) was found not to be part of the file system. but was
marked as allocated in the diskette’s allocation map. In addi-
tion to the causes mentioned in the first paragraph, some sec-
tors may have been cxcluded from the allocation map by the
Format program because they were defective. Or they may be

73

74

the last few sectors of the diskette. the sum of which was too
small to compose a cluster.

The second message indicates that the cluster starting at sec-
tor xxwvxwy is part of the file structure but is not marked as
allocated in the diskette’s allocation map. It's possible that
this cluster may be allocated to another file later. overwriting
the contents of the cluster with data from the newly allocated
file. (Any clusters that have been reported as “previously
allocated™ by Dcheck. as described above. surely have this
problen.)

Dcheck options include:

-$ Displays count of files and directories
only

-b Suppresses listing of unused clusters

-p Prints pathnames for questionable
clusters

-w = pathname Specifies path to directory tor work
files

-m Saves allocation map work files

-0 Prints Dcheck’s valid options

The -s option causes Dcheck to display a count of files and
directories only. Only FDs are checked for validity. The -b
option suppresses listing of clusters allocated but not in file
structure. The -p option causes Deheck to make a second pass
through the file structure, printing the pathlists for any clus-
ters that Dcheck finds as “ralready allocated™ or “in file
structure but not in allocation map™™. The -w option tells
Dcheck where to locate its allocation map work file(s). The
pathname specitied must be a full pathname for a directory.
(The directory /DO is used if -w s not specified.) It is recom-
mended that this pathlist not be located on the diskette being
Dchecked if the diskette’s file structure integrity is in doubt.

Dcheck builds its diskette allocation map in a file called parh-
name/Deheckpp). where pathname is as specified by the -w
option. and pp is the process number in hexadecimal. Each
bit in this bitmap file corresponds to a cluster of sectors on
the diskette. 1f the -p option appears on the command line.,
Dcheck creates a second bitmap file (<pathname2>/
Dcheckppl) that has a bit set for each cluster Dcheck finds as

“previously allocated™ or “*in file structure but not in alloca-
tion map”’. Dcheck then makes another pass through the
directory structure to determine the pathnames for these ques-
tionable clusters. You can save the bitmap work files by
specifying the -m option on the command line

For best results. Dcheck should have cxclusive access to the
diskette being checked. Otherwise Dcheck may be fooled if
the diskette allocation map changes while it’s building its bit-
map file from the changing file structure. Dcheck can’t pro-
cess diskettes with a directory depth greater than 39 levels.

Examples:
deheck /D2 (ENTER

Yolume - My system diskK’ on
device /D2

$Q@29A bytes in allocation mar

1 sector per cluster

Q@276 total sectors on media

Sector 000002 1is start of root
directory FD

$001@ sectors used for id:
allocation mar and root
directory

Buildind allocation map workK
filess.

Checking allocation mar file...

‘My svstem disk’ file structure is

intact

1 directory

2 files

decheck -mew=/D2 /D@ (ENTER

Yolume - *Svstem disk’” on device
/D@

$0@46 bvtes in allocation mar

1 sector per cluster

$QAP2ZA total sectors on media

Sector $00@0Q2 is start of root
directory FD

75

76

$Q019 sectors used for id,
allocation map and root
directory '

Buildindg allocation mar work
filesss

Ciluster #00049 was pPreviously
allocated

*%% Bad FD sedment ($111111-
$23AGF@) for file: /D@/TEXT/
Junky.file

Checking allocation mapr file...,

Cluster $0Q00038 in file structure
bitt mot in allocation mar

Cluster $00003B in file structure
but not in allocation mae

Cluster $02018B9 in allocation mar
but mot in file structure

Cluster $00@1BB in allocation mar
but not in file structure

Pathlists for suestionahble
clusters:

Cluster $000038 in Path:
/d@/089koot

Cluster $00003B in path:
/d4@/0%9boot

Cluster $00004¢ in pPath:
/d@/0858tboot

Cluster $000040 in pPath:
/d@/test/doublesfile

1 previously allocated cluster
found

2 clusters in file struycture but
not in allocation mar
2 clusters in allocation map but

not in file structure
1 bad file descrirtor sector

‘System disk’ file structure is
not intact

3 directories

25 files

DEL

DEL [-x] filename |...]

Deletes the file(s) specified.

You must have write permission for the file(s). Directorics
cannot be deleted unless they're changed to files or you use
the Dcldir command. (See the Attr command description.)

If you use the -x option. Del assumes the current execution
directory.

Examples:

del text.prodram old_test_eprodram

ENTER
deletes the two files specified.
del /D1/vnumber_fiuve (ENTER

uses a complete pathname to specify the file named number —
five on the diskette in Drive [,

del -x cmds.subdir/file (ENTER
specities a file called emds.subdir/file in the current exccution
directory.

dir /D1 (ENTER

directory of /D1 14,229,406
myfile newfile

del nrnewfile (ENTER
dir /D1 (ENTER

directory of /D1 14.,382.37
myfile

In this interchange. the user first employs the Dir command

to see what files are in the /DI directory. Command output
indicates that /D1 has two files: myfile and newlile. The user

77

DELDIR

employs the Del command to delete newfile. and then uses
Dir again to make certain that newfile has been deleted.

DELDIR directory name

78

Deletes all files in a directory and the directory itself’.

This command is a convenicnt alternative to manually delet-
ing directories and the files they contain. Use it only when
you want to delete everything in a directory. including the
directory itselt. other directorics and all the subdirectories and
files in them.

When Deldir runs, it prints a prompt message after the com-
mand line:

deldir OLDFILES

Deleting directory file.

lLList directorvy s delete directory
orauit ?{1/d/9)

An | response causes a Dir ¢ command to run so you can see
the files in the directory before they're deleted.

A d response initiates the deletion process.
A q response aborts the command before action is taken.

The directory to be delcted may include other directories
which may themselves include other directories. and so forth.
In this case, Deldir operates recursively (that is, it calls itself)
so all lower-level directories are automatically deleted. The
lower-level directories are processed first.

You must have correct access permission to delete all files
and dircctories encountered. If not. Deldir will abort when
it encounters the first file for which you don’t have write
permission.

The Deldir command automatically calls the Dir and Attr
commands, so they must reside in the current execution
directory.

DIR

DIR [e] [x] [directoryname or pathname]

Displays a formatted list of file names in a directory.
If no parameters arc given, the current data directory is
shown. It the x option is given, the current exccution direc-
tory is shown. If a full pathname ol a directory is given, it is
shown. Results are displayed on the standard output path.
If the ¢ option is included, cach file’s entire description is
displayed: size, address. owner, permissions, date and time
of last modification.
Examples:

dir (ENTER
displays the current data directory.

dir x (ENTER
displays the current execution directory.

dir x e (ENTER

displays the entire description of all files in the current execu-
tion directory.

dir .. (ENTER

displays the parent of the current working directory — the
directory immediately above it in the hierarchy.

dir newstuff (ENTER

displays the newstuft directory

79

DISPLAY

dir e TEXT_PROGRAMS (ENTER

displays the entire description of all files in the directory
called TEST _ PROGRAMS.

DISPLAY <hex> |...]

DSAVE

Reads one or more hexadecimal numbers given as param-
cters. converts them to ASCII characters. and writes them to
the standard output.

Display is commonly used to send special characters (such as
cursor and screen control codes) to terminals and other VO
devices.

Examples:
disrlay @C >P (ENTER
reroutes “form feed” — hex 0C — to the printer.

display 41 42 43 44 435 46 (ENTER
ABCDEF

is an cxample of a command and the resulting output:
ABCDEF are ASCII characters corresponding to hex 41 42
43 44 45 4d6.

DSAVE [-opts| [devname] [directoryname or pathname)

80

Backs-up or copices all files in one or more directories.

Dsave is unlike most other commands in that it does not
directly affect the system. Instead, it generates a procedure
file which you execute later to actually do the work.

When you run Dsave, it writes copy commands to standard
output to copy files from the current data directory on dev-
name (the default is /D0O) to the directory specified by direc-
toryname or pathname. 1f you don’t specify a directory name
or pathname the copy is performed to the data directory that
is the current directory at the time the Dsave procedure file is
executed.

If Dsave encounters a directory file, it automatically includes
Makdir and Chd commands in the output before generating
copy commands for files in the subdirectory. Since Dsave is
recursive in operation. the procedure file exactly replicates all
levels of the file system from the current data directory down-
ward (such a section of the file system is called a ““subtree™).

If the current working directory happens to be the root direc-
tory of the disk, Dsave creates a procedure file that backs up
the entire disk file by file. This is useful when it’s necessary
to copy many files from diskettes formatted differently. or
from floppy diskettes.

Dsave options are:

-b — Make output diskette a system
diskette by using source disk-
cette’s OSYBoot file, if present

-b = pathnamel —- Make output diskette a system
diskette using pathname as
source for the OS9Boot file

-1 — Indent for directory levels
-1 — Do not process directories be-
low the current level
-m —- Do not include Makdir com-
munds in procedure file
-sinteger — - Set copy parameter to integer K
Examples:

chd /D2 (ENTER)
dsave /D2 »/D@/makecory (ENTER

chd /D1 (ENTER
/D@ /makecopy (ENTER

The first command positions the user in /D2, the directory to
be copied. Then Dsave makes a procedure file — actually a

81

DUMP

directory -- makecopy. The Chd command specifies that the
copy is to be made on the the ‘DI directory. and the final
command cxecutes the procedure file.

DUMP |[filename or devname|

82

Produces a formatted display of the physical data contents of
the path specified. which may be a diskette or any other /O
device.

If you don’t specify a filcname. Dump uses the standard input
path — the keyboard. Dump writes output to the standard
output path — the video display. This command is commonly
used to examine the contents of non-text files.

Dump displays data 8 bytes to a linc in both hexadecimal and
ASCII character format. Data bytes that have non-displayable
values are represented by periods in the character arca.

The addresses displayed on the dump are relative to the be-
ginning of the file. Because memory modules are position-
independent and stored on files exactly as thev exist in
memory, the addresses shown on the dump correspond to the
relative load addresses of memory-module files.

Examples:
dume (ENTER

displays keyboard input in hex. Output is written to the video
display.

dume B/D1

The “(ct " symbol causes OS-9 to treat the entire disk as a file.

ECHO

ECHO text

Sample Output:

dump SY¥S5/password

Addr
OO0
008
P01
2018
PO2 0
P28
PO30
2038

Addr
P04
pR48
P05
058
00D
pOGE
0070

The first column indicates the starting address. The next cight
columns (01 through EF) display data bytes in hexadecimal
format. The final column (0 through E) displays data byes in
ASCII' format. Non-ASCII displayable bytes are shown as

1 2 345¢67

8.9 A B C D E_F

2CZC3V2C3132382C
2F44302ZFA434D44353
2CZEZC5348454C4C
PDE553458532312C2C
312C3132382C2E2C
ZEZCS3484354C4C0D
S0934552322C2C3z2
2C3132382C2EZCEE

205348454C4CeD35
334352332C2C332C
313238ZC2EZCZEEC
534B8454CA4COD5553
45332342C2C342C31
32382C2E2CEEZCS3
48454C4C00

122128
/D@/CMDS
++ +SHELL
+UBERL + s
1412844
« +SHELL.,
USERZ 12
112840,

s SHELL .U
SER3» 13
12814 14
SHELL . US
ER4 4,1
281y 1448
HELL »

periods, in the ASCII character display section.

Echocs entered text to the standard output path

Echo is typically used to generate messages in shell procedure
files or to send an initialization character sequence to a ter-

84

minal, The text shouldn™t include any of the punctuation char-
acters used by the shell.

Examples:
echo HELLO:, HOW’'S IT GOING?Y

prints the message on the screen. This example would be useful
as a background task.

echo >/P LISTING: OF PASSKWORD FILE:
list S¥YS/rPassword /P&
8003

eof

prints the message - - listing of password file — to the printer
and lists the file SYS/password to the printer as a background
task.

LISTING OF PASSWORD FILE
@128 /D@/CMDS v sSHELL
USERL s +1 41284+ s SHELL
USERZ ++24+128 4+ s+ +SHELL
USER3»+3+128 4 s+ +SHELL
USERA » 44128+ 54 +SHELL

Here is the example run.

echo »/TERM **¥WARNING** DISK ABOUT
TO BE SCRATCHED! (ENTER)

cchoes the text to the console.

echo */P LISTING OF TRANSACTION
FILES List Trans /P8 (ENTER

combines two commands. The first echoes the entered text to
the printer. The sceond (List) directs the contents of the trans
file to the printer.

FORMAT

FORMAT devname

Physically initializes. verifies. and cestablishes an inital file

structure on a diskette. All diskettes must be formatted before

you can use them on an OS-9 system.

The diskette to be formatted must NOT be write protected.

The formatting process works this way:

I. Format physically mitializes and sectors the diskette

surface.

2. Format rcads back and verifies cach sector. If a sector

fatls to verity after several attempts, iCs excluded from the
mitial free space on the diskette. As the verification pro-
ceeds. track numbers are displayed on the standard output

device.

|

The dishette allocation map. root directory . and identifica-

tion scctor are written to the st few sectors of track

sero. These sectors must not be defective.

Format will prompt for a diskette volume name. which can be

up o 32 characters Tong and can include spaces or punctua-

tion. (Later. you can use the Free command to display the

name.)

For step-by-step instructions on formatting. refer o Genting

Started with OS-9.

FREE

FREE [devname]|

86

Displays the number of unused 256-byte sectors on a device.
These sectors are available for new files or for expanding
existing files.

The device name you specify must be a disk drive. Free also
displays the diskette’s name, creation date. and cluster size.
I you don’t specify a device, drive 0 is assumed.

Data scctors are allocated in groups called “clusters™. The
number of sectors per cluster depends on the storage capacity
and physical characteristics of the specific device. This means
that small amounts of free space are divisible into fewer files.
For example. if a given disk system uscs 8 sectors per clus-
ter, and a Free command shows 32 sectors free, a maximum
of four new files could be created. even if cach has only one
cluster.

Examples:

free (ENTER

COLOR COMPUTER DISK created on:
83/@5/28

Caracity: B3@® sectors (l-sector
clusters)

15 Free sectorss lardest hblock
12 sectors

free /D1 (ENTER

DATA DISK created on: B3/0B6/16

Caracitvys B30 sectors (l-sector
clusters)?

445 Free sectorss lardest block
442 sectors

IDENT

IDENT filename [-opts]

Displays header information from OS-9 memory modules.

Ident displays the module size. CRC bytes (with verification),
and, for program and device driver modules, the execution
offset and the permanent storage requirement bytes. ldent
prints and interprets the type/language and attribute.revision
bytes. Ident displays the byte immediately following the mod-
ule name because most Microware-supplied modules set this
byte to indicate the module edition.

Ident displays all modules contained in a diskette file.

Options are:

-m Assumes that filename is a module in memory

-v Does not verify module CRC

-X 6Assumes that filename 1s in execution
directory

-S Displays on a single line module information
including edition byte (first byte after module
name): type/language byte: module CRC; **.”’
if CRC verifics, """ it 1t doesn’t, a blank
space if you use the “*-v'" option; and module
name.

Examples:

ident -m ident (ENTER

Header fors: ITdewnt

Module size: $A6CE #1742

Module CRC: s6114F4 (Good)

Hdr Pparitvy: $EQD

Exec. off: $0235 #3565

Data size: $9899C #2460

Edition: 006 #G

87

Tv/lLa At/Ru $11 $81
Progd mod, BBRY obds re-en

In the example. Hdr parity = header parity: Exec. off =
execution offset: Data size = permanent storage require-
ments: Edition = first byte after module name; Ty/La/ AYRv
= type/language attributesrevision: and Prog mod. 6809 obj.
re-cn = module type, language. attribute.

ident /D@/0S9hoot -5 (ENTER)
2 $E1 $524CEB . CCDisk
87 $F1 $EDF@4BE ., DO

82 $F1 $69933D , DI

82 %F1 $G6536D3 . D2

82 $F1 $E155A8 ., D3

3 %E1 $QAGABA . CCIO

83 $F1 $3EDF33 . TERM

4 «C1 4BDO279 .+ I0Man

6 $D1 $C@GCBG . RBF

7 $D1 $04D9EG . S5CF

S $C1 %$1785D@ . SvsGo

2 $C1 $7255DB + ClocKk
2@ %11 $S5S9ECCB + Shell

2 $E1 $31BES7 . RSZ3Z
83 $F1 $7BFGCE . T1

1 $E1 $316E27 , PRINTER
83 $F1 $B0B@&DF . P

3 D1 $5F7ZA3 + PipeMan
2 %E1 $5BEZBSG .+ Piper
80 $F1 $CCAGAF . Pire

Since the -s option appears in the command line. ldent dis-
plays cach module’s information on a single hne. In the first
line of the output, for instance. 1 = cdition byte (first byte
after name); $CO = type/language byte; SA366DC = CRC
value: . = OK CRC cheek: and OS9p2 = module name.

KILL

KILL proclID

Aborts the process specificd by its process 1D number.

The process to be aborted must have the same user 1D as the
user executing the command. (Use the Procs command to
obtain the process 1D numbers.)

If a process is waiting for IO it may not die until it com-
pletes the current /O operation. Theretore, if you Kill a
process and the Procs command shows it still exists, it's
probably waiting to receive a line of data from a terminal
before it can die.

Since this is a built-in shell command, it doesn’t appear in the
CMDS directory.

Examples:
Kill 5 (ENTER

kills the process with the 1D number 5

procs (ENTER)

User # ID Pty _ state Mem Primary module
@ 2 @ active 2 Shell
[i [warting 1 Svsgo
[3 @ sleepind Z¢ Coprv

k1l1l 3 'ENTER
procs IENTER

User # ID Pty _ state Mem Primary module
@ by i active o Shell
@ 1 @ Wwaiting 1 Svsdgo

In this example. the user employs the Proes command to de-
termine the 1D number of the process to be killed. and finds
that the number is 3. The Kill command Kills the process.
Then the user again employs Procs. this time to check
whether the targeted process has died. Since it doesn’t appear
in the output. the user knows the process has been Killed.

89

LINK

LINK memory module name

LIST

LIST filename |...]

9%

“Locks™ a previously loaded module into memory.

The link count of the module specified is incremented by one
cach time it is ““linked.”" Use the Unlink command to “‘un-
lock™ the module when you no longer need it. You must use
the Load command prior to using Link. Modules that are not
Linked in memory will not be included in the “*Cohbbler™
0OS9Boot file. if you use the Cobbler command.

Examples:
link edit (ENTER)

locks the edit module into memory.

Lists the contents of a text file.

This command copies text lines from the filename to the stan-
dard output path. The program terminates upon reaching the
end-of-file of the last input path. If more than onc filename is
specified, the first file will be copied to standard output. the
second file will be copied next. and so forth.

This command is most commonly used to examine or print
text files.

Examples:
list /D@/startup :/P & (ENTER

Lists the contents of the Startup file, with output directed to the
printer. The ampersand tells OS-9 to make the printing job a
concurrently exccuted task.

LOAD

LOAD pathname

list /D1/USERS/document /D@/myfile
/D@ /BOB/ text(ENTER

Lists the contents of three files.
list /TERM /P (ENTER)

Copies what you type at the keyboard to the printer. To go
back to the standard output path — the video display — press
(CLEAR) and (BREAK) simultancously.

build animals (ENTER)
? cat (ENTER

? cow (ENTER)

? dog (ENTER)

? elephant (ENTER)

T bird (ENTER)

7 fish (ENTER)

7 (ENTER)

list animals (ENTER)
cat

cow

dod

elerphant

Bird

fish

Here the user employs Build to create a file called animals,
and enters six items into it. The List command. with the file-
name animals as a parameter, displays the contents of the
new file.

Loads modules from file into memory.
The path specitied is opened and one or more modules is read

from it and loaded into memory. The names of the modules
are added to the module directory. If @ module is Toaded that

91

has the sane name and type as @ module alrcady in memory,
the module with the highest reviston level is kept.

Example:
mdir (ENTER!

Module Directory at 13:36:47

0gg 0&9rs INIT
Boot CCDiskK De

D1 Dz D3
CCIO TERM I0Man
RBF 5CF 5vsGo
Clock Shell REZ3IE
T1 PFRINTER P
FireMan Firer Fire
Mdir

load edit (ENTER)
midir (ENTER)

Module Directory at 13:37:14

0549 0592 INIT
Boot CCDisk D@

D1 DZ D3
CCIO TERM I0Man
RBF 5CF 5vsGo
Cloch Shell REZ3Z
T1 PRINTER P
FireMan Pirer Pire
Mdir Edit

First. the Mdir command displays the names of modules cur-
rently resident in memory. Then the Load command loads the
Edit module into memory. Mdir again lists the memory mod-
ules, this time showing that Edit has successtully been added to
memory.

92

LOGIN

LOGIN

Provides login security on timesharing systems.

Login is automatically called by the timesharing monitor
Tsmon, and can also be used after initial log-in to change a
terminal’s user.

Login requests a user name and password, which it checks
against a validation file. If the information is correct, the us-
er’s system priority, user ID, and working directories are set
up according to information stored in the file, and the initial
program — usually shell — specified in the password file is
executed. If the user can’t supply a correct user name and
password after three attempts, the process is aborted.

The validation file is /DO/SYS/password. The file contains
one or more variable-length text records, one for cach user
name. Each record has the following fields, delimited by
commas:

[. User name (up to 32 characters; may include
spaces). If this field is empty. any name will match.

2. Password (up to 32 characters; may include spaces).
If this field is omitted, no password is required by
the user whose record this is.

)

User index (1D) number (from O to 65535; 0 is su-
peruser). This number is used by the file security
system, and as the system-wide user 1D, to identify
all processes initiated by the user. The system man-
ager should assign a unique ID to cach potential
user.

4. Initial process (CPU time) priority: 1-255.

5. Pathlist of initial execution directory (usually /D0O/
CMDS).

6. Pathlist of initial data directory (the specific user’s
directory).

93

94

7. Name of initial program to exccute (usually Shell).
Don’t use shell command lines, such as Dir or
Dcheck, as initial program names.

Here’s a sample validation file:
.0.128./DO/CMDS. . .SHELL
USERI..1.128.....SHELL
USER2..2.128.....SHELL
USER3..3.128.....SHELL
USER4..4,128.....SHELL

To use the Login command, cnter:
lodin (ENTER

This will cause prompts for the user’s name and (optionally)
password to be displayed. If they're answered correctly. the
user is logged into the system. Login initializes the user num-
ber, working execution directory, and working data directory,
and executes the initial program specified by the Password
file. It also displays the date. time and process number
(which is nor the same as the user 1D).

If the shell from which Login was called will not be nceded
again, you can discard it by using the Ex command to start
the Login command. For example:

ex login (ENTER

To edit Password and add users to the system, use the OS-9
text editor.

Logging Off the system

To log off the system, terminates the inttial program specified
in the password file. For most programs (including shell) this
involves typing an cnd-of-file character as the first character
on a line. (CLEAR) and (BREAK), pressed simultaneously. signal
end-of-file and log you oft.

Displaying a ‘‘Message-of-the-Day”’

A file named Motd, in the SYS directory. will cause Login to
display its contents on the user’s terminal after successful
login. (This file isn’t necessary for Login to operate.)

Example:
login (ENTER

0S-9 Level | Timesharing System Verison 1.2 83/12/04
13:02:22

User mame?: SUP@TUSET
Password: secret

Process #@7 lodded B3/12/04
13:03:00
Welcome!

To edit Motd, use the OS-9 Text Editor.

MAKDIR

MAKDIR pathname or directory name

Creates a new directory according to the pathname given. The
pathname must refer to a parent directory for which the user
has write permission.

The new directory is initialized and at first does not contain
files except for the *.”” and **..”" pointers to its parent direc-
tory and itself, respectively. All access permissions are cn-

abled (cxcept sharable).

It’s customary, but not mandatory, to capitalize dircctory
names.

Examples:
makdir /D1/STEVE/PROJECT (ENTER
creates a directory by using its full pathname from the root.
maKdir DATAFILES

creates a directory called DATAFILES within the current
working directory.

95

makdir +./SAVEFILES (ENTER

creates a directory called /SAVEFILES in the parcnt
directory.

MDIR

MDIR [e]

Displays the present module names in the system module
dircctory. that is all modules currently resident in memory.

If you use the e option, you'll sce a full listing of the physical
address. size, type, revision level, reentrant attribute, user

count, and name of each module. All numbers shown are in
hexadecimal.

Examples:
mdir (ENTER

Module Directory at 14:44:35

059 0s9e2 INIT
Boot CCDisk D@

D1 D2 D3
CCIOD TERM I0Man
RBF SCF Svsdo
Clock Shell RE232
T1 PRINTER P
PireMan Pirer Pire
Mdir

96

MERGE

mdir e (ENTER

Module Directory at 1@:35:04

ADDR SIZE TY RY AT UC NAME_
C3es 2F F1 i r D@
Fgb9 7EB C1 i1 r 059
F832 dF4d C1 1 r 0sapz
FD4B 2E C@ 1 r INIT
c363 798 E1 -1 r 2 CCIO
CAFB 38 F1i 1 r 2 TERM

This is a partial listing of all the attributes of the modules in
memory after cxccuting the above command.

Warning: Many of the modules by Mdir are OS-9 system
modules and executable as programs. Always check the mod-
ule type code before running a module if you aren’t familiar
with it!

MERGE [filename] |...]

Copies multiple input files specified by the parameter(s) to
the standard output path.

Merge is commonly used to combine several files into a sin-
gle output file. Data is copied in the order the filenames are
given. Merge does no output line editing (such as automatic
line feed). The standard output is generally redirected to a file
or device.

Merge can be used to append or copy any type or mixture, of
files to another device.

Examples:

merde filel file2 filed filed
»combined,file (ENTER

97

MFREE

MFREE

OS9GEN

0S9Gen devname

98

merges the four files specified into a new file called com-
bined.file and sends the results directly to the new file, in-
stead of to the video display.

merge compile.list asm.list >/P

ENTER

merges the two files specified and sends the output to the
printer.

Displays a list of memory arecas not presently in use and
therefore available for assignment,

Displays the address and size of each free memory block. The
size is given as the number of 256-byte pages. This informa-
tion is useful to detect and correct memory fragmentation.

Example:

mfree (ENTER

Address Pades

E@2-BI1FF 164
Bded-BAFF 1

Total rpages free = 1G5
Grarhics Memory Not Allocated

Creates and links the OS9Boot file required on any disk from
which OS-9 is to be bootstrapped.

0OS9Gen is used to add modules to an existing boot, or to
create an entirely new boot file. (If you want an exact copy of
the existing OS9Boot file, use the Cobbler command in-
stead).

The name of the device on which the OS9Boot file is to be
installed is passed to OS9Gen as a command line parameter.
0S9Gen then creates a working file called tempboot on the
device specified. Next it reads file names (pathnames) from
its standard input, one pathname per line. Every file named is
opened and copied to tempboot. This is repeated until an end-
of-file marker or a blank line is reached on OS9Gen’s stan-
dard input. All boot files must contain the OS-9 component
modules listed in section 5.1.

After all input files are copied to tempboot, the old OS9Boot
file, if present, is deleted. Tempboot is then renamed
OS9Boot, and its starting address and size are linked in the
disk’s Identification Sector (LSN 0) for use by the OS-9 boot-
strap firmware.

Note: Any OS9Boot file must be stored in physically
contiguous sectors. Therefore, OS9Gen is normally
used on a freshly formatted disk. If the OS9Boot file is
fragmented, OS9Gen prints a warning message indicat-
ing that the disk can’t be used to bootstrap OS-9.

The list of file names given to OS9Gen can be entered from a
keyboard, or OS9Gen’s standard input can be redirected to a
text file containing a list of file names. If you enter names
manually. no prompts are given, and you enter the end-of-file
marker (usually or a blank line) after the line

containing the last filename.
Examples:

To manually install a boot file on device /DI which is an
exact copy of the OS9Boot file on device /DO.

059Gen /D1 (ENTER
/D@/0589Boot (ENTER
CLEAR) (BREAK

99

PRINTERR

PRINTERR

100

The first command line runs OS9Gen. The second enters the
name of the file to be installed, and the third enters an end-
of-file marker.

To manually install a boot file on device /D1 which is a copy
of the OS9Boot file on device /DO with the addition of mod-
ules stored in the files /DO/tape.driver and /D2/video.driver:

059Gen /D1
/D@/059Boot
/D@/tare.driver
/D2/videnc.driver
CLEAR

The first command line runs OS9Gen. The second enters the
main boot filc name. The third and fourth enter the names of
the two files to be added. and the fifth cnters and end-of-file
marker.

To do exactly what the previous example does, but to do it
automatically by redirecting the standard input for OS9Gen;

build /D@/bootlist

? /D@/0S9Boot

7 /D@/tare.driver
/D2/video.driver

ENTER

059Gen /D1 </D@/bootlist

3 3

The first command line uses Build to create a file called
Bootlist. The next three lines enter the names of the three
files within Bootlist. The fifth line terminates Build, and the
sixth and final line runs OS9Gen with input redirected from
the new Bootlist file.

Prints full-text error messages.

This command replaces OS-9 error printing routine (F$Perr),
which prints only error code numbers, with a routine that

PROCS

PROCS |e]

reads and displays textual error messages from the file /DO/
SYS/errmsg. Printerr’s effect is system-wide.

A standard crror message file is supplied with OS-9. The user
or editor can replace or modity this file, which is a normal
text file with variable-length lines.

Each error message line begins with the error number code
(in ASCII characters), a delimiter, and the error message text.
The error messages need not be in any particular order. De-
limiters are spaces or any character numerically lower than
$20. Any line with delimiter as its first character is con-
sidered to be a continuation of the previous line(s); this per-
mits multi-line crror messages.

Warning: Once the Printerr command has been used. it can
not be undone. Once installed, DO NOT unlink the Printerr
module. Printerr uses the current user’s stack for an /O buf-
fer, so users arc encouraged to reserve reasonably large
stacks. The only way to effectively Unlink Printerr is to re-
boot or reset the machine using OS-9.

Example:
printerr (ENTER

Note: The errmsg file must be on /DO).

Displays a list of processes running on the system.

Normally lists only processes having the user’s 1D. If the ¢
option is given, Procs lists processes of all users. The display
is a “‘spapshot’” taken at the instant the command is executed:
processes can switch states rapidly. usually many times per
sceond.

Procs shows the user and process 1D numbers, priority, state
(process status), memory size (in 256 byte pages). primary
program module. and standard input path.

101

Example:
procs e (ENTER

User # Id Pty state Mem Primary module

Shell
SvsGo

2 @ active 2
1 @ waiting 1
3 1 waiting 2 Tsmon
4 1 waiting 4 Shell
5 1 4

active G BASIC®9

PWD
PXD

PWD
PXD

Pwd shows the path from the root directory to the current
data directory. Pxd shows the path to the current execution
directory.

0S-9 programs use both commands to track the actual physi-
cal location of files. People use it when they get “‘lost’" in the
file system. Both commands, show a path **home’’.

Examples:

chd /D1/STEVE/TEXTFILES/MANUALS
ENTER

using a full pathname, Chd changes the user’s current data
directory, so the user is now in the MANUALS directory.

rpid (ENTER
/DI/STEVE/TEXTFILES/MANUALS

Pwd shows the full path to the working directory.

chd .. (ENTER
rwd (ENTER
/DI/STEVE/TEXTFILES

102

RENAME

The user **backs up’” one level in the directory hierarchy, and
then asks what the working directory is. Pwd shows that it is
now TEXTFILES.

chd . ENTER

pwd (ENTER
/D1/8TEVE

The user again backs up. and sees, with Pwd, that the work-
ing directory is now STEVE.

pxd (ENTER
/D@/CMDS

The user sees that the current exccution dircctory is CMDS.

RENAME filename new filename

Gives the file or directory specified in the pathlist a new
name.
The user must have write permission for the file in order to

change its name. It’s not possible to change the names of

DR ce o

devices, **."", or

Examples:
reriame blue pPurple

gives the new name purple to the file formerly called blue.
rename /D3/user9/test teme

gives the new name temp to the file formerly called /test.
dir

Directory of + 16:22:53
myfile animals

rename animals cars (ENTER
dir (ENTER

103

Directory of . 16:23:22

myfile cars
In this sequence. the user employs Dir to see the name of
files in the current data dircctory. Then Renames changes
name of file called animals to the new name cars. Another
Dir command shows that the name has been changed.

SAVE

SAVE filename modname |...|

Creates a new file and writes a copy of the memory mod-
ule(s) specified onto the file.

The module name(s) must exist in the module directory when
saved. Save gives the new file access permissions for all
modes cxcept public write.
Note: Save’s default directory is the current data direc-
tory. Executable modules should generally be saved in
the default exceution directory.
Examples:

save DO/CMDS/worKcount wcocount

saves the weount module into the newly created file called
/workcount in the /DO/CMDS.

save /Di/math_rackK add sub mul diwv

saves four modules (add, sub, mul and div) into the new file
called /D 1l/math _ pack

SETIME

SETIME [yy/mm/dd/hh:mm:ss]

Scts the system date and time. then activates the real time
clock.

104

The date and time can be entered as parameters. If no param-
eters are given, Setime will issue a prompt. Numbers are one-
or two-decimal digits using space, colon, semicolon or slash
delimiters. OS-9 system time uses the 24-hour clock, on
which, for instance, 1520 is 3:20 P.M.

Important Note: This command must be executed be-
forc OS-9 can perform multitasking operations.

Examples:
setime 83+12+15,1545 (ENTER

sets the date and time to December 15, 1983, 3:45 P.M.
setime B3/12/15 13/45/00

sets the same date in a slightly different, but equally accept-
able format.

SETPR

SETPR prcclD number

Changes the CPU priority of a process.

The process priority number is a decimal number in the range

0 — the lowest — to 255. If you need information about
the process ID number and current priority, use the Procs
command.

You can usc Setpr only on processes which have your ID
number on them.

Note: This command does not appear in thc Cmds
directory because it is built into the shell.

Examples:
setpr B 25¢ (ENTER
sets or changes process #8 to priority 250

procs (ENTER

105

SHELL

SHELL arglist

106

D Pty state Mem Primary module

@ waiting Shell <TERM

1 e

2 3 @ waiting 2 Shell <TERM
2 1
1 @ waiting 1 Svsdo <TERM

setpr 3 128 (ENTER

procs (ENTER

User__# _ID pty state Mem Primary module
@ 3 128 active 2 Shell <TERM
@ 2 @ waiting 2 Shell <TERM
"4 1 @ waiting 1 Svsdo <TERM

The Procs command displays process 1D numbers and other
information. The next command — Setpr 3 128 — sets pro-
cess #3 to a priority of 128. The final command checks to
make sure the change has been made.

The shell i1s OS-9’s command interpreter program. It reads
data from its standard input path (the keyboard or a file), ‘and
interprets the data as a sequence of commands. The basic
function of the shell is to initiate and control execution of
other OS-9 programs.

The shell reads and interprets one text line at a time from the
standard input path. After interpretation of each line, it reads
another until it reaches an cnd-of-file marker at which time
it terminates itself. A special case occurs when the shell is
called from another program. In that case, it takes the ar-
gument list as its first line of input. 1f this command line
consists of “‘built-in”” commands only, the shell reads and
processes more lines. Otherwise control returns to the calling
program after the single command line is processed.

The rest of this description is a technical specification of the
shell syntax. Use of the shell is described fully earlier in this
manual.

Shell Input Line Formal Syntax:

<pgm line> :

= <pgm> {<pgm>}

<pgm> := [<params>>] [<name> [<modif>]
[pgm params>] [<modif>]

{<sep>}

Program Specifications:

<name>

Parameters:

<params> ;=
<delim>
<param>

Il

= <modulc name>

<pathname>
(<pgm list>)

<param> { <delim> <param> }
spacc or comma characters
ex <name>> [<modif>] chain to program

chd <pathlist>

kill <procID>
setpr<proclD> <pty>
chx <pathname>

w

* <text>

specified

change working
directory

send abort signal to
process

change process
priority

change execution
directory

wait for any process
to die

turn OS9: prompting
on

turn prompting oft
echo input lines to
std output

don’t echo input
lines

don’t abort on error
abort on error
comment line: not
processed

107

SLEEP

SLEEP tick count

108

Modifiers:

<modif>

<mod>

il

I

il

I

Il

<cr>

sequential execution
separator
concurrent execu-
tion separator
pipeline separator
end-of-line (se-
quential cxecution
separator)

<mod> { <delim> <mod> }

< <pathname>
> <pathname>
>> <pathname>
<integer>

<integer> K

redirect standard
input

redirect standard
output

redirect standard
error output

set process memory
size in pages

set program memory
size in 1K
increments

Puts the process to “‘sleep™ for a number of clock ticks.

Tick count may be any number | through 65535. If any num-
ber larger than 65535 is given for tick count, the number will
be reduced by mod 65535. For example, 65536 would be
reduced to 0; as would all multiples of 65536. A tick count of
95000 would be reduced to an actual tick count of 29464,

Sleep is generally used to generate time delays or to *‘break-
up’’ CPU-intensive jobs. The duration of a tick is 16.66
milliseconds.

TEE

A tick count of | causes the process to “‘give up’’ its current
time slice. A tick count of zero causes the process to sleep
indefinitely (the process is usually awakened by a signal).

Example:
sleer 25 (ENTER

puts the process *‘to sleep™ for 25 ticks...416.50
milliseconds.

list startur SYS5/motd vnothing &
sleep @

BOQ4

setime </TERM

WELCOME TO COLOR COMPUTER 05-8

-004d
ERROR #2216

059:

The. List command starts running as a child process invoked
from shell. and is run as background task. The Sleep
command then puts shell to sleep indefinitely. When List
eventually encounters the file nothing, which doesn’t exist, it
terminates, and sends a signal (the error status), which wakes
up shell.

It’s important to note. that if the error hadn’t occurred. shell
would have slept forever. (The keyboard is not read while the
shell sleeps.) The only way out, would be to re-boot.

TEE pathname or devname |...]

Copies standard input to multiple outputs.
Tee is a filter that copics all text lines from its standard input
path and also to any number of additional output paths whose

names are given as parameters.

109

TMODE

The example below uses a pipeline and Tee to send the out-
put listing of the Dir command simultaneously to the
terminal, the printer, and a disk file:

Examples:
dir e ! tee /P /D@/dir,listing

Here, a pipeline takes the output of the Dir ¢ command and
sends it to the terminal and Tec. Tee in turn sends the output
along to the printer and to a file called /DO/dir listing.

asm Pdm.,src 1 | tee pdm.slist /P

(ENTER

In this example. the pipeline and Tee send the output of an
assembler listing to a file (pgm.list) and to the printer.

ECHO WARNING SYSTEM DOWN IN
19 MINUTES | tee /T1 (ENTER

Here, a message is broadcast to the terminal.

TMODE [.pathnum)| [paramlist] |...]

110

Displays or changes the operating parameters of the user’s
terminal.

You can specify any number of parameters from the list be-
low, separating them by spaces or commas. If you don’t
specify parameters, the output will be current Tmode status.

You can also use a period and a number to specify the path-
number to be affected. If you don’t specify any, Tmode
affects the standard input path.

Note: If this command is used in a shell procedure file,
you must use the parameter. .pathnum to specify one of
the standard output paths (0, 1. or 2) to change the
terminal’s operating characteristics. The change will re-
main in effect until the path is closed. To effect a
permanent change to a device characteristic, the device
descriptor must be changed.

This command can work only if a path to the file/device has
already been opened. You may alter the device descriptor to
set a device’s initial operating parameter (see the OS-9 Tech-

nical

upc

-upc

bsb

-bsb

bsl

-bsl

cecho

-echo

Information manual).

Upper-case only. Lower-case characters are
automatically converted to upper-case.

Upper-case and lower case characters
permitted.

Erasc on backspace: backspace characters
echoed as a backspace-space-backspace se-
quence (default).

No erase on backspace: echoes single back-
space only.

Backspace over line: lines are ‘‘deleted’” by
sending backspace-space-backspace sequences
to crasc the same line (for video terminals)
(detault).

No backspace over linc: lines are “*deleted’ by
printing a ‘‘new line™" sequence (for hard-copy

terminals).

Input characters ““echoed™ back to terminal
(detault).

No echo.

Auto line feed on: line feeds automatically
cchoed to terminal on input and output carriage
returns (default).

Auto line feed off.

111

112

pausc Screen

-pause Screen

null=n
pag=n
bsp=h
bse=h
del=h
bell=h
cor=h
cof=h
type=h
reprint =h
dup=h
psc=h
abort=h

pause on: output suspended upon full screen.
Sec pag parameter for definition of screen
size. Resume output by typing any key.

pause mode off.

Set null count: number of null ($00) characters
transmitted after carriage returns for return de-
lay. The number is decimal. Default = 0.

Set video display page length to n (decimal)
lines. Used for “‘pause’’ mode, see above.

Set input backspace character. Numeric value
of character in hexadecimal. Default = 08.

Set output backspace character. Numeric value
of character in hexadecimal. Default = 08.

Set input delete line character. Numeric value
of character in hexadecimal. Default = 18.

Set bell (alert) output character. Numeric value
of character in hexadecimal. Default = (7.

Set end-of-record (carriage return) input char-
acter. Numeric value of character in hexa-
decimal. Default = 0D.

Set end-of-file input character. Numeric value
character in hexadecimal. Default = IB.

ACIA initialization value: sets parity, word
size, and so forth. Value in hexadecimal. De-
fault = 00.

Reprint line character. Numeric value of char-
acter in hexadecimal.

Duplicate last input line character. Numeric
value of character in hexadecimal.
Pause character. Numeric value of character in

hexadecimal.

Abort character (normally CONTROL C).
Numeric value of character in hexadecimal.

TSMON

TSMON |devname]

quit=h Quit character (normally CONTROL E).
Numeric value of character in hexadecimal.

baud=d Set baud rate for software-controllable inter-
facc. Numeric code for baud rate: 0=110
1 =300 2=600 3=1200 4=2400 5=4800
6=9600 7= 19200

Examples:
tmode -urpc 1f null=4 pause (ENTER

tmode pag=Z24 rpanse bsl -echao
hsep=8 (ENTER

Note: If you use Tmode in a procedure file. 1U's neces-
sary to specity one of the standard output paths (.1 or
.2), since the shell’s standard input path will have been
redirccted to the diskette file. (Tmode can be used on
SCFMAN:-type devices only.)

Example:
tmode 1 pag=24 (ENTER

This scts line/page on standard output.

Supervises idle terminals and initiates the login sequence in
timesharing applications.

If you specify @ device name. ‘Tsmon opens standard 1/0
paths for the device. When vou enter a carriage return,
Tsmon automatically calls the Login command. It the login
fails because the user can’t supply a valid user name or pass-
word, control returns to Tsmon.

Note: The Login command and its password file must

be present for Tsmon to work correctly (sce the Login
command description).

113

UNLINK

Logging Off the System

Most programs will terminate when you enter an end-of-file
marker ((CLEAR) (BREAK)) as the first character on a command
line. This will log you off the system and return to Tsmon
which will run Login again.

Examples:

tsmon /T18 (ENTER
8005

This will activate /T1. but must be run concurrently in order
to keep /TERM active.

UNLINK modname |...]

114

Tells OS-9 that the memory module(s) named are no longer
necded by the user.

0OS-9 may (or may not) destroy the modules and reassign
their memory depending on whether the module is in use by
other processes.

It’s good practice to unload modules whenever possible to
make most efficient use of available memory resources. Mod-
ules that have been Loaded and Linked may have to be Un-
linked twice to remove them from memory.

Warning: Never attempt to unlink a module you didn’t load
or link.

Examples:

unlink pdml pgmS pgmBY (ENTER

VERIFY

VERIFY [u]

Unlinks the three modules specitied.

mdir (ENTER

Module Directorvy

059
Boot

Di

CCIO
RBF
Clock
T1
PireMan
Mdir

059r206
CCDisk
D2

TERM
SCF
Shell
PRINTER
Piper
Edit

unlink edit (ENTER

mdir @TER)

Module Directory

059
Boot

D1

CCID
RBF
Clock
T1
PireMan
MDir

In this sequence. the Mdir command displays modules in
memory. The next command specifies that the edit module be
unlinked. and the output of the final command -— Mdir —
shows that the unlinking has been successful: edit no longer

appears on the list.

Checks whether module header parity und CRC value of one

0s59ez
CCDisk
D2

TERM
SCF
Shell
PRINTER
Pirer

at

at

11:26:22
INIT
D@

D3
I0Man
S5vsGo
RE232
P
Pire

11:27:22
INIT
D@

D3
I0Man
SvsGo
REZ32
P
Pire

or more modules on a file (standard input) are correct.

116

Module(s) arc read Irom standard input. output is sent to stan-
dard output, and messages are sent (o the standard error path.

Verify is dependent on the (<0). input redirection command.
If you fail to use the (<0). redirection symbol. the Verity
program will cause the system to lock. It is always necessary
to redirect the input path. It is usually necessary to redirect
the output and the error path.

If you use the u (update) option. the module(s) are copied to
the standard output path with the module’s header parity and
CRC values replaced with verity's computed values. You sce
a message indicating whether the module’s values match
those computed by Verify. Verify, with the update option,
will not set the execute flag in the file attributes. Use the Attr
command to do this.

If you don’t use the option. the module isn’t copied to stan-
dard output. Verify simply displays a message indicating
whether the module’s header parity and CRC match those
computed by Verify.

Note: Verify docs not turn on exccute flag or update
file. Usc Attr.

verify w </D@/CMDS/edit >/D@Q/CHMDS/
newedit (ENTER)

because the u option is used the edit module is copied to a
new module. newedit, with the header parity and CRC values
replaced with verity's computed values.

verify <EDIT :>NEWEDIT (ENTER

Module’s header parity is correct.
Calculated CRC matches module’s,

The program checks the edit module. and directs program
output to a file called newedit. Since the u option wasn't
specitied. Verify simply displays a summary message.

verify <mveprodram? (ENTER

Module s header Frarity is correct.
Calculated CRC matches module’s.

XMODE

Checks the myprogram2 module. Since there’s no u in the
command line. the module isn't copied to standard output.
Instead. a simple message is displayed.

XMODE devname [paramlist|

Displays or changes the initialization parameters of any SCF-
type device such as the video display. printer, RS-232 port,
and others.

Common uses include changing baud rates and control key
definitions.

Xmode is similar to the Tmode command, but therc are dif-
ferences. Tmode operates only on open paths, so its effect is
temporary. Xmode actually updates the device descriptor so
the change persists as long as the computer is running, even
if paths to the device are repeatedly opened and closed.

If Xmode is used to change parameter(s) and the Cobbler
program is used to make a new system disk or re-write sys-
tem tracks on the current system disk, the changed parameter
is permanently reflected on the new system disk.

Xmode requires that you specify a device name. If you don’t
specify parameters. the present values for cach parameter are
displayed. You can use any number of parameters separating
them by spaces or commas.

XMODE parameter names:

upc Upper-case only. Lower-case characters are
automatically converted to upper-case.

-upc Upper-case and lower case characters permit-
ted. (default)

bsb Erasc on backspace: backspace characters

cchoed as a backspace-space-backspace se-
quence (default).

117

118

-bsb

bsl

-bsl

-If

No crase on backspace: echoes single back-
space only.

Backspace over line. Lines are ‘‘deleted’” by
sending backspace-space-backspace sequences
to erase the same linc (for video terminals)
(default).

No backspace over line. Lines are ‘‘deleted”’
by printing a ‘‘new line'" sequence (for hard-
copy terminals).

‘

Input characters “*echoed’ back to terminal

(default).
No echo.

Auto line feed on. Line feeds are automatically
cchoed to terminal on input and output carriage
returns (default).

Auto line feed off,

pausc Screen pause on: Output suspended upon full screen.

-pause Screen

null=n
pag=
bsp=h
bse=h
del=h

Sce pag parameter for definition of screen
size. Resume output by typing any key.

pause mode off.

Set null count. Number of null ($00) charac-
ters are transmitted after carriage returns for
return delay. The number is decimal. Default
= 0.

Set video display page length to n (decimal)
lines. Used for ‘“‘pausc’ mode, see above.

Set input backspace character. Numeric value
of character in hexadecimal. Default = 08.

Set output backspace character. Numeric value
of character in hexadecimal. Default = 08.

Set input delcte line character. Numeric value
of character in hexadecimal. Default = 18.

bell=h

eor=h

eof =h

typc=h

reprint=h

dup=h

psc=h

abort=nh

quit=h

baud=d

Examples:

xmode

Set bell (alert) output character. Numeric value
of character in hexadecimal. Default = 07.

Set end-of-record (carriage return) input char-
acter. Numeric value of character in hexa-
decimal. Default = 0D.

Set end-of-file input character. Numeric value
character in hexadecimal. Default = 1B.

ACIA initialization value: sets parity, word
size. and so forth. Value in hexadecimal. De-
fault = 15.

Reprint line character. Numeric value of char-
acter in hexadecimal.

Duplicate last input line character. Numeric
value of character in hexadecimal.

Pause character. Numeric value of character in
hexadecimal.

Abort character (normally CONTROL C).
Numeric value of character in hexadecimal.

Quit character (normally CONTROL E).
Numeric value of character in hexadecimal.

Set baud rate for software-controllable inter-
facc. Numeric code for baud rate: 0=110
1 =300 2=600 3=1200 4=2400 5=4800
6=9600 7= 19200

/TERM -upc 1f null=4 bse=1iF

pause (ENTER

xmode

/Tl padg=24 rpause bsl -echo

bsp=8 (ENTER

xmode

/P baud=3 -1f (ENTER

119

Appendix A/Error Codes

The error codes are shown in both hexadecimal (first column)
and decimal (second column). Error codes other than thosc
listed are generated by programming languages or uscr
programs.

0S-9 Error Codes

HEX

$02

$03

$C8

$C9

$CA

$CB

$ccC

$CD

$CE

DEC

002

003

200

201

202

203

204

205

206

KEYBOARD INTERRUPT — The user
used (BREAK) to abort a task that was cur-
rently being executed.

KEYBOARD INTERRUPT — The user
used to cause the task to be
cexccuted as a background task with no
video display. or to abort the task.

PATH TABLE FULL — The file can’t be
opened because the system path table is cur-
rently full.

ILLEGAL PATH NUMBER — Number
too large. or for non-existent path.

INTERRUPT POLLING TABLE FULL

ILLEGAL MODE — Attempt to perform
[/O function of which the device or file 15
incapable.

DEVICE TABLE FULL — Can’t add
another device.

ILLEGAL MODULE HEADER — Module
not loaded because its sync code. header
parity, or CRC is incorrect.

MODULE DIRECTORY FULL — Can’t
add another module.

121

122

SCF

$DO

$DI

$D2

$D3

$D4

$DS

$D6

$D7

$DA

SPD

$DF

$EO

219

MEMORY FULIL — Not cnough con-
tigcuous RAM free.

ILLEGAL SERVICE REQUEST — System

call had an illegal code number.

MODULE BUSY — Non-sharable module
is in use by another process.

BOUNDARY ERROR — Mcmory ailoca-
tion or deallocation request not on page
boundary.

END-OF-FILE — End-of-filc encountered
on read.

RETURNING NON-ALLOCATED MEM-
ORY — Attempted to deallocate memory
not previously assigned.

NON-EXISTING SEGMENT — Device
has damaged file structure.

NO PERMISSION — File or device attri-

butes don’t permit access requested.

BAD PATHNAME — Syntax error in path-
list. illegal character, for instance.

PATH NAME NOT FOUND — Can’t find
pathlist specified.
SEGMENT LIST FULL — File is too frag-

mented to be expanded further.

FILE ALREADY EXISTS — Filename
alrcady appears in current directory.

ILLEGAL BLOCK ADDRESS — Device’s
file structure had been damaged.

SUICIDE ATTEMPT — Request to return
memory where your stack is located.

ILLEGAL PROCESS NUMBER — No

such process exists.

$E3

$E4

$SES

$E6

$E7

$ES

$E9

$EA

$EB

$ED

SEE

SEF

239

Device Driver Errors

NO CHILDREN — Can’t wait because pro-
cess has no children.

ILLEGAL SWI CODE — Must be | to 3.

PROCESS ABORTED — Process aborted
by signal code 2.

PROCESS TABLE FULL — Can’t fork
now.

ILLEGAL PARAMETER AREA — High
and low bounds passed in fork call are
incorrect.

KNOWN MODULE — For internal use
only.

INCORRECT MODULE CRC — Module
has bad CRC value.

SIGNAL ERROR — Receiving process has
previous unprocessed signal pending.

NON-EXISTENT MODULE — Unable to
locate module.

BAD NAME — lllegal name syntax.

RAM FULL — No free system RAM avail-
able at this time.

UNKNOWN PROCESS ID — Incorrect
process ID number.

NO TASK NUMBER AVAILABLE — All
task numbers in use.

The following crror codes are generated by /0 device driv-
ers, and arc somewhat hardware-dependent. Consult manu-
facturer’s hardware manual for more details.

123

124

$FO

$F1

$F2

$F3

SF4

$F5

$F6

$F7

SF8

$F9

SFA

$FB

240

241

245

246

247

250

]
@)

UNIT ERROR — Device unit doesn’t exist.

SECTOR ERROR — Sector number is out
of range.

WRITE PROTECT — Device 18 write-
protected.

CRC ERROR — CRC crror on read or
write verify.

READ ERROR — Data transfer error dur-
ing disk read operation, or SCF (terminal)
input buffer overrun.

WRITE ERROR — Hardware error during
disk write operation.

NOT READY — Device has “‘not ready”’
status.

SEEK ERROR — Physical seek to non-
existent sector,

MEDIA FULL — Insufficient free space on
media.

WRONG TYPE — Attempt to read incom-
patible media (for instance attcmpt to read
double-side disk on single-side drive).

DEVICE BUSY — Non-sharable device is
n usc.

DISK ID CHANGE — Media was changed
with files open.

RECORD IS LOCKED-OUT — Another
process is accessing the requested record.

NON-SHARABLE FILE BUSY — Another
process is accessing the requested file.

Appendix B/Display System
Functions

Color Computer OS-9 lets you use the video display in alpha-
numeric, semigraphic, and graphic modes. There arc many
built-in functions to control the display. These functions are
activated by various ASCII control characters. The three
modes are thercfore available for use by software written in
any language using standard output statcments (such as
PRINT in BASIC). The Color Computer BASIC0O9 language
has a Graphics Interface Module that can automatically gener-
ate these codes using BASIC09 RUN statements.

The display system has two display modes: Alphanumeric
(**Alpha™) mode and Graphics mode. The Alphanumecric
mode also includes **semigraphic’ box-graphics. The Color
Computer’s display system uses a scparate memory arca for
each display mode so operations on the Alpha display do not
affect the Graphics display. and vice-versa. Either display can
be selected under software control. (See the Color Computer
Manuals for more detailed information.)

Eight-bit characters sent to the display system are interpreted
according to their numerical value, as shown in this chart:

Character Range (Hex) Mode/Used For

00 - OE Alpha Mode — Cursor and
screen control.

OF - 1B Graphics Mode — Drawing and
screen control.

1C - 20 Not used.

20 - 5F Alpha Mode — Upper case
characters.

60 - 7F Alpha Mode — Lower case
characters.

80 - FF Alpha Mode — Semigraphic
patterns.

The graphics and alphanumeric functions are handled by the
0S-9 device driver module called CCIO.

125

Alpha Mode Display

This is the standard operational mode. It's used to display
alphanumeric characters and semigraphic box graphics. and it
simulates the operation of a typical computer terminal with
functions for scrolling. cursor positioning. clear screen. line
delete., and more.

Each 8-bit character is assumed to be an ASCII character. It
is displayed if its high order bit (sign bit) is cleared. Lower
case letters are displayed in reverse video. If the high order
bit of the character is set. it’s assumed to be a “*Semigraphic
6" graphics box. Sec the Color Computer manuals for an
explanation of semigraphics functions.

Alpha Mode Command Codes

126

Control

Code Name/Function

01 HOME — Return cursor to upper left hand corner
of screen.

02 CURSOR XY —- Move cursor to character X or
line Y. The binary values minus 32 of the two
characters following the control character are
used as the X and Y coordinates. For example, to
position the cursor at character 5 ol line 10, you
must give X =37 and Y =42.

03 ERASE LINE — Erases all characters on the cur-
sor line.

06 CURSOR RIGHT -— Move cursor right one char-
acter position.

08 CURSOR LEFT — Move cursor left one charac-
ter position.

09 CURSOR UP — Move cursor up one line.

10 CURSOR DOWN -— (Lincfeed) move cursor

down one line.

12 CLEAR SCREEN — Erase entire screen and
home cursor.

13 RETURN — Return cursor to leftmost character
of line.
14 DISPLAY ALPHA — Switch screen from

graphic mode to alpha numeric mode.

Graphics Mode Display

Graphics mode is used to display high-resolution 2- or 4-color
graphics. It includes commands to set color, plot and crase
individual points, draw and crase lines. position the graphics
cursor, and draw circles.

.

The ‘“display graphics™ command must be exccuted before
any other graphics mode command is used. It causes the
graphics screen to be displayed and scts a current display for-
mat and color.

The first time the *“display graphics™ command is given, OS-
9 allocates a 6144 byte display memory. So there must be at
least that much continuous free memory available. (You can
usc the OS-9 Mfrec command to check free memory.) This
memory is retained until the “end graphics’™ command is
given, even if the program that initiated Graphics mode
finishes. It's important that the ““end graphics™ command be
used to give up the display memory when Graphics mode is
no longer needed.

Graphics mode supports two basic formats: Two-color, which
has 256 horizontal by 192 vertical points (G6R mode): and
Four-color. which has 128-horizontal by 192 vertical points
(GO6C mode). Two color sets are available in cither mode.
Regardless of the resolution of the format selected, all
Graphics mode commands use a 256 by 192 point coordinate
system. The X and Y coordinates are always positive num-
bers. Point 0. 0 is the lower lefthand corner of screen.

127

An invisible Graphics Cursor is used by many commands to
reduce the amount of output required to generate graphics.
You can explicitly set this cursor to any point by using the
“‘set graphics cursor’” command. Also, all other commands
that include X. Y coordinates (such as **set point’”) move the
graphics cursor to the specified position.

Graphics Mode Selection Codes

Code Format
00 256 X 192 two-color graphics
01 128 % 192 four-color graphics

Color Set And Current
Foreground Color Selection Codes

128

Two-Color Format Four-Color Format
Char Background Foreground Background Foreground

00 Black Black Green Gireen
Color 0l Black Green Green Yellow
Set 1 02 Green Blue
03 Green Red
04 Black Black Buft Butf
Color 05 Black Butf Buff Cyan
Sct i 06 Butt Magenta
07 Buff Orange
08 Black Black
Color 09 Black Dark Green
Set 1 10 Black Med. Green
11 Black Light Green
12 Black Black
Color 13 Black Green
Set | 14 Black Red
15 Black Buff

Graphics Mode Control Commands

Control
Code

15

16

22

Name/Function

DISPLAY GRAPHICS — Switches screen to
graphics mode. This command must be given be-
fore any other graphics commands are used. The
first time this command is given. a 6K byte dis-
play buffer is assigned. If 6K of contiguous mem-
ory isn't available. an error is returned. Fol-
low this command by two characters specilying
the graphics mode and current color/color set,
respectively.

PRESET SCREEN — Presets entire screen to
color code passed in next character.

SET COLOR — Sclects foreground color (and
color set) passed in next character, but doesn’t
change graphics mode.

END GRAPHICS — Disables graphics mode, re-
turns the 6K byte graphics memory arca to 0OS-9
for other use. and switches to alpha mode.

ERASE GRAPHICS — Erases all points to back-
ground color and homes graphics cursor to the de-
sired position.

HOME GRAPHICS CURSOR — Moves
graphics cursor to coordinates 0. 0 (lower left-
hand corner).

SET GRAPHICS CURSOR -- Moves graphics
cursor to given coordinates X, Y. The binary
value of two characters that immediately follow
are used as the X and Y values, respectively.

DRAW LINE — Draws a line of the current fore-
ground color from the current graphics cursor
position to the given X, Y coordinates. The bi-
nary value of the two characters that immediately

129

25

26

follow are used as the X and Y values, respec-
tively. The graphics cursor is moved to the end
point of the line.

ERASE LINE — Same as ““draw linc'" except
that the line is ““drawn’" in the current back-
ground color. thus erasing the line.

SET POINT — Sets the pixel at point X, Y to the
current foreground color. The binary values of the
two characters that immediately follow are used
as the X and Y values, respectively. The graphics
cursor is moved to the point set.

ERASE POINT — Same as “*draw point’” except
the point is “*drawn’’ in the current background
color. thus crasing the point.

DRAW CIRCLE — Draws a circle of the current
foreground color with its center at the current
graphics cursor position using a radius R which is
obtained using the binary value of the next char-
acter. The graphics cursor position is not affected
by this command.

Get Status Commands

Get Display Status:

130

The Color Computer I/O driver includes OS-9 “‘get status’

s

commands that return the display status and joystick values,
respectively. These arc accessible via the BASIC09 Graphics
Interface Module, or by the assembly language system calls
listed below:

Calling Format: Ida #1 (path number)

ldb #SS.DStat (Getstat code $12)
089 I$GSTT Call OS-9

Passed:

Returns:

Get Joystick Values:

Calling Format:

Passed:

Returns:

nothing

il

X
Y =

A =

address of graphics display memory
graphics cursor address X =MSB

y=LSB
color code of pixel at cursor address

Ida #1
Idb $8S.Joy
089 ISGSTT

il

X

> = X
|

(path numbecr)
(Getstat code $13)
call 0OS-9

0 for right joystick: I for left joystick

selected joystick x value (0-63)
selected joystick y value (0-63)
$FF it fire button on: $00 if off

Display Control Codes Condensed Summary

Ist Byte

00
0l
02
03

06
08
09
10

12
13
14
15

2nd Byte

Column + 32

Mode

3rd Byte

Row + 32

Function

Null

Home alpha cursor
Position alpha cursor
Erase line

Cursor right
Cursor left
Cursor up
Cursor down

Clear screen
Carriage return
Select alpha mode

Color Code Select graphics mode

131

132

16
17
18
19

20

21

)
23

24
25
26

Color Code
Color Code

X Coord
X Coord
X Coord

X Coord
X Coord
Radius

Y Coord
Y Coord
Y Coord

Y Coord
Y Coord

Preset screen
Select color

Quit graphics mode
Erase screen

Home graphics cursor
Move graphics cursor
Draw line to X/Y
Erase line to X/Y

Set point at X/Y
Clear point at X/Y
Draw circle

Appendix C/Keyboard Codes

Key Definitions With Hexadecimal Values

NORM SHFT CTRL NORM SHFT CTRL NORM SHFT CTRL
030 0 30 — (40 60 NULOO P 50 p 70 DLE 10
1 31 121 | 7C A 41 a 61 SOH Ol Q51 q 71 DCI 11
2 32 22 00 B 42 b 62 STX 02 R 52 r 72 DC2 12
3 33 # 23 - 7E C 43 ¢ 63 ETX 03 S 53 s 73 DC3 13
4 34 $ 24 00 D44 d 64 EOTO04 T 54 t 74 DC4 14
5 35 % 25 00 E 45 e 65 EMDO5S U 55 u 75 NAK 15
6 36 & 26 00 F 46 f 66 ACKO6 V S6 v 76 SYN 16
7 37 © 27 “SE G 47 ¢ 67 BEL 07 WS§7 w 77 ETB 17
8 38 (28 [5B H 48 h 68 BSP 08 X 58 x 78 CAN I8
9 39)y 29] 5D 1 49 i 69 HT 09 Y 39 y 79 EM 19
©3A 0 *F 2A 00 J 4A j 6A LF 0OA Z5A 7z 7JA SUMIA
. 3B + 2B 00 K4B k 6B VT OB
, 2C <3C { 7B L4C 1 6C FF 0C
~-2D =3D 5F Md4D m6D DR 0D
2E >3E)} 7D N4E n 6E CO 0OE
/ 2F 7 3F N 5C O4F o 6F Cl OF
Function Keys
NORM SHFT CTRL
BREAK 05 03 iB
ENTER oD oD 0D
SPACE 20 20 20
- 08 18 10
- 09 19 11
\ 0A 1A 12
A 0cC tC 13

133

Appendix D/Keyboard Control
Functions

Key Definitions for Special Functions

and Characters

Key
Combination

(CLEAR
BREAK

(CLEAR) (o)

(CLEAR) (#)

(CLEAR) (/)
(CLEAR) (BREAK)

(=)
(SHIFT) (=)

(SHIFT) (BREAK)

Control Function or Character

Used a control key (CTRL).

Same as (CLEAR) (E).

Generates an underline () character. The
underline character is displayed as a left
arrow (e—).

Generates a lett brace () character. The left
brace character is displayed as a left bracket
(| in reverse video.

Generates a right brace (}) character. The
nght brace character is displaved as a right
bracket () in reverse video.

Generates a tilde () character. The tilde is
displayed as a hyphen (-) in reverse video.

Generates a reverse slash () character.

Generates an end-of-file (EOF). Same as

(ESC) on « standard terminal.
Buackspace key or CONTROL. 1.

Deletes the entire current line. Same as

CONTROL X.

Interrupts the video display of a running
program. It reactivates the shell and then
runs the program as a background task.

Samie as CONTROL. C.

Upper/lower case shift lock function.

135

136

:
-

(CLEAR)

(CLEAR) (8)
(CLEAR) (9)
(CLEAR) (A)
(CLEAR) (D)

(CLEAR) (E)

CLEAR) (W)

Generates a vertical bar (|) character. The
vertical bar character is displayed as an cx-
clamation (!) mark in reverse video.

Generates an up arrow or caret () charac-
ter.

Generates a left bracket ([) character.
Generates a right bracket (]) character.
Repeats previous command line.

Redisplays current command line on the
video display.

Stops the program currently being executed.
Same as BREAK.

Temporarily halts output to the screen dis-
play. Press any key to resume output.

INDEX

Alpha Mode Display
ATTR
BACKUP
BINEX
BUILD
Built-in Shell Commands
CHX
CHD
CMDS Directory
CMP
COBBLER
Color Selection Codes
Color Set
Commands
Parameters
Command Line Processing
Command Separators
Sequential Execution
Concurrent Execution
Pipes and Filters
COPY
Creating Processes
DATE
DCHECK
DEFS Directory
DEL
DELDIR
Device Driver Errors
Device Names
DIR
Directories
Creating
Deleting
Using
Working
DISPLAY
Display System Functions
DSAVE
DUMP
ECHO
Error Codes
Error Reporting
EXBIN

126
62
63
65
66
39
67
67
57
68
69

128

128

31
35
35
36
37
70
48
71
72
57
77
78
123
15
79
16
17
18
16
19
80
125
80
82
83
121
42
65

137

INDEX

138

Execution Modifiers
Alternate Memory Size
I’0O Redirection
File Attributes
File Security
File System
File Usage
Text Files
Random-Access Data Files

Executable Program Module Files

Directories
Miscellaneous
FORMAT
FREE
Graphics Mode Control
Graphics Mode Display
IDENT
Input/Output System
Keyboard
Shift Functions
Control Functions
Keyboard Codes
Keyboard Control Functions
KILL
LINK
LIST
LOAD
Loading Multiple Program
Loading Program Modules
LOGIN
MAKDIR
MDIR
Memory Fragmentation
Memory Management
Memory Management Functions
MERGE
MFREE
Multiprogramming
Names
0S-9BOOT
0S-9 Error Codes
0S-9 File System
Organization

32
33
33
23
22
12
25
25
26
26
27
28
85
86
129
127
87
11

133
135
89
90
90
91
53
51
93
95
96
54
45
50
97
98
45
14
55
121
11
12

INDEX

0OS-9GEN
Pathlists
Printer
PRINTERR
Process States

Processor Time Allocation

PROCS
PWD
PXD
RENAME
RS-232 Port
SAVE
SETIME
SETPR
Shell
Shell
Shell Procedure Files
SLEEP
Startup File
SYS Directory
System Commands
TEE
Timesharing Systems
Timeslicing
TMODE
TSMON
UNLINK
VERIFY
Video Display
Video Display Functions
XMODE

98
14

100
a7
45

101

102

102

103

104
104
105

106
41
108
56
56
60
109
44
45
110
113
114
115

117

139

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK
COMPUTER EQUIPMENT AND SOFTWARE PURCHASED FROM A
RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL

STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS

AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER DBLIGATIONS

A

CUSTOMER. assumes full responsibility that this Radio Shack computer hardware purchased (the
“Equipment”), and any coples of Radio Shack software included with the Equipment or licensed
separately (the “‘Software'') meets the specifications, capacity, capabilities, versatility, and other
requirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating
environment in which the Equipment and Software are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

For a period of ninety (90) calendar days from the date of the Radio Shack sales document
received upon purchase of the Equipment, RADIO SHACK warrants to the original CUSTOMER that
the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT
BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS,
RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOCATION. The warranty Is void if the Equipment's case or cabinet has been opened, or If the
Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect
is discovered during the stated warranty period, the defective Equipment must be retumed to a
Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or
Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The
original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the
correction of the defect by repair, replacement, or refund of the purchase price, at RADIO
SHAGK'S election and sole expense. RADIO SHACK has no obligation to replace or repair
axpendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitabllity for use of
the Softwars, except as provided in this paragraph. Software is licensed on an ""AS IS" basls,
without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software
manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the
Radio Shack sales document received upon license of the Software. The defective Software shall
be retuned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio
Shack franchisee or Radio Shack dealer along with the sales document.

Except as provided herein no employee, agent, franchisee, dealer or other person s authorized to
give any warranties of any nature on behalf of RADIO SHACK.

Excapt as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES
OF MERCHANTABILITY DR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above
limitation(s) may not apply to CUSTOMER.

Hl. LIMITATION OF LIABILITY

A

EXCEPT AS PROVIDED HEREIN, RADIO SHAGK SHALL HAVE NO LIABILITY OR RESPONSIBILITY
TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS
OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT" OR “SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK,
INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR
ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE “EQUIPMENT" OR “SOFTWARE”. IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR
CONNEGTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT"'

OR “SOFTWARE". g
continued

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY
HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE
AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR '‘SOFTWARE"
INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing
Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty
may be brought more than two (2) years after the cause of action has accrued or more than four
(4) years after the date of the Radio Shack sales document for the Equipment or Software,
whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the
above limitation(s) or exclusion(s) may not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software
on ene computer, subject to the following provisions:
A

G.

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the
Softwars.

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM)
is transferred to CUSTOMER, but not title to the Software.

CUSTOMER may use Software on one host computer and access that Software through one or
more terminals if the Software permits this function.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on
one computer and as is specifically provided in this Software License. Customer is expressly
prohibited from disassembling the Software.

CUSTOMER is permitted to make additional copies of the Software only for backup or archival
purposes or If additional copies are required in the operation of one computer with the Software,
but only to the extent the Software allows a backup copy to be made. However, for TRSDOS
Software, CUSTOMER is permitted to make a limited number of additional copies for
CUSTOMER'S own use.

CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has
purchased one copy of the Software for each one sold or distributed. The provisions of this
Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

All copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and
CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a
&w&ng;l;‘uétnwharehv RADIO SHACK sells or conveys such Equipment to a third party for lease to
The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO ¥
SHACK, the author, owner aind/or licensor of the Software and any manufacturer of the Equipment

sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original
CUSTOMER may have other rights which vary from state to state.

0S-9 Program Development

OS-9 Program Development is in three parts:

I. Text Editor
1. Assembler
HI. Interactive Debugger

You use these tools in developing an OS-9 program. The Text
Editor lets you create a source program file. The Assembler lets
you translate the source file to a machine-language file. With the
Interactive Debugger you run and test the source program.

OS-9 Operating System: ¢ 1983 Microware Systems
Corporatron and Motorola Incorporated.
All Rights Reserved.

Licensed to Pandy Corporation

OS-Y Program Development:
<1983 Tandy Corporation
and Microware Systems Corporiation.
All Rights Reserved.

UNIX s a trademark of Bell Laboratories.

TRS-80 is a registered trademark of Tandy Corporation.

Reproduction or use. without express written permisston {rom
Tandy Corporation or Microware Systems Corporation of any
portton of this wanual is prohibited. While reasonable efforts have
been taken in the preparation of this manuil to assure its aceuriey .
Tandy Corporation and Microware Systems Corporation assumes no
liability resulting from any crrors or omissions in this manual. or

from the use of the information contained herein.

1098706354321

11

Contents

Part I. Macro Text Editor

Chapter 1. Introduction

Overview
Text Bufters ...

Edit Pointers
Entering Commands

Command Parameters ... oo L.

Syntax Notation. . ..

Getting Started

Chapter 2. Edit Commands. ===

Displaying Text.
Manipulating the Edit Poin

Inserting and Deleting Lines

Scarching and Substituting
Miscellancous Commands

Text File Operations.

Conditionals and Command Scries Repetition

Edit Macros. ...
Chapter 3. Sample Sessions

Appendix A. Glossary

wr oo

Appendix B. Quick Reference Summary.

Appendix C. Editor Error Messages

11
12

15
17
19
21

23

26
30

37

Ol

Ol

60

Part II.

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

iv

Assembler ... 09
Introduction 71
Installation.o o 71
Assembly Language Program Development 72
Assembler Input Files. o000 oo oo 73
Running the Assembler ... o0 o o 73
Operating Modes. ... oo 74
Source Statement Fields 77
Label Field ..o 77
Operation Field ..o 0000 oo 78
Operand Field ... o000 o oo 78
Comment Field ... o 78
Symbolic Names And Expressions 79
Evaluatton of Expressions o000 o oo oo 79
Expression Operands o000 o o oo 79

Operalors. ... 80

Symbolic Names. o 81
Instruction Addressing Modes 83
Inherent Addressing ... o o oo 83
Accumulator Addressing ..o o oL 83
Immediate Addressing ..o oo oo 83
Relative Addressing oo oo 84
Extended and Extended-Indirect Addressing 84
Direct Addressing ..o oo 85
Register Addressing ... o o 80
Indexed Addressing ..o oL 87
Pseudo Instructions........................... 91
Assembler Directive Statements 97

Chapter 7.

Chapter 8.

Chapter 9.

Appendix A.
Appendix B.

Appendix C.

Appendix D.

Appendix E.

Defs Files. 105
OSODCES © o 105
SCEDCES © o 10
RBEDCES © o L
SYSType ..o 113

Assembly-Language Programming

Techniques....... 115
Assembler Error Reporting 121
Explanations of Error Messages. ..o o000 121
Syntax and Grammar Errors. ... 0o oo oL 122
Arithmetic Errors ... o o o o 122
Symbolic Name Errors ..o oo oo o Lo 123
Assembler Operational Errors o000 00 o o0 124

Sample Command Lines 125
Error Messages Abridged 127

Assembly-Language Programming

Examples. 129
Instructions And Addressing Modes. 135
ASCII Character Set. 137

Part I11. Interactive Debugger 139

Chapter 1. Introduction 141
Calling DEBUG © o000 oo 141
Bastic Concepls © ..o 141
Chapter 2. Expressions ... 143
COnsGINIS . Lo 143
Spectal Numes. oo 144
Register Names. o000 44
Operators . .. o 45
Forming Expressions o000 145
Indirect Addressing. ..o oo o o 140

Chapter 3. DEBUG Commands 147

Calculator Command ..o o o o o 147
Dot and Memory Examine and Change Commuands 48
Register Examine and Change Commands -0 00000 {51
Breakpoint Commands ..o oo o {52
Program Sctup and Run Commands 0000 155
Utility Commands. oo o 157

Chapter 4. Using DEBUG 159

Sample Prograim ..o oo oo oo 159
A Sesston with DEBUG. ..o oo oo oo 160
Patching Programs 101
Patching 0OS-9 Component Modules ..o o000 00000 {62

Appendix DEBUG Command Summary 165
Error Codes 166

vi

0S-9 Macro Text Editor

1 / Introduction

Overview

Text Buffers

The OS-9 Macro Text Editor is a powerful but simply learned
text-preparation system. It is commonly used to prepare text for
letters and documents or text to be used by other OS-9 programs
such as the assembler and high-level languages. The following
features of the editor facilitate and expedite the text-preparation
task.

Compact size

Multiple read and write files open simultancously
All OS-9 commuands usable inside the text editor
Adjustable workspace size

Repeatable command scquences

Edit macros

Multiple text buffers

Powerful commands

The Macro Text Editor is an OS-9 exccutable module in posi-
tion-independent, reentrant 6809 machine language. It is about
SK bytes long and requires at least 2K bytes of frec RAM to run.
You may usc the editor on any OS-9 system that has disk
storage.

As you enter text. the editor places it In a temporary storage arca
called a text buffer. Text buffers may be thought of as scratch
pads uscd for saving text that you wish to manipulate with
various edit commands. The Macro Text Editor can use multiple
text buffers, one at a time.

Edit Pointers

The buffer in use is-the ““primary buffer.”” and the previous
primary buffer is the “*secondary bufter.” This manual refers to
the primary buffer as the ““edit buffer™ or “*buffer’ for short.
The secondary buffer is important only when you wish to use a
command that moves text from one buffer to another.

In the Macro Text Editor an edit pointer identifies your position
in the buffer. This is similar to holding your place with your
finger when reading a newspaper.

Although the screen never shows the edit pointer. commands
reposition it and display the text to which it points. Each buffer
has its own cdit pointer, which allows you to move from bulfer
ta buffer without losing your place in any of them.

Entering Commands

The Macro Text Editor is an interactive editing system. You and
the editor carry on a two-way conversation that goes through a
cycle similar to the one below and continues until you type (@)
to quit editing.

l. EDIT shows E: on the screen. asking you to enter a
command.

2. Youenter (type) a line with one or more commands
on it.

3. EDIT carries out the commands.

4. EDIT shows E: on the screen, asking you to enter a
command.

When the screen shows E:L type one or more commands on a
line and then type (ENTER) (always type (ENTER) to end a line).
Enter cach command by typing its name and any parameters
(values) it needs.

It you enter more than one command on a line, scparate the
commands with a space. Ha space is the first character on a line,
the editor considers the space an insert command and not a

separator.

Correct a typing error by backspacing or by deleting the entire

A description of all control characters is in the OS-9 Commands.
Listed below are some of them.

(CLEAR)(A)

repeats the previous input line.

(CLEAR)(C)

interrupts the editor and returns to command entry mode.
(CLEAR)(D)

displays the current input on the next line.

(CLEAR)(H) or (=)

backspaces., crases the previous character.

(a

interrupts the editor and returns to command entry mode.
(CLEAR)(W)

temporartly halts the data output to your terminal so that you can
read the screen before the data scrolls off. Qutput resumes when
vou press any other key.

(CLEAR)(X). (SHIFT). OR (=)
deletes the line.
(CLEAR)(BREAK)

mnterrupts the editor and returns to command entry mode.

Command Parameters

With many commands you specity a value that represents a
parameter. for example, the number ol times to repeat a com-
mand or a phrase vou wish to find. The two types of edit
parameters are “Tnumeric’” and Ustring.

Numeric Parameters

String Parameters

Numeric parameters specify an amount, such as the number of
times to repeat a command or the number of lines that a com-
mand is to affect. If you do not spectfy a numeric parameter. the
cditor assumes you intend the default value of one. Specity all
other numeric parameters in one of the following ways.

I, Enter a positive decimal integer from 0 to 65,535,
Examples:
()
)
250
32

No—
—

5

>
‘n

3

2. Enteranasterisk (%) as a shorthand for 65.535. This
is the editor’s notation for infinity. The asterisk 1s
used to specily all remaining lines. ali characters. or
repeat forever.

3. Use a numeric variable. (See Edit Macros, p. 30.)

String parameters specify a singie character, group of charac-
ters, word. or phrase. Specity string parameters in cither of the
following ways.

1 Enclose the group of characters with delimiters —
two matching characters. You may use any charac-
ters. but they must match. If one string immediately
follows another, sceparate the two with a single
delimiter that matches the others. Examples:

““string of characters’

»

/STRING/
: my name is Larry :

“ﬁ

rst string’’second string”’

/string 1/ string 2/

o

Syntax Notation

Use a string variable. (See Edit Macros, p. 30.)

Syntax descriptions indicate what to enter and the order in which
to do it. The command name is first; type this exactly as given.
Following the command name are the parameters the command
expects; enter each as it is described in the section on

parameters.

The syntax descriptions for each command use the following

notations:

i

str

SPACEBAR
fext

= numeric parameter

= string parameter

= space character

= one or more characters terminated by

typing (ENTER

Below are examples of command syntaxes, how the command
1s used, and parameter requirements.

Syntax

Xy
Vn
Ln
Snstr

Cnstrstr

Usage Parameter Requirements
CLEAR(7) None

V5 I numeric

L* I numeric

S* my string™’ | numeric and |

Sd/hello/ string

S*/search string,
C*this "that™ numeric and 2
C3:this string: strings
that string:
Cd/string/!

Getting Started

Start OS-9. When the screen shows OS-9, you are ready to enter
the cditor. To do so. type:

EDIT (ENTER

When the screen shows E:, enter a command. The first com-
mand to learn is how to quit (exit) the editor. Type (@) followed

by (ENTER).

The Q command terminates the ceditor and returns you to the
0S-9 Shell, which responds with the OS-9: prompt. Learn a
little about the other commands. Skim the first three sections on
commands (**Displaying Text,”” **Manipulating the Edit Point-
er,”” ““Inserting and Deleting Lines’™™).

Now enter the editor again and work through Sample Session 1.
After you have mastered the first three sections of commands,
move on to the more advanced commands and the other Sample
Sessions.

If you work with text files, enter the editor with an initial input
and/or output file. Although you may open additional files after
entering the editor, several commands treat the initial files as
special cases (it is assumed that thesc files are the main working
files): therefore, it may be advisable to specify your working
files when you start the editor.

Below is a list of ways in which the editor may be started,
including the effect of each. A file that already exists is referred
to as oldfile. A file to be created is referred to as newfile.

EDIT 0S-9 loads the editor and starts it.
There is no initial read or write file.
Perform text file operations by opening
files after the editor 1s started.

EDIT newfile 0S-9 loads the editor and starts it. The
editor creates a file called newfile, the
initial write file. There is no initial read
file; however, files may be read if they
are opened after the editor is started.

EDIT oldfile

EDIT oldfile newfile

0S-9 loads the editor and starts it. The
initial read file is oldfile. The editor
creates a file called SCRATCH: this is
the initial write file. When the edit ses-
sion is complete, oldfile is deleted, and
SCRATCH is given the name oldfile.
This gives the appearance of oldfile
being updated.

Note: The two OS-9 utilities DEL and
RENAME must be present on your sys-
tem if you wish to start the editor in this
manner.

08S-9 loads the editor and starts it. The
initial read file is oldfile. The editor
creates newfile, the initial write file.

The terms oldfile. newfile, and file
refer to any properly constructed OS-9
pathlist.

2 / Edit Commands

Displaying Text

Ln

lists (displays) the next n lines, starting at the current position of
the edit pointer. The position of the cdit pointer does not
change. Examples:

L. (ENTER

displays the current line.

It the edit pointer is not at the beginning of the line. only that
part of the line from the edit pointer to the end of the line is
displayed.

.3 (ENTER

displays the current line and the next two lines.
L.* (ENTER

displays all text from the current position of the edit pointer to
the end of the butfer.

The L command displays textregardless of which verify mode is
in cffect.
Xn

Displays n lines that precede the edit pointer. The position of the
edit pointer does not change. Examples:

(ENTER)
displays any text on the current line that precedes the edit

pointer. If the edit pointer is at the beginning of the line, nothing
is displayed.

11

X3 (ENTER

displays the two preceding lines and any text on the current line
that precedes the edit pointer.

The X command displays text regardless of which verify mode
is in effect.

Manipulating the Edit Pointer

12

CLEAR

moves the edit pointer to the beginning (first character) of the
text buffer. The screen shows the up arrow when you hold down

(CLEAR) and type (7). Example:
CLEAR)(7)(ENTER

moves the edit pointer to the beginning of the buffer.

/

moves the edit pointer to the end (last character) of the bufter.
Example:

/ (ENTER)
moves the edit pointer past the end of the bufter.
ENTER

moves the edit pointer to the beginning of the next line and
displays it.

This command is useful for going through text one line at a time.
For example. you may want to look at each fine, correct any
mistakes, and then move to the next line.

+ n

Moves the edit pointer either to the end of the line or forward n
lines and displays the line. Entering a value of zero moves the

edit pointer to the end of the current line. Example:
+@ (ENTER

Entering a value other than zero moves the edit pointer forward
n lines and displays the line. Examples:

+ (ENTER)

moves the edit pointer to the next line and displays the line. This
command performs the same function as (ENTER).

+1@ (ENTER
moves the edit pointer forward 10 lines and displays the line.
+% (ENTER

moves the edit pointer to the end of the buffer.

- n

moves the edit pointer either to the beginning of the line or back
(toward the top) n lines. Examples:

-@ (ENTER

moves the edit pointer to the beginning of the line and displays
the line.

Entering a value other than zero moves the edit pointer back #
lines. Examples:

- (ENTER
moves the edit pointer back one line and displays it.
-3 (ENTER

moves the edit pointer back five lines and displays the line.

13

14

- % (ENTER)
moves the edit pointer to the beginning (top) of the buffer and
displays the first line.
>n
Moves the edit pointer to the right i characters. This command
is used primarily to move the edit pointer to some position in the
line other than the first character. Examples:

ENTER

moves the edit pointer to the right one character.

»25 (ENTER
moves the edit pointer to the right 25 characters.

=% (ENTER)

moves the edit pointer to the end of the butfer.

<n
moves the edit pointer to the left n characters. This command is
used primarily to move the edit pointer to some position in a line
other than the first character. Examples:
(ENTER)

moves the edit pointer to the left one character.

<10 (ENTER
moves the edit pointer to the left 10 characters.

+ % (ENTER

moves the edit pointer to the beginning of the buffer.

Inserting and Deleting Lines

SPACEBAR) rext

inserts lines you enter from the keyboard. The lines are inserted
betfore the current position of the cdit pointer. The position of
the edit pointer does not change. The first character you type is a
space. Examples:

(SPACEBAR) INSERT THIS LINE (ENTER)
inscrts the line.

(SPACEBAR)L. INE ONE (ENTER)
SPACEBAR)L INE TWO (ENTER
SPACEBAR)L. INE THREE (ENTER

inserts three lines.

In str
Inserts a line of 1 copies of the string. The line is inserted before
the position of the edit pointer, and the position of the edit
pointer does not change. Example:

I4¢/%/ (ENTER

inserts a linc containing 80 asterisks.

This is useful when outlining a portion of text. You can also use
the **1"* command to insert a line containing a single copy of the
string. This is important when you want to use a macro to insert
lines, since the is not used within a macro. Example:

I"LINE TO INSERT" (ENTER

inserts the line.

Dn
deletes (removes) 1 lines from the edit buffer, starting with the

current line. This command displays the lines to be deleted.
Examples:

15

16

D (ENTER)

deletes the current line — regardless of the position of the edit
pointer — and displays it.

D4 (ENTER
deletes the current line and the next three lines.
D+ (ENTER

deletes everything from the current line to the end of the buffer.

Kn

kills (deletes) n characters, starting at the current position of the
edit pointer. This command displays all deleted characters.
Examples:

K (ENTER
deletes the character at the current position of the edit pointer.

K4 (ENTER

deletes the character at the current position of the edit pointer
and the next three characters.

K+ (ENTER

deletes everything from the current position of the edit pointer to
the end of the buffer.

En str

extends 2 lines by adding a string to the end of cach line. This is
useful, forexample, for adding comments to assembly language
statements. This command extends the line, displays it. and
then moves the edit pointer past it. Examples:

E/this is a comment/ (ENTER

adds the string “‘this is a comment™” to the end of the current line
and moves the edit pointer to the next line.

E3 /X% (ENTER
adds the string XX to the end of the current line and the next two

lines and moves the edit pointer past these lines.

U

unextends (deletes) the remainder of a line from the current

position of the edit pointer. This command is commonly used to

remove extensions, such as comments. from a line. Example:
U (ENTE

deletes all the characters from the current position of the edit
pointer up to the end of the current line.

For some practice in using the commands that display text,

manipulate the edit pointer, and insert and delete lines, turn to
Sample Session 1.

Searching and Substituting

Sn string
searches for the next 7 occurrences of the string. When it finds
the occurrence. it displays the line, and moves the edit pointer
past it. If it docs not find the string. the edit pointer does not
move. Examples:
5/mv string/ (ENTER
scarches for the next occurrence of ““my string. ™
53"strund out" (ENTER
scarches for the next three occurrences of *‘strung out.””

S#/seek and find/ (ENTER

scarches for all occurrences of ““seck and find”” that are between
the edit pointer and the end of the text.

17

18

Cn stringl string?2

changes the next i occurrences of stringl to string2. When it
finds stringl, it moves the edit pointer past it and changes
string{ to string2: then it displays the updated line. I it does not
find stringl. the edit pointer does not move. Examples:

C/this/that/ (ENTER

changes the next occurrence of ““this™ to “that.”
C2/in/out/ (ENTER)

changes the next two occurrences of “'in™™ to “out.”

C*! seek and findtsought and found!

ENTER)

changes all occurrences of “seek and {ind™ to “*sought and
found™" that arc between the edit pointer and the end of text.

An

scts the SEARCH/CHANGE anchor to Column n. To find a
string that begins in Column 1 (such as an assembly language
label) but that you don’t want to find if it begins in any other
column, set the anchor to Column 1 before using the search
command to find it. Examples:

A (ENTER)

finds a string only if it begins in Column 1.
ASQ (ENTER)

finds a string only if it begins in Column 50.

To return to the normal mode of searching, set the anchor to
zero. You can now find a string regardless of the column in
which it begins. Example:

A2 (ENTER

If you use the A command to set the unchor. this setting remains
in effect only for the current command line. After EDIT ex-
ecutes the command, the anchor automatically returns to its
normal value of zero.

For some practice in using the commands that scarch and
substitute, turn to Sample Session 2.

Miscellaneous Commands

Tn

tabs (moves) the edit pointer to Column n of the current line. 1f n
exceeds the line length, this command extends the line with
spaces. Examples:

T (ENTER

moves the edit pointer to Column | of the current line.

TS (ENTER)

moves the cdit pointer to Column 5 of the current line.

SHELL command line

lets you use any OS-9 command from within the editor. The
remainder of the command line following .SHELL passes to the
0OS-9 Shell for exccution. Examples:

+SHELL DIR /D1 (ENTER)

calls the OS-9 Shell to print the directory DI1.
+SHELL BASIC@9

starts BASIC09.
+SHELL EDIT oldfile newfile (ENTER)

starts another copy of the editor.

19

20

Mn

adjusts the amount of memory available for buffers and macros.
If the workspace is full and the editor does not allow you to enter
more text, increase the workspace size. If you will use little of
the avatlable workspace. decrease the workspace size so that
other OS-9 programs may use the memory that you free.
Examples:

M5@@ 0 (ENTER)

sets the workspace size to 5,000 bytes.
M1@@@@ (ENTER)
sets the workspace size to 10,000 bytes.

Before typing (@) to quit editing, you may want to increase the
workspace. This decrcases the amount of time needed to copy
the input file to the output file, since the editor is then able to
read and write more of the file at one time. Memory is allocated
in 256-byte pages: therefore. for the M command to have any
cffect. the desired workspace size must differ from the current
size by at least 256 bytes. The M command does not let you
return any part of the workspace that is being used for buffers or
MACTOS.

SIZE

displays the size of the workspace and the amount that has been
used. Example:

+SIZE

oord

1 15328
521 is the amount of workspace used for buffers and macros.

15328 is the amount of memory available in the workspace.

Q

ends editing and returns to the OS-9 Shell.

If you specified files when you started the editor, the text in
Buffer 1 is written out to the initial write file (the one you
specified when you started EDIT). The remainder of the initial

input file (the one you specified when you started EDIT) is then
copied to the initial write file. After the text is copied. the editor
terminates and control returns to the OS-9 Shell.

Vmode

turns the verify mode on or off. When you start the editor, the
verify mode is on: therefore. the editor displays the results of all
commands for which results can be displayed. If' you do not

want to see the results of commands. turn off the verify mode by
specifying 0 (zero) for mode. Example:

U@ (ENTER)
turns off the verify mode.

To return to the verify mode, specify any nonzero value for
mode. Examples:

yz

turns on the verify mode.
Vi3

turns on the verify mode.

If the verify mode is on and you switch to a macro, it remains
on. If you turn off the verify mode while in the macro, it is
automatically restored when you return to the editor.

Manipulating Multiple Buffers

.DIR

displays the directory of the editor’s buffers and macros, which
is similar to the one below:

BUFFERS:
% @ (secondary buffer)
* l {primary buffer)

59 (another buffer)

21

22

MACROS:

MYMACRO
LIST
COPY

Bn

makes buffer # the primary buffer. When you switch from one
buffer to another. the old one becomes the secondary buffer and
the new one becomes the primary buffer. Example:

BS (ENTER
makes Buffer 5 the primary buffer; it Buffer S does not exist. it

1s created.

Pn

puts (moves) n lines into the secondary buffer. This command
removes the tines from the primary buffer, starting at the posi-
tion of the edit pointer and inserts them into the secondary buffer
before the current position of the edit pointer. It displays the text
that is moved. Examples:

P

moves one line to the secondary bufter.
PS5 (ENTER)

moves five lines to the secondary buffer.
P* (ENTER)

moves to the secondary buffer all lines that arc between the
current position of the edit pointer and the end of text.

Gn

gets (moves) n lines from the secondary butfer. This command
takes the lines from the top of the secondary buffer and inserts
them into the primary buffer before the current position of the
edit pointer. It displays the lincs that arc moved. When used

with the P command, the G command moves text from one
place to another. Examples:

G (ENTER

gets one line from the secondary buffer.
GS

gets five lines from the secondary buffer.
G* (ENTER)

gets all lines from the secondary bufter.

For somc practice in using miscellaneous commands and the
commands that manipulatc multiple buffers, turn to Sample
Session 3.

Text File Operations

This section of the manual describes the group of commands
related to reading and writing OS-9 text files.

NEW

gets new text. This command is used when editing a file that is
too large to fit into the editor’s workspacc at one time. .NEW
writes out all lines that precede the current line and then the
editor tries to read in an equal amount of new text that is
appended to the end of the buffer.

The NEW command always writes text to the initial output file
(the one created when you started the editor) and always rcads
text from the initial input file (the one specified when you
started the editor).

If you have finished editing the text currently in the bufter, you
may “‘flush’” out this text and fill the buffer with new text by
moving the edit pointer to the bottom of the buffer and then
using the .NEW command. Example:

/ +NEW (ENTER)
23

24

If you wish to retain part of the text that is alrcady in the buffer,
move the edit pointer to the first line you wish to retain and then
type (=) NEW. This “*flushes™ out all lines that precede the edit
pointer. It then tries to read in new text that is the same size as
the portion flushed out.

.READ str

prepares an 0S-9 text file for reading; str specifies the pathlist.
Example:

+READ "myvfile" (ENTER

3

closes the current input file and opens “‘myfile’” for reading.
You may specify an empty pathlist. Example:
+READ " (ENTER

closes the current input file and restores the initial input file (the
one you specified when you started the editor) for reading.

An open file remains attached to the primary buffer until you
close the file. You may have more than one input file open at
any time by using the .READ command to open them in differ-
ent buffers.

To read these files, switch to the proper buffer, and then use the

R command to read from that buffer’s input file. To closc a file.
you must be in the same buffer in which the file was opened.

WRITE str

opens a new file for writing. The string specifies the pathlist for
the file you wish to create. Example:

JMWRITE "newfile” (ENTER
closes the current write file and creates one called “*newfile.””
You may specify an empty pathlist. Example:

+WRITE *" (ENTER

closes the current write file and restores the initial write file (the
one you specified when you started the editor).

A new write file is attached to the primary buffer and remains
attached until you close the file. You may have more than one
write file open by using the .WRITE command to open them in
different buffers. To write these files, switch to the proper
buffer and then write that buffer’s file. To close a file, you must
be in the same buftfer in which the file was opened.

Rn
reads (gets) i lines of text from the buffer’s input file. [t displays
the lines and inserts them before the current position of the edit
pointer. Examples:
R
reads one line from the input file.
R1e
reads 10 lines from the input file.
R *
reads the remaining lines from the input tile.
It a file contains no more text, the screen shows the *END OF
FILE* message.
Wn

writes n lines to the output file, starting with the current line. It
displays all lines that are deleted from the buffer. Examples:

W

writes the current line to the output file.
WS (ENTER)

writes the current line and the next four lines to the output file.
W

writes all lines from the current line to the end of the buffer to the

output file.

25

For some practice in using the commands that read and write
08-9 text files. turn to Sample Session 4.

Conditionals and Command Series Repetition

When a command cannot be executed. the editor sets an internal
flag. and the screen shows FAIL. Forexample, if you try to read
from a file that has no more text, the editor sets the fail flag.
After the fail flag is set, the editor will not execute any more
commands until one of the following conditions is met:

I

The end of a command line is reached if it was typed
in from the keyboard.

The end of the current loop is reached. Any loops
that arc more deeply nested will be skipped. (Sce
the repeat command.)

A colon (:) command is encountered. Since loops
that are nested decper than the current level are
skipped, any occurrences of : that are in a more
deeply nested loop will also be skipped.

Below arc commands that set the fail flag and the condition on
which it is set:

<

P.W

Trying to move the edit pointer beyond the begin-
ning of the edit buffer.

Trying to move the edit pointer beyond the + end
of the butfer.

Not finding a string that was searched for.
No text left in the secondary buffer.
No text left in the read file.

No text left in the primary buffer.

It you specify an asterisk for the repeat count on these com-
mands, the fail flag is not set. This is because an asterisk usually
means continue until there is nothing more to do, and the

26

commands succeed in doing just that. In addition to these
commands that set the fail flag as a side effect. the following
commands cxplicitly set the fail flag if some condition is not
truc.

EOF

tests for end of file. This succeeds if there is no more text to read
from the file: otherwise, it sets the fail flag.

.NEOF

tests for not end of tile. This succeeds it there is text to read from
the file; otherwise, it sets the fail flag.

.EOB

tests for end of buffer. This succeeds if the edit pointer s at the
end of the buftfer; otherwise, it sets the fail {lag.

.NEOB

tests for not end of buffer. This succeeds if the edit pointer is not
at the end of the buffer: otherwise it sets the fail flag.

.EOL

tests forend of line. This succeeds if the edit pointer is at the end
of the line; otherwise, it sets the fail flag.

.NEOL

tests for notend of line. This succeeds if the edit pointer is not at
the end of the line: otherwise, it sets the fail {lag.

ZERO n

tests for zero value, This succeeds if 7 equals zero; otherwise, it
sets the tail flag.

27

28

STAR n

tests for star (asterisk). This succeeds if n equals 65,535 (#7);
otherwisc. it scts the fail {lag.

STR str

tests for string match. This succeeds if the characters at the
current position of the edit pointer match the string; otherwise. it
sets the fail tlag.

NSTR str

tests for string mismatch. This succeeds it the characters at the
current position of the edit pointer do not mateh the string:
otherwise. it sets the fail flag.

.S

exits and succeeds. This is an unconditional exit from the
innermost loop or macro. The fail tlag clears after the exit.
.F

exits and fails. This is an unconditional exit [rom the innermost
loop or macro. The fail flag sets after the exit.

[commands| n

repeats the commands n times. Left and right brackets form a
loop that repeats the enclosed commands n times (the loop must
be repeated at lcast once). If the loop is entered from the
keyboard. it must all be on one line. If it is part of a macro,
however, it may span several command lines. Examples:

[L 15 (ENTER
repeats the L command five times.

Note: This is not exactly the same as LS, which exccutes the L
command only once and has 5 as its parameter.

[+1x% (ENTER

displays lines starting with the next line up to the end of the
bufter and moves the edit pointer to the end of the bufter.

This command repeats the + command until the end of the
buffer is recached. Then when the command tries to move the
cdit pointer past the end of the buffer. the fail flag is sct: this
terminates the loop and clears the fail flag.

Whenever the end of the loop is reached and the fail flag is set,
the current loop is terminated and the fail flag is cleared.

: commands

decides whether or not to execute the commands that follow it,
depending on the state of the fail flag. Below are the actions
taken as a result of the colon (:) being executed and the state of
the fail flag.

FAIL FLAG CLEAR Skips all commands that fol-
low the colon (:) up to the end
of the current loop or macro.

FAIL FLLAG SET Clears the fail flag and ex-
ecutes the commands that fol-
low the colon (:).

Below is a command line that deletes all lines that do not begin
with the letter A.

CLEAR(7) [.NEOB [.STR"A" + :
b1 1 =

The (4 moves the edit pointer to the beginning of the bufter.
The outer loop tests for the end of the buffer and terminates the
loop when it is reached.

The inner loop tests for i A at the beginning of the line. If there
isone. the + command is executed: otherwise, the D command

s executed.

Below is a command that scarches the current line for ““find it. ™’
If the command finds “*find it.”" the screen shows the line.

29

Edit Macros

Otherwise, the command line fails and the screen shows
* FAIL *.

[+JEOL V@ -@ U JF @ JBTR"find it"
-@ 5 ¢ [x1 1%

.EOL V0 -0 V .F tests to determine if the edit pointer is at the
end of the line. If it is. the verify mode is turned off to prevent
the -0 from displaying the line. Then it is turned back on, and the
.F ends the loop.

If the edit pointer is not at the end of the line, the .STR command
searches for “*find it"" at the current position of the edit pointer.
If it is at the end of the line, the -0 .S commands are executed.
This moves the edit pointer back to the beginning of the line,
displays the line. and terminates the loop. Otherwise, the >
command moves the cdit pointer to the next position in the line.

The brackets prevent the command from failing and terminating
the main loop if the end of the buffer is reached.

“Edit macros™ are commands you create to perform a special-
ized or complex rask. Forexample, you can replace a frequently
used series of commands with a single macro. First, save the
series in a macro. Then each time you need it. type a period
followed by the macro’s name and parameters. The editor
responds as if you had typed the series of commands.

Macros consist of two main parts — the header and the body.
The header gives the macro a name and describes the type and
order of its paramcters. The body is made up of any number of
ordinary commands (except for (SPACEBAR) and (ENTER), any
command may be used in a macro). Note: Macros cannot create
new macros.

To create a macro, first define it with the .MAC command.
Then enter the header and body just as you would enter tett into
an edit buffer. When you are satisfied with the macro. close its
definition by typing (@). This returns you to the normal edit
mode.

Macro Headers

Parameter Passing

A macro header must be the first line in cach macro. It is made
up of a name, which may be followed by a “*variable hist’” that
describes the macro’s parameters if there are any. The name
consists of any number of consecutive letters and underline
characters. Examples:

MACRO

trim—spaces

LIST
EXTRA_LONG_MACRO_NAME

Although you may make a macro name any length. it is better o
keep it short because you must spell it the same each time you
use it. You may use upper- and lower-case letters or a mixture.

Like other commands, macros may be given parameters so that
they are able to work with different strings and numbers of
things. Macros arc unable to usc paramcters dircctly; instead.
the parameters are passed on to the commands that make up the
macro.

To pass the macro’s parameters to these commands, usc the
variable list in the macro header to tell cach command which of
the macro’s parameters to use. Each variable in the variable list
represents the value of the macro parameter in its corresponding
position. Use the corresponding variable wherever the param-
eter’s value is needed.

The two types of variables are numeric and string. A numeric
variable is a variable name preceded by the # character. A
string variable is a variable name preceded by a $ character.
Variable names, like macro names, are composed of any num-
ber of consecutive letters and underline characters. Examples of
numeric variables:

#N
#ABC
#LONG_NUMBER_VARIABLE

31

32

Examples of string variables:

$A

$B
$STR
$STR-A

$lower-case-variable_name

The function of the edit macro below is the same as that of the S
command — to search for the next i occurrences of a string. The
first line of the macro is the macro header; it declares the
macro’s name to be SRCH. It also specifies that the macro needs
one numeric parameter (#N) and one string parameter ($STR).
The entire body of the macro is the second line. Here both of the
macro’s parameters are passed to the S command, which does
the actual searching.

SRCH #N $STR
S #N $STR
Below is an example of how to exccute this macro:

.SRCH 15 **string™”

In the next cxample the order of the parameter is reversed.
Therefore, when executing the macro, use the reverse order.
Below is the macro definition:

SRCH $STR #N

S #N $STR
Specity the parameters for the *'S™’ command in the proper
order since it is only the **"SRCH’” macro that is changed. Below
is an example of how to execute this macro. The order of the

parameters directly corresponds to the order of the variables in
the variable list.

.SRCH *‘string™" 15

! text

places comments inside a macro. Ignore the remainder of the
line following the ! command. This allows you to include, as

part of a macro, a short description of what it does in case you
forget or in case someone else wants to use the macro.
Examples:
!
) ! Move the edit pointer to the top of the buffer.

L* ! Display all lines of text.
!

In the example above arc four comments: two are empty, and
two describe the commands that precede them.

Jmacro name

executes the macro specified by the name following the period
(.). Examples:

.MYMACRO

.LIST O

TRIM **

.MERGE ** FILE_A *" FILE B B"’

MAC str
creates a new macro or opens the definition of an existing one so
that it may be edited. To create a new macro, specity an empty
string. Example:

+MAC // (ENTER
creates a new macro and puts you into the macro mode.
The screen shows M: instead of E: when the editor is in the
macro mode. To edit a macro that already exists, specify the
macro’s name. Example:

+MAC "MYMACRO" (ENTER
opens the macro **“MYMACRO’ for editing.

When a macro is open, edit it or enter its definition with the
same comands you usc in a text buffer. After you edit the macro,
type (@) to close its definition and return to the edit mode. The

33

34

first line of the macro must begin with a name that has not
already been used in order to close the definition and return to
EDIT.
.SAVE strl str2
saves macros on an OS-9 file. Stringl specifies a list of macros
to be saved: the macro names are separated by spaces. String?
specifies the pathlist for the file on which the macros arc to be
saved. Examples:
.SAVE “MYMACRO MYFILE™
saves the macro “*“MYMACRO™ on the file *MYFILE.™”
.SAVE ""MACA MACB MACC MFILE

saves the macros "MACA." “MACB. " and “"MACC"" on the
file “*“MFILE.™

To save more than one macro on a file, space between their
names.

.SEARCH n str

searches the text file buffer for the specified string. When a
match is found, it stops and displays that line. The n option

permits a scarch for the nt/i occurrence of a string match. This
command is the same as S n str.

.LOAD str

loads macros from an OS-9 file. As cach macro is loaded. EDIT
verifics that no other macro exists with that name. A duplicate
name does not load. and EDIT skips to the next macro on the
file. EDIT displays the names of all macros it loads. Examples:

,LOAD "MACROFILE"
loads the macros in the file called MACROFILE.
LLOAD "MYFILE" (ENTER

loads the macros in the file called MYFILE.

.DEL str

deletes the macro specified by the string. Examples:
+DEL "MYMACRO" (ENTER

deletes the macro called MYMACRO.
WDEL "LIST" (ENTER)

deletes the macro called LIST.

.DIR

displays the current edit buffer area. All edit buffers and macros
currently in memory are displayed.

.CHANGE n strl str2

changes the occurrence at string/ with string2. The n option
permits n occurrences at string/ o be changed with string?.

Q

ends a macro edit session. It returns you to the normal edit
mode.

Example:

Scarch_—and—Delete #N $STR

' This example MACRO is used to check the string at the
beginning of an #N numbecr of lines.

If the string matches, it will delete that Tine from the text
buffer file.

! NOTE: The way the editor processes a MACRO causes it to
see any parameters i the outer loop first. Thus. the #N

parameter is processed before the STR parameter.
'
(4 'Move to start of cdit buffer
[Istart of outer loop
.NEOB "test for bufter end
| Istart of inner loop

NSTR $STR - test for not string match

35

+ 'go to next line il no match
: N1 tlag clear skip next command

D !delete line if flag set
] 'end of inner loop
J#N fend of outer loop

! End of Macro

For some practice in using macro commands. turn to Sample
Session 5.

3 / Sample Sessions

Sample Session 1

Clear the buffer by deleting its contents.
You Type: (CLEAR)7D* (ENTER)
Screen Shows: E:(4)

Insert three lines into the buffer. Begin cach line with a space,
which is the command for inserting text.
You Type: (SPACEBARMY FIRST LINE (ENTER)
(SPACEBAR)MY SECOND LINE (ENTER)
(SPACEBAR)MY THIRD LINE (ENTER)
Screen Shows: E: MY FIRST LINE
E: MY SECOND LINE
E: MY THIRD LINE

Move the cdit pointer to the top of the text. The ceditor always
considers the first character you type & command. Note: (CLEAR
7 always shows (4) on the screen. Typing (= %) also moves the
cdit pointer to the beginning of a buffer.

You Type: (CLEAR)7 (ENTER)

Screen Shows: E: ()

List (display) the first line you inserted into the buffer,
You Type: L (ENTER)
Screen Shows: E: L
MY FIRST LINE

Display the first two lines you inserted into the buffer,
You Type: L2 (ENTER
Screen Shows: E:LZ
¥ FIRST LINE
Y SECOND LINE

Move to the next line and display it,

You Type: (ENTER
Screen Shows: E:
MY SECOND LINE

Move to the next line and display it.
You Type: (ENTER
Screen Shows: E:
MY THIRD LINE

37

38

Display text beginning at the position of the edit pointer. This is
the function of 1.
You Type: L (ENTER)
Screen Shows: E: b
MY THIRD LINE

Insert a line into the buffer. Note: In the next sample you will
sce that the line is inserted before the current position of the edit
pointer.
You Type: (SPACEBAR)INSERT A LINE
Screen Shows: E: INSERT A LINE

The following command line consists of more than one com-
mand. (CLEAR)7 (4) moves the edit pointer to the top of the text.
L displays the text, and the asterisk (%) following L indicates
that text is displayed through to the end of the buffer.
You Type: (CLEAR)7L.* (ENTER
Screen Shows: E: ()L *
MY FIRST LINE
Y SECOND LINE
INSERT A LINE
MY THIRD LINE

Show the position of the edit pointer.
You Type: L
Screen Shows: E: L
MY FIRST LINE

Move the edit pointer forward two lines and display the lines.
You Type: +2 (ENTER
Screen Shows: E:+2
INSERT A LINE

Display all lines from the edit pointer to the end of the buffer.
You Type: L% (ENTER
Screen Shows: E:L*
INSERT A LINE
MY THIRD LINE

Move the edit pointer to the end of the buffer.

You Type: / (ENTER

Screen Shows: E:/

Show that the edit pointer is at the end of text. It is, since the
screen shows no lines.

You Type: L+ (ENTER

Screen Shows: E: L *

Insert two more lines.
You Type: (SPACEBAR)FIFTH LINE
(SPACEBAR)L.AST LINE
Screen Shows: E: FIFTH LINE
E: LAST LINE

Move the edit pointer back one linc and display the line.
You Type: -2 (ENTER)
Screen Shows: E: -2
FIFTH LINE

Move the edit pointer back two lines and display the line.
You Type: -3 (ENTER)
Screen Shows: E: -3
¥ SECOND LINE

Move the edit pointer threc characters to the right and display
the remainder of the linc. Note: Space between commands.
You Type: >3 L
Screen Shows: E: >3 L
SECOND LINE

Display the characters that precede the edit pointer on the
current line.
You Type: X
Screen Shows: E: X
MY

Move the edit pointer to the end of the current linc.

You Type: +@ (ENTER

Screen Shows: E:+@

Show that the edit pointer is at the end of the line. It is, since the
screen shows no lines.

You Type: L

Screen Shows: E: L

Display the characters that precede the edit pointer on the
current line.
You Type: X (ENTER
Screen Shows: E ¥
MY SECOND LINE

39

40

Move the edit pointer back (o the beginning of the current line.
You Type: -@ (ENTER)
Screen Shows: E£:-@
¥ SECOND LINE

Show that the edit pointer is at the beginning of the linc. It is,
since the screen shows no lines.

You Type: ¥ (ENTER)

Screen Shows: E X

Go to the beginning of the text.

You Type: (CLEAR)7 (ENTER
Screen Shows: E: (1)

Insert a linc of 14 asterisks.
You Type: T14"*"
Screen Shows: E:I14"#"
FEEEREREREREER

Insert an empty line.
You Type: I"" (ENTER
Screen Shows: E: I""

Move to the top of the text and display all lines in the buffer.
You Type: (CLEAR)7L * (ENTER)
Screen Shows: E: ()L
HEEEERFRRRERRR

MY FIRST LINE
MY SECOND LINE
INSERT A LINE
MY THIRD LINE
FIFTH LINE
LAST LINE

Move the edit pointer forward two lines.
You Type: +2 (ENTER
Screen Shows: E:+Z
Y FIRST LINE

Extend the line with XXX.
You Type: E" XXX" (ENTER
Screen Shows: E:E" XKX"
MY FIRST LINE XXX

Display the current Jinc. Note: The previous E command moved
the edit pointer to the next linc.
You Type: L
Screen Shows: E: L
Y SECOND LINE

Extend three lines with YYY.
You Type: E3"(SPACEBAR)Y /Y "
Screen Shows: E:E3" YYY"
Y SECOND LINE ¥YYY
INSERT A LINE YYY
¥ OTHIRD LINE YYY

Move back 2 lines.
You Type: -2 (ENTER)
Screen Shows: E: -2
INSERT A LINE YYYVY

Move the edit pointer to the end of the line: move the edit pointer
back four characters: display the current line. starting at the edit
pointer.
You Type: +@ <4 L (ENTER
Screen Shows: E:+0 <4 L
Y'Y
Truncate the line at the current position of the edit pointer. This
removes the YYY extension.
You Type: U (ENTER)
Screen Shows: E: U
INSERT A LINE

Go to the top of the text and display the contents of the buffer.
You Type: (CLEAR)7L % (ENTER
Screen Shows: E: ()L *

FEEXKRERXRHR R R H

Y OFIRET LINE XXX
Y O SECOND LINE YYY
INSERT A LINE
MY THIRD LINE ¥YY
FIFTH LINE
LAST LINE

41

42

Delete the current linc and the next line.
You Type: DZ (ENTER
Screen Shows: E:DZ2
HE W KRR KRR N

Move the cdit pointer forward two lines.
You Type: +2
Screen Shows: E:+Z
INSERT A LINE

Delete this line.
You Type: D
Screen Shows: E:D
INSERT A LINE

Display the current line.
You Type: L (ENTER
Screen Shows: E: MY THIRD LINE YYY

Move the edit pointer to the right threc characters and display
the text.
You Type: >3 L
Screen Shows: E: >3 L
THIRD LINE YYY

Kill (delete) the 11 characters that constitute THIRD LINE.
You Type: K11 (ENTER)
Screen Shows: E:K11
THIRD LINE

Go to the beginning of the line and display it.
You Type: -0
Screen Shows: E: -@
M \II \ll \II \l,
Concatenate (combine) two lincs. Move the edit pointer to the
end of the line; delete the character at the end of the line; move
the edit pointer back to the beginning of the lines. Display the
line.
You Type: +@ K -0
Screen Shows: E: +@ K -0
MY YYYFIFTH LINE

Separate the two lines by inserting an end-of-line character.

You Type: =6 I1// (ENTER

Screen Shows: E: x5 I//

\li \ll. \I, \Ii

Note: The empty line is inserted before the current position of
the edit pointer.

You Type: L

Screen Shows: E:L

FIFTH LINE

Sample Session 2

Clear the buffer by deleting its contents.
You Type: (CLEAR)7D* (ENTER
Screen Shows: E:(1)D*

Insert lines.
You
Type: (SPACEBAR)ONE TWO THREE 1,0
(SPACEBAR)ONE (ENTER)
SPACEBAR)(SPACEBAR)TW(D (ENTER
(SPACEBAR)(SPACEBAR)(SPACEBAR)
THREE
(SPACEBARIONE TWD THREE 2.0
(SPACEBARIONE (ENTER)
(SPACEBAR)(SPACEBAR) TW((ENTER)
SPACEBAR)(SPACEBAR)(SPACEBAR)
THREE
(SPACEBARONE THO THREE 3.0
Screen Shows: E: ONE TWO THREE 1.9
E: ONE
TWO
THREE
ONE TWO THREE 2.9
ONE
TWO
THREE
ONME TWO THREE 3.0

m ooy mom

43

44

Go to the top of the text and display all lines in the bufter.
You Type: (CLEAR)7L.* (ENTER
Screen Shows:0E : (§)L*
ONE TWO THREE 1.0
ONE
TWO
THREE
ONE TWQO THREE 2.9
ONE
TWO
THREE
ONE TWO THREE 3.0

Scarch for the next occurrence of TWO. The edit pointer moves
past the letter O in TWO: the entire line is found and displayed.
You Type: S"TW0O" (ENTER)
Screen Shows: E: 5" TWO"
ONE TWO THREE 1.0

Show that the edit pointer has moved.
You Type: L. (ENTER)
Screen Shows: E: L
THREE 1.0

Scarch for all occurrences of " TWO™ that are between the edit
pointer and the end of the buffer. When “"TWO™ is found. the
cdit pointer moves past it and the tine is displayed.
You Type: +5%/TWQO/ (ENTER)
Screen Shows: E: 5%/ THO/
ONE TWO THREE 1.0
TWO
ONE TWO THREE 2.0
TWO
ONE TWD THREE 3.0

Go to the top of the buffer and change the first occurrence of
THREE to ONE.
You Type: (CLEAR)7 C/THREE/ONE/
ENTER
Screen Shows: E:(4) C/THREE/ONE/
ONE TWD ONE 1.2

Show that the edit pointer has moved past the string that was
changed.
You Type: L (ENTER)
Screen Shows: E:L
1.@

Move the edit pointer to the top of the buffer. Set the anchor to
Column 2 and then use the search command to find cach
occurrence of TWO that begins in Column 2. All other occur-
rences are skipped.
You Type: (CLEAR)7 AZ S*/TW0O/ (ENTER)
Screen Shows: E:(}) AZ S*/THWO/
TWO
TWO

Move the edit pointer to the top of the buffer. Set the anchor to
Column 1. and change cach occurrence of ONE that begins in
that column to XXX. Note: ONE in Linc | is not changed. since
it does not begin in Column 1.
You Type: (CLEAR)7 A1C*/0NE/ XXX/ (ENTER)
Screen Shows: E:(§) AL1C*/0NE /XXX
KXW TWO ONE 1.0

NS

VRV Y
AN
AYAY RV
FARARAY

TWO THREE Z.0

PR
o

HEX TWO THREE 3.¢
THREE
HAX TWO THREE 2.0
THO
THREE
KAX TWO THREE 3.0

Go to the top of the buffer and display the text.
You Type: (CLEAR)7L * (ENTER)
Screen Shows: E:(§)L*
HHX TWO ONE 1.0

\VAvAV]
IARAWAY

THWO

45

Change the remaining ONE to XXX. Note: The anchor is no
longer set. It is reset to zero after each command is exceuted.

You Type: < .CHANGE /ONE/ XXX/
Screen Shows: E : C/ONE /XXX
KOTWO XXX 1.0

~

Move to the beginning of the current line.
You Type: -0
Screen Shows: E: -@
ARH TWO XXX 1.0

Change three occurrences of XXX to ““ZZZ.™
You Type: .C3/XXK/222/ (ENTER
Screen Shows: E:C3/ KKK/ ZZE/

(KK 1.2

Ty

ANy Sy

ZZ2 TWO ZZ2Z2 1.J@
Ty T

Ny iy

Sample Session 3

Clear the buffer by deleting its contents:
You Type: (CLEAR)7D* (ENTER
Screen Shows: E:(J)D*

Display the directory of buffers and macros. The dollar sign ($)
identifics the secondary buffer as Buffer (; the asterisk (%)
identifics the primary buffer as Buffer 1. No macros are defined.
This s the initial environment when EDIT is started from OS-9.
You Type: .DIR
Screen Shows: E: .DIR

BUFFERG:

% @
* 1
MACROS :

Insert some lincs into Butfer | so that later you can identify it.
You Type: (SPACEBARBUFFER ONE 1.0
(SPACEBARBUFFER ONE 2.0
(SPACEBAR)BUFFER ONE 3.0
(SPACEBARBUFFER ONE 4.0

46

Screen Shows: E: BUFFER ONE 1
E: BUFFER ONE 2
E: BUFFER ONE 3.
E: BUFFER ONE 4

Display the text in Buffer 1.
You Type: (CLEAR)7L % (ENTER)
Sereen Shows: E:(d)L*
BUFFER ONE 1.0
BUFFER ONE 2,0
BUFFER ONE 3.0
BUFFER ONE 4.0

Make Bufter 0 the primary buffer. Buffer [becomes the second-
ary buffer.
You Type: B@ (ENTER

Screen Shows: E:B@

Display the directory of buffers and macros. Note: The symbols
identifying the buffers arc now reversed.

You Type: .DIR (ENTER

Screen Shows: E: .DIR

BUFFERS:

% 1
* @
MACROS:

Insert some lines into Buffer 0.
You

Type: (SPACEBARBUFFER ZERO 1.2 (ENTER
(SPACEBARBUFFER ZEROD 2.0 (ENTER
(SPACEBARBUFFER ZERO 3,0 (ENTER
(SPACEBARBUFFER ZERO 4.0 (ENTER

Screen Shows: E: BUFFER ZERO 1.0

E: BUFFER ZERO 2.0
E: BUFFER ZERO 3.0
E: BUFFER ZERO 4.0

Display the text in Buffer 0.
You Type: (CLEAR)7L.* (ENTER)
Screen Shows: E:(d)L*
BUFFER ZERD 1.
BUFFER ZERD 2.0

[

47

BUFFER ZERO 3.0
BUFFER ZERD 4.0

Switch to Buffer 1.
You Type: B (ENTER

Screen Shows: E: B

Display the text in Buffer 1.
You Type: (CLEAR)7L *
Screen Shows: E:(A)L*
BUFFER ONE 1
BUFFER ONE 2
BUFFER ONE 3.
BUFFER ONE 4

Move the edit pointer to Line 3 in this buffer.
You Type: +2 (ENTER
Screen Shows: E:+2
BUFFER ONE 3.0

Switch to Buffer 0.
You Type: B@ (ENTER
Screen Shows: E:B@

Display the text in Buffer 0.
You Type: L*
Screen Shows: E:L ¥
BUFFER ZERO 1
BUFFER ZERO 2
BUFFER ZERO 3.
BUFFER ZERO 4

Move the edit pointer to Line 2 in this buffer.
You Type: + (ENTER

Screen Shows: E: +
BUFFER ZERO 2.0

Switch to Bufter [.
You Type: B (ENTER

Screen Shows: E: B

Display the text in Buffer 1 from the current position of the edit
pointer. Note: The position of the edit pointer has not changed
since you switched to Butfer 0.

You Type: L.* (ENTER

Screen Shows: E:l %
BUFFER ONE 3.0
BUFFER ONE 4.0

Switch to Bufter 0.
You Type: 8@ (ENTER
Screen Shows: E:B@

Display the text in Buftfer O from the current position of the edit
pointer. Note: The position of the edit pointer has not changed
since you switched to Buffer 1.
You Type: L% (ENTER)
Screen Shows: E:L*
BUFFER ZERO 2.0
BUFFER ZERO 3.0
BUFFER ZEROD 4,0

Delete the contents of Buffer 0.
You Type: (CLEAR)7D* (ENTER
Screen Shows: E:(4)D*
BUFFER ZERO 1.0
BUFFER ZERD 2.0
BUFFER ZERD 3.0
BUFFER ZEROD 4.0

Make Buffer I the primary buffer and Buffer O the sccondary
buffer.
You Type: B (ENTER

Screen Shows: E: B

Move two lines from the primary buffer (Buffer 1) into the
secondary buffer (Buffer 0).
You Type: (CLEAR)7PZ2 (ENTER
Screen Shows: E:(4)P2
BUFFER ONE 1,0
BUFFER ONE 2.

Switch to Buffer 0 and show that the lines were moved to it.
You Type: B® (CLEAR)7L* (ENTER)
Screen Shows: E: B0 (3L *
BUFFER ONE 1.0
BUFFER ONE 2.

Switch to Buffer 1. Go to the bottom of the butter and get the
text out of the secondary buffer.

49

You Type: B / G#* (ENTER)

Screen Shows: E:B / G#
BUFFER ONE 1.0
BUFFER ONE 2.9

Show the contents of the buffer. Note: The order of the Tines is
changed as a result of moving the text.
You Type: (CLEAR)7L % (ENTER)
Screen Shows: (AL *
BUFFER ONE 3.0
BUFFER ONE 4.0
BUFFER ONE 1.9
BUFFER QNE 2.0

Move two lines into the secondary buffer.
You Type: P2
Screen Shows: E: P2
BUFFER ONE 3.0
BUFFER ONE 4.9

Move to the bottom of the buffer and get the lines back out of the
sccondary buffer.
You Type: / G#*
Screen Shows: E:/ G#
BUFFER ONE 3.0
BUFFER ONE 4.0

Show that the order of the lines is restored.
You Type: (CLEAR)7L *
Screen Shows: E: (DL *
BUFFER ONE 1.9
BUFFER ONE 2.0
BUFFER ONE 3.0
BUFFER ONE 4.0

Sample Session 4

Enter some lines of text.

You Type: (SPACEBARL.INE ONE (ENTER

SPACEBARISECOND LINE OF TEXT

ENTER
(SPACEBAR)THIRD LINE OF TEXT
ENTER
(SPACEBAR)FOURTH LINE (ENTER
SPACEBAR)FIFTH LINE (ENTER
(SPACEBAR)L AST LINE (ENTER)
Screen Shows: E: LINE ONE
E: SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE
FIFTH LINE
LAST LINE

mom mm

Open the file “oldfile’ for writing.
You Type: WRITE"oldfile" (ENTER
Screen Shows: E: .WRITE"0ldfile”

Write all lines to the file.

You Type: (CLEAR)7W* (ENTER)

Screen Shows: E: (4)W*
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE
FIFTH LINE
LAST LINE

END DOF TEXT

Close the filc.
You Type: .write// (ENTER
Screen Shows: E: \WRITE//

Verily that the buffer is empty.
You Type: (CLEAR)7L* (ENTER)
Screen Shows: E:(4)L*

51

52

Open the file “toldfile™ for reading.
You Type: +READ"oldfile" (ENTER)
Screen Shows: E: .READ"oldfile"

Create a new file called *newfile™ for writing.
You Type: +WRITE"niewfile”" (ENTER
Screen Shows: E: VWRITE"newfile™

Read four lines from the input file. The screen shows the lines as
they arc read in.
You Type: R4 (ENTER)
Screen Shows: E: R4
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

Read all the remaining text from the file. The screen shows the
lines. When there is no more text, the screen shows the
END OF FILE message.
You Type: R+ (ENTER)
Screen Shows: E:R#*
LINE FIVE
LAST L INE

#END OF FILE

Go to the top of the buffer and display the text to make sure that
it was inserted into the buffer.
You Type: (CLEAR)7L * (ENTER)
Screen Shows: E: (AL *
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE
FIFTH LINE
LAST LINE

Write three lines to the output file and display the lines.
You Type: W3 (ENTER)
Screen Shows: E: W3
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT

Move to the next line and display it.
You Type: + (ENTER
Screen Shows: E:+
FIFTH LINE

Show that the lines are written starting at the current line and not
at the top of the buffer.
You Type: W (ENTER)
Screen Shows: E: W
FIFTH LINE

Go to the top of the buffer and display the text to make sure that
the lines were written to the output file.
You Type: (CLEAR)7L » (ENTER)

Screen Shows: E (4)L #

FOURTH LINE
LAST LINE

Clear the buffer.
You Type: (CLEAR)7D* (ENTER)
Screen Shows: E:(A)D#*
FOURTH LINE
LAST LINE

Switch to Bufter 2. Open the input file “oldfile™ and read two
lines from it.
You Type: BZ READ"oldfile" RZ (ENTER
Screen Shows: E:BZ ,READ"oldfile" RZ
LINE ONE
SECOND LINE OF TEXT

Switch to Buffer I. Open the input file “roldfile™ and read one
line of text.
You Type: B .READ"oldfile” R (ENTER)
Screen Shows: E:B WREAD"oldfile" R
LINE ONE

Switch to Buffer 2 and read one line. Note: Your place in the file
was not lost.
You Type: BZ R (ENTER)
Screen Shows: E:BZ R
THIRD LINE OF TEXT

Switch to Buffer | and read one line ot text. Note: Your place in
the file was not lost.

You Type: B R (ENTER) 53

Screen Shows: E:B R
SECOND LINE OF TEXT

Switch to Buffer 2 and delete its contents.
You Type: B2 (CLEAR)7D* (ENTER)
Screen Shows: E:BZ2 ()D+*
LINE ONE
SECOND LINE OF TEXT
THIRD LINE OF TEXT

Insert some extra lines into the buffer.
You Type: (SPACEBAREXTRA L INE ONE
(SPACEBARE X TRA LINE TWO
Screen Shows: E: EXTRA LINE ONE
E: EXTRA LINE THO

Try to write B2 buffer to file. It fails because a file has not been
opened in this buffer.
You Type: CLEAR)7W*
Screen Shows: E : (A)W*
FILE CLOSED#

Close the file for Buffer 1 and return to Buffer 2.
You Type: B WRITE// BZ (ENTER
Screen Shows: E:B WRITE// B2

Open the old *““write™" file for reading and then read it back in.
You Type: »READ"newfile” k¥ (ENTER
Screen Shows: E: .READ"newfile” R*

LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

END OF FILE#

Display the contents of the buffer. Note: it read the file into the
beginning of the buffer. since that was the position of the cdit

pointer.

You Type: (CLEAR)7L *

Screen Shows: E: ()L *
LINE ONE
SECOND LINE 0OF TEXT
THIRD LINE OF TEXT
FIFTH LINE
EXTRA LINE ONE
EXTRA LINE THO

Sample Session 5

Delete all text from the edit buffer.

You Type: (CLEAR)7D* (ENTER)
Screen Shows: E:(F)D*

Insert threc lines.
You Type: (SPACEBAR)L INE ONE (ENTER
SPACEBAR)L. INE TWO (ENTER

SPACEBAR)L. INE THREE (ENTER
Screen Shows: E: LINE ONE

LINE TWO
LINE THREE

Create a new macro using an empty string.
You Type: .MAC// (ENTER
Screen Shows: E: .MAC//

Display the contents of the macro mode, which is now open.
Note: The E prompt is now M.

You Type: (CLEAR)7L *

Screen Shows: M: (4L *

Define the macro.
You Type: (SPACEBARF IND
(SPACEBAR)S " TWO " (ENTER
Screen Shows: M: FIND
SUTWO®

55

56

Display the contents ot the macro.
You Type: (CLEAR)7L % (ENTER)
Screen Shows: M:(4)L#*

FIND
SYTHO"

Close the macro’s definition.
You Type: @ (ENTER)
Screen Shows: E :

Display the directory of buffers and macros.
You Type: .DIR (ENTER
Screen Shows: E: . DIR

BUFFERS:
% @
* 1
MACROS:
FIND

Display the contents of the edit buffer.
You Type: (CLEAR)7L * (ENTER)
Screen Shows: E: () L*

LINE ONE
LINE TWO
LINE THREE

Use the FIND macro to find the string ““TWO.""

You Type: .FIND (ENTER)
Screen Shows: E: .FIND
LINE THWO

Reopen the definition of the FIND macro.
You Type: .MAC/FIND/ (ENTER
Screen Shows: E: .MAC/FIND/

Show that the macro is still intact.
You Type: (CLEAR)7L *
Screen Shows: M: (3L *

FIND
S"TWO"

Add the numberic parameter and the string parameter to the
macro’s header.
You Type: C/FIND/FIND #N $STR/
Screen Shows: M:C/FIND/FIND #N $S5TR/
FIND #N %57TR

Move to the second line of the macro.
You Type: +
Screen Shows: M: +
S'TWO"

Give the macro’s parameters to the S command. Now the FIND
macro will perform the same function as the S command.
You Type: C/"TWOD"/ %N $S5TR/ (ENTER
Screen Shows: M:C/"TWO"/ #N $5TR
5 #N $8TR

Close the macro’s definition.

You Type: @ (ENTER

Screen Shows: E :

Display the contents of the edit buffer.
You Type: (CLEAR)7L *
Screen Shows: E:(3)L*

LINE ONE
LINE TWO
LINE THREE

Use the FIND macro to tind the next two occurrences of
“LINE.™"
You Type: .FIND 2 /LINE/ (ENTER
Screen Shows: E: .FIND 2 /LINE/
LINE ONE
LINE THWO

Create a new macro.

You Type: .MAC// (ENTER
Screen Shows: E: .MAC//
M:

57

58

Define the macro “"FIND_ LINE.,"" which performs the same
function as the § command except that it returns the edit pointer
to the head of the line after the last occurrence of “"STR™ is
found.
You Type: (SPACEBAR)F IND_L. INE #N $STR
Screen Shows: M: FIND_LINE #N $5TR

You Type: (SPACEBAR)S #N $STR (ENTER
Screen Shows: M: 5 #N $5TR

Turn off the verify mode.
You Type: (SPACEBAR). @ (ENTER)
Screen Shows: M: UP

Move the edit pointer to the first character of the current line.

You Type: (SPACEBAR) -@ (ENTER)
Screen Shows: M: -@

Close the macro’s definition.
You Type: © (ENTER
Screen Shows: M: 0

E:

Display the contents of the edit buffer.
You Type: (CLEAR)7L *
Screen Shows: E:(d)L*

LINE ONE
LINE THWO
LINE THREE

Use the “FIND_LINE™ macro to scarch for the string
CTWO.
You Type: .FIND_LINE/TWO/ (ENTER
Screen Shows: E: ,FIND_LINE/TWO/
LINE THWO

Show that the “*FIND_LINE"" macro left the edit pointer at the
head of the line.
You Type: L
Screen Shows: E: L
LINE THOD

Create 4 new macro.
You Type: .MAC// (ENTER
Screen Shows: E: MAC//
M

Use the exclamation point (1) command to comment itselt. Type
the following:

CONVERT.TO.LINES #N

I " This 1s a comment
]

T T =

' This macro conuverts
the nmext n

M: | space characters to new line

M: ! characters.

M: V@ ' Turn verify mode
off

M ' to prevent inter-
mediate results

M ' from being
disprlaved,

Ma !

M: C I Bedin loopr

M: +SEARCH/ / 1 Search for <sraces
character.

My 17/ ' Insert empPty
line (new line
character).,

M - I Back ur one line.

Ms C7 /7 I Delete the
next seace
character.

M: L+ I Show livnes moue
Past 1t.
M: 1 #N I End of loor.

Fereat #N times.

Close the macro’s definition,
You Type: @ (ENTER)
Screen Shows: M: Q

E:

59

60

Display the contents of the edit butfer.
You Type: (CLEAR)7L * (ENTER)
Screen Shows: E: ()L *

LINE DNE
LINE TWD
LINE THREE

Convert all space characters to new line characters. Note: The
loop stops when the C command in the macro cannot find a
space to delete.

You Type: CONVERT_TO.LINES % (ENTER
Sereen Shows: E: \CONUERT_TO_LINES *
LINE
L INE
LINE

Display the contents of the cdit buffer.
You Type: (CLEAR)7L.* (ENTER
Screen Shows: E:(F)L*

LINE
ONE
LINE
TWO
LINE

THREE

Appendices

Appendix A / Glossary

BUFFER

EDIT POINTER

MACRO

PATHLIST

PSEUDO MACRO

TEXT FILE

WORKSPACE

Holding arca in memory for text.

Internal marker the cditor uses to
remember your position in the edit
buffer.

New command you may define; it is
composed of existing commands. Use
macros to repeat the same command
sequence over and over again.

See the 0S-9 Commands.

Command that is part of the EDIT pro-
gram and written in assembly language
that is used as if it were a macro.

Place where OS-9 keeps the text that
you want saved.

Available memory pool that the editor
uses for buffers and macros.

Appendix B / Quick Reference Summary

EDIT

EDIT newfile

0S-9 loads the editor and starts it.
There are no initial read or write files.
Perform text-file operations by opening
files after the editor is running.

If newfile does not exist, OS-9 loads the
editor and starts it. The editor creates a
file called newfile. and this is the initial
write file. There is no initial read file;
however, files may be read if they are
opened after the editor is started.

61

Edit Commands

62

EDIT oldfile

EDIT oldfile newfile

.MACRO

(SPACEBAR

ENTER

— R

+0

>n

0S-9 loads the editor and starts it. The
initial rcad file is oldfile. The editor
creates a new file called SCRATCH:
this is the initial write file. When the
edit session is complete, oldfile is de-
leted, and SCRATCH is given the
name oldfile.

08-9 loads the editor and starts it. The
initial rcad file is oldfile. The cditor
creates a file called newfile, and this is
the initial write file.

Executes the macro specified by the
name following the period (.).

Places comments inside a macro and
ignores the remainder of the command
line.

Inserts line before the current position
of the cdit pointer.

Moves the edit pointer to the next line
and displays it.

Moves the edit pointer forward »n lines
and displays the line.

Moves the edit pointer backward n lines
and displays the line.

Moves the cdit pointer to the last char-
acter of the line.

Moves the edit pointer to the first char-
acter of the current line and displays it.

Moves the edit pointer forward n
characters.

<n

CLEAR)7

[commands] n

An

A0

Bn

Cn strl str2

Dn

En str

Gn

In str

Moves the edit pointer backward n
characters.

Moves the edit pointer to the beginning
of the text.

Moves the edit pointer to the end of the
text.

Repeats the sequence of commands be-
tween the two brackets n times.

Skips to the end of the innermost loop
or macro it the fail flag 1s not on.

Sets the SEARCH/CHANGE anchor to
Column n. restricting searches and
changes to those strings starting in the
Column s. This command remains in
cffect for the current command line.

Returns the anchor to the normal mode
of searching so that strings are found
regardless of the column in which they
start.

Makes buffer n the primary buffer.

Changes the next n occurrences of
stringl to string2.

Deletes n lines.

Extends (adds the string to the end of)
the next n lines.

Gets # lines from the secondary bufter,
starting {rom the top. Inserts the lines
before the current position in the prim-
ary buffer.

Inserts a line containing n copies of the

string before the current position of the
cdit pointer.

63

64

Kn

Ln

Pn

Rn

Sn str

Tn

Vmode

Wn

Kills n characters starting at the current
position of the edit pointer.

Lists (displays) the next i lines, starting
at the current position of the edit
pointer.

Changes workspace (memory) size to n
bytes.

Puts (moves) n lines from the position
of the edit pointer in the primary buffer
to the position of the edit pointer in the
secondary buffer.

Quits cditing (and terminates editor). If
you specified file(s) when you entered
EDIT, Buffer 1 is written out to the
output file. The remainder of the input
file is copied to the output file. All files
are closed.

Reads n lines from the buffer’s input
file.
Searches for the next n occurrences of

the string.

Tabs to Column # of the present line. If
n is greater than the line length, the line
is extended with space.

Unextends (truncates) line at the cur-
rent position of the edit pointer.

Turns the verify mode on or off.

Writes n lines to the buffer’s output
file.

Displays n lines that precede the edit
position. The current line is counted as
the first line.

Pseudo Macros

.CHANGE

n strl str2

.DEL str

.DIR

.EOB
EOF
.EOL

.F

.LOAD str

MAC str

.NEOB

.NEOL

.NEW

NSTR str

READ str

Changes n occurrences of strl to str2.

Deletes the macro specified by string.

Displays the dircctory of buffers and
macros.

Tests for the end of the buffer.
Tests for the end of the file.
Tests for the end of the line.

Exits the inncrmost loop or macro and
sets the fail flag.

Loads macros from the path specified
in the string.

Opens the macro specified by the string
for definition. If an empty string is
given. a new macro is created.

Tests for not end of buffer.
Tests for not end of file.

Writes lines out to the initial output filc
up to the current line and then attempts
to read an cqual amount of text from the
initial input file. The test read-in is
appended to the end of the edit buffer.

Tests to see if string does not match the
characters at the current position of the
cdit pointer.

Opens an OS-9 text file for reading,
using string as the pathlist.

Exits the innermost loop or macro and
succeeds (clears the fail flag).

65

.SEARCH n str

SAVE strl sur2

.SHELL

command line

SIZE

.STAR n

STR str

.WRITE s1r

ZERO n

[
]

()
type (CLEAR)7.

Secarches for n occurrences of sir.

Saves the macros specified in swingl
on the file specified by the pathlist in
string2.

Calls OS-9 shell to execute the com-
mand line.

Displays the size of memory used and
the amount of memory available in the

workspace.

Tests to sec if n equals asterisk
(infinity).

Tests to sce if string matches the char-
acters at the current position of the edit

pointer.

Opens an OS-9 text for writing, using
string as a pathlist.

Tests n to see if it 1s zero.
Starts at a macro loop; type (CLEAR)S.
Ends at 4 macro loop: TYPE (CLEAR)Y.

Moves edit pointer to beginning of
buifer;

Appendix C / Editor Error Messages

BAD MACRO
NAME

BAD NUMBER

66

The first line in the macro does not
begin with a legal name. You can closc
the definition of a macro after you give
it a legal name.

You have entered an illegal numeric
paramcter, probably a number greater
than 65,535.

BAD VAR NAME

BRACKET
MISMATCH

BREAK

DUPL. MACRO

END OF FILE

FILE CLOSED

MACRO IS OPEN

MISSING DELIM

NOT FOUND

UNDEFINED VAR

You have specified an illegal variable
name. Usually, you omitted the vari-
able name or inadvertently included a
$ or # character in the commands
parameter list.

You have not entered brackets in pairs
or the brackets are nested too deeply.

You typed (CONTROL)(C) or
(CONTROL)(_Q) to interrupt the editor.
After printing the crror message, the
cditor returns to command entry mode.
Note: Results may not be displayed
during commund operation.

You attempted to close a macro defini-
tion with the same name as another
macro. Rename the macro before
trying to close its definition.

You are at the end of the edit buffer.

You tried to write to a file that was
never opened. Either specify a write
file when starting the editor from OS-9,
output file
WRITE pscudo macro.

or open an using the

Close the macro definition before using
the command that caused this crror.

The editor could not find a matching
delimiter to complete the string you
specified. You must put the string com-
pletely on one line.

The editor cannot find the specitied
string or macro.

You used a variable that was not speci-
tied in the macro’s definition parameter
list. A variable parameter may be used
only in the macro in which it is
declared.

67

68

WHAT 77

WORKSPACE FULL

The editor did not understand a com-
mand you typed. This is usually caused
by entering a command that docs not

exist (misspelling its name).

The bufter did not have room for the
text you attempted to insert. Increase
the workspace or remove some fext.

0S-9 Assembler

1 / Introduction

Installation

The machine instructions executed by a computer are se-
quences of binary numbers that are difficult for people to deal
with directly. Creating a machine-language program by hand
is tedious, error prone, and time consuming. Assembly lan-
guage bridges the gap betwecen computers and machine-
language programmers.

Assembly language uses descriptive mnemonics (abbrevia-
tions) for each machine instruction instead of numerical
codes. These arc much casier to learn, read, and renumber.
The asscmbler also lets the programmer assign symbolic
names to memory addresses and constant values.

This assembler is designed expressly for the modular, multi-
tasking environment of the OS-9 Operating System and in-
corporates built-in functions for calling OS-9, generating
memory modules, encouraging the creation of position-
independent-code, and maintaining separate program and data
sections. It is also optimized for use by OS-9 high-level lan-
guage compilers such as Pascal and C.

The OS-9 assembler is cxtremely fast as a result of its tree-
structured symbol table organization. This dramatically re-
duces the time for symbol table searching.

This manual describes how to use the OS-9 Assembler and
explains basic programming techniques for the OS-9 environ-
ment. It is not a comprehensive course on assembly language
programming or the 6809 instruction set.

If you are not familiar with these topics. consult the Motorola
6809 programming manuals and one of the many exccllent
assembly-language programming books available at libraries
and bookstores.

The OS-9 Assembler distribution disk containg the asm file
(the assembler program) and the DEFS file (a directory con-
taining OS-9 common system-wide definition files; see chap-

71

ter 7). These files are OS9Defs. SysType. SCFDets. and
RBFDefs.

Copy the asm file to the CMDS dircctory of your system
disk. Create a directory on your system disk called DEFS (it
not already present) and copy the tour DEFS files to it. Place
the assembler distribution disk in Drive | and your system

disk in Drive 0. Use the following commands.

copy/d asnydO/emds/asm #12k

makdir /d0/DEFS

copy /dl/idefsrosOdets /d0/defs/os9dets #12k
copy /d1/dets/systype /dO/defs/systype #12k
copy ‘dlidefsseldefs /d0/defssetdefs # 12k
copy /d1/defs/rbtdefs /dO/dets/rbfdets #12k

Assembly Language Program Development

72

Writing and testing assembly language programs involves a
basic cdit-assemble-test cycle.

l.

6.

Create a source program file using the text editor.

Run the assembler to translate the source file to a
machine-language file.

. It the assembler reports crrors, use the text editor to cor-

reet the source file. Go back to step 2.

. Run and test the program. using the OS-9 Interactive

Debugger.

. If the program has bugs. use the text editor to correct the

source file. Go back to step 2.

Document the program.

Assembler Input Files

The OS-9 Assembler reads from an input file (path) that con-
tains variable-length lines of ASCII characters. You can cor-
rect and edit input files with the OS-9 Macro Text Editor or
with any other standard text editor.

The maximum length of the input line is 120 characters. Each
line contains assembler statements as explained in this man-
ual. Terminatc cvery line by typing (ENTER).

Running the Assembler

The assembler is a command program that can be run from
the OS-9 Shell. from a shell procedure fite, or from another
program. The disk file and memory module names are ASM.
The following is the basic format of a command line to run
the assembler:

asm file name [option(s)| [#memsize] | >listing |

Brackets enclose options: therefore, the only required items
are the ASM command name and the file name. which is the
source text file name (pathlist). The following is a typical
command:

asm progd 1s -¢ #I12k >/p

In this example the source program is read from the file
PROGS. The source file name can be followed by an option
list. which allows you to control various factors such as
whether or not to generate a listing or an object file.

The option list consists of one or more abbreviations sepa-
rated by spaces or commas. An option is turned on by its
presence in the list: @ minus followed by an option abbrevia-
tion turns off the function. If an option is not expressly given,
the assembler assumes a default condition for it.

73

You can override command options by OPT statements with-
in the source prograni. In the example above, the options |
and s are turned on, and ¢ is turned off.

The shell processes the optional #memsize item to specify
how much data arca memory the asscmbler is assigned. If this
is not specified, the assembler is assigned 4K bytes of mem-
ory in its data arca. Most of this space is used to store the
symbol table. Any additional memory that this option re-
quests enlarges the symbol table.

Large programs gencrally use more symbols; therefore. their
memory requirements are correspondingly greater. If the
assembler generates the **Symbol Table Full’™ error message,
increase the assembler’s memory size. In the previous exam-
ple, 12K bytes of memory arc specified.

The final item, “*>listing”". allows the program listing gener-
ated by the assembler (on the standard output path) to be
optionally redirected to another pathlist, which may be an
output device such as a printer, a disk file, or a pipe to
another program.

The shell handles the memory size option. and it handles out-
put redirection, not the assembler. If you omit this item from
the command line, your screcn shows the output. In the
above example, the listing output is directed to device p, the
printer on most 0S-9 systems.

Operating Modes

74

The OS-9 Assembler has a number of featurcs specifically
designed to conveniently develop machine-language programs
for the OS-9 environment. These include special assembler
directive statements for generating OS-9 memory modules,
identification of 6809 addressing modes that are not usually
permitted in OS-9 programs, and separate data and program
address counters.

The assembler has two operating modes — normal and
Motorola-compatible. In normal mode, the features men-
tioned above are active. In the Motorola-compatible mode,

the assembler works the same way as a standard 6809 **abso-
lute™ assembler (without separate program and data count-
ers). This mode exists so that you can use the assembler to
generate programs for 6809 computers that are not equipped
with OS-9.

The assembler is in the normal mode unless you use the m
option in the command line or in an OPT statement.

The -m option returns the assembler to the normal mode (you
can switch modes freely to achieve special effects).

The assembler performs two “passes™ (complete scans) over
the source file. During cach pass. it rcads input lines and
processes them one at a time. During the first pass. it creates
the symbol table. It generates most error messages, the pro-
gram listing, and the object code during the second pass.

75

2 / Source Statement Fields

L.abel Field

Each input line is a text string that you terminate by typing
ENTER). The linc can have from one to four ficlds — a label
ficld, an operation field. an operand ficld (for some opera-
tions), and a comment ficld.

If you type an asterisk as the first character of a line. the
assembler treats the entire line as a comment. It displays it in
the listing but does not otherwise process it. The assembler
ignores blank lines but includes them in the listing.

The label ficld begins in the first character position of the
line. Some statements require labels (for example, EQU and
SET); others (assembler directives such as SPC, TTL) must
not have them. The first character of the line must be a space
if the line does not contain a label.

The label must be a legal symbolic name consisting of from
one to eight upper- or lower-case characters, decimal digits,
or the characters dollar sign ($). underline (_), or dot (.);
however, the first character must be a letter. You must not
define labels (and names in general) more than once in a
program (except when used with the SET directive).

The symbol table stores label names with an associated 16-bit
value, which is normally the program counter address before
code is gencrated for the line. In other words, instructions
and most constant-definition statements associate the label
name with the value of the program address of the first object
code byte generated for the line.

An exception to this rule is that labels on SET and EQU
statements are given the value of the result of evaluation of
the operand field. In other words, these statements allow any
value to be associated with a symbolic name.

Likewise. labels on RMB statements are given the value of
the data address counter when in normal assembler mode, or
the value of the program address counter when in Motorola-
compatible mode.

77

Operation Field

Operand Field

This field specifies the machine-language instruction or
assembler directive statement mnemonic name. It immediate-
ly follows and is separated from the label field by one or
more spaces.

Some instructions must include a register name that is part of
the operation field (for example, LDA, LDD, LDU). In these
instructions the register name must be part of the name and
cannot be separated by spaces as in older 6800-type assem-
blers. The assembler accepts instruction mnemonic names in
cither upper- or lower-case characters.

Instructions generate one to five bytes of object code, de-
pending on the specific instruction and addressing mode.
Some assembler directive statements (such as FCB. FCC)
also generate object code.

The operand field follows and must be separated by at lcast
one space from the operation ficld. Some instructions do not
use an operand field; other instructions and asscmbler dirce-
tives require one to specify an addressing mode, operand,
address, parameters, and so on.

Comment Field

78

The comment field is the last field of the source statement
and is used to include a descriptive comment. It is optional.
The assembler does not process this field but copies it to the
program listing.

3 / Symbolic Names and
Expressions

Evaluation of Expressions

Opcrands of many instructions and assembler directives in-
clude numeric expressions in one or more places. The
assembler can cvaluate expressions of almost any complexity,
using a form similar to the algebraic notation in programming
languages such as BASIC and FORTRAN.

Expressions consist of operunds. which are symbolic names
or constants, and operators, which specify an arithmetic or
logical function. All asscmbler arithmetic uses two-byte (in-
ternally. 16-bit binary) signed or unsigned integers in the
range of 0 to 65535 for unsigned numbcers and — 32708 to
+ 32767 for signed numbers.

In some cases. expressions are expected to evaluate to a value
that must fit in onc byte (such as 8-bit register instructions)
and therefore must be in the range of 0 to 255 for unsigned
values and — 128 to 127 for signed values. In these cases, if
the result of an expression is outside this range, the screen
shows an error message.

The assembler evaluates expressions from left to right. using
the algebraic order of operations (that is. it multiplics and
divides before it adds and subtracts). Parentheses alter the
natural order of cvaluation.

Expression Operands

You may usce the following items as operands within an
expression.

Decimal Numbers. Optional minus sign { —) and one to five
digits. Examples:

100
32767

0
12

79

Operators

80

Hexadecimal Numbers. Dollar sign ($) followed by one to
four hexadecimal characters (0-9, A-F. or a-1). Examples:

SEC0O0
$1000
$3
$0300

Binary Numbers. Percent sign (%) followed by one to six-
teen binary digits (0 to 1). Examples:

0101
Y 11110000111 10000
G 10101010

Character Constants. Single quote (7) followed by any
printable ASCII character. Examples:

X

e o a

Symbolic Names. One to cight characters, upper- and lower-
case alpha (A-Z or a-z), digits (0-9). and special characters
—. .. or $ (underscore, period, or dollar sign). The first char-
acter cannot be a digit.

Instruction Counter. Placed at the beginning of the linc, the
asterisk (*) represents the program instruction counter value.

Data Counter. Placed at the beginning of the line, the period
(.) represents the data storage counter value.

“Operators™™ specify arithmetic or logical operations to be
performed within an expression. The assembler exccutes
operators in the following order: (1) —, ncgative numbers;
(2) & and !, logical AND and OR: (3) * and /, multiplication

and division: (4) + and — . addition and subtraction. Oper-
ators in a single expression having equal precedence, for ex-
ample, + and —. arc evaluated left to right. You can use
parcntheses. however, to override precedence.

Assembler Operators by Order of Evaluation

- ncgative . logical NOT
& logical AND ! logical OR
i multiplication / division

+ addition — subtraction

Logical operations are performed bitwise: that is, the logical
function is performed bit by bit on cach bit of the operands.

Division and multiplication functions assume unsigned oper-
ands, but subtraction and addition work on signed (2°s com-
plement) or. unsigned numbers. The screen shows an error
message if you attempt to divide by zero or multiply by a
factor that results in a product larger than 65. 536.

Symbolic Names

A symbolic name consists of from one to cight upper- or
lower-case characters, decimal digits, or the dollar sign ($),
the underline (_), or the dot (.); however, the first character
must be a letter. The following are examples of legal symbol
names:

HERE
there
SPLO30
VX_GH
abe.def
Q1020.1
L.123.X
t$integer

81

82

These are examples of illegal symbol names:

2move (does not start with a letter)

main.backup (has more than eight characters)

Ibl#123 (contains #. which is not a legal nume
character)

You define a name the first time you use it as a label on an
instruction or directive statement. You can define a name
only once in the program (except SET labels). If you redefine
a name (use as a label more than once). the screen shows an
error message. You cannot use multiple forward references
(that is. a definition using currently undefined names).

The symbol table stores symbolic names with their associated
type and value. This structure uses most of the assembler’s
data memory space. Using the default memory size of 4K,
the symbol table has room for approximately 200 names.

You can usc the shell’s optional memory size modifier to
increase the assembler’s memory space. Each entry in the
table requires 15 bytes; thercfore, cach additional 4K of
memory adds space for about 273 additional names.

For example, the command line
asm sourcefile #I16K

gives the symbol table enough space for a little more than a
thousand names. If you select the S option, the assembler
generates an alphabetical display of all symbol names. types,
and values at the end of the assembly.

4 / Instruction Addressing Modes

The instruction sct has a wide variety of addressing modes.
Each group of similar instructions is used with specific
addressing modes, which are usually specified in the assem-
bler source statement operand ficld. The assembler generates
an error message if an addressing mode is specified that can-
not legally be used with the specific instruction,

Inherent Addressing

Certain instructions do not nced operands (for example.
SYNC and SWD); others implicitly specity operands (for ex-
ample, MUL and ABX). In these cases no operand field is
needed.

Accumulator Addressing

Some instructions have the A or B accumulators as operands.
Examples:

CLRA
ASLB
INCA

Immediate Addressing

In immediate addressing, the instruction uses the operand
bytes as the actual value. Instructions that use 8-bit registers
must have operand expressions that evaluate in the range of 0
to 255 (unsigned) or — 128 to 127 (signed). If they do not,
the screen shows an error message.

The syntax is:

st #expression

83

Examples:

1.DD #S$1HOO
Idb #bufsiz | 2
ORCC #S$FF-CBIT

Relative Addressing

Branch-type instructions. such as BCC. BEQ. LBNE, BSR,
and LLBSR., use the relative addressing mode. The operand
ficld is an expression that is the ““destination™ of the instruc-
tion, which is almost always a name used as a statement label
somewhere in the program.

The assembler computes an 8- or 16-bit program counter
offset to the destination, which is made part of the instruc-
tion. If the destination of short branch-type instructions is not
in the range of — 126 to + 129 bytes of the instruction
address. the screen shows the error message.

Long branch-type instructions can reference any destination.
If a long branch instruction references a destination that is
within the range of a smaller and faster short branch instruc-
tion, the assembler places a warning symbol (W) in the listing
line™s information ficld. All instructions using relative address-
ing arc inherently position independent code. Examples:

BCS 1.OOP
LBNE LABELS
I.BSR START + 3
BL'T COUNT

Extended and Extended Indirect Addressing

84

Extended addressing uses the second and third bytes of the
instruction as the absolute address of the operand. Data scc-
tion addresses of OS-9 programs are assigned when the pro-
gram is actually exccuted: therefore. absolute memory
addresses are not known before the program is run, and this

addressing mode 1s not normally used in OS-9 programs. The
screen shows an informational warning flag (W) if this
addressing mode is specified.

Extended indirect addressing is similar to extended addressing
exceept that the address part of the machine instruction is used
as the address of @ memory location containing the address of
the operand.

Because this mode also uses absolute addresses. it 1s not fre-
quently used in OS-9. and the assembler flags it with a warn-
ing. Sclect this addressing mode by enclosing the address
expression in brackets. Examples:

ADDA $1CA8 extended addressing
ADDA [SD58A| extended indireet addressing

1.BD START extended addressing
st lend] extended indirect addressing

Direct Addressing

Direet addressing uses the sceond byte of the instruction as
the least significant byte of the operand’s address. The most
significant byte i1s obtained from the MPUs direct page
register.

This addressing mode i1s preferred for accessing most vari-
ables in O8-9 programs because OS-9 automatically assigns
unique direct pages to cach task at run time and because this
mode produces short. fast instructions.

The syntax for extended and direct addressing has the same
form:

instr - -addr expr

The assembler automatically selects direct addressing mode if
the high-order byvte of the address matches its internal “direct
page.” This direct page is not the same as the run-time direct
page registers it is an assembly-time value. You ordinarily sct
it to zero, but vou can change it with the SETDP directive.

85

You can force the assembler to use direct addressing by typ-
ing the less than symbol (<) just before the address expres-
sion or to use extended addressing by typing the greater than

symbol (=») just before the address expression. Examples:

[da temp (assembler selects mode)
LDD ~PAl+ 1 (forces extended addressing)
Idx < count (forces direct addressing)
STD |pointer] (extended indirect)

Register Addressing

86

Some instructions operate on various MPU registers, which
are referred to by a one- or two-letter name. In these instruc-
tions the operand field specifies one or more register names.
The names, which can be upper- or lower-case. arc:

A accumulator A (8 bits)

B accumulator B (8 bits)

D accumulator A:B concatenated (16 bits)
DP direct page register (8 bits)

cC condition codes register (8 bits)

X index register X (16 bits)

Y index register Y (16 bits)

S stuck pointer register (16 bits)

U user stack pointer register (16 bits)

pPC program counter register (16 bits)

The EXG and TFR instructions have the form:

instr - reg,reg
If the registers are not the same size (either 8 or 16 bits), the
screen shows the error message.

The PSHS, PSHU, PULS. and PULU instructions accept a
list of onc or more register names. Even though the assembler
accepts register names in any order. the MPU stacks and un-
stacks them in a specific order.

The syntax for these instructions is:

instr reg{.reg}

Examples:
TFR X.Y
EXG A.DP

pshs a.b.x.dp
PULU d.x.pc

Indexed Addressing

The 6809 has 23 varictics of indexed addressing modes. In-
dexed addressing is analogous to “register indirect.”” mean-
ing that an indexable register (X, Y, U, S. or PC) is used as
the basic address of the instruction’s operand.

The different varieties of indexed addressing use the specified
register contents, which may be unchanged. temporarily mod-
itied, or permanently modified, depending on the mode.

All indexed modes must specify an index register. either X,
Y. U. or SP. You can use the Register PC with the program-
counter relative mode only.

To make any indexed addressing mode “tindirect.” enclose
the operand field in brackets. The effective address generated
by the addressing mode is used as the address of a pointer to
the operand rather than as the address of the operand.

Constant Offset Indexed

This mode uses an optional signed (two’s complement) offsct
that is temporarily added to the register’s value to form the
operand’s effective address. The offset can be any number: if
it is zero. the register’s unaltered content 1s used as the effece-
tive address. The assembler automatically picks the shortest
of four possible varicties that can represent the offset.

87

If & symbolic name used in the offset expression is not de-
fined. the assembler gencrates longer code than necessary or
produces phasing errors.

The syntax for constant offset indexed instructions is:

instr JTeg zero offset

instr offsct.reg constant offsct

instr [.reg] zero offset indirect

instr [offsct.reg] constant-offset indirect
Examples:

Ida X no offset

Ida 0.x no offset

ldx 100, x offset of 100

LDB COUNT.S offset of COUNT

Idd temp + 2.y offsct of temp +2

leax -2y offset of —2

clr [PIA .X] indirect mode

Program Counter Relative Indexed

88

This addressing mode is similar to constant-offset indexed ex-
cept that the program counter register (PC or PCR) is used as
an index register. and the assembler computes the offset dif-
ferently. Instcad of using the offset expression directly. the
expression is assumed to refer to the address of the operand.

The asscmbler calculates the required offset from the current
program counter location to the operand’s address and uses
the resulting value as the offset. One form of this instruction
uses an 8-bit offset and the other uses a 16-bit offset. The
assecmbler uses the 16-bit form unless you force the short
form by typing the less than symbol (<) before the operand
field.

The syntax for program-counter relative indexed is:

instr addr.,PC program counter relative
instr addr.PCR program counter relative
instr [addr,PCR] program counter relative indirect
instr [addr,PC] program counter relative indirect

This addressing mode permits addresses of constants and con-
stant tables to be accessed using position independent code as
required by OS-9.

Examples:

ldd temp.pcr

LDD temp,pc same as instruction above
leax table.per
iNs addr.per same as “ibsr addr”’

CLR [control + 4. PCR] dangerous: uses absolute
address at “*control +4 PCR™
as effective address for clear

Accumulator Offset Indexed

In this mode the contents of the A, B, or D accumulators are
temporarily added to the specified index register to form
the address of the operand. This addition is signed two’s
complement.

If you specity the A or B accumulators, the sign bit is “‘ex-
tended”” to form the 16-bit value, which is added to the index
register. This mecans that if the most significant bit of the
accumulator is set, the high order byte of the offset is $FF.

Beware: This is a commonly overlooked characteristic that
can produce unexpected results! Using the D register avoids
this because it gives all 16 bits.

The syntax for accumulator-offset indexed is:

instr - A,reg
instr - B.reg
instr D,reg

Examples:

LDX B.Y
LEAY D.X
ROL |B.U]

89

Auto-Increment and Auto-Decrement Indexed

90

These addressing modes use the specified index register as
the effective address of the operand while permanently adding
or subtracting one or two from the register. In auto-increment
mode, the increment is performed after the register is used. In
auto-decrement mode. the decrement is performed before the
register is used. This is consistent with the way 6809 stack
pointers operate in PSH and PUL instructions.

If you use indirect addressing, the decrement and increment
are performed before the effective address is used as a pointer
to the operand. You cannot use single auto-increment and
single auto-decrement when you select indirect addressing.

Syntax for auto-increment and auto-decrement indexed
addressing is:

instr .—reg single auto-decrement

instr .— —reg double auto-decrement

instr Jreg + single auto-increment

instr reg+ + double auto-increment

instr [reg— —] double auto-decrement indirect

instr [.reg+ +] double auto-increment indirect

Examples:
cr x+ +
LDX .—-Y

Ida . +is the same as puls a (except CCR is affected)
sta - sis the same as pshs a (except CCR is affected)
ldd [.s+ +]

5 / Pseudo Instructions

Pseudo instructions arc special assembler statements that
generate object code but do not correspond to actual 6809
machine instructions. Their primary purpose is to create spe-
cial sequences of constant data to be included in the program.
Labels are optional on pscudo instructions.

FCB <expression™> {, <expression™}

gencrates sequences of single byte constants (FCB) within the
program. The screen shows the error message if an expres-
sion has a value of more than 255 or less than — 128 (the
largest number that can be represented by a byte).

FDB <expression> {, <expression>}

FCB ‘A
FDB ‘CN’
FCB ‘?+80
FCC string
FCS string

gencerates sequences of double byte constants (FDB) within
the program. If this statement evaluates an expression with an
absolute value of less than 256, the high order-byte is zero.
The operand is a list of onec or more expressions that are
evaluated and output as constants. To generate more than one
constant, separate the expressions with commas.
Examples:

FCB 1.20.A

fcbh index/2 + 1.0.0.1

FBD 1.10,100.1000., 10000

fdb $F900.SFAOQ0.$FBOO.SFC00

generate a series ol bytes corresponding to a specified string
of one or more charicters operand.

91

The output bytes are the literal numeric value of each ASCII
character in the specified string. FCS is the same as FCC
except the most significant bit (the sign bit) of the last charac-
ter in the specified string is set. This is a common OS-9
programming tcchnique to indicate the end of a text string
without using additional storage.

You must enclose the characters in the specified string
with delimiters. You can use the following characters as
delimiters:

PTES Y & () -

The delimiters must be identical, and you cannot include
them in the siring itself. Examples:

FCC /most programmers are strange people/
FCS L0123456789,
fee RVAN

MOD size,nameoff,typelang,attrrev {,execoff,memsize}

92

creates a standard OS-9 module header and initializes a CRC
(cyclical redundancy check) value that the assembler auto-
matically computes as it processes the program.

08-9 can load programs into memory only if they are in
modulc header format. You use the MOD statement at the be-
ginning of an O8-9 module. It must have an operand list of
exuctly four or exactly six expressions separated by commas.
Each operand corresponds, in order. to the clements of a
module header. The exact operation of the MOD statement is
as follows:
1. Resets the assembler’s program address counter and data
address counters to zero (same as ORG 0) and initializes

the internal CRC and vertical parity generators.

2. Generates the syne codes $87 and $CD as object code.

EMOD

3. Evaluates and outputs as object code the first four expres-
sions in the operand list. They are:

a. module size (two bytes)

b. module name offset (two bytes)
¢. type-language byte (onc byte)

d. attribute-revision byte (one byte)

4. Computes the header parity byte from the previous bytes
and generates it as object code.

5. Evaluates the two optional additional operands if they are
present and generates them as object code. They are:

¢. execution offsct
f. permanent storage sizce

Note: Some expressions in the operand list are one byte long,
and others are two bytes.

Because the origin of the object program is zero, all labels
used in the program are inherently relative to the beginning of
the module. This is perfect for the module name and execu-
tion address offsets. The code in the body of the module fol-
lows. As subsequent lines are assembled. the internal CRC
gencerator continuously updates the module’s CRC value.

terminates the module.

The EMOD statement has no operand. It outputs the correct
three-byte CRC generated over the entire module.

Note: The MOD and EMOD statements do not work correct-
ly if the assembler is in Motorola-compatible mode unless
you do not use RMB or ORG statements after the MOD and
before the EMOD.

The example below illustrates the basic techniques of creating
a module using MOD and EMOD statements.

type set PRGRM +OBICT (these are defined in
OSYDEFS)

93

OS89 <expression>

94

revs

temp
addr
buftfer
stack
memsiz

name

start

loop

set REENT + 1 (this is defined in

OSYDEFS)

MOD pgmlen.name.type.revs start,memsize

* data storage declarations

RMB |
RMB 2
RMB 500
RMB 250

EQU data storage size is final =+

FCS /textmodule/

leax buffer.u get address of bulfer
clr temp

in¢ temp

Idd #500 loop count

clr x+

subd #1

bne loop

0s9 FSEXIT return to OS89
EMOD

value

pgmlen EQU * program size is addr of last byte + 1

generates OS-9 system calls.

This statement has an operand that is a byte value to be used
as the request code. The output is equivalent to the instruction

sequence:

SWi2

FCB operand

The OS9Defs file contains standard definitions of the sym-
bolic names of all OS-9 service requests. You can use these
names in conjunction with the OS9Y statement to improve the
readability. portability. and maintainability of assembly-
language softwarc.

Examples:

0OS9 [$Read (call OS-9 READ service request)

0S9 F$Exit (call OS-9 EXIT service request)

95

6 / Assembler Directive Statements

END

Assembler directive statements give the assembler infor-
mation that affects the assembly process but that does not
generate code. Read the descriptions carefully because some
directives require labels, labels are optional on others, and a
few cannot have labels.

indicates the end of a program.

The use of this statement is optional since END is assumed
upon an cnd-of-file condition on the source file. End state-
ments may not have labels.

label EQU <expression>
label SET <expression>

assign a value to a symbolic name (the label).

The value assigned to the symbol is the value of the operand,
which may be an expression, a name, or a constant.
These statements require labels.

Note: If you define symbols by EQU statements, you can
define them only once in the program. If you define symbols
by SET statements, you can redefine them by subsequent
SET statements.

In EQU statements the label name must not have been used
previously, and the operand cannot include a name that has
not yet been defined (that is, it cannot contain as-yet unde-
fined names the definitions of which also use undefined
names).

In a good program all equates are at the beginning. This lets

the assembler generate the most compact code by selecting
direct addressing wherever possible.

97

IFxx <expression>
<statements>

[ELSE]
<statements >

ENDC

98

You can use EQU to define program symbolic constants,
especially those used in conjunction with instructions. You
can use SET to define symbols that control the assembler
operations, especially conditional assembly and listing con-
trol. Examples:

FIVE equ 5
OFFSET equ address-base
TRUE equ $SFF
FALSE equ 0
SUBSET set TRUE
ifne SUBSET
usc subset.defs
else
use full.defs
endce
SUBSET sct FALSE

The assembler has conditional assembly capability. It can
selectively assemble or not assemble onc or more parts of a
program, depending on a variable or computed value. There-
fore, a single source file can selectively generate multiple
versions of a program.

Conditional assembly uses statements similar to the branching
statements in high-level languages such as Pascal and
BASIC. The gencric IF statement is the basis of this capabil-
ity. Its operand is a symbolic name or an expression.

The assembler comparcs the results. If the results are true, the
assembler processes the statement following the IF statement.
If the results are false, the assembler does not process the
statement until it encounters an ENDC (or ELSE) statcment.

Hence, the ENDC statement marks the end of a conditionally
assembled program section. In the following example the
IFEQ statement tests for equality of its operand with zero:

I[FEQ SWITCH

1dd #0 assembled only if SWITCH = 0
leax 1.x

ENDC

The ELSE statcment lets the IF statement select one of two
program sections to assemble, depending on the truth of the
IF statement. The assembler processes statements following
the ELSE statement only if the results of the comparison are
false. For cxample:

IFEQ SWITCH

ldd #0 assembled only if SWITCH = 0

leax 1,x

ELSE

Idd #1 assembled only if SWITCH is not = 0
lecax —1.x

ENDC

You can usc multiple IF statements and nest them within
other IF statements. They cannot, however, have labels. Each
IF statement performs a different comparison.

IFEQ True if operand cquals zero

IFNE True if operand does not equal zero

IFLT True if operand is less than zero

IFLE True if operand is less than or equal to zero
IFGT True if operand is greater than zero

IFGE Truc if operand is greater than or cqual to zero
IFP1 Truc only during Pass 1 (no operand)

You can usc the IF statements that test for less than or greater
to test the relative value of two symbols if they are subtracted
in the operand expression. For exampic,

IFLE ~ MAX-MIN

is true if MIN is greater then MAX.

99

NAM string
TTL string

100

Note: The logic is reversed. because this statement literally
means

IF MAX-MIN <= 0

The IFP] statement causes subsequent statements to be pro-
cessed during Pass 1. but skipped during Pass 2. It is useful
because it allows program scctions that contain only symbolic
definitions to be processed only once during the assembly.
Pass 1 is the only pass during which they are actually pro-
cessed because they do not generate actual object code
output.

The OS9Defs file is a rather large section of such definitions.
For example, many source files have the following statement
at the beginning.

IFPI
use /d0/defs/OS9Defs
ENDC

define or redefine a program name and listing title line that is
printed on the first line of each listing page’s header.

These statements cannot have label or comment fields.
These statements display the program name on the left side of
the second line of cach listing page; a dash and the title line
follow. You may change the name and title as often as you
wish.

Examples:

nam DATAC
ttl Data Acquisition System

Generates:

Datac - Data Acquisition System

OPT <option>

sets or resets any of several assembler control options.

The operand of the OPT statement is one of the characters
that represents the various options. If @ minus sign (—) pre-
cedes the option name, the option is turned off: otherwise, it
is turned on. Two exceptions are the D and W options, which
must be followed by a number. This statement must not have

label or comment fields.

Option Default (initial) State

C

Dnum

L

Conditionals On — displays conditional assembly
statements in the listing. (C)

Page Depth — scts the number of lines per listing
page. including heading and blank line. (D66)

Error Messages On — displays error messages in
listing. When this option is off. an E appcars in
a statement’s informational field if an crror is
present. (E)

Use Form Feed — uses a form feed for page eject
instead of linc feeds. (—~F)

Generate All Constant Lines — displays all lines
of code generated by pseudo instructions. Other-
wise, it displays only the first line. (—G)

Listing On — generates formatted assembly list-
ing. If off, the assembler displays only error mes-
sages. (—L)

Mode On — turns on Motorola-compatible
mode. (—M)

Narrow Listing — generates listing in a non-
columnized, compressed format for better pre-

sentation on narrow video display devices. (—N)

| — file name | generates object code file: (Q)

101

102

Whum

Examples:

opt |

If you do not specify a file name, the ussembler
creates an object file having the same name as the
input Iile in the current execution directory.

If you specify a single name. the assembler cre-
ates an object file having that name but still in the
current execution directory.

If you specity a full pathlist, the assembler uses it
as the name specification of the device, directory,
and file to create.

Generate Symbol Table — displays the entire
contents of the symbol table at the end of the
assembly. Displays cach name, its value. and a
type code character:

D = data variable (RMB definitions)
E = equate label (EQU)

L = program label

S = setlabel

U = undefined name

The table is displayed across the page in alpha-
betical order. (—S)

Set Page Width — defines the maximum length
of cach listing line. Lincs are truncated if they
exceed this number. The comment field starts at
column 50: therefore, a number smaller than this
may cause important parts of the listing to be lost.
(W80}

opt w72

opt s

ORG <expression>

PAG[E]

SPC <expression>

changes the value of the assembler’s data location counter
(normal mode) or the instruction location counter (Motorola-
compatible mode).

[t evaluates the expression and sets the appropriate counter to
the value of the result. ORG statements cannot have labels.

Note: OS-9 does not use load records that specify absolute
addresses of the generated object code. The object code is
assumed to be a contiguous memory module. Therefore. pro-
grams assembled using the Motorola-compatible mode that alter
the instruction address counter do not load correctly.

Examples:
ORG DATAMEN

ORG .+200

begins a new page of the listing. The alternate form of PAG 1is
PAGE for Motorola compatibility.

puts blank lines in the listing.

The value of the operand, which can be an expression, constant,
or name, determines the number of blank lines to be generated.
If you use no operand. a single blank line is generated.

The above two statcments improve the readability of program
listings. They are not themsclves displayed and cannot have
labels.

SETDP <expression™

assigns a value to the assembler’s internal direct page counter,
which is used to automatically scleet direct versus extended
addressing.

103

USE pathlist

104

The direct page counter does not necessarily correspond to the
program’s actual direct page register during execution. The
default valuc of the counter is zero and should not be changed in
OS-9 programs; this statement is intended for use with the
Motorola-compatible mode only. SETDP statcments cannot
have labels.

temporarily stops the assembler from rcading the current input
file. It then requests OS-9 to open another file or device speci-
fied by the pathlist, from which it reads input lines until an
end-of-file occurs. At that point. the assembler closes the latest
file and resumes reading the previous file from the statement
following the USE statement.

You can nest USE statements (for example. a file being read as
the result of a USE statement can also perform USE statements)
up to the number of simultancously open files the operating
system allows (usually 13. not including the standard 1/O
paths). Some useful applications of the USE statement are to
accept interactive input from the keyboard during assembly of a
disk file (as in USE/TERM) and to include library definitions or
subroutines into other programs. USE statements cannot have
labels.

7 /| DEFS Files: Fact or Fiction

OSIDEFS

Most programmers use the OS9Defs file with assembly-
language programs and add their own definitions to this file. To
include the OS9Dcfs tile with your source code when assemb-

ling the file, use the following statements:
IFP1
USE /DO/DEFS/OS9DEFS
ENDC

This speeds up assembly and prevents the OS9Defs file from

being displayed cvery time.

0S9Defs contains the following groups of defined symbols:

System Service Request Code
Signal Codes

Status Codes For Getstat/Putstat
Direct Page Variables

Table Size

Module Format and Offsets
Module Field Definitions

Module Type/language Masks and Definitions

Process Descriptor

Process Status Flags

0S-9 System Entry Vectors
Path Descriptor Offsets

File Access Modes

Pathlist Special Symbols

File Manager Entry Offsets
Device Driver Entry Offsets
Device Table Format

Device Static Storage Offsets
Interrupt Polling Table Format
Register Offsets on Stack
Condition Code Bits

System Error Codes

I/O Error Codes

This chapter is a reference source, not a guide to the structure
and workings ot the operating system. For more extensive

information. see OS-9 Technical Information.

105

System Service Request Codes

Signal Codes

a group of labels that define all OS-9 system calls and list their
associated values. These labels let you use the system request
name in an OS-9 call.

a group of labels that define the four OS-9 signals and their
associated values. This is an appropriate place for your own user
defined signals.

Status Codes for GetStt and SetStt

a group of labels that list and give the values for the predefined
status call functions of the system calls 1$GetStt and 1$SetStt
that are supported by OS-9 file managers and device drivers.
These labels are then available for loading the B register before
the call is made. This is an appropriate place for your own user
defined status codes.

Direct Page Variables

Table Size

106

a group of labels that define the offsets into page 0 of OS-9
system variables. OS-9 uses page 0 variables for interrupt vec-
tors, table addresses, process queues, and internal memory
information. We¢ strongly recommend that you not use page 0
variables in your programs, unless you write special drivers and
interrupt handlers or debug systems. Using these variables im-
properly can cause unexpected and perhaps fatal system
operation.

a group of equates that define the size of the table that the OS-9
operating system uses internally.

Module Format and Offsets

a group of labels that define the offsets into a module header of
all OS-9 compatible modules. You can use module offsets to
find information in a module, for example. the module’s size,
name, type. or language. In this group are the Universal Module
offsets and the offsets for specific module types. Descriptors,
drivers, programs, and filc managers have a different module
format.

Module Field Definitions
Module Type/Language Masks and Offsets
Module Attributes/Revision Masks and Offsets

Process Descriptor

a group of symbols that define the bits of information that go
into a module header. You can use this section to decode a
module header and modify one. Since the OS-9 Interactive
Assembler generates a module header with the MOD and
EMOD, usc these symbols to read a header. This group defines
masks according to type, language, attribute, and revision bytes
and lists the values for each field.

contains the table of information describing a process.

Process Status Flags

define the flags that OS-9 uses to mark a process for ditferent
states. for example. dead and slecping.

0S-9 System Entry Vectors

a group of symbols that define OS-9 system entry points. These
are the vector addresses for the various interrupts. They are
pscudo vectors, not actual hardware vector points.

107

Path Descriptor Offsets

a group of symbols that define the offsets for OS-9 path descrip-
tors. OS-9 creates a path descriptor offset for every path opened
in the system.

File Access Modes

a group of symbols that define the file access modes under
0S-9. You can usc these definitions for [$Create and 1$SOpen
system calls that require the file attributes to be set at the time of
the call.

Pathlist Special Symbols

a group of symbols that define the special pathlist characters.
You can usc them to parse a pathlist. This is an appropriate place
to insert special characters that you use frequently.

File Manager Entry Offsets
a group of symbols that define the entry offsets of all file
managers on an OS-9 system. If you write your own file man-
ager, you must provide these entry offsets.

Device Driver Entry Offsets
a group of symbols that define all entry offsets of device drivers
in the OS-9 system. You must provide these offsets at the
beginning of your drivers.

Device Table Format

a group of symbols that define the form of the table that contains
an entry for every active device in the OS-9 system. The
operating system uses this information internally.

Device Static Storage Offsets
a group of symbols that define the variables within a device
static storage area. This area contains information about the
device and is filled in when the device is activated. The actual

108

filling in of the parameters is done by three sources: IOMAN,
the file manager, and the device driver. The offscts listed in this
area are filled in by IOMAN.

Interrupt Polling Table Format

Register Offsets on

a group of symbols that define the structure of the entries for the
polling table. The format contains all the information the inter-
rupt service routine needs to handle interrupts gencrated by
active devices. OS-9 uses this information internally.

Stack

a group of symbols that define the offset to the registers that are
pushed on the stack whenever the 6809 CPU gets an interrupt of
the form NMI, IRQ. SWI. SWI2 (an OS-9 system call), or
SWI3. You can use these symbols when writing drivers to get
the 1$GetStt or 1$SetStt codes. You can also use them to pass
parameters on the stack to different procedures in a program.

Condition Code Bits

a group of symbols that define the values for each condition
code. Use thesc masks to sct or reset the bits. It is good
programming practice to usc these labels in your code.

System Error Codes

I/O Error Codes

a group of labels that define all errors returned by OS-9 and the
/0 handlers. If your programs have any form of error trapping,
you must compare the error to a known crror definition in order
to determine what should occur.

109

SCFDEFS

In this file are the definitions pertaining to the sequential file
manager and scquential file devices. It contains the following
groups of defined symbols:

Static Storage Requirements
Character Definitions
File Descriptor Offsets

You can use this file when writing drivers for sequential devices
and managers. This is an appropriate place for your own SCF
definitions. For more information on any group of defined
symbols, sce the OS-9 Technical Information.

Static Storage Requirements

a group of symbols that definc the offsets to the static storage
required by SCF devices. This arca continues from V.USER
defined in OS9DEFS. SCF devices must reserve this space for
the SCF manager. The driver determines the storage reserved
after this group.

Character Definitions

a group of symbols that are defined so that certain SCF devices
can filter special characters. This is an appropriate place for
adding your own SCF special characters.

File Descriptor Format

110

a group of symbols that describe the file manager’s parameters.
The actual total storage is declared in OS9Defs under the entry
called Path Descriptor Offsets. Both SCF and RBF have their
own definitions of the PD.FST and PD.OPT fields. This is
where SCF’s definitions are located.

RBFDEFS

In this file are the definitions pertaining to random block file
managers and random file devices. It contains the following
groups of defined symbols:

Random Block Path Descriptor Format
State Flags

Device Descriptor Format

File Descriptor Format

Segment List Entry Format

Directory Entry Format

Static Storage

You can use this file when writing random block tile managers
and devices. This is the appropriate place for adding your own
RBF definitions.

Random Block Path Descriptor Format

State Flags

a group of symbols that define the file descriptor offsets for RBF
devices. The actual total storage is declared in OS9DEFS under
Path Descriptor Offsets. Both SCF and RBF have their own
definitions of the PS.FST and PD.OPT fields. This is where
RBF’s definitions are located.

a group of symbols that define the flags that OS-9 uses internally
to mark the state of the disk buffer.

Device Descriptor Format

a group of symbols that define the format of the contents of
sector zero of an RBF device. RBF uses this format to find the
actual physical information on the device. OS-9 uses this in-
formation to fill in the drive table. This differs from SCF type
devices in that the actual device iformation is kept on the
media. The device descriptor in memory is then mainly used by
the format program.

111

File Descriptor Format

a group of symbols that defines a format that is kept on disk and
contains information on the file, for example, its size, segment
list, and owner. RBF reads in this information and uses it when
accessing a file. Whenever you modity the file, this sector is
modified.

Segment List Entry Format

a group of symbols that define an entry in a file scgment list. The
actual list is composed of the beginning sector and the size (in
number of sectors) of each segment of the file. Files that have
extensions also have an additional scgment for the segment list.

Directory Entry Format

Static Storage

112

two symbols that define a directory entry, the file name and the
file descriptor sector address.

a group of symbols that definc the size and format of the drive
tables allocated by thc driver. The drive tables begin at
DRVBEG and continue to DRVMEM. Also V.NDRYV is allo-
cated before the tables and defines the number of drives and
thercfore the number of tables used by a driver. The rest of the
static storage is defined in OSYDEFS and in the driver. You can
use this information when writing your RBF device driver.

SYSTYPE

This file contains descriptions of the physical parameters of the
various OS-9 systems. Some of those parameters are:

CPU Type Definitions
CPU Speed Definitions
Disk Controller Definttions
Clock Module Definitions
PIA Type Definitions
System Type Definitions
Disk Port Address

Disk Definition

Disk Parameters

Clock Port

1/0 Port

You can use this file when writing or modifying drivers. All the
necessary information is supplied on the file.

113

8 / Assembly-Language
Programming Techniques

For your program to run correctly in the OS-9 environment, it
must be position-independent, and all memory locations mod-
ified by the program (variables and data structures) must be in
an arca that OS-9 assigns at run time.

You have no control over which addresses OS-9 assigns at a
load area or over where OS-9 assigns the program’s variables.
Because of the powertul 6809 instruction set and addressing
modes, these rules do not force you into writing tricky or
complex programs; rather, they require you to write programs in
a specific way.

Your programs usually fall into onc of three categories:

I. A subroutinc or subroutine package. You must
write your subroutines in position independent
code. Data sections are usually a matter of coor-
dination with the calling program, and OS-9 nor-
mally plays no direct role in this.

2. A program to be executed as an individual process
(commands arc of this type). You must use position
independent code and receive data area parameters
that delineate the assigned memory space.

3. Programs to be run on another, non-0S-9
computer.

Program Sections and Data Sections

If you run your program as a process (by means of the OS-9
Shell. fork system call. or exccute system call), OS-9 assigns
two separate and distinct memory arecas. The program object
code Joads into one memory space in the form of a memory
module. Variables and data structures load into the other space.
The program’s module header specifies the minimum permissi-
ble size for cach area.

115

Program Area

The distinction between these two spaces is extremely impor-
tant. The data address counter is for the data arca. and the
instruction address counter is for the program arca. The values
of both counters are never absolute addresses. They are relative
to the beginning of an OS-9-assigned address.

The program area is a simple. continuously allocated memory
space where OS-9 loads the program. For OS-9 to load the
program, it must be in memory module format. OS-9 Technical
Information contains a detailed description of memory modules
and how they work. This manual assumes you are familiar with
them.

The assembler generates programs that can consist of one or
more memory modules. It writes them to the same file, and
0OS-9 loads them together. In assembly-language source pro-
grams, modules usually begin with a MOD pscudo-instruction
and end with an EMOD pseudo-instruction. These take care of
the header and module CRC gencration for you.

Never modify the program area by the program itself. especially
if the program is to be reentrant and/or placed in ROM. It can
(and should) contain constants and constant tables, as long as
they are not altered by the program.

Position Independent Mode

116

You do not know the absolute address of anything in the pro-
gram until it is run. The 6809 position-independent addressing
modes are bascd on **program counter relative addressing. ™ All
branch and long-branch instructions use this addressing mode.

—> Use BRA and LBRA instcad of IMP; use BSR and LLBSR
instead of JSR extended or direct mode instructions (indexed is
OK).

All load. store, arithmetic, and logical instructions can use the
program-counter-relative (PCR) indexed addressing mode.

— > Do not use immediate addressing to load a register with
an absolute address (instruction label name). Use PCR indexed
addressing instead.

Many well-written programs use constant tables of addresses
(often called dispatch tables or pointer tables). For the program
to be position independent, these tubles cannot contain absolute
addresses. You must create tables of addresses that are relative
to an arbitrary location. The routines that use the tables read the
table entrics und then add them to the absolute address of the
arbitrary location. The sum is the run-time absolute address.

You can determine the absolute address of the arbitrary location
by using PCR instructions (typically LEA). The choice of the
common address is arbitrary. but two places may have specific
advantages: the beginning address of the table (an index register
probably will contain this address anyway): and the first byte of
the module.

Making table entries relative to the start of the module is
especially handy because the value of the assembler’s instruc-
tion address counter is also relative to the beginning address of
the module.

In the following example, a routine jumps to one of several
subroutines, the relative addresses of which are contained in a
table. The instructions pass the routine to a number in the B
accumulator. which uses it as an index to select the routine.

begin mod a.b.c.d.e.f start of module

(various instructions)

dispat leax table.per get the absolute

address of the table

aslb multiply index by 2
(two bytes/entry)

Idd b.x get contents of table
entry

leax begin.per get beginning
address of module

jmp d.x add relative address

and go. ..

117

table {db routine

tdb routinc2
fdb routine3
fdb routine4

In the following example the entries are relative to the beginning
of the table instead of to the beginning of the module.

dispat leax table,per get the absolute
address of the table
aslb multiply index by 2
1dd b,x get routine offset
jmp d.x add and go...
table fdb routine | -table
fdb routine2-table
tdb routine3-table
fdb routine4-table

The above cxample contains fewer instructions. It is also faster
because the register already contained the reference address in a
register; therefore, you can eliminate a LEAX instruction. This
technique is also useful for accessing character strings, con-
stants, complex data types. and so on.

Accessing the Data Area

118

The **minimum permanent storage size™ entry of the module
header specifies the size of the data arca. A program may.
however, occupy more than this minimum. OS-9 allocates
memory in multiples of 256-byte pages, and it allocates all
processes at least one page. The data area must be large enough
for all the program’s variables and data structures, plus a stack
(at least 250 bytes) and space to receive parameters.

When OS-9 calls the process, it passes the bounds of the data
arca to the process in the Registers MPU. U contains the
beginning address. and Y contains the ending address. It sets the
Register SP to the ending address + 1, unless parameters were
passed. It sets the direct page register to the page numbcr of the
beginning page.

In the assembly-language source program, you can assign stor-
age in the data area with the RMB pseudo instruction, which
uses the separate data address counter. You need to declare all
variables and structures at the beginning of the program. De-
clare smaller, frequently used variables first. They usually fit in
the first page, and you can access them with short, fast direct-
page addressing instructions. Follow with larger items. You can
address them in two ways:

1. If you maintain a Register throughout the program,
use constant-offset-indexed addressing.

o

Part of the program’s initialization routine can com-
putc the actual addresses of the data structures and
store them in pointer locations in the direct page.
Obtain the addresses later with direct-page addres-
sing mode instructions.

Note: You cannot use program-counter relative addressing to
obtain addresses of objects in the data section, because the
memory addresses assigned to the program section and the
address section are not a fixed distance apart. Of course. im-
mediate and cxtended addressing are not generally usable.

The following example illustrates the U relative technique.

* declare variables

temp| rmb 2
temp2 rmb 2
bufl rmb 400
buf2 rmb 400
buf3 rmb 400

119

* clear cach 400-byte buffer

Jeax bufl,u get address of bufl
bsr clrbuf
leax but2,u get address of buf2
bsr clrbuf
leax buf3,u get address of buf3

bsr clrbuf

* clear buffer subroutine
* X = address of butfer

clrbuf Idd #400 D = byte count

cloop clr x+ clear byte and advance pointer
subd #1 decrement count
bne cloop loop if not done yet
rts

120

9 / Assembler Error Reporting

When the assembler detects an error, it displays an error mes-
sage just before the line containing the error. If a statement has
two or more errors, the assembler displays each error on a
different line preceding the erroneous line.

If the -L. option inhibits the assembler, the assembler still
displays error messages and erroncous lines. The statistical
summary displayed at the end of the assembly contains the total
numbers of errors and warnings. The assembler writes the error
messages. erroncous source lines. and the assembly summary to
the assembler task s crror and status path. which the shell may
redirect. The assembler writes the listing to the output path,
which it may redirect independently of the error messages. This
is usetul when a procedure file calls the assembler. Example:

asm sourcefile — 1 0 same.listing > >>save.errs

You can perform a quick assembly just to check for crrors by
calling the assembler with the listing and object code generation
both disabled by the — 1. — O options. In this way you can find
and correct many crrors before displaying a lengthy list.
Example:

asm sourcefile —1 -0
The — E option turns off error-message display. but you can still
detect lines containing crrors by the presence of an E in the
informational column of the listing line. You may want to use
this option to generate a ““cleaner™ listing of a program known
to have many crrors.
Sometimes the assembler stops processing an erroncous line,
and therefore you may not be able to detect additional errors on
the same linc: so make corrections carefully.

Explanation of Error Messages

Error messages consist of brief phrases that describe the error,

121

Syntax and Grammar Errors

Improperly constructing source statements can cause the fol-
lowing errors of syntax and grammar.

ADDRESS MODE. The addressing mode specified is not
legal for the instruction.

BAD INSTR. The assembler does not recognize the in-
struction given in the source statement.

BAD LABEL. The statement’s label contains an illegal
character or does not begin with an alphabetical character.

] MISSING. A closing bracket is missing.

CONST DEF. The instruction requires a constant or an
expression that is missing or in error.

INDEX REG. The instruction requires the name of an
index register but none was found.

LABEL NOT ALLOWED. This type of statement cannot
have a label.

NEEDS LABEL. The statement must have a label.

OUT OF RANGE. The destination (label) of the branch 1s
too far to usc a short-branch instruction.

REG NAM. The required register name is missing or
misspelled.

REG SIZES. The registers specified in a TFR or EXG
instruction are of different lengths.

Arithmetic Errors

Improper arithmetic or the use of improper arithmetic expres-
sions can result in the following errors.

DIV BY 0. A division with a zero divisor occurred.

122

EXPR SYNTAX. The arithmetic instruction is illegally
constructed or is missing an operand following an
operator.

IN NUMBER. A constant number (dccimal, hexa-
decimal, or binary) is too large or contains an illegal
character.

MULT OVERFL.. The result of a multiplication is more
than 65,535 (two bytes).

PARENS. The expression contains an unequal number of
right and left parcntheses.

RESULT>>255. The result of the expression is too large
to fit in the I-byte value used by the instruction.

Symbolic Name Errors

When symbolic names are improperly used. defined. or rede-
fined, the following errors can occur.

PHASING. The statement’s label had a different address
during the first assembly pass. This usually happens when
an instruction changes addressing modes. and thus its
length, after the first pass because its operand becomes
defined after the source line is processed. Usually the
error occurs on all labels following the offending source
line.

REDEFINED NAME. The label was defined previously
in the program.

UNDEFINED NAME. The symbolic name was never
defined in the program.

123

Assembler Operational Errors

Using the assembler incorrectly can cause the following crrors.

CAN’T OPEN PATH. The file cannot be opened (source
file) or created (object file).

INPUT PATH. The input path contains a read error.

MEMORY FULL. The symbol table is full. More mem-
ory ts required to assemble the program.

OBIJECT PATH. The object file contains a write error.
OPT LIST. The asscmbler command line or an OPT

statement contains an illegal option or is missing an
option.

124

Appendix A / Sample Command

Lines

asm disk_crash

assembles the file disk—crash.

This command does not create a listing or an object file. It
reports crror to the standard error path and establishes 4K
memory for symbols (asm default).

asm work.rec o #16k

assembles the file work.rec.

This command does not create a listing. 1t does create an object
file with the name work.rec in the current commands directory.
It reports errors to the standard output path and establishes 16K
memory for symbols.

asm tyco 0 =/d0/cmds/tyco.obj 1 #16k

assembles the file tyco.

This command creates a listing directed at the standard output
and an object file with the name tyco in the /d0/cmds directory.
[t reports errors to the listing path and establishes J6K memory
for symbols.

asm it_works o,1 #16k >/p

assembles the file it_works.

This command creates a listing directed at /p and an object file
with the name it—works in the current commands directory. It
reports errors to the listing path and establishes 16K memory for
symbols.

asm test_util 1,s,w72,d25 #10k

assembles the file test—util.

This command creates a listing directed at the standard output.
The listing has 25-linc pages and 72-column lines. It does not
create an object file. It establishes 10K memory for symbols and
creates a symbol table. It reports errors to the listing path.

125

asm /term i 1 o =d0/progs/woof

126

assembles input from the terminal.

This command creates a listing directed at the standard output
and an object file with the name woof in the /d0 progs directory.
It reports errors to the listing path and establishes 4K memory
for symbols (asm default).

Appendix B / Error Messages
Abridged

The assembler displays an error message for each error it de-
tects. It displays the messages before the line in which the error
occurs. You can suppress the display of error messages by using
the —E command.

ADDRESS MODE. The specified addressing mode is not
legal for the instruction.

BAD INSTR. The assembler does not recognize the in-
struction given in the source statement.

BAD LABEL. The statement’s label contains an illegal
character or docs not begin with a letter.

] MISSING. A closing bracket is missing.
CAN'T OPEN PATH. The file cannot be opened.

CONST DEF. A constant expression is missing or in
error.,

DIV BY 0. A division with a zero divisor occurred.

EXPR SYNTAX. The arithmetic instruction is illegally
constructed or is missing an operand following an
operator.

INDEX REG. The name of an index register is required
but none was found.

IN NUMBER. A constant number (decimal, hexa-
decimal, or binary) is too large or contains an illegal
character.

INPUT PATH. The input path contains a read error.

LABEL NOT ALLOWED. The statement cannot have a
label.

MEMORY FULL. The symbol table is full; create more
memory to assemble the program.

MULT OVERFL. The result of a multiplication is more
than 65,535.

NEEDS LLABEL. The statement requires a label.

127

128

OBJECT PATH. The object file path contains a write
error.

OPT LIST. An option is illegal or missing.

OUT OF RANGE. The destination of the branch is too far
to use a short-branch instruction.

PARENS. The expression contains an unequal number of
right and left parentheses.

PHASING. The value of the instruction address or data
address counter was different during Pass 1 that is, an
instruction changed addressing modes and length during
Pass 2.

REDEFINED NAME. The label was defined previously
in the program.

REG NAM. A register name is missing or misspelled.

REG SIZES. The registers specified in a TFR or EXG
instruction are of different sizes.

RESULT>255. The result of the expression is too large
to fit in the required byte.

Appendix C / Assembly Language
Programming
Examples

The following pages contain three assembly language program-
ming examples. They are:

UpDn -Program to convert input casc to upper or
lower.
P -Parallel interface descriptor.

These programs are provided to give an example of what an
asscmbly language program should be in the way of structure
and form. They also provide the programmer with a guide to
three of the main program types.

129

UPDN

UpDn — Assembly Language
Programming Example

QDD
Q20D
0011
2081

o000
o001
o032
2003
QRFD
21Cs

oo Ooo

130

*
*# this 15 a Program to convert characters from
* lower to uprper case (by using the u oeption)
* the method of rpassing the paramters throudh
* 059 1is used here (svstem calls)
¥ 1o use tvee
* "urdn u(opt for lower to wueprper) < ‘ineput’ > ‘output’"
*
mam UpDn
*# file include in assembly
iferl
use /D0/defs/o0s9defs
endc
* (05-9 Svstem Definition File Included
*
oPt 1
ttl Assembly Landuade Examrle
*
*# module header macro
*
87CDOA5D mod UDSIZ+UDNAMTYPE sREVS,START»SIZE
737064EE UDNAM fes /urdn/ module name for memory
TYPE set PRGRM+0BJCT mod tvre
REUS set REENT+1 mod reuvision
*
* storage area for variables
*
TEMP rinb 1 temp storage for read
UPRBND rmb 1 storage for upPerbound
LWRBND rmb 1 storade for lowerbound
rnb 25 storade for stack
rmb 200 storade for Parameters
SIZE eau f end of data area
*
¥ actual code starts here
¥ X redister 1s Pointingd to start of parameter area
¥ v redister 15 Pointing to end of parameter area
*¥ this is how to det a parameter that is passed on
* the command line and where to look for it
*

D11
P11

2913
2015
o017
2919
218

201D
OB1F
021
o023
A

aez7
0029
DO2ZB
Q0ZD

P02F
o231
2233
@37
OD3A
003C
BO3E
o040
0042
evd4
2046
0948
2Q4A
o04B
QVAE
OV4F
PB51
2053
2055
P056
9039
go5C

START equ * start of executable
AGBO SRCH lda P X+ search parameter area
84DF anda #%df make uWPFrer case
8155 cmpa #'U see if a U was 1nePut
270E bea UPPER kranch to set uUPPercase
810D cmrpa #$04d see if a carriade return
Z6F4 tne SRCH go det another char
*
¥ fall throudh to set upper to lower bounds
*
8641 lda #'A get lower hound
9702 sta LWRBND set it 1n storagdge area
8G5A lda #7'2 det upper hound
971 sta UPRBND set it in storage area
zees kra STARTI go to start of code
*
¥ set lower to upPper bounds
*
8661 UPPER lda #’a det lower bound
9722 sta LWRBND set it in storage
867A lda #'z det uprper bowund
9701 sta UPRBND set it in storade
*
converting code
¥ this part uses the I$READ and
* the I$WRIT system calls
¥ read the systems Prodrammers manual
* for information relatinyg to them
30C4 STARTI1 leax tempr L det storade address
8Go0 lda #@ standard inPut
108EQ001 1dy ##Q1 number of characters
103F89 L.OOP 0s9 I$READ do the read
2515 bocs EXIT exit if error
DEOW ldb TEMP get character read
D102 cmPhb WRBND test char bound
2506 blo WRITE bBranch if out
Diat cmph UPRBND test char bound
222 bh1 WRITE branch 1f out
cBzZe eorb #3%Z0 fliPp case bit
D700 WRITE stbh TEMP pLUL 1t 1in storade
4c inca red ‘a’ stand output
193FBA 089 I$WRITE Wwrite the character
a0 deca return to stand input
Z4EG becec LOOP dget char if no error
CciD3 EXIT cmph ®ESEOF is it an EOF error
2601 tne KIT1 not eofs leave carry
SF clrb clear carrys no error
103F 06 KIT1 0s89 F$EXIT error returneds exit
260409 emod last command

upsIz equ ¥ s12e of Prodgram

END

131

132

P -

2000

Q00D
QQ0E
QQQF
o211
a1z

2013
oei4
2915
2216
2017
@18
@19
201A
2018
o01C
QLD
PO1E
dA1F
DOZ0
Baz1
22
2023
o0z4
023
QOE6
o0z7

Device Degscriptor for “P"
yiam
ifel
endc
ttl

22T SR EEE T

¥ PRINTCR device module
*

87CDAA35 mod
z feb
FF feb
Eedo feob
18 fob
4] fohb
*Default Path options
oD feh
o0 feb
21 fokb
20 feh

@1 feb

e fcb

a9 fch

a2 fob

38 feob

18 feb
a0 feb

3] fch

4 fch

21 fob

17 feb

Qe feb

@(2’ feh

SF fob

a7 feb
a1 fob
ae feb

P

Device Descriptor for "P"

PRTEND s PRTNAMZDEVIC+0BUCT 4
REENT+1sPRTMGR PRTDRY

WRITE mode

HFF

AP port address
PRTNAM-%-1loption byte count
DT.SCF Deuvice Trrpe: SCF

[case=UPPER and lower
2 bhackspace=BS char only
1 delete=CRLF

" no auto echo

1 auto line feed on

@ wo nulls after CR

4] no Page Pause

66 lines pPer rPage

CsBSP kackspace char

C$DEL delete line char
C$CR end of record char

2 no end of file char
C$RPRT reprint line char
CERPET dur last line char
CsPAUS Pause char

? no akort character
[} no interrurt character
f_ backspace echo char
C#BELL

line overflow char
PIASID Printer Tvepe
[undefined baud rate

2028
2OZA
2028
@d2C
0AZF

@32

o235

000@
Do

BO
234806
5049C

AgB118

PRTNAM

PRTMGR
PRTDRY

PRTEND

feb
fcs
feos
fecs
fes

emod

EQU
END

4

upn
wgn
"SCF"
“PIAT

*

no echo device

device name

room for mame Patching
file manader

driver

133

Appendix D / 6809 Instructions And
Addressing Modes

DIRECT EXTEND INDEX IMMED ACCUM INHER RELAT REGIS

ABX X
ADCA
ADCB
ADDA
ADDB
ADDD
ANDA
ANDB
ANDCC
ASL
ASLA X
ASLB X
ASR X X X

ASRA X
ASRB X
(L)BCC

(L)BCS

(L)BEQ

(L)BGE

(L)BGT

(L)BGI

(L)BHS

BITA X X X X

BITB X X X X

(L)BLE
(L)BLO
(L)BLS
(L)BLT
(L)BMI
(L)BNE
(L)BPL
(L)BRA
(L)BRN
(L)BSR
(L)BVC
(L)BVS
CLR
CMPA
CMPB
CMPD
CMPS
CMPU
CMPX
CMPY
COM
CWAI
DAA X
DEC
EORA
EORB

P e
PP e
AR K R KKK
HOH A KK K KK

>
>
>~

P T

P I P i i i i i

T KKK KM K

P i i e i

KKK K K K KK
oA KK KK

=

e

Hoxox
Ao A
AR
x>

s

135

DIRECT EXTEND INDEX IMMED ACCUM INHER RELAT REGIS

EXG X
INC X

IMP
ISR
LDA
L.DB
LDD
LDS
LDU
LDX
LDY
LEAS
LEAU
LEAX
LEAY
LSL X X
LSR X X
MUIL. X
NEG X X
NOP X
ORA X X
ORB X X X
ORCC

PSHS

PSHU

PULS

PULU

ROL X X X X

ROR X X X X

RTI X
RTS X
SRCA
SBCB
SEX X
STA
STB
STS
STU
STX
STY
SUBA
SUBB
SUB
SWI
SwWI2
SWi3
SYNC
TFR X
TST X X X X

R e i I
P i P e
PaliE i i e

P T i e i i i e I I

> =
Pl i
>
HKoxoX

=

=
PP
P
e

Pl Sl I P e e P
A

P R A AP i e
P A i i e R e

Kok X

136

Appendix E / ASCII Character Set

SYMBOL HEX SYMBOL HEX SYMBOL. HEX
VALUE VALUE VALUE

NUL 00 + 2B \Y 56
SOH 01 ’ 2C W 57
STX 02 - 2D X 58
ETX 03 . 2E Y 59
EOT 04 / 2F Z 5A
ENQ 05 0 30 L 5B
ACK 06 1 31 \ 5C
BEL 07 2 3] 5D
BS 08 3 33 - SE
HT 09 4 34 - SF
LF 0A 5 35) 60)
VT 0B 6 36 a 61
FF 0C 7 37 b 62
CR 0D 8 38 ¢ 63
SO OE 9 39 d 64
SI OF : 3A ¢ 65
DLE 10 R 3B f 66
DC(XON) 1l < 3C g 67
DC2 12 = 3D h 68
DC3(XOFF) 13 > 3E i 69
DC4 14 ? 3F] 6A
NAK 15 (a 40 k 6B
SYN 16 A 41 | 6C
ETB 17 B 42 m 6D
CAN 18 C 43 n 6E
EM 19 D 44 0 6F
SUB 1A E 45 p 70
ESC 1B F 46 q 71
FS 1C G 47 r 72
GS 1D H 48 S 73
RS 1E I 49 t 74
us IF J 4A u 75
SP 20 K 4B \% 76
! 21 L 4C w 77
”? 22 M 4D X 78
23 N 4K y 79
$ 24 (@] JF z TA
% 25 P 50 { 7B

137

SYMBOL HEX SYMBOL HEX SYMBOIL HEX

VALUE VALUE VALUE
& 26 Q 51 | 7C
' 27 R 52 } 7D
(28 S 53 : TE
) 29 T 54 DEL 7F
* 30 U 55

138

0OS-9 Interactive Debugger

1 / Introduction

DEBUG is an interactive dcbugger that aids in diagnosing
systems and testing 6809 machine-language programs. You can
also use it to gain direct access to the computer’s memory.
DEBUG’s calculator mode can simplify address computation,
radix conversion, and other mathematical problems.

Calling DEBUG

DEBUG is supplied on your OS-9 system disk. When the screen
shows the OS-9 prompt, call DEBUG by typing:

DEBUG (ENTER

Basic Concepts

DEBUG responds to l-line commands entered from the
keyboard. The screen shows the DB: prompt when DEBUG
expects a command.

Terminate cach line by typing (ENTER). Correct a typing error by
using the backspace (left arrow) key, or delete the entirc line by

typing (X while pressing (CLEAR).

Each command starts with a single character, which may be
followed by rext or by one or two arithmetic expressions,
depending on the command. You may use upper- or lower-case
Jetters or a mixture. When you use the to insert a
space before a specific expression, the screen shows the results
in hexadecimal and decimal notation. Example:

In the calculator mode, obtain hexadecimal and decimal nota-
tion for the hexadecimal expression A +2:
You Type: A
Screen Shows: DB: A+Z
$QQ0C #0001 72

141

142

Note: In the examples in this manual, general instructions are
followed by specific typing instructions and then by what the
screen shows. In some cases, examples will follow the explana-
tion of more than onc command. Be sure to exccute these
examples in the exact order in which they are given so that you
will obtain the specified display on your screen.

2 / Expressions

Constants

DEBUG s integral expression interpreter lets you type simplc or
complex expressions wherever a command calls for an input
value. DEBUG expressions are similar to those used with high-
level languages such as BASIC, except that some extra oper-
ators and operands are unique to DEBUG.

Numbers in expressions are 16-bit unsigned integers. which are
the 6809’s “‘native’’ arithmetic representation. The allowable
range of numbers is 0 to 65535. Two’s complement addition and
subtraction is performed correctly, but will print out as large
positive numbers in decimal form.

Some commands require byte values, and the screen shows an
error message if the result of an expression is too large to be
stored in a byte, that is. if the result is greater than 255. Some
operands. such as individual memory locations and some regis-
ters, arc only one byte long, and they are automatically con-
verted to 16-bit “*words™ without sign extension.

Spaces. other than a space at the beginning of a command, do
not affect evaluation; use them as necessary between operators
and operands to improve readability.

Constants can be in base 2 (binary), base 10 (decimal), or base
16 (hexadecimal). Binary constants require the prefix % deci-
mal constants require the prefix #. All other numbers are
assumed to be hexadecimal and may have the prefix $. Exam-
ples:

Decimal Hexadecimal Binary
#100 64 % 1100110
#255 FF VANNRRERY
#6000 1770 S 1011101110000
#65535 FFFF ZaRRRRNRRRRERRREN

143

Special Names

You may also use character constants. Use a single quote (') for
1-character constants and a double quote (") for 2- character
constants. These produce the numerical value of the ASCII
codes for the character(s) that follow. Examples:

‘A = 50041
0 = $0030
"AB = $4142
"99 = $3939

Dot {.) is DEBUG’s current working address in memory. You
can examine it, change it, update it, use it in expressions, and
recall it. Dot eliminates a tremendous amount of memory
address typing.

Dot-Dot (..) is the value of Dot before the last time it was
changed. Use Dot-Dot to restore Dot from an incorrect value or
use it as a second memory address.

Register Names

144

Specify Registers MPU with a colon (:) followed by the mne-
monic name of the register. Examples:

Accumulator A
Accumulator B
Accumulator D

X Register

Y Register

U Register

:DP Direct Page Register

:SP Stack Pointer

:PC Program Counter

:CC Condition Codes Register

CxXxDwe

Operators

The values returned are the test program’s registers, which arc
“*stacked” when DEBUG is activve. One-byte registers are
promoted to a word when used in expressions.

Note: When a breakpoint interrupts a program, the Register SP
points at the bottom of the Register MPU stack.

“*Operators’’ specify arithmetic or logical operations to be per-
formed within an expression. DEBUG executes operators in the
following order: (1) —, ncgative numbers; (2) & and !, logical
AND and OR; (3) * and /, multiplication and division; (4) +
and — , addition and subtraction. Operators in a single express-
ion having equal precedence, for example, + and —, are
evaluated left to right. You can use parenthescs, however, to
override precedence.

Forming Expressions

An expression is composed of any combination of constants.
register names, special names, and operators. The following are
valid expressions:

#1024 + #128

X—=Y-2

.+20

Y#(: X +:A)

:U & FFFE

145

Indirect Addressing

146

Indirect addressing returns the data at the memory address using
a value (cxpression, constant, special name, and so on) as the
memory address. The two DEBUG indirect addressing modes
are:

<expression>

returns the value of a memory byte using expression as an
address.

expression)

returns the value of a 16-bit word using expression as an
address.

Examples:
<200>

returns the value of the byte at Address 200.
(:X]

returns the value of the word pointed to by Register X.
[.+10]

returns the value of the word at Address Dot plus 10.

3 / Debug Commands

Calculator Commands

SPACEBAR)<<expression> (ENTER

evaluates the cxpression and displays the results in both hexa-
decimal and decimal. Examples:

You Type: (SPACEBARS 202 +2@0 (ENTER
Screen Shows: DB: SQ0@@+200
$5200 #2¢992

You Type: (SPACEBARIBE 22 /2 (ENTER
Screen Shows: DB: 8890@/2
$4400 #17408

You Type: (SPACEBAR)# 1 @@+ 12 (ENTER
Screen Shows: DB: #1¢@0+#12
QP70 #PQ1172

These commands also convert values from one representation to
another. Examples:

Convert a binary expression to hexadecimal and decimal:
You Type: (SPACEBAR)Z. 11110000
Screen Shows: DB: 711110000

$Q0FQ #0240

Convert a 1-character constant to hexadecimal ASCII and dec-
imal ASCII:
You Type: (SPACEBAR) ' A (ENTER
Screen Shows: DB: ‘A
0041 #Q006B5

Convert a decimal expression to hexadecimal and decimal:
You Type: (SPACEBAR)# 1 39 (ENTER)
Screen Shows: DB: #1290
$Q0C4d #00100

You can also use indirect addressing to look at memory without
changing Dot. Example:
You Type: (SPACEBAR) . (ENTER)
Screen Shows: DB:
$P04F #0079

147

In addition. you can use indirect addressing to simulate 6809
indexed or indexed indirect instructions. The following exam-
ple is the same as the assembly language syntax [D,Y].
You Type: (SPACEBAR)L : D+: Y]
Screen Shows: DB: [:D+:Y
$0110 *QP272

Dot and Memory Examine and Change

Commands

148

displays the current value of Dot (the current working memory
address) and its contents. Example:

You Type: . (ENTER
Screen Shows: DB:
2201 Bo

The present value of Dot is 2201, and B0 is the contents of
memory location 2201,

ENTER

increments Dot and displays its new value and contents.
Example:

**Step through’ sequential memory locations:

You Type: (ENTER

Screen Shows: DB

You Type:
Screen Shows: DB :
2293 C2
You Type: (ENTER
Screen Shows: DB :
2204 82

backs up Dot one address and displays its value and contents.
Example:

Display the current value of Dot:
You Type: + (ENTER)
Screen Shows: DB :
2204 82

Back up one address and display its value and contents:
You Type: - (ENTER)
Screen Shows: DB : -
2203 C2

Back up another address and display its value and contents:
You Type: -
Screen Shows: DB : -
2202 05

. expression

changes the value of Dot. This command evaluates the specified
expression, which becomes the new value for Dot. Example:

You Type: . 500 (ENTER)
Screen Shows: DB: . 50¢
Q500 12

restores the fast value ol Dot. Example:

Display the current value of Dot and its contents:
You Type: . (ENTER)
Screen Shows: DB:
1000 23

Change the value of Dot:
You Type: . 20@¢ (ENTER)
Screen Shows: DB: , 2000
Zooe 9c

149

150

Restore the last value of Dot:

You Type: . .
Sereen Shows: DB .
1900 23

= expression

changes the contents of Dot. This command evaluates the ex-
pression and stores the results at Dot. [t then increments Dot and
displays the next address and contents.

This command also checks Dot after the new value is stored to
make sure it changed to the correct value. If it did not, the screen
shows an error message. This happens when you attempt to alter
non-RAM memory. In particular, the registers of many 6800-
family interface devices (such as PIAs and AClAs) do not read
the same as when written to.

Example:

Display the current value of Dot and its contents:
You Type: . (ENTER
Screen Shows: DB:
2203 C2

Change the contents of Dot:
You Type: =FF
Screen Shows: DB: =FF
2204 21

Show that the contents of Dot have changed:
You Type: -
Screen Shows: DB: -
2ZQ3 FF

Warning: This command can change any memory location.
You can destroy DEBUG, the program under test, or OS-9 if
you incorrectly change any of their memory areas.

Register Examine and Change Commands

You can usc any of several forms of the colon (:) register
command to examinc one or all registers or to change a specific
register’s contents.

The “‘registers’” affected by thesec commands are actually **im-
ages’’ of the register values of the program under test, which are
stored on a stack when the program is not running. Although a
“‘dummy’’ stack is established automatically when you start
DEBUG, use the E command to give the register images valid
data before using the G command to run the program. The
“‘registers’’ are valid after breakpoints are encountered and arc
passed back to the program upon the next G command.

Note:
1. If you change the Register SP, you move your stack
and the other register contents change.
2. Bit7 of Register CC (the E flag) must always be set
for the G command to work. If it is not set, DEBUG
does not return to the program correctly.

: register

displays the contents of a specific register. The contents are in
hexadecimal. Examples:

You Type: : PC (ENTER
Screen Shows: DB: :PC
c499

You Type: : B (ENTER
Screen Shows: DB: :B
PO7E

You Type: : 5P (ENTER
Screen Shows: DB: :5P
4ZFD

151

displays all registers and their contents. Example:

You Type: : (ENTER
Screen Shows: DB : :
PC=BZGS A=01 B=0B CC=80
DP=aC
SP=QCF4 X=FF@D Y=0008B
U=00AE

:<register> <expression™

assigns a new value to a register. DEBUG evaluates the ex-
pression and stores it in the specified register. When you name
8-bit registers. the value of the expression must fit in a single
byte. If it does not, the screen shows an error message., and the
register does not change. Examples:

You Type: : X #4096 (ENTER
Screen Shows: DB: X #4096

Breakpoint Commands

152

The breakpoint capabilitics of DEBUG let you specify ad-
dresses where you wish to suspend cxecution of the program
under test and reenter DEBUG. When you cncounter a break-
point. the screen shows the values of the Registers MPU and the
DB: prompt.

After a breakpoint is reached. you can examine or change
registers, alter memory. and resume program execution. You
may insert breakpoints at up to 12 addresses.

You can insert breakpoints by using the 6809 SW1I instruction.
which interrupts the program and saves its complete state on the
stack. DEBUG automatically inserts and removes SWI instruc-
tions at the right times: so you do not “*see’” them in memory.

Because the SWIs operate by temporarily replacing an instruc-
tion OP code, there are three restrictions on their use:

I. You cannot use breakpoints in programs in ROM.

2. You must locate breakpoints in the first byte (OP
code) of the instruction.

3. You cannot utilize the SWI instruction in user pro-
grams for other purposes. (You can use SWI2 and
SWI3.)

When you encounter the breakpoint during execution of the
program under test, reenter DEBUG by typing <\:><(register
name>>. The screen shows the program’s register contents.

B

displays all present breakpoint addresses.

B <expression>
inserts a breakpoint at a specified expression.
Examples:

Insert a breakpoint at the specified expression:
You Type: B 1C@® (ENTER
Screen Shows: DB: B 1C0@

Insert another breakpoint at the specified expression:
You Type: B 4FD3 (ENTER)
Screen Shows: DB: B 4FD3

Display the current value of Dot and its contents:
You Type: . (ENTER
Screen Shows: DB:
1277 39

Insert the breakpoints at Dot:
You Type: B . (ENTER
Screen Shows: DB: B .

153

154

Display all present breakpoint addresses:

You Type: B (ENTER
Screen Shows: DB: B
1CQ@ 4FD3 1277

K

kills (removes) all breakpoints.

K <expression>
kills a breakpoint at the specified expression. Examples:

Display all present breakpoint addresses:
You Type: B
Screen Shows: DB: B
1Ce@ 4FD3 1277

Kill a breakpoint at the address specified by the expression:
You Type: K 4FD3 (ENTER
Screen Shows: DB: K 4FD3

Display all present breakpoint addresses:
You Type: B
Screen Shows: DB: B
1Cow 1277

Kill all breakpoints:

You Type: K (ENTER
Screen Shows: DB: K

Display all present breakpoint addresses:

You Type: B (ENTER
Screen Shows: DB: B

Program Setup and Run Commands

E module name
prepares DEBUG for testing a specific program module.

This command’s function is similar to that of the OS-9 Shell in
starting a program. It does not, however, redirect 1/0 or over-
ride (#) memory size. The E command sets up a stack,
parameters. registers, and data memory area in preparation for
executing the program to be tested. The G command starts the
program.

Note: This command allocates program and data area memory
as appropriate. The new program uses DEBUG's current stan-
dard I/O paths. but can open other paths as necessary. In effect,
DEBUG and the program become coroutines.

This command is acknowledged by a register dump showing the
program’s initial register values. The G command begins pro-
gram execution. The E command sets up the Registers MPU as
if you had just performed an FSCHAIN service request as shown

below:
DP.U low
direct page
data area
XS parameter arca high
D = Parameter arca size
PC = Module entry point absolute address
CC = (F=0). (1=0) Interrupts disabled

155

156

Example:

Display the program’s initial register values:
You Type: E myrFrodgram
Screen Shows: DB: E myrrogram
sp CC A B DP
b Y PC
@CF3 C8 00 01 oC
@CFF QD@ 9214

G

goes to (resumes) program exccution after a breakpoint. 1f a
breakpoint exists at the present program counter address, that
breakpoint is not inserted so that it is not immediately reexe-
cuted. A loop must contain at least two breakpoints if execution
is to be suspended each time through the loop.

Note: The E command is usually used before the first G com-
mand to set up the program to be tested. DEBUG initially sets
up a default stack; so G expression can be used to start a program
using the results of the expression as a starting address.
Examples:

DB: G 4C00
DB: G :PC+ 100
DB: GJ.]

L module name

links to the module. If successful, it sets Dot to the address of
the first byte of the program and displays it. You can use L to
find the starting address of an OS-9 memory module.

Example:

Link to the module FPMATH:
You Type: L FPMATH
Screen Shows: DB: LFPMATH
ECoeo B7

Utility Commands

C <expressionl > <expression2>

performs a “‘walking bit”” memory test and clears all memory
between the two evaluated addresses. Expressionl gives the
starting address, and expression2 gives the ending address,
which must be higher. If any bytes fail the test, this command
displays their address. Of course, you can test and clear only
RAM memory.

Warning: This command can be dangerous. Be sure which
memory address you are clearing.

Examples:

Clear all memory between Addresses 2000 and 15FF:
You Type: C 15FF 2020 (ENTER)
Screen Shows: DB: C 13FF 2000
17E4
17E7

The screen’s display of 17E4 and 17E7 indicates bad memory at
those addresses.

Clear all memory between the last value of Dot and Address FF.

You Type: C .+ .+FF (ENTER
Screen Shows: DB: C . +FF

The screen shows a blank line following the command line,
which indicates good memory.
M <expressionl> <expression2>

produces a screen-sized tabular display of memory contents in
both hexadecimal and ASCII form.

The starting address of cach line is on the left, followed by the
contents of the subsequent memory locations. On the far right is
the ASCII representation of the same memory locations.

Periods are substituted for nondisplayable characters. The high
order bit is ignored for the display of the ASCII character.

157

158

S <expressionl> <expression2>

searches an area of memory for a 1- or 2-byte pattern, beginning
at the present Dot address. Expressionl is the ending address of
the scarch, and expression2 is the data for which to scarch. If
expression2 is less than 256, a 1-byte comparison is used; if it is
greater than 256, a 2-byte comparison is used. If a matching
pattern is found, Dot is set to its address. which is displayed. It a
matching pattern is not found, the screen shows the DB: prompt.

$ (ENTER

calls the OS-9 Shell, which responds with prompts for one or
more commangd lines.

$ Shell Command

executes the command and returns to DEBUG.

Also use $ to call the system utility programs and the Interactive
Assembler from within DEBUG. Examples:

You Type: $D IR (ENTER
Screen Shows: DB: $DIR
DIRECTORY OF + @0:00:21

0s8g BOoOT CMDS SYS
DEFS STARTUP OLDFILE
NEWFILE BUSINESS FILE1l

Q

quits (leaves) DEBUG and returns to the OS-9 Shell. Example:

You Type: O (ENTER
Screen Shows: DB: Q
059:

4 / Using Debug

You use DEBUG primarily to test system memory and [/O

devices, to

.

patch’ the operating system or other programs,

and to test hand-written or compiler-generated programs.

Sample Program

2000
peQd
202
0052
2QE7
Q0ES

200
222D

o114
o014
018
91C
PO 1E
2021
0023
QLS
0029
2028
PB2E
2030
0233
0235
2038

2043
o0eC
oodd
o047

87CDo047
4358414D

308D0020
1@8EQQOC
8621
1@3F8C
2512
304z
1@BEQOS®
8G00Q
103F8B
2395
QIFQO
Cooa
103F06
48454C4C

oD

26GBAME6

The simple assembly-language program shown below illus-
trates the use of DEBUG commands. This program prints
“*“HELLO WORLD”’ and then waits for a line of input.

NAM
USE

* Data Section

LINLEN
INPBUF

STACK
DATMEM

* Prodram

NAME

ENTRY

ERROR
OUTSTR

STRLEN

ENDPGM

ORG
RMB
RMB
RMB
EQU
EQU

Secti
MOD
FCS

EQU
LEAX
LDY
LDA
089
BCS
LEAX
LDY
LDA
059
BCS
STY
LDB
0s9
FCC

FCB
EQU
EMOD
EQU
END

HAMPLE
/D@/DEFS/@S9DEFS
4
2 LINE LENGTH
8@ LINE INPUT BUFFER
50 HARDWARE STACK

an

DATA AREA MEMORY SIZE

ENDPGM sNAME »$11 +$81 +ENTRY sDATMEM

/EXAMPLE/

*
OUTSTR »PCR
#STRLEN

#]
I$WRITLN
ERROR
INPBUF 2 U
#B80

#Q
I$READLN
ERROR
LINLEN

#0

F$EXIT

MODULE NAME STRING

MODULE ENTRY POINT
DUTPUT STRING ADDRESS
GET STRING LENGTH
STANDARD OUTPUT PATH
WRITE THE LINE

BRA IF ANY ERRORS
ADDR OF INPUT BUFFER
MAX OF 8@ CHARACTERS
STANDARD INPUT PATH
READ THE LINE

BRA IF ANY I/0 ERRORS
SAVE THE LINE LENGTH
RETURN WITH NO ERRORS
TERMINATE THE PROCESS

/HELLO WORLD/ OUTPUT STRING

$0D
*-0UTSTR

*

END OF LINE CHARACTER
STRING LENGTH
END OF MODULE
END OF PROGRAM

159

A Session With DEBUG

The following example illustrates how to use DEBUG with the
program on the previous page. (The actual RAM address may
vary depending on your computer’s installation of 0S-9.)

0S9:DEBUG #2K

Interactive Debugger
DB: $SLOAD /DI/EXAMPLE
DB: L EXAMPLE

A900 &7
DB:
A900 87
DB: M. .+44 (dump program on display)

A900 87CDO0047000D1181 ...G....
A908 6F00140084455841 O....EXA
A910 4D504CC5308D0020 MPL.0O..
A918 T08E000C8601103F ?

A920 8C25123042108E00 .%.0B...
A928 508600103F8B2505 P...?.%.
A930 T09F00C600103F06 2.

A938 48454C4C4F20574F HELLO WO
A940 524C440DDB72DDFF RLD..R..

DB: E EXAMPLE (prepare to run program)
SPp CCA B DP X Y U pPC
ODF3 C8 00 0! 0D ODFF OE0O0 0DOO 9214

DB:

A900 87
DB: B .+2E (set breakpoint at address A92E)
DB: G (run program)

HELLO WORLD
hello computer

ENTER

BKPT: (breakpoint encountcred)
SP CCA B DP X Y U PC
ODF3 C0 00 01 0D 0D02 0D00 0DO0 922E
DB: M :0 :U+20 (display register area)
0A00 00010D020000000C
0A08 O0CF400004C000000L...

160

0A10
0A18
0A20

DB:

DB:

DB:

DB:

DB:

0S9:

Patching Programs

00000087CD002400 $.
ODI11810C001201C2
000000000FFOOFF

U+2
0A02 68

0AO03 65
0A04 6C

0A05 6C
Q

To “*patch’ a program (to change its object code), follow these

five steps:

I. Load the program into memory using OS-9’s
LLOAD command.

2. Link to and change the program in memory using
DEBUG’s L and = commands.

3. Save the new, patched version of the program on a
disk file using OS-9’s SAVE command.

4. Update the program module’s CRC check value
using OS-9's VERIFY command. Be sure to use the
U option.

5. Setthe module’s execute status using OS-9’s ATTR

command.

Step 4 is unique to OS-9 (as compared with other operating
systems) and often overlooked. However, it is essential because
0OS-9 refuses to load the patched program into memory until its
CRC check value is updated and correct.

161

Patching OS-9

162

The example that follows shows how the program on page 00 is
“‘patched.’” In this case the LDY #80 instruction is changed to
LDY #32.

0S9: DEBUG (call DEBUG)

Interactive Debugger

DB: $LOAD EXAMPLE (call OS-9 to load program)

DB: L EXAMPLE (set dot to beg addr of program)
2000 87 (actual address will vary)

DB: . .+28 (add offset of byte to change*)
2028 50 (current value is 00}

DB =#32 (change to decimal 12)
2028 10 (change confirmed)

DB: $SAVE TEMP EXAMPLE (save on file called ““TEMP™")

DB: $VERIFY U <TEMP> (update CRC and copy to “*“NEWEX"")
NEWEX

DB: $ATTR NEWEX E PE (set execution status)

DB: $DEL TEMP (dclete temporary file)

DB: ¢ (exit DEBUG)

Component Modules

Patching modules that are part of OS-9 (modules contained in
the OS-9 Boot file) is a bit trickier than patching a regular
program because you must use the COBBLER and OS-9GEN
programs to create a new OS-9 Boot file. The example below
shows how an OS-9 **device descriptor’” module is permanent-
ly patched, in this case to change the upper-case lock of the
device /TERM from on to off. This example assumes that a
blank freshly formatted diskette is in Drive | (/D1).

Caution: Always use a copy of your OS-9 System Disk when
patching, in case something goes wrong.

0S9: DEBUG (call DEBUG)

Interactive Debugger

DB: L TERM (set dot to addr of TERM module)
CA82 87 (actual address will vary)

DB: .. +13 (add offset of byte to change*)
CA95 01 (current value is 01)

DB: =1 (change value to 01 for **OFF™")
CA96 01

DB: — (move back one byte)

CA9S 00 (change confirmed)

DB: Q (exit DEBUG)

0S9: COBBLER /D1 (write new bootfile on /D1)

0S89: VERIFY </DI/OS9BOOT >/DOI'TEMP U (ENTER)
(update CRC value)
0S9:DEL /D1I/OS9BOOT (ENTER) (delete old boot file)
0S89:COPY /DO/TEMP/D1/OS9BOOT
(install updated boot file)

Then you can use the Dsave command to build a ncw systems
disk.

163

Appendix / Debug Command
Summary

SPACEBAR) expression

Dot Commands

.

. (’.\'[)I‘L’SA\'I.()H

= expression

ENTER

Register Commands

register

register
CxXpression

Evaluate: display in hexadecimal
and decimal.

Display Dot address and
contents.

Restore last DOT, display
address and contents.

Set Dot to result, display address
and contents.

Set memory at Dot to result.

Decrement Dot, display address
and contents.

Increment Dot, display address
and contents.

Display all register contents.
Display specific register
contents.

Set register to result.

Program Setup and Run Commands

E module name
G

G expression

L module name

Breakpoint Commands

B
B expression
K
K expression

Prepure for execution.

Go to program.

Go to program at result address.

Link to module named, display
address.

Display all breakpoints.

Set breakpoint at result address.
Kill all breakpoints.

Kill breakpoint at result address.

165

Error Codes

166

Utility Commands

M expressionl Display memory dump in tabular
form. expression2

C expressionl Clear and test memory
expression2

S expressionl Search memory for pattern
expression2

$ text Call OS-9 Shell

Q Quit (exit)DEBUG

DEBUG detects scveral types of errors and displays a corres-
ponding error message and code number in decimal notation.
The various codes and descriptions are listed below. Error codes
other than those listed are standard OS-9 error codes returned by
various system calls.

0

ILLEGAL CONSTANT: The expression included
a constant that had an illegal character or that was
greater than 65,535.

DIVIDE BY ZERO: A division was attempted us-
ing a divisor of zero.

MULTIPLICATION OVERFLOW: The product of
the multiplication was greater than 65,535.

OPERAND MISSING: An operator was not fol-
lowed by a legal operand.

RIGHT PARENTHESIS MISSING: Parentheses
were misnested.

RIGHT BRACKET MISSING: Brackets were
misnested.

RIGHT ANGLE BRACKET MISSING: A byte-
indirect was misnested.

INCORRECT REGISTER: A misspelled, missing,
or illegal register name followed the colon.

BYTE OVERFLOW: An attempt was made to
store a value greater than 255 in a byte-sized
destination.

COMMAND ERROR: A command was mis-
spelled, missing, or illegal.

NO CHANGE: The memory location did not match
the value assigned to it.

BREAKPOINT TABLE FULL: The maximum
number of 12 breakpoints already exist.

BREAKPOINT NOT FOUND: No breakpoint
exists at the address given.

ILLEGAL SWI: An SWI instruction was encoun-
tered in the user program at an address other than a
breakpoint.

167

TEXT EDITOR INDEX

c

Command Series Repetition 26
Conditionals 26
Commands 4
Entering 4
Parameters 6
Numeric 6
String 6

D

Deleting Lines 15
Displaying Text 11

E

Edit Macros 30
Headers 31
Parameter Passing 31
Edit Pointers 4
Moving 12
Editor Error Messages 66

Inserting Lines 15

M
Manipulating Multiple Buffers 21

S

Searching 17
Substituting 17
Syntax Notation 7

T

Text Buffers 3
Text File Operations 23

169

ASSEMBLER INDEX

170

A

Addressing Modes 83
Accumulator Addressing 83
Accumulator Offset Indexed 89
Auto-Decrement Indexed 90
Auto-Increment Indexed 90
Constant Offset Indexed 87
Direct Addressing 85
Extended Addressing 84
Extended Indirect Addressing 84
Immediate Addressing 83
Indexed Addressing 87
Inherent Addressing 83
Program Counter Relative Indexed 88
Register Addressing 86
Relative Addressing 84
Assembler Directive Statements 97
Assembler Input Files 73

D

Data Sections 115
DEFS Files 105

E

Error Messages 121
Evaluation of Expressions 79
Expression Operands 79

o)

Operating Modes 74
Operators 80

P

Position Independent Mode 116
Program Area 116

Program Sections 115
Programming Techniques 115
Psuedo Instructions 91

S

Source Statement Fields 77
Comment 78
Label 77
Operand 78
Operation 78
Symbolic Names 81

171

INTERACTIVE DEBUGGER
INDEX

B

Basic Concepts 141
Breakpoint Commands 152

Cc

Calculator Commands 147
Calling DEBUG 141
Change Commands 148

D

Debug, Calling 141
Debug Commands 147
Dot Commands 148

E

Expressions 143
Constants 143
Forming Expressions 145
Indirect Addressing 146
Operators 145
Register Names 144
Special Names 144

M

Memory Examine Commands 148

P

Patching OS-9 Component Modules 162
Patching Programs 161
Program Setup Commands 155

172

R

Register Change Commands 151
Register Examine Commands 151
Run Commands 155

U
Utility Commands 157

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK
COMPUTER EQUIPMENT AND SOFTWARE PURGHASED FROM A
RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL

STORE OR FROM A RADIO SHACK FRANCHISEE QR DEALER AT ITS
AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER. assumes full responsibllity that this Radio Shack computer hardware purchased (the
“'Equipment”), and any copies of Radio Shack software includad with the Equipment or licansed
saparately (the “‘Software™) meets the specifications, capacity, capabilities, versatility, and other
raquirements of CUSTOMER.

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating
environment in which the Equipment and Software are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

A

For a period of ninety (90) calendar days from the date of the Radio Shack sales document
received upon purchase of the Equipment, RADIO SHACK warrants to the original CUSTOMER that
the Equipment and the medium upon which the Software is stored is free from manufacturing
defects. THIS WARRANTY (S ONLY APPLICABLE TQ PURCHASES QF RADIQ SHACK EQUIPMENT
BY THE ORIGINAL CUSTOMER FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS,
RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED
LOGATION. The warranty is void if the Equipment’s case or cabinet has been opened, or if the
Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect
is discovered during the stated warranty period, the defective Equipment must be returned to a
Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchises or
Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The
original CUSTOMER'S sole and exclusive remedy in the event of a defect Is limited to the
corréction of the defect by repair, replacement, or refund of the purchase price, at RADIO
SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair
expendablp items.
RADIO SHACK makes no warranty as to the design, capability, capacity, or sultability for use of
the Software, except a5 provided in this paragraph. Software is licensed on an “AS 15" basis,
without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software
defect, s its repair of replacement within thirty {30) calendar days of the date of the
Radio Shack sales document received upon licensa of the Software. The defective Software shall
be retumed to 2 Radio Shack Computer Center, a Radio Shack retall store, participating Radio
Shack franchisee or Radio Shack dealer along with the sales document.
Except as provided herein no employee, agent, franchises, dealer or other person is authorized to
give any warranties of any nature on behalf of RADIO SHACK.
Except as provided hersin, RADIO SHACK MAKES NO WARRANTIES, INGLUDING WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow limitations on how long an implied warranty lasts, so the above
limitation(s) may not apply to CUSTOMER.

S50 1. LMITATION OF LIABILITY

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY
TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS
OR DAMAGE GAUSED QR ALLEGED TQ BE CAUSED DIRECTLY QR INDIRECTLY BY
“EQUIPMENT"' OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK,
INGLUDING, BUT NOT LIMITED TO, ANY INTERRUIPTION OF SERVICE, LOSS OF BUSINESS OR
ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR
OPERATION OF THE “EQUIPMENT” OR “‘SOFTWARE™. IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR
CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "“EQUIPMENT"

OR “SOFTWARE". .
continued

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY
HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE
AMOUNT PAID BY CUSTOMER FOR THE PARTIGULAR ‘‘EQUIPMENT OR “‘SOFTWARE"
INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or fumishing
Equipment and/or Software.

No action arising out of any claimed breach of this Warranty or transactions under this Warranty
may be brought-more than two (2) years after the cause of action has accrued or more than four
(4) years after the date of the Radio Shack sales document for the Equipment or Software,
whichever first occurs.

Some states do not allow the limitation or exclusion of incidental or consequential damages, so the
above limitation(s) or exclusion(s) may not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software
on one computer, subject to the following provisions:

A.

B
C.
D

Except as otherwise provided in this Software License, applicable copyright laws shall apply to the
Software.

Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM)
is transferred to CUSTOMER, but not title to the Software.

CUSTOMER may use Software on one host computer and access that Software through one or
mora terminals if the Software permits this function.

CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on
one computer and as is specifically provided in this Software License. Customer is expressly
prohibited from disassembling the Software.

CUSTOMER Is permitted to maka additional copies of the Software only for backup or archival |
purposes or if additional copies are required in the operation of one computer with the Software,
but only to the extent the Software allows a backup copy to be made. However, for TRSDOS
Software, CUSTOMER is permitted to make & limited number of additional coples for
CUSTOMER'S own use.

CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has
purchased one copy of the Software for each one sold or distributed. The provisions of this
Software License shall also be applicable to third parties receiving coples of the Software from
CUSTOMER.

All copyright notices shall be retained on all coples of the Software.

APPLICABILITY DF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and
CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a
transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER.

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO
SHACK, the author, owner and/or licensor of the Software and any manufacturer of the Equipment
sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original
CUSTOMER may have other rights which vary from state to state.

0S-9 Technical Information

0S-9 Operating System: <1983 Microware Systems
Corporation and Motorola Incorporated.
All Rights Reserved.
Licensed to Tandy Corporation.

0OS-9 Technical Information:
© 1983 Tandy Corporation
and Microware Systems Corporation.
All Rights Reserved.

UNIX is a trademark of Bell Laboratorics.
TRS-80 is a registered trademark of Tandy Corporation.

Reproduction or use. without express written permission from
Tandy Corporation or Microware Systems Corporation of any
portion of this manual is prohibited. While reasonable etforts have
been taken in the preparation of this manual to assure its accuracy,
Tandy Corporation and Microware Systems Corporation assumes no
liability resulting from any crrors or omissions in this manual, or
from the use of the information contained herein.

10987654321

—o
[=H

Introduction

0S-9 is a versatile multiprogramming/multitasking operating
system for the TRS-80 Color Computer. 1t is well-suited for a
wide range of applications. In addition to multiprogramming,
its main features are:

® Comprehensive management of all system resources:
memory, input/output, and CPU time

® Efficient operation in typical microcomputer con-
figurations

® Anexpandable, device-independent unified /0 system

History and Design Philosophy

In the few years since its introduction, OS-9 has developed a
worldwide user base of thousands. 1t is especially popular in the
engineering, rescarch, education. and scientific applications.

Microware and Motorola modeled OS-9 upon Bell Telephone
Laboratorics’ UNIX operating system, which is becoming
widely recognized as a standard for mini and micro multipro-
gramming operating systems. Although its implementation is
different, OS-9 retains the overall concept and user interface of
UNIX. If you arc experienced with UNIX. you should feel quite
comfortable with OS-9.

In addition, OS-9 introduces some important features to make
the most of the 6809 microprocessor. Perhaps the most innova-
tive of these is OS-9s “*memory module™ management system.
This system provides extensive support for modular software
techniques, which cncourage simplified and more reliable
programming.

The OS-9 modules are introduced in Chapter | of this manual
and are d,iscussed in detail throughout.

About This Manual

Special Notations

iv

This manual provides all the information necessary to install,
maintain, cxpand. or write assembly-language programs for
OS-9 systems. It assumes you are familiar with the 6809
architccture. instruction set, and assembly language.

For your convenience, the following special notations are used
in this manual.

lower-case italics
represent words, letters, characters, or values that you supply.

$nn

specifies that an is a hexadecimal number. All other numbers in
the text of this manual are in decimal (base 10) form, unless
otherwise noted.

Contents

Chapter 1 / System Organization1

Kernel, Clock Module, and INIT 2
Input/Output Modules.o . 2
TOMAN L 2
File Managers 2
Device Drivers. o3
Device Descriptors 3
Boot. . o 3

Chapter 2/ The Kernel5

System Initialization S
System Call Processing. 6
OS9Defs and Symbolic Names.o i 6
Types of System Calls 6
Memory Management. 7
Memory Use 8
Multiprogramming 9
Process Creation 10
Process Termination 11
Process States 11
Execution Scheduling 12
Signals . ..o 12
Interrupt Processing 14
Physical Interrupt Processing 14
Logical Interrupt Polling System 15

Chapter 3 / Memory Modules.............17

Module Types P 17
Module Format 18
Module Header 18
Module Body. 19
CRC Value 19

Module Headers: Standard Information. o o o o 19
Module Headers: Type-Dependent Information. ..o o000 oo o L. 2]
ROM Modules 23

Chapter 4 / OS-9’s Unified Input/Output
SyStemcviiieeneeererecenaanseddd

TOMAN 26
File Managers .o 26
Device Driver Modules. .o oo 27
Device Descriptor Modules 00000000 oo 28
Path Descriptors © oo 31

Chapter 5 / Random Block File Manager . . .33

Logical and Physical Disk Organization 3
Identification Sector (LSN OY ... oo oo 34
Disk Allocation Map Sector (LSN D)oo oo oo o035

File Sectors oo e 35
File Descriptor Sector o e 38

DIFCCLOTICS . o o 3T

RBFMAN Dcfinitions of the Path Descriptoro o037

RBE-Type Device Descriptor Modules ..o oo oo 00039

RBE-Type Device Driver Modules ..o 40
RBFMAN Device Driver Subroutines ..o oo oo 43

Chapter 6 / Sequential Character File
Managercovieveeenccnnneeaesd3

SCFMAN Line Editing Functions o o053
Read and Write o 053
Read Line and Write Line o o o e 53
SCFMAN Definitions of the Path Descriptor54

vi

SCE-Type Device Descriptor Modules57
SCF-Type Device Driver Modules.58
SCFMAN Device Driver Subroutines 60

Chapter 7 / Assembly Language
Programming Techniques..............67

How to Write Position-Independent Code o oo oL 67
Addressing Variables and Data Structurcs. oo 68
Stack Requirements 69
Interrupt Masks oo 69
Using Standard /O Pathso 69
Writing Interrupt-Driven Device Drivers. o o 70
A Sample Program 72

Chapter 8 / System Calls.................75

Calling Procedure 76
/O System Calls.o 77
System Call Descriptions 77

Appendices...........coiiiiiiiiie.. .. 149

A/ Alphabetical System Call Lists oo 149
B/ Numerical System Call Lists o e 153
C / Memory Module Diagrams 157
D / Standard Floppy Disk Format 161
E / System Call Error Codes 163
F/ Module and I/O Attributes 167

vii

Table of Diagrams and Charts

Chapter 1
Color Computer OS-9 Modules 1
Chapter 2
Color Computer OS-9 Typical Memory Map oo o 9
Chapter 3
Module Format 18
Module Headers: Standard Information 18
Type Codes ... 20
Language Codes 20
Executable Memory Module Format22
Chapter 4
I/O System Moduleso 25
Branch Table Format 28
Device Descriptor Format.30
Path Descriptor: Standard Information.31
Chapter 5
Identification Sector e 34
File Descriptor SeCtor. . ..o 35
RBFMAN Definitions of the Path Descriptor37
RBF-Type Device Descriptor Modules o 39
RBF Device Memory Area Definitions 41
Drive Tables 42
Branch Table Format 43

viii

Chapter 6

SCFMAN Definitions of the Path Descriptor54

SCF-Type Device Descriptor Modules57

SCF Device Memory Area Definitions 59

Branch Table Format e 60
Chapter 7

Use of Relative Addresses 67

Sample Program 72

1 / System Organization

0S-9 is composed of a group of modules, each of which has
specific functions. The illustration below shows the major mod-

ules. Actual module names are capitalized.

Color Computer OS-9 Modules

089 and OSYP2
INIT CLOCK
0S-9 KERNEL
IOMAN
RBFMAN SCFMAN PIPEMAN
Disk Char. Pipe
File Man. File Man. File Man.
CCDISK CCl10 PRINTER RS$232 PIPES
Disk Videos Printer Serial Dummy
Driver Keybrd Driver Port Driver
Driver Driver
DO DI TERM P RS232 PIPE

Device Descriptors

Kernel, Clock Module, and INIT

The first level contains the ““kernel.”” “*clock module,”” and
SINIT.

The kernel provides basic system services, such as multitasking
and memory management. It links all other system modules.

The clock module is a software handler for the specific real-
time-clock hardware.

INIT is an initialization table used by the kernel during system
startup. It loads initial tasks and specifies initial table sizes and
initial system device names.

Input/Output Modules

IOMAN

File Managers

The remaining modules make up OS-9's unified I/O system.
They are defined briefly here and are discussed in detail in
Chapter 4.

The second level (the level below the kernel) contains the
“input/output”’ manager (IOMAN). IOMAN provides com-
mon processing of all 1/O operations. It is required if any
OS-supported I/O is to be performed.

The third level contains the **file managers.”” File managers
perform I/O request processing for similar classes of /O
devices.

The Random Block File Manager (RBFMAN) processes all disk
1/0O operations. The Sequential Character File Manager
(SCFMAN) handles all non-disk /O operations that basically
operate a character at a time, such as terminal and printer
operations. The Pipe File Manager (PIPEMAN) handles pipes,

Device Drivers

Device Descriptors

Shell

Boot

which are memory buffers that act like files for inter-process
data transfers.

The fourth level contains the “*device drivers.”’ Device drivers
handle basic physical I/O functions for specific I/O controller
hardware. You may add your own customized drivers, or you
may receive new drivers with accessory hardware devices.

The fifth level contains the “*device descriptors.”” These mod-
ules are small tables that associate each 1/0 port with its logical
name, device driver, and tile manager. They also contain the
port’s initialization data and physical address.

When the device descriptors are used, only one copy of each
driver is required for each type of I/O controller, regardless of
the number of controllers the system uses.

The **shell”” (not shown) is the command interpreter. It is
technically a program and not part of the operating system itself,
and is described fully in the OS-9 Commands manual.

All modules are loaded into RAM during system startup by the
disk bootstrap module, “*Boot.”” Boot (not shown) is initially
loaded into memory by the Color BASIC DOS command.

2 / The Kernel

The ‘‘nucleus’ of OS-9 is the kernel. which supervises the
system and manages system resources. It is about 3K bytes long
and is contained in the OS9 and OS9P2 modules, with Boot, at
memory addresses $FO00 - $FEFF.

The kernel’s main functions are:

System initialization after reset

System call processing

Memory management
Multiprogramming (6809 management)

Interrupt processing

Note: Input/output functions arc not included in the
list because the kernel does not directly process them.
Instead, it passes I/O system calls to IOMAN for
processing.

System Initialization

After a hardwarc resct, the kernel initializes the system. This
involves the following: locating modules loaded in memory
from the OS-9 Boot file, allocating memory for internal tables,
and running the system startup task (SYSGO). The INIT mod-
ule is used during startup to specify initial table sizes and system
device names.

The SYSGO program does the following:

1. Calls the shell and initializes the high-level system.

o

Starts the first user process.

3. Remains in the Wait state to make sure that all uses do
not terminate and thus halt the system. SYSGO can
keep the system going by restarting the first user
process.

System Call Processing

“*System calls™” are used to communicate between OS-9 and
assembly-language programs for such functions as memory
allocation and process creation. In addition to I/0 and memory
management functions, system calls have other functions.
These include interprocess control and timekeeping.

System calls use the SWI2 instruction followed by a constant
byte representing the code. Parameters for system calls are
usually passed in the 6809 register.

OS9Defs and Symbolic Names

A system-wide assembly-language equate file called OS9Defs
defines symbolic names for all system calls. This file is included
when assembling hand-written or compiler-generated code. The
0S-9 assembler has a built-in macro to generate system calls.
For example:

0S9 I$read
is recognized and assembled as the equivalent to:

SWI2
FCB I$rcad

Types of System Calls

System calls are divided into two categories. **I/O’" calls and
““function’” calls.

1/0 calls perform various input/output functions. Calls of this
type are passed by the kernel to IOMAN for processing. The
symbolic names for /O calls begin with I$. For example, the
Read system call is called 1$read.

Function calls perform memory management, multi-
programming, and other functions. Most are processed by the
kernel. The symbolic names for function calls begin with F$.
For example, the Link system call is called F$link.

The function calls include “‘user’” calls and privileged *‘system
mode’” calls. (See Chapter 8 for more information.)

Memory Management

Memory management is an important opcrating system func-
tion. Using memory modules, OS-9 manages the logical con-
tents of memory and the physical assignment of memory to
programs.

All programs that are loaded must be in thc memory module
format. This format allows OS-9 to maintain a module direc-
tory. The dircctory contains information about the moduie,
including its name and address and the number of processes
using it.

When a module no longer is neceded, OS-9 deallocates its part of
memory and removes its name from the module directory (ex-
cept ROM. which is discussed later).

The memory modules are the foundation of OS8-9’s modular
software environment. These are some advantages of memory
management:

® Automatic run-time “‘linking’” of programs to libraries
of utility modules

® Automatic “‘sharing’ of reentrant programs

® Replacement of small sections of large programs for
update or correction (even when in ROM).

Memory Use

OS-9 reserves some space at the top and bottom of RAM for its
own use. The amount depends on the sizes of system tables that
are specificd in the INIT module.

All other RAM is pooled into a “‘free memory’” space. As
memory is allocated or deallocated. it is dynamically taken from
or returncd to this pool.

The basic unit of memory allocation is the 256-byte **page.”
0S-9 always allocates memory in whole numbers of pages.

The data structure used to keep track of memory allocation is a
32-byte **bit map’’ located at $0200 - $021F. Each bit in this
table is associated with a specific page of memory.

Cleared bits indicate that the page is free and available for
assignment. Set bits indicate that the page is in use or that no
RAM memory is present at that address.

Memory is allocated automatically when any of the following
occurs:

® Program modules are loaded into RAM
® Processes are created

® Process request additional RAM

® OS-9 nceds I/0 buffers or larger tables

Each of these functions usually has an inverse function that
causes memory to be deallocated and returned to free memory.

In general, memory for program modules and buffers is allo-
cated from high addresses downward. Memory for process data
arcas is allocated from lower addresses upward.

On the next page is a map of a ‘‘typical’’ system. Actual
memory sizes and addresses may vary depending on the exact
system configuration.

Color Computer OS-9 Typical Memory Map

$FEEF
1O Device Addresses
SEFOO

$FEFF (End of RAM)

0S-9 Kernel

$1000

File Managers.
Device Drivers, and
SO on

Shell (1K)

SCO00 (may vary)

OS89 Data Structures
(approximately 1K)

Free Memory tor

General Use

“—— $0500 (inay vary)

OS-9 Data Structures
and Direct Page

$0000 Beginning of RAM

Multiprogramming

0OS8-9 is a multiprogramming operating system. This means
several independent programs called “‘processes’ can be ex-
ecuted at the same time. By issuing the appropriate system call
to 0S-9, each process can have access to any system resource.

9

Process Creation

10

Multiprogramming functions use a hardware real-time clock
that generates interrupts at a regular rate of 60 times per second.
Therefore, 6809 time usually is divided into periods of 16.67
milliscconds. These periods are called **ticks. ™

““Active’” processes (those not waiting for some event) are run
for a specific system-assigned period called a *“time slice.”” The
length of the time slice depends on a process” priority relative to
all other active processes. Many OS-9 system calls arc available
to create. terminate. and control processes.

A process is created when an existing process executes a Fork
system call (F$fork). This call’s main argument is the name of
the program module that the new process is to exccute first (the
“‘primary module™).

Find the Module. OS-9 first attempts to find the module in the
module directory. 1f it does not find the module. OS-9 usually
attempts to load into memory a mass-storage file, giving it the
requested module name as a filename.

Assign a Process Descriptor. Once OS-9 finds the module, it
assigns the process a data structure called a *“process descrip-
tor.”” This is a 64-byte package that contains information about
the process, its state, memory allocations, priority, qucue poin-
ters, and so on.

0S-9 automatically initializes and maintains the process de-
scriptor. The process itself cannot access the descriptor; it has
no nced to do so.

Allocate RAM. The next step is allocation of RAM for the
process. The primary module’s header contains a storage size.
OS-9 uses this size unless the Fork system call asked for a larger
area. OS-9 then attempts to allocate a contiguous memory area
of the specified size from the free memory space.

Create or Abort. If OS-9 can perform all of the previous steps,
it adds the new process to the active process queue for execution
scheduling. If it cannot, it aborts the creatton. The process that
originated the Fork is informed of the error.

Assign Process ID and User ID. OS-9 assigns the new process
a unique number called a “‘process 1D."" Other processes can
communicate with the process by referring to its ID in various
system calls.

The process also has a “*user ID,”” which is used to identify all
processes and files belonging to a particular user. The user 1D is
inherited from the parent process.

Process Termination

Process States

A process terminates when it executes an Exit system call
(F$exit) or when it receives a fatal signal. The termination
closes any open paths, deallocates memory uscd by the process,
and unlinks the primary module.

At any instant a process can be in one of three states:
® Active (The process is ready for exccution.)

® Waiting (The process is suspended until a **child pro-
cess’’ terminates or a signal is received.)

® Sleeping (The process is suspended for a specific
period of time or until a signal is reccived.)

Each state has its own queue, a linked list of **descriptors™ of
processes in that state. State changes are performed by moving a
process descriptor to another queue.

The Active State. Each active process is given a time slice for
execution. according to its priority relative to all other active
processes. The scheduler, which is in the kernel. makes sure
that all active processes, even those of low priority, get some
CPU time.

The Wait State. This state is cntered when a process executes a
Wait system call (F$wait). The process remains suspended until
one ot its ““child’” processes dies or until it receives a *‘signal.”’
(See the “*Signals’ section below.)

11

The Sleeping State. This state is entered when a process ex-
ecutes a Sleep system call (Fsieep), which spectties the num-
ber of ticks for which the process is to remain suspended. The
process remains asleep until the spectfied time has elapsed or
until it recerves a signal.

Execution Scheduling

Signals

12

The O8-9 scheduler uses an algorithm that ensures that afl active
processes get some execution time.

All active processes are members of the “Tactive process
queue.”” which is kept sorted by process “age.” Age is a count
of how many process switches have occurred since the process’
last time slice. When a process is moved to the active process
gueue from another queue. its age is set according to its priority
—- the higher the priority. the higher the age.

Whenever a new process becomes active, the ages of all other
active processes are incremented. When the executing process’
time slice has elapsed. the scheduler selects the next process to
be excecuted (the one with the next highest age. the first one in
the qucue). At this time the ages of all other active processes are
incremented. (Ages are never incremented beyond 25S.
however.)

An cxeeption is a newly active process that was deactivated
whilc in the system state. Such a process is given higher priority
because it usually is executing critical routines that aftect shared
system resources. Therefore. it could be blocking other unre-
lated processes.

When there are no active processes, the kernel sets itself up to
handle the next interrupt and then execute a Cwai instruction,
which decreases interrupt lateney time.

A signal is an asynchronous control mechanism used for inter-
process communication and control. It behaves like a software
interrupt (it can cause a process to suspend a program, execute a
specific routine, and afterward return to the interrupted
program).

Signals can be sent from one process to another process by the
Send system call (F$send). Or, they can be sent from 0OS-9
service routines to a process.

The signal can convey status information in the form of a [-byte
numeric value. Some of the signal **codes™ (values) are prede-
fincd., but you may definc most. The signal codes are:

0 = Kill (aborts the process: is non-interceptable)
I = Wakeup (wakes up a sleeping process)

2 = Keyboard abort

3 = Keyboard interrupt

=
I

User-defined (255)

When a signal is sent to a process, the signal is noted and saved
in the process descriptor. If the process is in the sleeping or
waiting state, it ts changed to the active state. When it gets its
next time slice. the signal is processed.

What happens next depends on whether or not the process has
set up a “'signal intercept trap’ (signal service routine) by
executing an Intercept system call (FSicpt).

If it has set up a signal intercept trap, the process resumes
execution at the address given in the Intercept call. The signal
code is passed to this routine. which should terminate with an
RTI instruction to resume normal execution of the process.

Note: A wakeup signal activates a sleeping process. It
does not vector through the intercept routine.

If it has not set up a signal intercept trap, the process is aborted
immediately. 1t is also aborted if the signal code is zero. If the
process is in the system mode. the abort is deferred (it dies upon
return to the user state).

A process may have a signal pending (usually because it has not
been assigned a time slice since the signal was received). If it
does. and another process tries to send it another signal, the new
signal is aborted, and the Send system call returns an error. The
sender should then execute a Sleep system call for a few ticks
before trying to send the signal again. This gives the destination
process time to process the pending signal.

13

Interrupt Processing

Interrupt processing is another important function of the kernel.
0OS-9 sends cach hardware interrupt to a specific address. This
address, in turn, specifics the address of the device service
routine to be exccuted. This is called " vectoring”” the interrupt.
The address that points to the routine is called the “*vector. ™ It
has the same name as the interrupt.

Physical Interrupt Processing

14

Addresses $FFFO through $SFFFF (in the Color BASIC ROM)
contain the hardware vectors required by 6809. Each address
points to @ RAM vector. as follows:

Interrupt Vector
SWI3 (Software Interrupt 3) $0100
SWI2 (Software Interrupt 2) $0103
FIRQ (Fast Interrupt Request) $010F
IRQ (Interrupt Request) $010C
SWI (Software Interrupt) $0106
NMI (Non-Maskable Interrupt) $0109

OS-9 initializes each of these RAM vectors to point to a specific
service routine in the kernel.

Software Interrupts (SWI, SWI2, and SWI3.) The software
interrupts arc vectored to user-definable addresses, which are
local to each procedure. SWI2, however, usually is used for
0S-9 system calls.

The SWI, SWI2, and SWI3 vectors point to routines that read
the corresponding pseudo vector from the process’ descriptor
and dispatch to it. This is why the Set SWI system call (F$sswi)
is local to a process; it only changes a pseudo vector in the
process descriptor.

FIRQ Interrupt. The system uses the FIRQ interrupt. The
FIRQ vector, which points to an RTlinstruction, is not available
to you.

IRQ Interrupt. Most 0S-9 1/O devices generate 1RQ inter-
rupts. The IRQ vector points to the real-time clock and keyboard
scanner routines. These routines. in turn, jump to a special IRQ
polling system which determines the source of the interrupt. The
polling system is discussed in the next section, *Logical Inter-
rupt Polling System.™

NMI Interrupt. The system uses the NMI interrupt. The NMI
vector, which points to the disk driver interrupt service routine,
is not available to you.

Logical Interrupt Polling System

Because most O5-9 170 devices use IRQ interrupts, OS-9 in-
cludes a sophisticated polling system. The IRQ polling system
automatically identifies the source of the interrupt, and then
executes its associated user- or system-defined service routine.

The Polling Table. The information required for IRQ polling is
maintained in a data structure called the " IRQ polling table. ™
The table has a 9-byte entry for cach device that might generate
an IRQ interrupt. The table size is permanent and is defined by
an initialization constant in the INI'T module.

Each entry in the polling table is given a number from 0 (lowest
priority) to 255 (highest priority). In this way, the more impor-
tant devices (those that have a higher interrupt frequency) can be
polled before the less important ones.

Each entry has 6 variables:

® Polling Address — points to the device's status regis-
ter. The register must have a bit or bits that indicate it is
the source of an interrupt.

® Flip Byte — sclects whether the bits in the device
status register indicate active when set or active when
cleared. If a bit in the flip byte is set, it indicates that the
task is active whenever the corresponding bit in the
status register 1s clear (and vice versa).

® Mask Byte — sclects one or more bits within the
device status register that are interrupt request tlag(s).
Onc or more sct bits identily which task or device is
active.

15

16

@ Service Routine Address — points to the deviee's
interrupt service routine. You supply this address.

® Static Storage Address — points to the permancent
storage arca required by the device service routine.
You supply this address.

® Priority — scts the order in which the devices are to be
polled (a number from 0 to 255).

Polling the Entries. When an IRQ interrupt occurs, the polling
system is entered via the corresponding RAM interrupt vector.
It starts polling the devices in order. Each entry’s status register
address is loaded into Accumulator A, using the device address
from the table.

Then, an Exclusive-OR operation using the tlip byte is ex-
ecuted, followed by a Logical-AND operation using the mask
byte. If the result is non-zero, the device is assumed to be the
cause of the interrupt.

The device's memory address and service routine address are
read from the table and exccuted.

Note: The interrupt service routine should terminate with
an RTS instruction. not an RTI instruction.

Adding Entries to the Table. Using the Set IRQ system call
(F$irq). you can make entries to the IRQ polling table. Set IRQ
is a privileged system call, which can be executed only when
0S-9 is in system mode (which is the case when deviee drivers
are exccuted).

Note: The actual code for the interrupt polling system is
focated in the JOMAN module. The kernel OSY and
OSYP2 modules contain the physical interrupt processing
routines.

3 / Memory Modules

Module Types

In Chapter 2, you learned that OS-9 is based on the concept that
memory is modular. This means that cach program is consid-
ered to be an individual. named ““object.”

You also learned that all objects that are loaded into memory
must be in the module format. This format lets OS-9 manage the
logical contents of memory, as well as the physical contents.
Module types and formats are discussed in detail in this chapter.

There are several types of modules, each of which has a differ-
cnt use and function. These are the main requirements of a
module:

® [t cannot modify itself.

® |t must be position-independent so OS-9 can load or
relocate it wherever space is available. In this respect,
the module format is the OS-9 cquivalent of “*load
records’” used in older operating systems.

A module need not be a complete program or even 6809

machine language. It may contain BASIC09 **I-code.”” con-
stants, single subroutines. and subroutine packages.

17

Module Format

‘

Each module has three parts: a “'module header.”” a “*module
body,”" and a *“cyclic-redundancy-check value™ (CRC value).

Module Format

Modute Header

Program
or Constants

CRC Value

Module Header

At the beginning of the module (fowest address) 1s the module
header. Its form depends upon the module’s use.

The header contains information about the module and its use.
This includes the following:

® Sizc

® Type (machine language. BASIC09 compiled code,
and so on)

® Attributes (executable. reentrant. and so on)
® Data storage memory requirements
® Exccution starting address

Usually, you don’t need to write routines to generate the mod-
ules and headers. Most OS-9 programs — including BASICO9,
Pascal, C, and the assembler — do this automatically.

18

Module Body

The module body contains the program or constants. It usually
is pure code. The module name string is included somewhere in
this area.

CRC Value

The last three bytes of the module are the Cyclic Redundancy
Check (CRC) value. The CRC value is used to verify the
intcgrity of a module.

The 24-bit CRC is performed over the entire module from the
first byte of the module header to the byte just before the CRC
itself. The CRC polynomial used is $800FE3.

As with the header. you usually don’t need to write routines
to generate the CRC value. Most OS-9 programs do this
automatically.

Module Headers: Standard Information

The tirst nine bytes of all module headers are defined as follows:

Relative Use

Address

$00.$01 Syne bytes ($87.5CD)
$02.%03 Module size

$04,%05 Offset to module name

$06 Module type / Language type
$07 Attributes . Revision level
$08 Heuder check

Sync Bytes. Specify the location of the module. (The first sync
byte is the start of the module.) These two bytes are constant.

Module Size. Specity the size of the module in bytes (includes
CRC).

19

20

Offset to Module Name. Specifies the address of the module
name string relative to the start of the module. The name string
can be tocated anywhere in the module and consists of a string of
ASCII characters having the most significant bit set on the last
character.

Type/Language Byte. Specifies the type and language of the
module.

The four most significant bits of this byte indicate the type.
Eight types are pre-defined. Some of these are for OS-9's
internal use only. The type codes are given here:

Code Module Type

$01 Program module

$02 Subroutine module

$03 Multi-module (for future use)
$04 Data module

$05-$08 Uscr-definable

$0C 08-9 system module

$0D 0S-9 file manager module
SO 08S-9 device driver module
$OF 0S-9 device descriptor module

The four least significant bits of this byte indicate the language.
The language codes are given here:

Code Language

$00 Data (non-cxecutable)
$01 6809 object code

$02 BASIC09 1-code

$03 PASCAL P-code

$04 COBOL I-code
$05-$15 Reserved tor future use

By checking the language type, high-level fanguage run-time
systems can verify that a module is the correct type before
attenipting execution. BASIC09., for example, may run either
f-code or 6809 machine language procedures arbitrarily by
checking the language type code.

Attributes / Revision Byte. Specifics the attributes and revi-
sion Ievel of the module.

The four most significant bits of this byte are reserved for
module attributes. Currently, only Bit 7 is defined. When set. it
indicates the module is reentrant and therefore *sharable.™

The four least significant bits of this byte arc a revision level
from 0 to 15. If two or more modules have the same name, type.
language, and so on. OS-9 keeps in the module directory only
the module having the highest revision level. Therefore. you
can replace or patch a ROM module. simply by loading a new.
equivalent module that has a higher revision level.

Note: A previously linked module cannot be replaced
until all processes linked to it have unlinked it (after its
link count goes to zero).

Header Check. Specifics the one’s complement of the Exclu-
sive-OR of the previous eight bytes.

Module Headers: Type-Dependent Information

More information usually follows the first nine bytes of the
header. The layout and meaning vary. depending on the module
type.

Module types $SOC-SOF (system module. file manager module,
device driver module. and device descriptor module) are used
by OS-9 only. Their formats are given later in the manual.

Module types $01 through $0B have the general-purpose
“user’ format (executable format) shown on the next page.
This format is used often for OS-9 programs that are called by
Fork or Chain (F$fork and F$chain).

21

Executable Memory Module Format

Use
Relative Check
Address Range
$00
[— Syne Bytes ($87CD)]
$01
$02
— Module Size (bytes) -]
$03 g
$04 header
$05 — Module Name Offset] parity
$06 Type Language
$07 Attributes Revision module
CRC
$08 Header Parity Check
$09
— Exccution Offsct =
$0A
$0B
[~ Permanent Storage Size
$0C
$0D (Additional optional
header extensions
located here)
Module Body
object code, constants,
and so on
CRC Check Value]

22

ROM Modules

As you can see from the chart on the previous page. this module
format has two extra bytes in its header. They arc:

$09.$0A Execution offset
$0B.$0C Permanent storage size

Execution Offset. The program or subroutine’s offset starting
address. relative to the first byte of the sync code. A module that
has multiple entry points (such as cold start and warm start) may
have a branch table starting at this address.

Permanent Storage Size. The minimum number of bytes of
data storage required to run. Fork and Chain use this number to
allocate a process” data area.

If the module will not be directly executed by a Fork or Chain
system call (for instance a subroutine package), this entry is not
used by OS-9. It is commonly used to specify the maximum
stack size required by reentrant subroutine modules. The calling
program can check this value to determine if the subroutine has
enough stack space.

When OS-9 starts after a system reset. it searches the entire
memory space for ROM modules. It finds them by looking for
the module header sync code ($87,$CD).

When this byte pattern is detected. OS-9 checks the header to
sec if it is correct. If it is, the system obtains the module size
from the header and performs a 24-bit CRC over the entire
module. If the CRC matches. 0S-9 considers the module to be
valid and enters it into the module directory. All ROM modules
that are present in the system at startup are automatically in-
cluded in the system module directory.

24

After the module scarch, 0S-9 links to the component modules
it found. This is the secret to OS-97s ability to adapt to almost
any 6809 computer. It automatically locates its required and
optional component modules and rebuilds the system cach time
it is started.

At startup. 0S-9 also searches ROM for non-system modules. It
locates any software yvou supply and. if the module’s header and
CRC information is correct. enters it into the module directory.

4 / OS-9’s Unified Input/Output
System

In Chapter 1, we mentioned that OS-9 has a unified /O system,
consisting of all modules except those on the kernel level. This
chapter discusses the /0 modules in detail.

I/O System Modules

IOMAN
RBI'MAN SCEMAN PIPEMAN
Disk Char. Pipe

File Mgr. File Mgr. File Mgr.
CCDISK cCl1O PRINTER RS232 PIPES
Disk Video’ Printer Scrial Dummy
Driver Keybd. Driver Port Driver

Driver Driver

DO DI TERM P RS232 PIPL

Device Descriptors

The I/O system provides system-wide, hardware-independent
[/O services for user programs and OS-9 itself. All /O system
calls arc received by the kernel and passed to IOMAN for

processing.

25

IOMAN

File Managers

26

JIOMAN performs some processing, such as the allocation of
data structures for the /O path. Then. it calls the file managers
and device drivers to do most of the work. Additional file
manager, device driver, and device descriptor modules can be
loaded into memory from files and used while the system is
running.

IOMAN provides the first level of service of /O system calls. It
routes data on 1/O process paths to or from the appropriate file
managers and device drivers.

IOMAN also maintains two important internal OS-9 data struc-
tures — the “*device table™” and the “*path table.”” Never modify
IOMAN.

When a path is opened, IOMAN tries to link to a memory
module that has the device name given or implied in the pathlist.
This module Is the device descriptor. It contains the names of
the device driver and file manager for the device. IOMAN saves
the names so later system calls can be routed to these modules.

0OS-9 can have any number of file manager modules. Each of
these modules processes the raw data stream to or from a class of
device drivers that have similar operational characteristics. It
removes as many unique characteristics as possible from /0O
operations. Thus, it assures that similar devices conform to the
0OS-9 standard I/O and file structure.

The file manager also is responsible for mass storage allocation
and directory processing, if these are applicable to the class of
devices it served.

File managers usually buffer the data stream and issue requests
to the kernel for dynamic allocation of buffer memory. They
may also monitor and process the data stream, for example,
adding linc-feed characters after carriage-return characters.

The file managers arc reentrant. The two standard OS-9 file
managers are:

® Random Block File Manager (RBFMAN) — supports
random-access, block-structured devices such as disk
systems and bubble memories. (Chapter 5 discusses
RBFMAN in detail.)

@ Sequential Character File Manager (SCFMAN) — sup-
ports single-character-oriented devices, such as CRT
or hardcopy terminals. printers, and modems. (Chap-
ter 6 discusses SCFMAN in detail.)

Device Driver Modules

The device driver modules are subroutine packages that perform
basic, low-level I/O transfers to or from a specific type of I/O
device hardware controller. These modules are reentrant so one
copy of the module can run at the same time several devices that
use identical /O controllers.

Device driver modules use a standard module header, in which
the module type is specified as code $OE (device driver). The
execution offset address in the module header points to a branch
table that has a minimum of six 3-byte entries.

27

Each entry is typically a LBRA to the corresponding subroutine.
The file managers call specific routines in the device driver
through this table, passing a pointer to a path descriptor and the
hardware control register address in the 6809 register. The
branch table looks like this:

Code Meaning

+ $00 Device imtialization routine
+ $03 Read from device

+ %06 Write to device

+ $09 Get device status

+ $0C Set device status

+ $O0F Device termination routine

(For a complete description of the parameters passed to these
subroutines, see the “*Device Driver Subroutines™ sections in
Chapters 5 and 6.)

Device Descriptor Modules

28

Device descriptor modules are small, non-cxecutable modules.
They provide information that associates a specitic VO device
with its logical name, hardware controlier address(es), device
driver. file manager name, and initialization parameters.

Unlike the device drivers and file managers — which operate on
classes of devices — cach device descriptor tailors its functions
to a specific device. Each device must have a device descriptor.

Device descriptor modules use a standard module header, in
which the module type is specified as code $OF (device descrip-
tor). The name of the module is the name by which the system
and user know the device (the device name given in pathlists).

The rest of the device descriptor header consists of the informa-
tion in the following chart:

Relative Use

Address(es)

$09.$0A File manager name string relative
address

$0B.S0C Device driver name string relative
address

$0D Mode/Capabilities: D S PE PW PR

E W R (dircctory. sharable. public
cxccute. public write, public read,
execute, write, read)

OE$.$0F.$10 Device controller absolute physical
(24-bit) address

$11 Number of bytes (n bytes) in the
intialization table)

$12.$12+n Initialization table

When a path to the device is opened. the initialization table is
copicd into the “option section™™ (PD.OPT) of the path descrip-
tor. (See **Path Descriptors™ in this chapter.)

The values in this table may be used to define the operating
parameters that are changeable by the Get Status and Set Status
system calls (I$getstt and I$setstt). For example. a terminal’s
initialization parameters detine which control characters are
used for such functions as backspace and delete.

The initialization table may be up to 32 bytes long. It the table is
fess than 32 bytes long, the remaining values in the path descrip-
tor are sct to .

You may wish to add devices to your system. It a similar device
controller already exists, all you need to do is add the new
hardwarc and load another device descriptor. Device descrip-
tors can be in ROM or loaded into RAM from mass-storage files
while the system is running.

The diagram on the next page illustrates the device descriptor
format:
29

Device Descriptor Format

30

$08

$09

$0A

$0B

Relative
Address

1241

Use
Check
Range
— Sync Bytes ($87CD) i
— Module Size ~
header
== Offset to Module Name h— parity
$E (Type) $1 (Lang)
Attributes Revision
Heuder Parity Check

| Oftset to File Manager o

Name String module

CRC

| Offset to Device Driver —

Namc String

Mode Bytce
b Device Controller -

Absolute Physical Addr.
_— ’ —
(24 bit)

Initialization Table Size

(Inttialization Table)

(Name Strings, and so on)

CRC Check Value

Path Descriptors

Every open path is represented by a data structure called a path
descriptor (PD). It contains the information the file managers
and device drivers require to perform /O functions.

PDs are 64 bytes long and are dynamically allocated and deallo-
cated by IOMAN as paths are opened and closed.

They are internal data structurcs. which are not normally refer-
enced from user or applications programs. The description of
PDs is presented here mainly for those programmers who need
to write custom file managers, device drivers, or other exten-
sions to 0S-9.

PDs have three sections. The first [0-byte section is the same for
all file managers and device drivers, as shown in the chart on the
next page:

Path Descriptor: Standard Information

Name Relative Size Use
Address (Bytes)
PD.PD $00 1 Path number
PD.MOD $01 1 Access mode: 1 — read, 2 — write,

3 = update

PD.CNT $02 1 Number of open images (paths using
this PD)

PD.DEV $03 2 Address of the associated device table
entry

PD.CPR $0s | Cuarrent process 1D

PD.RGS 06 2 Address of the caller’s register stack

PD.BUF $08 2 Address of the 256-byte data buffer

(if used)

31

32

PDEST SOA 22 Detined by the file manager

PD.OPT $20 32 Reserved for the Getstat Setstat
options

PD.FST is reserved for and defined by cach type of file man-
ager for file pointers. permunceat variables, and so on.

PD.OPT 15 used as an option arca for tile or device operating
parameters that are dynamically alterable. When the path is
opened, IOMAN initiafizes these variables by copying the in-
itialization table that is in the device deseriptor module. User
programs can change them later. using the Get Status and Set
Status system calls.

PD.FST and PD.OPT arc defined for the file manager in the
assembly-language equate file (SCFEFDefs for SCFMAN and
RBFDefs tor RBFMAN).

5/ Random Block File Manager

The Random Block File Manager (RBFMAN) supports disk
storage. It is a reentrant subroutine package called by IOMAN
for /O system calls to random-aceess devices. It maintains the
logical and physical file structures.

During normal operation. RBFMAN requests allocation and
deallocation of 256-byte data butfers. Usually. one is required
for cach open file. When physical IO functions are necessary,
RBFMAN directly calls the subroutines in the associated device
drivers. All data transfers are performed using 256-byte data
blocks (pages).

RBFMAN docs notdeal directly with physical addresses such as
tracks and cylinders. Instead. it passes o the device drivers
address parameters, using a standard address called a “*logical
sector number™™, or “"LSN."" LSNs are integers from 0 to n-/,
where 12 is the maximum number of sectors on the media. The
driver translates the logical sector number to actual cylinder/
track/scctor values.

Because RBFMAN supports many devices that have different
performance and storage cuapacities, it is highly parameter-
driven. The physical parameters it uses are stored on the media
itself.

On disk systems, this information is written on the first few
sectors of Track 0. The device drivers also use this information,
particularly the physical parameters stored on Sector 0. These
parameters are written by the Format program that initializes
and tests the media.

33

Logical and Physical Disk Organization

Disk Sectors

All disks used by OS-9 use the first few sectors to store basic
identification, {ile structure, and storage allocation information.

LLSN 0 is the “identification sector.”” LSN I is the “"disk
allocation map sector.” LSN 2 marks the beginning of the
disk’s root directory. The following section tells more about
LSN 0 and L.SN 1.

Identification Sector (LSN 0)

34

LLSN 0 contains a description of the physical and logical charac-
teristics of the disk. These characteristics are set by the Format
command program when the disk is initialized.

The table below gives the OS-9 mnemonic name, byte address,
size, and description of each value stored in this LSN 0.

Name Relative Size Use

Address (Bytes)
DD.TOT $00 3 Number of scetors on disk
DD.TKS $03 I Track size (in sectors)
DD.MAP $04 2 Number of bytes in the allocation bit

map

DD.BIT $06 2 Number of sectors per cluster
DD.DIR 08 3 Starting sector of the root directory
DD.OWN $0B 2 Owner's user number
DD.ATT $0D 1 Disk attributes
DD.DSK SOE 2 Disk identification (for internal use)
DD.FMT $10 I Disk format. density. number of sides
DD.SPT $1i . Number of sectors per track
DD.RES $13 N Reserved for future use
DD.BT $15 3 Starting sector of the bootstrap file
DD.BSZ 518 2 Size of the bootstrap file in bytes)
DD.DAT $1A 5 Time of creation: Y:M:D:H:M
DD.NAM SIF 32 Volume name: last character has the

most signilicant bit set

Disk Allocation Map Sector (LSN 1)

File Sectors

LSN I contains the **disk allocation map.”” which is created by
Format. This map specifics which sector clusters are available
for file allocation.

The DD.MAP value in LSN 0 specifies the number of bytes (in
LSN 1) that are used in the map.

Each bit on the map corresponds to one sector cluster on the
disk. The DD.BIT value in LSN 0 specifies the number of
sectors per cluster. The number is an integral power of 2 (1, 2,
4, 8, 16, and so on). The map may contain up to 4096 bits.
Therefore. hard disks and double-density, doubled-sided disk-
ettes have two or more sectors per cluster.

If a cluster is available, the corresponding bit is cleared. If it is
allocated. non-existent. or physically defective. the correspond-
ing bit is set.

File Descriptor Sector

The first sector of every file is the **file descriptor.™ It contains
the logical and physical description of the file.

The table below describes the contents of the file descriptor.

Name Relative Size Use
Address (Bytes)
FD.ATT $00 | File attributes: DS PE PW PR EW R

(sce below)

FD.OWN $01 2 Owner’s user D

FD.DAT $03 N Date last modified: Y M D HM
FS.I.NK SO8 1 Link count

FD.SI7 $09 4 File size (number of bytes)
FD.DCR SOD 3 Date created: Y M D

FD.SEG $10 240 Segment list (see below)

35

FD.ATT (the attribute byte) contains the file permission bits.
When set the bits indicate the following:

Bit 7 Directory

Bit 6 Sharable

Bit 5 Public execute
Bit 4 Public write
Bit 3 Public read
Bit 2 Exccute

Bit 1 Write

Bit Rcad

FD.SEG (the segment list) consists of up to 48 5-byte entries
that have the size and address of cach file block in logical order.
Each entry has the block’s 3-byte LSN and 2-byte size (in
sectors). The entry following the last segment will be zero.

After creation, a file has no data segments allocated to it until
the first write. (Write operations past the current end-of-file
cause sectors to be added to the file. The first write 18 always
past the end-of-file.)

If the file has no segments, it is given an initial segment.
Usually, this segment has the number of sectors specificd by the
minimum allocation entry in the device descriptor. If, however,
the number of sectors requested is more than the minimum. the
initial scgment has the requested number.

Later expansions of the file usually are made in minimum
allocation increments, also. OS-9 cxpands the last segment,
whenever possible, instead of adding a segment. When the file
is closed. unused sectors in the Tast scgment are truncated.

Note: OS-9 tries to minimize the number of storage seg-
ments used in a file. In fact. many files have only one
segment. In such cases, no extra read operations are
needed to randomly access any byte on the file.

If a file is repeatedly closed. opened. and expanded, it
may become fragmented and may have many segments.
You can avoid this problem by writing a byte at the
highest address to be used on a file. Do this before writing
any other data.

Directories

»

“Disk directories™ are files that have the D attribute sct. A
directory contains an integral number of entries, each of which
can hold the name and LSN of a file or another directory.

Each directory entry contains 29 bytes for the filename, fol-
lowed by the 3-byte LLSN of the file’s descriptor sector. The
filename is left-justified in the ficld with the sign bit of the last
character set. Unused entries have a zcro byte in the first
filename character position.

Every disk has a master directory called the *‘root directory.””
The DD.DIR value in LSN 0 (identification sector) specities the
starting sector of the root directory.

RBFMAN Definitions of the Path Descriptor

As stated carlicr in this chapter, the PD.FST section of the path
descriptor is reserved for and defined by the file manager. The
table below describes the use of this section by RBFMAN. For
your convenience, it also includes the other sections of the PD.

Name Relative Size Use
Address (Bytes)

Universal Section (Same for all file managers and device drivers)

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1= read. 2 = write,
3 = update

PD.CNT $02 | Number of open images (paths using
this PD)

PD.DEV $03 2 Address of the associated device table
entry

PD.CPR $0S | Current process 1D

PD.RGS $06 2 Address of the caller's 6809 register
stack

PD.BUF $08 2 Address of the 256-byte data buffer (if
used)

37

38

Name Relative Size Use
Address (Bytes)
RBEMAN Path Decriptor Definitions (PD.FST Section)

PD.SMF S0A | State flag: 0 = current buffer is
altered, 1 = current sector is in the
buffer, 2 = descriptor sector is in the
buffer

PD.CP $0B 4 Current logical file position (byte
address)

PD.SIZ $OF 4 File size

PD.SBL $13 3 Scgment beginning logical sector
number (LSN)

PD.SBP $16 3 Segment beginning physical sector

number (PSN)

PD.SSZ $19 2 Scgment size
PD.DSK $1B 2 Disk ID (for internal use only)
PD.DTB $1D 2 Address of drive table

RBFMAN Option Section Detinitions (PD.OPT Section)
(Copied from the device descriptor)
$20 1 Device class: 0 = SCF, I = RBF,
2 = PIPE, 3 = SBF

PD.DRV $21 1 Drive number (0 . . n)

PD.STP $22 1 Step rate

PD.TYP $23] Device type

PD.DNS $24 | Density capability

PD.CYL $25 2 Number of cylinders (tracks)

PD.SID $27 1 Number of sides (surfaces)

PD.VFY $28 | 0 = verify disk writes

PD.SCT $29 2 Default number of sectors per track

PD.TOS $2B 2 Default number of sectors per track
(Track 0)

PD.ILV $2D 1 Sector interleave factor

PD.SAS $2E 1 Segment allocation size

(Not copied from the device descriptor)

PD.ATT $33 l File attributes (D S PE PW PR E W R)
PD.FD $34 3 File descriptor PSN

PD.DFD $37 3 Directory file descriptor PSN
PD.DCP $3A 4 File’s directory entry pointer
PS.DVT $3E 2 Address of the device table entry

Any values not determined by this table default to zero.

RBF-Type Device Descriptor Modules

This section describes the use of the initialization table con-
tained in the device descriptor modules for RBE-type devices.
The values below are those IOMAN copies from the device
descriptor to the path descriptor.

Name Relative Size Use
Address (Bytes)

$0-511 Standard device descriptor module

header

IT.DTP $12 | Device type: O = SCE, | — RBF.
2 = PIPE. 3 = SBI'

IT.DRV $13 1 Drive number (see below)

IT.STP $14 I Step rate (see below)

IT.TYP $15 | Device type (see below)

IT.DNS Sle | Media density: O = single. I = dou-
ble (see below)

IT.CYL $17 2 Number of cylinders (tracks)

IT.SID $19 1 Number of sides

IT.VFY $1A 1 0 = Verify disk writes

IT.SCT $1B 2 Default number of sectors per track

IT.TOS $1D 2 Default number of sectors per track
(Track 0)

IT.ILV $1F 1 Sector interleave factor

IT.SAS 420 I Minimum size of segment allocation

(number of sectors to be allocated at
one time)

IT.DRYV is used to associate a I-byte integer with each drive
that a controller handles. The drives for each controller should
be numbered O to n2-/, where n is the maximum number of drives
the controller can handle.

IT.STP (floppy disks) sets the head stepping rate to be used
with a drive. To reduce access time, this should be the fastest
rate the drive can support. The actual values stored depend on
the specific disk controller and disk driver module used. Below
are the values that are used by the popular Western Digital
Floppy Disk Controller IC (FD179X 5-Inch):

39

Step Code Rate

0 30ms
1 20ms
2 12ms
3 6 ms

IT.TYP specifies the device type (all types).

I

Bit) — 0 = 5-inch floppy disk
I = &-inch floppy disk

|

Bit 5 — 0 = Non-Color Computer format
I = Color Computer tormat

Bit 6 — 0 = Standard OS-9 format
I = Non-standard format

Bit 7 — 0 = Floppy disk
I = Hard disk

IT.DNS specifies the density capabilities (floppy disk only).

Bit 0 — 0 = Single-bit density (FM)
I = Double-bit density (MFM)

|

Bit | — 0 = Single-track density (S-inch, 48
tracks per inch)
Double-track density (5-inch, 96
tracks per inch)

il

RBF-Type Device Driver Modules

40

An RBF-type device driver module contains a package of sub-
routines that perform sector-oriented 1/O to or from a specific
hardware controller. These modules are usually reentrant, Be-
cause of this, one copy of the module can simultancously run
several devices that use identical /O controllers.

IOMAN allocates a permanent memory area for each device
(which may control several drives). The size of the memory area
is given in the device driver module header. IOMAN and
RBFMAN use some of this area. The device driver may usc the
rest in any manner. This area is used as follows:

RBF Device Memory Area Definitions

Name Relative Size Use
Address (Bytes)
V.PAGE $00 I Port extended address 3]4-'7"
device
(A20 -AT6) address
V.PORT $01 2 Device base address (defined
by IOMAN)

V.LPRC $03 1 ID of the last active process (Not used
by RBF device drivers)

V.BUSY $04 | ID of the active process: 0 = not busy
(defined by RBEMAN)

V.WAKE $05 1 1D of the process to reawaken after
device completes I'O: 0 = no process
waiting (defined by device driver)

V.USER . End of the OS-9 definitions

V.NDRV $06 1 Number of drives the controller can
use (defined by the device driver)

DRVBEG . Beginning of the drive tables

TABILES $07 DRVMEN*N Number of tables reserved (n)

FREL Free for the driver to use

V.PAGE through V.USER are pre-defined in the OS-9Defs
file. V.NDRV, DRVBEG. DRVMEN are pre-defined in the
RBFDefs file.

TABLES. This area contains onc table for cach drive that the
controller will handle. (RBFMAN assumes that there arc as
many tables as indicuted by V.NDRV). Some time after the
driver Init routinc has been called, RBFMAN issues a request

41

for the driver to read LSN 0 (the identification sector) from a
drive table by copying the first part of LSN 0 (up to DD.SIZ)

into it.

The format of cach drive table is as given below:

Name Relative Size Use
Address (Bytes)

DD.TOT $00 3 Number of sectors.

DD.TKS $03 1 Track size (in sectors).

DD.MAP $04 2 Number of bytes in the allocation
bit map.

DD.BIT $06 2 Number of sectors per bit (cluster
S12¢).

DD.DIR 508 3 Address (LSN) of the root directory.

DD.OWN $OB 2 Owner’s user number,

DD.ATT SOD 1 Disk access attributes: D S PE PW PR
E W R.

DID.DSK SO 2 Disk D (a pscudo-random number
used to detect disk swaps).

DD.FMT $10 | Media format.

DD.SPT $1l 2 Number of sectors per track. (Track 0
may usc a different value. specified
by IT.TOS in the device descriptor.)

DID.RES $15 2 Reserved for future use.

DD.SIZ,

V.TRAK 515 2 Number of the current track (the track
the head is on — the one updated by
the driver).

V.BMB $17 | Bit-map use flag: 0 = the bit map is
not in use. (Disk driver routines must
not alter V.BMB.)

DRVMEN $18 Size of each drive table.

42

The format attributes (DD.FMT) are these:
Bit BO = Number of sides
0 = Single-sided
1 = Double-sided

Bit Bl = Density
0 = Single-density
I = Double-density

Bit B2 = Track density
0 = Single (48 tracks per inch)
91 = Double (96 tracks per inch)

RBFMAN Device Driver Subroutines

Like all device driver modules, RBFMAN device drivers use a
standard executable memory module format. In the header, the
type is specified as code $OE (device driver).

The execution offset address in the module header points to a
branch table that has six 3-byte entrics. Each entry is typically a
long branch (LBRA) to the corresponding subroutine. The
branch table is defined as follows:

ENTRY LBRA INIT Initialize drive
LBRA READ Read sector
LBRA WRITE Write sector
LBRA GETSTA Get status
LBRA SETSTA Set status
LBRA TERM Terminate device

Each subroutine should exist with the C bit of the Condition
Code Register cleared if no crror occurred. If an error occurred,
the C bit should be set and an appropriate error code returned in
Register B.

The rest of this chapter describes these subroutines and their
entry and cxit conditions.

43

Init

Function:
Initialize the device and its memory arca.
Entry Conditions:

u = address of the device memory area
Y = daddress of the device descriptor

Exit Conditions:

Nont

If error:

ccC = C bit set
B = crror code

Technical Function:

I, If the disk writes are verified, use the Request
Memory system call (F$srqmem) to allocate a 256-
byte buffer arca where a sector may be read back

and verified after a write.

[89]

controllers this typically consists of:

® Initializing V.NDRV to the number of drives

with which the controller will work

® Initializing DD.TOT (in the drive table) to a
non-zero value so that Sector O may be read or

written,

® [nitializing V.TRAK to $FF so that the first seek

finds Track 0.

3. Place the IRQ service routine on the IRQ polling

list. using the Set IRQ system call (F$irq).

4. Initialize the device control registers (enable

interrupts it necessary).

Initialize the device memory arca. For tloppy disk

Read

Prior to being called. the device memory arca is cleared (set to
zero). except for V.PAGE and V.PORT. (These contain the
24-bit device address.) The driver should initialize cach drive
table appropriately for the type of disk the driver expects to use
on the corresponding drive.

5. Copy V.BUSY to V.WAKE, then go to sleep and
wait for the /O to complete. (The 1RQ service
routine is responsible for sending a wakeup signal.)
After awakening, the driver tests V.WAKE to sec if
it is clear. I it isn’t clear, the driver goes back to
sleep.

Function:

Terminates a device. This routine is called when a device is
no longer in usc in the system (when the link count of its
device descriptor module becomes zero).

Function:

Read a 256-byte sector from the disk and placce it in the 256-byte
bufter.

Entry Conditions:

= address of the device memory ared

= address of the path descriptor

MSB of the disk LSN
= LSBs of the disk LSN

Il

H T~ C

Exit Conditions:

The sector is returned in the sector buffer.

It error:
ccC = (C bit sct
B = c¢rror code

45

46

Technical Function:

l.

Get the sector buffer address from PD.BUF in the
path descriptor.

Get the drive number from PD.DRV in the path
descriptor.

Compute the physical disk address from the logical
sector number.

Initiate the read operation.

Copy V.BUSY to V.WAKE, then go to sleep and
wait for the /O to complete. (The 1RQ service
routine is responsible for sending a wakeup signal.)
After awakening, the driver tests V.WAKE to see if
it is clear. If it isn’t clear, the driver goes back to
slecp.

Whenever LSN 0 is read, the first part of this sector must be
copicd into the proper drive table. (Get the drive number from
PD.DRYV in the path descriptor.) The number of bytes to copy is

in DD.SIZ.

The drive number (PD.DRV) should be used to compute the
offset to the corresponding drive table as follows:

LDA PD.DRV.Y Get the drive number

LLDB #DRVMEN Get the size of a drive table
MUL

LEAX DRVBEG.U Get the address of the first table
LEAX D.X Compute the address of Table n

Write

Function:

Write a 256-byte sector buffer to the disk.

Entry Conditions:

X< C

address of the device memory area

address of the path descriptor
= MSB of the disk LSN
= LSBys of the disk LSN

Exit Conditions:

The sector buffer is written out to the disk.

If error:
CcC = C bit set
B = ¢rror code

Technical Function:

[§%]

Get the sector buffer address from PD.BUF in the
path descriptor.

Get the drive number from PD.DRV in the path
descriptor.

Compute the physical disk address from the lTogical
sector number.

Initiate the write operation.

Copy V.BUSY to V.WAKE. then go to sleep and
wait for the /O to complete. (The IRQ scrvice
routine is responsible for sending the wakeup sig-
nal.) After awakening. the driver tests V.WAKE to
see if it is clear. If it is not, the driver goes back to
sleep. It the disk controller cannot be interrupt-
driven. it is necessary to perform a programmed I/O
transfer.

47

Getsta
Setsta

48

6. If PF.VFY in the path descriptor is equal to zero,
read the sector back in and verify that it was written
correctly. This usually does not involve a compari-
son of the data.

If disk writes are to be verified, the Init routine must request the
buffer where the sector may be placed when it is read back in.
Do not copy LSN O into the drive table when it is read back to be
verified.

Use the drive number (PD.DRV) to compute the offset to the
corresponding drive table as shown for the Read routine.

Function:

Get/sct the device’s operating parameters (status) as specified
for the Get Status and Set Status system calls. Getsta and Setsta
arc wildcard calls.

Entry Conditions:

U = address of the device memory aread
Y = address of the path descriptor
A = status code

Exit Conditions:

Depend upon the function code

If error:
cC = C bit sct
B = error code

It may be necessary to examine or change the register stack that
contains the values of the 6809 register at the time of the call.
The address of the register stack is in PD.RGS, which is located
in the path descriptor.

Term

The following offsets may be used to access any value in the
register stack:

Name Relative Size 6809 Register
Address (Bytes)

R$CC $00 1 Condition Code Register

RSD $01 . Register D

R$A $01 1 Register A

R$B 502 | Register B

RSDP $03 1 Register DP

R$X $04 2 Register X

R$Y $06 2 Register Y

R$U $08 2 Register U

R$PC SOA 2 Program Counter

Function:

Terminate a device. This routine is called when a device is no
longer in use in the system (when the link count of its device

descriptor module becomes zero).

Entry Conditions:

U = address of the device memory area

Exit Conditions:

None

If error:

ccC = C bit set
B = error code

49

Technical Function:

I. Wait until any pending /O is completed.

2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.
4. If the Init routine reserved a 256-byte buffer for

verifying disk writes, return the memory with the
Return Sysmem system call (F$srtmem).

IRQ Service Routine

50

This routine is not included in the device driver’s branch table
and is not called directly by RBFMAN. but it is a key routine in
interrupt-driven device drivers.

The IRQ service routine services interrupts and, when /O is
complete. sends a wakeup signal to the process whose process
ID is in V.WAKE. It also clears V.WAKE as a flag to the
mainline program that the IRQ has indeed occurred.

When it finishes servicing an interrupt. the routine must clear
the carry and exit with an RTS instruction.

Technical Function:

l. Service the device interrupts (receive data from
device or send data to it). This routine should put its
data into and get its data trom bufters which are
defined in the device memory area.

2. Wake up any process that is waiting for /O to
complete. To do this, it checks to see if there is a
process ID in V.WAKE (non-zero); if so, it sends a
wakeup signal to that process.

3. It the device is ready to send more data and the

output buffer is empty. disable the device’s *‘ready
to transmit’’ interrupts.

4. If a pausce character is received, set V.PAUS in the
attached device storage arca to a non-zero value.
The address of the attached device memory area is
in V.DEV2.

Boot (Bootstrap Module)

Function:
Load the Boot file into memory from muss-storage.
Entry Conditions:
None
Exit Conditions:
D = size of the boot file (in bytes)

X = address where the boot file was loaded into
memory

It error:
CcC = C bit set
B = c¢rror code

The Boot module is not part of the disk driver. It is a separate
module which is normally co-restdent with the OS9P2 module
in the system firmware.

The bootstrap module contains one subroutine that loads the
bootstrap file and some related information into memory. It uses
the standard executable module format with a module type of
“system” (code $C). The execution offset in the module header
contains the offset to the entry point of this subroutine.

It obtains the starting sector number and size of the OS9Boot file
from LSN 0. OS-9 is called to allocate a memory area large
cnough for the Boot file, and then it loads the Boot file into this
memory area.

51

52

Technical Function:

l.

1o

Read LLSN 0 from the disk into a buffer arca. Boot
must pick its own butfer area. LSN 0 contains the
values for DD.BT (the 24-bit LSN of the bootstrap
file). and DD.BSZ. (the size of the bootstrap file in
bytes).

Get the 24-bit LSN of the bootstrap file from
DD.BT.

Get the size of the bootstrap file from DID.BSZ. The
Boot is contained in one logically contiguous block
beginning at the logical sector specified in DD.BT

. and extending for (DD.BSZ/256 + 1) sectors.

Use the OS-9 Request Sysmem system call
(F$srgmem) to request the memory arca where the
Boot file will be loaded.

Read the Boot file into this memory area.

Return the size of the Boot file and its location.

6 / Sequential Character File
Manager

The Sequential Character File Manager (SCFMAN) supports
devices that operate on a character-by-character basis. These
include terminals, printers. and modems.

It is a reentrant subroutine package called by IOMAN for VO
system calls to sequential, character-oriented devices. It in-
cludes the extensive I/O editing functions typical of line-
oriented operation (backspace, line delete, repeat line, auto line
feed, screen pause, and return delay padding).

0OS8-9 is supplied with SCFMAN and onc SCR-type device
driver module. The module is an RS-232-type. which runs the
serial interface.

SCFMAN Line Editing Functions

Read and Write

The Read and Write system calls (ISrcad and I$write) to
SCFMAN:-type devices correspond to the BASIC09 GET and
PUT statements. They pass data to/from the device with little
modification.

Note: Although there is otherwise little modification, the
keyboard interrupt, keyboard abort, and pause character
are filtered out of the input. (Editing is disabled if the
corresponding character in the path descriptor contains a
Zero.)

Carriage returns are not followed by line feeds or nulls auto-
matically. and the high order bits are passed as sent/received.

Read Line and Write Line

The Read Line and Write Line system calls (I$readln and
[$writin) to SCFMAN devices correspond to the BASICO9
INPUT. PRINT. READ. and WRITE statements. They perform
full line editing of all functions enabled for the particular device.

53

These functions are initialized when the device is first used.
(The option table is copied from the device descriptor table
associated with the specific device.)

Later. they may be altered — cither from assembly-language
programs using the Get Status system call. or from the keyboard
using the Tmode command. All bytes transferred in this mode
will have the high order bit cleared.

SCFMAN Definitions of the Path Descriptor

54

As you know, the PD.FST and PD.OPT sections of the path
descriptor arc reserved for and used by the file manager.

The table below describes the use of PD.FST and PD.OPT by
SCFMAN. For your convenience, it also includes the other
sections of the PD.

The PD.OPT scction contains the values that determine the line
editing functions. It contains many device operating parameters
which may be read or written by the Set Status or Get Status
system call. Any values not set by this table default to zero.

Note: It is possible to disable most of the editing functions
by setting the corresponding control character in the path
descriptor to zero. You can use the Set Status system call
or the Tmode command to do this. Or. you may go a step
further by setting the corresponding control character
value in the device descriptor module to zero.

To determine the default settings for specific devices. you may
inspect the device descriptors.

Name Relative Size Use
Address (Bytes)

Universal Section (Same for all file managers)

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1 = read. 2 write.
3 =update

PD.CNT %02 1 Number of open images (paths using
this PD)

PD.DEV $03 2 Address of the associated device table
entry

PD.CPR $05 1 Current process ID

PD.RGS

PD.BUF

$06

$08

5

Address of the caller’s 6809 register
stack
Address of the 256-byte data buffer (if
used)

SCFMAN Puath Descriptor Definitions (PD.FST Section)

PD.DV2 $0A 2 Device table address of the sccond
(eccho)device

PD.RAW $0C | Edit flag: O = raw mode, | = edit
mode

PD.MAX $0D 2 Read Line maximum character count

PD.MIN $OF 1 Devices are “"mine’” if cleared

PD.STS $10 2 Status routine module address

PD.STM $12 2 Reserved tor status routine

Name Relative Size Use

Address (Bytes)

SCEMAN Option Section Definition (PD.OPT Scction)

(Copiced from the device descriptor)

PD.UPC

PD.BSO

PD.DLO

PD.EKO
PD.ALFE

PD.NUL

PD.PAU

PD.PAG
PD.BSP
PD.DEL
PD.EOR

$20

$23

$24
$25

526

827

Device class: 0 = SCF, 1 = RBF.
2 = PIPE. 3 — SBF

Case: 0 = upper and lower,

1 = upper only

Backspace: 0 = backspace,

I = backspace then space and back-
space

Delete: 0 = backspace over line,

I = carriage return/line feed

Echo: 0 = no ¢echo

Auto line feed after carriage return:
(0 = no auto line feed

End-of-line null count: 1 = nulls
(500) sent after cach carriage return/
tine feed

Number of lines (since Jast input) be-
fore cach end-ot-page pause: 0 - no
pause

Lines per page
Backspace character
Delete-line character

End-of-record character (end-of-line
character) read only: Normally set to
$0D: O = Terminate Read Line only
at the end of the file

55

56

PD.EOF $2C¢ | End-of-file character (read only)

PD.RPR $2D | Reprint-line character
Name Relative Size Use

Address (Bytes)
PD.DUP $2F 1 Duplicate-last-line character
PD.PSC $2F | Pause character
PD.INT $30 | Keyboard-interrupt character (ELEAR)

(c)

PD.QUT $31 1 Keyboard-abort character (CLEAR) (@)
PD.BSE $32 1 Backspace-ccho character
PD.OVE $32 | Linc-overflow character (bell)
PD.PAR $34 1 Device-initialization value (parity)
PD.BAU $35 1 Software scttable baud rate
PD.D2P $36 2 Offset to second device name string
PD.STN $38 2 Offset of status routine name
PD.ERR $3A | Most recent /O error status

PD.EQF specifics the end-of-file character. If this is the first
and only character input, SCFMAN returns an end-of-file error
on Read or Readln.

PD.PSC specities the pause character, which suspends output
before the next end-of-record character. The pause character
also deletes any type-ahead input for Readln.

PD.INT specifics the keybouard-interrupt character. When the
character is reccived on input, a keyboard interrupt signal is sent
to the last user of this path. The character also terminates the
current [/O request (if any) with an error identical to the
keyboard interrupt signal code.

PD.QUT specifies the keyboard-abort character. When this
character is received on input, a keyboard abort signal is sent to
the last user of this path. It also terminates the current I/0
request (it any) with an error code identical to the keyboard

SCF-Type Device Descriptor Modules

The chart below shows the use of the initialization table in the
device descriptors for SCE-type devices. The values are those
IOMAN copies from the device descriptor to the path
descriptor.

An SCF editing function is turned oft if its corresponding value
is sct to zero. For example, if I'T.EOF is set to zero, there is no
end-of-file character.

Name Relative Size Use
Address (Bytes)
TABLE . Beginning of the option table
IT.DVCE $12 | Device class: 0 = SCEF, | - RBI-.
2 = PIPE, 3 = SCF
IT.UPC $13 | Case: 0 = upper and lower case,
I - upper only
IT.BSO $14 1 Backspace: 00 - backspace:
I — backspace then space and back-
space
IT.DLO S$15 1 Delete: 0 = backspace over line.
1 = carriage return
IT.EKO $16 1 Echo: O - no cecho
IT.ALF $17 | Auto line feed: O = no auto line feed
Name Relative Size Use
Address (Bytes)
IT.NUL $1¥ 1 E:nd-of-line null count
IT.PAU $19 | Pause: O — no end-of-page pause
IT.PAG $1A 1 Lines per page
IT.BSP $1B 1 Backspace character
IT.DEL S1C I Delete-line character
IT.EOR $1D 1 End-of-record character
IT.EOF $1LE ! End-of-file character
IT.RPR SIF | Reprint-line character
IT.DUP $20 | Duplicate-last-line character
IT.PSC $21 1 Pause character
IT.INT $22 1 Interrupt character
IT.QUT 23 1 Quit character
IT.BSE $24 1 Backspace echo character

57

IT.OVF 825 ! Linc-overflow character (bhell)

IT.PAR $26 | Initialization value (parity) used to in-
itialize the device's control register
when a path is opened to it

IT.BAU $27 I Baud rate

IT.D2P $28 2 Attached device name string offset
IT.STN $2A 2 Offset to status routine

IT.ERR $2C | Initial error status

SCF-Type Device Driver Modules

58

A SCFMAN-type device driver module contains a package of
subroutines that perform raw /O transfers to or from a specific
hardware controller. These modules are usually reentrant so that
one copy of the module can simultaneously run several different
devices that use identical /O controllers. For cach *“incarna-
tion”” of the driver, IOMAN allocates a permanent memory arca
for that device.

The size of the memory arca is given in the device driver module
hcader. IOMAN and SCFMAN use some of this area. The
device driver may use the rest in any way (typically as variables
and buffers). The arca is used as follows:

SFC Device Memory Area Definitions

Name Relative Size Use
Address (Bytes)
V.PAGE $00 I Port extended address 24Pt
device
N . 5 Co - address
V.PORT $01 2 Device base address (detined
by IOMAN)

V.LLPRC $03 1 ID of the last active process

V.BUSY $04 1 ID of the active process: 0 = not busy
(defined by RBFMAN)

V.WAKE $0s 1 D of the process to reawaken after the
device completes 1/O: O = no process
is waiting (defined by the device
driver)

V.USER End of the OS-9 definitions

V.TYPE $06 1 Device type of parity

V.LINE $07 1 Lines left until the end of the page

V.PAUS $08 | Pausc request: 0 = no pause

V.DEV2 $09 2 Attached device memory arca

V.INTR $OB 1 Interrupt character

V.QUIT $0C 1 Quit character

V.PCHR $0D 1 Pause character

V.ERR $OE 1 Error accumulator

V.SCF $OF 1 End of the SCFMAN definitions

FREE Free for the device driver to use

V.LPRC contains the process-ID of the last process to use the
device. The IRQ service routine is responsible for sending this
process the proper signal in case a quit character or an interrupt
character is received. V.LPRC is defined by SCFMAN.

59

V.BUSY contains the process ID of the process that is using the
device. (If the device is not being used, V.BUSY contains a
zero.) This is used by SCFMAN to prevent more than one
process from using the device at the same time. V.BUSY is
defined by SCFMAN.

SCFMAN Device Driver Subroutines

Init

60

Like all device drivers, SCFMAN device drivers usc a standard
executable memory module format. In the header the type is
specified as code SOE (device driver).

The execution offset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically a
LBRA to the corresponding subroutine. The branch table is
defined as follows:

ENTRY [.BRA INIT Initialize drive
[.LBRA READ Read sector
LLBRA WRITE Write scctor
LLBRA GETSTA Get status
[.BRA SETSTA Set status
[.BRA TERM Terminate device

Each subroutine should exist with the C bit in the Condition
Code Register cleared if no error occurred. If an error occurred,
the C bit should be sct and an appropriate error code returned in
Register B.

The rest of this chapter describes these subroutines and their
entry and exit conditions.

Function:

Initialize the device control registers (enable interrupts, if
neeessary).

Entry Conditions:

I

U
Y

address of the device memory area
address of the device descriptor

It

Read

Exit Conditions:

None

If error:

CcC = C bit set
B = error code

Technical Function:
1. Initialize the device memory arca.

2. Place the IRQ service routine on the IRQ polling
list, using the Set IRQ system call (FSirq).

3. Initialize the device control registers.
Prior to being called, the device memory area is cleared (set to
zero), except for V.PAGE and V.PORT. (These contain the

device address.) There is no need to initialize the part of the
memory arca used by IOMAN and SCFMAN.

Function:
Recad the next character from the input buffer.
Entry Conditions:

U = address of the device memory area
Y = address of the path descriptor

|

Exit Conditions:

A = character read
If error:

cC = C bit set

B = error code

61

Write

62

Technical Function:

l.

2.

Get the next character from the input buffer.

If no data is ready . Read copies its process ID from
V.BUSY into V.WAKE. It then uses the Sleep
system call to put itself to sleep.

Later. when data is received, the Set IRQ system
call leaves the data in a buffer, then checks
V.WAKE to see if any process is waiting for the
device to complete I/O. If so, Set IRQ should send a
wakeup signal to it.

Data buffers are not allocated automatically. If a buffer is used,
it should be defined in the device memory area.

Function:

Output a character (place a data byte into an output buffer) and
cnable the device output interrupts.

Entry Conditions:

U
Y
A

= uaddress of the device memory area
= address of the path descripror
= character to write

Exit Conditions:

None

If error:

CcC = C bit set

B = error code

1. If the data buffer is already full, Write copies its

process ID from V.BUSY into V.WAKE. It then
puts itself to sleep.

Getsta
Setsta

|§8)

Later, when the IRQ service routine transmits a
character and makes room for more data, Write
checks V.WAKE to see if there is a process waiting
for the device to complete /O, If there is, it sends a
wakeup signal to that process.

Write must ensure that the IRQ service routine will start up
when data is placed into the buffer. After an interrupt is gener-
ated, the IRQ service routine continues to transmit data until the
data bufter is empty. Then, it disables the device's “‘ready to
transmit’" interrupts.

Data buffers are not automatically allocated. If a buffer is used,
it should be defined in the device memory area.

Function:
Get/set the device’s operating parameter (status) as specified for
the Get Status and Set Status system calls. Getsta and Setsta are

wildcard calls.

Entry Conditions:

U = address of the device memory area
Y = address of the path descriptor
A = status code

Exit Conditions:
Depend upon function code
Currently, all of the function codes defined by Microware for

SCF-type devices are handled by IOMAN or SCEFMAN. Any
codes not defined by Microware are passed to the device driver.

It may be necessary to examine or change the register stack that
contains the values of the 6809 registers at the time of the call.
The address of the register stack may be found in PD.RGS,
which ts located in the path descriptor.

63

Term

The following offsets may be used to access any value in the
register packet:

Name Relative Size 6809 Register
Address (Bytes)

R$CC $00 1 Conditions Code Register

R$D $01 . Register D

R$A $01 1 Register A

R$B $02 1 Register B

R$DP $03 l Register DP

R$X $04 2 Register X

R$Y $06 2 Register Y

R$U $08 2 Register U

R$PC $0A 2 Program Counter

Function:

Terminate a device. This routine 1s called when a device is no
longer in use (when the link count of its device descriptor
module becomes zero).

Entry Conditions:

U = pointer to the device memory area

Exit Conditions:

None

If error:

CcC = C bit set
B = error code

Technical Function:

I. Waituntil the output buffer is emptied (by the IRQ
service routine).

2. Disable the device interrupts.

3. Remove the device from the IRQ polling list.

Note: Permanent storage used by device drivers is
never returned to the free memory pool. Therefore,
you should not terminatc any device that might be
used again. Modules contained in the Boot file will
never be terminated.

IRQ Service Routine

This routine is not included in the device driver’s branch table
and is not called directly by SCFMAN, but it is a key routine in
device drivers.

The IRQ scrvice routine services device interrupts, and when
/0 is complete, it sends a wakeup signal to the process whose
process 1D is in V.WAKE. It also clears V.WAKE as a flag to
the mainline program that the IRQ has occurred.

When it finishes servicing an interrupt. the routine must clear
the carry and exit with an RTS instruction.

For technical information, see *'IRQ Service Routine’” in Chap-
ter 5.

7 | Assembly-Language
Programming Techniques

There are four key rules to follow when you write OS-9 assem-
bly-language programs:

® The program must use position-independent code
(PIC). OS-9 selccets program load addresses based on
available memory at runtime. You cannot select them.

® The program must use the standard OS-9 memory
module tformat; otherwise. it cannot be loaded and run.
It cannot use sclf-modifying code. It must not change
anything in & memory module or use any part of the
module for variablcs.

® Storage for all variables and data structures must be
within the data arca O8-9 assigns at runtime. This area
is separatc from the program memory module.

® All input and output operations should be made using
0OS-9 system calls.

The 6809°s versatile addressing modes make it casy for you to
follow these rules. The OS-9 assembler also helps; ithas spectal
capabilities to assist you in creating programs and memory
modules for the OS-9 execution environment.

How to Write Position-Independent Code

The 6809 instruction set allows efficient use of position-
independent code.

The basic technique is to always use PC-relative addressing —
for cxample, BRA, LBRA, BSR and LLBSR. Get addresses of
constants and tables using LEA instructions instead of load
immediate instructions. If you usc dispatch tables, usc tables of

relative addresses. not absolute addresses.

Incorrect Correct

LDX #CONSTANT [LEAX CONSTANT.PCR

JSR SURBR BSR SUBR or [.LBSR SUBR
JMP LABLL BRA [LABEL or LBRA 1LABLEIL.

67

Addressing Variables and Data Structures

68

A program that is executed as a process (by the Fork and Chain
system calls or by the shell) is assigned part of RAM for
variables. stacks, and data structures at execution time. The
RAM area cannot be specified or determined ahead of time.
However, a minimum size for the arca is specified in the
program’s module header.

When the program is first cntered, Register Y contains the
address of the top bound of the process’s data memory area.
Register U contains the address of the lower bound, and Regis-
ter DP contains the area’s page number.

The creating process may have passed a parameter area. If so,
this parameter arca is located from the value of X and the SP to
the top of memory (Register Y). and Register D contains the
area’s size in bytes.

If the new process was called by the shell, the parameter arca
contains the part of the shell command line that includes the
argument (paramcter) text. (I/O redirection arguments arc not
included.)

The most important rule is this: Do not use extended addres-
sing. You should use only indexed and direct page addressing to
access data area values and structures. Do not usc program-
counter relative addressing to find addresses in the data area, but
do use it to refer to addresses within the program area.

The most efficient way to handle tables, buffers, and stacks is to
have the program’s initialization routine compute their absolute
addresses. It does this, using the data area bounds passed by
0S-9 in the registers.

The absolute addresses then can be saved in the direct page
where they can be loaded into registers quickly, using short
instructions. Direct page addressing has these advantages: it is
faster than extended addressing. and the program is inherently
reentrant.

Stack Requirements

0OS-9 uses interrupts extensively, and many reentrant 6809
programs usc the 6809 register stack for local variable storage.
Because of this, a generous stack should be maintained at all
times. We recommend no fewer than 200 bytes.

Interrupt Masks

User programs should keep the Fand Ibits (FIRQ mask and IRQ
mask) of the Condition Codes Register off. To avoid task-
switching or interrupts during critical program sequences, you
can set these bits. You should set them for no longer than a tick,
however. Otherwise, system time-keeping may no longer be
accurate.

Using Standard I/O Paths

Write your programs to use standard I/0 paths wherever practi-
cal. Usually. this involves 1/O calls that are intended to com-
municate to the user’s terminal, or any other case where the
0S-9 redirected 1/0 capability is desirable.

All three standard /O paths are open when the program is
entered; they are inherited from the parent process. Programs
should net close these paths except under special
circumstances.

69

The standard 1O paths are assigned as follows:

® Path (0 -— Standard input. Analogous to the keyboard or
other main data input source.

® Path | — Standard output. Analogous to the terminal
display or other main data output destination.

® Path 2 — Standard error/status. This path is provided
so output messages that arc not part of the actual
program output can be Kept separate. Paths I and 2 are
often dirccted to the same device.

Writing Interrupt-Driven Device Drivers

70

08-9 programs do not use interrupts directly. Any interrupt-
driven function should be implemented as a device driver mod-
ule which should handle alt interrupt-related functions. When a
program must be synchronized to an interrupt-causing event, a
driver can send a semaphore to a program (or vice versa), using
0S8-9’s signal facilities.

It is important to understand that interrupt service routines arc
asynchronous and are not distinct processes. They are, in effect,
subroutines culled by OS-9 when an interrupt occurs.

Therefore, all interrupt-driven device drivers have two basic
parts: the “*mainline”” subroutines that execute as part of the
calling process, and a scparate interrupt service routine, The
two routines are asynchronous and therefore must use signals
for communications and coordination.

The Init initialization subroutine within the driver package
should do the following:

l. Allocate memory area for the service routine
2. Get the service routine address

3. Execute the Set IRQ system call to add it to the IRQ
polling table

When a device driver routine does something that results in an
interrupt, it should immediately exccute a Sleep system call.
This turns off the process.

When the interrupt occurs, its service routine is executed after
some random interval. It should then do the least amount of
processing required. and send a wakeup signal to its associated
process using the Send system call. It may also put some data in
its memory area (1/O data and status), which is shared with its
associated sleeping process.

Later, the signal awakens the device driver mainline routine.

The routine can now process the data or status returned by the
interrupt service routine.

71

The OS-9 List utlity command program is shown on this
and the next page as an example of assembly-language
programming.

Microware OS-9 Assembler RS Version 01.00.00 06-17/83 13:06:11 Page 001
LIST — OS§-9 System Symbol Definitions

Qa1
(g
20003
oeevd
PPRRS
vy
2017
o008
ro0o9
20210
2A012
Q@13
pea1d
20015

2P16
o017
22218
AP019
POR2D
00221
2ROz
20023
opn24
PAOES
DOVIB
QO0Z7
QD28

I raees]
Q003D
031
Q32
20033
29a34
dA@35
2P036

P37
20238

72

o Qg o ooo

Qatt
0081
[y

Qa0

oeCcs
o0
d0Qd
a1
20e3
Q0CB
2193

D258
@011
0213
2015
2018
2D01A
Qatc
dO1E

ey
pazz

LR E R R R E R E RS

*

*x K K X

LIST UTILITY COMMAND
Svintaw: list - pPathname -
COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT

NAM LIST
NOTE: A USE /D@/DEFS/0S9DEFS
IS ENCLOSED WITHIN THE IFP1/ENDC STATEMENT

IFP1L
ENDC
TVPE SET PRGRM+QOBJICT
REVS SET REENT+1
87CD0QdE MOD LSTENDLSTNAMPRGRM+OBJIECT +

REENT+1 ,LETENT
NOTE THE *MOD’ CMD CONSISTS OF:
LSTEND L STNAM yRPGRM+OBJECT yREENT+1 ,LSTENT »LSTMEM
acagasiand LETNAM FCS YLIsST”

STATIC STORAGE OFFSETS

BUFSIZ eau Z2ee s1ze of input buffer
org 2
IPATH rmb 1 1nPut path number
PRMPTR rmb 2 parameter Pol1nter
BUFFER rmb BUFSIZ allocate line buffer
rmb g’ allocate stack
rmh 200 room for Parameter
Tisy
LETHMEM EQU '
9Fal LSTENT s tXH PRMPTR save parameter ptr
8601 lda #read select read access
mode
103FB4 059 I$oren open 1nPput file
25%E bes LISTSQ exit 1f error
9700 sta IPATH save inPut rPath
number
arot 5% PRMPTR save updated raram
Ptr
a600 LISTZ® lda IPATH load inpPut rPath
number
3043 leax BUFFER U load buffer ptr
1@BERRCSs 1dy #BUFSIY maximum brtes to hbe
read

20039 2926 103F8B 059 I$readln read line of inpPut

Qa4 Pe29 2509 kcs LIST3@ exit 1f error

o004l Qe2B 8GOl 1da #1 lpad std. out rath

ppeaz @@zD 1Q3F8C 059 Iswritln outPut the line

22243 o030 24EC bce LISTZ@ repeat if no error

Qeodd pa32 Zoid bra LISTED exit if error

o0Q45 o034 Ci1D3 LIST3@ cmpPh #ESEQOF at end of file®?

Q0046 P036 2610 bne LISTS® kranch if not

paeda7 2038 9600 lda IPATH load 1nput epath
number

o048 Q3R 1B3FBF 0s9 I¢close close input path

paed9 Q@30 2509 bes LISTER +vex1t 1f errar

Q005@ PO3F 9EQ1 1dx PRMPTR restore Param PLTr

22051 oodl ABBY lda (DN

QP05 0043 818D CmPa #4590 end of parameter
line?

2Ras3 2045 Z26CA hve LETENT vampd list next file

apes4d Qo477 SF clrb

PPB3S 2048 1Q3FOG LISTS® 0s9 Féhexit verlerminate

[Jdrdycs Q4B BF769@ emod module crc

0057 PRUE LSTEND equ *

20058 ernd

Q000@ errorfs)
QP02 warnind(s)

Microware OS-9 Assembler RS Version 01.00.00 06-17/83 13:11:28 Page 002
LIST — 0OS§-9 System Symbol Definitions

$QQU4E Q0978 program bytes gdenerated
$0258 VO6e3 data bvtes allocated
$1CAE brtes used for svymbols

8 / System Calls

System calls are used to communicate between the OS-9 operat-
ing system and assembly-language programs. There are two
major types of calls — I/O calls and function calls. Function
calls include user mode calls and system mode calls.

Each system call has a mnemonic name. Names of /O calls start
with 1$. For example, the Change Directory call is 1$chgdir.
Names of function calls start with F$. For example, the Allocate
Bits call is F$allbit. The names are defined in the assembler-
entry conditions equate file called OS9Defs.

The 1/0O calls are:

Attach

Change Directory
Closc Path
Create File
Delete File
Detach Device
Duplicate Path
Get Status

The user calls are:

Allocate Bits
Chain
Comparc Names
CRC
Deallocate Bits
Exit

Fork

Get ID
Intercept

Link

Load

Memory

Make Directory
Open Path
Read

Read Line
Scek

Set Status
Write

Write Line

Parse Name
Print Error
Search Bits
Send

Set Priority
Set SVC
Set SWI
Set Time
Sleep
Time
Unlink
Wait

75

The system mode calls are:

Allocate 64 Request Sysmem
Find 64 Return 64

1/O Delete Return Sysmem
/0 Queue Set IRQ

Insert Process Verify Module

Next Process

System mode calls are privileged. They may be executed only
while OS-9 is in the system state (when it is processing another
system call, executing a file manager or device driver, and so
on).

System mode calls are included in this manual primarily for
programmers who will be writing device drivers and other
system-level applications. In the **System Call Descriptions™
section of this chapter, system mode calls are listed scparately
from 1O and uscr calls.

Appendices A and B, the system call quick reference lists,
summarize cach system call’s function.

Calling Procedure

76

All system calls are executed via an SWI2 instruction.

l. Load the 6809 register with any appropriate

parameters.

2. Exccute a SWI2 instruction, followed immediately
by u constant byte, which is the request code.

3. After OS-9 processes the call, it returns any param-

eters in the 6809 register. If an error occurred, the C
bit of the Condition Code Register is set, and Accu-
mulator B contains the appropriate error code. This
permits a BCS or BCC instruction immediately
following the system call to branch on error/no
error.

As an example. here is the Close system call:

LDA PATHNUM
SWI2

FCB $8B

BCS ERROR

You can use the assembler’s OS89 directive to simplify the
call. Here is the simplified Close system call:

LDA PATHNUM
0S89 I$CLOSE
BCS ERROR

0S-9 accepts system calls in any combination of upper- or
lower-case letters.

I/0 System Calls

0S-9s 170 calls are casier to use than many other systems™ /O
calls. This 1s because the calling program does not have to
allocate and sct up “file control blocks™ . ““sector buffers, ™™ and
SO on.

Instead. OS-9 returns a I-byte path number when a path to a
file/device is opened or created. Until the path is closed, this
path number may be used in later I/O requests to identity the file
or device.

In addition. OS-9 allocates and maintains its own data struc-
tures. You need not deal with them.

System Call Descriptions

The rest of this chapter consists of the system call descriptions.
At the top of each description is the system call name, followed
by its mnemonic and code. Next is a summary of the call’s
function. entry conditions, and exit conditions. When further
explanation is required. it is included under a section called
“*Technical Function.™

77

78

In the system call descriptions. registers not specitied as entry or
exit conditions are not altered. Strings passed as parameters are
normally terminated by having Bit 7 of the last character sct. a
space character. or an end-of-line character.

If an error occurs on a system call, the C bit of Register CC is
set, and Register B contains the error code. If no error occurs,
the C bit is clear, and Register B contains a value of zero.

Allocate Bits

0S9 F$allbit

103F 13

Function:
Sets bits in the allocation bit map specified by Register X.

Bit numbers range from 0 to n-/, where n is the number of bits in
the allocation bit map.

Entry Conditions:

X = starting address of the allocation bit map
D = number of the first bit to set
Y = number of bits to set

Exit Conditions:

None

If error:

CC = C bit set
B = error code

79

Attach

0S9 I$attach

80

Function:

103F 80

Attaches a new device to the system or verifies that a device 1s

attached.

Attach docs not “‘reserve™ the device. It only prepares it tor

later usc by any process.

Most devices are installed automatically. Theretore, you need
to use Attach only when installing a device dynamically or when
verifying the existence of a device. You necd not use the Attach
system call to perform routine /0.

The access mode parameter specifies the read and/or write
operations to be allowed. These are:

0

|
2
3

= Use device capabilities
= Read

= Write

= Update

Entry Conditions:

X
A

address of the device name string

!

= daccess mode

Exit Conditions:

u = uaddress of the device table entry
It crror:

CcC = C bit set

B = error code

Technical Function:

0S-9 searches the system module to see if memory
contains a device descriptor that has the same name
as the device.

If it finds the descriptor and if the device is not
already attached. OS-9 links to its file manager and
device driver. It then places their addresses in a new
device table entry. OS-9 then allocates any memory
necded by the device driver and calls the driver’s
initialization routine (which usually initializes the
hardware).

If 1t finds the descriptor and if the device is already
attached, 0S-9 does not reinitialize the device.

81

Chain

0S9 F$chain

82

103F 05

Function:

Loads and exccutes a new primary module. but does not create a
new process. A Chain system call is similar to a Fork followed
by an Exit, but with less processing overhead.

Chain ““resets™ the calling process’s program and data memory
arcas and begins executing a new primary module. It does not
aftect open paths.

Warning: The hardware stack pointer (Register SP) should be
located somewhere in the direct page before the Chain is ex-
ccuted. This helps prevent a “‘suicide’ (system crash) or a
“suicide attempt’” error. It also prevents a suicide in the event
that the new module requires a smaller data arca than that in use.
You should allow approximately 200 bytes of stack space for
execution of the Chain system call.

Entry Conditions:

X = address of the module name or filename

Y = parameter area size (in pages); defaults to
zero if not specified

U = starting address of the parameter area

A = language/tvpe code

B = wsize of the data area (in pages); must be at

least one page

Exit Conditions:

None

If error:

CcC = C bit set
B = error code

Technical Function:

1. OS-9 passes the name string of the new process’s
primary module (the program that is to be executed
first). Then, it searches the system module direc-
tory to sce if a module with the same name, type,
and language is already in memory.

2a. I the module is in memory, it is linked to.

2b. If the module is not in memory, the name string is
used as the pathlist of a file which is to be loaded
into memory. Then, the first module in this file is
“linked to.”" (Several modules may have been
loaded from a single file.)

3. OS-9 unlinks the process’s old primary module.

4. The data memory area is reconfigured to the size
specified in the new primary module’s header.

The diagram below shows how Chain scts up the data memory
arca and registers for the new module.

~—— [, DP dowest address)
Direct Page

Data Arca

-~ X.SsPp

Parameter
Arca
Y (highest address)
D = parameter ared sice
pPC = module entry point absolute address
cC = F=0, I =0; others are undefined

Registers Y and U (the top-of-memory and bottom-of-memory
pointers. respectively) always have values at page boundaries.
If the parent process does not specify a size for the parameter
area, the size (Register D) defaults to zero. The data arca must
be at least one page long.

(For more information, see the Fork system call.)

83

Change Directory

0S89 I$chgdir

84

103F 86

Function:

Changes a process’s working directory to the directory specified
by the pathlist.

If the access mode is read. write, or update, the current data
directory is changed. If the access mode is execute, the current
excecution directory is changed.

The calling process must have read access o the directory
specified (public read if the directory is not owned by the calling
process).

The access modes are:
Read
Write

= Update
Execute

oot —
I

1l

Entry Conditions:

I

X address of the pathlist
A = qgceess mode

!

Exit Conditions:

Non¢

It error:

CcC = C bit set
B = e¢rror code

Close Path

0S89 IS8close

103F 8F

Function:

Terminates the I/O path to the file or device specified by the
path number. Unless you use another Open or Create system
call, you can no longer perform I/O to the file or device.
Non-sharable devices become available to other requesting pro-
cesses. All OS-9 internally managed buffers and descriptors are
deallocated.

The Exit system call automatically closes all open paths (except
the standard 1/0 paths). Therefore, you may not need to use the

lose Path system call to close them.

Do not close standard /O paths unless you want to change the
files or devices to which they correspond.

Entry Conditions:
A = path number

Exit Conditions:

None

If error:

cC = C bit set
B = error code

85

Compare Names

OS9 F$cmpnam 103F 11

Function:

Compares two strings and indicates whether they match. Use
this call with the Parse Names system call.

The second name must have the most significant bit (Bit 7) of
the last character set.

Entry Conditions:

X = address of stringl
B = length of stringl
Y = address of string2

Exit Conditions:

cC = C bit clear if the strings match
It error:

CcC = C bit sct

B = ¢rror code

86

CRC

0S89 F$crce

103F 17

Function:

Calculates the CRC (cyclic redundancy count) for use by com-
pilers, assemblers, or other module generators.

The calculation begins at the starting byte address and continues
over the specified number of bytes.

You need not cover an entire module in one call, since the CRC
may be “‘accumulated’™” over several calls. The CRC accumula-
tor can be any 3-byte memory area and must be initialized to
$FEFFFF before the first CRC call.

The last three bytes in the module are not included in the CRC
gencration. The three CRC bytes are to be stored here.

Entry Conditions:

X = starting bvte address
Y = number of bvies
D = address of the 3-bvte CRC accumulator

Exit Conditions:
The CRC accumulator i1s updated.

It error:
None

87

Create File

0S9 I$create

88

103F 83

Function:

Creates and opens a file on a disk.

0S-9 parses the pathlist and enters the new filename in the
specified directory — or the working directory. if nonc is
specified.

The file is given the attributes passed in Register B, which has
bits defined as follows:

Bit Definition

0 Read

Write

Execute
Publi¢ rcad
Public write
Public exccute
Sharable file

w oW —

o))

The access mode parameter passed in Register A must be either
write or update. This mode affects the file only until it is closed.
The file can be reopened in any access mode allowed by the file
attributes (see the Open system call).

Files opened for write may allow faster data transfer than those
opened for update because update sometimes needs to pre-read
sectors. These access codes are defined as follows: Bit 2 =
write; Bit 3 = update.

Note: If the execute bit (Bit 2) is set, the file is created in
the working execution directory instead of the working
data directory.

The path number returned by OS-9 is used to identify the file in
later 1/0 system calls until the file is closed.

No data storage is initially allocated for the file at the time it is
created. This is done automatically by the Write subroutine or
explicitly by the Setsta subroutine.

If the filename already exists in the directory . an crror occurs. I
the call specifies a non-multiple file device (such as a printer or
terminal), Create behaves the same as an Open.

You cannot use Create to make directories. (See the Make
Directory system call for instructions on how to do this.)

Entry Conditions:

X = address of the pathlist (see example below)
A = access mode
B = file attributes

Exit Conditions:

X = address of the last byte of the pathlist 1+ 1.
any trailing blanks are sKipped (see example
below)

A = path nmunber

If error:

ccC = C bhit set

B = error code
Example:

Before the Create File call:

/ D 0 / % 0 R K $OD

A

After the Create File call:

! D 0 ‘ W% 0 R K SOD

89

Deallocate Bits

0S89 F$delbit

92

103F 14

Function:
Clears bits in the allocation bit map pointed to by Register X.

Bit numbers range from O to #1-/. where 1 is the number of bits
in the allocation bit map.

Entry Conditions:

X = starting address of the allocation bit map
D = number of the first bit 10 set
Y = number of bits 1o sct

Exit Conditions:

None

It error:

CcC = C bit set
B = error code

Delete File

0S9 Isdelete

Function:

Deletes the disk file specified by the pathlist.

103F 87

The file must have write permission attributes (public write if

the calling process is not the owner).

An attempt to delete a device results in an error.

Entry Conditions:

X = address of the pathlist (see example below)

Exit Conditions:

any trailing blanks arc skipped (see example

X = address of the last byte of the pathlist + 1,
below)
If error:
cC = C bit set
B = error code
Example:

Before the Delete File call;

/ D10 WIOIR|IK]|[b bW]|b|M M 1O [$0D
!

After the Delete File call:
Do WITO[RTK]|®B|W[b M M| O |$0D

e —

91

Detach Device

0S9 1$detach

92

103F 81

Function:

Removes a device from the system and the system device table,
if the device is not being used by another other process.

You must use this call to detach devices that were attached using
the Attach system call. Both calls are used mainly by JIOMAN.
SCEMAN also uses Attach/Detach to set up its second device
(echo device).

Entry Conditions:

u = address of the device table entry

Exit Conditions:

None

If error:

cC = C bit set
B = error code

Technical Function:

l. The device driver’s termination routine is called,
then 0OS-9 deallocates any memory assigned to the
driver.

2. Theassociated device driver and file manager mod-

ules are unlinked. If not being used by any other
module. the driver is removed from RAM.

Duplicate Path

0S9 I$dup

103F 82

Function:

Returns another, synonymous path number for the file or device
specified by the old path number.

The shell uses this system call when it redirects 1/0. System
calls that usc cither path number (old or new) operate on the
same file or device.
Entry Conditions:

A = old path number (number of path to

duplicate)

Exit Conditions:

B = new path number
If error:

cC = (bit sct

B = ¢rror code

93

Exit

0S89 FSexit

103F 06

Function:
Terminates the catling process.
The Exit system call is the only way a process can “kill™™ itself.
Exit deallocates the process’s data memory arca and unlinks its
primary module. It also closes all open paths automatically.
The Wait system call always returns to the parent the status code
passed by the child in its Exit call. Therefore. if the parent
executes a Wait and receives the status code, it knows the child
has “*died.””
Entry Conditions:

B = status code to return to the parent

Exit Conditions:

The process is terminated.

Fork

0S9 F$fork

Function:

103F 03

Creates a new process. a “child™™ of the calling process. Fork
also sets up the child process™s memory and 6809 register.

Entry Conditions:

X

Y

U

Exit Conditions:

X

It error:
cC
B

Example:

Before the

address of the module name or filename (see
example below)

size of the parameter area (in pages): defaults
to zero if not specified

starting address of the parameter area
languageltvpe code

size of the optional data area (In pages): must
be at least one page

address of the last byte of the name + 1 (see
example below)

= C bit set

crror code

Fork call:

1 E S I $OD
X

After the Fork call:
T 3 S [$OD

H—

95

96

Technical Function:

1. 0S-9 passes the name string of the new process’s
sprimary module™ (the program that is to be ex-
ccuted first). Then. it scarches the system mod-
ule directory to see if the program already is in
memory.

2a. Ifthe program is in memory ., the module is linked to
and cexecuted.

2b. If the program is not in memory, OS-9 uses the
name as the pathlist of the file that is to be loaded
into memory. Then, the first module in this file is
linked to and exccuted. (Several modules may have
been loaded from one file.)

3. 0S-9 uses the primary module’s header to deter-
mine the initial size of the process’s data arca. It
then tries to allocate a contiguous RAM arca of that
size. (This arca includes the parameter passing
arca, which is copiced from the parent process's data
area.)

4. The new process’s registers are sct up as shown in
the diagram on the next page. The execution offset
given in the module header is used to set the PC to
the module’s entry point.

When the shell processes a command line, it passes a string in
the parameter area. This string 1s a copy of the parameter part of
the command line. To simplity string-ortented processing, it
also inserts an end-of-line character at the end of the parameter
string.

Register X points to the starting of the parameter string. If the
command line included the optional memory size specification
(#n or #nK). the shell passes that as the requested memory size
when executing the Fork.

If any of the above operations is unsuccessful, the Fork is
aborted and the caller is returned an error.

The diagram below shows how Fork sets up the data memory
area and registers for a newly created process.

- 1. DP (lowest address)
Direct Page

Data Arca

-« X, 5P

Parameter
Arca

-— Y (thighest address)

D = size of the parameter area
PC = module entry point absoluie address
cC = F=0.1=0, others arc undetined

Registers Y and U (the top-of-memory pointer and bottom-of-
memory pointer. respectively) always have values at page
boundarics.

As stated carlier under “"Entry Conditions.” if the parent does
not specify the size of the parameter arca. the size defaults to
zero. The minimum overall data arca size 1s one page.

Note: The child and parent processes execute at the same
time. If the parent executes a Wait system call immediate-
ly after the Fork, it waits until the child “"dies™ before it
resumes execution.

Be carcful when recursively calling a program that uses
the Fork system call: another child may be created with
cach “incarnation.”” This continues until the process table
becomes full.

97

Get ID

0S9 F$id

98

103F 0C

Function:
Returns the caller’s process 1D and wser 1D.

The process 1D is a byte value from | to 255, It is assigned by
0S-9 and is unique to the process.

The user 1D is an integer from 0 to 65535, It 1s defined in the
system password file. and is used by the file sceurity system and
a few other functions. Several processes can have the same user
ID.

Entry Conditions:

None

Exit Conditions:

A = process 1D
Y = user 1D

If error:

cC = (bit set
B = error code

Get Status

0OS9 I$gttstt

Uses of Get Status

103F 8D

Function:
Returns the status of a file or device.

This is a “wildcard™ call. It is used to handle device parameters
that:

® Are not the same for all devices
® Are highly hardware-dependent
® Must be user-changeable

The exact operation of the Get Status system call depends on the
device driver and file manager associated with the path. A
typical use is to determine a terminal’s parameters for such
functions as backspace character and echo on/otf. The Get
Status call is commonly used with the Set Status call.

The Get Status function codes that are currently defined are
listed in the “*Uses of Get Status™ section below.

Entry Conditions:

A = path number
X = MS 16 bits of the desired file position
U = LS 16 bits of the desired file position

Exit Conditions:

None

It error:

cC = (bit sct
B = e¢rror code

Function codes 7 through 127 are reserved for future use.

Codes 128 through 255 and their parameter-passing conven-
tions arc user-definable. (See the sections on writing device
drivers). The function code und register stack are passed to the
device driver.

99

100

The following function codes are defined: $00, $01. $02, $05,
$06. $12, and $ 13. The parameter-passing conventions for
these function codes are listed below.

SS.OPT (Function code $00): Reads the option scction of the
path descriptor, and copies it into the 32-byte area pointed to by
Register X.

Use this to determine the current settings for editing functions,
such as echo and auto line feed. For a complete description of

the status packet, see the section on path descriptors.

Entry Conditions:

A = path number
B = $00
X = address to receive status packet

Exit Conditions:
Status packet

It error:
cC = C bit sct
B = ¢rror code -

SS.RDY (Function code $01): Tests for data available on
SCEMAN-supported devices.

Entry Conditions:
A = path number
B = $01

Exit Conditions:

If rcady:
CccC = C bit clear
B = $00

If not ready:
CcC = C bit set

B = $F6 (E$SRNDY)
If error:

ccC = (C bit set

B = error code

SS.S1Z (Function code $02): Gets the current file size
(RBFMAN:-supported devices only).

Entry Conditions

A = path number
B = $02
Exit Conditions
X = ms 16 bits of the current file size
U = [s 16 bits of the current file size
If error:
cC = C bit set
B = error code

SS.POS (Function code $05): Gets the current file position
(RBFMAN:-supported devices only).

Entry Conditions:
A = path number
B = $05

Exit Conditions:

X = MS 16 bits of the current file position
U = LS 16 bits of the current file position
If error:

cC = C bit set

B = error code

SS.EOF (Function code $06): Tests for the end of the file
(EOF).

Entry Conditions:
A = path number
B = %06

Exit Conditions:
If not EOF:

CcC = C bit clear

B = $00

It EOF:

cC — C bit set

B — $D3 (ESEOB)

101

102

If error:
CcC = C bit set
B

error code
SS.DSTAT (Function code $12): Returns the display status.

Entry Conditions:

A = path number
B = $12
Exit Conditions:
X = daddress of the graphics display memory
Y = graphics cursor address; x = MSB,
y = LSB
A = color code of the pixel at the cursor address

SS.JOY (Function code $13): Returns the joystick values.

Entry Conditions:

= path number

= 813

= 0 (right joystick), or
= 1 (left joystick)

XX T o

Exit Conditions:

= selected jovstick x value (0-63)
= selected jovstick v value (0-63)
$FF (if the fire button is on), or
= $00 (if the fire button is ofl)

P > <X
Il

Intercept

0S9 FSicpt

103F 09

Function:
Tells OS-9 to set a signal intercept trap. Then, whenever the
process receives a signal, the process’s intercept routine is

cxecuted.

Once the signal trap is set, the intercept routine may be cxecuted
at any time because a signal may occur at any time.

The intercept routine should terminate with an RTI instruction.

Note: If a process has not used the Intercept system call to set a
signal trap. the process aborts if it receives a signal.

Entry Conditions:

X = address of the intercept routine
U = starting address of the routine’s memory
area

Exit Conditions:

None

If error:

CcC = C bit set
B = ¢rror code

Technical Function:

I. When the process receives a signal. OS-9 sets Reg-
isters U and B as follows:

U = starting address of the intercept
routine's memory ared

signal code (process’s termination
status)

|

Il

B

Note: The value of Register DP may not be the
same as it was when the Intercept call was made.

2. After sctting the registers, OS-9 transfers execution
to the intereept routine.

103

Link

0OS9 FS$link

104

103F 00

Function:

Links to a memory module that has the specified name, lan-
guage. and type.

The module’s ““link count™ is incremented whenever Link
references its name. This keeps track of how many processes are
using the module.

If the module requested is not sharable (not reentrant). only one
process may link to it at a time.

Entry Conditions:

X = address of the module name (sce example
below)
A = npellanguage byte

Exit Conditions:

X = address of the last byte of the module name
+ [(scc cxample below)

Y = module entry point absolute address
U = module header absolute address
A = nypellanguage code
B = attributes | revision level
If ¢rror:
cC = C bit set
B = ¢rror code
Example:

Before the Link call:

T E S T $0D

M —

After the Link call:

T E S T $0D

o —

Technical Function:

I. 0OS-9 scarches the module directory for a module
that has the specified name. language. and type.

22. 11 OS-9 finds the module, the address of the mod-
ule’s header is returned in Register U, and the
absolute address of the module’s execution entry
point is returned in Register Y. (This and other
information can be obtained from the module
header.)

2b. I OS-9 doesn’t find the module — or if the type/
language codes in the entry and exit conditions
don’t match — OS-9 returns an error.,

Possible Errors:

® Module not found
® Module busy (not sharable and in use)
® [ncorrect or defective module header

105

Load

0S9 F$load

106

Function:

103F 01

Loads a module or modules from the file specified by the
pathlist or from the working exccution directory (if no pathlist is

given).

The file must have the cxecute access mode. [t also must contain
a module or modules that have a proper module header.

All modules loaded are added to the system module directory.
The first module read is linked. The exit conditions apply only
to the first module loaded.

Entry Conditions:

X

A

Exit Conditions:

X

= > =<

If error:

CcC

B

Example:

address of the pathlist (filename) (sce exam-
ple below)
language/type code: 0 = any language/type

address of the last byte of the pathlist (file-
name) + 1 (sce example below)

primary module entry point address
address of the module header
lunguage/tvpe code

attributes | revision level

C bit set

= error code

Before the

Load call:

0

/A C|ICIT]IS]IR|IC]V [$0D

A

After the Load call:

/DO /7 JA|[C|]C|IT]S]|R|C]|V|[$D

Possible errors:

® Module dircctory full

® Memory full

® Errors that occur on the Open, Read, Close, and Link
system calls

107

Make Directory

0S9 I$makdir

108

103F 85

Function:

Creates and initializes a directory as specified by the pathlist.
The directory contains no entries, except for an entry for itself
(.) and its parent directory (..)

The caller is made the owner of the directory. Because the Make
Directory call does not open the directory, it does not return a
path number.

The new directory automatically has its ““dircctory™ bit set in
the access permission attributes. The remaining attributes are
specified by the byte passed in Register B. The bits are defined

as follows:

Bit Definition
0 Read
| Write
2 Exccute
3 Public rcad
4 Public write
5 Public cxccute
6 Sharable
7 Don’t carc

Entry Conditions:

X = address of the pathlist (sce example below)
B = directory attributes

Exit Conditions:

X = address of the last bvte of the pathlist + [,
any trailing blanks are skipped (see example
below)

If error:

CC = C bit set

B = error code

Example:

Before the Make Directory call:

/ 0 E D $0D
!
After the Make Dircctory call:
/ 0 E D $0D
!

109

Memory

0S9 F$mem

110

103F 07

Function:

Expands or contracts the process’s data memory area to the
specified size. Or. if you specify zero as the new size, the call
returns the current size of data memory.

The size requested is rounded off to the next page boundary.
Additional memory is allocated contiguously upward or deallo-
cated downward from the old highest address.

Even if cnough free memory exists, the call may return an error
upon an expansion request. This is because the data arca is
always made contiguous. Therefore, memory requests by other
processes may fragment free memory into smaller. scattered
blocks that arc contiguous with the caller’s present data arca.

Entry Conditions:

D = size of the new memory area (in bytes);
0 = return current size and upper bound

Exit Conditions:

Y = address of the new memory area upper bound
D = actual size of the new memory (in bytes)

If error:

CcC = C bit set

B = error code

Open Path

0OS9 I$open

103F 84

Function:

Opens a path to an existing file or device as specified by the
pathlist.

0S-9 searches for the file in one of the following:
® The dircctory specified by the pathlist if the pathlist
begins with a slash
® The working data directory. if the pathlist does not
begin with a slash

® The working execution directory, if the pathlist does
not begin with a slash and if the execution bit is set in
the access mode

A path number is returned: it is used in later system calls to
identity the file.

The access mode parameter specifies which read and/or write
operations are to be permitted. When set. the bits allow access
as follows:

Bit(s) Access

Read Read

Write Write

Read and write Update
Directory Directory 1/0

The access mode must conform to the access permission attri-
butes associated with the file or device (see the Create system
call). Only the owner may access a file unless the appropriate
““public permit’” bits are sct.

The update mode may be slightly slower than the others because
pre-reading of sectors may be required for random access of
bytes within sectors.

Several processes (users) may open files at the same time. Each

device has an attribute that specifics whether or not it is
sharable.

111

Entry Conditions:

X = address of the pathlist (sce example below)
A = qccesy mode (DS PE PW PR E W R)

Exit Conditions:

X = address of the last byie of the pathlist + 1
(see example below)
A = path number
I error:
cC = C bit sct
B = crror code
Example:

Betore the Open Path call:

Do s JAJC|IC|IT ISP ALY | $S0OD

P

DO/ A C|IC TSP ALY | $OD

112

Parse Name

OS9 F$prsnam 103F 10

Function:

Parses (analyzcs) the input text string for a legal OS-9 name.
The name is terminated by any character that is not a legal name
character.

This system call 1s uscful for processing pathlist arguments
passed to new processes.

Because Parse Name processes only one name, several calls
may be needed to process a pathlist that has more than one
name. As you can see from the example below, Parse Name
finishes with Register X in position for the next parse.

If Register X was at the end of a pathlist, a bad name crror is
returned. Then, Register X is moved past any space characters
so that the next pathlist in a command line may be parsed.
Entry Conditions:

X = address of the pathlist (sce example below)

Exit Conditions:

X = address of the optional slash + 1

Y = address of the last character of the nane
+ 1 (see example below)

B = length of the name

If error:

cC = C bit set

B = crror code

X = address of the last wrailing blank + 1

113

Example:

Betore the Parse Name call:

A —

After the Parse Name call:

P
-

B 2

114

Print Error

OS9 FS$perr 103F OF

Function:

Writes an error message to the output path specificd. By default,
0S-9 displays:

ERROR #decimal number

The error reporting routine 1s vectored and can be replaced with
a more claborate reporting module. To replace this routine usc
the Set SVC system call.

Entry Conditions:

A output path nimber
B = error code

Exit Conditions:

None

If error:

CC = C bit set
B = error code

115

Read

0S9 I$read

116

103F 89

Function:

Reads the specified number of bytes from the specified path.
The data 1s returned exactly as read from the file/device without
additional processing or editing.

The path must have been opened in the read or update mode.

After all data in a file is read. the next Read call returns an
end-of-file crror.

The keyboard abort. keyboard interrupt. and end-of-file charac-
ters may be filtered out of the entry conditions data on
SCEMAN:-type devices unless the corresponding entries in the
path descriptor have been set to zero. You may want to modify
the device descriptor so that these values are initialized to zero
when the path is opened.

The number of bytes requested is read unless any of the follow-
ing is true:

® An end-of-file occurs
® An cend-of-record occurs (SCFMAN only)
® An error occurs

Entry Conditions:

X = address to store data
Y number of byvies to read
A = path number

Exit Conditions:

Y = number of bytes read
If crror:

ccC = C bit set

B = c¢rror code

Read Line

0S9 I$readin

103F 8B

Function:
Reads a text line with cditing.

Read Line is similar to Read except it reads the input file or
device until a carriage return character is encountered or until
the maximum byte count specified is reached. Line editing is
also activated on character-oriented devices. such as terminals
and printers. The line editing refers to auto line feed, null
padding at the end of the line. backspacing. line deleting. and so
on.

SCFMAN requires that the last byte entered be an end-of-record
character (usually a carriage return). If more data is entered than
the maximum specified. it is not accepted and a PD.OVF
character (usually bell) is cchoed.

After all data in a file is read. the next Read Line call generates
an end-of-file error.

(For more information about line cditing. sce “*SCFMAN Line
Editing Functions™ in Chapter 6.)

Entry Conditions:

X = wstarting address to store data
Y = maxinm number of bytes to read
A = path number

Exit Conditions:

Y = number of bytes read
If crror:

ccC = C bit set

B = crror code

.

117

Search Bits
0OS9 F$schbit 103F 12

Function:

Scarches the specified allocation bit map for a free block
(cleared bits) of the required length.

The scarch starts at the srarting bit number. 1f no block of the
specified size exists, the call returns with the carry set, starting
bit number, and size of the largest block.

Entry Conditions:

= starting address of the map
starting bit number

bit count (free bit block size)
= ending address of the map

C <O X
Il

Exit Conditions:

D = starting bit number
Y = bit count

118

Seek

0S89 I$seek

103F 88

Function:

Repositions the path’s logical **file pointer.”” the 32-bit address
of the next byte in the file to be read from or written to.

A seek may be performed to any value, regardless of the file’s
size. Later writes automatically expand the file to the required
size (if possible). Reads, however, return an end-of-file condi-
tion. Note that a seek to Address 0 is the same as a rewind
operation.

Seeks to non-random access devices usually are ignored and
return without error.

Entry Conditions:

A = path number
X = MS 16 bits of the desired file position
U = LS8 16 bits of the desired file position

Exit Conditions:

None

If error:

CcC = C bit set
B = error code

119

Send

0S9 F$send

120

103F 08

Function:

Sends a signal to the specified process. The signal code is a
single byte value from | through 255.

If the destination process s sleeping or waiting. it is activated so
that it may process the signal.

If a signal trap was sct up, the signal processing routine (Inter-
cept) is executed (see the Intercept system call). If none was set
up, the signal aborts the destination process, and the signal code
becomes the exit status (see the Wait system call). An exception
is the wakcup signal; it does not cause the signal intercept
routine to be cxecuted.

Signal codes are defined as follows:

0 = System abort (cannot be intercepted)
1 = Wake up the process

2 = Keyboard abort

3 = Keyboard interrupt

4-255 = User defined

If you try to send a signal to a process that has a signal pending,
the current Send call is cancelled, and an error is returned. Issuc
a Sleep call for a few ticks, then try again. (The Sleep call saves
CPU time.)

(Sce the Intercept, Wait, and Sleep system calls for more
information.)

Entry Conditions:

A
B

I

destination’s process 1D
signal code

Exit Conditions:

None

It error:

CC = C bit set
B = error code

Set Priority

OS9 F$sprior

103F 0D

Function:
Changes the process™s priority to the priority specitied.

A process can change another process’s priority only if it has the
same user ID.

Entry Conditions:

A = process 1D
B = prioriry: 0 = lowest, 255 = highest

Exit Conditions:

None

If error:

CcC = (C bit sct
B = error code

121

Set Status

0OS9 I$setstt

Uses of Set Status

122

103F 8E

Function:
Sets the status of a file or device.

This is a “wildcard™ call. Itis used to handle device parameters
that:

® Arc not the same for all devices
® Arc highly hardware-dependent
® Must be user-changeable

The exact operation of the Set Status system call depends on the
device driver and file manager associated with the path. A
typical use is to set a terminal’s parameters for such functions as
backspace character and echo on/off. The Set Status call is
commonly used with the Get Status call.

The Set Status function codes that arc currently defined are
listed in the “*Uses of Set Status™ section below.

Entry Conditions:

A path number
B = function code
Other registers depend upon the function code

Exit Conditions:

Depend upon the function code

It crror:
cC = C bit sct
B = c¢rror code

Function codes 128 through 255 and their parameter-passing
conventions arc uscr-definable. (For more information, scc the
“RBF-Type Device Drivers™ section in Chapter 5 and the
“*SCF-Type Device Drivers™ section in Chapter 6.) The func-
tion code and register stack are passed to the device driver.

The following function codes are defined: $00, $02, $04, $09,
$0A, $0B, $0C, and $0D. The parameter-passing conventions
for these function codes are listed below.

SS.OPT (Function code $00): Writes the option section of the
path descriptor from the 32-byte status packet pointed to by
Register X. Use this to set the device operating parameters, such
as echo and line feed.

Entry Conditions:

A = path number
B = $00
C = address of the status packet

Exit Conditions:
None

SS.S1Z (Function code $02): Changes the file's size
(RBFMAN:-type devices only).

Entry Conditions:

A = path number

B = 502

X = MS 16 bits of the desired file size
U = LS 16 bits of the desired file size

Exit Conditions:
None

SS.RST (Function code $03): Restores the head to Track 0.
This is used for formatting and error recovery.

Entry Conditions:
A = path number
B = $03

Exit Conditions:
None

123

124

SS.WTK (Function code $04): Formats (writes) a track on a
floppy disk. For hard disks or floppy disks that have a **format
entire disk command.” SS.WTK formats the entire disk only
when the track number is zevo.

Entry Conditions:

= path number

= $04

= address of the track buffer

= track number (least significant 8 bits)

= sideldensity
Bit BO = side (0 = Side 0, 1 = Side 1) Bit
Bl = density (0 = single, 1 = double)

~ C X T >
|

|

Exit Conditions:
None

SS.FEE (Function code $09): Issues a form feed.

Entry Conditions:
B = %09

Exit Conditions:
None

SS.FRZ (Function code $0A): Freezes the DD. information.
(Inhibits the reading of LSN 0 to DDD.xxx vanables, which
define disk formats.) This enables the reading of non-standard
disks.
Entry Conditions:

B = $0A

Exit Conditions:
None

SS.SPT (Function code $0B): Scts a different number of sec-
tors per track so non-standard disks may be read.

Entry Conditions:
B = $0B
X = new sectors per track

Exit Conditions:
None

SS.SQD (Function code $0C): Starts the power-down sc-
quence for hard disks that have sequence-down requirements
prior to removal of power.

Entry Conditions:
B = $oC

Exit Conditions:
None

SS.DCM (Function code $0D): Transmits a command dircctly
to a disk controller for specific functions. Parameters and com-
mands are hardware-dependent for specific systems.

Entry Conditions:
B = $0D
Other registers vary

Exit Conditions:
Vary

125

Set SVC

0S9 FS$ssve

126

Function:

103F 32

Adds or replaces a system call. which you have written, in
08-9°s user and system mode system call tables.

Entry Conditions:

Y = address of the svstem call initialization table

Exit Conditions:

None

If error:

CcC = C bit set
B = c¢rror code

Technical Function:

Relative
Address
$00
$01
$02
$03
$04
$05

I. Register Y passes the address of a table. which
contains the function codes and offsets. to the cor-
responding system call handler routines. This table
has the following format:

Use

Function Code

-

Offsct From Byte 3

To Function Handler

Function Code

Offset From Byte 6 _|

To Function Handler

More Entries

$80

~——First entry

~—— Second entry

~—— Third entry . . .

~—— End-of-table mark

2a. If the most significant bit of the function code is set,
the system table is updated.

2b. If the most significant bit of the function code is not
set, the system and user tables arc updated.

Function request codes are broken into these two categories:
$00 - $27 User mode system call codes.

$29 - $34 Privileged system mode system call
codes. When these system calls are
being installed. the most significant
bit should be set if it is to be placed
into the system table only.

These categories are defined by convention: they are not en-
forced by OS-9.

To use a privileged system call. you must be exccuting a
program that has the type code $0C (OS-9 system module).

The system call handler routine should process the system call
and return from subroutine with an RTS instruction. The hand-
ler routine may alter all CPU registers (except Register SP).
Register U passes the address of the register stack to the system
call handler as shown in the following diagram:

Relative Name
Address
U-——= CC $00 RYCC
S01 R$D
A 401 R$A
B $02 R$B
DP $03 R$DP
$O4 R$X
$06 R$Y
U $08 RSU
PC $0A R$PC

Codes $25 through $27 und $70 through $7F are user-definable.

127

Set SWI

0S9 FPsswi

128

103F OE

Function:

Sets the interrupt vectors for SWI2 and SWI3 instructions.
Each process has its own local vectors. Each Set SWI call sets
one type of vector according to the code number passed in
Register A:

= SWI

SWI2
SWI3

i

!
2
3

Il

When a process is created, all three vectors are initialized with
the address of the OS-9 service cull processor.

Warning: Microware-supplied software uses SWI2 to call OS-
9. If you reset this vector these programs cannot work. I you
change all three vectors, you cannot call OS-9 at all.

Entry Conditions:

!

A
X

SWI type code
address of the user software interrupt routine

Exit Conditions:

None

It error:

cC = (" bit set
B = crror code

Set Time
0S9 F$stime 103F 16

Function:

Scts the current system date/time and starts the system real-time
clock. The date and time are passed in a time packet as follows:

Relative Value
Address
0 year
| month
2 day
3 hours
4 minutes
5 seconds

Entry Conditions:
X = relative address of the time packet
Exit Conditions:

The system time and date are set.

It error:
cC = C bit sct
B = crror code

129

Sleep

OS9 F$sleep

130

103F 0A

Function:
Turns off the calling process temporarily.

If Register X contains 0. the process is turned off **indcfinitely™
(until it receives a signal). This 1s a good way to wait for a signal
or interrupt without wasting CPU time.

If Register X contains [, the process is turned off for the
remainder of its current time slice. The process is inserted into
the active process queue immediately, and resumes execution
when it reaches the front of the queue. If the process receives a
signal, it “rawakens™ before the time has clapsed.

It Register X contains an integer from 2 through 255, the
process is turned off for the specified number of ticks, n. The
process is inserted into the active process queue after a7 ticks.
It resumes exccution when it reaches the front of the queue. If
the process receives a signal, it awakens before the time has
elapsed.

Entry Conditions:

X = sleep time (in ticks), or
X = 0 (sleep indefinitely). or
X = [(sleep for remainder of current time slice)

Exit Conditions:

X = sleep time minus the number of ticks that the
process was asleep

If error:

cc = C bit set

B = error code

Time
0S9 F$time 103F 15

Function:
Returns the current system date and time in the form of a 6-byte
packet (in binary). The packet is copied to the address passed in

Register X.

The packet looks like this:

Relative Value
Address
0 year
1 month
2 day
3 hours
4 minutes
5 scconds

Entry Conditions:
X = address of the ared to store the time packet
Exit Conditions:

time packet

It error:
cC = C bit sct
B = verror code

131

Unlink

OS89 F$unlink

132

103F 02

Function:

Unlinks (destroys) a module, if it is not being used by another
process.

Device driver modules that are being used and certain system
modules cannot be unlinked. ROM modules can be unlinked;
they cannot. however. be deleted from the module directory.
Entry Conditions:

U = address of the module header

Exit Conditions:

None

If error:

CcC = C bit set
B = cerror code

Technical Function:

1. Unlink tells OS-9 that the module is no longer
needed by the calling process.

2

0S-9 decrements the module’s link count.

3a. I 'the resulting link count is zero, OS-9 destroys the
module.

3b. If any other process is using the module. the mod-
ule’s link count cannot decrement to zero. There-
fore. OS-9 does not destroy the module.

Wait

0S9 F$wait

103F 04

Function:
Turns off the calling process until a child process “*dies™ by
executing an Exit system call, or by receiving a signal. The Wait

call helps you save system time.

The child’s process ID and exit status are returned to the parent.
If the child died because of a signal. the exit status byte (Regis-
ter B) is the signal code.

If the caller has several children. the caller is activated when the
first one dies. Therefore, one wait system call is required to
detect termination of each child.

If a child died before the Wait call, the caller is reactivated
almost immediately. If the caller has no children, Wait returns
an error.

(See the Exit system call for more information.)

Entry Conditions:

None

Exit Conditions:

A = deceased child process's 1D

B = deceased child process’s exit status code
If error:

ccC = C bit set

B = ¢rror code

Write

0S9 I$write

134

103F 8A

Function:
Writes to the file or device associated with the path number
specified.

The path must have been opened or created in the write or
update access mode. Data is written to the file or device without
processing or editing. It data is written past the present end-of-
file. the file is automatically expanded.

Entry Conditions:

X = starting address of data to write
Y = number of bytes to write
A = path number

Exit Conditions:

Y = number of bytes written
If error:
CcC = C bit sct

B

error code

Write Line

0S9 I$writln

103F 8C

Function:

Writes to the file or device associated with the path number
specified.

Write Line is similar to Write except it writes data until a
carriage return character is encountercd. Line editing is also
activated for character-oriented devices, such as terminals and
printers. The linc editing refers to auto linc feed, null padding at
the end of the line, backspacing, line deleting, and so on.

The path must have been opened or created in the write or
update access mode.

(For more information about line editing, sce “*SCFMAN Line
Editing Functions’ in Chapter 6.)

Entry Conditions:

X = starting address of the data to write
Y = maximum number of bytes to write
A = path number

Exit Conditions:

Y = number of bytes wwritten
It crror:

cC = (C bit sct

B = error code

135

Allocate 64

0S9 F$allo4

136

103F 30

Function:

Dynamically allocates 64-byte blocks of memory by splitting
pages (256 bytes) into four scetions.

0S-9 uses the first 64 bytes of the base page as a ““page table.™
This table contains the MSB of all pages in the memory struc-
turc. I Register X passes a value of zero, the call allocates anew
base page and the first 64-byte memory block.

Whenever anew page is needed. a Request Sysmem system call
(FSsrgmem) cxecutes automatically. The first byte of cach
block contains the block number. Routines that use Allocate 64
call should not alter this byte.

The diagram below shows how seven blocks might be allocated:

Any Memory Any Memory
Page Page
Base Page ——— X
Page Table Block 4
(64 bytes)
X X
Block 1 Block §
(64 bytes) (64 bytes)
X X
Block 2 Block 6
(64 byte) (64 byte)
X X
Block 3 Block 7
(64 hyte) (64 byte)

Allocate 64 is a privileged system mode call.

Entry Conditions:

X = base address of the page table; 0 = the page
table has not been allocated

Exit Conditions:

A = Dlock number

X = buse address of the page table
Y = address of the block

It crror:

cC = (bit set

B — error code

137

Find 64

0S89 F$find64

138

103F 2F

Function:
Returns the address of a 64-byte memory block.

08-9 used Find 64 to find process descriptors and path descrip-
tors when given their block number. The block number may be
any positive integer.

Find 64 is a privileged system mode call.
Entry Conditions:

X = address of the block
A block number

i

Exit Conditions:

Y = address of the block
If error:

cC = C bit sct

B = error code

I/O Delete

0S9 FSiodel

103F 33

Function:

Deletes the specified I/O module from the system, if the module
is not in use.

This system call is used mainly by IOMAN and may be of
limited or no usc for other applications.

I/O Delete is a privileged system mode call.
Entry Conditions:
X = address of an /0 module

Exit Conditions:

None

If error:

cC = C bit set
B = error code

Technical Function:

1. Register X passes the address of a device descriptor
module. device driver module, or file manager
module.

2. 0OS-9 searches the device table for the address.

3. If OS-9 finds the address, it checks the module’s
use count. If the count is zero, the module is not
being used; OS-9 deletes it. If the count is not zero,
the module is being used:; OS-9 returns an error.

139

I/0 Queue

0S9 FS$ioqu

140

103F 2B

Function:

Inserts the calling process into the /0 queue of the specified
process and puts the calling process to sleep indefinitely.

[t is assumed that routines associated with the specified process
will send a wakeup signal to the calling process.

[/O Queuc is a privileged system mode call.
Entry Conditions:
A = process number

Exit Conditions:

None

It crror:

CC = C bit set
B —= crror code

Insert Process

0OS9 F$aproc

103F 2C

Function:

Inserts a process into the active process queue so that the process
may be scheduled for execution.

All processes already in the queue are sorted by process “‘age. ™
Age is a count of how many process switches have occurred
since the process’s last time slice. When a process is moved to
the active process queue., its age is set according to its priority —
the higher the priority. the higher the age.

An exception is a newly active process that was deactivated
while in the system state. Such a process is given higher priority
because it usually is executing critical routines that alfect shared
system resources.

Insert Process is a privileged system mode call.

Entry Conditions:

X = address of the process descriptor

Exit Conditions:

None

If error:

CcC = C bit set
B = e¢rror code

141

Next Process

0S9 F$nproc

103F 2D

Function:

Takes the next process out of the active process queue and
executes it.

If there is no process in the queue. OS-9 waits for an interrupt,
and then checks the queue again.

Next Process is a privileged system mode call.
Entry Conditions:

None
Exit Conditions:

Control does not return to caller.

Request Sysmem
0S89 F$srgmem 103F 28

Function:

Allocates a block of memory of the specified size from the top of
available RAM. The size request is rounded to the next page
boundary.

Request Sysmem is a privileged system mode call.
Entry Conditions:
D = byie count

Exit Conditions:

U = starting address of the memory area
If crror:

CcC = C bit set

B = ¢rror code

143

Return 64

089 F$ret64

144

103F 31

Function:

Deallocates a 64-byte block of memory. (Sce the Allocate 64
system call for more information.)

Return 64 is a privileged system mode call.
Entry Conditions:

X = address of the base page
A = block number

Exit Conditions:

None

It error:

CcC = C bit sct
B = c¢rror code

Return Sysmem
0S9 FS$srtmem 103F 29

Function:

Deallocates a block of contiguous pages.

Return Sysmem is a privileged system mode call.
Entry Conditions:

U = starting address of memory o retirn; must
point to an cven page boundary

D — number of byvtes to retirn

Exit Conditions:

None

If error:

cC = C bit set
B = crror code

SET IRQ

089 F$irq

146

Function:

103F 2A

Adds a device to or removes it from the IRQ polling table.

This system call is used mainly by device driver routines. (See
“Interrupt Processing™ in Chapter 2 for a complete discussion
of the interrupt polling system.)

Packet Definitions:

Flip Byte

Mask Byte

Priority

Sclects whether the bits in the device status
register indicate active when set or active
when cleared. 1f a bitin the flip byte is set. it
indicates that the task is active whenever the
corresponding bit in the status register is clear
(and vice versa).

Selects once or more bits within the device
status register that arc interrupt request
flag(s). One or more set bits identify which
task or device is active.

The device priority number: 0 = lowest, 255
= highest

Set IRQ is a privileged system mode call.

Entry Conditions:

X —
X —

U
Y
D

0 to remove a device, or
address of a packet 1o add a device

1

[x+1]

Il

flip byte
mask byte

I

[X+2] = priority

address of the service routine's menory ared

= address of the device IRQ service routine

address of the device status register

Exit Conditions:

None

If error:

CC
B

C bit sct

= ¢rror code

Verify Module
0S9 F$vmodul 103F 2E

Function:
Checks the module header parity and CRC bytes of a module.

[f these values are valid, OS-9 searches the module directory for
a module that has the same name. If one exists, OS-9 keeps the
module that has the higher revision level.

Verify Module s a privileged system mode call.
Entry Conditions:
X = address of the module to verify

Exit Conditions:

U = address of the module directory entry
If error:

cC = C bit sct

B = error code

147

Appendix A / Alphabetical System

Call Lists

User and I/O System Calls

Name Call Purpose Code
Allocate Bits F$allbit Allocate in a bit map 13
Attach [$attach Attach a new device to the 80
system
Chain E$chain Load and cxecute a new 05
primary module
Change ISchgdir Change the working directory 86
Dircctory
Close Path [$close Close a path to a file device sk
Compare Names [$cmpnam Compare two names B!
CRC I"Sere Compute the CRC 7?
Create File [$create Create a path to @ new file 83
Deallocate F$delbit Deallocate in a bit map 14
Bits
Delete File I$delete Delete a file 87
Detach Device I$detach Remove a deviee trom the 81
system
Duplicate Path 1$dup Duplicate a path 82
Exit F$exit Terminate the calling process 06
Fork F$tork Create a new process 03
Get ID FSid Get a process 1D user 1D oc
Get Status I$getstt Get file device status 8D
Intereept F$icpt Sct up a signal intercept 09
trap
Link F$link Link to a memory module 00
Load F$load Load module(s) from a file 01
Muke Directory 1Smakdir Muke a new directory 85
Memory F$mem Set the memory size 07
Open Path {$open Open a path to a filesdevice 84
Parse Name F$prsnam Parsc a path name 10
Print Error F$perr Print crror message OF
Read [$read Read data from a file device 89
Read Line [$readin Read a text line with editing 8B
Scarch Bits F$schbit Scarch the bit map tor a 12

free arca

149

User and I/0 System Calls

Name Call Purpose Code

Seck [RISUUN Reposition the logical file 88
pointer

Send 1'Ssend Send a signal to another 08
process

Set Priority FS$sprior Sct the process priority 0D

Set Status 1Ssetstt Sct the tile device status 8E

Set SVC Fhssve Install a function request 32

Set SWI Fhsswi Set an SWI veetor 0E

Set Time Fstime Set the system date and time 16

Sleep I*$sleep Put the calling process 0A
to sleep

Time FStime Get the system date and time 15

Unlink I'Sunlink Unlink a module 02

Wait F$wait Wait for a child process 04
to die

Write I$write Write to a tile device 8A

Write Line [$w ritin Write a line of text with 8C
editing

Name Call Purpose Code

Allocate 64 Fhallod Allocate a 64-byte memory 30

Find 64 F$find64 Find a 64-bytc memory block 2F

['O Delete F$iodel Delete an 1O device from 33
the system

[0 Queue F$ioqu [nsert a process into the 2B
[O queue

Insert Process F$aproc [nsert a process into the 2C
active process queue

Next Process ESnproc Start the next process 2D

Request Sysmem F$srgmem Request system memory 28

150

System Mode System Calls

Code Name Call Purpose

Return 64 FSretod Deallocate (return) a 31
O04-byte memory block

Return Sysmem FSsrtmem Return system memory 29

Set IRQ F$irg Add or remove a deviee from 2A
the IRQ tables

Verify Module I'$vmodul Verify a module 2E

151

Appendix B / Numerical System

Call Lists

User and I/0O System Calls

Code Name Call Purpose
00 Link F$link Link to a memory module
01 Load F$load Load module(s) from a file
02 Unlink F$unlink Unlink a module
03 Fork F$fork Create a new process
04 Wait F$wait Wait for a child process to die
05 Chain I'$chain Load and cxecute a new primary
maodule
06 Lixit Fhexit Terminate the calling process
07 Memory F$mem Set the memory size
08 Send F$send Send a signal to another
process
09 Intercept F$icpt Set up a signal intercept trap
0A Sleep F$sleep Put the calling process to sleep
0cC Get ID F$id Get a process 11D user [D
oD Set Priority FSsprior Sct the process priority
OE Set SWI FSaswi Set an SWI vector
OF Print Error F$perr Print crror message
10 Parse Name F$pranam Parse a path name
11 Compare F$empnam Compare two names
Names
12 Scarch Bits F$schbit Scarch the bit map for a free
arca
13 Allocate Bits FSallbit Allocate in a bit map
14 Deallocate I'$delbit Deallocate ina bt map
Bits
15 Time I$time Get the system date and time
16 Set Time FSatime Set the systen date and time
17 Cre Fere Comipute the CRC
32 Set SVC Ffssve Install a function request
80) Attach [$attach Attach a new deviee to the
Device system
81 Detach ISdetach Remove o deviee from the
Device system

153

User and I/O System

Calls

Code Name Call Purpose

82 Duplicate ISdup Duplicate a path
Path

83 Create File [$create Create a path to a new file

84 Open Path I$open Open a path to a file device

85 Make [$makdir Make a new directory
Directory

86 Change Ibchgdir Change the working directory
Directory

87 Delete File [$delete Delete a file

88 Seek I$seck Reposition the logical file

pointer

89 Read I$read Read from a filerdevice

8A Write [$write Write to a file‘device

8B Read Line I$readin Read a text file with editing

8C Write Line I$writin Write a line of text with

editing

8D Get Status I$getstt Get the filerdevice status

8E Set Status [$setstt Set the filesdevice status

8F Close Path I$¢lose Close a path to a file/device

154

System Mode System Calls

Code Name Call Purpose
2A Set IRQ FSirq Add or remove a device from
the TRQ tables
2B 1/0 Queue F$ioqu Insert a process into the /O
queue
2C Insert F$aproc Insert a process into the
Process active process queue
2D Next Process F$nproc Start the next process
2E Verity FSvmodul Verity a module
Module
2F Find 64 Ffind6d Find a 64-byte memory block
28 Request F$srqmem Request system memory
Sysmem
29 Return F$srtmem Return system memory
Sysmem
30 Allocate 64 F$allod Allocate a 64-byte memory
block
31 Return 64 Fretod Deallocate (return) a 64-byte
memory block
33 ['O Delete FS$iodel Delete an I/O device from the

system

155

Appendix C / Memory Module

Diagrams

Executable Memory Module Format

Relative
Address

$00

$01
$02

503
$04

$03
$06
$07
08
$09

$0A
SOB

$0C
$0D

Use Check
Range
Syne Bytes ($87CD)
Module Size (bytes)
header
Muodule Name Otiset parity
Type Language
Attributes Revision
module
Header Parity Check CRC

Lixecution Offset

Permanent Storage Size

(Additional optional header
extensions located here)

Module Body
object code. constants.

wid so on

CRC Check Value

157

Device Descriptor Format

158

Relative
Address

$00

$01
$02

$03
$04

$10
$11
S12.812+n

Use Check
Range
Sync Bytes ($87C1)
Module Size
header
Offset to Module Name parity
$I° (Type) ST (Lang)
Attributes Revision
Header Parity Check
module

Offset to File Manager
Name String

Offset to Device Driver
Name String

Mode Byte

Device Controller
Absolute Physical Addr.
(24 biy)

Initialization Table Size

(Initialization Table)

(Name Strings. and so on)

CRC Check Value

CRC

INIT Module

Format

le

Relative Use Check
Address Range
$00
I Syne Bytes ($87CD) —
$01
$02
— Module Size ibytes) ﬂ
$03
$04 header
— Module Name Offset 1 parity
$05 ’
$06 $E (Type) ST (Lang)
$07 Attributes Revision
$08 Header Parity Check
$09
— Forced Limit of Top - maodu
$0A - of Free RAM — CRC
$0B
$0C #IRQ Polling Table Entrics
$0D #Dcvice Table Entries
0 P Offset to Startup -
$OF Module Name String
$10
P Offset to Detault Mass -
$11 Storage Device Name String
$12
— Offset to Bootstrap =
$13 Module Name String
$14-n Name Strings
k— CRC Check Value
— —

159

Appendix D / Standard Floppy
Disk Format

TRS-80 Color Computer

Physical Track Format Pattern

Format Bytes Value
(Dec) (Hex)
Header pattern 32 4E
{once per track) 12 00
3 E5
| FC
32 4k
Sector pattern 8 00
(repeated 18 times) 3 Es
| tracknumber (0-34)
| side number (0)
I sector number (1-18)
1 sector length code (1)
2 CRC
22 4E
12 00
3 FS
I FB
256 data arca
2 CRC
24 4t
Trailer pattern N +4E (111! to index mark)

(once per track)

161

Appendix E / System Call Error
Codes

The error codes are shown in both hexadecimal (first column) and decimal (second column).
Error codes other than those listed are generated by programming languages or user programs.

Dec Hex Message Mecaning

200 $C8 PATH TABLE FULL The file cannot be opened
because the system path
table is full.

2 $C9 ILLEGAL PATH NUMBLER The number s too large or
is for @ nonexistent path.

202 SCA INTERRUPT POLLING You can’tadd an wteerupt.

TABLE FULL

203 SCB ILLEGAL MODE You tricd to perform an 1.0
function of which the devicee
or file s incapable.

204 sccC DEVICLE TABLE FULL You can’t add a device.

205 SCD ILLEGAL MODULE The module is not foaded: s

HEADER syne code, header panty L or
CRC is tncorrect.
206 SCE MODULE DIRECTORY You can’t add @ wodule.
FULL

207 $CE MEMORY FULL There is not enough
contiguous RAM free.

208 $HO IH.LEGAIL SERVICE The system call contains an

REQUEST ilegal code number.

209 $DI MODULLE BUSY The maodule s non-sharable
and s being used by another
process.

210 D2 BOUNDARY ERROR The memory allocation or
deallocation request is not
on a page boundary .

211 D3 END O FILE The end of the file was
cncountered on a read.

212 SD4 NOT YOUR MEMORY You tried to deafjocate
memonry that was not assigned.

213 $DS NON-EXISTING SEGMENT The deviee’s file structure
is duamaged.

214 $Do FILE NOT ACCESSIBLL: The file attributes do not
permit the aceess requested.

215 D7 BAD PATH NAME The pathlist contamed a1

svitay crror . possibly

an itlegal character

Dec Hex Message Meaning

216 $D8 FILE NOT FOUND The specitied pathlist does
not Cxist.

217 SDY SEGMENT LIST FULL The file 18 oo fragmented to
be expanded

218 SDA FILE ALREADY EXISTS The specified filename
already exists in the current
directory.

219 $DB ILLEGAL BLOCK The deviee's file structure

ADDRESS is damaged.

220 $DC ILLEGAL BLOCK SIZE The deviee's file structure
is dimaged.

221 $DD MODULE NOT FOUND You tried to link to
module that is not i the
directory.

222 $DE SECTOR OUT OF RANGLE The deviee’s file structure
is damaged or incorrectly
formatted.

223 $DF SUICIDE ATTEMPT You tried to return the
memory that contains your
stack.

224 SEO ILLEGAL PROCESS The specitied process does

[ID NUMBLER 10t CXist.

226 $12 NO CHILDREN The process can’t do a Wait
because it has no children.

227 SE3 ILLEGAL SWI CODL The code must be from 1 to 3.

228 $Ed KEYBOARID ABORT The process was aborted by
Signal Code 2.

229 S PROCLESS TABLL 'ULL The process can’t do a fork
now.

230 $E6 ILLEGAL PARAMETER The high and low bounds

AREA passed in Fork call are
incorrect.

231 $E7 KNOWN MODULE This module is for internal
use only.

232 $E8 INCORRECT CRC The module has a bad CRC
value.

233 $E9 SIGNAL ERROR The receiving process has
a previous, unprocessed
signal pending.

234 $SEA NONEXISTENT MODULE The specitied module does

not exist.

164

Dec Hex Message Meaning

235 SEB BAD NAME The name uses an illegal
Syntix.

236 $EC BAD HEADER The module header parity
is incorrect.

237 $ED RAM FULL There is no free system RAM
at this time.

238 $EE BAD PROCESS ID The process D is incorrect.

239 SEF NO TASK NUMBER All task numbers are in use.

AVAILABLE

240 $F0 UNIT ERROR The device unit does not
exist.

241 $KI SECTOR ERROR The scctor number is out ot
range.

242 $F2 WRITE PROTLECT The device is write
protected.

243 $F3 CRC ERROR A CRC error occurred on a
read or write verily.

244 $F4 READ ERROR A data transfer error
oceurred during a disk read
or an SCF (terminal) input
buffer overrun.

245 $F5 WRITE ERROR A hardware crror occurred
during a disk write.

246 $F6 NOT READY The device has the “not
ready™” status.

247 $F7 SEEK ERROR You attempted a physical seek
to a nonexistent sector,

248 $F8 MEDIA FULL The media does not contain
cnough free space.

249 $FY WRONG TYPE You tried to read an
incompatible media, such as a
double-sided disk on a
single-sided drive.

250 $SFA DEVICE BUSY A non-sharable device is in

use.

165

Appendix

F / Module and 1/O
Attributes

Standard I/0 Paths

Module Languages

$00
$01
$02

= Standard Error Output

Standard Input
Standard Output

File Access Codes

$00
501
$02
503
SO4

Data

= 06809 Object Code
BASIC 09 [-Code
Pascal P-Code
Cobol 1-Code

Module Types

$01
$02
Read
$04
$08
$10
$20
$40
$80

+4

Read
Write
Write — Update
Lixec

- PRead

PWrite
PExec
Share
Dir

Module Attributes

$8

Reentrant

$01

02
$03
$04
$0C
SOD
401
$01-

= Program Modute
Subroutine Module

= Multe Module

= Data Module
System Module
Iile Manager
Device Drver
Device Descriptor

167

INDEX

A

Access codes 111, 167

Active process 11,12

Active state 11

Age 12

Allocate 64 (F$all64) 136-137

Allocation bit map 8
see Bit map

Assembly-language programming 67-73
Addressing variables and data structures 68
Extended addressing 68
Interrupt-driven device drivers, parts 70
Interrupt-driven device drivers, writing 70-71
Interrupt masks 69
Position-independent code, how to write 67
Rules for writing 67
Sample program 72-73
Stack requirements 69
Standard 1/0O paths, using 69

Attach (1$attach) 80

B

Bit map 8

Clearing bits in (F$delbit) 90

Searching for a free block (F$schbit) 118
Boot 3
Bootstrap module 3

see Boot

C

Chain (F$chain) 82-83
Change Directory (1$chgdir) 84
Character-by-character /0 (SCFMAN) 2, 27, 53-65
Child process 10

Creating (F$fork) 95
Clearing bits in allocation bit map (F$delbit) 90
Clock module 2
Close Path (I$close) 85
Commands, interpreting (Shell) 3
Compare Names (F$cmpnam) 86

169

INDEX

170

CRC (F$CRC) 87

CRC byte, checking (F$vmodul) 147

CRC value 87

Create File (I$create) 88

Cyclic redundancy count, calculating (F$crc) 87
CWAI instruction 12

D

Date 129, 131

Returning (F$time) 131
Setting (F$stime) 129

Deallocate bits (F$delbit) 90

Delete File (I1$delete) 91

Detach Device (I$detach) 92

Device 80, 92, 99-102, 111-112, 122-125

Adding to or removing from IRQ polling table
(F$irq) 146

Attaching a new (I$attach) 80

Detaching (I$detach) 92

Opening a path to (I$open) 111-112

Parameters, handling (I$getstt and I$setstt)
99-102, 122-125

Status, returning (I$getstt) 99-102

Status, setting (I1$setstt) 122-125

Table 26

Verifying (I$attach) 80

Writing to (I$write) 134

Writing to with editing (1$writeln) 135

Device descriptor module 3, 28-30, 39-40, 57-58

Format of 30, 158

Device driver module 3, 27-28, 40-41, 58

Branch table 28

Directory 37

Changing the working directory (I$chgdir) 84
Creating and initializing (ISmakdir) 108

Disk allocation map sector (LSN 1) 34
Disk file

see File

Disk /O (RBFMAN) 2, 27, 33-52

INDEX

E

Editing

see Line Editing Functions 53-54
Error message 115, 163-165

Writing (F$perr) 115
Exit (F$exit) 94

F

File 2, 8, 14, 26-27, 35-35, 88, 91, 99-102, 111-112,

122-125, 135
Creating and opening (I$create) 88
Deleting (I$delete) 91
Opening a path to (I$open) 11-112
Pointer, repositioning (I$seek) 119
Status, returning (I$gttstt) 99-102
Status, setting (I$setstt) 122-125
Terminating path to (I$close) 85
Writing to (I$write) 134
Writing to with editing (I$writin) 135
File access codes 111
File descriptor sector 35-36
File manager module 2, 26-27
see also RBFMAN, SCFMAN, and PIPEMAN
Find 64 (F$find64) 138
Firq interrupt 14
Fork (F$fork) 10, 95
Free block, searching bit map for (F$schbit) 118
Free memory 8
Function calis 7, 75

G

Get ID (F$id) 98
Get Status (I$gttstt) 99-102

171

INDEX

172

H

Header 19-21
Sync Bytes 19
Module size 19
Offset to module name 20
Type/language byte 20
Attributes/revision byte 21
Header check 21
Execution offset 23
Permanent storage size 23
Hexadecimal number iv

ID, returning (F$id) 98
Identification sector (LSN 0) 34
INIT 2, 5, 159
input/output manager 2, 26
see IOMAN
Insert Process (F$aproc) 141
intercept (F$icpt) 103
Intercept trap, setting (F$icpt) 103
Interrupt processing 14-16
Interrupt vectors, setting for SWI2 and SWI3
instructions
(F$sswi) 128
IOMAN 2, 26
IO 2-3, 25, 27-28, 40-41, 53-65, 69
Character-by-character (SCFMAN) 2, 27, 53-65
Modules 25
Non-disk (SCFMAN) 2, 27, 53-65
Paths, standard 69, 167
Physical functions for specific I/O controller
hardware (device driver module) 3, 27-28,
40-41, 58
System calls 6, 75, 149-150, 153-154
IO Delete (F$iodel) 139
1/O port, associating with its logical name, device driver
and file manager (device descriptor module) 3,
28-30, 39-40, 57-58
/0O Queue (F$ioqu) 140
IRQ interrupt 15

INDEX

IRQ polling table 15-16
Adding to or removing from (F$irq) 16, 146
Flip byte 15
Mask byte 15
Polling address 15 Priority 16
Service routine address 16
Static storage address 16

K

Kernel 2, 5-16
Functions of 5

L

Line editing functions 53-54

Link (F$link) 104-105

Load (F$load) 106-107

Logical interrupt polling system 15-16
Logical sector number 33

LSN 0 34

LSN 1 35

M

Make Directory (I$makdir) 108
Memory 110
Allocating automatically 8
Allocating block from top of available RAM
(F$srgmem) 143
Deallocating block of contiguous pages
(F$srtmem) 145
Deallocating 64-byte block (F$ret64) 144
Dynamically allocating 64-byte blocks (F$all64)
136-137
Size, setting (F$mem) 110
Memory (F$mem) 110
Memory management, advantages of 7
Memory map 9
Memory module iii, 1
see Module

173

INDEX

174

Module iii, 1
Attributes 17, 167
Deleting an 1/0 module (F$iodel) 139
Executable memory module format 22, 157
Format (parts) 18-19
Languages 20, 167
Linking to (F$link) 104-105
Loading and executing (F$chain) 82-83
Loading from a file (F$load) 106-107
Loading from the working executing directory
(F$load)
106-107
ROM 23-24
Types 17, 167
Unlinking (F$unlink) 132
Module body 19
Module CRC value 19
Module header 18
See Header
Multiprogramming 9-13

N

Name 86, 113-114
Analyzing a text string for (F$prsnam) 113-114
Comparing names (F$cmpnam) 86

Next Process (F$nproc) 142

NMI interrupt 15

Non-disk I/0 (SCFMAN) 2, 27, 53-65

(o)

Open Path (1$open) 111-112
0S9Defs 75

P

Page 8
Parity byte, checking (F$vmodul) 147
Parse Name (F$prsnam) 113-114

INDEX

Path
Duplicating (1$dup) 93
Opening (I$open) 111-112
Reading from (I$read and I$readin) 116,117
Repositioning its logical file pointer (I$seek) 119
Terminating (I$close) 85
Path descriptor (PD) 31-32, 37-38, 54-56
Standard information 31-32
Path table 26
Pipe file manager 2
PIPEMAN 2
Pipes 2-3
Pointer, repositioning (I$seek) 119
Primary module 10
Print Error (F$perr) 115
Priority 16
Setting (F$sprior) 121
Process 9
Creating a new (F$fork) 10-11
Inserting into /O queue and putting to sleep
(F$ioqu) 140
Inserting into active queue for execution
scheduling (F$aproc) 141
Removing from active process queue and
executing (F$nproc) 142
Terminating the calling process (F$exit) 11, 94
Turning off the calling process until child process
dies (F$wait) 133
Turning off the calling process temporarily
(F$sleep) 130
Process age 12
Process descriptor 10
Process ID 11
Returning (F$id) 98
Process priority, setting (F$sprior) 121
Process states 11-12

Q

Queue 2

175

INDEX

R

Random Block File Manager 2, 27, 33-52
see RBFMAN
RBFDefs 32
RBFMAN 2, 27, 3-52
Read (I$read) 116
Read Line (I$readin) 117
Real-time clock 10
Starting (F$stime) 129
Request Sysmem (F$srgmem) 143
Return Sysmem (F$srtmem) 145
ROM modules 23-24
Root directory 37
RT! instruction 13, 16
RTS instruction 13, 16

S

SCFDefs 32
SCFMAN 2, 27, 53-65
Line editing functions 53-54
Search Bits (F$schbit) 118
Seek (I$seek) 119
Send (F$send) 13, 120
Sequential Character File Manager 2, 27, 53-65
see SCFMAN
Set IRQ (F$irq) 146
Set Priority (F$sprior) 121
Set SVC (F$ssvc) 126-127
Set Status (I$setstt) 122-125
Set SWI (F$sswi) 128
Set Time (F$stime) 129
Shell 3
Sleep (F$sleep) 12, 130
Sleeping state 12
Signal 12-13
Codes 13
Intercept trap, setting (F$icpt) 13
Sending (F$send) 120
String
Analyzing for legal 0S-9 name (F$prsnam)
113-114
Comparing strings (F$cmpnam) 86

176

INDEX

SWI interrupt 14
SWI2 interrupt 14
Setting interrupt vectors for (F$sswi) 128
SWI3 interrupt 14
Setting interrupt vectors for (F$sswi) 128
SYSGO 5
System call 6, 75
Adding or replacing (F$ssvc) 126-127
Lists 75, 149-155
Processing 5, 6-7, 76-77
Types 6-7
System initialization 5
System mode calls 76
System startup task (SYSGO) 5

T

Tick 10

Time 10, 19, 131
Returning (F$time) 131
Setting (F$stime) 129
Slice 10

U

Unix operating system iii
Unlink (F$unlink) 132
User calls 149-150, 153-154
User ID 11

Returning (F$id) 98
\

Vectors 14
Hardware 14

Setting for SWI2 and SWI3 instructions (F$sswi)

14, 128
Verify Module (F$vmodul) 147

177

INDEX

178

w

Wait (F$wait) 133
Waiting state 5, 11
Western Digital Floppy Disk Controller IC 39
Wildcard calls 99-102, 122-125
Working directory 84
Changing (I$chgdir) 84
Write (1$write) 134
Write Line (I$writeln) 135

26-3030
700-2331

0S-9 Addendum

Upgrade to Version 02.00.00

0S-9 Enhancements

0OS-9 Enhancements

This addendum introduces the changes and new features of
0S-9, Version 02.00.00. Some of the information is technical
and is only of interest to programmers. However, other fea-
tures of the new OS-9 Version 02.00.00 are of interest to all
system users.

Contents

Section 1 - Commands and Utilities

CONFIG 1
This new utility provides a menu of all /O (Input/Output)
options to let you select any legal combination of device
drivers. The utility automatically creates a new, customized
system diskette, according to your selections.

FORMAT 6
This command has an added option to let you format a
diskette without prompts.

HELP 8
This new feature displays the syntax and usage of standard
0OS-9 system commands.

INIZ .. 10
This new command forces the allocation of device buffers.
When used at startup, it keeps buffers from fragmenting
memory.

OSOGEN ... 11
This command is changed to operate on a single drive system
using the -s option.

TMODE 15
This command is changed to adjust for 32 or 80 column
screen displays and to let you alter the baud rate, word
length, stop bits, and parity of a device after it is initialized.
Additional information is also included in this command
description.

TUNEPORT 20
This command lets you determine and set the ideal internal
baud rate delay loops for your printer (/P) and terminal (/T1)
devices.

XMODE 21
This command is changed to adjust for 32 or 80 column
screen displays and to let you alter the baud rate, word
length, stop bits and parity of a device after it is initialized.
Additional information is also included in this command
description.

i

OTHER UTILITIES 25
Several other utilities are altered to adjust their screen sizes
for either 32 or 80 column displays.

Section 2 - System Changes 27

0S-9 now provides such capabilitics as a bell on the terminal
device, faster diskette access, multiple graphics buffers, key-
board enhancements, networking, 32 and 80 column screen
display and access to a Speech/Sound cartridge. Also there
are additions to the SCF Descriptor Tables of the 0S-9 Tech-
nical Information manual.

Section 3 - System Calls3l
Updated GETSTAT Call 31
Updated SETSTAT Call38
The VIRQ Call 44
Appendix B 47

Appendix D

Appendix E

iv

This appendix is an update of the OS-9 Commands manual
Appendix B, Display Svstem Functions, including new
graphics information.

This appendix is an update of the OS-9 Commands manual
Appendix D, Keyboard Control Functions and Characters.

This appendix provides information for using a hard disk
with OS-9.

Section 1 / Commands and Utilities

CONFIG

CONFIG provides menus of all I/O options and all system
commands. You select the device drivers and commands you
want to include on a new system diskette from these menus.
Selecting only the device drivers and commands you and
your system require lets you make the most efficient use of
computer memory and system diskette storage.

The CONFIG utility is on a separate CONFIG/BOOT
Diskette. Make a copy of this diskette using the OS-9
BACKUP command and use the copy as your working
diskette. Keep the original CONFIG/BOOT Diskette in a safe
place to use for future backups. You can use the CONFIG/
BOOT Diskette for booting OS-9 from Color Disk BASIC
from Drive /D0.

CONFIG requires no initial parameters. You establish param-
eters during the operation of CONFIG. Be sure that the exe-
cution directory is at /DO/CMDS before executing the
command.

Examples:

CONF I1G [ENTER]

CONFIG executes and a prompt asks you to indicate whether
you wish to use one or two disk drives. Press for single-
or for two-drive operation.

Next, CONFIG builds a list of the various devices from the
MODULES directory. When the list is complete, a screen
menu appears. Use the up and down arrow keys to move to a
device. Then, press {S] to either select or exclude a particu-
lar device. Press once to display an X to the right of the
selected device. Press again to erase the X. The device is
selected only when **X’" appears. Information about each
device is available with a special help command. To display
the information on the current device (the device indicated by

the arrow (-), press (H].

If there are more than ten devices in a CONFIG menu, use
to move ahead page-by-page and to move back.

The devices you can select are:

term 32 The computer keyboard and standard TV
display

term 80 The computer keyboard and optional 8%
column video display

dé Disk Drive 0

dl Disk Drive 1

d2 Disk Drive 2

d3 Disk Drive 3

hé-15 A 15 meg hard disk drive 0

hi-15 A 15 meg hard disk drive |

ho-35 A 35 meg hard disk drive 0

h1-35 A 35 meg hard disk drive |

p A printer using the RS§-232 serial port

tl A terminal port using the standard
RS-232 port

t2 A terminal port using the optional
RS-232 communications pak

t3 A terminal port using the optional
RS-232 communications pak

ml A modem

m2 A modem

ss¢ Speech/Sound Cartridge

To use your computer keyboard and video display. you must
select one rerm. You must select d@ as your first disk drive.
Select dI, d2. and d3 for additional floppy disk drives. Select
p to use a printer with OS-9, select ss¢ to use a Speech/
Sound Cartridge from a Multi-Pak slot, and so forth.

After selecting the devices you desire, press [D]. The screen
displays, ARE YOU SURE C(Y/N)> 7 If you are satisfied
with your selections, press (Y]. If you wish to make further
changes, press (N].

When the driver selection is complete, a screen prompt
requests that you select among the Color Computer terminal
[/0 subroutines. Select these subroutines in the same manner
that you selected the device drivers. You have the following
modules from which to make your selections:

CO32 A video output module for a 32 column
TV display

CO80 A video output module for a 80 column
video display
GRFO A graphics module for TV display

When choosing subroutine modules, you must sclect the
video output module that matches the terminal module you
previously selected for your console device.

CONFIG builds a boot list from the selected devices and
their associated drivers and managers. *‘Bootlist’” is created
in the ROOT directory of Drive @. CONFIG next displays
two clock options:

| - 60hz (American)
2 - 50hz (Europecan)

If you live in the United States, Canada, or other country
with 60hz electrical power, press (1], If you live in a coun-
try with 50hz power. press (2].

If you have a single disk drive, a screen prompt asks you to
swap diskettes and press [C]. When asked to inscrt the
SOURCE diskette, insert the CONFIG/BOOT Diskette. When
asked to insert the DESTINATION diskette, insert the diskette
on which you wish to create the new 0S-9 System.

If you have more than one drive, 4 screen prompt asks you to
insert a blank formatted diskette (the DESTINATION diskette)
in /D1. The rest of the boot file creation is automatic.

Following the boot file generation. a menu lets you select the
commands you wish to include on your system diskette. You
have the following choices:

[Nlo Commands, Stop Now

-—- Do not add any commands
[Blasic Command Set

— Add the basic OS-9 commands
[Flull Command Set

—— Add all OS-9 commands
[1lndividually Select

- Select desired commands one by one

[?) Receive Help
— Get help on the command set

Press @ if you want to create a boot file, but do not wish to
add any commands to the new system diskette. Use this
option to create a new boot file on a diskette on which you
have previously copied the OS-9 system. If you have only
one disk drive, this procedure is quicker than using the CON-
FIG utility to complete the entire system transfer, as less
diskette swaps are required.

Press if you wish to add a basic command set (the most
commonly used commands) to your new diskette. This selec-
tion does not copy the following:

® Assembly language development tools, asm, debug, and
edit and the DEFS directory

® Timesharing utilities, tsmon, login and the SYS/motd and
SYS/password files

® The system maintenance utilities, such as dsave, dcheck,
and cobbler.

Press to copy all of the commands (an exact copy of the
standard OS-9 system diskette, with a new boot file).

Press (1] to individually select commands to copy on the new
diskette. This option displays a selection similar to the device
selection screen. Again, press to select or exclude com-
mands, and usc the arrow keys to move among the com-
mands in the menu. Commands marked with an X are
selected. If a command does not have an X beside it, it is
excluded on the new system diskette.

If you have a multi-drive system, a prompt appears asking
you to insert your OS-9 system diskette in /D@. Press the
spacebar. The process finishes the CONFIG operation and
returns to OS-9.

If you have a single-drive system, you swap diskettes during
the final process. This time, the SOURCE diskette is the
0S-9 System Diskette. instead of the CONFIG/BOOT
Diskette. The DESTINATION diskette is the new system

diskette you are creating. The number of swaps in this proce-
dure, as well as in the boot file creation procedure, depends
on the number of options you select.

It would be quicker and easier to use BACKUP to create a
system disk, use CONFIG to create a new boot file, then
delete unwanted commands. However, this process causes
fragmentation of diskette space. Fragmentation results in
slower diskette access, and free memory is broken into seg-
ments that might not be large enough for some OS-9 opera-
tions. CONFIG causes no fragmentation.

The MODULES directory of the CONFIG/BOOT diskette
contains all the device drivers and descriptors supported by
0S-9. The filename extension describes the type of file, as
noted in the following table:

Extension Module Type

.dd Device Descriptor module

.dr Device Driver module

10 Input/Output subroutine module
hp Help file

FORMAT

FORMAT devname [R] [diskname)

Initializes. verifies, and establishes an initial file structure on
a diskette. You must format all blank diskettes before you can
use them on an OS-9 system.

Options:

devname is the drive name of the diskette you wish to
format, DO or DI.

R causes the format to proceed automatically,
without displaying prompts.

diskname is the name you wish to assign to the newly
formatted diskette. The diskname must be
enclosed in double quotation marks.

Notes:

Be sure the diskette you want to format is NOT write pro-
tected. If a write-protect tab is in place, the system returns to
the OS-9: prompt without formatting the diskette.

The formatting process works this way:

1. FORMAT physically initializes the diskette and organizes
its surface into sectors.

2. FORMAT rcads back and verifies cach sector. If FOR-
MAT fails to verity a sector after several attempts, it
excludes that sector from the initial free space on the
diskette. As the verification proceeds, track numbers
appear on the screen.

3. FORMAT writes the diskette allocation map, ROOT
directory. and identification sector to the first few sectors
of track zero. These sectors must not be defective.

At the prompt, type a diskette volume name. You can use as
many as 32 characters, including spaces or punctuation.
(Later, you can use the FREE command to display the
name.)

For step-by-step instructions on formatting, refer to Getting
Started with 0S-9.

Examples:

FORMAT /D1

formats a diskette in Drive 1.

FORMAT /D1 R “test disk"

formats the disk in Drive 1, with the name Tesr Disk.

HELP

HELP command name [. . . |

Displays the usage and syntax of OS-9 commands.

Options:

command is the command for which you want syntax

name help. Include as many command names in one
HELP tine as you wish. The proper form and
syntax appears for each valid command you
include.

Notes:

To use HELP, first copy Cmds.hp from the SYS directory of
the CONFIG/BOOT diskette to the SYS directory of your
system diskette. Next, copy HELP from the CMDS directory
of the CONFIG/BOOT Diskette to the CMDS directory of
your system diskette as follows:

Procedure for one disk drive:

1.

With OS-9 booted and the system diskette in your drive,
type:

LOAD COPY

. Replace the system diskette with the CONFIG/BOOT

Diskette, and type:

COPY /D@/SYS/CMDS.HP
/D@/SYS/CMDS.HP -S #3BK [ENTER

. Exchange the two diskettes as requested by the screen

prompts until the process is complete.

Again, place the CONFIG/BOOT Diskette in the drive,
and type:

COPY /D@/CMDS/help /D@/CMDS/help
-5 #30K

. Swap diskettes as requested until the process is complete.

Procedure for two disk drives:

1. With OS-9 booted, place the CONFIG/BOOT Diskette in
Drive 1. Be sure the system diskette is in Drive 0.

2. Type:

COPY /D1/SYS/CMDS.HP
/DB/SYS/CMDS . HP

3. When the first copy is complete, type:

COPY /D1/CMDS/help
/DB/CMDS/help

Cmds.hp is a data file, not a text file, and you cannot suc-
cessfully display it on your screen or edit it with a standard
text editor. It contains help for standard OS-9 commands.

HELP displays the form and syntax of the specified com-
mand. If you use a non-standard command name, a screen
display tells you that help is not available for that command.

Examples:

HELP BACKUP [ENTER
BACKUP l[ellsl)l-vlidevlidev]

Copies all data from one device to another

HELP ME
ME Help not available

HELP

HELP [command namell...]

INIZ

INIZ devicename | . . .]

10

Links the specified device to OS-9, places the device address

in a new device table entry, allocates the memory needed by

the device driver, and calls the device driver initialization

routine. If the device is alrcady installed, INIZ does not rein-

itialize it.

Options:

devicename is the name of the device driver you want to
initialize. Specify as many device drivers as
you wish with one INIZ command.

Notes:

You can use INIZ in the startup file or at the system startup
to initialize devices and allocate their static storage at the top
of memory (to reduce memory fragmentation).

Example:

INIZ P T2

initializes the P (printer) and T2 (terminal 2) devices.

OS9GEN

OS9GEN devname [-s] [#nK]

Creates and links the required OS9Boot file on any diskette
from which you wish to boot OS-9.

Options:

devicename is the disk drive containing the diskette on
which you wish the new boot file to be
created.

-s causes OS9GEN to perform a single-drive
boot file generation operation. In a single-
drive operation, OS9GEN reads the mod-
ules from the source diskette and requests
that you exchange diskettes and press as
the modules are read and copied.

#nK reserves n kilobytes of memory for use by
the OSYGEN command. By setting aside as
much memory as possible, you can increase
the speed of OS9GEN and, on single-drive
systems, lessen the number of diskette
Swaps.

Notes:

OSYGEN adds modules to an existing boot file, or creates a
new one. (If you want an exact copy of the existing
0S9Boot, you can also use COBBLER).

OS9GEN creates a working file called tempboot on the
device specified by devname. Next, it reads filenames (path-
names) from its standard input (the keyboard), one pathname
per line. OS9GEN opens each file and copies it to tempboot.
The process repeats until it reaches an end-of-file marker or a
blank line. All boot files must contain the OS-9 component
modules listed in Section 5.1 of the 0S§-9 Commands
manual.

With all input files copied to tempboot, OS9GEN deletes the
OS9Boot file, if it exists. Tempboot is renamed OS9Boot,

11

12

and its starting address and size are written in the diskette’s
Identification Sector (LSN @) for use by the OS-9 bootstrap
firmware. OS-9 writes its kernel on diskette Track 34. If
there is not room for the 02.00.00 kernel, an error message
displays and the operation terminates.

An OS9Boot file must be in physically contiguous sectors.
Therefore, you normally use OS9GEN on a newly formatted
diskette. If the OS9Boot file is fragmented, OS9GEN prints a
warning message indicating that you cannot use the diskette
to bootstrap OS-9.

You can either enter a list of filenames from the keyboard for
OSY9GEN or you can direct input to OS9GEN from a file
containing a list of filenames. If you enter names manually,
no prompts are given. Press after typing each file-
name. After typing the last filename and [ENTER], press
again, or press to complete the list.

If you have only one drive, you can more easily generate a
new boot file using the CONFIG utility. CONFIG is
designed to make custom system diskettes using either single-
or multiple-drives.

Examples:

DS9GEN /D1
/DB/0S9Boot

Manually installs a boot file on device /D1 that is an exact
copy of the OS9Boot file on device /D@. The first command
line runs OS9GEN. The second enters the name of the file to
install, and the third enters an end-of-file marker.

0S9GEN /D1 [ENTER
/DB/0S9Boot

/D@/tape.driver [ENTER

/D2/video.driver

Manually installs a boot file on device /D1 that is a copy of
the OS9Boot file on device /D@ plus the modules stored in

the files /D@/tape.driver and /D2/video.driver. The first com-
mand line runs OS9GEN. Line 2 enters the main boot file-
name. Lines 3 and 4 enter the names of the two additional
files, and Line 5 enters an end-of-file marker.

BUILD /D®@/bootlist

? /DB8/0S9Boot
? /D@/CMDS/DIR [ENTER

? /DB/CMDS/COPY [ENTER

?
0S9GEN /D1</D@/bootlist

Generates a new boot file on Drive 1 that includes all the old
boot file functions plus loads DIR and COPY into memory
on startup. Line 1 uses BUILD to create a file called boot-
list. The next three lines enter the names of the three files
within bootlist. Line 5 terminates BUILD, and Line 6 runs
OS9GEN with input redirected from the new bootlist file.

To install a custom boot file on a single drive system, it is
casiest to build a bootlist to drive the OS9GEN program. You
also need a directory that contains the required file man-
agers, device drivers, discriptors. and other files for the boot
file. For example. to make a new boot file containing only
/TERM, /D@ and /P devices. first build a bootlist such as:

BUILD /DB/Bootlist
10MAN
RBF
CCDisk
Do

SCF
cclo
TERM
PRINTER
P

CLOCK
SHELL
SYSGO

13

14

This procedure creates a bootlist on Drive @ in preparation
for a single-drive OS9GEN operation. You must locate all of
the files-in the current data directory by SAVEing the mod-
ules from memory into the directory. Then, use OS9GEN to
create the new boot file on a separate diskette by typing:

O0S9GEN /D@ -s #25K

</D@/Bootlist [ENTER

This command causes OS9GEN to use only one drive, 25K
buffer space, and the filenames previously stored in the
bootlist file.

You must have RENAME in the current execution directory
or in memory for OS9GEN to work properly.

TMODE
TMODKE [.pathnum] [paramlist] [. . .]

Displays or changes the operating parameter’s of the

terminal.

Options:

upc Displays uppercase characters only. Lower-
case characters automatically convert to
uppercase.

-upc Displays both upper- and lowercase
characters.

bsb Causes backspace to erase characters.
Backspace characters echo as a backspace-
space-backspace sequence. This setting is
the system default.

-bsb Causes backspace not to erase. Only 4 sin-
gle backspace echoes.

bsl Enables backspaces over a line. Deletes
lines by sending backspace-space-backspace
sequences to erase a line (for video termi-
nals). This setting is the system default.

-bsl Disables backspace over a line. Lines are
deleted by printing a new line sequence (for
hard-copy terminals).

echo Input characters echo back to the terminal.
This setting is the system default.

-echo Turns off the echo default.

If Turns on the auto line feed. Line feeds
automatically echo to the terminal on input
and output carriage returns. This setting is
the system default.

-1f Turns off the auto line feed default.

15

16

pause

-pause

null =n

pag=n

bsp=nh

bse=h

del=h

bell=h

cor="h

eof=h

Turns on the screen pause. This setting sus-
pends output when the screen is full. See
the pag parameter for definition of screen
size. Resume output by pressing the space
bar.

Turns off the screen pause mode.

Sets the null count, scts the number of null
($00) characters transmitted after carriage
returns for return delay. The number is in
decimals. Default = 0.

Sets video display page length to n (deci-
mal) lines. This setting is used for pause
mode.

Sets the input backspace character and
requires a hexadecimal value. Default =
08.

Sets the output backspace character and
requires a hexadecimal value. Default =
08.

Sets input delete line character and requires
a hexadecimal value. Default = 8.

Sets the bell (alert) output character and
requires a hexadecimal value. Default =
07.

Sets the cnd-of-record (carriage return)
input character. Requires a value in hexa-
decimal. Default = 0D.

Sets the end-of-file input character and
requires a hexadecimal value. Default =
IB.

type=h For external devices, type is used for ACIA
initialization values (hexadecimal). The
default = 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes
for these are:
® = no parity
101 = MARK parity transmitted, no

checking
111 = SPACE parity transmitted, no
checking
011 = even parity only available
with the
001 = odd parity external ACIA
pak and

Modpak devices.
Bits -3 are reserved for future use.

Bit 4 is used to select auto-answer modem
support features.
1 = on
0 = off
See Color Computer 1/0 Devices for
further information.

For TERM, the type byte has a different
use:
Bit 0 specifies a machine with true
lowercase capability. Set bit 0 to turn
on true lowercase.

Bit | specifies output screen size.
Clear bit 1 for 32 column output to
the video screen. Set bit 1 for 80 col-
umn output to the video screen
through the 80 column card.

reprint=h Sets the reprint line character and requires a
hexadecimal value.

17

18

dup=h Sets the character to duplicate the last input
line and requires a hexadecimal value.

psc=nh Scts the pause character. The numeric value
of the character is in hexadecimal.

abort="#h Sets the terminate character (normally
CONTROL C). The numeric value of the
character 1s in hexadecimal.

quit=~h Sets the quit character (normally CON-
TROL E). The numeric value of the charac-
ter 15 in hexadecimal.

baud =h Sets baud, word length, and stop bits rate
for software-controtlable interface. The
numeric codes for baud rate are: 0=06E,
1=12C, 2=258, 3=4B0, 4=960,
5=12C0, 6=2580, 7=4B00 in
hexadecimal.

Bits 0-3 determine the baud rate

Bit 4 is reserved for future use

Bits 5-6 determine the word length:
00 =28 bits
01=17 bits

Bit 7 determines the number of stop
bits:
0= 1 stop bit
1 =2 stop bits.

Notes:

You can specify any number of parameters from the options
list, separating them by spaces or commas. If you don’t
specity parameters, the output is determined by the current
TMODE status.

You can also use a period and a number to specify the output
pathnumber. If you don’t specify any, TMODE affects the
standard input path.

This utility adjusts its output for either an 8@ or 32 column
display.

If this command is used in a SHELL procedure file to
change the terminal’s operating characteristics, you must use
the parameter .pathnum to specify one of the standard output
paths (1 =standard output, and 2 =standard error). The
change remains in effect until the path closes. To make a
permanent change to a device characteristic, change the
device descriptor.

TMODE works only if a path to the file/device is open. You
can alter the device descriptor to set a device's initial operat-
ing parameter using XMODE (see the OS-9 Commands
manual).

TMODE can also alter the baud, word length, stop bits, and
parity for devices already initialized.

Examples:

TMODE -upc 1f null=4 pause

TMODE pag=24 pause bsl
-echo bsp=8

Note: If you use TMODE in a procedure file, it is necessary
to specify one of the standard output paths (.1 or .2),
because the SHELL’s standard input path is redirected to the
diskette file. (You can use TMODE only on SCFMAN-type
devices.)

Example:

TMODE .1 pag=24

This sets lines per page for standard output.

19

TUNEPORT

TUNEPORT </P or /T1> [-s = value]

20

Lets you test and set delay loop values for the current baud
ratc and select the best value for your printer (/P) or terminal
(TI).

Examples:

TUNEPORT /P

Provides a test operation for your printer. After a short delay,
TUNEPORT displays the current baud rate and sends data to
the printer to test if it is working properly. The program then
displays the current delay value and asks for a new value.
Enter a decimal delay value and press (ENTER). Again, test
data is sent to the printer as a test. Continue this process
until you find the best value. When you are satisfied, press
instead of entering a value at the prompt. A closing
message displays your new value.

Use the same process to set a new delay loop value for /T1
terminal.

TUNEPORT /P -s5=225

Sets the delay loop value for your printer at 255. Use such a
command on future system boots to set the optimum delay
valuc determined with the TUNEPORT test function. Then,
using OS9GEN or COBBLER, generate a new boot file for
your system diskette. You can also use TUNEPORT in your
system startup file to set the value using the -S option.

XMODE

XMODE devname [paramlist]

Displays or changes the initialization parameters of any SCF-
type device such as the video display, printer, RS-232 port,

and others.

XMODE is commonly used to change baud rates and control

key definitions.

Options:

upc

-upc

bsb

-bsb

bsl

-bsl

echo

-echo

Sets the screen display to uppercase only.
Lowercase characters automatically convert
to uppercase.

Sets the screen display to upper- and
lowercase.

Causes a backspace to erase characters. A
backspace character echoes as a backspace-
space-backspace sequence.

Turns off erase on backspace. Only a sin-

gle backspace echoes.

Enables backspace over line function. Lines
are deleted by sending backspace-space-
backspace sequences. This option is for
video terminals and is the default option.

Disables backspace over line. Lines are
deleted by producing a new line sequence

(this option is for hard-copy terminals).

Causes input characters to echo to the ter-
minal. This is the default option.

Disables the echo function.

21

22

pause
-pause
null =n
pag=#
bsp=h
bse =h
del=nh
bell=h
eor=~h
eof =h

Turns on the auto line feed. Line tceds
automatically ccho to the terminal on input
and output carriage returns. This 1s the
default option.

Turns off the auto line feed.

Turns on the screen pause mode. This set-
ting suspends output when the screen is
full. See pag parameter for definition of
screen size. Resume output by pressing any
key.

Turns off the screen pause mode

Sets the null count, the number of null
characters ($00) transmitted after a carriage
return. The number is a decimal value.
Default = 0.

Sets video display page length to n (deci-
mal) lines. This setting is used for pause
mode.

Sets the input backspace character and
requires a hexadecimal value. Default =
08.

Sets the output backspace character and
requires a hexadecimal value. Default =
08.

Sets the input delete line character and
requires a hexadecimal value. Default =
18.

Sets the bell (alert) output character and
requires a hexadecimal value. Default =
07.

Sets the end-of-record (carriage return)
input character. Requires a value in hexa-
decimal. Default = 0D.

Sets the end-of-file input character. The
numeric value the character is hexadecimal.
Default = 1B.

type=h

reprint =h

dup=~h

For external devices, type is used for ACIA
initialization values (hexadecimal). The
default = 00. Bits 5-7 set cither MARK,
SPACE, or no parity on all devices. Codes
for these are:

0 = no parity
101 = MARK parity transmitted, no
checking
111 = SPACE parity transmitted, no
checking

011 = even parity only available
with the ex-

00t = odd parity ternal ACIA
pak and
Modpak
devices.

Bits -3 are reserved f()r.future use.

Bit 4 selects auto-answer modem support
features.
Il = on
0 = off
See Color Computer 1/0O Devices for
further information.

For TERM, the type byte has a different
use:
Bit 0 specifies a machine with true
lowercase capability. Set bit @ to turn
on true lowercase.

Bit 1 specifies output screen size.
Clear bit 1 for 32 column output to
the video screen. Set bit 1 for 89 col-
umn output to the video screen
through the 80 column card.

Sets the reprint line character. Use a hexa-
decimal numeric value.

Sets character to duplicate last input line
character and requires a hexadecimal value.

23

24

psc=h Sets pause character and requires a hexa-
decimal value.

abort=~h Sets the terminate character (normally
CONTROL C) and requires a hexadecimal
value.

quit=~h Sets the quit character (normally CON-

TROL E) and requires a hexadecimal value.

baud = h Sets baud, word length, and stop bits rate
for software-controllable interface. The
numeric codes for baud rate are: @=6E
1=12C, 2=258, 3=4B0, 4=960,
5=12C0, 6=2580, 7=4B00 value is in
hexadecimal.

Bits 0-3 determine the baud rate

Bit 4 is reserved for future use

Bits 5-6 determine the word length:
00 = 8 bits
01 =7 bits

Bit 7 determines the number of stop
bits:
0 =1 stop bit
1 =2 stop bits.

Notes:

XMODE is similar to TMODE, but there are differences.
TMODE operates only on open paths, so its effect is tempo-
rary. XMODE updates the device descriptor; its change per-
sists as long as the computer is running, even if you or the
system repeatedly open and close the paths to the device.

If you use XMODE to change parameter(s) and the COB-
BLER program to make a new system diskette or re-write
system tracks on the current system diskette, the changed
parameter is permanently on the new system diskette.

XMODE requires that you specify a device name. If you do
not specify parameters, the present values for each parameter
display. You can use any number of parameters separating
them by spaces or commas.

Examples:

XMODE /TERM -~upc 1f null=4 bse=1F
pause

XMODE /T1 pag=24 pause bsl -echo
bsp=8

XMODE /P baud=3 -1f
Other Utilities

Several other OS-9 utilities are altered to adjust their screen
size to either a 32 or 80 column display. This is done using
the new SS.ScSiz GETSTAT call (see the GETSTAT call sec-
tion of this addendum for full information.)

The utilities altered in this manner are:

CONFIG DIR DUMP LOGIN
MDIR PROCS TMODE XMODE

25

Section 2 — System Changes

Beep To create a short sound from your terminal speaker,
send a CTRL G or character 7 to the terminal. You can cause
a beep from BASIC with the command PRINT CHRS(7). To
cause a beep from 0S-9, type DISPLAY 87 (ENTER].

Error Codes System Error $DC (220 decimal) is defined
as a HANG UP error and indicates that the RS232 data car-
rier detect is lost. It replaces the ILLEGAL BLOCK SIZE
error on page 164 of the 0S-9 Technical Information manual.

CCIO The Color Computer Input/Output module is now
divided into three separate sections. The graphics portion of
the module does not load on startup. To load the graphics
portion, type LOAD GRFO at the OS-9 prompt. Because
graphics draw routines are not pre-Joaded, more memory is
available for programs that do not require graphics capabili-
ties. See Appendix B for more information on graphics.

Video Output Separate subroutine modules, CO32 and
CO80 handle video output. CO32 provides a standard 32 col-
umn TV display and is included in the standard boot. CO8G
provides an 8@ column video display when used in conjunc-
tion with an optional 8@ column card.

Hard Disks A driver is available for one or two 15 or 35
meg hard disk units. Use the CONFIG utility to prepare your
system for hard disk capability. See Appendix E for more
information on hard disks.

Clock Interrupt A system change now permits clock inter-
rupt accessibility to device drivers. See the VIRQ system call
in Section 3.

Drive Descriptors The descriptors for Disk Drives 2 and 3
are removed from the OS-9 boot file. The descriptors are not
resident in memory when the system is initialized. If you
wish to us¢ more than two disk drives, replace the descrip-
tors in the boot file using OS9GEN, CONFIG, or
COBBLER.

27

28

Graphics Display Buffer A ‘‘Setstat’” function now allows
for allocation and deallocation of additional graphics buffers.
See the SETSTAT system call in the next section.

Graphics Driver Enhancements Several new graphics func-
tions are added to the graphics module. See the information
in the Appendix B Update. This is the updated version of the
0S§-9 Commands manual Appendix B, Display System
Functions.

Speech/Sound There is now a speech and sound driver
added for the Speech/Sound Cartridge. Select the Speech/
Sound (ssc¢) driver through the CONFIG utility (See CONFIG
in Section 1).

Keyboard Driver Enhancements The keyboard driver now
has an auto key-repeat and the capability of generating new
codes and status values. The following new features are
added through the GETSTAT system call:

® GETSTAT now returns the current key press status for the
following keys:

(@)
((CLeAR)
[

[

(]

£

he spacebar

—~

See GETSTAT in System Calls for more information.

° serves as an ALT key to set the high order bits on
characters typed from the keyboard. For instance, pressing
(A] generates a code of 65 (producing a character A),

pressing generates a code of 193 (producing a
graphics character)

® The auto key-repeat feature causes a key to repeat when
you press it for longer than one second.

SCF Descriptor Tables

Add the following information to the path descriptor table
SCFMAN Option Section Definition (PD.OPT Section),
beginning on Page 55 of the OS-9 Technical Information
manual. PD.XON replaces the previous PD.STN entry.

Name

Relative Size
Address (Bytes) Use

PD.XON
PD.XOFF

$38 1 ACIA XON char
$39 1 ACIA XOFF char

PD.XON

PD.XOFF

PD.PAR

PD.BAU

contains either the character to enable trans-
mission of characters or a null to disable
XON.

contains either the character to disable
transmission of characters or a null to dis-
able XOFF.

specifies parity information for external
serial devices. See the explanation of the
TMODE type byte in this addendum for
more information.

specifies baud rate, word length, and stop
bit information for serial devices. See the
explanation of the TMODE baud byte in
this addendum for more information.

SCF-Device Memory Area Definitions

Add the following information to the SCF-Device Memory
Area Definitions table, beginning on page 59 of the OS-9
Technical Information manual. (V.XON replaces the previous
entry, V.SCF in the table.) See the OS9DEFS directory on
your system diskette for additional information.

29

Relative Size

Name Address (Bytes) Use

V.XON $OF 1 XON character

V. XOFF $10 | XOFF character

V.KANIJI $11 1 Reserved

V.KBUF $12 2 Reserved

V.MODAPR $14 2 Reserved

V.PDLHD $16 2 Header of path
descriptor list

V.RSV $18 5 Reserved

V.SCF equ S$ID End of SCF memory

requirements

Add the following information to the SCF-Tvype Device
Descriptor Modules table on Page 57 of the OS-9 Technical
Information manual:

Relative Size

Name Address (Bytes) Use

IT.XON $2A 1 X-ON character

IT.XOFF $2B I X-OFF character

IT.COL $2C 1 Number of screen
columns

IT.ROW $2D 1 Number of screen
rows

Note: IT.XON replaces the previous I'T.STN entry in the

device descriptor.

Section 3 — System Calls

GETSTAT
0S-9 ISGETSTT

Function:

103F 8D

Gets the status of a device. This call is a “*wild card’’ call
used to handle individual device parameters that:

@ arc not uniform on all devices
® are highly hardware dependent
® need to be user-changeable

Following are the currently defined function codes for

GETSTAT:

Mnemonic Code Function

SS.0pt $00 Reads the 32 byte options section of
the path descriptor

SS.Ready $01 Tests for data ready (RBF, ACIA)

SS.Size $02 Returns the current file size (RBF)

SS.Pos $05 Gets the current file position (RBF)

SS.Eof $06 Test for the end of file (RBF, ACIA)

SS.DevNm $0E Returns the device name (IOMAN)

SS.DStat $12 Returns graphics display information

SS.Joy $13 Returns joystick information

SS.AlfaS $i1C Returns alpha screen information

SS.Cursr $25 Returns cursor information

SS.Sc¢Siz $26 Returns screen size information

SS.KySns $27 Returns the key down information
packet

SS.ComSt $28 Returns parity, stop bit, word length,

baud rate information for SCF devices

Following are the parameter passing conventions for the
GETSTATS function codes.

31

S§S.0pt (Code $00) Reads the option section of the path
descriptor and copies it into the 32-byte area pointed to by
Register X. Use this code to determine the current settings
for editing functions such as echo and auto line feed. For a
complete description of the status packet, see the section on
path descriptors.

Entry Conditions:
A = path number
B = $00
X address of place to put a 32-byte status packet

il

Exit Conditions:
Status packet

Error:
CC = C bit set
B = error code

SS.Ready (Code $01) Tests for data available on SCF-sup-
ported devices.

Entry Conditions:
A = path number
B =501

Exit Conditions:
If ready:
CC = C bit clear
B = number of bytes available, or 0 if the byte count
is not supported by the driver.

If not ready:
CC = C bit set
B = $F6 (ESNotRDY)

Error:
CC = C bit set
B error code

SS.Size (Code $02) Gets the current file size (RBF-sup-
ported devices only).

Entry Conditions:
A = path number

B = %02
Exit Conditions:
X = ms 16 bits of the current file size
U = ls 16 bits of current file size
Error:
CC = C bit set
B = error code

SS.Pos (Code $65): Gets the current file positions (RBF-
supported devices only).

Entry Conditions:
A = path number

B =305
Exit Conditions:
X = ms 16 bits of the current file position
U = Is 16 bits of the current file position
Error:
CC = C bit set
B = error code

SS.EOF (Code $06): Tests for end of file.

Entry Conditions:
A = path number
B = $06

Exit Conditions:

Not EOF C bit set Error
C bit clear C bit set C bit set
Ze10 $D3 (E$SEOF) Error codes

33

Error:
cC
B

C bit set
appropriate error code

SS.DevNm (Function Code $0E): Returns the device
name.

Entry Conditions:

A = path number
B = $0E
X = address of 32-byte area for device name

Exit Conditions:
Device name in 32-bytc storage area

SS.DStat (Code $12); Returns the display status.

Entry Conditions:
A = path number
B =3I2

Exit Conditions:
X = address of the graphics display memory
Y graphics cursor address; x = msb, y = Isb
A = color code of the pixel at the cursor address

I

SS.Joy (Code $13): Returns the joystick values.

Entry Conditions:
A = path number
B =313
X = 0 (right joystick) or 1 (left joystick)

Exit Conditions:
X = selected joystick x value (0-63)
Y selected joystick y value (0-63)
A $FF (if fire button is on) or $00 (if fire button
is off)

SS. AlfaS (Code $1C): Returns information about alpha
screen memory.

Entry Conditions:
A = path number
B =3IC

Exit Conditions:
A = caps lock status
$00 = lowercase
$FF = uppercase
X = address of buffer in memory
Y = address of cursor in memory

SS.Cursr (Code $25): Returns cursor information from
alpha screen.

Entry Conditions:
A = pathnumber

B =$25
Exit Conditions:
A = character under cursor
X = x position of cursor {column)
Y =y position of cursor (row)

SS.ScSiz (Code $26): Returns size of screen (default from
descriptor).

Entry Conditions
A = pathnumber

B = %26

Exit Conditions:
X = number of columns on screen
Y = number of rows on screen

Note: These are the bytes IT.COL and IT.ROW follow-
ing the IT.XOFF byte in the device descriptor. See
SCF-Type Device Descriptor Modules in the OS-9 Tech-
nical Information manual for full information.

SS.KySns (Code $27): Returns key down information
packet.

Entry Conditions:
A = path number
B =$27

35

Exit Conditions:

A = byte with bits set to indicate which key was
down at the last keyboard scan.

@ = bit not set and key not down
1 bit set and key down

—

Key

Shift Key
Control/Clear Key
Alt/@@ key

= Up arrow key

= Down arrow key
Left arrow key

= Right arrow key
= Space key

[Tt

l

I

NI NV I RO R v v]

The following information can be included as equates
for the different bit positions:

SHIFTBIT equ %00000001
CNTRLBIT equ %00000010
ALTERBIT equ %00000100
UPBIT equ %00001000
DOWNBIT equ %00010000
LEFTBIT equ %00100000
RIGHTBIT equ %01000000
SPACEBIT equ % 10000000

SS.ComSt (Code $28): Return information on parity, stop
bits, word length, and baud rate for SCF devices.

Entry Conditions:
A = path number
B = $28

Exit Conditions:
Y = msb parity byte of path descriptor (parity)
Isb baud rate of path descriptor (baud, word
length, stop bits)

High order byte of Y:
Bits 0-4 - Reserved
Bits 5-7 - Parity code
000 = no parity
001 = odd parity transmitted and
received
011 = even parity transmitted and
received
101 = mark parity transmitted, no
receiver parity checked
111 = space parity transmitted. no
receiver parity checked

Note: Reserved bits are used by some Color
Computer drivers.

Low order byte of Y:
Bits 0-3 - Baud rate code

0 =110

= 300

= 600

1200

2400

4800

9600

= 19200

I

Il

i

N B W R -
I

Bit 4 - Reserved
Bits 5-6 - Word length
00 = 8 bits
01 = 7 bits
Bit 7 - Stop Bits
0 = 1 stop bit
I = 2 stop bits

SCF uses this call to determinc what the current values for
PD.PAR and PD.BAU should be. You can make this call, but
doing so does not update the path descriptor. Use SS.Opt to
maintain the path descriptor in a valid state.

37

SETSTAT
EOS-9 I$SETSTT

38

Function:

103F 8E

Sets the status of a device. This call is a “*wild card’" call
used to handle individual device parameters that:

® are not uniform on all devices
® urc highly hardware dependent

® need to be user-changeable

Following arc the presently defined function codes for

GETSTAT:

Mnemonic Code Function

SS.Opt $00 Writes the 32 byte
options section of the
path descriptor

SS.Size $02 Sets the file size (RBF)

SS.Reset $03 Restores hcad to track
zero

SS.WTrk $04 Writes (format) track

SS.Feed $09 Issues Form Feed (SCF)

SS.FRZ SOA Freezes DD. information

SS.SPT $0B Sets sectors per track

SS.SQD $oC Disk drive sequence
down

SS.DCMD S0D Directs command to disk
collector

SS.KySns $27 Enables/Disables key-
board sense ability

SS.ComSt $28 Sets baud, parity, stop
bit, word length informa-
tion for SCF devices.

SS.AAGBf $80 Allocates additional
graphics buffers

SS.SLGBf $81 Select graphics buffer

SS.0pt (Code $08): Writes the option section of the path
descriptor from the 32-byte status packet pointed to by the X
register. It is typically used to set the device operating
parameters, such as echo and auto line feed.

Entry Conditions:
A = path number
B = %00
X address of a 32-byte status packet

It

Exit Conditions: none
SS.Size (Code $02): Set file size for RBF-type devices.

Entry Conditions:

A = path number

B =302
X = ms 16 bits of desired file size
U = Is 16 bits of desired file size

|

Exit Conditions: none

SS.Reset (Code $03): Restores disk drive head to track
Z€ero.

Entry Conditions:
A = path number
B = 3503

Exit Conditions: none

SS.Wtrk (Code $64): Formats a floppy diskette track. The
entire diskette is formatted when the track number equals
zZero.

Entry Conditions:

A = path number

B = 3%04

X = address of track buffer
U track number

i

39

40

Y = side/density
Bit B0 = side (0 = side zero, 1 = side
one)
Bit Bl = density (0 = single, | = double)
(The high order byte contains the number of
sides)

Exit Conditions: none

SS.FRZ (Code $6A): Inhibits the reading of the identifica-
tion sector (LSN @) to memory so non-standard disks can be
read.

Entry Conditions:
A = path number
B = 3%0A

Exit Conditions: none

SS.SPT (Code $0B): Scts a different number of sectors per
track so non-standard disks can be read.

Entry Conditions:

A = path number
B = 40B
X = new scctors per track

Exit Conditions: none

SS.SQD (Code $0C): Sequence down—initiates power-
down sequence for Winchester or other hard disks which have
sequence-down requirements prior to the removal of power.

Entry Conditions:
A = path number
B =3%0C

Exit Conditions: none

SS.KySns (Code $27): Sets or resets special key sense
function according to the contents of X.

Entry Conditions:
A = path number

B =8§27

X = Keysns switch value
0 = disable key sense and return to normal key
operation
1 = enable key sense mode

Exit Conditions: none

Error:

CC = C set on error
B = Error code if one exists

With the keyboard in the key sense operation mode, the keys
in the following list do not send characters to SCF devices or
to the screen when pressed. The only method of determining
a keypress is through the GETSTAT call. Take care to re-ena-
ble the standard mode before reading commands from the ter-
minal. The KeySns GETSTAT call returns the proper bits set
even if the keys are all generating output.

Key Sense Code:

g
-

Key

NS s =S

(AT)(e]

OOEE

The spaccbar

The following is suggested cquates for the bit positions:

SHIFTBIT
CNTRLBIT
ALTERBIT
UPBIT
DOWNBIT
LEFTBIT
RIGHTBIT
SPACEBIT

equ
equ
equ
equ
equ
equ
equ
equ

% 00000001
%00000010
% 00000100
00001000
%0001 0000
%00 100000
%0 1000000
% 10000000

41

42

SS.ComSt (Code $28): Sets parity, baud, word length, and
stop bit information for SCF-type devices.

Entry Conditions:
A = path number
B = 3$28

Exit Conditions:
Y = msb parity bite
Isb baud byte (baud, word length and stop bits)

SSCF devices currently use this Setstat to inform a driver
that the parity or baud bytes are changed in the path descrip-
tor. If you make this Setstat call, the path descriptor is not
updated until you make the next S§.Opt Getstat call. Then,
the path descriptor is updated with the new information.

SS.HngUp (Code $2B): Flushes buffers and shuts down
modem port on phone hang up.

Entry Conditions:
A = path number
B =3$2B

Exit Conditions: none

You can use this call with true ACIA drivers (T2, T3, MI,
M2).

SS.AAGBf (Code $80): Allocates additional graphics
buffer—sets additional 6K graphic buffers. Select the first
buffer with the standard DISPLAY graphics command (writ-
ing control code 15 to the standard terminal driver). Request
additional buffers (as many as three) by using this Setstat.
Buffers are numbered 0-2 where 0 is the buffer allocated by
the DISPLAY graphics command and 1 and 2 are buffers
allocated using the SS.AAGBf Setstat. The additional buffers
affected by this routine remain allocated until the end graph-
ics command is received.

Entry Conditions:
A = path number
B = $80

Exit Conditions:

X = address of buffer

Y = buffer number (0, 1, 2)
Error:

cC
B

C bit set
error code

il

Il

SS.SLGBf (Code $81): Selects graphics buffer as the cur-
rent draw and display buffer or the current display buffer.
You can select buffers as foreground buffers without display-
ing them. The SS.Dstat call returns the address of the current
foreground buffer and not necessarily the displayed buffer.

Entry Conditions:
A = path number
B = $8l1
X = mode
0 = select buffer as current use buffer
non @ = select buffer as current use buffer and
cause the buffer to be displayed
beginning at the next clock interrupt.
Y = buffer number (0, 1, 2

You can select an additionally allocated buffer and draw in it
before you display it. Use SS.SLGBF to cause the foreground
screen to display at the next clock interrupt.

Exit Conditions:
X = mode (unchanged)
Y = buffer number (0, !, 2) (unchanged)

Error:
CC = C bit set
B = error code

43

VIRQ
E0S-9 F$VIRQ

4“4

103F 27

Function

Sets the number of clock ticks at which a device can be
interrupted. VIRQ is useful with devices in the Multi-Pak
expansion slots that can generate physical interrupts on the
processor but which cannot be recognized by the processor
because of the lack of an IRQ line from the Multi-Pak. It is
also uscful for devices without physical interrupts. VIRQ can
be used to simulate such a physical interrupt.

Entry Conditions

Y = address of 5-byte packet
X = 0 to delete entry, [to install entry
D = initial count value

Exit Conditions: none

The VIRQ polling table is handled by the CLOCK module
and is dependent on the clock being initialized. SYSGO
forces the clock to start in OS-9 versions 02.00.00 and later.

The virtual interrupt is set so that a device can interrupt at a
given number of clock ticks. The interrupt can occur once,
or can be repeated as long as the device is used. The VIRQ
call requires a five byte packet specified for use in its table.
This packet contains:

® Bytes for an actual counter

® A resct value for the counter

® A status byte that indicates whether a Virtual Inter-
rupt has occurred and whether the VIRQ is to be
reinstalled in the table after being issued

® A tick count that is used as an initial count for the
interrupt

The five-byte packet is defined as follows:

Name Offset Function

Vi.Cnt S00 Actual counter
Vi.Rst $02 Reset value for counter
Vi.Stat $04 Status byte

Two of the bits in the status byte are used, these are:
Bit @ - Set if VIRQ occurs
Bit 7 - Set if count is to be reset

When making a FSVIRQ call, initialize the packet with a
reset value, if required. Also, you must either set or clear bit
7 of the status byte to signify a reset of the counter or a one
time VIRQ call. The resct value does not need to be the
same as the initial counter value. When the call is processed,
the address of the packet is installed on the VIRQ table,
where it can be accessed by the clock module.

At cach clock tick the table is parsed (scanned) and the tim-
ers are decreased by one. When the count becomes zero, the
following actions occur:

® Bit 0 is set in the status byte, specifying a Virtual

IRQ

® Bit 7 of the status byte is checked to see whether the
count is to be reset

® [f bit 7 is set, the count is reset using the reset
value, otherwisc the entry is deleted from the table.

When a Virtual IRQ results from a counter dropping to zero,
the standard polling routine is executed, and the interrupt is
serviced. Thus, you must install entries on both the VIRQ
and IRQ polling tables to use the VIRQ.

Install the device on the IRQ polling table using the F$SIRQ
system call before you place it on the VIRQ table, unless the
device has an actual physical interrupt that can be found on a
hardware register. If the device has such an interrupt, use
that as the polling address for the F$IRQ system call, along
with the proper flip and mask bytes for the device. If the
device has no interrupts, and is totally VIRQ driven, use the
status byte {rom the VIRQ packet as the status byte, and use

45

46

a mask byte of %00000001 defined as VI.IFlag in the defs
file. Use a flip byte of 0.

F$VIRQ is a privileged system call.

Appendix B Update

Display System Functions

Color Computer OS-9 lets you use the video display in
alphanumeric, semigraphic, and graphic modes. There are
many built-in functions to control the display. You activate
these functions using ASCII control characters. They are
available to any software written in a language using standard
output statements (such as PRINT in BASIC). Color Com-
puter BASICO9 has a Graphics Interface Module that can
automatically generate most of these codes using BASICO9
RUN statements.

The display system has two display modes: Alphanumeric
(Alpha) and Graphics. The Alphanumeric mode also includes
semigraphic box-graphics. The Color Computer’s display sys-
tem uses a separate memory area for each display mode so
operations on the Alpha display do not affect the Graphics
display, and vice-versa. Either display can be selected under
software control. (See Getting Started With Extended Color
BASIC for more detailed information.)

Eight-bit characters sent to the display system are interpreted
according to their numerical value, as shown in this chart:

Character
Range (Hex) Mode/Used For

00 - OE Alpha Mode—Cursor and screen control.

OF - 1D Graphics Mode—Drawing and screen control.
IE - IF Escape loading for 80 column display.

20 - 5F Alpha Mode—Upper case characters.

60 - 7F Alpha Mode—Lower case characters.

80 - FF Alpha Mode—Semigraphic patterns.

The Color Computer OS-9 alphanumeric functions are han-
dled by the OS-9 device driver module called CCIO, and one
of several output routines. The basic graphics functions are
all handled by CCIO using the GRFO subroutine procedure
for processing.

47

Alpha Mode Display

48

This is the standard operational mode. Use it to display
alphanumeric characters and semigraphic box graphics, and
to simulatc the operation of a typical computer terminal with
functions for scrolling, cursor positioning, clear screen, line
delete, and so on.

This mode assumes that each §-bit character is an ASCII
character. This character displays if its high order bit (sign
bit) is cleared. If the high order bit of the character is set,
the character is assumed to be a Semigraphic 6 graphics box.
See Getting Started With Extended Color BASIC for an expla-
nation of semigraphics functions.

The standard Alpha mode display is handled by the I/O sub-
routine module CO32. CCIO calls this module (included in
the standard boot file) to process all text and semigraphic
output.

If you have the optional 80-Column Cartridge and a monitor
capable of 80 columns, you can use the CO80 subroutine
module to give an 80 column text display. If the CO80 sub-
routine module is not found in memory it loads automati-
cally. This subroutine is not included in the standard boot
file, but is in the CMDS directory of the CONFIG/BOOT
diskette. You can included the subroutine in a boot file using
the CONFIG utility.

Both text display subroutine modules can be present in mem-
ory to allow alternate access to both the 32 column television
output and the 80 column monitor output. Switch to 8@ col-
umn mode to use the 8@ column output. Switch off the 80
column mode to again use 32 column output. The mode
switch is handled by the par byte of the path descriptor
(described in the section of this addendum dealing with
TMODE). To turn on 80 column text use TMODE type = 02.
To turn it off, use TMODE type=00. The following Alpha
mode command codes are exactly the same for the 80 col-
umn display and for the 32 column display.

Alpha Mode Command Codes

Hex
Control
Code

$o1

$02

$03

$04

$05

Hex

Decimal
Control
Code

Dec

01

02

03

04

05

Name/Function

HOME—returns the cursor to upper
left corner of screen.

CURSOR XY-—moves the cursor to
character X or line Y. Use the binary
values minus 32 of the two characters
following the control character as the X
and Y coordinates. For example, to
position the cursor at character 5 of line
10, use X=37 and Y =42.

ERASE LINE-—erases all characters
on the cursor line.

CLEAR TO END OF LINE—erases
all characters from the current cursor
position to the end of the line.

CURSOR ON-OFF-—allows alteration
of the cursor based on the value of the
next character. Codes are as follow:

Char Function

$20
$21

$22
$23
$24
$25
$26
$27
$28
$29
$2A

32
33

34
35
36
37
38
39
40
41
42

space Cursor OFF
! Cursor ON . . Default color
(blue)
Cursor ON . . Black
Cursor ON . . Green
$ Cursor ON . . Yellow
% Cursor ON . . Blue
& Cursor ON . . Red
’ Cursor ON . . Buff
(Cursor ON . . Cyan
) Cursor ON . . Magenta
* Cursor ON . . Orange

49

Hex

Control

Code

$06

$08

$09

$0A

$oC

$0D

$OE

Decimal
Control
Code

06

08

09

Name/Function

CURSOR RIGHT-—moves the cursor
to the right one character position.

CURSOR LEFT—moves the cursor to
the left one character position.

CURSOR UP—moves the cursor up
one line.

CURSOR DOWN (linefeed)—moves
the cursor down one line.

CLEAR SCREEN-—erases the entire
screen and home cursor.

RETURN—returns the cursor to left-
most character of line.

DISPLAY ALPHA —switches the
screen from graphic mode to alpha-
numeric mode.

Command Codes for 80-Column Card

SIF $20

$IF $21

31 32

31 33

Graphics Mode Display

50

TURN OFF ATTRIBUTES—turns off
reverse video for 80-column display.

TURN ON ATTRIBUTES—turns on
reverse video for 80-column display.

Use the graphics mode to display high-resolution two- or
four-color graphics. This mode includes commands to set
color, plot and erase individual points, draw and erase lines,
position the graphics cursor, and draw circles.

You must execute the display graphics command before using
any other graphics mode command. This command causes
the graphics screen to display and sets a current display for-
mat and color.

The first time you enter the display graphics command, OS-9
allocates a 6144 byte display memory. There must be at least
that much continuous free memory available. (You can use
MFREE to check free memory.) This memory is retained
until you give the end graphics command, even if the pro-
gram that initiated Graphics mode finishes. It’s important to
use the end graphics command to give up the display mem-
ory when you no longer need Graphics mode.

Graphics mode supports two basic formats. The two-color
format has 256 horizontal by 192 vertical points (G6R
mode). The four-color format has 128-horizontal by 192 ver-
tical points (G6C mode). Two color sets are available in
either mode. Regardless of the resolution of the selected for-
mat, all graphics mode commands use a 256 by 192 point
coordinate system. The X and Y coordinates are always posi-
tive numbers. Point 0,0 is the lower left corner of screen.

Many commands use an invisible Graphics Cursor to reduce
the output required to generate graphics. You can explicitly
set this cursor to any point by using the ser graphics cursor
command. You can also use any other commands that include
X, Y coordinates (such as set point) to move the graphics
cursor to the specified position.

Any graphics function that draws on the graphics screen
requires the GRFO subroutine loaded into memory. This
module is contained in the CMDS directory of the standard
0S-9 system diskette. Load it with the command LOAD
GRFO. You can also install the GRFO module as part of the
boot operation by creating a new system diskette using the
CONFIG utility described in this addendum.

51

Graphics Mode Selection Codes

Code Format
00 256 x 192 two-color graphics
01 128 x 192 four-color graphics

COLOR SET AND CURRENT FOREGROUND
COLOR SELECTION CODES

Two-Color Four-Color
Format Format
Back- Fore- Back- Fore-
Char | ground | ground | ground ground
00 Black Black Green Green
Color 01 Black Green Green Yellow
Set 1 02 Green Blue
03 Green Red
04 Black Black Buff Buff
Color 05 Black Buff Buff Cyan
Set 1 06 Buff Magenta
07 Buff Orange
08 Black Black
Color 09 Black | Dark Green
Set 1 10 Black | Med. Green
11 Black | Light Green
12 Black Black
Color 13 Black Green
Set 1 14 Black Red
15 | Black | Buff

52

Graphics Mode Control Commands

Hex
Control
Code

$0F

$10

$11

$12

Decimal
Control
Code

15

Name/Function

DISPLAY GRAPHICS—switches
the screen to the graphics mode. Use
this command before any other graph-
ics’ commands. The first time you
use it, a 6K byte display buffer is
assigned. If 6K of contiguous mem-
ory isn’t available, an error is
returned. Follow this command with
two characters specifying the graphics
mode and current color/color set,
respectively. This is part of CCIO
and does not require GRFO.

PRESET SCREEN-—presets the
entire screen to the color code passed
by the next character. This function is
processed by CCIO and does not
require GRFO.

SET COLOR-—selects foreground
color (and color sct) passed by the
next character, but does not change
the graphics mode. This function is
processed by CCIO and does not
require GRFO.

END GRAPHICS—disables the
graphics mode and returns the 6K
byte graphics memory area to OS-9
for other use. It also switches to
alpha mode. This function is pro-
cessed by CCIO and does not require
GRFO.

53

Hex
Control
Code

$13

$14

$15

$l6

$17

54

Decimal
Control
Code

19

22

Name/Function

ERASE GRAPHICS—erases all
points to the background color and
locates the graphics cursor at the
desired position. This function is pro-
cessed by CCIO and does not require
GRFO.

HOME GRAPHICS CURSOR—
moves the graphics cursor to coordi-
nates 0,0 (lower left-hand corner).
This function 1s processed by CCIO
and does not require GRFO.

SET GRAPHICS CURSOR—moves
the graphics cursor to the given X, Y
coordinates. The binary value of the
two characters that immediately fol-
low are used as the X and Y values,
respectively.

DRAW LINE—draws a line of the
current foreground color from the cur-
rent graphics cursor position to the
given XY coordinates. The binary
value of the two characters that
immediately follow are used as the X
and Y values, respectively. The
graphics cursor moves to the end of
the line.

ERASE LINE—operates the same as
the draw line function, except that the
line is drawn in the current back-
ground color, thus erasing the line.

Hex
Control
Code

$18

$19

SIA

$1C

$1D

Decimal
Control
Code

24

25

26

29

Name/Function

SET POINT—sets the pixel at point
X,Y to the current foreground color.
The binary values of the two charac-
ters that immediately follow are used
as the X and Y values, respectively.
The graphics cursor moves to the
point set.

ERASE POINT—operates the same
as the draw point function, except the
point is drawn in the current back-
ground color, thus erasing the point.

DRAW CIRCLE—draws a circle of
the current foreground color around
the current graphics cursor (as the
center point) using the radius obtained
from the binary value of the next
character.

ERASE CIRCLE—operates the
same as the draw circle function,
except that the circle is drawn in the
current background color, thus erasing
the circle.

FLOOD FILL-—paints the current
foreground color starting at the graph-
ics cursor position and extending over
adjacent pixels having the same color
as the pixel under the graphics cursor.

Note: When fill is called for the first
time it requests allocation for a 512
byte stack for the fill routine. This
memory is not returned until you ter-
minate graphics with the end graphics
command.

Note: Hexadecimal codes are for compatibility with the
0S-9 Display command.

55

Get Status Commands

The Color Computer I/O driver includes OS-9 get status
commands that return information about the keyboard, dis-
play. and joysticks. All are accessed using the assembly lan-
guage system calls listed. You can access the first two calls
using the BASICO9 Graphics Interface Module.

Get Display Status:

Calling Format:

Passed:

Returns:

Ida #1 (path number)

Idb #SS.DStat (Getstat code $12)
0s9 I$GSTT (call OS-9)
nothing

X = address of graphics display

memory

Y = graphics cursor address

A = color code of pixel at cursor
address

Note: This command is available through the
BASICO9 Graphics Interface Module.

Get Joystick Values:

Calling Format:

Passed:

Returns:

Ida #1 (path number)
1db $SS.Joy (Getstat code $13)
0s9 1$GSTT (call OS-9)

X = 0 for right joystick; 1 for left
joystick

X = selected joystick x value (0-63)
Y = selected joystick y value (0-63)
A = $FF if fire button on; $00 if off

Note: This command is available through the
BASICO9 Graphics Interface Module.

56

Get Alpha Display Status:

Calling Format:

Passed:
Returns:

Get Alpha Cursor Status:

Calling Format:

Passed:
Returns:

Get Screen Size:

Calling Format:

Passed:
Returns:

Idb #1 (path number)

Idb #SS.AlfaS (Getstat code $1C)
089 I$GSTT (call OS-9)
nothing

A = caps lock status
$00 = lowercase
$FF = uppercase

X = address of buffer in memory

Y = address of cursor in memory
Ida #1 (path number)

Ida #SS.Cursr (Getstat code $25)
0s9 I$GSTT (call 0S-9)
nothing

A = character under cursor
X = x position of cursor (column)
Y = y position of cursor (row)

Ida #1 (path number)

Idb #SS.ScSiz (Getstat code $26)
089 ISGSTT (call 0S-9)
nothing

X = number of columns on screen

i

Y number of rows on screen

57

Get Key Sense Information:

Calling Format:

Passed:
Returns:

Note: To enable this

Set Status Commands

Ida #1

(path number)

Idb #SS.KySns (Getstat code $27)

089 [$GSTT

nothing

(call OS-9)

A = status byte with bits set indicat-
ing a key was depressed on last
keyboard scan.

0

I

bit not set, key NOT
down
bit set, key down

Key
shift key
control/Clear key
alt/(w key
up arrow key
down arrow key
left arrow key
right arrow key
spacebar

command, you must enable
the Key Sense mode using the Enable/Disable
Key Sense set status command.

The Color Computer 1/0O driver includes OS-9 set status com-
mands that lets you alter the keyboard or display status.

Enable/Disable Key Sense Ability:

Calling Format:

58

Ida #1

(path number)

Idb #SS.KySns (Setstat code $27)
Idx #KySnsVal (0 to disable, 1 to

enable)

0s9 ISSETSTT (call 0S-9)

Passed:

Returns:

x = 0 to disable key sense mode
1 to cnable key sense mode
nothing

Allocate Additional Graphics Buffers

Calling Format:

Passed:
Returns:

Select Graphics Buffer

Calling Format:

Passed:

Returns:

Ida #1 (path number)
Idb #SS.AAGBf (SetStat code $80)
0s9 ISSETSTT (call OS-9)

nothing
X = address of buffer
Y = buffer number (9, 1, 2)

Ida #1 (path number)

Idb #SS.SLGBf (SetStat code $81)

ldx #Mode (get mode)

ldy #BUFNUM (get buffer
number)

0s9 ISSETSTT (call OS-9)

X = mode:
9 = select buffer as current
use buffer
> @ = select current buffer and

cause it to be displayed
beginning at next clock
interrupt.

Y = buffer number (@, 1 or 2)

X = mode, unchanged
Y = buffer number, unchanged

59

Display Control Codes Condensed Summary

Ist Byte

Dec Hex 2nd Byte 3rd Byte Function

00 00 Null

o1 01 Home alpha cursor
02 02 Column+32 Row + 32 Position alpha cursor
03 03 Erase line

04 04 Erase to End of line
05 05 Cursor Code Alter Cursor

06 06 Cursor right

o8 08 Cursor left

9 09 Cursor up

10 0A Cursor down

11 0B Erase to End of Screen
12 0C Clear screen

13 0D Carriage return

14 QE Select alpha mode

IS5 OF Mode Color Code Select graphics mode
16 10 Color Code Preset screen

17 11 Color Code Select color

18 12 Quit graphics mode
19 13 Erase screen

20 14 Home graphics cursor
21 15 X Coord Y Coord Move graphics cursor
22 16 X Coord Y Coord Draw line to X/Y

23 17 X Coord Y Coord Erase line to X/Y

24 18 X Coord Y Coord Set point at X/Y

25 19 X Coord Y Coord Clear point at X/Y
26 IA Radius Draw circle

28 IC Radius Erase circle

29 1D Flood Fill

60

Appendix D Update

Keyboard Control Functions

Key Definitions for Special Functions and Characters

KEY CONTROL FUNCTION
COMBINATION OR CHARACTER
or Alternate key—sets the high order

bit on a character. Press (@ JCHAR
or (ALTJCHAR. If your keyboard
does not have use (@].

(CTRL] or [CLEAR] Used as a control key [CTRL]J.

Some Color Computers use

L)

(BREAK] or Stops the program currently
executing.

=) Generates an underline () char-

acter. The underline character dis-
plays as a left arrow ([~]).

CTRL [j Generates a left brace ({) character.

The left brace character displays as
a left bracket (|) in reverse video.

(] Generates a right brace (}) charac-

ter. The right brace character dis-
plays as a right bracket (]) in
reverse video.

Generates a tilde (7) character. The
tilde displays as a hyphen (-) in
reverse video.

Generates a reverse slash (\)
character.
CTRL || BREAK Generates an end-of-file (EOF).

This sequence is the same as
on a standard terminal.

61

62

(SAIFT)(-] or (CTRL)(X]

(o)
EEE

Generates the (@ character.
Generates a backspace.
Delctes the entire current line.

Interrupts the video display of a
running program. This sequence
rcactivates the SHELL and then
runs the program as a background
task.

Upper/lower case shift lock
function.

Generates a vertical bar (]) char-
acter. The vertical bar character
displays as an exclamation point
(1) in reverse video.

Generates an up arrow or caret
(*) character.

Generates a left bracket ({)
character.

Generates a right bracket ()
character.

Repeats the previous command

line.

Redisplays the current command
line on the video display.

Temporarily halts output to the
screen display. Press any key to

resume output.

Generates a backslash (/) character.

Appendix E Update

Hard Disk Support

0OS-9 Version 02.00.00 supports the use of 15 or 35 meg
hard disks through a device driver called CCHDisk.
CCHDisk lets you use one or more hard disk drives and the
optional Hard Disk Controller Cartridge in Slot 3 of the
Multi-Pak Interface. The descriptors for the two types of hard
disks are contained within the CONFIG utility as:

hQ_15 Drive @ 15 meg hard disk
h1__15 Drive 1 15 meg hard disk
hQ__35 Drive 0 35 meg hard disk
h1__35 Drive 1 35 meg hard disk

When the SYSGO module starts the system, it attempts to
change to the hard disk, if one is attached. If you have a
hard disk and the appropriate driver and descriptors, your
execution directory is /HO/CMDS and your data directory is
/HO.

The device descriptor for the hard disk is different than for
floppy diskettes. The following charts provide the data for the
Color Computer Hard Disk descriptors and disk drive units:

Descriptor for Color Computer Hard Disk
IT.DTP = 1 (RBF)
IT.DRV = drive number 0 - 3
[T.STP = step rate, see table
IT.TYP = % 100000000 Hard disk flag for bit 7
IT.DNS = unused
IT.CYL = number of cylinders (see chart)
IT.SID = number of heads (see chart)
IT.VFY = write verify bit® = on : >0 = off

63

64

Descriptor for Color Computer Hard Disk

IT.sct = sectors/track {see chart)
IT.TOS = sectors/track 0 (see chart)
IT.ILV = scctor interleave

IT.SAS = segment allocation size (CoCo = 1)
IT”TFM = not used, DMA only

IT.Exten = not used, level I only

ITSToff = not used. level Il only

Step Rates for WD1610 Controller

Code Rate
0 35 us

1 0.5 ms

2 1.0 ms

3 1.5 ms

4 2.0 ms

5 2.5 ms

6 3.0 ms

7 3.5 ms

8 4.0 ms

9 4.5 ms
10 5.0 ms
11 5.5 ms
12 6.0 ms
13 6.5 ms
14 7.0 ms
L 15 7.5 ms

Cylinder/Head chart for TANDY Hard Disks

Disk Heads Cylinders TPI SPT Pre-Comp

ISmeg 6 306 345 32 128
| 35meg 8 512 512 34 256

Six bytes are added to the end of the hard disk descriptor that
are not copied to the path descriptor. They are used at initial-
ization to set up the parameters for the specific drive type.
Therefore, if you have more than one hard disk drive, they
must be of the same type as the first drive. These bytes start
at offset $25 in the device descriptor and are described in the
following chart.

Offset Function

$25 Write Pre-Comp cylinder number /4 (see
chart)

$26 The number of digits in the cylinder address,
DIVA value for the driver

$27 Normalized divisor for the division routine,
DIVY value
$29 DIVU value, MSB = mask for quotient
LSB = shift value for
remainder

$2B Format gap value

Most values are used for the division routines to convert
LSN’s from RBF into a cylinder number, sector number, and
head number.

Color Computer I/O Devices

Several new input/output devices are available for the Color
Computer operating under OS-9. The OS-9 system diskette
contains drivers for the standard devices and the CONFIG/
BOOT diskette contains drivers and descriptor modules for
other devices. This section provides information about the
devices available using OS-9.

65

SCF-Type Devices

66

SCF-type devices are those that operate on character oriented
data and deal with only one character at a time. Full infor-
mation on the SCF is found in the Sequential Character File
Manager chapter in the OS-9 Technical Information manual.
The SCF-type devices supported include:

TERM—for the keyboard video display
P—for a serial printer

T1, T2, and T3—for cxternal terminals
M1 and M2—for external modems
SSC—for a voice synthesizer

Parity and Baud Rates

Under OS-9 Version 02.00.00 and higher, external serial
devices P, T1, T2, T3, M1, and M2 have the capability of
changing their baud rates, parity, stop bits, and word length
parameters any time they are in use. Such changes are han-
dled by SCF, through the SS.ComSt SETSTAT. Two bytes in
the device descriptor hold information about parity and baud
rates for these devices. These bytes can initialize similar
bytes in the path descriptor.

A driver can then use these bytes to change its operating
parameters through the SETSTAT call. TMODE and XMODE
give you access to these bytes for examination or change.
The two bytes are used as follows:

Baud Byte—supplies information on baud rate, word
length and stop bits
IT.BAU—for device descriptor
PD.BAU—for path descriptor

Bits 0-3 Baud rate code:

0 =110
1 = 300
2 = 600
3 = 1200
4 = 2400
5 = 4800
6 = 9600
7 = 19.2K

Note: on some devices, all values might
not be obtainable or alterable.

Bit 4 Reserved

Bits 5-6 Word length code:
00 = 8 bit
01 = 7 bit

Bit 7 Stop bit code:
00 = 1 stop bit

01 = 2 stop bits

Parity Byte—supplies information on parity.
IT.TYP—for the device descriptor
PD.PAR—for the path descriptor

Bits 0-3 Reserved

Bit 4 Modem support feature (T1, T2, T3,
MI, M2 only)

Bits 5-7 Parity code:

XX0 = no parity (X = 1 or 0)

101 = MARK parity transmitted, no
parity check

111 = SPACE parity transmitted, no
parity check

67

The true ASCIA devices (T2, T3, M1, and M2) also
support these additional parity codes:

001 = ODD parity transmitted and
received
EVEN parity transmitted and
received

011

Il

Reserved bytes can be used differently by different
devices. They are noted in their individual sections.

TERM

Uses Keyboard/video display
Modules Required TERM
CCIO

Additional [/O subroutine modules
Features include:

Lowercase and TERM does not use the baud byte and

80 column has a different use for the parity byte. It
does not handle data communications
through a specific port, but directly
reads the keyboard and writes to the
vidco display:

Bit @ Is used as a flag for true
lowercase on compatible
machines

Bit 1 Is used to distinguish
display size. 0 = 32
columns, I = 80
columns through an
external 80 column card.

68

Display Screen

Graphics

SCF devices now have full support for
varying display screen sizes. The device
descriptor has two bytes for this pur-
pose, IT.COL and IT.ROW. These two
bytes contain information for the number
of columns and rows available for dis-
play. You can use an OS-9 GetStat call
to access this information. The standard
display screen format is 32 columns. An
optional text display is available for 80
column text using a monitor and an 80
column cartridge in a Multi-Pak Expan-
sion Interface. The CO8@ I/O subroutine
module handles the text output for this
card. Many of the OS-9 utilities can now
adapt to either 32 or 80 column output.

While the 32 column display module is
standard, and included in the standard
0OS-9 system boot, the modules for both
32 and 80 column displays are available
through the CONFIG utility. If you want
to use a monitor and an 8@ column dis-
play with the 80 column cartridge, create
a boot that uses the TERM8@ and CO80
modules with CONFIG. Should you
wish, you can use CONFIG to restore
the 32 column standard display.

Basic graphics routines that do not
require drawing on the graphics screen
are handled directly by CCIO. All draw-
ing routines pass to GRFO for
processing.

69

The graphics module, GRFO, resides in
the CMDS directory of your system
diskette. You can load GRFO into mem-
ory using the LOAD command, or you
can include it in the system boot file
using CONFIG. GRFO is neceded only if
you wish to use the built-in OS-9 draw
commands for lines, points, circles and
fills. For more information on the alpha
and graphics modes. see Appendix B of
this addendum.

Following is a table summarizing the I/O subroutine modules

supported:

Name

Function

C0O32

CO80

GRFO

32 column text and semi-graphics output to a
television display

80 column text output to a monitor using an
optional 8@ column cartridge

Graphics output to television display

Keyboard
Character
Generation

RS-232 External Terminal

The Color Computer keyboard can gen-
erate all ASCII characters as well as
semigraphic characters using or
(@). The CCIO also features key repeat
and type-ahead capabilitics. Type-ahead
is only functional when disk drives are
not being accessed. Other keyboard fea-
tures include a terminal bell (Character
07) which sounds through the television
speaker, and support for true lowercase
capability on Color Computers having
this feature.

Device descriptor T1 provides serial communication capabil-
ity through the RS-232 serial port at the rear of the Color
Computer. You can use this port to support terminal speeds
as high as 300 baud. Data transfer rates above 300 baud are

70

T2

unreliable. If data transmission proves unreliable at 300
baud, use the TUNEPORT utility to adjust the T1 driver for
the capabilities of your computer.

T1 supports changeable baud rates, parity (no parity,
MARK, and SPACE), word length, and stop bits. The default
settings are:

® 300 baud
® no parity
® 8 data bits
® | stop bit

Use XMODE or TMODE utilities to configure the port of
other parameters.

T1 is set for 80 column displays. Utilities that adapt to dif-
ferent display sizes, display in 80 columns to an attached
terminal.

The T1 and RS232 modules are on the standard OS-9 system
diskette.

Use Interrupt driven serial port
Modules Required T2

ACIAPAK
Additional Hardware ... RS232 Communications Cartridge

Multi-Pak Expansion Interface
External Terminal

The T2 device descriptor uses the optional RS232 Communi-
cations Card installed in Slot 1 of the Multi-Pak Expansion
Interface. The associated device driver is named ACIAPAK.
This port can support a terminal at data transfer rates as high
as 19.2K baud. T2 expects an 80 column terminal and uses
an 80 column display mode. T2 provides the following
features:

® changeable baud rates, parity, word length, stop bits,
and X-ON/X-OFF protocol.

)\

T3

72

® default settings of:
® 1200 baud
® no parity
® 8 data bits
® | stop bit

Use TMODE or XMODE to change these parameters
to match your terminal.

The T2 and ACIAPAK modules are not on the standard OS-9
system diskette. but you can include them on a system
diskette using CONFIG. For full information on the hardware
specifications and pin-out configuration of the communica-
tions card, see the owner’s manual.

Use ... Virtual Interrupt driven terminal
port

Modules required T3
MODPAK

Additional hardware RS232 Communications Cartridge

Multi-Pak Expansion Interface

Device descriptor T3 provides for a terminal port using the
optional RS232 Cartridge in Slot 2 of the Multi-Pak Expan-
sion Interface. The T3 port uses the MODPAK driver, which
is a virtual interrupt driven driver (see VIRQ in this adden-
dum). You can use T3 in conjunction with T2. The charac-
teristics of T3 arc:

@ 300 baud rate only
® no parity

® 8 data bits

® | stop bit

The T3 and MODPAK modules are not included on the stan-
dard OS-9 system diskette, but you can add them to a system
diskette using CONFIG.

Use Serial printer port

Modules required P
PRINTER
Additional hardware Printer

Device descriptor P uses the PRINTER device driver to pro-
vide serial printer support through the port at the rear of the
Color Computer. The port can support a serial printer at data
transfer rates as high as 9600 baud. If transmission on your
printer is unreliable, use the TUNEPORT utility to adjust the
driver for your printer.

P supports changeable baud rates, parity (no parity, MARK,
and SPACE), word length, and stop bits. Default settings are:

® 600 baud
® no parity

® 8 data bits

® | stop bit

® 80 column output

The PRINTER driver uses the following reserved bits of the
parity byte:

Bits 0-3 Timeout value for the printer. The Ready
status of the printer is checked at Init/
Open time and an error is reported
immediately. On subsequent writes to
the printer the timecout value is counted
down and if the device is not ready when
it reaches zero, the error is returned.

P and PRINTER modules are contained on the standard OS-9
system diskette.

73

M1

74

Use Interrupt driven modem port
Modules required MI
ACIAPAK

The M1 device descriptor provides future enhancements to
the Color Computer using Slot | of the Multi-Pak Expansion
Intertace. Both M1 and T2 use the ACIAPAK driver and thus
cannot operate simultancously. M1 supports a 300 baud
modem for data communications. It assumes the screen size
is 80 columns.

M1 supports changeable parity, word length and stop bits
through the XMODE utility. The default settings arc:

® 300 baud only
® o parity

® 8 data bits

® | stop bit

The ACIAPAK driver also supports communications devices
such as auto answer modems. The Data Carrier Detect line is
monitored and a transition from MARK to SPACE causes an
E$SHangUp error from a read request, and all M1 opened
paths are marked for killing by SCF. So, if disconnection
occurs, all processes started are killed and the next caller
does not begin where the previous caller ended.

The kill feature is controlled through bit 4 of thc PD.PAR
byte in the path descriptor or I'T.PAR of the device descrip-
tor. Setting bit 4 enables the kill feature, clearing bit 4 dis-
ables the feature. Bit 4 also enables the shutdown of RTS and
DTR at the close of the last path. If bit 4 is cleared, RTS
and DTR are disabled at trerminate rather than at close. (See
INIZ for information on using INIZ to keep a device from
terminating.)

M1 and ACIAPAK are contained on the CONFIG/BOOT
diskette, and are not on the standard OS-9 system diskette.
For information on setup and hardware characteristics of the
modem cartridge, see the owner’s manual for the cartridge.

M2

SSC

Use oo Virtual Interrupt driven modem
port

Modules required M2
MODPAK

Device driver M2 provides for future enhancements of the
Color Computer through Slot 2 of the Multi-Pak Expansion
Interface. The M2 port uses the virtual interrupt driven
MODPAK driver (see VIRQ in this addendum). M2 supports
a 300 baud modem and can be used in conjunction with the
T2 serial port which requires the RS232 Cartridge in Slot |
of the Multi-Pak.

M2 supports changeable parity, word length, and stop bits
through the XMODE utility. The default settings are:

® 300 baud only
® no parity

® ¥ data bits

® | stop bit

The M2 and MODPAK modules are not included on the stan-
dard OS-9 system diskette but you can add them to a system
disk using CONFIG.

Use ... oo L Speech/Sound output port

Modules required SSC
SSCPAK

Additional hardware Speech/Sound Cartridge
Multi-Pak Expansion
Interface

The SSC device descriptor supports the optional Speech/
Sound Cartridge from Slot 2 or 3 of the Multi-Pak Expansion
Interface. Speech or sound output is received through the tel-
cvision or monitor speaker.

75

NIL

Usc your SSC device in much the same manner as a printer
(P). Use I/O redirection to send output to the Speech/Sound
cartridge instead of the video display, or open a path to the
Speech/Sound Cartridge to write to it. Because the Speech/
Sound cartridge uses the same hardware as the joystick ports,
you cannot use the joysticks and the cartridge simultane-
ously. If you do, speech or sound is interrupted by a high
pitched noise from the joysticks. However, you can alternate
between using speech/sound output and joystick output with-
out difficulty.

The SSC and SSCPAK modules are not contained on the
standard OS-9 system diskette, but you can add to a system
diskette using CONFIG.

Use ... Device for abandoning output
Modules required NIL

NILDRV
Additional hardware none

The NIL device descriptor and the NILDRV driver support a
null device. Using the device descriptor and driver lets you
abandon output from a process or enter nothing as input to a
process. For example, if you run a background process that
sends messages to the screen. and you do not want them dis-
played. you can redirect the standard output and standard
error path to the NIL device.

NIL and NILDRV arc not included on the standard OS-9 sys-
tem diskette, but you can add them to a system diskette using
CONFIG.

RBF-Type Devices

76

RBF-type devices are those that handle data in large blocks
of bytes. See the Random Block File Manager chapter of the
0S-9 Technical Information manual for information on RBF.
RBF-type devices supported by OS-9 are floppy disk drives,
DO-D3 and hard disk drives, HO-H3.

D9-D3

HO-H1

Uses Floppy disk devices
Modules required D@ (D1-D3 are optional)
CCDISK

Additional hardware Floppy disk drives

Device descriptors D@-D3 are modules that support floppy
disk drives using the CCDisk device driver. If you are using
a Multi-Pak Expansion Interface, put the disk controller car-
tridge in Slot 4 with the Multi-Pak switch sct to 4.

0S-9 requires a minimal system of one floppy disk drive,
D@. The standard OS-9 system diskette includes the DO and
D1 descriptors and the CCDisk driver and supports a two-
drive system. If you have additional floppy disk units, use
CONFIG to add the descriptors, D2 or D3, to the boot file.

Use ... Hard disk devices

Modules required HO (H1 for second hard disk)
CCHDisk

Additional hardware 15 meg or 35 meg hard disk drives

Color Computer Hard Disk
Interface Kit

Multi-Pak Expansion
Interface

Device descriptors HQ and H1 are modules that support hard
disk drives using the CCHDisk device driver. Locate the
Hard Disk Interface cartridge in Slot 3 of the Multi-Pak Inter-
tace Expansion with the floppy disk controller in Slot 4.

When your OS-9 system initializes, it searches for a device
/HO. If it is found, the execution directory is set to /H@/
CMDS. and the data directory is set to /H@. The HO, HI1,
and CCHDisk modules are not found on the standard OS-9
system diskette, but you can add them to a system diskette

77

using CONFIG. Hard disk device descriptors are named HO__
15, H1__15, HO__35. and HI_35. Information on sectting
up your hard disk drives i1s contained in the Color Computer
Hard Disk Interface Kit manual.

PIPEMAN Devices

PIPE

78

PIPEMAN s the file manager for the OS-9 “pipe’” facility.
as described in the Advanced Features of the Shell chapter of
the OS-9 Commands manual. Pipes let data transfer between
processes by sending the output of one process to the input
of another. There is only one device supported by
PIPEMAN.

Use oo Create a pipeline between two
processes

Modules required Pipe
Piper

Additional hardware None

The device descriptor PIPE supports OS-9 pipelines in con-
junction with the PIPER driver. Use an cxclamation point (1)
to tell the SHELL to open a pipeline between two processes.
The standard output of the first process becomes the standard
input of the sccond process. Information on the use of pipes
is found in Advanced Features of the Shell in the OS§-9 Com-
mands manual. Both PIPE and PIPER are contained on the
standard OS-9 system diskette.

Sample Driver

Microware 0S-9 Assembler

000881

00002

00003

20004

00005 0B
09006 *
20007

p0434

#0435

00436

ifp1

P@558
89551

pB663
pBob4
#8863
00864
01001

p1oo2
81171

B1172
81173
81174
81175
1176

000A
0001
poee
#1178 ppB2

81179 FFa40

g11880
81181

6e@2
FFe8
81182 FFeC

01183 *
p1184
81185
#1186 *
81187 *
#1188 *
21189 POEN
211980 2881
81191 beoe

endc

87CDe8@2D

2.1

LEVEL equ

CPUType

COCOType
ClocType
PwrlLnFrgq

DPortset

ACIAType
A.T2

AM

type
revs

67/18/85 18:04:880

nam N1l Device

ttl Driver Module

use defsfile

1

use/defs/0s9defs

opt 1

use/defs/
0s59sysdefs. 11

opt

use/defs/0s%10defs

opt 1

use/defs/0s9rbfdefs

opt 1

use/defs/0s9scfdefs

opt 1

use/defs/systype

opt 1

use ../cc.ass/sysdefs.cc

set Color

set Original

set ']

set Hz60 Set frequency
for U.S.

$FF48 Disk controller
address

set ACIABGSS1

set $FF68 6551 ACIAPak
Address

set $FF6C Modem Pak
Address

IEEEEEEEREEEEEEREEEE R EEE R EE R EREREREEREREREERE RS]

N1l Driver Module

set Drivr+0bjct
set ReEnt +1
mod ndrv.end,ndrv.nam,

type,revs,ndrv.ent,
V.User

79

#1192 paeD 23 fcb Updat. mode

#1193 PBeE 4E696C44 ndrv.nam fcs “NilDrv"

#1194 * edition date comments

#1195 * 3 83/82/11 - change read to return EOF

#1196 po14 a3 fcb 3 edition number

21197

21198 #0155 SF ndrv.entclrb 1nitialize

#1199 2016 39 ris

01200 90817 12 nop

#1201 go18 bra ndrv.eof return EOF
200ecC

g12@2 gg1pa 12 nop

p1203 201B SF clrb write

g1284 #g1C 39 rts

21205 281D 12 nop

#1206 991E 5F clrb getstat

21207 891F 39 rts

p1208 pgee 12 nop

21209 2021 SF clrb putstat

21218 pp22 39 rts

21211 @23 12 nop

1212 9@24 5F clrb terminate

91213 2025 39 rts

p1214

#1215 pB26 53 ndrv.eof comb set carry

21216 @27 l1db #ESEOF get error codes
CeD3

801217 pB29 39 rts

p1218

21219 002A FEAAT4 emod

012280 p@2D ndrv.endequ *

p1221

21222 ttl Device Descriptor Module

Microware 0S5-9 Assembler 2.1 27/10/85 18:04:16

Nil Device - Device Descriptor Module

g1223

01224

p122%5 IR E R T R R R R R R

p1226 *

1227 *N11 Device Descriptor Module

91228 *

81229 80F1 type set Devic+0Objct

012380 0081 revs set ReEnt +1

80

81231

#1232
81233
81234

#1235
81236
91237
p1238
81239
012490
81241

81242
81243
01244
081245
#1246
81247
81248
01249
#1250
1251

g1252
81253
81254

81255
81256
21257
#1258

01259
01260
81261
01262
81263
81264
#1265

01266
p1267

ga00

ae@D
000K
8611

pp12

2013

87CD0B39

83

po0000

18

68

00

061400

8015

2016
2617
2018
2019
BO1A
601B
po1C
081D
PO1E
PO1F
0020
8021

6ez22

pB23
0024
025
go26
0000
pB28
200
0B2A

o8

20
00
00
o
18
68
18
@D
1B
04
21

17
83

s
68
87

4E69EC

682D

5343C6

0030

4E696C44

mod
fcb
fcb
fcb

fcb

ndsc.end,ndsc.nam,type,revs,

nilmgr,nildrv

UPDAT. mode

0,0,0 null port address

ndsc.nam-*-1 option byte
count

DT.SCF Device type: SCF

» DEFAULT PARAMETERS

ndsc.nam
nilmgr

nildrv

6936 EB7D20

8039

ndsc.end

fcb
fcb
fcb

fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb
fcb

feb
fcb
fcb
fcb
fcb

fcs

fcs

emod

egu

end

) cass=UPPER and lower
backspace=BS,SP,BS

=

[’ delete=bkspace over
line

[auto echo on

[’ auto line feed on

[null count

[end of page pause on

24 lines per page

C$BSP backspace character
C$DEL delete line char
C$CR end of record char
C$EQF end of file char
C$RPRT reprint line char
C$RPET dup last line char
C$PAUS pause char
C$INTR keyboard interrupt
char
C$QUIT keyboard quit char
C$BSP backspace echo char
C$BELL line overflow char

0,0 undefined 1nit/baud
rate

[no echo device

N1 l™ device name

"SCF*" file manager

“"NilDrv'' device driver

Module CRC

$00P0@ error(s)

p0@BA@ warning(s)

$0p66 00102 program bytes generated
$03C3 00963 data bytes allocated
$2875 18357 bytes used for symbols

81

RADIO SHACK, A Division of Tandy Corporation

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA BELGIUM FRANCE U. K.
91 Kurrajong Avenue Rue des Pieds d'Alouette, 39 BP 147-95022 Bilston Road Wednesbury
Mount Druitt, N.S.W 2770 5140 Naninne (Namur) Cergy Pontoise Cedex West Midlands WS10 7JN

10/85-TM Printed in U.S.A.

To 0S-9 users. . .

The new Version 01.01.00 extends the capabilities of your OS-9 Operating System by
adding new function codes to provide you with more information about the memory,
the cursor, and the size of your screen. It also enhances your RS/232 cartridge with new
Comcard support and allows you to patch your clock module to 5@ hz. The following
pages describe the procedures for using the new version.

These added features reduce the total available memory by only seven pages. In the
01.01.00 version with the new features added, you still have 62 pages of free space
available and much greater control of your computer.

Please note the changes to your OS-9 Technical Information, Commands, and Program
Development Manuals which are set forth in the following pages.

0S-9 TECHNICAL INFORMATION MANUAL

Pages 99 - 102 should read as follows:
0S-9 I18Getstt 103F 8D

Function:

Returns the status of a file or device.
This is a “‘wildcard” call. It is used to handle device parameters that:

¢ Are not the same for all devices
¢ Are highly hardware-dependent
* Must be user-changeable

The exact operation of the GET Status system call depends on the device driver and
file manager associated with the path. A typical use is to determine a terminal’s
parameters for such functions as backspace character, echo on/off. The Get Status call
is commonly used with Set Status call.

The Get Status function codes that are currently defined are listed in the “Uses of Get
Status’’ section below.
Entry Conditions:

A = path number
B = function code
(Other registers depend upon function code)

Exit Conditions:

Depends upon function code.

If error:
CC = C bit set
B = error code

Uses of Get Status

Function codes 7 through 127 are reserved for future use.

Fur'lction codes 128 through 255 and their parameter-passing conventions are user-
definable. The function code and register stack are passed to the device driver.

The following function codes are defined: $00, $01, $02, $85, $06, $12, $13, 81c, $25,
$26. The parameter-passing conventions for these function codes are given below.

SS.OPT (Function code $00): Reads the option section of the path descriptor
and copies it into the 32-byte area pointed to by Register X.

Use this code to determine the current settings for editing functions such as echo
and auto line feed. For a complete description of the status packet, see the section
on path descriptors.

Entry Conditions:
A = path number
B $00
X address of place to put a 32-byte status packet

Exit Conditions:
Status packet

If error:
CC = C bit set
B

= error code

SS.READY (Function code $01): Tests for data available on SCFMAN-
supported devices.

Entry Conditions:

A = path number
B = 801
Exit Conditions:
If ready:
CC = C bit clear
B = $F6 (ESNOTRDY)
If error:
CC = C bit set
B = error code

SS.SIZE (Function code $02): Gets the current file size (RBFMAN-supported
devices only).

Entry Conditions:
A path number
B $02

Exit Conditions:
X = ms 16 bits of the current file size
U = Is 16 bits of the current file size

If error:
CC = C bit set
B = error code

SS.POS (Function code $05): Gets the current file position (RBFMAN-
supported devices only).

Entry Conditions:
A path number
B $05

Exit Conditions:

X = MS 16 bits of the current file position
U = LS 16 bits of the current file position
If error:
CC = C bit set
B = error code

SS.DSTAT (Function code $12): Returns the display status.

Entry Conditions:
A path number
B $12

Exit Conditions:

X = address of the graphics display memory
Y = graphics cursor address; x = MSB, y = LSB
A = color code of the pixel at the cursor address

SS.Joy (Function code $13): Returns the joystick values.

Entry Conditions:
= path number
$12
0 (right joystick), or
1 (left joystick)

ol g
nuu

Exit Conditions:

selected joystick x value (8-63)

selected joystick Y value (8-63)
$FF (if the fire button is on), or
$00 (if the fire button is off)

> >
| |

SS.Alfas (Function code $1c¢): Returns information about alpha screen memory.
Entry Conditions:

A = path number
B = $1C

Exit Conditions:

A = caps lock status

00 = lower case

$FF = upper case
X = address of buffer in memory
Y = address of cursor in memory

SS. Cursr (Function code $25): Returns cursor information from alpha screen.

Entry Conditions:
A = path number
B $25

Exit Conditions:

A = character under cursor
X = x position of cursor (column)
Y = y position of cursor (row)

SS.ScSiz (Function code $26): Returns size of screen (default from descriptor)

Entry Conditions:
A = path number
B $26

]

Exit Conditions:
X = number of columns on screen
Y number of rows on screen

Note: Currently these are simply the values in the device descriptors following
the XOFF byte. Descriptors may be patched to return different values.

0S-9 COMMANDS MANUAL

Add the following information to page 15.

New Comcard Support

The ACIAPAC driver for the expansion MultiPac interface #26-3024 is included on the
master disk, along with a device descriptor named */T2.”” The Com Board RS/232 car-
tridge #26-2226 must be plugged into slot #1 of the MultiPac. The disk controller is
plugged into slot #4 of the MultiPac. X mode and T mode will allow /T2 to use XON/X-
OFF. To use them make sure your MultiPac cartridge selector switch is in position #4.

Note: When connecting an RS-232C device, check the device’s owner’s manual for
pin out descriptions.
The Com Board’s (#26-2226) Data Set Ready (DSR), Data Carrier Detect (DCD),
and Clear to Send (CTS) RS-232C handshake lines require active signals.

Add the following codes to the Display Control codes on page 132.

Cursor ON-OFF (All numbers are in decimal.) Displaying a code of 05 followed by a
qualifier code changes the cursor.

Lead
in C# Char Function
04 Clear to end of line
05 32 (space) Cursor OFF
05 33 M Cursor ON .. Default color (Blue)
05 34 () Cursor ON .. Black
05 35 (#) Cursor ON .. Green
05 36 ($) Cursor ON .. Yellow
05 37 (%) Cursor ON .. Blue
05 38 (&) Cursor ON .. Red
05 39 (") Cursor ON .. Buff
05 40 (() Cursor ON .. Cyan
05 41 () Cursor ON .. Magenta
05 42 (*) Cursor ON .. Orange

11 Clear to end of screen

0S-9 PROGRAM DEVELOPMENT MANUAL
Add the following information to page 161.

A command procedure to patch the resident version of the clock module to 50 hz has
been included on the master disk. To use this command, first make a backup of the
system master. On the new backup copy type “CLOCKPATCH.COM". After you have
completed the procedure, reboot the system.

Thank You!
Radio Shack
A Division of Tandy Corporation

875-9555

	OS-9 Level I Manuals
	Slip Cover
	Book Selection
	Version Info
	Getting Started With OS-9
	Cover
	Getting Started With OS-9
	To Our Customers...
	How To Use This Manual

	Table of Contents
	Chapter 1/ What Is OS9?
	What Is an Operating System?
	Back To OS9
	Multi-Level Filing System
	Multiuser/Multitasking Operation
	Device-independent Input/Output System

	Chapter 2/ Before You Start OS-9
	Chapter 3/Starting Up OS-9
	Starting OS-9 With Version 1.0
	Starting Up With Version 1.1 or Later
	Entering the Date
	Turning Off the System

	Chapter 4/ Formatting Disks And Making Backups
	Single-Drive Users
	Two-Drive Users

	Chapter 5/ Exploring the OS-9 File System
	Creating and Deleting Your Own Directories
	Creating Directories
	Deleting Directories

	Important Notes About Deleting Directories
	Creating and Manipulating Files

	Chapter 6/ In Case Of Trouble...
	Automatic Printerr Routine

	Chapter 7/ And There's More...
	More Commands
	copy - sinlge drive (-s option)
	date
	free
	mfree
	setime

	Command Modifiers
	Alternate Memory Size
	I/O Redirection
	Concurrent Execution
	Pipes

	OS-9 Languages

	Back Cover
	Addenum

	OS-9 Commands
	Cover
	OS-9 Commands
	Introduction
	Table of Contents
	1/ Introduction to the Shell
	1.1 Command Structure
	Command Parameters

	1.2 Common Command Formats
	1.3 Using the Video Display and Keyboard
	Video Display Functions
	Keyboard Shift and Control Functions

	1.4 Sending Output to the Printer
	Technical Information for the RS-232 Port

	2/ The OS-9 File System
	2.1 The Unified Input/Output System
	2.2 Organization of the File System
	Names
	Pathlists
	Device Names

	2.3 Directories
	Using Directories
	Creating Directories
	Deleting Directories
	Working Directories
	Using Working Directories
	Changing Working Directories
	Anonymous Directory Names

	2.4 the File Security System
	Examining and Changing File Attributes

	2.5 Reading and Writing from Files
	File Usage in OS-9
	Text Files
	Random-Access Data Files
	Executable Program Module Files
	Directories
	Miscellaneous File Usage

	Physical File Organization

	3/ Advanced Features Of The Shell
	3.1 More About Command Line Processing
	3.2 Execution modifiers
	Alternate Memory Size Modifier
	I/O Redirection Modifiers

	3.3 Command Seperators
	Sequential Execution
	Concurrent Execution
	Pipes and Filters

	3.4 Command Grouping
	3.5 Built-in Shell Commands and Option:
	3.6 Shell Procedure Files
	3.7 Error Reporting
	3.8 Running Compiled Intermediate Code Programs
	3.9 Editing startup for Timesharing Systems

	4/ Multiprogramming And Memory Management
	4.1 Processor Time Allocation and Timeslicing
	4.2 Process States
	4.3 Creation of New Processes
	4.4 Basic Memory Management Functions
	Loading Program Modules into Memory
	Loading Multiple Programs
	Memory Fragmentation

	5/ Use Of The System Disk
	5.1 The OS9BOOT File
	5.2 The SYS Directory
	5.3 The startup File
	5.4 The CMDS Directory
	5.5 The DEFS Directory
	5.6 Changing System Disks
	5.7 Making New System Disks

	6/ System Command Descriptions
	6.1 Organization of Entries
	6.2 Commands Syntax Notations
	6.3 System Commands
	A-B-C
	ATTR
	BACKUP
	BINEX/EXBIN
	BUILD
	CHD/CHX
	CMP
	COBBLER
	COPY

	D-E-F
	DATE
	DCHECK
	DEL
	DELDIR
	DIR
	DISPLAY
	DSAVE
	DUMP
	ECHO
	FORMAT
	FREE

	I-K-L
	IDENT
	KILL
	LINK
	LIST
	LOAD
	LOGIN

	M-O-P
	MAKDIR
	MDIR
	MERGE
	MFREE
	OS9GEN
	PRINTERR
	PROCS
	PWD/PXD

	R-S-T
	RENAME
	SAVE
	SETIME
	SETPR
	SHELL
	SLEEP
	TEE
	TMODE
	TSMON

	U-V-X
	UNLINK
	VERIFY
	XMODE

	Appendix A/ Error Codes
	OS-9 Error Codes
	002-003, 200-206
	207-224
	226-239

	Device Driver Errors
	240-253

	Appendix B/ Display System Functions
	Alpha Mode Display
	Alpha Mode Command Codes

	Graphics Mode Display
	Graphics Mode Selection Codes
	Color Set And Current Foreground Color Selection Codes
	Graphics Mode Contrrol Commands
	Get Status Commands
	Get Display Status
	Get Joystick Values
	Display Control Codes Condensed Summary

	Appendix C/ Keyboard Codes
	Key Definitions With Hexadecimal Values
	Function Keys

	Appendix D/ Keyboard Control Functions
	Key Definitions for Special Functions and Characters

	Index
	A-E
	E-O
	O-X

	Back Cover

	OS-9 Program Development
	Cover
	OS-9 Program Development
	Table of Contents
	Part 1/ OS-9 Macro Text Editor
	1/ Introduction
	Overview
	Text Buffers
	Edit Pointers
	Entering Commands
	Command Parameters
	Numeric Parameters
	String Parameters

	Syntax Notation
	Getting Started

	2/ Edit Commands
	Displaying Text
	Manipulating the Edit Pointer
	Inserting and Deleting Lines
	Searching and Substituting
	Miscellaneous Commands
	Manipulating Multiple Buffers
	Text File Operations
	Conditionals and Command Sereis Repetition
	Edit Macros
	Macro Headers
	Parameter Passing

	3/ Sample Sessions
	Sample Session 1
	Sample Session 2
	Sample Session 3
	Sample Session 4
	Sample Session 5

	Appendices
	Appendix A/ Glossary
	Appendix B/ Quick Reference Summary
	Edit Commands
	Pseudo Macros

	Appendix C/ Edito Error Messages

	Part 2/ OS-9 Assembler
	1/ Introduction
	Installation
	Assembly Language Program Development
	Assembler Input Files
	Running the Assembler
	Operating Modes

	2/ Source Statement Fields
	Label Field
	Operation Field
	Operand Field
	Comment Field

	3/ Symbloc Names and Expressions
	Evaluation of Expressions
	Expression Operands
	Operators
	Symbolic Names

	4/ Instruction Addressing Modes
	Inherent Addressing
	Accumulator Addressing
	Immediate Addressing
	Relative Addressing
	Extended and Extended Indierct Addressing
	Direct Addressing
	Register Addressing
	Indexed Addressing
	Constant Offset Indexed
	Program Counter Relative Indexed
	Accumulator Offset Indexed
	Auto-Increment and Auto-Decrement Indexed

	5/ Pseudo Instructions
	FCB
	FDB
	FCB/FDB/FCB/FCC/FCS
	MOD
	EMOD
	OS9

	6/ Assembler Directive Statements
	END
	label EQU/label SET
	IFxx/ELSE/ENDC
	NAM/TTL
	OPT
	Option Default (initial) State

	ORG
	PAG[E]
	SPC
	SETDP
	USE

	7/ DEFS Files: Fact or Fiction
	OS9DEFS
	System Service Request Codes
	Signal Codes
	Status Codes for GetStt and SetStt
	Direct Page Variables
	Table Size
	Module Format and Offsets
	Module Field Definitions
	Module Type/Language Masks and Offsets
	Module Attributes/Revision Masks and Offsets
	Process Descriptor
	Process Status Flags
	OS-9 System Entry Vectors
	Path Descriptor Offsets
	File Access Modes
	Pathlist Special Symbols
	File Manager Entry Offsets
	Device Driver Entry Offsets
	Device Table Format
	Device Static Storage Offsets
	Interrupt Polling Table Format
	Register Offsets on Stack
	Condition Code bits
	System Error Codes/ I/O Error Codes

	SCFDEFS
	Static Storage Requirements
	Character Definitions
	File Descriptor Format

	RBFDEFS
	Random Block Path Descriptor Format
	State Flags
	Device Descriptor Format
	File Descriptor Foramt
	Segment List Entry Format
	Directory Entry Format
	Static Storage

	SYSTYPE

	8/ Assembly-Language Programming Techniques
	Program Sections and Data Sections
	Program Area
	Position Independent Mode
	Accessing the Data Area

	9/ Assembler Error Reporting
	Explanation of Error Messasges
	Syntax and Grammar Errors
	Arithmetic Errors
	Symbolic Name Errors
	Assembler Operational Errors

	Appendix A/ Sample Command Lines
	Appendix B/ Error Messages Abridged
	Appendix C/ Assembly Language Programming Examples
	UPDN - Assembly Language Programming Example

	Appendix D/ 6809 Instructions and Addressing Modes
	Appendix E/ ASCII Character Set

	Part 3/ OS-9 Interactive Debugger
	1/ Introduction
	Calling DEBUG
	Basic Concepts

	2/ Expressions
	Constants
	Special Names
	Register Names
	Operators
	Forming Expressions
	Indirect Addressing

	3/ Debug Commands
	Calculator Commands
	Dot and Memory Examine and Change Commands
	Register Examine and Change Commands
	Breakpoint Commands
	Program Setup and Run Commands
	Utility Commands

	4/ Using Debug
	Sample Program
	A Session With DEBUG
	Patching Programs
	Patching OS-9 Component Modules

	Appendix/ Debug Command Summary
	Register Commands
	Program Setup and Run Commands
	Breakpoint Commands
	Utility Commands
	Error Codes
	O-7
	8-13

	TEXT EDITOR INDEX
	ASSEMBLER INDEX
	INTERACTIVE DEBUGGER INDEX
	Back Cover

	OS-9 Technical Information
	Cover
	OS-9 Technical Information
	Introduction
	History and Design Philosophy
	About This Manual
	Special Notations

	Table of Contents
	Table of Diagrams and Charts
	1/ System Organization
	Color Computer OS-9 Modules
	Kernel, Clock Module, and INIT
	Input/Output Modules
	IOMAN
	File Managers
	Device Drivers
	Device Descriptors

	Shell
	Boot

	2/ The Kernel
	System Initialization
	System Call Processing
	OS9Defs and Symbolic Names
	Types of System Calls

	Memory Management
	Memory Use

	Color Computer OS-9 Typical Memory Map
	Multiprogramming
	Process Creation
	Process Termination
	Process States
	Execution Scheduling
	Signals

	Interrupt Processing
	Physical Interrupt Processing
	Logical Interrupt Polling System

	3/ Memory Modules
	Module Types
	Module Format
	Module Header
	Module Body
	CRC Value

	Module Headers: Standard Information
	Module Headers: Type-Dependent Information
	Executable Memory Format
	ROM Modules

	4/ OS-9's Unified Input/Output System
	IOMAN
	File Managers
	Device Driver Modules
	Device Descriptor Mdules
	Device Descriptor Format
	Path Descriptors
	Path Desciptor: Standard Information

	5/ Random Block File Manager
	Logical and Physcial Disk Organization
	Disk Sectors
	Identification Sector (LSN 0)
	Disk Allocation Map Sector (LSN 1)

	File Sectors
	File Descriptor Sector

	Directories
	RBFMAN Definitions of the Path Descriptor
	RBF-Type Devcie Descriptor Modules
	RBF-Type Device Driver Modules
	RBF Device Memory Area Definitions
	RBFMAN Device Driver Subroutines
	Init
	Read
	Write
	Getsta/Setsta
	Term
	IRQ Service Routine
	Boot (Bootstrap Module)

	6/ Sequential Character File Manager
	SCFMAN Line Editing Functions
	Read and Write
	Read Line and Write Line
	SCFMAN Definitions of the Path Descriptor

	SCF-Type Device Descriptor Modules
	SCF-Type Device Driver Modules
	SCF Device Memory Area Definitions
	SCFMAN Device Driver Subroutines
	Init
	Read
	Write
	Getsta/Setsta
	Term
	IRQ Service Routine

	7/ Assembly-Language Programming Techniques
	How to Write Position Independent Code
	Addressing Variables and Data Structures
	Stack Requirements
	Interrupt Masks
	Using Standard I/O Paths
	Writing Interrupt-Driven Device Drivers
	A Sample Program (List)

	8/ System Calls
	Calling Procedure
	I/O System Calls
	System Call Descriptions
	A-C-D
	Allocate Bits
	Attach
	Chain
	Change Directory
	Close Path
	Compare Names
	CRC
	Create File
	Deallocate Bits
	Delete File
	Detach Device
	Duplicate Path

	E-F-G
	Exit
	Fork
	Get ID
	Get Status

	I-L-M
	Intercept
	Link
	Load
	Make Directory
	Memory

	O-P-R
	Open Path
	Parse Name
	Print Error
	Read
	Read Line

	S-T-U
	Search Bits
	Seek
	Send
	Set Priority
	Set Status
	Set SVC
	Set SWI
	Set Time
	Sleep
	Time
	Unlink

	W
	Wait
	Write
	Write Line

	Misc
	Allocate 64
	Find 64
	I/O Delete
	I/O Queue
	Insert Process
	Next Process
	Request Sysmem
	Return 64
	Return System
	Set IRQ
	Verify Module

	Appendix A/ Alphabetical System Call Lists
	User and I/O System Calls
	System Mode System Calls

	Appendix B/ Numerical System Call Lists
	User and I/O System Calls
	System Mode System Calls

	Appendix C/ Memory Module Diagrams
	Executable Memory Module Format
	Device Descriptor Format
	INIT Module Format

	Appendix D/ Standard Floppy Disk Format
	Appendix E/ System Call Error Codes
	200-215
	216-234
	235-250

	Appendix F/ Module I/O Attributes
	INDEX
	A-B-C
	C-D
	E-F-G
	H-I
	I-K-L-M
	M-N-O-P
	P-Q
	R-S
	S-T-U-V
	W

	Back Cover

	OS-9 Addenum - Upgrade to version 02.00.00
	OS-9 Enhancements
	Table of Contents
	Section 1/ Commands and Utilities
	CONFIG
	FORMAT
	HELP
	INIZ
	OS9GEN
	TMODE
	TUNEPORT
	XMODE
	Other Utilities

	Section 2/ System Changes
	SCF Descriptor Tables

	Section 3/ System Calls
	Updated GETSTAT Call
	Updated SETSTAT Call
	The VIRQ Call

	Appendix B Update
	Display System Functions
	Alpha Mode Display
	Alpha Mode Command Codes
	Graphics Mode Display
	Graphics Mode Selection Codes
	Graphics Mode Control Commands
	Get Status Commands
	Get Display Status
	Get Joystick Values
	Get Alpha Display Status
	Get Alpha Cursor Status
	Get Screen Size
	Get Key Sense Information
	Set Status Commands
	Allocate Additional Graphics Buffers
	Select Graphics Buffer
	Display Control Codes Condensed Summary

	Appendix D Update
	Keyboard Control Functions

	Appendix E Update
	Hard Disk Support
	Color Computer I/O Devices
	SCF-Type Devices
	TERM
	RS-232 External Terminal
	T2
	T3
	P
	M1
	M2
	SSC
	NIL

	RBF-Type Devices
	D0-D3
	H0-H1
	PIPEMAN Devices
	PIPE

	Sample Driver

	Manual(s) Correction(s)
	Introduction
	OS-9 Technical Information Manual
	OS-9 Commands Manual
	OS-9 Program Development Manual

