FLEX User’'s Manual

COPYRIGHT © 1979 by
Technical Systems Consultants, Inc.
111 Providence Road
Chapel Hill, North Carolina 27514
All Rights Reserved

» FLEX is a trademark of Technical Systems Consultants, Inc.



COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,
for any purpose other than singie end use by the purchaser is prohibited.

DISQLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.



PREFACE

The purpose of this User's Guide is to provide the user of the FLEX
Operating System with the information required to make effective use of
the available system commands and utilities. This manual applies to
FLEX 9.0 for full size and mini floppy disks. The user should keep this
manual close at hand while becoming familiar with the system. It is
organized to make it convenient as a quick reference guide, as well as a
thorough reference manual.

-iii-



-jy=-



CHAPTER 1
I.
II.
I1I.
Iv.
V.
VI.

CHAPTER 2
I.

CHAPTER 3
I.
II.
III.
Iv.
V.
VI.
VII.
VIII.

CHAPTER 4
Il

TABLE OF CONTENTS

Introduction

System Requirements
Getting the System Started
Disk Files and Their Names
Entering Commands

Command Descriptions

Utility Command Set

APPEND

ASN

BUILD

CAT

COPY (-GMX,=-TSC)
CHECKSUM

CMPBIN

DATE

DELETE

DCOPY Note:
DIR * indicates programs
EXEC supplied by GIMIX
EXTEND

FREEMAP

I

JUMP

L INK

LIST

NAME

N

0

P

PROT

RENAME

SAVE

STARTUP

TTYSET

UPDATE

UNSNARL

VERIFY

VERSION

XouT

Y

Disk Capacity

Write Protect

The 'RESET' Button

Notes on the P Command

Accessing Drives Not Containing a Disk
System Error Numbers

System Memory Map

Flex Input/Output Subroutines

Command Summary

Page

JEE N I QNE NI N §
¢ o ® s 9
SNWUVMWHNN =

N
. . . L) - - . . . -
-—

e e o o e e o

A X CCCCAH VNV O OVOZZrrOU~="TITMMOODTOOOOO T XX

(VR R Y A AV A A
.

NN QDA

=
.
-—






FLEX USER'S MANUAL

I.  INTRODUCTION

The FLEX™ Operating System is a very versatile and flexible operating
system. It provides the user with a powerful set of system commands to
control all disk operations directly from the user's terminal. The
systems programmer will be delighted with the wide variety of disk
access and file management routines available for personal use.
Overall, FLEX is one of the most powerful operating systems available

today.

The FLEX Operating System is comprised of three parts, the File
Management System (FMS), the Disk Operating System (DOS), and the
Utility Command Set (UCS). Part of the power of the overall system lies
in the fact that the system can be greatly expanded by simply adding
additional utility commands. The user should expect to see many more
utilities available for FLEX in the future. Some of the other important
features include: fully dynamic file space allocation, the automatic
"removal” of defective sectors from the disk, automatic space
compression and expansion on all text files, complete user environment
control using the TTYSET utility command, and uniform disk wear due to

the high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programs
reside on the system disk and are only loaded into memory when needed.
This means that the set of commands can be easily extended at any time,
without the necessity of replacing the entire operating system. The
utilities provided with FLEX perform such tasks as the saving, loading,
copying, renaming, deleting, appending, and listing of disk files.
There is an extensive CATalog command for examining the disk's file
directory. Several environment control commands are also provided.
Overall, FLEX provides all of the necessary tools for the user's

interaction with the disk.

* FLEX is a registered trademark of  Technical Systems
Consultants, Inc.

-101-



FLEX User's Manual

II. SYSTEM REQUIREMENTS

FLEX requires random access memory from location 0000 through location
2FFF hex (12K). Memory is also required from CO00 (48K) through DFFF
hex (56K), where the actual operating system resides. The system also
assumes at least 2 disk drives are connected to the controlier and that
they are configured as drives #0 and #1. You should consult the disk
drive instructions for this information. FLEX interfaces with the disk
controller through a section of driver routines and with the operator
console or terminal through a section of terminal I/0 routines.

I11. GETTING THE SYSTEM STARTED

Each FLEX system diskette contains a binary loader for loading the
operating system 1into RAM. There needs to be some way of getting the
loader off of the disk so it can do its work. This can be done by
either hand entering the bootstrap loader provided with the disk system,
or by using the boot provided in ROM if appropriate to FLEX.

As a specific example, suppose the system we are using has SWTPc's S-BUG
installed and we wish to run FLEX. The first step is to power on all
equipment and make sure the S-BUG prompt is present (>). Next insert
the system diskette into drive O (the boot must be performed with the
disk 1in drive 0) and close the door on the drive. Type "D" on the
terminal if using a full size floppy system or "U" if a minifloppy
system. The disk motors should start, and after about 2 seconds, the
following should be displayed on the terminal:

FLEX X.X
DATE (MM,DD,YY)?

+++

The name FLEX identifies the operating system and the X.X will be the
version number of the operating system. At this time the current date
should be entered, such as 7,3,79. The FLEX prompt is the three plus
signs (+++), and will always be present when the system is ready to
accept an operator command. The '+++' should become a familiar sight
and signifies that FLEX is ready to work for you!

-1.2-



FLEX User's Manual

IV. DISK FILES AND THEIR NAMES:

A1l disk files are stored in the form of 'sectors' on the disk and in
this version, each sector contains 256 ‘bytes' of information. Each
byte can contain one character of text or one byte of binary machine
information. A maximum of 340 user-accessible sectors will fit on a
single-sided mini disk or 1140 sectors on a single-sided full size
floppy. Double-sided disks would hold exactly twice that number of
sectors. Double-density systems will hold more still. The user,
however, need not keep count, for the system does this automatically. A
file will always be at least one sector long and can have as many as the
maximum number of sectors on the disk. The user should not be concerned
with the actual placement of the files on the disk since this is done by
the operating system. File deletion 1is also supported and all
previously used sectors become immediately available again after a file

has been deleted. .

A1l files on the disk have a name. Names such as the following are
typical:

PAYROLL

INVNTORY
TEST1234
APRIL-78
WKLY-PAY

Anytime a file is created, referenced, or deleted, its name must be
used. Names can be most anything but must begin with a Tletter (not
numbers or symbols) and be followed by at most 7 additional characters,
called 'name characters'. These 'name characters' <can be any
combination of the letters 'A' through 'Z' or 'a' through 'z', any digit
'0' through '9', or one of the two special characters, the hyphen (=) or
the underscore ' ', (a left arrow on some terminals).

File names must also contain an 'extension'. The file extension further
defines the file and usually indicates the type of information contained
therein. Examples of extensions are: TXT for text type files, BIN for
machine readable binary encoded files, CMD for utility command files,
and BAS for BASIC source programs. Extensions may contain up to 3 'name
characters' with the first character being a letter. Most of the FLEX
commands assume a default extension on the file name and the user need
not be concerned with the actual extension on the file. The user may at
anytime assign new extensions, overiding the default value, and treat
the extension as just part of the file name. Some examples of file
names with their extensions follow:

APPEND.CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period
'.'. The period is the name 'field separator'. It tells FLEX to treat

the following characters as a new field in the name specification.

-1.3-



FLEX User's Manual

A file name can be further refined. The name and extension uniquely
define a file on a particular drive, but the same name may exist on
several drives simultaneously. To designate a particular drive a 'drive
number' is added to the file specification. It consists of a single
digit (0-3) and is separated from the name by the field separator '.’.
The drive number may appear either before the name or after it (after
the extension if it 1is given). If the drive is not specified, the
system will default to either the ‘system' drive or the 'working' drive.

These terms will be described a little later.

Some examples of file specifications with drive numbers follow:

0.BASIC
MONDAY. 2
1.TEST.BIN
LIST.CMD.1

In summary, a file specification may contain up to three fields
separated by the field separator. These fields are; 'drive', ‘'name',
and ‘'extension'. The rules for the file specification can be stated
quite concisely using the following notation:

[<drive>.]<name>[.<extension>]
or
<name>[.<extensiond][.<drive>]

The '<' encloese a field and do not actually appear in the
specification, and the '[]' surround optional items of the
specification. The following are all syntactically correct:

0.NAME.EXT
NAME.EXT.O
NAME.EXT
0. NAME
NAME.O
NAME

Note that the only required field is the actual 'name' itself and the
other values will usually default to predetermined values. Studying the
above examples will clarify the notation used. The same notation will
occur regularly throughout the manual.

-1.4-



FLEX User's Manual

V. ENTERING COMMANDS

When FLEX is displaying '+++', the system is ready to accept a command
line. A command 1line is usually a name followed by certain parameters
depending on the command being executed. There is no 'RUN' command in
FLEX. The first file name on a command line is always loaded into memory
and execution is attempted. If no extension s given with the file
name, 'CMD' 1dis the default. If an extension is specified, the one
entered is the one used. Some examples of commands and how they would
look on the terminal follow:

+HTTYSET
++4TTYSET. CMD
+++L00KUP. BIN

The first two lines are identical to FLEX since the first would default
to an extension of CMD. The third line would load the binary file
"LOOKUP.BIN' into memory and, assuming the file contained a transfer
address, the program would be executed. A transfer address tells the
program loader where to start the program executing after it has been
loaded. If you try to load and execute a program in the above manner and
no transfer address is present, the message, 'NO LINK' will be output to
the terminal, where '1ink' refers to the transfer address. Some other
error messages which can occur are 'WHAT?' if an 1illegal file
specification has been typed as the first part of a command line, and
"NOT THERE' if the file typed does not exist on the disk.

During the typing of a command line, the system simply accepts all
characters until a 'RETURN' key is typed. Any time before typing the
RETURN key, the user may use one of two special characters to correct
any mistyped characters. One of these characters is the 'back space’
and allows deletion of the previously typed character. Typing two back
spaces will delete the previous two characters. The back space is
initially defined to be a 'control H' but may be redefined by the user
using the TTYSET utility command. The second special character is the
line 'delete' character. Typing this character will effectively delete
all of the characters which have been typed on the current line. A new
prompt will be output to the terminal, but instead of the usual "4
prompt, to show the action of the delete character, the prompt will be
'272'. Any time the delete character is used, the new prompt will be
'27?', and signifies that the last line typed did not get entered into
the computer. The delete character is initially a 'control X' but may
also be redefined using TTYSET.

-1.5-



FLEX User's Manual

As mentioned earlier, the first name on a command 1line 1is always
interpreted as a command. Following the command is an optional list of
names and parameters, depending on the particular command being entered.
The fields of a command line must be separated by either a space or a
comma. The general format of a command line is: ‘

<command>[,<1ist of names and parameters>]

A comma is shown, but a space may be used. FLEX also allows several
commands to be entered on one command line by use of the 'end of line'
character. This character is initially a colon (':'), but may be user
defined with the TTYSET utility. By ending a command with the end of
line character, it is possible to follow it immediately with another
command. FLEX will execute all commands on the line before returning
with the '+++' prompt. An error in any of the command entries will
cause the system to terminate operation of that command Tine and return
with the prompt. Some examples of valid command lines follow:

+++CAT 1
+++CAT 1:ASN S=1
+++_ IST LIBRARY:CAT 1:CAT O

As many commands may be typed in one command line as desired, but the
total number of characters typed must not exceed 128. Any excess
characters will be ignored by FLEX.

One last system feature to be described is the idea of 'system' and
'working' drives. As stated earlier, if a file specification does not
specifically designate a drive number, it will assume a default value.
This default value will either be the current 'system' drive assignment
or the current ‘working' drive assignment. The system drive is the
default for all command names, or in other words, all file names which
are typed first on a command 1ine. Any other file name on the command
lTine will default to the working drive. This version of FLEX also
supports automatic drive searching. When in the auto search mode if no
drive numbers are specified, the operating system will first search
drive 0 for the file. If the file 1is not found, drive 1 will be
searched and so on. When the system is first initialized the auto drive
searching mode will be selected. At this time, all drive defaults will
be to drive 0. It is sometimes convenient to assign drive 1 as the
working drive in which case all file references, except commands, will
automatically look on drive 1. It is then convenient to have a diskette
in drive 0 with all the system utility commands on it (the 'system
drive'), and a disk with the files being worked on in drive 1 (the
'working drive'). [If the system drive is 0 and the working drive is 1,
and the command line was:

+++L IST TEXTFILE
FLEX would go to drive O for the command LIST and to drive 1 for the

file TEXTFILE. The actual assignment of drives is performed by the ASN
utility. See its description for details.

-1.6-



FLEX User's Manual

VI. COMMAND DESCRIPTIONS

There are two types of commands in FLEX, memory resident (those which
actually are part of the operating system) and disk utility commands
(those commands which reside on the disk and are part of the ucs).
There are only two resident commands, GET and MON. They will be
described here while the UCS is described in the following sections.

GET

The GET command is used to load a binary file into memory. It is a
special purpose command and is not often used. It has the following

syntax:
GET[,<file name Tist>]
where <file name list> is: <file spec>[,<file spec>] etc.

Again the '[]' surround optional items. 'File spec' denotes a file name
as described earlier. The action of the GET command is to load the file
or files specified in the 1list into memory for Tlater use. If no
extension is provided in the file spec, BIN is assumed, in other words,
BIN is the default extension. Examples:

GET,TEST
GET,1.TEST,TEST2.0

where the first example will load the file named 'TEST.BIN' from the
assigned working drive, and the second example will load TEST.BIN from
drive 1 and TEST2.BIN from drive O.

MON

MON is used to exit FLEX and return to the hardware monitor system such
as S-BUG. The syntax for this command is simply MON followed by the
'RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should enter the
program at location CDO3 hex.

-1.7-






UTILITY COMMAND SET

The following pages describe all of the utility commands currently
included in the UCS. You should note that the page numbers denote the
first letter of the command name, as well as the number of the page for
a particular command. For example, 'B.1.2' 1is the 2nd page of the
description for the 1st utility name starting with the letter 'B'.

COMMON ERROR MESSAGES

Several error messages are common to many of the FLEX utility commands.
These error messages and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a
particular command was not found on the disk specified. Usually the
wrong drive was specified (or defaulted), or a misspelling of the name
was made.

ILLEGAL FILE NAME. This can happen if the name or extension did
not start with a letter, or the name or extension field was too long
(limited to 8 and 3 respectively). This message may also mean that the
command being executed expected a file name to follow and one was not

provided.

FILE EXISTS. This message will be output if you try to create a
file with a name the same as one which currently exists on the same
disk. Two different files with the same name are not allowed to exist on

the same disk.

SYNTAX ERROR. This means that the command line just typed does not
follow the rules stated for the particular command used. Refer to the
individual command descriptions for syntax rules.

GENERAL SYSTEM FEATURES

Any time one of the utility commands is sending output to the terminal,
it may be temporarily halted by typing the 'escape' character (see
TTYSET for the definition of this character). Once the output is
stopped, the user has two choices: typing the 'escape' character again
or typing 'RETURN'. If the 'escape' character is typed again, . the
output will resume. If the 'RETURN' is typed, control will return to
FLEX and the command will be terminated. All other characters are

ignored while output is stopped.

-2.1~






APPEND

The APPEND command is used to append or concatenate two or more files,
creating a new file as the result. Any type of file may be appended but
it only makes sense to append files of the same type in most cases. If
appending binary files which have transfer addresses associated with
them, the transfer address of the last file of the list will be the
effective transfer address of the resultant file. All of the original
files will be left intact.

DESCRIPTION
The general syntax for the APPEND command is as follows:
APPEND,<file spec>[,<file 1ist>],<file spec>

where <file 1list> can be an optional list of the specifications. The
last name specified should not exist on the disk since this will be the
name of the resultant file. If the last file name given does exist on
the disk, the question "MAY THE EXISTING FILE BE DELETED?" will be
displayed. A Y response will delete the current file and cause the
APPEND operation to be completed. A N response will terminate the
APPEND operation. All other files specified must exist since they are
the ones to be appended together. If only 2 file names are given, the
first file will be copied to the second file. The extension default is
TXT unless a different extension is used on the FIRST FILE SPECIFIED, in
which case that extension becomes the default for the rest of the
command line. Some examples will show its use:

APPEND,CHAPTER1,CHAPTER2,CHAPTER3,BOOK
APPEND,FILEL1,1.FILE2.BAK,GOODFILE

The first 1line would create a file on the working drive called
'BOOK.TXT' which would contain the files 'CHAPTERI.TXT', CHAPTER2.TXT',
and 'CHAPTER3.TXT' in that order. The second example would append
'FILE2.BAK' from drive 1 to FILE1.TXT from the working drive and put the
result in a file called 'GOODFILE.TXT' on the working drive. The file
GOODFILE defaults to the extension of TXT since it 1is the default
extension. Again, after the use of the APPEND command, all of the
original files will be intact, exactly as they were before the APPEND

operation.

-A.1.1-



ASN

The ASN command 'is used for assigning the 'system' drive and the
'working' drive or to select automatic drive searching. The system
drive 1is used by FLEX as the default for command names or, in general,
the first name on a command line. The working drive is used by FLEX as
the default on all other file specifications within a command line.
Upon initialization, FLEX assigns drive #0 as both the system and
working drive. An example will show how the system defaults to these
values:

APPEND,FILEL,FILE2,FILE3

If the system drive is assigned to be #0 and the working drive 1is
assigned to drive #1, the above example will perform the following
operation: get the APPEND command from drive #0 (the system drive), then
append FILE2 from drive #1 (the working drive) to FILE1l from drive #1
and put the result in FILE3 on drive #1. As can be seen, the system
drive was the default for APPEND where the working drive was the default
for all other file specs listed.

Automatic drive searching causes FLEX to automatically scan the ready
drives for the file specified. Hardware limitations prevent the mini
floppy versions from searching for "ready" drives. For this reason,
FLEX has been setup to ALWAYS assume drive O and 1 are ready. Thus if a
mini floppy version of FLEX attempts to search a drive which does not
have a disk loaded, it will hang up until a disk is inserted and the
door closed. Alternatively, the system reset could be hit and a warm
start executed (a jump to address $CD03). The full size floppy version
CAN detect a ready condition and will not check drives which are out of
the ready state during automatic drive searching.

Automatic drive searching causes FLEX to first check drive #0 for the
file specified. If not there (or if not ready in the full size
version), FLEX skips to drive #1. If the file is not found on drive #1
in the mini floppy version, FLEX gives up and a file not found error
results. In the full size version FLEX continues to search on drives #2
and #3 before reporting an error.

DESCRIPTION

The general syntax for the ASN command is as follows:
ASN[,W=<drive>][,S=<drive>]

where <drive> is a single digit drive number or the letter A. If Jjust
ASN is typed followed by a 'RETURN', no values will be changed, but the
system will output a message which tells the current assignments of the
system and working drives, for example:

+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0

"A- 201-



FLEX User's Manual

Some examples of using the ASN command are:

ASN,W=1
ASN,S=1,W=0

where the first line would set the working drive to 1 and leave the
system drive assigned to its previous value. The second example sets
the system drive to 1 and the working drive to 0. Careful use of drive
assignments can allow the operator to avoid the use of drive numbers on
file specifications most of the time!

If auto drive searching is desired, then the Tetter A for automatic,
should be used in place of the drive number.

Example:
ASN W=A
ASN S=A,

W
ASN S=A, W

1
A

-A.2.2-



BUILD

The BUILD command is provided for those desiring to create small text
files quickly (such as STARTUP files, see STARTUP) or not wishing to use
the optionally available FLEX Text Editing System. The main purpose for
BUILD is to generate short text files for use by either the EXEC command
or the STARTUP facility provided in FLEX.

DESCRIPTION
The general syntax of the BUILD command is:
BUILD,<file spec>

where <file spec> is the name of the file you wish to be created. The
default extension for the spec is TXT and the drive defaults to the
working drive. If the output file already exists the question "MAY THE
EXISTING FILE BE DELETED?" will be displayed. A Y response will delete
the existing file and build a new file while a N response will terminate
the BUILD command.

After you are in the 'BUILD' mode, the terminal will respond with an
equals sign ('=') as the prompt character. This is similar to the Text
Editing System's prompt for text input. To enter your text, simply type
on the terminal the desired characters, keeping in mind that once the
'RETURN' is typed, the line is in the file and can not be changed. Any
time before the 'RETURN' is typed, the backspace character may be used
as well as the line delete character. If the delete character is used,
the prompt will be '?7?' instead of the equals sign to show that the
last line was deleted and not entered into the file. It should be noted
that only printable characters (not control characters) may be entered
into text files using the BUILD command.

To exit the- BUILD mode, it is necessary to type a pound sign ('#')
immediately following the prompt, then type 'RETURN'. The file will be
finished and control returned back to FLEX where the three plus signs
should again be output to the terminal. This exiting is similar to that
of the Text Editing System.

"Bolnl"



CAT

The CATalog command is used to display the FLEX disk file names in the
directory on each disk. The user may display selected files on one or
multiple drives if desired.

DESCRIPTION
The general syntax of the CAT command is:
CAT[,<drive 1ist>][,<match 1ist>]

where <drive list> can be one or more drive numbers seperated by commas,
and <match list> is a set of name and extension characters to be matched
against names in the directory. For example, if only file names which
started with the characters 'VE' were to be cataloged, then VE would be
in the match list. If only files whose extensions were 'TXT' were to be
cataloged, then .TXT should appear in the match Tist. A few specific
examples will help clarify the syntax:

+++CAT
+44CAT,1,A.T,DR
+++CAT, PR

++4CAT, 0,1
++4CAT,0,1,.CMD, .SYS

The first example will catalog all file names on the working drive or on
all drives if auto drive searching is selected. The second example will
catalog only those files on drive 1 whose names begin with 'A' and whose
extensions begin with 'T', and also all files on drive 1 whose names
start with 'DR'. The next example will catalog all files on the working
drive (or on all drive if auto drive searching is selected) whose names
start with 'PR'. The next line causes all files on both drive 0 and
drive 1 to be cataloged. Finally, the last example will catalog the
files on drive 0 and 1 whose extensions are CMD or SYS.

During the catalog operation, before each drive's files are displayed, a
header message stating the drive number is output to the terminal. The
name of the diskette as entered during the NEWDISK operation will also
be displayed. The actual directory entries are listed in the following

form:
NAME.EXTENSION SIZE PROTECTION CODE

where size is the number of sectors that file occupies on the disk. If
more than one set of matching characters was specified on the command
line, each set of names will be grouped according to the characters they
match. For example, if all .TXT and .CMD files were cataloged, the TXT

types would be listed together, followed by the CMD types.
In summary, if the CAT command is not parameterized, then all files on

the assigned working drive will be displayed. If a working drive is not
assigned (auto drive searching mode) the CAT command will display files

-C.1.1-



FLEX User's Manual

on all on line drives. If it is parameterized by only a drive number,
then all files on that drive will be displayed. If the CAT command is
parameterized by only an extension, then only files with that extension
will be displayed. If only the name is used, then only files which
start with that name will be displayed. If the CAT command is
parameterized by only name and extension, then only files of that root
name and root extension (on the working drive) will be displayed. Learn
to use the CAT command and all of its features and your work with the
disk will become a little easier.

The current protection code options that can be displayed are as
follows: ,

D File is delete protected (delete or rename prohibited)
W File is write protected (delete, rename and write prohibited)
(blank) No special protection

-C.1.2-



COPY (-TSC,-GMX)+

The COPY command is used for making copies of files on a disk.
Individual files may be copied, groups of name-similar files may
be copied, or entire disks may be copied. The COPY command is a

very versatile utility. When files are <copied onto a newly
formatted disk, they are stored as contiguous groups of sectors,
resulting in minimum access times. This can be a substantial

improvement over an old disk on which the files are highly
fragmented due to frequent rewriting.

DESCRIPTION

The general syntax of the COPY command has three forms:

a. COPY,(file spec>,<file spec>
b. COPY,<file spec>,<drive>
c. COPY,<drived>,<drive>{,<match,list>]

where <match list> is the same as that described in the CAT
command and all rules apply to matching names and extensions.
When files are copied, if the destination disk has a file with the
same name as the file being copied, the file name and the message
"FILE EXISTS - DELETE ORIGINAL?" will be displayed on the console.
Typing "Y" will cause the file on the destination disk to be
deleted and the file on the source disk will be copied to the
destination disk. Typing "N" will direct FLEX not to copy the
file in question.

The first type of COPY allows copying of a single file into
another. The output file may be on a different drive, but if it
is on the same drive then the file names must be different. It is
always necessary to specify the input file's extension, but the
output file's extension will default to that of the input file if
none is specified. Example:

+++COPY, 0.TEST.TXT, 1.TEST25

This command line would cause the file TEST.TXT on drive O to be
copied to a file named TEST25.TXT on drive 1. Note that the

destination file's extension defaulted to TXT, the same as the
input file.

The second type of COPY allows copying a file from one drive to
another with the file name unchanged. Example:

+++COPY,0.LIST.CMD, 1
Here the file named LIST.CMD on drive O would be copied to drive
1. It is again necessary to specify the file's extension in the

file specification. This form of the command is more convenient
than the first if the copied file is to have the same name.

-C.2.1-



FLEX User's Manual

The final form of the COPY command is the most versatile and the
most powerful. With this form,it is possible to copy all the
files on one drive to another drive, or only those files which
match one of the patterns in the match list. Examples:

+++COPY, 0,1
+++COPY, 1,0, .CMD, .SYS
+++COPY,O,1)A,B’CA'T

The first example would copy all the files on drive 0 to drive 1.
The second example would copy all CMD and SYS files on drive .1 to
drive 0. The third example would copy from drive 0 to drive 1 all
files beginning with the letter A or the letter B, or beginning
with the letters CA and with an extension Dbeginning with the
letter T. This form of the COPY command is the most versatile
because it allows a set of files to be extracted from a disk. The
file name 1is always preserved with this form. During execution,
the name of each file copied is displayed on the console along
with the drive to which it is copied.

The match list is processed as follows: for each partial file
specification 1in the 1list, all the entries in the catalog of the
source disk are tested and those that match are copied. Then the
whole catalog is scanned again for matches to the next
specification in the list. Thus all the files which match a given
specification will be grouped together in the catalog of the
output disk. If a file matches more than one specification in the
list, then COPY will try to copy it as many times as it matches.
Example:

+++COPY,1,2,ABC, .TXT

would copy the file ABC.TXT twice. The second time would generate
the "FILE EXISTS - DELETE ORIGINAL?'" prompt.

Two versions of COPY are supplied with GIMIX FLEX 4.x. Except for
the manner in which the file creation date is handled they are
functionally identical. Use the RENAME utility to change the name
of the preferred version to COPY.CMD.

COPY-TSC creates its output file through the normal FMS file
creation function. Therefore the creation date of the output file
is the current system date. This is the standard version of COPY
normally supplied with FLEX.

COPY-GMX has been modified by GIMIX so that the creation date of
the output file will be the same as that of the input file. For
all files except random-access files, this date is the last date
on which the file's contents were altered, and is often very
useful to know. This version of COPY allows all copies of a file
with the same contents to have the same date.

-C.2.2-



CHECKSUM

The CHECKSUM command performs a 32 bit checksum on an entire disk.
The program reads every sector on the disk and totals them
together. This can be used to verify disk copies, check disk

validity, etc.

DESCRIPTION
The general synatax of the CHECKSUM command is:
CHECKSUM{,dn]
Whefe 'dn' is an optional drive number. If no drive is specified

CHECKSUM will use the work drive. If the work drive is set to
"ALL' an error message is printed. Some examples follow:

+++CHECKSUM
+++CHECKSUM, 2

The first example will generate a CHECKSUM of the disk in the
current work drive, assuming the work drive in not set to "ALL'.

The second example will generate a CHECKSUM of the disk in drive
2. The output of CHECKSUM will look like:

CHECKSUM: 0002ABO2

CHECKSUM can generate the following error messages:
ILLEGAL DRIVE NUMBER

Legal drive numbers are 0, 1, 2, or 3. A drive number must be
specified if the work drive is set to ALL.

INVALID DISK FORMAT

The disk uses a non-standard format or the SYSTEM INFORMATION
RECORD sector may be damaged. -

-C.4.1-



CMPBIN

The CMPBIN command is used to compare the contents of two binary
files and list the differences. CMPBIN is a useful tool for
sorting out mislabeled or long-forgotten binary files, for
tracking changes in programs, and for identifying current
versions.

DESCRIPTION
The general syntax of the CMPBIN command is:
CMPBIN,<file spec>,<file spec>

This will cause the two files to be read as FLEX binary files and
compared. The default extension is BIN. The files are read as
binary records, in the format described on page 45 of the FLEX
Advanced Programmer's Guide. A binary record consists of a load
address, a byte count, and bytes of data to be stored in memory.
The data bytes from the first file are compared to the data bytes
from the second file. The current load address for each file is
also compared. If either is different, the address and data byte
from each file is printed. Example:

+++CMPBIN,A.BIN,AOLD.BIN

FILE A FILE B
ADDRESS BYTE BYTE ADDRESS
0209 A5 A7 0209
020A 56 29 020A
03E4 Cé 4D 03E4

CMPBIN is a very simple-minded program, and works best only when
the two files 1load starting at the same address. If the files
differ by one file having code 1inserted or removed, then
mismatches will be found from the point where bytes were added or
removed to the end of the file. If one file is 1longer than the
other, the extra bytes will all be mismatches, with the shorter
file's contents listed as '"0106 00". If the data bytes are the
same, but the files were assembled to load at different addresses,
then every byte will be a mismatch, but only on the addresses,
which is easily seen.

—C- 50 1—



DATE

The DATE command is used to display or change an internal FLEX date
register. This date register may be used by future programs and FLEX
utilities.
DESCRIPTION
The general syntax of the DATE command is:

DATE[,<month,day,year>]

where 'month' is the numerical month, 'day' is the numerical day and
'year' is the last two digits of the year.

+++DATE 5,2,79 Sets the date register to May 2, 1979

Typing DATE followed by a carriage return will return the last entered
date.

Example:
+++DATE

May 2, 1979

-D.1.1-



DELETE

The DELETE command 1is wused to delete a file from the disk. Its name
will be removed from the directory and its sector space will be returned
to the free space on the disk.

DESCRIPTION
The general syntax of the DELETE command is:
DELETE,<file spec>[,<file Tist>]

where <file 1ist> can be an optional list of file specifications. It is
necessary to include the extension on each file specified. As the
DELETE command is executing it will prompt you with:

DELETE "FILE NAME"?

The entire file specification will be displayed, including the drive
number. If you decide the file should be deleted, type 'Y'; otherwise,
any other response will cause that file to remain on the disk. If a 'Y'
was typed, the message ‘'ARE YOU SURE?' will be displayed on the
terminal. If you are absolutely sure you want the file deleted from the
disk, type another 'Y' and it will be gone. Any other character will
leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO WAY TO
GET IT BACK! Be absolutely sure you have the right file before
answering the prompt questions with Y's. Once the file is deleted, the
space it had occupied on the disk is returned back to the 1ist of free
space for future use by other files. Few examples follow:

+++DELETE ,MATHPACK.BIN
+++DELETE, 1. TEST. TXT,0.AUGUST. TXT

The first example will DELETE the file named MATHPACK.BIN from the
working drive. If auto drive searching is selected, the file will be
deleted from the first drive it is found on. The second line will
DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive O.

There are several restrictions on the DELETE command. First, a file
that is delete or write protected may not be deleted without first
removing the protection. Also a file which is currently in the print
queue (see the PRINT command) can not be deleted using the DELETE
command.

-D.2.1-



DCOPY

The DCOPY command is used to copy from one disk to another all
files which were created on or after a given date. This permits
convenient backup of only those files which are new.

DESCRIPTION
The general syntax of the DCOPY command is:
DCOPY,<drive>,<drive>,[<month>],[<day>],[<year>][,R]

where the first drive number is the drive to be copied from, the
second drive number is the drive to be copied to. R is an option
to replace existing files on the destination disk with the files
being copied. <{month>, <{day>, and <year> indicate a date; only
files created on or after this date will be copied. If any part
of the the date is left out, DCOPY defaults to the value in the

corresponding FLEX date register. For example
bpCcoPY,2,1,6,1,R

would copy from drive 2 to drive 1 all files created after June 1
of the current year, replacing existing copies on drive 1.

bcory,o0,3,,,81

would copy from drive 0 to drive 3 all files created after today's
date in 1981 which were not already on the disk in drive 3.

bcopry,1,0,R

would copy from drive 1 to drive 0 all files which were created
today, replacing existing copies of these files on drive O.

DCOPY logs each file copied on the console with the message
n.filnam.ext TO DRIVE ¢#n

These messages may be redirected to the printer or to a file with
the P and O commands to provide a record of operations.

If the R option is selected, files on the destination disk with
the same names as files to be copied will be deleted, and replaced
by the copied files, unless the date of the destination disk file
is more recent than that of the source disk file. In that case,
DCOPY will print

DEST FILE IS NEWER - NOT COPIED

and go on to the next file. This prevents the user from '"backing
up'" an out-of-date file onto the current file.

NOTE: the date of a random-access file is the day it was created.
FLEX does not change this date when the file is accessed. The
GIMIX-supplied UPDATE wutility command can be used to update the
date of a random-access file.

-D.3.1-






DIR

The DIR command is wused to display the contents of a FLEX disk
directory. It is similar to the CAT command, but displays all
directory information associated with each file. The user may
display selected files on multiple disks, and may include or
exclude catalog-protected files. DIR reports the total number of
files, the number of sectors in use, size of the largest file, and
free sectors on each disk. NOTE: this program is a GIMIX product,
and not related to any other programs of the same name.

DESCRIPTION
The general syntax of the DIR command is:
DIR[,+P][,<drive list>][,<match list>]

where +P is the protected-files option, <drive list> is a list of
up to &4 drives to be scanned, and <match list> is one or more

partial file names.

If "4+P" is included in the command line immediately after "DIR",
then the DIR command will process all files on the disk, including
those which have been catalog-protected with the PROT command. If
the option is omitted, protected files are excluded from the
listing but are included in the printed total at the end of the

listing.

<drive 1list> can be one or more drive numbers separated by commas
or spaces. For each drive specified, a header 1is displayed,
directory entries matching the match 1list are displayed, and
totals are printed. If the drive list is omitted, DIR defaults to

the working drive.

<match list> consists of one or more sets of name and/or extension
characters which are to be matched against file names in the
directory. The sets must be separated by commas or spaces, and
must be in the form [<partial name>][.<partial extension>]. The
match function compares the letters in the set to the beginning of
each file name (and extension), and those files which match all
the letters in the set are listed. For example:

+++DIR HARDF .BAK A.C TEXTFILE.TXT

will list all files on the working disk with names beginning with
"HARDF", then all files with the extension ".BAK", then all files
with names beginning with "A" and extensions begining with "C",
and finally the file "TEXTFILE.TXT". A file named HARDF19.BAK
would be listed twice, as a "HARDF" file, and as a ".BAK" file.
For convenience, all lower case letters in the match list are
translated to upper case before the comparison, so "l.dat" and
"l .DAT" are equivalent, and both will match "LIST.DAT". If the
match list is omitted, DIR lists all files on the drive.

—004-1‘



FLEX User's Manual

For each drive DIR prints a header giving the disk name and volume
number entered when the disk was formatted, and the date it was
formatted. Then it scans the directory once for each item in the
match list, listing all files which match. For each file, the
following information 1is displayed: directory entry number, name
and extension, an "R" if it is random-access, the disk addresses
of its beginning and ending sectors, its size in sectors, the date
it was last written to, and a 4-character field indicating which
protections are set for it (Write, Read, Delete, or Catalog).
Example: .

+++DIR +P,3,A.CMD,LETT,ERR

Directory of drive 3
Disk name = VIRTDISK.GMX #1 Disk created 28-Mar-84

File # Name Type R Begin End Size Date Prot
2 ASMB .CMD 01-04 07-02 47 28-Mar-84 W.D.
13 LETTER .BAK 1B-01 1B-01 1 28-Mar-84 .R.C
14 ERRORS .SYS R 1B-02 1B-04 3 28-Mar-84 ....
Listed: Files= 5 : Sectors=s 51 :+ Largest= 47
Total: Files=s 35 ¢+ Sectors=z 291 : Largest= 75 : Free=245

Two set of totals are printed at the bottom. The first line is
for the listed files only, while the second is for the whole disk,
including protected and non-matching files. If multiple disks are
specified, separate totals are printed for each disk.

-D.a-z—



EXEC

The EXECute command is used to process a text file as a 1list of
commands, Jjust as if they had been typed from the keyboard. This is a
very powerful feature of FLEX for it allows very complex procedures to
be built up as a command file. When it is desirable to run this
procedure, it is only necessary to type EXEC followed by the name of the
command file. Essentially all EXEC does is to replace the FLEX keyboard
entry routine with a routine which reads a line from the command file
each time the keyboard routine would have been called. The FLEX
utilities have no idea that the line of input 1is coming from a file
instead of the terminal.

DESCRIPTION
The general syntax of the EX command is:

EXEC,<file spec>

where <file spec> is the name of the command file. The default
extension is TXT. An example will give some ideas on how EXEC can be
used. One set of commands which might be performed quite often is the
set to make a new system diskette on drive 1 (see NEWDISK). Normally it
is necessary to use NEWDISK and then copy all .CMD and all .SYS files to
the new disk. Finally the LINK must be performed. Rather than having
to type this set of commands each time it was desired to produce a new
system diskette, we could create a command file called MAKEDISK.TXT
which contained the necessary commands. The BUILD utility should be
¥s$? to create this file. The creation of this file might go as
ollows:

+++BUILD,MAKEDISK
=NEWDISK,1
=COPY,0,1,.CMD, .0V, .LOW,.SYS
= INK,1.FLEX
=

+++

The first line of the example tells FLEX we wish to BUILD a file called
MAKEDISK (with the default extension of .TXT). Next, the three
necessary command lines are typed in just as they would be typed into
FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS
extensions from drive 0 to drive 1. Finally the LINK will be performed.
Now when we want to create a system disk we only need to type the

following:
+++E XEC ,MAKEDISK

We are assuming here that MAKEDISK resides on the same disk which
contains the system commands. EXEC can also be used to execute the

STARTUP file (see STARTUP).

-£.1.1-



FLEX User's Manual

There are many applications for the EXEC command. The one shown is
certainly useful but experience and imagination will lead you to other
useful applications.

IMPORTANT NOTE: The EXEC utility is loaded into the very upper ‘end of
yser memory. This is done by first loading EXEC into the utility file
space, then calculating the proper starting address so that it will
reside right up against the end of the user memory space. Next EXEC is
moved to that location and a new end of memory 1is set to just below
EXEC. When the EXEC file is finished, if the user has not further
changed the memory end location, EXEC will reset it to the original
value.

-E.1.2-



EXTEND

The EXTEND command is used to extend the directory space of a disk
by adding sectors taken from the chain of free sectors.

DESCRIPTION

The general syntax of the COMMAND command is:

EXTEND[,<drive>,<sectors>]

where <drive> is the number of a drive, and <sectors> 1is the
number of sectors to be added to the directory space of the disk
in that drive. If the parameters are omitted, EXTEND defaults to
the current working disk and 10 sectors. FEach added sector holds
10 additional directory entries. The number of sectors added must
be at least 1 and no more then 255. The free chain is reduced by
the number of sectors added to the directory.

EXTEND was created for users who may want to put large numbers of
files on a disk. If so many files are put on a disk that the
original directory space is filled up, FLEX extends the directory
by adding sectors from the free chain, one at a time. This will
cause the directory to become fragmented, and all disk operations
requiring directory searches will become much slower. EXTEND
avoids this by adding the additional sectors in a single block.
1f this is done before any files have been written to the disk,
then the added space will be adjacent to the original directory,
thus keeping the directory as compact as possible. Therefore, if
the user expects to need extra directory space, EXTEND should be
used immediately after the disk is formatted.

The amount of directory space on a disk is determined by the
FORMAT command (for floppies) or the HARDFxxx command (for hard
disks). This table gives the number of sectors allocated for each
type of disk by the formatting program, and the number of
directory entries available.

sectors entries
5 1/4" floppy single-sided 6 60
double-sided 16 160
8" floppy single-sided 11 110
double-sided 26 260
6 MB removable Winchester 60 600
19 MB Winchester 188 1880

If you expect to have more files on a disk than can be entered in
the space listed above, then you should extend the directory

before making any use of the disk.

-BE.2.1-



FLEX User's Manual

Examples:
+++EXTEND,2,8

adds 8 sectors to the directory of the disk in drive 2, making
room for 80 addditional files.

+++EXTEND
adds 10 sectors to the directory of the working disk.

EXTEND has some special restrictions: the number of sectors added

must be less than the number 1left in the free chain. If no
parameters are included on the <command line (for default
operation), then the working drive number may not be "ALLM. If

the drive number is given, then the number of sectors must also be
given.

-E.2.2-



FREEMAP

The FREEMAP command is used to check the list of available sectors
(free chain) on a FLEX formatted disk (floppy or hard) to
determine the amount of fragmentation that exists.

DESCRIPTION
The general syntax of the FREEMAP command is:

FREEMAP,<drive>

FREEMAP then scans all the sectors in the free chain of the disk
in the designated drive, and lists on the console all the groups

of continuous sectors found. The total number of such groups
(called segments) is displayed at the end. By examining this
list, the user can determine the degree of fragmentation of the

disk, and decide whether to run UNSNARL on it, or copy the files
on it to a new disk. Example:

FREEMAP, 1
READING FREE CHAIN

0908-1012
0706-0708
1120-1306
2208-2209
220C-220C

SEGMENTS MAPPED: S

The ségment count is printed in decimal. The output from this
program can be routed to the printer or to a file with the P or O
. commands.

See the UNSNARL command for more information.

-F.3.1-



The I command allows a utility to obtain input characters from a disk
file rather than the terminal.

DESCRIPTION
The general syntax of the I command is:
I1,<{file spec>,<command>

where <file spec> is the name of the file containing the characters to
be .used as input and <command> is the FLEX utility command that will be
executed and that will receive that input from <file spec>. The default
extension on <file spec> is .TXT.

For example, say that on a startup you always wanted the file DATA.DAT
deleted from the disk without having to answer the "ARE YOU SURE?"
questions. This could be done in the following manner:

+++BUILD, YES
=YY
=#

The first Y will answer the "DELETE O0.DATA.DAT?" question while the
second Y will answer the "ARE YOU SURE?" question.

+++BUILD,STARTUP
=1,YES,DELETE,DATA.DAT
=#

Upon booting the disk, FLEX will execute the STARTUP file and perform
the following operation: delete the file DATA.DAT receiving all answers
to any questions from the input file VYES.TXT rather than from the
terminal.

See the description of the STARTUP command for more information on
STARTUP.

-1.1.1-



JUMP

The JUMP command is provided for convenience. [t is wused to start
execution of a program already stored in computer RAM memory.

DESCRIPTION
The general syntax of the JUMP command is:
JUMP,<hex address>

where <hex address> is a 1 to 4 digit hex number representing the
address where program execution should begin. The primary reason for
using JUMP is 1if there is a long program in memory already and you do
not wish to load it off of the disk again. Some time can be saved but
you must be sure the program really exists before JUMPing to it!

As an example, suppose we had a BASIC interpreter in memory and it had a
'warm start' address of 103 hex. To start its execution from FLEX we

type the following:
+++JUMP, 103

The BASIC interpreter would then be executed. Again, remember that you
must be absolutely sure the program you are JUMPing to is actually
present in memory.

-J.1.1-



LINK

The LINK command is used to tell the bootstrap loader where the FLEX
operating system file resides on the disk. This is necessary each time
a system disk is created using NEWDISK. The NEWDISK utility should be
consulted for complete details on the use of LINK.

DESCRIPTION
The general syntax of the LINK command is:

LINK,<file spec>

where <file spec> is usually FLEX. The default extension is SYS. Some
examples of the use of LINK follow:

+++L INK,FLEX
+++L INK, 1. FLEX

The first line will LINK FLEX.SYS on the WOrking drive, while the second

example will LINK FLEX.SYS on drive 1. For more advanced details of the
LINK utility, consult the "Advanced Programmers Guide".

-L.1.1-



LIST

The LIST command is used to LIST the contents of text or BASIC files on
the terminal. It is often desirable to examine a files without having
to use an editor or other such program. The LIST utility allows
examining entire files, or selected lines of the file. Line numbers may
also be optionally printed with each 1ine. :

DESCRIPTION
The general syntax of the LIST command is:
LIST,<file spec>[,<line range>][,+(options)]

where the <file spec> designates the file to be LISTed (with a default
extension of TXT),and <1ine range> is the first and last line number of
the file which you wish to be displayed. All lines are output if no
range specification is given. The _IST command supports two additional
options. If a +N option is given, 1ine numbers will be displayed with
the listed file. If a +P option is given, the output will be formatted
in pages and LIST will prompt for "TITLE" at which time a title for the
output may be entered. The TITLE may be up to 40 characters long. This
feature 1is useful for obtaining output on a printer for documentation
purposes (see P command). Each page will consist of the title, date,
page number, 54 lines of output and a hex OC formfeed character.
Entering a +NP will select both options. A few examples will clarify

the syntax used:

+++L IST,RECEIPTS
+++LIST,CHAPTER1,30-200,+NP
+++LIST,LETTER, 100

The first example will list the file named 'RECEIPTS.TXT' without line
numbers. A1l lines will be output unless the 'escape character' is used
as described in the Utility Command Set introduction. The second
example will LIST the 30th Tine through the 200th Tine of the file named
'CHAPTER1.TXT' on the terminal. The hyphen ('=') is required as the
range number separator. Line numbering and page formatting will be
output because of the '+NP' option. The last example shows a special
feature of the range specification. If only one number 1is stated, it
will be interpretted as the first 1line to be displayed. All lines
following that line will also be LISTed. The last example will LIST the
lines from line 100 to the end of the file. No line numbers will be
output since the 'N' was omitted.

-L.2.1-



NAME

The NAME utility enables the user to change the name, extension,
volume number and date in the system information sector of a disk.

DESCRIPTION
The general synatax of the NAME command is:
NAME[,dn]

Where 'dn' is an optional drive number. If no drive is specified
NAME will use the work drive. If the work drive is set to 'ALL'
an error message is printed. Some examples follow:

+++NAME
+++NAME, 2

The first example will change the information on the disk in the
work drive, assuming that the work drive is not set to all. The
second example will change the information on the disk in drive
#2.

NAME prints the current disk name, extension, volume number and
date and then prompts for the new name. The new name and
extension should be entered, followed by a carriage return.
Entering only a carriage return will retain the old name. NAME
then prompts for the new volume number. The new volume number
should be entered , followed by a carriage return. Entering only
a carriage return will retain the original volume number. After
the new name and volume number have been entered, NAME prompts:

CHANGE DATE ('Y' OR 'N'")?
Entering 'Y' changes the date on the disk to the 'current date’,
Entering 'N' retains the old date.
NAME can generate the following error message:

ILLEGAL DRIVE NUMBER

Legal drive numbers are 0, 1, 2, and 3. A drive number must be
specified if the work drive is set to *ALL".

NOTE: If NAME is used in a command line with multipe commands, it
must be the last command on the line.

-N.1.1-



The N utility enables the user to automatically answer "N" (no) to
"Y or N' prompts from other utilities. The N utility is
especially useful when writing EXEC files.

DESCRIPTION

The general synatax of the N command is:

N,<command string>

Where <command string5 is a valid command line to be executed. If
N is used in a line with multiple commands, using the end of 1line
character, it only affects the command immediately following it.

For example:

+++N,COPY, 0,1
Will copy, from drive #0 to drive #1, only those files that do not
already exist on drive #1, automatically answering '"N" (no) to any

"DELETE ORIGINAL?'" and "ARE YOU SURE?" prompts that occur because
of duplicate files on the two disks.

-N.2.1-



The 0 (not zero) command can be used to route all displayed output from
a utility to an output file instead of the terminal. The function of O
is similar to P (the printer command) except that output is stored in a
file rather than being printed on the terminal or printer. Other TSC
software may support this wutility. Check the supplied software
instructions for more details.

DESCRIPTION
The general syntax of the O command is:
~0,<fi1e spec>,<command>

where <command> can be any standard utility command line and <file spec>
is the name of the desired output file. The default extension on <file
spec> is .OUT. If O is used with multiple commands per line (using the
*end of line' character ':') it will only have affect on the command it
immediately precedes. Some examples will clarify its use.

+++0,CAT,CAT
writes a listing of the current disk directory into
a file called CAT.OUT

+++0,BAS,ASMB,BASIC.TXT
writes the assembled source listing of the text
source file 'BASIC.TXT' into a file called 'BAS.OUT'
when using the assembler

-0.1.1-



The P command is very special and unlike any others currently in the
UCS. P is the system print routine and will allow the output of any
command to be routed to the printer. This is very useful for getting
printed copies of the CATalog or used with the LIST command will allow
the printing of FLEX text files.

DESCRIPTION
The general syntax of the P command is:
P,<command>

where <{command> can be any standard utility command line. If P is used
with multiple commands per line (using the 'end of 1ine' character), it
will only have affect on the command it immediately preceeds. Some
examples will clarify its use:

+++P ,CAT
+++P,LIST,MONDAY: CAT, 1

The first example would print a CATalog of the directory of the working
drive on the printer. The second example will print a LISTing of the
text file MONDAY.TXT and then display on the terminal a CATalog of drive
1 (this assumes the 'end of line' character is a ':'). Note how the P
did not cause the 'CAT,1' to go to the printer. Consult the 'Advanced
Programmer's Guide' for details concerning adaption of the P command to

various printers.

The P command tries to load a file named PRINT.SYS from the same disk
which P itself was retrieved. The PRINT.SYS file which is supplied with
the system diskette contains the necessary routines to operate a SWTPC
PR 40 printer connected through a parallel interface on PORT 7 of the
computer. If you wish to use a different printer configuration, consult
the 'Advanced Programmer's Guide' for details on writing your own
printer driver routines to replace the PRINT.SYS file. The PR 40
drivers, however, are compatible with many other parallel interfaced
printers presently on the market.

-P.1.1-



PROT

The PROT command is used to change a protection code associated with
each file. When a file is first saved, it has no protection associated
with it thereby allowing the user to write to, rename, or delete the
file. Delete or write protection can be added to a file by using the
PROT command.

DESCRIPTION

The general syntax of the PROT command is:
PROT,<file spec>[,(option 1ist)]

where the <file spec> designates the file to be protected and (option
1ist) is any combination of the following options.

D A 'D' will delete protect a file. A delete protected file cannot be
affected by using the DELETE or RENAME Commands, or by the delete
functions of SAVE, APPEND, etc. ’

W A 'W' will write protect a file. A write protected file cannot be
deleted, renamed or have any additional information written to it.
Therefore a write protected file is automatically delete protected
as well.

C A 'C' will Catalog protect a file. Any files with a C protection
code will function as before but will not be displayed when a
CAT command is issued.

¥ An 'X' will remove all protection options on a specific file.

Examples:

+++PROT CAT.CMD,XW Remove any previous protection on the CAT.CMD
Utility and write protect it.

+++PROT CAT.CMD,X Remove all protection from the CAT.CMD utility.

+++PROT INF0.SYS,C  Prohibit INFO.SYS from being displayed in a
catalog listing. :

-P.3.1-



RENAME

The RENAME command is used to give an existing file a new name in the
directory. It is useful for changing the actual name as well as changing
the extension type. '

DESCRIPTION
The general syntax of the RENAME command is:
RENAME,<file spec 1>,<file spec 2>

where <file spec 1> is the name of the file you wish to RENAME and <file
spec 2> is the new name you are assigning to it. The default extension
for file spec 1 is TXT and the default drive is the working drive. If
no extension is given on <file spec 2>, it defaults to that of <file
spec 1>. No drive 1is requird on the second file name, and if one is
given it is ignored. Some examples follow:

+++RENAME, TEST1.BIN, TEST2
+++RENAME, 1. LETTER,REPLY
+++RENAME, 0. FIND. BIN, FIND. CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next example
RENAMEs the file LETTER.TXT on drive 1 to REPLY.TXT. The last line
would cause the file FIND.BIN on drive 0 to be renamed FIND.CMD. This
js wuseful for making binary files created by an assembler intc command
files (changing the extension from BIN to CMD). If you try to give a
file a name which already exists in the directory, the message:

FILE EXISTS

will be displayed on the terminal. Keep in mind that RENAME only
changes the file's name and in no way changes the actual file's
contents.

One last note of interest. Since utility commands are just 1like any
other file, it 1is possible to rename them also. If you would prefer
some of the command names to be shorter, or different all together,
simply use RENAME and assign them the names you desire.

-R.1.1-






SAVE

The SAVE command 1is wused for saving a section of memory on the disk.
Its primary use is for saving programs which have been 1loaded into
memory from tape or by hand. ‘

DESCRIPTION
The general syntax of the SAVE command is:
SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]

where <file spec> is the name to be assigned to the file. The default
extension is BIN and the default drive is the working drive. The
address fields define the beginning and ending addresses of the section
of memory to be written on the disk. The addresses should be expressed
as hex numbers. The optional <transfer address> would be included if
the program is to be loaded and executed by FLEX. This address tells
FLEX where execution should begin. Some examples will clarify the use
of SAVE:

+++SAVE ,DATA, 100, 1FF
+++SAVE, 1.GAME, 0, 1680, 100

The first 1ine would SAVE the memory locations 100 to 1FF hex on the
disk in a file called DATA.BIN. The file would be put on the working
drive and no transfer address would be assigned. The second example
would cause the contents of memory locations O through 1680 to be SAVEd
on the disk in file GAME.BIN on drive 1. Since a transfer address of
100 was specified as a parameter, typing 'GAME.BIN' in response to the
FLEX prompt after saving would cause the file to be loaded back into
memory and execution started at location 100.

If an attempt is made to save a program under a file name that already
exists, the prompt "MAY THE EXISTING FILE BE DELETED?" will be
displayed. A Y response will replace the file with the new data to be
saved while a N response will terminate the save operation.

Sometimes it is desirable to save noncontiguous segments of memory. To
do this it would be necessary to first SAVE each segment as a separate
file and then use the APPEND command to combine them into one file. If
the final file is to have a transfer address, you should assign it to
one of the segments as it is being saved. After the APPEND operation,
the final file will retain that transfer address.

-S.1.1-



FLEX User's Manual

SAVE.LOW

There is another form of the SAVE command resident in the UCS. It is
called SAVE.LOW and loads in a lower section of memory than the standard
SAVE command. Its use is for saving programs in the Utility Command
Space where SAVE.CMD is Toaded. Those interested in creating their own
utility commands should consult the 'Advanced Programmer's Guide' for
further details.

"30102"



STARTUP

STARTUP is not a utility command but is a feature of FLEX. It is often
desirable to have the operating system do some special action or actions
upon initjalization of the system (during the bootstrap- loading
process). As an example, the user may always want to use BASIC
immediately following the boot process. STARTUP will allow for this
without the necessity of calling the BASIC interpreter each time.

DESCRIPTION

FLEX always checks the disk's directory immediately following the system
initialization for a file called STARTUP.TXT. 1If none is found, the
three plus sign prompt is output and the system 1is ready to accept
user's commands. If a STARTUP file 1is present, it 1is read and
interpreted as a single command line and the appropriate actions are
performed. As an example, suppose we wanted FLEX to execute BASIC each
%jTe the system was booted. First it is necessary to create the STARTUP
ile:

+++BUILD, STARTUP
=BASIC

4
s

+++

The above procedure using the BUILD command will create the desired
file. MNote that the file consisted of one 1line (which is all FLEX reads
from the STARTUP file anyway). This line will tell FLEX to load and
execute BASIC. Now each time this disk is used to boot the operating
system, BASIC will also be loaded and run. Note that this example
assumes two things. First, the disk must contain FLEX.SYS and must have
been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASIC.CMD actually exists on the disk.

Another example of the use of STARTUP 1is to set system environment
paramters such as TTYSET parameters or the assigning of a system and
working drive. If the STARTUP command consisted of the following line:

TTYSET,DP=16,WD=60:ASN,W=1:ASN:CAT,0

each time the system was booted the following actions would occur.
First, TTYSET would set the ‘'depth’' to 16 and the 'width' to 60. Next,
assuming the 'end of line' character is the ':', the ASN command would
assign the working drive to drive 1. Next ASN would display the
assigned system and working drives on the terminal. Finally, a CATalog
of the files on drive 0 would be displayed. For details of the actions
of the individual commands, refer to their descriptions elsewhere in
this manual.

As it stands, it looks as if the STARTUP feature is limited to the
execution of a single command line. This is true but there is a way
around the restriction, the EXEC command.- If a Tlonger list of
operations is desired than will fit on one line, simply create a command

-s.2.1-



FLEX User's Manual

file containing all of the commands desired. Then create the STARTUP
file placing the single line:

EXEC,<file name>

where <file name> would be replaced by the name assigned to the command
file created. A little imagination and experience will show many uses
for the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS
command it s possible to lockout access to DOS. You can correct the
problem by hitting the RESET button and beginning execution at address
SCDO3. The STARTUP file may then be deleted and if desired, modified.
Directing execution to CD03, the DOS warm start address, bypasses the
DOS STARTUP function.

-S.2.2-



TTYSET

The TTYSET wutility command 1is provided so the user may control the
characteristics of the terminal. With this command, the action of the
terminal on input and the display format on output may be controlled.

DESCRIPTION
The general syntax of the TTYSET command is:

TTYSET[ ,<parameter 1ist>]

where <parameter 1list> 1is a 1list of 2 letter parameter names, each
followed by an equals sign ('='), and then by the value being assigned.
Each parameter should be separated by a comma or a space. If no
parameters are given, the values of all of the TTYSET parameters will be

displayed on the terminal.

The default number base for numerical values is the base most
appropriate to the parameter. In the descriptions that follow, 'hh' is
used for parameters whose default base is hex; 'dd' is used for those
whose default base is decimal. Values which should be expressed in hex
are displayed in the TTYSET parameter listing preceded by a '$'.  Some
examples follow:

+++TTYSET
+++TTYSET,DP=16,WD
+++TTYSET,BS=8,ES=

=63
3

The first example simply lists the current values of all TTYSET
parameters on the terminal. The next line sets the depth 'DP' to 16
lines and the terminal width, 'WD' to 63 columns. The last example sets
the backspace character to the value of hex 8, and the escape character

to hex 3.

The following fully describes all of the TTYSET parameters available to
the user. Their initial values are defined, as well as any special
characteristics they may possess.

BS=hh BackSpace character

This sets the 'backspace' charcter to the character having the ASCII hex
value of hh. This character is initially a 'control H' (hex 08), but
may be defined to any ASCII character. The action of the backspace
character is to delete the last character typed from the terminal. If
two backspace characters are typed, the last two characters will be
deleted, etc. Setting BS=0 will disable the backspace feature.

-T.1.1-



FLEX User's Manual

BE=hh Backspace Echo character

This defines the character to be sent to the terminal after a
'backspace' character is received. The character printed will have the
ASCII hex value of hh. This character is initially set to a null but
can be set to any ASCII character.

The BE command also has a very special use that will be of interest to
some terminal owners, such as SWTPC CT-64.

If a hex 08 is specified as the echo character, FLEX will output a space
(20) then another 08. This feature is very uesful for terminals which
decode a hex 08 as a cursor left but which do not erase characters as
the cursor is moved.

Example: Say that you mis-typed the word cat as shown below:
+++CAY

typing in one CTRL-H (hex 08) would position the cursor on top of the Y
and delete the Y from the DOS input buffer. FLEX would then send out a
space ($20) to erase the Y and another 08 (cursor left) to re-position
the cursor.

DL=hh DeLete character

This sets the 'delete current line' character to the hex value hh. This
character is initially a 'control X' (hex 18). The action of the delete
character is to 'erase' the current input line before it 1is accepted
into the computer for execution. Setting DL=0 will disable the line
delete feature.

EL=hh End of Line character

This character is the one used by FLEX to separate multiple commands on
one input line. It is initially set to a colon (':'), a hex value of
3A. Setting this character to 0 will disable the multiple command per
1ine capability of FLEX. The parameter 'EL=hh' will set the end of line
character to the character having the ASCII hex value of hh. This
character must be set to a printable character (control characters not
allowed).

DP=dd DePth count

This parameter specifies that a page consists of dd (decimal) physical
lines of output. A page may be considered to be the number of Tines
between the fold if using fan folded paper on a hard copy terminal, or a
page may be defined to be the number of lines which can be displayed at
any one time on a CRT type terminal. Setting DP=0 will disable the
paging (this is the initial value). See EJ and PS below for more
details of depth.

-T.1.2-



FLEX User's Manual

WD=dd WiDth

The WD parameter Specifies the (decimal) number of characters to be
displayed on a physical line at the terminal (the number of columns).
Lines of text longer than the value of width will be 'folded' at every
multiple of WD characters. For example, if WD is 50 and a line of 125
characters is to be displayed, the first 50 characters are displayed on
a physical line at the terminal, the next 50 characters are displayed on
the next physical line, and the last 25 characters are displayed on the
third physical line. If WD 1is set to 0, the width feature will be
disabled, and any number of characters will be permitted on a physical
line. :

NL=dd NuLl count

This parameter sets the (decimal) number of non-printing (Null) ‘pad’
characters to be sent to the terminal at the end of each line. These
pad characters are used so the terminal carriage has enough time to
return to the left margin before the next printable characters are sent.
The initial value is 4. Users using CRT type terrinals may want to set
NL=0 since no pad characters are wusually requirec on this type of
terminal.

TB=hh TaB character

The tab character is not wused by FLEX but some of the utilities may
require one {such as the Text Editing System). This parameter will set
the tab character to the character having the ASCII hex value hh. This
character should be a printable character.

EJ=dd Edect count

This parameter is used to specify the (decimal) number of 'eject Tlines'
to be sent to the terminal at the bottom of each page. If Pause is
'on', the 'eject sequence' is sent to the terminal after the pause is
terminated. If the value dd is zero (which it is by default), no 'eject
lines' are issued. An eject line is simply a blank Tine (line feed)
sent to the terminal. This feature is especially useful for terminals
with fan fold paper to skip over the fold (see Depth). It may also be
useful for certain CRT terminals to be able to erase the previous screen
contents at the end of each page.

pS=Y or pPS=N PauSe control

This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause
feature. If Pause 1is on and depth is set to some nonzero value, the
output display is automatically suspended at the end of each page. The
output may be restarted by typing the ‘escape' «character (see ES
description). If pause 1is disabled, there will be no end-of-page
pausing. This feature is useful for those using high-speed CRT terminals

-To 113"



FLEX User's Manual
to suspend output long enough to read the page of text.

ES=hh EScape character

The character whose ASCII hex value is hh is defined to be the ‘'escape
character'. Its initial value is $1B, the ASCII ESC character. The
escape character is used to stop output from being displayed, and once
it is stopped, restart it again. It is also used to restart output
after Pause has stopped it. As an example, suppose you are LISTing a
long text file on the terminal and you wish to temporarily halt the
output. Typing the 'escape character' will do this (this feature is not
supported on computers using a Control Port for terminal
communications). At this time (output halted), typing another ‘escape
character' will resume output, while typing a RETURN key will cause
control to return to FLEX and the three plus sign prompt will be output
to the terminal. It should be noted that line output stopping always
happens at the end of a line.

"T' 1.4-



UPDATE

The UPDATE utility enables the user to change the date in a file's
directory entry to the '"current date'".

DESCRIPTION

The general synatax of the UPDATE command is:

UPDATE,<filespec>

Where <filespec)> is the name of the file for which the date is to
be changed. If the file extension 1is not specified, UPDATE
defaults to an extension of .TXT . The file's directory entry is
changed to reflect the current date. UPDATE does not alter the
contents of the file itself.

-0.1.1-



'UNSNARL

The UNSNARL command is used to reorganize the free chain on a FLEX
disk (the 1list of all unused sectors). This helps reduce
fragmenting of files on the disk, and improves access times.

DESCRIPTION
The general syntax of the UNSNARL command is:
UNSNARL,<work drive>,<backup drive>

where <work drive) is the number of the drive with the disk to be
reorganized, and <backup drive> is the number of the drive where
the FREEMAP.TMP file can be stored. This must be different from
the work drive and defaults to drive 0. UNSNARL will then read
all the sectors in the free chain of the indicated disk, and make
a list of all the segments in the chain.

A segment is a sector or group of sectors linked in logical order.
"On a newly formatted disk there is only one segment, which has all
the sectors on the disk. As files are created and deleted, this
segment is broken into smaller and smaller segments, and the links
among them become more and more random. This results in files
being stored in fragments scattered over the disk, and 1increases
access times, especially for random-access files.

UNSNARL scans the free chain and creates a 1list of all the
segments in the free chain. For insurance this list is saved on
the backup disk as the FREEMAP.TMP file. Then UNSNARL sorts the
list of segments in ascending order of disk address. Next the
sector link in the last sector of each segment is pointed to the
first sector of the next segment. This frequently causes several
small segments to be merged into one large segment. Finally the
pointers to the start and end of the free chain in the System
Information Record are corrected. At each step, UNSNARL displays
a descriptive message on the console. Example:

+++UNSNARL, 1,0

READING FREE CHAIN

FREE CHAIN READ, NOW SAVING MAP

MAP SAVED, NOW SORTING EXTENT LIST
LIST SORTED, NOW RELINKING FREE CHAIN
RELINK DONE, DELETING MAP FILE

+++

The FREEMAP.TMP file 1is <created as insurance against power
glitches or other interruptions. If UNSNARL is interrupted while
it is relinking the free chain, the free chain will Dbe left 1in a
confused state, and creating or deleting files on that disk would
be impossible. FREEMAP.TMP makes it possible for UNSNARL to pick
up where it left off. The UNSN1 command is the same as UNSNARL,

-U.2.1-



FLEX User's Manual

except that instead of reading the free chain to create the 1list
of segments, it reads the list from the FREEMAP.TMP file. Once
UNSNARL or UNSN1 successfully completes the relinking, the
FREEMAP.TMP file is deleted.

UNSNARL has no effect whatever on files, so a fragmented file will
remain fragmented wuntil it is rewritten onto an unfragmented
segment of free chain. Thus to keep fragmentation to a minimum
UNSNARL should be used periodically, in order to clean up the
fragmentation left by formerly fragmented files now using segments
from the reorganized free chain.

UNSNARL only reduces file fragmentation, it does not eliminate it.
The only way to eliminate fragmentation entirely is to format a
new disk and perform a sequential copy of all files to the blank
disk. This method is practical for floppies, but not for high
capacity hard disks such as the GIMIX Winchester Disk Subsystems.
Therefore GIMIX has developed the UNSNARL command as a way for
users of our hard disk systems to avoid the degradation of system
performance caused by severe file fragmentation.

NOTE: the degree of fragmentation in the free chain, and therefore

the need for running UNSNARL, can be determined with the FREEMAP
command.

-U.2.2-



VERIFY

The VERIFY command is used to set the File Management System's write
verify mode. If VERIFY is on, every sector which is written to the disk
is read back from the disk for verification (to make sure there are no
errors 1in any sectors). With VERIFY off, no verification is performed.

DESCRIPTION
The general syntax of the VERIFY command is:

VERIFY[,ON]

A or

VERIFY[,OFF]
where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed
without any parameters, the current status of VERIFY will be displayed
on the terminal. Example:

+++VERIFY,ON
+++VERIFY

The first example sets the VERIFY mode to ON. The second Tline would
display the current status (ON or OFF) of the VERIFY mode. VERIFY
causes slower write times, but it is recommended that it be left on for
your protection.

-V.1.1-



VERSION

The VERSION wutility is used to display the version number of a utility
command. If problems or updates ever occur in any of the utilities, they
may be replaced with updated versions. The VERSION command will allow
you to determine which version of a particular utility you have.

DESCRIPTION
The general syntax of the VERSION command is:
VERSION,<file spec>

where <file spec> is the name of the utility you wish to check. The
default extension 1is CMD and the drive defaults to the working drive.

As an example:
+++VERSION, 0. CAT

would display the version number of the CAT command (from drive 0) on
the terminal.

-V.2.1-



XouT

XOUT is a special form of the delete command which deletes all files
having the extension .0UT.

DESCRIPTION The general syntax of XOUT is:
XOUT[,<drive spec>]

where <drive spec> is the desired drive number. If no drive is
specified all, .OUT files on the working drive will be deleted and if
auto drive searching is enabled, all .OUT files on drives 1 and 2 will
be deleted. XOUT will not delete any files which are delete protected
or which are currently in the print queue.

Example:

+++X0UT
+++X0UT 1

-anol-



The Y wutility enables the user to automatically answer "Y" (yes)
to

"Y or N" prompts from other utilities. The Y .utility is
especially useful when writing EXEC files.

DESCRIPTION

The general synatax of the Y command is:
Y,<command string>

Where <(command string> is a valid command line to be executed. If
Y is used in a line with multiple commands, using the end of line
character, it only affects the command immediately following it.
Some examples follow:

+++Y,COPY, 0,1
+++Y, DELETE, TESTFILE.CMD

The first example will copy all files from drive #0 to drive #1,
automatically answering "Y' (yves) to any "DELETE ORIGINAL?'" and
"ARE YOU SURE?'" promnts that occur because of duplicate files on
the two disks. The second example will delete the specified file,
automatically answering "Y' (yes) to the "DELETE <file spec.>?"
and "ARE YOU SURE?" prompts. Use caution when wusing the Y
utility, especially when files are being deleted, since it
bypasses the normal protection against unintentionally deleting
the wrong file.

-Y.2.1-






GENERAL SYSTEM INFORMATION

I. DISK CAPACITY.

Each sector of a FLEX disk contains 252 characters or bytes of user data
(4 bytes of each 256 byte sector are used by the system). Thus a
single-sided mini disk has 340 sectors or 85,680 characters or bytes of
user information. A single-sided full size disk has 1140 sectors or
287,280 bytes of wuser data. Double-sided disks would contain exactly

twice these amounts.

[1. WRITE PROTECT

Floppy disks can usually be physically write protected to prevent FLEX
from performing a write operation. Any attempt to write to such a disk
will cause an error message to be issued. It is good practice to write
protect disks which have important files on them.

A mini disk can be write protected by placing a piece of opaque tape
over the small rectangular cutout on the edge of the disk. Full size
floppys are just the opposite. In order to write protect a full size
disk, you must remove the tape from the cutout. In other words, the
notch must be exposed to write protect the disk. Some full size disks
do not have this cutout and therefore cannot be write protected.

ITI. THE 'RESET' BUTTON

The RESET button on the front panel of your computer should NEVER BE
PRESSED DURING A DISK OPERATION. There should never be a need to
'reset' the machine while in FLEX. If the machine is 'reset' and the
system is writing data on the disk, it is possible that the entire disk
will become damaged. Again, never press 'reset' while the disk is
operating! Refer to the ‘'escape' character in TTYSET for ways of

stopping FLEX.

IV. NOTES ON THE P COMMAND

The P command tries to load a printer driver file named PRINT.SYS from
the same disk which P itself was retrieved. For the requirements of
this file and on writing your own custom PRINT.SYS file, see the section
on such later in this manual or consult the ‘Advanced Programmer's

Guide'.

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE

If an attempt is made to access a minifloppy not containing a diskette,
the system will hang up attempting to read until a disk is inserted and

the door closed. Alternatively, you could reset the machine and begin
execution at the warm start location $CD03.

-3.1-



FLEX User's Manual

VI. SYSTEM ERROR NUMBERS

Any time that FLEX detects an error during an operation, an appropriate
error message will be displayed on the terminal. FLEX internally
translates a derived error number into a plain language statement using
a look-up table called ERROR.SYS. If you have forgotten to copy this
.SYS file onto a disk that you are using, FLEX will report a
corresponding number as shown below:

DISK ERROR  #xx

where 'xx' is a decimal error number. The table below is a list of
these numbers and what error they represent.

ERROR # MEANING
1 ILLEGAL FMA FUNCTION CODE ENCOUNTERED
2 THE REQUESTED FILE IS IN USE
3 THE FILE SPECIFIED ALREADY EXISTS
4 THE SPECIFIED FILE COULD NOT BE FOUND
5 SYSTEM DIRECTORY ERROR-REBOOT SYSTEM
6 THE SYSTEM DIRECTORY IS FULL
7 ALL AVAILABLE DISK SPACE HAS BEEN USED
8 READ PAST END OF FILE
9 DISK FILE READ ERROR
10 DISK FILE WRITE ERROR
11 THE FILE OR DISK IS WRITE PROTECTED
12 THE FILE IS PROTECTED-FILE NOT DELETED
13 ILLEGAL FILE CONTROL BLOCK SPECIFIED
14 ILLEGAL DISK ADDRESS ENCOUNTERED
15 AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
16 DRIVE NOT READY
17 THE FILE IS PROTECTED-ACCESS DENIED
18 SYSTEM FILE STATUS ERROR
19 FMS DATA INDEX RANGE ERROR
20 FMS INACTIVE-REBOOT SYSTEM
21 ILLEGAL FILE SPECIFICATION
22 SYSTEM FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW-DISK TOO SEGMENTED
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR-FILE DAMAGED
26 COMMAND SYNTAX ERROR-RE-TYPE COMMAND
27 THAT COMMAND IS NOT ALLOWED WHILE PRINTING
28 WRONG HARDWARE CONFIGURATION

For more details concerning the meanings of these error messages,
consult the 'Advanced Programmer's Guide'.

-3.2-



FLEX User's Manual

VII. SYSTEM MEMORY MAP

The following is a brief list of the RAM space required by the FLEX
Operating System. All address are in hex.

0000 - BFFF User RAM
*Note: Some of this space is used by
NEWDISK, COPY and other utilities.

C000 - DFFF Disk Operating System

CO7F System stack

C100 - C6FF Utility command space

CDOO FLEX cold start entry address
CDO3 FLEX warm start entry address

For a more detailed memory map, consult the 'Advanced Programmer's
Guide'.

-3.3-



FLEX User's Manual

VIII. FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES

In order for the FLEX I/0 functions to operate properly, all user
program character input/output subroutines should be vectored thru the
FLEX operating system rather than the computer's monitor. Below is a
1ist of FLEX's I/0 subroutines and a brief description of each. All

given addresses are in hexadecimal.

GETCHR at $CD15

This subroutine is functionally equivalent to S-BUG's character input
routine. This routine will look for one character from the control
terminal (I/0 port #1) and store it in the A accumulator. Once called,
the input routine will Toop within itself until a character has been
input. Anytime input is desired, the call JSR GETCHR or JSR $CD15 should

be used.

GETCHR automaticaT]y sets the 8th bit to 0 and does not check for
parity. A call to this subroutine affects the processor's registers as
follows:

ACC. A loaded with the character input from the terminal
B,X,Y,U not affected

PUTCHR at $CD18
This subroutine is used to output one character from the computer to the

control port (I/0 port #1). It is functionally equivalant to the output
character routine in S-BUG.

To use PUTCHR, the character to be output should be placed in the A
accumulator in its ASCII form. For example, to output the letter 'A' on
the control terminal, the following program should be used:

LDA #3841
JSR $cD18

The processor's registers are affected as follows:

ACC. A changed internally
B,X,Y,U not affected

PSTRNG at $CDI1E
PSTRNG is a subroutine used to output a string of text on the control

terminal. When address $CDIE is called, a carriage return and line feed
will automatically be generated and data output will begin at the
location pointed to by the index register. Output will continue until a
hex 04 is seen. The same rules for using the ESCAPE and RETURN keys for
stopping output apply as described earlier.

The accumulator and register status after using PSTRNG are as follows:

ACC. A Changed during the operation

-3.4-



FLEX User's Manual

ACC. B Unchanged

X Contains the memory location of the last character read from the
string (usually the 04 unless stopped by the ESC key)
Y,U Unchanged

NOTE: The ability of using backspace and line delete characters is a
function of your user program and not of the FLEX I/0 routines described
above.

For additional information consult the ‘'Advanced Programmer's Manual'.

STAT at $CD4E

This routine is wused to determine the "status" of the input device.
That is, to see if a character has been typed on the input terminal
keyboard. Its function is to check for characters such as the ESCAPE key
in FLEX which allows breaking of the output. This routine returns an
EQual condition if no character was hit and a Not-Equal condition if a
character was hit. No registers, except for the condition codes, may be
altered.

-3.5~






COMMAND SUMMARY

APPEND,<file spec>[,<file list>],<file spec>
Default extension: .TXT
Description page: A.1

ASN[,W=<drive>][,S=<drive>]
Description page: A.2

BUILD,<file spec>
Default extension: .TXT
Description page: B.1

CAT[,<drive list>][,<match list>]
Description page: C.1

COPY,<file spec)>,<file spec>

COPY,<file spec>,<drive>

COPY,<drive>,<drive>[,<match list>]
Descripyion page: C.2

CHECKSUM[ ,<drive spec>]
Description page: C.4

CMPBIN,<file spec>,<file spec>
Description page: C.5

DATE[ ,<mm,dd,yy>]
Description page: D.1

DELETE,<file spec>[,<file list>]
Description page: D.2

DCOPY,<drive>,<drive>,[<month>],[<day>],[<year>][,R]
Description page: D.3

DIR[,+P][,<drive list>][,<match list>]
Description page: D.4

EXEC,<file spec>
Default extension: .TXT
Description page: E.1

EXTEND[,<drive spec>,<parameter>]
Description page: E.2

FREEMAP,<drive>
Description page: F.3

GET,<file spec>[,<file list>]
Default extension: .BIN
Description page: G.1

I,<file spec>,<{command>
Default extension: .TXT
Description page: I.1

JUMP,<hex address>
Description page: J.1

4-1



LINK,<file spec>
Default extension: .SYS
Description page: L.1

LIST,<file spec>[,<line range>][,N]
Default extension: .TXT
Description page: L.2

MON
Description page: 1.7

NAME[,<drive spec>]
Description page: N.1

N,<command string>
Description page: N.2

0,<file spec>,<{command>
Default extension: .0OUT

Description page: 0.1

P,{command>
Description page: P.1

PROT,<file spec>[,(options)]
Description page: P.3

RENAME,<file spec>,<file spec 2>
Default extension: .TXT
Description page: R.1

SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]
Default extension: .BIN
Description page: S.1

STARTUP
Description page: 5.2

TTYSET[,<parameter list>]
Description page: T.1

UPDATE,<file spec>
Default extension: .TXT
Description page: U.1

UNSNARL ,<work drive>,<backup drive>
Description page: U.2

VERIFY[,<ON or OFF>]
Description page: V.1

VERSION,<file spec>
Default extension: .CMD
Description page: V.2

X0UT[,<drive spec>]
Description page: X.1

Y,<{command string>
Description page: Y.2



