_Compuier

PROGRAMMER’ S
GUIDE

Technical Systems Consuitants, inc.
P.O. Box 2570

FLEX

For the TRS-80 Color'Computer

ADVANCED
OGRAMMER'’ S
GU I DE

Technical Systems Consultants, Inc.
P.O. Box 2570
West Lafayette, Indiana 47906

PLEASE NOTE: The following documentation pertains to Standard TSC FLEX. In
adapting FLEX to run on the Color Computer, the following changes were made,
Please be aware of these differences when reading the following documentation,

1. The 'P' command in FHL Color FLEX has a different meaning than that
referenced in the following section. See 'Notes on the P Command' page 1.9.

2, Printer Spooling is not supported.

3. Interrupts are not used.

; TRBLE OF OUNIENTS
TRBLE (F CONTENTS !
CHBAPTFR 2 cont.

CEAPTER 0 ~ FHL OOLOR PLEX PAGE JUMP J.1.1
* LINK L.l.1
1. Introduction to FHL Color FLEX 0.1 LIST L.2.1
2. Peatures of FHL Color FLEX 0.2 * MON M.1.1
3. FHL Color FLEX Tutorial % MOVEROM M.2.1
Appendix B References N N.1.1
Appendix B Hardware Vendors NEWD1SK N.2.1
Appendix C Modifying the 32K Color Computer NEWDISKA N.2.1
Appendix D Software Vendors 0 0.1.1
Appendix E FHL FLEX Specifications) * p P.1.1
Bppendix F FHL FLEX System Memory Map PROT p.2.1
* PUTBOOT.IDR P.3.1
CEAPTER 1 - THE FLEX DISK (PERATIDN: SYSTEM RENAME R.1.1
* ROM R.2.1
I. Introduction 1.1 SAVE S.1.1
II. System Requirements 1.2 * SDC S.2.1
I1I. Getting the System Started 1.2 * SETUP S.3.1
IV. Disk Files and Their Names 1.3 Digk S.3.3
V. Entering Commands 1.5 Menory S.3.4
Vi. Command Descriptions 1.7 Printer S.3.5
GENERAL SYSTEM INFORMATION Terminal S.3.6
I. Disk Capacity 1.8 STARTUP S.4.1
II. Write Protect 1.8 * TED T.1.1
IIT. The 'RESET' Button 1.8 TTYSET T.2.1
Iv. Notes on the 'P' Command 1.9 VERIFY V.1.1
VI. System Error Munbers 1.10 VERSION v.2.1
VII. FLEX I/0 Subroutines 1.11 Xour X.1.1
VIII. Booting the FLEX DOS 1.13 * XSCREENS (Hi-Res Screens) X.2.1
IX. PRINT.SYS for Standard FLEX 1.14 Y Y.1.1
IT. COMMAND SUMMARY 3.1
CHRPTER 2 — DISK UTILITIES
I. Utility Command Set 2.1 CHAPTER 3 -~ ADVANCED PROGRAMMER'S GUIDE
APPEND A.1.1
ASN A.2.1 ‘able of Contents iii
* BASIC C.3.1
BUILD B.1.1
CAT C.1.1 NDEY Index Page 1
* CBASIC C.2.1
COrY C.3.1
DATE D.1.1
* DBASIC D.2.1 RIIE: IF THERE IS A 'READ-ME.TXT' FILE ON THE SUPPLIED DISK THEN
DELETE D.3.1 LIST IT OUT USING:
* DISPLAY D.4.1
EXEC E.l.1 LIST 0.READ-ME
* EXT E.2.1
GET G.1.1
* HELP H.1.1 {(*) These commands are provided by Frank Hogg Laboratory, Inc. -
I I.1.1 not TSC. Contact FHL if you have any problems with them.
* INT I.2.1
* ISM I1.3.1

(*) These commands are provided by Frank Hogg Laboratory, Inc.,
not TSC. Contact FHL if you have any problems with them.

Page -vi-
Page -v—

Preface

The purpose of the Advanced Programmer’s Manual is to provide the
assembler Tlanguage programmer with the information required to meke
effective use of the available system routines and functions. This
manual applies to the 6809 version of FLEX. The programmer should keep
this manual close at hand while learning the system. It is organized to
make it convenient as a quick reference quide as well as a thorough
reference manual. The manual is not written for the novice programmer
and assumes the wuser to have a thorough understanding of assembler
language programming techniques.

[il.

1v.

VI,

VII.
VIII.

1X.

Introduction

Disk Operating System
DOS Memory Map
User Callable Routines
User Written Commands
Disk Resident Commands
Comments About Commands
Examples of DOS Calls

File Management System
File Control Blocks
FMS Entry Points
FMS Global Variables
FMS Function Codes
Random Files
Error Numbers

Disk Drivers

Disk Structures
Diskette Initialization
Directory Sectors
Data Sectors
Binary Files
Text Files

Writing Utility Commands
Example Program

The DOS LINK Utility

Printer Routines
The P Utility

General Information
Interrupts in FLEX
System Memory Map

CONTENTS

~iii-

Introduction

The FLEX Operating System consists of three main parts: the Disk
Operating System (DOS) which processes commands, the File Management
System (FMS) which manages files on a diskette, and the Utility Command
Set, which are the user-callable commands. The Utility Command Set s
described in the FLEX User's Guide. Details of the Disk Operating
System and File Management System portions of FLEX are described in this
manual, which 1is 1intended for the programmer who wishes to write his
own commands or process disk files from his own program.

When debugging programs which use disk files and the File Management
System, the user should take the following precautions:

1. Write-protect the system diskette by exposing or covering the
write-protect cutout on the diskette. See the FLEX User's Guide for
further details on this operation. This will prevent destruction of the
system disk in case the program starts running wild.

2. Use an empty scratch diskette as the working diskette to which your
program will write any data files. If something goes wrong and the
diskette is destroyed, no valuable data will have been lost.

3. Test your program repeatedly, especially with “special cases" of
data input which may not be what the program is expecting. Well-written
programs abort gracefully when detecting errors, not dramatically.

A careful programmer, using the information in this manual, should be
able to make the fullest use of his floppy disk system.

-1-

FLEX Advanced Programmer's Guide

DISCLAIMER

This product is intended for use only as described in this document and
the FLEX User's Guide. Technical Systems Consultants will not be
responsible for the proper functioning of features or parameters. The
yser is urged to abide by the warnings and cautions issued in this
document lest valuable data or diskettes be destroyed.

PATCHING “FLEX"
It is not possible to patch FLEX. Technical Systems Consultants cannot

be responsible for any destructive side-effects which may result from
attempts to patch FLEX.

-2-

¢
-
4

FLEX Advanced Programmer's Guide

THE DISK OPERATING SYSTEM

The Disk Operating System (DOS) forms the communication link between the
user (via a computer terminal) and the File Management System. All
commands are accepted through DOS. Functions such as file specification
parsing, command argument parsing, terminal 1/0, and error reporting are
all handled by DOS. The following sections describe the DOS global
variable storage locations (Memory Map), the DOS user callable
subroutines, and give examples of some possible uses.

DOS MEMORY MAP

The following is a description of those memory locations within the DOS
portion of FLEX which contain information of interest to the programmer.
The user is cautioned against wutilizing for his own purposes any
locations documented as being either “reserved" or "system scratch", as
this action may cause destruction of data.

$C080~$COFF - Line Buffer

The Tine buffer is a 128 byte area into which characters typed at
the keyboard are placed by the routine INBUF. A1l characters
entered from the keyboard are placed in this buffer with the
exception of control characters. Characters which have been
deleted by entering the backspace character do not appear in the
buffer, nor does the backspace character itself appear. The
carriage return signaling the end of the keyboard input 1is,
however, put in the buffer. This buffer is also used to hold the
STARTUP file during a coldstart (boot) operation.

$CCO0 - TTYSET Backspace Character
This is the character which the routine INBUF will interpret as the
Backspace character. It is user definable through the TTYSET DOS
Utility. Default = $08, a Control-H (ASCII BS).

$CCO1 - TTYSET Delete Character
This is the character which the routine INBUF will interpret as the
line cancel or Delete character. It is user definable through the
TTYSET DOS Utility. Default = $18, a control-X (ASCII CAN).

$CC02 - TTYSET End of Line Character
This is the character DOS recognizes as the multiple command per
line separator. It is user definable through the TTYSET Utility.
Default = $3A, a colon (:).

$CCO3 - TTYSET Depth Count
This byte determines how many lines DOS will print on a page before
Pausing or issuing Ejects. It may be set by the user with the
TTYSET command. Default = 0.

$CC04 - TTYSET Width Count
This byte tells DOS how many characters to output on each line. If
zero, there is no limit to the number output. This count may be
set by the user using TTYSET. Default = 0.

FL?X Advanced Programmer's Guide

$CC05 - TTYSET Null Count
This byte informs DOS of the number of null or pad characters to be

output after each carriage return, line feed pair. This count may
be set using TTYSET. Default = 4,

$CC06 - TTYSET Tab Character
This byte defines a tab character which may be used by other

programs, such as the Editor. DOS itself does not make use of the
Tab character. Default = 0, no tab character defined.

$CCO7 - TTYSET Backspace Echo Character
This is the character the routine INBUF will echo upon the receipt

of a backspace character. If the backspace echo character is set
to a $08, and the backspace character is also a $08, FLEX will
output a space ($20) prior to the outputting of the backspace echo

character. pefault = O.

$CC08 - TTYSET Eject Count
The Eject Count instructs DOS as to the number

output after each page. (A page is a set of
to the Depth Count). If this byte is zero, no Eject lines

output. Default = 0.

of blank lines to be
1ines equal in number
are

$CCO% - TTYSET Fause Control
The Pause byte instructs DOS what action to take after each page
is output. B zero vzlue indicates that the pause feature is
disabled. A non-zero value irdicates that the pause is enabled.

Default = $00, pause Gisabled.

$CCOA - TTYSET Escape Character
The Escape character causes DOS to pause after an output Tine.

pefault = $1B, ASCIT ESC.

$CCOB - System Drive Number
This is. the number of the disk drive from which commands are

loaded. If this byte js $FF, both drives 0 and 1 will be searched.

$CCOC - Working Drive Number
This is the number of the default disk drive referenced for

non-command files. 1If this byte is $fF, both drives 0 and 1 will
be searched. Default = drive #0.

$CCOD - System Scratch

$CCOE-$CC10 - System Date Registers
These three bytes are used to store the system date. It is stored

in binary form with the month in the first byte, followed by the
day, then the year. The year byte contains only the tens and ones

digits.

-4-

FLEX Advanced Programmer's Guide

$CC11 ~ Last Terminator
This location contain
s the most recent non-alph i
> s - a
encountered in processing the line buffer. SeeDCOQEZiE;inhg;acts;

routines NXTCH and i i ’
Speecy nd CLASS in the section "User-Callable System

SCCIZ%ECC13 - User Command Table Address
Co;mgzggriggir may stgre into these locations the address of a
e of his own construction. See the section called

"User-Written Commands” fo i
r
User-written Commands details. Default = 0000, no user

$CC14;§CC15 - Line Buffer Pointer

o ; :

Linzegulggit%gng contain the address of the next character in the
CABGFR ey e pgg%giied. GE$5HRdocumentation of the routines
. he s N , and DOCM i i
User-Callable System Routines" for instances oﬁDit;nuszhe section

$CC16;ﬁCC17 - Escape Return Register
tyg:g lgﬁ?¥1ons contain the address to which to jump if a RETURN is
typed M S ovtput .has been stopped by an Escape Character. See
e cevsing segez S#;ge’thTT;SET’ for information on Escape
ng. e documentati i i
the section called "User-Callable Syste%ogozggnzgs routine PCRLE 1n

$CC18 - Current Character
This location contains the most recent character taken from the

Line Buffer by the NXTC i
Line Buffer by thel de?a??gETne. See documentation of the NXTCH

$CC19T;.Previous Character
is location contains the previous character taken from the Line

Buffer by the NXTCH routi
C outine. .
routine for additional detZi{:? See documentation of the NXTCH

$CC1AT-_Current Line Number
his location contains a count of the number of lines currently on

the page This value 7
R ! 1S com ;
determine if a full page has beenpg:ﬁgteg? the Line Count value to

$CCIB%ﬁCC1C]— Loader Addrass Offset
ese locations contein the 16-bit bi
The 0 . - jas to be added to th
a Eﬁzsssztzmrggﬁz?iebﬁégg loadgdtfrom the disk. See documeﬁtal?gﬂ
or i i
used as scratch by some system rgugng;. These locations are also

$CC1D - Transfer Flag
After @ program has b
] T een loaded from the di
documentation), this location is non-zero if a trang}25 aéZ$:ssLSQE

found during the Tloadi
ading process. i ion §
scratch by some system routiges. This Tocation is also used as

FLEX Advanced Programmer's Guide

$CC1E~-$CCIF - Transfer Address
If the Transfer Flag was set non-zero by a load from the disk (see
LOAD documentation), these locations contain the last transfer
address encountered. If the Transfer Flag was set zero by the disk
1oad, the content of these locations is indeterminate.

$CC20 - Error Type
This location contains the error number returned by several of the

File Management System functions. See the "Error Numbers" section
of this document for an interpretation of the error numbers.

$cc21 - Special 1/0 Flag
1f this byte is non-zero, the PUTCHR routine will ignore the TTYSET

Width feature and also ignore the Escape Character. The routine
RSTRIO clears this byte. Default = 0.

$CC22 - Output Switch
If zero, output performed by the PUTCHR routine is through the

routine OUTCH. If non-zero, the routine OUTCHZ is wused. See
documentation of these routines for details.

$cC23 - Input Switch
If zero, input performed by GETCHR is through the routine INCH. If

it is non-zero, the routine INCHZ is used. See documentation of
these routines for details.

$CC24-$CC25 - File Output Address
These bytes contain the address of the File Control Block being

used for file output. If the bytes are zero, no file output fis
performed. See PUTCHR description for details. These locations are
set to zero by RSTRIO.

$0C26-$CC27 - File Input Address
These bytes contain the address of the File Control Block being
used for file input. 1f the bytes are zero, no file input is
performed. The routine RSTRIO clears these bytes. See GETCHR for

details.

$CC28 - Command Flag
This location is non-zero if DOS was called from a user program via

the DOCMND entry point. See documentation of DOCMND for details.

$CC29 - Current Output Column
This location contains a count of the number of characters
currently in the Tline being output to the terminal. This is
compared to the TTYSET Width Count to determine when to start a new
1ine. The output of a control character resets this count to zero.

$CC2A - System Scratch

FLEX Advanced Programmer's Guide

$CC2B-$CC2C - Memory End
These two bytes contain the end of user memor i i i
0 y. This Tlocation 1is
set during system boot and may be read b iri i
S iy y e y programs requiring this

$CC2D-$CC2E - Error Name Vector
1f these bytes are zero, the routine RPTERR will
, . use the file
ERRORS.SYS as the error file. If they are non-zero, they are
a§sumed to be the address of an ASCII string of characters (in
directory format) 'of.the name of the file to be used as the error
file. See the description of RPTERR for more details.

$CC2F - File Input Echo Flag
If th1s byte is non-zero (default) and input is being done through
a f11e, the‘character input will be echoed to the output channel.
If this byte is zero, the character retrieved will not be echoed.

$CC30-3CCAD - System Scratch
$CCAE-$CCBF - System Constants

$CCCO-$CCD7 - Printer Initialize

This area is reserved for th i
This area) e overlay of the s n
initializization subroutine. yten printer

$CCDB-3CCE3 - Printer Ready Check

This area is reserved for the overla
i of the sys "
printer ready" subroutine. Y yoten "check for

$CCE4-SCCF7 ~ Printer Qutput
This area is reserved for the overla i
e y of the system printer output
character routine. See Printer Routine descriptions for detai]s?

$CCF8-$CCFF ~ System Scratch

FLEX Advanced Programmer's Guide
FLEX Advanced Programmer's Guide

USER-CALLABLE SYSTEM ROUTINES PR
$CD0Y9 (INCH)} Input Character

Unless specifically documented otherwise, the content of all registers $CDOC (INCHZ) Input Character

should be presumed destroyed by calls to these routines. All routines,
unless otherwise indicated, shouid be called with a JSR instruction. In
the 6809 version of FLEX the Y and U registers are preserved across all
the following routines. The A,B and X registers should be considered
changed except where noted otherwise. (Often a value or status is
returned in one of these registers.

Each of these routines inputs one character from the keyboard,
returning it to the calling program in the A-register. The address
portion of these entries points to a routine in the Custom I/0
package. They may be altered by changing that package. The GETCHR
routine normally uses INCH but may be instructed tc use INCHZ by
setting the “Input Switch" non-zero (see Memory Map). The user's
program may change the jump vector at the INCH address to refer to
some other input routine such as a routine to get a character from
paper’ tape. The INCH2 address should never be altered. The
Warmstart Entry Point resets the INCH Jjump vector to the same
routine as INCH2 and sets the Input Switch to zero. RSTRIO 2lso
resets these bytes. User programs should use the GETCHR routine,
documented below, rather than calling INCH, because INCH does not
check the TTYSET parameters.

$CDO0 (COLDS) Coldstart Entry Point

The BOOT program loaded from the disk jumps to this address to
initialize the FLEX system. Both the Disk Operating System (DOS)
portion and the File Management System portion (FMS) of FLEX are
initialized. After initialization, the FLEX title Tline is printed
and the STARTUP file, if one exists, is loaded and executed. This
entry point is only for use by the BOOT program, not by user
programs. Indiscriminate use of the Coldstart Entry Point by user
programs could result in the destruction of the diskette.
Documentation of this routine is included here only for
completeness.

$CDOF (OUTCH) Output Character
$CD12 (OUTCH2) Output Character

On entry to each of these routines, the A-register should contein
the character being output. Both of these routines output the
character in the A-register to an output device. The OUTCH routine
usually does the same as OUTCH2; however, OUTCH may be changed by
programs to refer to some other output routine. For example, OUTCH
may be changed to drive a line printer. OUTCHZ is never changed,
and always points to the output routine in the Custom I/0 package.
This address may not be patched to refer to some other output
routine. The routine PUTCHR, documented below, calls one of these
two routines, depending on the content of the location "Output
Switch" (see Memory Map). The Warmstart Entry Point resets the
QUTCH jump vector to the same routine as OUTCH2, and sets the
Qutput Switch to zero. RSTRIO also resets these locations. User
routines should use PUTCHR rather than calling OUTCH or OUTCHZ
directly since these latter two do not check the TTYSET parameters.

$CD03 (WARMS) Warmstart Entry Point

This is the main re~entry point into DOS from user programs. A JMP
instruction should be used to enter the Warmstart Entry Point. At
this point, the main loop of DOS is entered. The main Toop of DOS
checks the Last Terminator location for a TTYSET end-of-line
character, If one is found, it is assumed that there is another
command on the line, and D0S attempts to process it. If no
end-of-line is in the Last Terminator location DOS assumes that the
current command line is finished, and looks for a new line to be
input from the keyboard. If, however, DOS was called from a user
program through the DOCMND entry point, control will be returned to
the user program when the end of a command line is reached.

$CD06 (RENTER) DOS Main Loop Re-entry Point
$CD15 (GETCHR) Get Character
This is a direct entry point into the DOS main loop. None of the
Warmstart initialization is performed. This entry point must be
entered by a JMP instruction. Normally, this entry point is used
internally by DOS and user-written programs should not have need to
use it. For an example of use, see "Printer Driver” section for
details.

This routine gets a single character from the keyboard. The
character is returned to the calling program in the A-register.
The Current Line Number location is cleared by a call to GETCHR.
Because this routine honors the TTYSET parameters, its use is
preferred to that of INCH. If the Tocation "Input Switch" Iis
non-zero, the routine INCH2 will be used for input. If zero, the
byte at "File Input Address" is checked. If it is non-zero, the
address at this locatior is used as a File Control Block of a
previously opened input file and a character is retrieved from the
file. 1If zero, a character is retreived via the INCH routine. The
X and B reqgisters are preserved.

:
:

FLEX Advanced Programmer's Guide
FLEX Advanced Programmer's Guide

$CD18 (PUTCHR) Put Character

This routine outputs a character to a device, honoring all of the $CD21 (CLASS) Classify Character

TTYSET parameters. On entry, the character should be in the
A-register. If the "Special 1/0 Flag" (see Memory Map) is zero, the
column count is checked, and a new line is started if the current
line is full. 1f an ACIA is being used to control the monitor
terminal, it is checked for a TTYSET Escape Character having been
typed. If so, output will pause at the end of the current line.
If the location "Output Switch" is non-zero, the routine OUTCHZ s
used to send the character. If zero, the location File Output
Address is checked, If it s non-zero the contents of this
location is wused as a address of a File Control Block of a
previously opened for write file, and the character is written to
the file. If zero, the routine OUTCH is called to process the
character. Normally, OUTCH sends the character to the terminal.
The user program may, however, change the address portion of the
QUTCH entry point to go to another character output routine. The X
and B registers are preserved.

Th]s routine is used for testing if a character is alphanumeric
(i.e. a 1e§ter or a number). On entry, the character should be in
the A-reg1ster. If the character is alphanumeric, the routine
returns with the carry flag cleared. If the character 1is not
alphanumeric, the carry flag is set and the character is stored in
tgetgast Terminator location. All registers are preserved by this
routine.

$CD24 (PCRLF) Print Carriage Return and Line Feed

In §dd1tion to printing a carriage return and line feed, this
rogt}ne chgcks and honors several TTYSET conditions. On entry,
this routine checks for a TTYSET Escape Character having been
entefed wh1le the previous line was being printed. If so, the
routine waits for another TTYSET Escape Character or a RETURN to be
typed. [If a RETURN was entered, the routine clears the Last
Terminator Jocation so as to ignore any commands remaining in the
command 1!ng, and then jumps to the address contained in the Escape
Return Register Tlocations. Unless changed by the user's program,
this address is that of the Warmstart Entry Point. If, instead of
a RETURN, another TTYSET Escape Character was typed, or it wasn't
necessary to wait for one, the Current Line Number is checked. If
the last line of the page has been printed and the TTYSET Pause
feature is enabled, the routine waits for a RETURN or a TTYSET
Escape Qharacter, as above. Note that all pausing is done before
the carriage return and line feed are printed. The carriage return
and .1!ne feed are now printed, followed by the number of nulls
specified by the TTYSET Null Count. If the end of the page was
encountered on entry to this routine, an "eject" is performed by
issuing additional carriage return, line feeds, and nulls until the
total number of blank lines is that specified in the TTYSET Eject
Count. The X register is preserved.

$CDIR (INBUFF) Input into Line Buffer

This routine inputs a line from the keyboard into the Line Buffer.
The TTYSET Backspace and Delete characters are checked and
processed if encountered. A1l other control characters except
RETURN and LINE FEED, are ignored. The RETURN is placed in the
buffer at the end of the line. A LINE FEED is entered into the
buffer as a space character but is echoed back to the terminal as a
Carriage Return and Line Feed pair for continuation of the text on
2 new line. At most, 128 characters may be entered on the line,
including the final RETURN, If more are entered, only the first
127 are kept, the RETURN being the 128th. On exit, the Line Buffer
pointer 1is pointing to the first character in the Line Buffer.
Caution: The command line entered from the keyboard is kept in the
Line Buffer. Calling INBUF from a user program will destroy the
command line, including all unprocessed commands on the same line.
Using INBUF and the Line Buffer for other than DOS commands may

result in unpredictable side-effects. $CD27 (NXTCH) Get Next Buffer Character

The gharacter in Tocation Current Character is placed in location
Previous Character. The character to which the Line Buffer Pointer
points is taken from the Line Buffer and saved in the C(Current
Character location. Multiple spaces are skipped so that a string
of.spaces Tooks nc different than a single space. The Line Buffer
Pointer 1is advanced to point to the next character unless the
character just fetched was a RETURN or TTYSET End-of-Line
character. Thus, once an end-of-line character or RETURN is
encountered, additional calls to NXTCH will continue to return the
S ame gnd-of—line character or RETURN. NXTCH cannot be used to
cross into the next command in the buffer. NXTCH exits through the
routine CLASS, autcmatically classifying the character. On exit,
the character is in the A-register, the carry is clear if the
character is alphanumeric, and the B-register and X- register are
preserved.

$CDI1E (PSTRNG) Print String

This routine is similar to the PDATA routine in SWTRUG and DISKBUG.
On entry, the X-register should contain the address of the first
character of the string to be printed. The string must end with an
ASCII EOT character ($04). This routine honors all of the TTYSET
conventions when printing the string. A carriage return and line
feed are output before the string., The B register is preserved.

=-10-

FLEX Advanced Programmer's Guide

$CD2A (RSTRIQ) Restore I/0 Vectors

This routine forces the OUTCH jump vector to point to the same
routine as does the OUTCH2 vector. The Qutput Switch Tocation and
the Input Switch location are set to zero. The INCH jump vector is
reset to point to the same address as the INCH? vector. Both the
File Input Address and the File Output Address are set to zero.
The A-register and B-register are preserved by this routine.

$CD2D (GETFIL) Get File Specification

On entry to this routine, the X-register must contain the address
of a File Control Block (FCB}, and the tine Buffer Pointer must be
pointing to the first character of a file specification in the Line
Buffer. This routine will parse the file specification, storing
the various components in the FCB to which the X-register points.
If a drive number was not specified in the file specification,
the working drive number will be used. On exit, the carry bit will
be clear if no error was detected in processing the file
specification. The carry bit will be set if there was a format
error in the file specification. If nu extension vas specified fin
the file specification, none is stored. The calling program should
set the default extension desired after GETFIL has been called by
using the SETEXT routine. The Line Buffer Pointer is left pointing
to the character immediately beyond the separator, uniess the
separator 1is a carriage return or End of Line character. If an
error was detected, Error number 21 is stored in the error status
byte of the FCB. The X register is preserved with a call to this
routine.

$CD30 (LOAD) File Loader

On entry, the system File Control Block (at $C240) nust contain the
name of a file which has been opened for binary reading. This
routine is used to load binary files only, not text files. The
file is read from the disk and stored in memory, normally at the
load addresses specified in the binary file itself. It is possible
to load a binary file into a different memory area by using the
Loader Address Offset locations. The 16-bit value in the Loader
Address Offset locations is added to the addresses read from the
binary file. Any carry generated out of the most significant bit
of the address is lost. The transfer address, if any fis
encountered, is not modified by the Loader Address Offset. Note
that the setting of a value in the Loader Address Offset does not
modify any part of the content of the binary file. It does not
act as a program relocator in that it does not change any
addresses in the program itself, merely the location of the progran
in memory. If the the file is to be Toaded without an offset, be
certain to clear the Loader Address Offset locations before calling
this routine. On exit, the Transfer Address Flag is zero if no
transfer address was found. This flag is non-zero if a transfer
address record was encountered in the binary file, and the Transfer
Address locations contain the last transfer address encountered.
The disk file is closed on exit., If a disk error is encountered,

“1p-

]

FLEX Advanced Programmer's Guide

an error message is issued and control is returned to DOS at the
Warmstart Entry Point.

$CD33 (SETEXT) Set Extension

On entry, the X-register should contain the address of the FCB into
which the default extension is to be stored if there 1is not an
extension already in the FCB. The A-register, on entry, should
contain a numeric code indicating what the default extension is to
be. The numeric codes are described below. If there is already an
extension in the FCB (possibly stored there by a call to GETFIL),
§h1s routine returns to the calling program immediately. If there
is no extension in the FCB, the extension indicated by the numeric
code in the A-register is placed in the FCB File Extension area.
The Tegal codes are:

- BIN
- TXY
- CMD
- BAS
- SYS
BAK
- SCR
- DAT
- BAC
- DIR
10- PRT
11- oUT

DWW DT W = O
1

Any vglues other than those above are ignored, the routine
returning without storing any extension. The X register fis
preserved in this routine.

$CD36 (ADDBX) Add B-register to X-register

The gontent Qf the B-register ‘is added to the content of the
X-register. This routine is here for compatibility with 6800 FLEX.

$CD39 (OUTDEC) Output Decimal Number

On entry, the X-register contains the address of the most
significant byte of a 16-bit (2 byte), unsigned, binary number.
The B-register, on entry, should contain a space suppression flag.
The number will be printed as a decimal number with leading zeroes
suppressed. If the B-register was non-zero on entry, spaces will
be substituted for the leading zeroes. If the B-register is zero
gp gntry, printing of the number will start with the first non-zero
igit.

$CD3C (OUTHEX) Cutput Hexadecimal Number

On entry, the X-register contains the address of a single binary
byte. Yhe byte to which the X-register points 1is printed as 2
hexadecimal digits. The B and X registers are preserved.

-13-

FLEX Advanced Programmer's Guide)
FLEX Advanced Programmer's Guide

$CD3F (RPTERR) Report Error
$CD48 (INDEC) Input Decimal Number
On entry to this routine, the X-register contains the address of a
File Control Block in which the Error Status Byte is non-zero. The
error code in the FCB is stored by this routine in the Error Type
Jocation. A call to the routine RSTRIC is made and location Error
Vector 1is checked. If this location is zero, the file ERRORS.SYS
is opened for random read. If this location is non-zero, it fis
assumed to be an address pointing to an ASCII string (containing
any necessary null pad characters) of a legal File name plus
extension ({string should be 11 characters Tong). This user
provided file is then opened for random read. The error number is
used in a calculation to determine the record number and offset of
the appropriate error string message in the file. Each error
message string is 63 characters in length, thus allowing 4 messages
per sector. If the string is found, it is printed on the terminal.
If the string is not found (due to too large of error number being
encountered) or if the error file itself was not Tocated on the
disk, the error numberis reported to the monitor terminal as part
of the message:

This routine gets an unsigned decimal number from the Line Buffer.
On entry, the Line Buffer Pointer must point to the first character
of the number in the Line Buffer. On exit, the carry bit is
cleared if a valid number was found, the B-register is set
non-zero, and the X-register contains the binary value of the
number. The Line Buffer Pointer is left pointing as described in
the routine GETHEX. If the first character examined in the buffer
is a separator character (such as a comma), the carry bit is still
cleared, but the B-register is set to zero indicating that no
actual number was found. In this case, the number returned in X is
zero. The number in the Line Buffer may be of any length but the
result is truncated to 16 bit precision.

$CD4B (DOCMND) Call DOS as a Subroutine

This entry point allows a user-written program to pass a command
string to DOS for processing, and have DOS return control to the
user program on completion of the commands. The command string
must be placed in the Line Buffer by the user program, and the Line
Buffer Pointer must be pointing to the first character of the
command string. Note that-this will destroy any as yet unprocessed
parameters and commands in the Line Buffer. The command string
must terminate with a RETURN character ($D hex). After the
commands have been processed, DOS will return control to the user's
program with the B-register containing any error code received
from the File Management System. The B-register will be zero if no
errors were detected. Caution: do not use this feature to load
programs which may destroy the user program in memory. An example

DISK ERROR #nnn

Where "nnn" is the error number being reported. A description of
the error numbers is given elsewhere in this document.

$CD42 (GETHEX) Get Hexadecimal Number
This routine gets a hexadecimal number from the Line Buffer. On

entry, the Line Buffer Pointer must point to the first character of
the number in the Line Buffer. On exit, the carry bit is cleared

if a valid number was found, the B-register is set non-zero, and g of a use of this feature of 00S is that of a program wanting to
the X-register contains the value of the number. The Line Buffer save a portion of memory as a binary file on the disk. The program
Pointer is left pointing to the character immediately following the could build a SAVE command in the Line Buffer with the desired file
separator character, unless that character is a carriage return or name and parameters, and call the DOCMND entry point. On return,
Fnd of Line. If the first character examined in the Line Buffer is the memory will have been saved on the disk.

a separator character ({such as a comma}, the carry bit s still

cleared, but the B-register is set to zero indicating that no $CD4E (STAT) Check Terminal Input Status

actual number was found. In this case, the value returned in the

X-register is zero. If a non-hexadecimal character is found while This routine may be called to check the status of the terminal
processing the number, characters in the Line Buffer are skipped input device (to see 1if a character has been typed on the
until a separator character is found, then the routine returns to keyboard). If a character has been hit, the Z condition code will
the caller with the carry bit set. The number in the Line Buffer be cleared on return {a not-equal condition). If no character has
may be of any length, but the value is truncated to between 0 and been hit, the Z condition code will be set (an equal condition).
$FFFF, inclusive. No registers, other than the CC-register, are altered.

$CD45 (OUTADR) Output Hexaecimal Address
On entry, the X register contains the address of the most

significant byte of a 2 byte hex value. The bytes to which the X
register points are printed as 4 hexadecimal digits.

~14-

FLEX Advanced Programmer's Guide

USER-WRITTEN COMMANDS

The programmer may write his own commands for DOS. These commands may
be eijther disk-resident as disk files with a CMD extension, or they may
be memory-resident in either RAM or ROM.

MEMORY-RESIDENT COMMANDS:

A memory-resident command is a program, already in memory, to which DOS
will transfer when the proper command is entered from the keyboard. The
command which invokes the program, and the entry-point of the progran,
are stored in a User Command Table created by the programmer in memory.
Fach entry in the User Command Table has the following format:

FCC ‘command' (Name that will invoke the program)
FCB 0
FDB entry address (This is the entry address of the program)

The entire table is ended by a zero byte. For example, the following
table contains the commands DEBUG (entry at $3000) and PUNT (entry at
$3200):

FCC 'DEBUG' Command Name

FCB 0

FpB $3000 Entry address for DEBUG
FCC 'PUNT' Command name

FCB O

FDB $3200 Entry address for PUNT
FCB O End of command table

The address of the User Command Table is made known to DOS by storing it
in the User Command Table Address locations (See Memory Map).

The User Command Table is searched before the disk directory, but after
DOS's own command table is searched. The DOS command table contains
only the GET and MON commands. Therefore, the user may not define his
own GET and MON commands.

Since the User Command Table is searched before the disk directory, the
programmer may have commands with the same name as those on the disk.
However, in this case, the commands on the disk will never be executed
while the User Command Table is known to DOS. The User Command Table
may be deactivated by clearing the User Command Table Address locations.

-16-

:

FLEX Advanced Programmer's Guide

DISK-RESIDENT COMMANDS

A disk-resident command is an assembled program, with a transfer
address, which has been saved on the disk with a CMD extension. The
ASMB section of the FLEX User's Guide describes the way to assign a
transfer address to a program being assembled.

Disk commands, when loaded into memory, may reside anywhere in the User
RAM Area; the address is determined at assembly time by using an ORG
statement. Most commands may be assembled to run in the Utility (ommand
Space (see Memory Map). Most of the commands supplied with FLEX run in
the Utility Command Space. For this reason, the SAVE command cannct be
used to save information which is in the Utility Command Space or System
FCB space as this information would be destroyed when the SAVE command
is loaded. The SAVE.LOW command is to be used in this case. The
SAVE.LOW command loads into memory at location $100 and allows the
saving of programs in the $C100 region.

The System FCB area is used to load all commands from the disk.
Commands written to run in the Utility Command Space must not overflow
into the System FCB area. Once loaded, the command itself may use the
System FCB area for scratch or as an FCB for its own disk I/0. See the
example in the FMS section.

_17-

FLEX Advanced Programmer's Guide

GENERAL COMMENTS ABOUT COMMANDS

User-written commands are entered by a JMP instruction. On completion,
they should return control to DOS by jumping (JMP instruction) to the
Warmstart Entry Point (see Memory Map).

Processing Arguments.

User-written commands are required to process any arguments entered from
the keyboard. The command name and the arguments typed are in the Line
Buffer area (see Memory Map). The Line Buffer Pointer, on entry to the
command, is pointing to the first character of the first argument, if
one exists. If there are no arguments, the Line Buffer Pointer is
pointing to either an end-of-line character or a carriage return. The
DOS routines NXTCH, GETFIL, and GETHEX should be used by the command for
processing the arguments.

Processing Errors.

If the command, while executing, receives an error status from either
DOS or FMS of such a nature that the command must be aborted, the
program should jump to the Warmstart Entry Point of DOS after issuing an
appropriate error message. Similarly, if the command should detect an
error on its own, it should issue a message and return to DOS through
the Warmstart Entry Point.

-18-

FLEX Advanced Programmer's Guide

EXAMPLES OF USING DOS ROUTINES

1. Setting up a file spec in the FCB can be done in the following
manner. This example assumes the Line Buffer Pointer is pointing to the
first character of a file specification, and the desired resulting file
spec should default to a TXT extension.

LDX #FCB Point to FCB

JSR GETFIL Get file spec into FCB
BCS ERROR Report error if one

LDA #1 Set extension code (TXT)
JSR SETEXT Set the default extension

The user may now open the file for the desired action, since the file
spec is correctly set up in the FCB. Refer to the FMS examples for
opening files.

2. The following examples demonstrate some simple uses of the basic 1/0
functions provided by DOS.

LDA #'A Setup an ASCIT A
JSR PUTCHR Call DOS out character

LDX #STRING Point to string
JSR PSTRNG Print CR & LF + string

The above simple examples are to show the basic mechanism for calling
and using DOS 1/0 routines.

~19-

FLEX Advanced Programmer's Guide

-20-

FLEX Advanced Programmer's Guide

THE FILE MANAGEMENT SYSTEM

The File Management System {FMS), forms the communication link between
the DOS and the actual Disk Hardware. The FMS performs all file
allocation and removal on the disk. All file space is allocated
dynamically, and the space used by files is immediately reusable upon
that file's deletion. The user of the FMS need not be concerned with
the actual location of a file on the disk, or how many sectors it
requires.

Communication with the FMS is done through File Control Blocks. These
blocks contain the information about a file, such as its name and what
drive it exists on. Al disk 1/0 performed through FMS is “one
character at a time" I/0. This means that programs need only send or
request a single character at a time while doing file data transfers.
In effect, the disk looks no different than a computer terminal. Files
may be opened for either reading or writing. Any number of files may be
opened at any one time, as long as each one is assigned its own File
Control Block.

The FMS is a command language whose commands are represented by various
numbers called Function Codes. Each Function Code tells FMS to perform
a specific function such as open a file for read, or delete a file. In
general, making use of the various functions which the FMS offers, is
quite simple. The index register is made to point to the File Control
Block which is to be used, the Function Code is stored in the first byte
of the File Control Block, and FMS is called as a subroutine {JSR). At
no time does the user ever have to be concerned with where the file is
being located on the disk, how long it is, or where its directory entry
is located. The FMS does all of this automatically.

Since the file structure of FLEX is a linked structure, and the disk
space is allocated dynamically, it is possible for a file to exist on
the disk in a set of non-contiguous sectors. Normally, if a disk has
just been formatted, a file will use consecutive sectors on the disk.
As files are created and deleted, however, the disk may becone
“fragmented". Fragmentation results in the sectors on the disk becoming
out of order physically, even though logically they are still all
sequential. This 1is a characteristic of "linked 1ist" structures and
dynamic file allocation methods. The user need not be concerned with
this fragmentation, but should be aware of the fact that files may exist
whose sectors seem to be spattered all over the disk. The only result
of fragmentation is the slowing down of file read times, because of the
increased number of head seeks necessary while reading the file.

FLEX Advanced programmer's Guide

THE FILE CONTROL BLOCK (FCB)

The FCB is the heart of the FLEX File Management System (FMS). An FCB
is a 320 byte long block of RAM, in the user's program area, which is
used by programs to communicate with FMS. A separate FCB is needed for
each open file. After a file has been closed, the FCB may be re-used to
open another file or to perform some other disk function such as Delete
or Rename. An FCB may be placed anywhere in the user's program area
(except page zero) that the programmer wishes. The memory reserved for
use as an FCB need not be preset or initialized in any way. Only the
parameters necessary to perform the function need be stored in the FCB;
the File Management System will initialize those areas of the FCB needed

for its use.

In the following description of an FCB, the byte numbers are relative to
the beginning of the FCB; i.e. byte 0 1s the first byte of the FCB.

DESCRIPTION OF AN FCB
Byte 0 Function Code

The desired function code must be stored in this byte by the user
before calling FMS to process the FCB. See the section describing
FMS Function Codes.

Byte 1 Error Status Byte

1f an error was detected during the processing of a function, FMS
stores the error number in this byte and returns to the user with
the CPU I-Condition Code bit clear, i.e. @& non-zero condition
exists. This may be tested by the BEQ or BNE instruction.

Byte 2 Activity Status

This byte is set by FMS to a "% if the file is open for read, oOr
wow if the file 1is open for writing. This byte is checked by
several FMS function processors to determine if the requested
operation is legal. A Status Error is returned for illegal

operations.

The next 12 bytes (3-14) comprise the “File Specification® of the file
being referenced by the FCB. A "File Specification” consists of a
drive number, file name, and file extension. Some of the FMS functions
do not require the file name or extension. See the documentation of the
individual function codes for details.

Byte 3 Drive Number

This is the hardware drive number whose diskette contains the file
being referenced. It should be binary 0 to 3.

.22-

o
o
=
-

FLEX Advanced Programmer's Guide

12: Fggt Zﬁh?itgs (3-27) comprise.the “Directory Information" portion of
diskett. 4 ‘1s the exact same information which is contained in th
e direccory entry for the file being referenced. ‘

Bytes 4-11 File Name

This i . .

w?;a ;slzgg name of the_flle being referenced. The name must start

underscoreser ??d Cﬁntaxn on]y letters, digits, hyphens, and/or
. the name 1is less than 8 characters long, the

remaining bytes .
Tte fie]g. Y must be zero. The name should be left adjusted 1in

Bytes 12-14 Extension

This 1is the extension
of the file name for the fil i
f e bein
g$;?zgncESéhéﬁsmuzgd;éirﬁngéﬁh a 1ette; and contain only Iettersg
s , erscores. f the extension is le "
3 characters long, the remaining bytes must be zero. The exiinz?g:

should be left adj ; A A
Created. adjusted. Files with null extensions should not be

Byte 15 File Attributes

At present, only the most significant 4 bits are defined in this

byte. These bits ar i i
adssaned ge follows: e used for the protection status bits and are

BIT 7 = Write Protect
BIT 6 = Delete Protect
BIT 5 = Read Protect
BIT 4 = Catalog Protect

Setting these bits to 1 wi i
i i11 activate the appropriat i
status. A1l undefined bits of this byte shouldpgemgi;aO? protecton

Byte 16 Reserved for future system use
Bytes 17-18 Starting disk address of the file

These two bytes contain
t the hardware tra
respectively, of the first sector of the fi]e?k and sector nurbers,

Bytes 19-20 Ending disk address of the file

These two byes contain th
i e hardware track
respectively, of the last sector of the file. and. sector nurbers,

Bytes 21-22 File Size

This is a 16-bi indi :
file. bit number indicating the number of sectors in the

-2 3~

FLEX Advanced programmer's Guide

Byte 23 File Sector Map Indicator

i file has been created
i e is non-zero {usually $02), the
;Z t:1sr2ﬁ§om access file and contains a File Sector Map. See the

description of Random Files for details.
Byte 24 Reserved for future system use

Bytes 25-27 File Creation Date

contain the binary date of the files creation.

These three bytes e e third

The first byte is the month, the secopd_is the day,
is the year (only the tens and ones digits).

Bytes 28-29 £C8 List Pointer

i i jting are chained
Bs which are open for reading or wr

Qléetigr. These two bytes containFEgeAme?iry hzﬂgresihezz b;tgs ZEE
i e c .

List Pointer bytes of the next f in) ne These DL e
i is FCB is the last FCB in the chain. 1

:i;o ;ﬁag:]sis pointed to by the FCB Base pointer. (See Global

variables).

Bytes 30-31 Current Position

i k and sector nurbers,
tes contain the hardware t(ac i
Igzgzct?{ely, of the sector cgrrent]ytln thet;§ct2£c22£fezopozﬁ;gﬂ
FCB.. If the file is being wri Len, t whic
2;e§28 bytes point has not yet been written to the diskette; it 1s

still in the buffer.

Bytes 32-33 Current Record Nurmber

These bytes contain the current logical Record Number of the sector
in the FCB buffer.

Byte 34 Data Index

This byte contains the address oz Ehe pigt ?atihZYtieEgoEe ;i?i:id
i i i i ing .
from (if reading) or stored into {if writin e S and 1+
i dress is relative to the bgg1nn1ng 0 or,
EELchZg ;utomatically by the Rgad/wr1te Next Byte function. The
user program has no need to manipulate this byte.

Byte 35 Random Index

This byte is wused in conjuction with the Giﬁ Ranggﬁoiytgui;g?
i ific byte from e s

Sector function to read a specl y T e o bytes.

i having to sequent1a11y sk1p over any erve

?Lzhgggress ofgthe desired byte, relative to the beg122;n86to;an;g;
i i 7 Index by the user, an Ge

sector, is stored 1n_Random' he. L e ed data

From Sector function 1S 1ssued_to . d
%ii: will be returned in the A-register. A value less than 4 will

~24-

FLEX Advanced Programmer's Guide

access one of the linkage bytes in the sector. User data starts at
an index value of 4.

Bytes 36-46 Name Work Buffer

These bytes are used internally by FMS as temporary storage for a
file name. These locations are not for use by a user program.

Bytes 47-49 Current Directory Address

If the FCB is being used to process directory information with the
Get/Put Information Record functions, these three bytes contain the
track number, sector number, and starting data index of the
directory entry whose content is 1in the Directory Information
portion of the FCB. The values in these three bytes are updated
automatically by the Get Information Record function.

Bytes 50-52 First Deleted Directory Pointer

These bytes are used internally by FMS when looking for a free
entry in the directory to which to assign the name of a new file.

Bytes 53-63 Scratch Bytes

These are the bytes into which the user stores the new name and
extension of a file being renamed. The new name is formatted the
same as described above under File Name and File Extension.

Byte 59 Space Compression Flag

If a file is open for read or write, this byte indicates 1if space
compression is being performed. A value of zero indicates that
space compression is to be done when reading or writing the data.
This is the value that is stored by the Open for Read and Open for
Write functions. A value of S$FF indicates that no space
compression s to be done. This value is what the user must store
in this byte, after opening the file, if space compression 1is not
desired. (Such as for binary files). A positive non-zerc value in
this byte dindicates that space compression is currently in
progress; the value being a count of the number of spaces processed
thus far. {(Note that although this byte overlaps the Scratch Bytes
described above, there is no conflict since the Space Compression
Flag is used only when a file is open, and the Scratch Bytes are
used only by Rename, which requires that the file be closed). In
general, this byte should be 0 while working with text type files,
and $FfF for binary files.

Bytes 64-319 Sector Buffer
These bytes contain the data contained in the sector being read or

written. The first four bytes of the sector are used by the
system. The remaining 252 are used for data storage.

-25-

FLEX Advanced Programmer's Guide
FLEX Advanced Programmer's Guide

FILE MANAGEMENT SYSTEM - Entry Points
GLOBAL VARIABLES

$D400 - FMS Initialization . . .
Th}s section des;r1bes those variables within the File Management System
which may be of interest to the programmer. Any other locations in the

This entry point is used by the DOS portion of FLEX to {nitialize
FMS area should not be used for data storage by user programs.

the File Management System after a coldstart. There should be no
need for a user-written program to use this entry point. Executing
an FMS Initialization at the wrong time may result in the
destruction of data files, necessitating a re-initialization of the
diskette.

$D409 - SD4OA FCB Base Pointer

These Tlocations contain the address of the FCB List Pointer bytes
of thg first FCB in the chain of open files. The address in these
Tocations is managed by FMS and the programmer should not store any
values in these locations. A user program may, however, want to
chain through the FCBs of the open files for some reason, and the
address stored in these locations is the proper starting point.
Remember that the address is that of the FCB List Pointer locations
in the FCB, not the first word of the FCB. A value of zero in
these locations indicates that there are no open files.

$D403 - FMS Close

This entry point is used by the DOS portion of FLEX at the end of
each command lire to close any files Tleft open by the command
processor. User-written prograns may also use this entry point to
close all open files; however, if an error is detected in trying to
close a file, any remaining files will not be closed. Thus the
programmer is cautioned against using this routine as a substitute
for the good programming practice of closing fites individually.
There are no arguments to this routine. It is entered by a JSR
instruction as though it were a subroutine. On exit, the CPU
7-Condition code is set if no error was detected (i.e. a “zero"
condition exists). If an error was detected, the CPU Z-Condition
code bit is clear and the X-register contains the address of the
FCB causing the error.

$D408 ~ $D40C Current FCB Address

These' Tocations contain the address of the last FCB processed by
t?etiilﬁcganagement System. The address is that of the first word
0 e .

$D435 Verify Flag

A non-zero value 1in this Tocation indicates that FMS will check
each sector written for errors immediately after writing it. A
zero value indicates that no error checking on writes is to be
performed. The default value is "non-zero".

$D406 - FMS Call

This entry point is used for all other calls to the File Management
System. A function code is stored in the Function Code byte of the
FCB, the address of the FCB is put in the X-register, and this
entry point is called by a JSR instruction. The function codes are
documented elsewhere in this document. On exit from this entry
point, the CPU Z-Condition code bit is set if no error was detected
in processing the function. This bit may be tested with a BEQ or
BNE instruction. If an error was detected, the CPU Z-Condition
code bit is cleared and the Error Status byte in the FCB contains
the error number. Under all circumstances, the address of the FCB
is still in the X-register on exit from this entry point. Sore of
the functions require additional parameters in the A and/or
B-registers. See the documentation of the Function codes for
details. The B,X,Y and U registers are always preserved with a call
to FMS,

-6
27~

FLEX Advanced programmer's Guide

EMS FUNCTION CODES

The FLEX File Management System 1is utilized by the user through function
codes. The proper function code number is placed, by the user, in the
function Code byte of the File Control Block (FCB) before calling FMS
(Byte 0). FMS should be called by a JSR to the "EMS Call” entry. On
entry to FMS, the X-register should contain the address of the FCB. On
exit from FMS, the Cpy Z-Condition code bit will be clear if an error
was detected while processing the function. This bit may be tested by
the BNE and BEQ instructions. Note: In the following examples, the line

nJSR FMS" is referencing the FMS Call entry at $D406.

Function 0 - Read/Write Next Byte/Character

1f the file is open for reading, the next byte is fetched from the
file and returned to the calling program in the A-register. If the
file is open for writing, the content of the A-register on entry is
placed in the buffer as the next byte to be written to the file.
The Compression Mode Flag must contain the proper value for
automatic space compression to take place, if desired (see
pescription of the FCB, Compression Mode fFlag for details). On
exit, this function code remains unchanged in the Function Code
byte of the FCB; thus, consecutive read/writes may be performed
without having to repeatedly store the function code. When
reading, an End-of-File error is returned when all data in the file
has been read. When the current sector being read is empty, the
next sector in the file is prepared for processing automatically,
without any action being required of the user. Similarly, when
writing, full sectors are jutomatically written to the disk without

user intervention.
Exanple:

1f reading -

LDX #FCB point to the FCB
JSR FMS Call FMS

BNE FERROR Check for error
The character read is now in A.

If writing -

LDA CHAR Get the character

LDX - #FCB point to the FCB

JSR ~ FMS Call FMS

BNE ERROR Check for errors

The character in A has been written

-28-

FLEX Advanced Programmer's Guide

Function 1 - Open for Read

gng f;}$esgzﬁ;gzegei? ths FCB is opened for read-only access If
C ound, an error is returned. The onl a'
Ecﬁciggnwglghtggsgi?g §E§:$$_byt§he programmer before issﬁiggrt:hgz
i : ication parts (drive numb fil
and file extension) and the functi ning parte g
X n) and t tion code. The remaining pa f
gggc EEE yl}l ggméségl?l;zﬁddbyF¥he Open process. The Ogeg ;:;cegz
ets the " ode Flag to zero, indicati
sets i i , ating a t
C;;Sressggn azge ;}lg %; g;?arg%tthe programmer should se% the F?Tz
g , er opening the file, t i
the space compression featu i Frer opon ing o
A p re. On exit from FMS, after i
file, the function code in the F i i i et Chane e
» Lhe CB is automatically s
(Read/UWrite Next Byte Function) in anticipation of %/O gﬁ tﬁz f§$£o

Example:

LDX #FCB Point to the FCB

[Set up file spec in FCB]

LDA #1 Set open function code
STA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors

The file is now open for text reading

To set for binary - continue with i
the foll

LDA #SFF Set FF for sup. flag omine

STA 59,X Store in suppression flag

Function 2 - Open for Write

This is the same as Function 1, 0
) C , Open for Read, except th
$git 33§t21g:?$y :X]St in tze diskette directory, aﬁd 1ta$sthgp:;;§
ite- ccess. file opened for writ
unless it is first closed and the N
r n re-opened for read-only.
ﬁgggg fggmsgggﬁxonA 1g should b$ treated the same as desciibedT?ﬁ
. e is normally opened as a i i
but may be created as ar i s Tt
J andom file by setting the F i
5;§§e5eg;::a?qp byteRngn-zero immediately fo]?ow?ng eanCBo;gﬁat}g:
e ion. efer to the section Rand i
details. The file will be cre fve spect o o
L f ated on the drive specifi
drive spec is $FF in which i 7 be Lo nitss the
e e et be rends case the file will be created on the

Example:

LDX #F(CB Point to FCB
[Setup file spec in FCB]

LDA #2 Setup open for write code
STA 0,X Store in FCB
JSR - FMS Call FMS

BNE ERROR Check for errors
File is now open for text write.
For binary write, follow example in Read open.

-29-

‘FLEX Advanced programmer's Guide
FLEX Advanced Programmer's Guide

Function 3 - Open for Update
Function 6 - Open Directory

the file for both read and write. The file

must not be open and must exist on the specified drive. 1f the
drive spec is $FF, all drives will be searched. Once the file has
been opened for update, four operations may be performed on it 1.
sequential read, 2. random read, 3. random write, and 4. close
file. Note that it is not possible to do sequential writes to
file open for update. This implies that it is not possible to
increase the size of a file which is open for update.

;:;Sra;un§ﬁ;°pCBoE§2§ :he g;rectory on the diskette for access by a
. or this function must not al
? J already be ope
pggse:s?n Z%e ?C;11$; tgg g:gry, thg only information wh%ch mustpbg
) i ve number; no file name 1is required
E:sct?;:ectggg gsgr;s;oi;:t?eadey u;igg the Get Informatioanecsra
: . on Record function i d i
directory entry. The norm i oo w1 not
: . al Read/Write Next Byte f i i
function correctly on an FCB whi i oy atten:
: which is opened for director
é:reéiornot necessary to glose an FCB which has been %peﬁzgeig;
directo y]gccess after the directory manipulation is finished. The
should normally not need to access the directory.)

This function opens

Function 4 - Close File

a close merely removes the FCB
the file was opened for writing,

first written to the disk,
o fill out the sector. If a
n upon, the name of the
since the file contains

1f the file was opened for reading,
from the chain of open files. 1If

any data remaining in the buffer is
padding with zeroes 1if necessary, t

Function 7 - Get Information Record

DG e for writing but never weitte This function should i i
fj]g is e oo the diskette directory with the Open Dirgctog;]¥u:§i;35uegaga agi;gﬁ gR;ChGZiS ?ein opined
fre s - Record function is issued, th) i o oadon
‘ R A , the next directory entr i1l
into the Directory Information area Y Des e e
I ; of the FCB (see Descripti
the FCB for details of the format of a directory entE;;?n A?¥

txanplie:
di jes. i ;
LDX #FCR Point to FCB w%gicﬁgﬁgezﬁgleffﬁnxgc’]umng deleted and unused entries are bead
(DA #4 Setup close code said to "point” to €h1on&_ After an entry has been read, the F(B is
STA 0,X Store in FCB Directory Address be irectory entry just read; the Current
JsR o FmS call FMS A Erdoch File orro ytes in the FCB refer to the entry just read.
GNE CRROR Check for errors reached. r is returned when the end of the directory is
File has now been closed.
Example:

To get the 3rd director -
LDX #FCB Point to gcgntry

QDA DRIVE Get the drive number
STA 3,X Store in the FCB

LDA #6 Setup open dir code
STA 0,X Store in FCB

Function 5 - Rewind File

Only files which have peen opened for read may be rewound. On exit

from FMS, the function code in the FCB is set to zero, anticipating
the file. If the programmer wishes to rewind a

a read operation on
o Seh is open for writing so that it may now be read, the JoRofms o gall IS
file which s oven for Tt 06 %0 K pencc. for raadins. BNE ERROR Check for er
rors
o LDB #3 Set counter to 3
0P LDA #7 Setup get rec code

STA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors

DSCB Decrement the counter
BNE LOOP Repeat til finished
The 3rd entry is now in the FCB

Example:

Assuming the file is open for read:
LDX #FCB point to FCB

LDA #5 Setup rewind code

STA 0,X Store in FCB

JSR - EMS Call FMS

BNE ERROR Check for errors

File is now rewound & ready for read

R B E R R R

.30~
-31-

FLEX Advanced Programmer's Cuide
FLEX Advanced Programmer's Guide

Function & - Put Information Record Function 11 ($0B hex) - Reserved for future system use
This function should only be issued on an FCB which has been opened
with the Open Directory function. The directory information is
copied from the Directory Information portion of the FCB into the
directory entry to which the FCB currently points. The directory
sector just updated is then re-written automatically on the
diskette to ensure that the directory is up-to-date. A user
program should normally never have to write into a directory.
Careless wuse of this function can lead to the destruction of data
files, necessitating a re-initialization of the diskette.

Function 12 ($0C hex) ~ Delete File

{Qz?vfunctgon de]gtes the file whose specification is in the F(B

o e numbers, file name, and extension). The sectors used by the

opeﬁ a;:e:e1gz§edfto the system for re-use. The file should not be
) 1s function is issued. The file ifi i i

FCB is altered during the delete process. spectfication in the

Example:

LDX #FCB Point to FCB

[setup file spec in FCB]

LDA #12 Setup function code
STA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check errors

File has now been deleted

Function 9 - Read Single Sector

This function is a low-level interface directly to the disk driver
which permits the reading of a single sector, to which the Current
Position bytes of the FCB point, into the Sector Bufffer area of
the FCB. This function is normally used internally within FLEX and
a user program should never need to use it. The Read/Write Next
Byte function should be used instead, whenever possible. Extreme
care should be taken when using this function since it does not
conform to the wusual conventions to which most of the other FLEX
functions adhere,

Function 13 ($0D hex) - Rename File

On entry, the file must not be open, the old na i

4 the ! s me mu
File Sp¢c1f1cat1on area of the FCB, and the new nam:tangeexggns$gﬁ
must.bg in the Scratch Bytes area of the FCB. The file whose
sgec1f1gat1on 1S 1n the FCB is renamed to the name and extension
stored in the FCB Scratch Bytes area. Both the new name and the

new extension must be specified: nei
oo bagasion mus p ; neither the name nor the extension

Example:

LDx #FCB Point to FCB

LDA TRACK Get track number
STA 30,X Set current track
LDA SECTOR Get sector number
STA 31,X Set current sector
LpA - #0 Setup function code
STA 0,X Store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors
The sector is now in the FCB

Example:

LDX #FCB Point to FCB

[setup both file specs in FCB]
LDA #13 Setup function code
STA 0,X Store in FCB

JSR - FMS Call FMS

BNE ERROR Check for errors
File has been renamed

Function 10 {$0k hex) - Write Single Sector

This functicn, like the Read Single Sector function, is a low-level
interface directly to the disk driver which permits the writing of
a single sector. As such, it requires extreme care in its use.
This function is normally used internally by FLEX, and a user
progran should never need to use it. The Read/Write Next Byte
function should be used whenever possible., Careless use of the
Write Single Sector Function may result in the destruction of data,
necessitating the re-initialization of the diskette. The disk
address being written is taken from the Current Position bytes of
the FCB; the data is taken from the F(B Sector Buffer. This
function honors the Verify Flag (see Global Variables section for a
description of the Verify Flag), and will check the sector after
writing it if directed to do so by the Verify Flac.

Function 14 (SOE hex) - Reserved for future system use,

32
-33-

%'

- ” ' i
FLEX Advanced Programmer's . L povneet Pograeres e
i 5 Chex) - e eertish kechor
furetion 18 B R |) | Function 18 ($12 hex) - Put Random Byte in Sector
On entry the file should be ocpen fu: cfther rgading or writing (q$§
update}. If the file is open for readwng, this funct1on code wi :
cause all of the remeining {yet unread; cata bytes in ;hg curren
sector to be siippe!, end the dala pointer will be posyt19ned a;
the first data byte of the next ﬁequen@id] gector of the f]]et I
the file is oper “ur write, this operaticn will cause the remainder
of the current sector to be zero fu]lgd anq written out to the
disk. The next charccter writter tn that file will be placed in the
first availabie data Tocatior in rhe(next squent1a] sector. It
should be noted that all cails o this fun;tlon code y111 be
ignored unlecs at least one byte of dete has either been written or

read from the current sector.

The file must be open for update. This function is similar to Get
Random Byte except the character in the A accumulator 1is written
into the sector at the data location specified by Random Index of
the FCB. The Random Index should not be less than 4 since only
system data resides in the first 4 bytes of the sector.

Example:

To write into the 54th data byte of the current sector-
LDX #FCB Point to the F(B

LDA #5444 Set to item + 4

STA 35,X% Put it in Random Index

LDA #18 Setup Function Code

STA 0,X Store in FCB

LDA CHAR Get character to be written

JSR FMS Call FMS

BNE ERROR Check for errors

Character has been written

Function 16 (810 hex) - Open System Information Record

On entry, only the drive nunber uefd he spgcified in the F(B; t?ege
is no file neve associated with this function. The FCB nust nou* e
open for wuse by & file. This function accesses thg Sysvﬁm
Information Record for the diskette whcse dfxve nurber is in the
FCB. There are no separate functions for reading or chan§1ng this
sector. Al refererces to the data contained 1n the Sys?em
Information Pecon st o he made by manioulating thg §ecto; Buffer
directly. This functicn s wused internally within FLEX; th?r?
should be no need fcr a user-written program to change the $yshe?
Infermation Recorc. Foirg so may result in thg destruction o
data, necessitating ‘he rp-infa!a7€z§tioq of the diskette. There
is no need to close the FCR when finished,

Function 19 ($13 hex) - Reserved for future system use

Function 20 ($14 hex) - Find Next Drive

This function is used to find the next online drive which is in the
“ready" state. Due to hardware limitations, the minifloppy version
of FLEX performs this command differently than the full size floppy
version. The functioning of the full size floppy version 1is as
follows. If the drive number in the FCB is hex FF, the search for
drives will start with drive 0. If the drive number is 0, 1, or 2,
the search will start with drive 1, 2, or 3 respectively. If a
ready drive is found, its drive number will be returned in the
drive number byte of the FCB and the carry bit will be cleared. If

no ready drive is found, the carry bit will be set and error #16
{(Drives Not Ready) will be set.

Function 17 ($il hex)} - et Pandor Byte From Sector

On entry, the file should be wpen for reading or update. A]ss, thi
desired byte's number should be stored in the Randon Iydeg byns 0
the FCEB. This byte nunber is relative to the beginning of Ehe
sector buffer. On exiz, the byte whpse number is stor?d in the
Randon Index 1s retui to the calling progran in the‘n—regwster.
The Randorm Index should not be less than 4 since there is no user
data in the first four hytes of the sector.

Thg minifloppy version functions as follows. If called with a
Drive Number in the FCB of hex FF, the function will return with 0
as the drive number in the FCB. If called with a 0, it will return
with the drive number set to 1. In both cases the carry is cleared
on return. If called with a drive number of 1 or higher, the drive

number is Jeft unchanged, the carry bit is set on return and error
#16 (Orives Not Ready) is set.

Example:

To read the 54th dats byte of the current sector -
LDX #FCR Point to the FCB

LDA £54+4 Set to iter + 4

STA 35,% Put it in random index

LDA #17 Setup function code
STA Q,X Store in FCB
JSR FMme Tall FMS

BNE FREOR Check for errors
Character is now in acc. A

~34-
~35.

FLEX Advanced Programmer's Guide

Function 21 ($15 hex) - Position to Record N

This is one of the 2 function codes provided for random file
accessing by sector. The desired record number to be accessed
should be stored in the FCB location Current Record Number (a 16
bit binary value). The file must be open for read or update before
using this function code. The first data record of a file is
record number one. positioning to record 0 will read in the first
sector of the File Sector Map. After 2 successful Position
operation, the first character read with a sequential read will be
the first data byte of the specified record. An attempt to
position to a nonexistent record will cause an error. For more
information on random files, see the cection titled 'Random Files'.

Example:

To position to record #6 -

LDX #FCB point to the FCB
LDA #6 Set position

STA 33,X put in FCB

CtR 32,X Set M.S5.Bto 0

LDA #21 Setup Function Code
STA 0,X store in FCB

JSR FMS Call FMS

BNE ERROR Check for errors
Record ready to be read

Function 22 ($16 hex) - Backup One Record

This is also used for random file accessing. This function takes
the Current Record Number in the FCB and decrements it by oOne. A
position to the new record is performed. This has the effect of
back spacing one full record. For example, if the Current Record
Number is 16 and the Backup One Record function is performed, the
file would be positioned to read the first byte of record #15. The
file must be open for read or update before this function may be
used. See 'Random Files' section for more details.

~36-

FLEX Advanced Programmer's Guide

RANDOM FILES

FLEX version 9.0 sup i

. ports random files Th
" . e random acces
selgzi iﬁcgeii]eby record number of a file and can reach azy 2322?;?u3
sector in a fil , no]matter how !arge it is, in a maximum of two diek
oo (ost) thesﬂzel m§a1§$1at1on. using the number of data bytes insa
e ha came mechanism.y so easily reach the Nth character of a file

N . .
ngaill :;Lesz?z be accessed in a random manner. It is necessary to
sequential and is w;:t 211r22dgﬁe f;]eé dTthEdHaU]t oo moze .
th N ; standar X Utilities

FLEX SQLZ arﬁgggm file in a staqdard FLEX system is the ERRORg?gts rzgh.
FLEX uses a hasombaccess technique when reporting error messages eA
Fandomy o sequeﬁi?a]?reateg as a raqdom access file may read e%ther
renentat iy, y. sequential file may only be read

To ¢ ;

writgeazﬁoS]gaggoﬂsf;]e’ the normal procedure for opening a file for
File Sector Map 1 ed. Immediately following a successful open, set the
With the fiete creation. the FCB to any non-zero value and’ proceed
in the random mode Aon. It only makes sense to create text type files
Sector Map. This Fglthe file is built, the system creates a File
tells the S&Sten ; ile Sector Map (FSM) is a map or directory which
Eells the systen where each record (sector) of the file s ocated on
record number 0 in th is alway§ Fwo sectors in length and is assigned
sectors for the dat e_;}!e. This implies that a data file requiring 5
o need for the FgMa will actually be 7 sectors in Tength. The user has
opening a file for igg;orsTﬁnd they are automatically skipped when
function code operations. e FMS uses them for the Position and Backup

The di i i

randoﬁ1;$?zory1f1nfonn§t1on of a file states whether or not a file is a

rancon othérwis thi File Sector Map byte 1is non-zero the file i

Fanee éan perw? $e; f1s sequengwal only. It should be noted that randoa

romer: X pi rom one disk to another without losing its d :
p es, but it can not be appended to another file. reneen

-37-

FLEX Advanced Programmer's Guide

FLEX ERROR NUMBERS

1 - TLLEGAL FMS FUNCTION CODE ENCOUNTERED
FMS was called with a function code in the Function Code byte of
the FCB that was too large or illegal.

2 - THE REQUESTED FILE IS IN USE

An Open for Read, Update, or Write function was issued on an FCB
that is already open.

3 - THE FILE SPECIFIED ALREADY EXISTS
a. An Open for Write was issued on an FCB containing the
specification for a file already existing in the diskette
directory.
b. A Rename function was issued specifying a new name that was the
same as the name of a file already existing in the diskette
directory.

4 - THE SPECIFIED FILE COULD NOT BE FOUND
An Open for Read or Update, a Rename, or a Delete function was
requested on an FCB containing the file specification for a file
which does not exist in the diskette directory.

5 - SYSTEM DIRECTORY ERROR - REBOOT SYSTEM
Reserved for future system use.

6 - THE SYSTEM DIRECTORY SPACE IS FULL
This error should never occur since the directory space is self
expanding, and can never be filled. Only disk space can be filled
(error £7).

7 - ALL AVAILABLE DISK SPACE HAS BEEN USED
A1l of the available space on the diskette has been used up by
files. If this error is returned by FMS, the last character sent to
be written to a file did not actually get written.

8 - READ PAST END OF FILE
A read operation on a file encountered an end-of-file. A1l of the
data in the file has been processed. This error will alsoc be
returned when reading a directory with the Get Information Record
function when the end of the directory is reached.

9 - DISK FILE READ ERROR
A checksum error was encountered by the hardware in attempting to
read a sector. DOS has already attempted to re-read the failing
sector several times, without success, before reporting the error.

This error may also result from illegal track and sector addresses
being put in the FCR.

-38-

10

11

13

14

15

16

17

18

19

20

21

FLEX Advanced Programmer's Guide

RITE ERROR)
ngiezétgmwerror was detected by the hardware in a?tempt1qg to
write a sector. DOS has already tried several times, without
success, to re-write the failing sector before reporting the error.
This error may also result from illegal track and sector number;
being put in the FCB. A write-error status may al§o be returned i
a read error was detected by DOS in attempting to update the
diskette directory.

THE FILE OR DISK IS WRITE PROTECTED)

An attempt was made to write on a diskette whvch hag been
write-protected by use of the write—enab!e cutout in the diskette
or to a file which has the write protect bit set.

THE FILE IS PROTECTED - FILE NOT DELETED)
The file attempted to be deleted has its delete protect bit set and

can not be deleted.

ILLEGAL FILE CONTROL BLOCK SPECIFIED)
An attempt was made to access an FCB from the open FCB chain, but

it was not in the chain.

TLLEGAL DISK ADDRESS ENCOUNTERED
Reserved for future system use.

AN ILLEGAL DRIVE NUMBER WAS SPECIFIED
Reserved for future system use.

DRIVES NOT READY o] This
The drive does not have a diskette in it or the door is open.
message cannot be issued for mini floppys since there is no means
of detecting such a state.

THE FILE IS PROTECTED - ACCESS DENIED
Reserved for future system use.

SYSTEM FILE STATUS ERROR)
a. A read or Rewind was attempted on a file which was

open for write access.
b? A write was attempted on a file which was closed, or open for

read access.

closed, or

FMS DATA INDEX RANGE ERROR))
The Get Random Byte from Sector function was issued with a Random

Byte number greater than 255.

FMS INACTIVE - REBOOT SYSTEM
Reserved for future system use.

LLEGAL FILE SPECIFICATION
i %E&nét érror was detected in a file name specification. The name
must begin with a letter and contain only 1etter§, digits, hyphens,
and/or underscores. Similarly with file extensions. File names
are limited to 8 characters, extensions to 3.

FLEX

22 -

23 -

24 -

25 -

26

28

Advanced Programmer's Guide

SYSTEM FILE CLOSE ERROR
Reserved for future system use.

SECTOR MAP OVERFLOW - DISK TOO SEGMENTED)

An attempt was made to create a very large random access file on a
disk which is very segmented. All record information cou]d'not fit
in the 2 sectors of the File Sector Map. Recreating the file on a
new diskette will solve the problem.

NON-EXISTENT RECORD NUMBER SPECIFIED i
A record number larger than the last record number of the file was

specified in a random position access.

RECORD NUMBER MATCH ERROR - FILE DAMAGED]
The record located by the FMS random search is not the correct

record. The file is probably damaged.

COMMAND SYNTAX ERROR - RETYPE COMMAND
The command line just typed has a syntax error.

THAT COMMAND IS NOT ALLOWED WHILE PRINTING)
The command just entered is not allowed to operate while the system

printer spooler is activated.

WRONG HARDWARE CONFIGURATION) :)
This error usually dimplies insufficient memory installed in the

computer for a particular function or tryjng to use the printer
spooler without the hardware timer board installed.

-40-

FLEX Advanced Programmer's Guide

DISK DRIVERS

The following information is for those users who wish to write their own
disk drivers to interface with some other disk configuration than is
supplied by the vendor. Technical Systems Consultants is not in a
position to write disk drivers for other configurations, nor do they
guarantee the proper functioning of FLEX with user-written drivers.

The disk drivers are the interface routines between FLEX and the
hardware driving the floppy disks themselves. The drivers released with
the FLEX System are designed to interface with the Western Digital 1771
or 1791 Floppy Disk Formatter/Controller chip.

The disk drivers are located in RAM at addresses $DEOO - S$DFAO. All
disk functions are vectored jumps at the beginning of this area. The
disk drivers need not handle retries in case of errors; FLEX will call
them as needed. If an error is detected, the routines should exit with
the disk hardware status in the B-register and the CPU Z~-Condition code
bit clear (issue a TST B before returning to accomplish this), FLEX
expects status responses as produced by the Western Digital 1771
Controller. These statuses must be simulated if some other controller
is used. All drivers should return with the X,Y and U registers
unchanged. All routines are enterd with a JSR instruction.

$DEOO - Read
Entry - (X) = FCB Sector Buffer Address
(A) = Track Number
(B) = Sector Number
The sector referenced by the track and sector numbers is to be read
into the Sector Buffer area of the indicated FCB.

1

$DEO3 - Write
Entry - (X) = FCB Sector Buffer Address
(A Track Number
(B) = Sector Number
The content of the Sector Buffer area of the indicated F(B is to be
written to the sector referenced by the track and sector numbers.

wouon

$DE06 - Verify
Entry - (No parameters)
The sector just written is to be verified to determine if there are
CRC errors.

$DEOY - Restore
Entry - (X} = FCB Address
Exit - CC, NE, & B=8B if write protected
CS, NE, & B=%F if no drive
A Restore Operation {also known as a Seek to Track 00) is to be
performed on the drive whose number is in the FCB.

-41-

FLEX Advanced Programmer's Guide

$DEOC - Drive S§1ectCB rdd
Entry - (X} = F ress
The Zrivé whose number is in the FCB is to be selected.

$DEOF - Check Drive Ready
Entry - (X) = FCB Address
Exit - NE & €S if drive not ready
£Q & CC if drive ready

This routine is setup for FLEX systems where it is possible to

i is i for a ready status after
check the drive whose number 1s 1R the FCB at t
selecting that drive and delaying an? en$;gh for ;2epgz;:§1zot?;

e up to speed (approx. 2 secondsj. is isn i

Eﬁecoﬁinigloppy version due to hardware Timitations. In this gage,
this routine should not delay and should s1mp!y return a dr1ve
ready status if the drive number in the FCB is 0 or 1 or a drive
not ready status for any other drive number.

- ick Check Drive Ready
sDElzThiguloutine is the same as Drive Check Ready except the 2 second

i i i tor is already up to
d is not done. This assumes the.dr1ve mo)
sglzﬁ. For minifloppy versions, there 1s no difference in .theR tgo
and this routine can simply be a jump to the Check Drive Ready

routine.

42

"
.
m
-
||
||
n
|

FLEX Advanced Programmer's Guide

Diskette Initialization

The NEWDISK command is used to "initialize" a diskette for use by the
FLEX Operating System. The initialization process writes the necessary
track and sector addresses in the sectors of a "soft- sectored" diskette
such as is used by FLEX. In addition, the initialization process Tinks
together all of the sectors on the diskette into a chain of available
sectors.

The first track on the diskette, track 0O, is speciai. HNonme of the
sectors on track 0 are available for data files, they are reserved for
use by the FLEX system. The first two sectors contain a "boot" program
which is Tloaded by the "D" command of the SBUG monitor or by whatever
comparable ROM based bootstrap 1is in use. The boot program, once
Joaded, then loads FLEX from the diskette. Another sector on track 0 is
the System Information Record. This sector contains the track and
sector addresses of the beginning and ending sectors of the chain of
free sectors, those available for data files. The rest of track 0 is
used for the directory of file names.

After initialization, the free tracks on the diskette have a common
format. The first two bytes of each sector contain the track and sector
nurber of the next sector in the chain. The next two bytes are used to
store the 1logical record number of the sector in the file. The
remaining 252 bytes are zero. Initially, all record number bytes are
zero. When data s stored in a file, the two linkage bytes at the
beginning of each sector are modified to point to the next sector in the
file, not the next sector in the free chain. The sectors in the
diskette directory on track 0 also have linkage bytes similar to those
in the free chain and data files.

A FLEX diskette is not initialized in the strict IBM standard format.
In the standard format, the sectors on the diskette should be physically
in the same order as they are logically, i.e. sector 2 should follow
sector 1, 3 follow 2, etc. On a FLEX diskette, the sectors are
interleaved so that there is time, after having read one sector, to
process the data and request the next sector before it has passed under
the head. If the sectors are physically adjacent, the processing time
must be very short. The interleaving of the sectors allows more time
for processing the data. The phenomena of missing a sector because of
long processing times is called "missing revolutions", and results in
very slow running time for programs. The FLEX format reduces the number
of missed revolutions, thus speeding up programs.

-43-

FLEX Advanced Programmer's Guide

DESCRIPTION OF A DIRECTORY SECTOR

Each sector ip the directory portion of a FLEX diskette containg 10

directory entries. Fach entry refers to one file on the diskette, In
each sector, the first four bytes contain the sector linkage information
and the next 12 bytes are not used. When reading information from the
directory using the fFMS Get Information Record function, these 16 bytes

are skipped automatically as each sector is read; the user need not he
concerned with them

Each entry in the directory contains the
stored in the FCB bytes 4-27. See the
Block (FcB) for more details.

exact same information that is
description of the File Control

A directory entry which has never been used has 3 zero in the first byte
of the file name. A directory entry which has been deleteq has the

Teftmost bit of the name set (i.e. the first byte of the name is
negative),

DESCRIPTION OF A DATA SECTOR

Every sector on a FLEX diskette (except the two BOOT
following format :

Bytes 0-1 Link to the next sector

Bytes 2-3 File Logical Record Number

Bytes 4-255 Data

sectors) has the

If a file occupies more than one sector, the "link to the next sectopr®
portion contains the track and sector numbers, respectively, of the next
sector in the fije. These bytes are 2ero in the last sector of a file,
indicating that no more data follows (an "end-of-file" condition), The

bytes of a sector. These
« In fact, the user need not bpe
rmation.

-44.

:

FLEX Advanced Programmer's Guide

DESCRIPTION OF A BINARY FILE

A FLEX yinar fi m. ntain anythin S data; a ASCII characters
i ile may conta a _Yt g a 3 y
are allowed. %ach biyar§ file is C(_)mposed of 0_ e 0' ore bina
Y S. ere y be more than one ary rel .
ecord Y a Y r T bi Y record a single sec tor

are relative to the
binary record looks as follows: (byte numberiors.b re
Start o ord, not inning of a sec
not the beginning -
e O rggg:g’of record indicator ($02, the ASCII STX)
Y

s
Byte 1 Most significant bgtg offtgﬁel?ggdagggﬁzss
N o
2 lLeast significant by e
gytg 3 Number of data bytes in the :gcord
Bite 4-n The binary data in the reco

i ddress where
d address portion of a binary record g?nta;?ihthih: Fess vhere
e cams ided when it was written to the f1 e e T et
s daga re\jr:en the file is Toaded for executggn or R
?gm?gg ;ame memory areas from which it was SAVED.

ecord.
i tional transfer address r C
i i ay also contain an op L ores e
?hi21222zrdfé}$esmt%e address in memg;y gz :§c§:;r¥spg;nfo]]ows:
at of a transfe(addre .

P e 0 rrans for Addrocs 1nd1ca§o£h£$%§;néigixa§grgss

t significant byte o .
g§§§ é Tngt s?gnificant byte of the transfer addrg

aused by
ile contains more than one transfer ajdre::sgecgzg (?ast o
If a fi gvnar files which contain transfer ad resused, the others are
aDpend;ggedl byythe Toad process is the one that 1s ,
encoun
ignored.

g 1! g a nar e ro e anagemer ystem
¢ t e e
When readir or wr 4 bina y fi th h the Fi M a t Syst
rom a user rogra he ca ne progral mus rocess the reycord
d’CatO b_ytes and oad addresses tse s LEX does not Supp or

process this information for the user.

-45-

FLEX Advanced Programmer's Guide

DESCRIPTION OF A TEXT FILE

A text file (also called an "ASCII file" or “coded file") contains only
printable ASCII characters plus a few special-purpose control
characters. There is no “load address" associated with a FLEX text file
as there 1is with FLEX binary files. It is the responsibility of the
program which is reading the text file to put the data where it belongs.

The only control character which FLEX recognizes and processes in a FLEX
text file are:

$0D (ASCIT CR or RETURN)
This character is used to mark the end of a line or record in the

file.

$00 (ASCIT NULL)
Ignored by FLEX; if encountered in the file, it is not returned to

the calling program.

$18 (ASCII CANCEL)
Ignored by FLEX; if encountered in the file, it is not returned to

the calling program.

$09 (ASCII HT or HORIZONTAL TAB)

This 1is a flag character which indicates that a string of spaces
has been removed from the file as a space-saving measure. The next
byte following the flag character is a count of the number of space
removed (2-127). The calling program sees neither the flag
character nor the count character. The proper number of spaces are
returned to the user program as successive characters are requested
by the Read Next Byte function. When writing a file, the spaces
are automatically deleted as the user program sends them to the
File Management System using the Write Next Byte function. The
data compression is, therefore, transparent to the calling program.
(The above discussion is only valid if the file is open for Text
operations. If open for Binary, the compression flag and count get
passed exactly as they appear in the file.)

~46-

FLEX Advanced Programmer's Guide

WRITING UTILITY COMMANDS

Utility commands are best prepared by the use of an assembler. FLEX
reserves a block of memory in which medium size utilities may be placed.
This memory starts at hex location $C100 and extends through location
$C§FF.'The system FCB at Tocation $C840 may also be used in user written
utilities for either FCB space or temporary storage. No actual code
should reside in this FCB space since it would interfere with the
1oading of the utility (FLEX is using that FCB while loading utilities).

An example will be given to demonstrate some of the conventions and
te;hniques which should be used when writing utilities. The example,
which can be found on the following pages, is a simple text file listing
utility. Its syntax is:

LIST,[<FILE SPEC>]

The default extension on the file spec is TXT. The utility will simply
display the contents of a text file on the terminal, line for line.

The fo110wing is a section by section description of the LIST utility.
The first section of the source listing is a set of EQUATES which tell
the assembler where the various DOS routines reside in memory. These
equates represent the addresses given in this manual for "User Callable
DOS System Routines".

The next two sections are also equates, the first to the FMS entry

points, and the second references the system FCB. The actual progrm

finally starts with the ORG statement. In this program, we will make

Esesggoghe Utility Command space Tocated at $C100, therefore, the ORG is
0 .

Ong of the conventions which should be observed when writing DOS
utilities is to always start the program with a BRA instruction.
Following this dinstruction should be a 'VN FCB 1' which defines the
version number of the utility. The 1 should of course be set to
whatever the actual version number is. In this exanple, the version
number is 1. This convention allows the FLEX VERSION Utility to
correctly identify the version number of a command.

Moving down the program to the label called ‘LIST2', the program needs
to retrieve the file specification and get it into the FCB. Pointing X
Eo the fCB, we can make wuse of the DOS resident subroutine called

GETFIL' to automatically parse the file spec, check for errors, and set
the name in the FCB correctly. If all goes well in GETFIL, the carry
should be clear, otherwise there were errors in the file spec and this
fact needs reperted. If the carry is set, control is passed to the line
with the label 'LIST9'. At this point, the error message is reported
and control is returned to FLEX.

If the file spec was correct, and the carry was clear after the return

from GETFIL, we want to set a default file name extension of TXT. The
DOS subroutine named SETEXT will do exactly that. First it is necessary

-47-

FLEX Advanced Programmer's Guide
FLEX Advanced Programmer's Guide

*

to put the code for TXT in the A accumulator (the code is 1). X needs
: SIMPLE TEXT FILE LIST UTILITY

to be pointing to the FCB which it still is. The 'l' is also put in the
FCB for the future open operation. The call is made to SETEXT and the
file name is now correctly set up in the FCB. Note that no errors can

be ge lerated b_y a cal to SETEXT. *

Now that we have the file spec, it is necessary to open the requested

file for read. X is still pointing to the FCB so it is not necessary to * TECHNICAL SYSTEMS CONSULTANTS, INC.
reset. The FMS Function Code for ‘open a file for read' is 1 which was
previously put in the FCB location 0. A call to FMS is now made in an
attempt to open the file. Upon return, if the Z-condition code is set,
there were no errors. If there was an error, the 'BNE LISTY' will take
us to the code to report the error. This section of code is the desired
way to handle most FMS caused disk errors. The first thing to do s
call the DOS routine RPTERR which will print the disk error message on
the monitor terminal. Next, all open disk files should be closed. This
can be easily accomplished by a call to the FMS close entry (FMSCLS).
Finally, return control back to DOS by jumping to the WARM START entry.
If the file opened successfully, control will be transfered to the line
with the label 'LIST4'. At this time it is desirable to fetch
characters one at a time from the file, printing them on the monitor
terminal as they are received. Since line feeds are not stored in text
files {carriage returns mark the end of lines, but the next line will
follow immediately), each carriage return received from the file is not
output as 1s, but instead a call to the DOS routine 'PCRLF' is made to
print a carriage return and a line feed. As each character is received
from the file (by a call to FMS at label LIST4), the error status is
checked. If an error does occur, control 1is transferred to ‘'LISTE'.

* DOS EQUATES
CDO3 WARMS EQU $CDO3 DOS WARMS START ENTRY
CD2D GETFIL EQU $Ch2D GET FILE SPECIFICATION
CD18 PUTCHR EQU $co18 PUT CHARACTER ROUTINE
CD24 PCRLF EQU $CD24 PRINT CR & LF
CD33 SETEXT EQU $CD33 SET DEFAULT NAME EXT
CD3f RPTERR EQU SCD3F REPORT DISK ERROR

* FMS EQUATES

D4G6 FMS EQu 30406
D403 FMSCLS EQU 30403

* SYSTEM EQUATES
C840 FCB EQU 3C840 SYSTEM FCB
* LIST UTILITY STARTS HERE

Since FLEX does not store an End of File character with a file, the only C100
mechanism for determining the end of a file is by the End of File error ORG $c100
generated by FMS. At 'LIST6', the error status is checked to see if it
is 8 (end of file status). [If it is not an 8, control is transfered to 100 20 01 LIST BRA L1ST2 GET AROUND TEMPS
the error handling routine described above. If it is an End of File, we €102 01 N
are finished listing the file so it must now be closed. The FMS FCB 1 VERSION NUMBER
Function Code for closing a file is 4. This is loaded into A and stored 0
in the FCB. Calling FMS will attempt to close the file. Upon return, E}og & gggg LIST2 LDX #FCB POINT TO FCB
errors are checked, and if none found, control is transfered back to DOS €109 25 3 ggg EEg?IL GET FILE SEEC
by the jump to 'WARMS®, C10B 36 01 oA a 9 QE¥ EﬁRgggé
This example illustrates many of the methods used when writing 5}8? ég 3333 STA 0,X SAVE FOR READ OPEN
utilities. Many of the DOS and FMS routines were used. The basic idea €112 B0 pane JSR SETEXT SET TXT EXTENSION
of file opening and closing were demonstrated, as well as file 1/0. The C115 26 28 JSR FMS CALL FMS - DO OPEN
methods of dealing with various types of errors were also presented. 117 8 Cea0 LIsTa BNE LIST9 CHECK FOR ERROR
Studying this example until it 1is thoroughly understood will make C11A BD D406 LDX #FCB POINT TO FCB
writing your own disk commands and disk oriented programs an easy task. C11D 26 OF gig [T§T6 EQESRFMS - GET CHAR
S?

ClIF 81 op CMPA #3D IS CHAR A CR?

€121 26 05 BNE LISTS

C123BD (D24 JSR PCRLF OUTPUT CR & LF

€126 20 EF BRA LIST4 REPEAT

5128 BD (D18 LISTS JSR PUTCHR OUTPUT THE CHARACTER

128 20 EA BRA LIST4 REPEAT SEQUENCE

e 49

FLEX Advanced Programmer's Guide

Cl2p
C12F
C131
C133
€135
€137
C13A
C13C

C13F
C142
C145

Ab
a1
26
86
A7
BD
26
7€

8D
BD
7€

01
08
0C
04
84
D406
03
€003

CD3F
D403
CDo3

LIST6

LISTS

LDA
CMPA
BNE
LDA
STA
JSR
BNE
JMP

JSR
JSR
JMp

END

1,x
#8
LISTS
#
0,X
FMS
LISTY
WARMS

RPTERR
FMSCLS
WARMS

LIST

-50-

GET ERROR STATUS
IS IT EOF ERROR?

CLOSE FILE CODE

STORE IN FCB

CALL FMS - CLOSE FILE
ERRORS?

RETURN TO FLEX

REPORT ERROR
CLOSE ALL FILES
RETURN TO FLEX

FLEX Advarced Programmer's Guide
THE DOS LINK UTILITY

The LINK Utility provided with FLEX is a special purpose command. I[ts
only function is to inform the "disk boot", which is on track 17, where
the program resides which s to be Toaded during the boot operation.
Normally, LINK is used to set the pointer to the DOS program. Since D0S
may reside anywhere on the disk, LINK takes the starting disk address of
the file and stores it in a pointer in the boot sector. When the boot
program is later executed, it simply takes this disk address, and loads
the binary file which resides at that location. The load process is
terminated upon the receipt of a transfer address record. At this time,
control is transferred to the program just Tloaded by Jjumping to the
address specified in the transfer address record. If the 'linked'
program is ever moved on the disk, then it must be re-linked so the boot
knows the new disk address.

LINK may be used in some specialized applications. One is the
development of custom operating systems. The user may write his own
operating system, link it to the boot, and use it exactly as FLEX is
used now. It may also be desirable for special disks to boot in
specialized programs rather than the operating system. If this is done,
remember that unless the DOS is loaded during the boot process, there
will not be any disk drivers or File Management System resident in
menory.

-51-

FLEX Advanced Programmer's Guide

~52-

FLEX Advanced Programmer’s Guide
PRINTER ROUTINES

There are two printer related programs provided with FLEX. One is the P
UtiTity, the other is the PRINT.SYS file which is the actual set of
printer drivers (initialize printer and output character). The P
command source listing is provided on the following pages and should be
self explanatory. Below you will find the requirements of the PRINT.SYS
file. No source listing is provided here since one is given in the
"FLEX User's Manual".

"PRINT.SYS' FILE REQUIREMENTS

The PRINT.SYS file needs to provide the system with three basic printer
routines, one for printer port initialization, one for printer status,
and one for output character to printer routine. The P routine and the
system printer spooler use these routines to communicate with the
printer. A source listing of the provided routines are included in the
"FLEX User's Manual" and will not be duplicated here. The three
routines and their requirements are listed here.

PINIT ($CCCO-CCD7) This routine should initialize the printer port.

ictnwme nan A A maCAaMmuAa A
No registers need be preserved.

PCHK ($CCD8-CCE3) This routine should check to see if the printer can
accept another character. Return Negative CC status if can
accept, Plus if can not. Preserve A, B, X, Y, and U.

POUT ($CCE4-CCF7) This routine should output the character in A after
calling PCHK to verify the printer can accept the character.
Preserve B, X, Y, and U.

THE SYSTEM PRINTER SPOOLER

FLEX contains a printer spooler module. It requires the installation of
an interval timer board for operation. Essentially, the spooler s a
multi-tasking system, with the output to printer function being a Tow
priority task. Any requested disk service will cause the printer task
to temporarily halt until the disk has been used. It should be noted
that the SWI3 CPU vector is adjusted in this task scheduler, The PRINT
command is used to activate the spooler which in turn prints the files
(if any) in the print queue. Exact details of the spooling operation
are not available at this time.

Printer spooling is not supported in this version of FLEX.

-53-

FLEX Advanced Programmer's Guide
FLEX Advanced Programmer's Guide

*
x wpy YTILITY COMMAND
N €120 86 CCE4 LDA POUT GET 1ST BYTE OF SPACE
« THE P COMMAND INITIALIZES A PORT AND clz3 81 39 CMPA #$39 IS 1T RTS?
* CHANGES THE OUTCH JUMP VECTOR IN FLEX €125 26 14 BNE P15 IF NOT - THEN LOADED
. C127 8E (840 LDX #FCB POINT TO FCB
Cl2A 86 01 (DA #1 OPEN FILE FOR READ
% COPYRIGHT (C) 1979 BY C12e A7 84 STA 0,X
N C12%t BD D406 JSR FMS CALL FMS
* TECHNICAL SYSTEMS CONSULTANTS, INC. Ci31 26 14 BNE P2 CHECK FOR ERRORS
C133 86 FF LDA #3FF SET FOR BINARY READ
* EQUATES €135 A7 88 B STA 59X SET COMPRESSION FLAG
€138 B0 (D30 JSR LOAD, CALL FLEX'S LOADER
cB40 FCB QU $C840 €138 BD CCCO P15 JSR PINIT G0 INITIALIZE PORT
cp30 LOAD EQU $CP30 C13t 8 CCE4 LDX #POUT GET OUTPUT ADORESS
D406 FMS EQU $D406 €141 BF (D10 STX OUTCH+1 STUFF IN FLEX
D103 FMSCLS EQU 8D403 Cl44 76 CDO6 JMP RENTER RETURN TO FLEX
CDO6 RENTER EQU $CDO6
0004 NFER Egu i Cl147 A6 01 P2 DA 1,X GET ERROR CODE
oo PAUSE EQU SCCO9 5149 81 04 CMPA #NFER 1S IT "NO SUCH FILE"?
CDIE PSTRNG EQU SCDIE 148 26 09 BNE P3
CO3F RTCRE £QU SCD3F €140 30 8D 0014 LEAX NOPST,PCR POINT TO MESSAGE
(D03 WARMS EQU $CDO3 C151 BD CDIE P25 JSR PSTRNG GO PRINT IT
CC11 LSTTRM EQU SCC11 €154 20 03 BRA P4
€C02 EOL FQU $CCo2
CECo PINIT EQU SCCCO glgs BD CD3F P3 JSR RPTERR REPORT ERROR
SGa pouT EQU SCCEA 159 BD D403 P4 JSR FMSCLS CLOSE ALL FILES
CDOF OUTCH EQU SCDOF CI5C 7 CDO3 JMP WARMS RETURN TO FLEX
CF CCFC
CCFC PRI BQuo 3 CISF 30 8D 0018 P8 LEAX ERSTR,PCR POINT TO STRING
€100 ORG $C100 €163 20 f£C BRA P25 60 PRINT IT
100 20 01 o erA Pl GRANCH AROUND TEMPS C165 22 50 52 49 NOPST FCC '“PRINT.SYS" NOT FOUND'
Cl7A 04 FCB 4
c102 01 "W e 1 VERSION NUMBER C178 22 50 22 20 ERSTR FCC '"P" MUST BE FOLLOWED BY A COMMAND'
C19C 04 FCB 4
€103 B6 CCFC Pl (DA PR1 CHECK SYSTEM PROCESS REG .
C106 27 09 BEQ P12 IS IT BUSY? N THE FOLLOWING CODE IS LOADED INTQ
C108 8E c840 LDX #FCB POINT TO FCB . THE SYSTEM FCB WHEN THE P COMMAND IS
CioB C6 1B L8 #27 SET BUSY ERROR LOADED INTO MEMORY.
c100 £E7 01 STB 1,% STUFF IN FCB * IT PRESETS THE FILE NAME IN THE FCB.
C10F 20 45 BRA P3 GO REPORT ERROR ce3
€111 86 CC11 P12 LDA LSTTRM GET LAST TERMINATOR ORG $C843
c114 81 0D CMPA #8D IS IT A CR? 813 FF
cl116 27 47 BEQ P8 E844 FCB SFF
€118 B1 CCO2 CMPA EOL IS IT EOL CHARACTER? 50 52 49 4E FCC 'PRINT'
Cl1B 27 42 8EQ P8 €849 00 00 00 FCB 0,0,0
C11D 7F CCO9 CLR PAUSE DISABLE THE PAUSE FEATURE C84C 53 59 53 FcC o Sys!
_ continued - END P
-54-

_55-

FLEX Advanced Programmer's Guide

=56~

m

I B R R EEEEEREEEEENNEES

FLEX Advanced Programmer's Guide

INTERRUPTS IN FLEX

FLEX makes extensive use of interrupts during printer spooling. Anytime
there are files in the PRINT Queue {as a result of wusing the PRINT
command) the timer board (MP-T in 1/0 slot #4) is activated. This board
is initialized to output interrupts every 10 milliseconds. These are
IRQ type interrupts and FLEX sets the IRQ vector to point to its IRQ
routine. When the PRINT Queue is empty, the timer is shut off and no
interrupts are generated. The SWI3 instruction is alsoc used quite
extensively in FLEX. The SWI3 vector in RAM is set by FLEX to point to
its SWI3 routine., Because of the SWI3 and IRQ use, the MON command will
not permit leaving FLEX while there is a file in the PRINT Queue.

A1l FLEX wutilities, the Editor, the Assembler, the Text Processor, and
BASIC are interruptable programs. When writing your own programs, if
they are to be used while printing with the PRINT command (files in the
print queue), they should be written to be interruptable as well. At no
time should the IRQ or SWI3 vectors be changed in a utility which is to
be run while printing. In general, good programming practice will yield
interruptable programs.

SYSTEM MEMORY MAP

The following memory map shows the location of user RAM and several
major sections of the FLEX operating system. All addresses are in
hexadecimal.

ADDRESS DESCRIPTION

0000 - BFFF User RAM (Some of the Tower end of this area is used
by certain utilities such as NEWDISK.)

€000 - CO7F Stack Area (SP is initialized to CO7F)

c080 - COFF Input Buffer

€100 - CEFF Utility Command Area

€700 - C83F Scheduler & Printer Spooler

840 -~ C97F System FCB

€980 - CBFF System Files Area

CCO0 - D3FF Dos

D400 - DDFF FMS

DEOO - DFFF Disk Drivers

_57-

S3V0IdN3ddV

XEIRIE

10]09

RlGE

Appendix A ~ FHL Color FLEX References

Appendix A - references

1. Frank Hogg, "32K RAM FOR FREE!!" Color Computer News, February 1982 (No. 6
p.23. How to modify the Color Computer for full use and test the memory,

2. Dale Puckett, "FLEX: An Operating System for the 6809,” MICRO - The 6502/68(
Journal, April 1982 (No. 47), p.61. Introduction to FLEX.

3. Scott Norman, "FLEX Your Color Computer,” ‘80 Micro, March 1983 (No. 38) p. 10
Review

4, Dr. Laurence Preble, "A Tale of Three Flexes,” The RAINBOW, July 1983 Vol (N
12), p.240. Review and comparison to other versions of FLEX,

5. E.M, Pass, Ph.D., "FLEX and 0S/9, An Inside View," The Color Computer Magezin
Cetober 1983 Vol.l (No, 8), p.110. Comparison of FLEX and OS89,

6. Frank Hogg, "64K KOLUMN," Color Computer News, Ongoing column about the 64
Color Computer. Additional information about 64K and FLEX,

APPENDIX A Page - 1 -

Appendix B - Hardware Vendors

FRANK HOGG LABORATORY, Inc.
The Regency Tower
770 James Street
Syracuse, New York 13203
(315) 474-7856

64K Color Computer with warranty, Disk systems with high-performance drives,
Complete packaged systems for:

SOFTWARE DEVELOPMENT
BUSINESS
WORD PROCESSING

Computer Plus
245A Great Road
Littleton, MA 01460
(617) 486-3193

64K Color Computers. Racio Shack disk systems, 64K RAMS.

APPENDIX B Page -1-

Appendix C. Modifying the 32K Color Computer,

The following steps will transform a 32K Color Computer (containing 64K
RAMs, not the piggybacked 16K rams) into a 64K Color Computer capable of
running FLEX,

1. Obtain a new 74LS02 and a new T4LS138.

2, Remove the top of the case from the Color Computer and remove the RF
shield.

3. Locate U29 and Ull (a T4LS02 and a 74LS138) inside the shield, located in the
corner of the shielded area near the center of the keyboard.

4. Remove U29 and Ull and store them in a safe place. If you have trouble with
your Color Computer in the future, you can easily remove the modification and
replace these chips, and it will be undetectable that the Color Computer was
modified.

5. On you new 74LS02, carefully bend pins 4, 5 and 6 so they point straight up in
the air, Do the same for pin 5 on the 74LS138.

6. Plug the modified T4LS02 in as U29. Plug the modified 74LS138 in as Ull,

7

You must now make three connections using 30-gauge tinned solid copper wire.
You will need a wirewrap tool to wrap the ends of the wire around the pins.
For maximum reliability, you should solder the wire to the IC leads. However,
do not do this unless you are confident that you can do it without shorting
the pins or dropping solder onto the ecireuit board. The following connections
must be made:

U29 pin 6 to U29 pin 8
U29 pin 4 to U11 pin 5
U29 pin 5 to TP1,

TP1 is located in the diagonally opposite corner of the shielded area. DO
NOT SOLDER TO TP1! A simple wire wrap should be sufficient here, and can
be easily removed so the modification is reversible.

8. Turn on the computer and see if it initializes properly before replacing the
shield and case., Color Basic should work as it did before.

9. Run the following program to test the RAM. The program will take about a
minute to set up, then it will say OK if the memory is good, Otherwise it
will report the address of the error, what was read, and what was expected.
The following table indicates what kind of error corresponds to which RAM,
Chances are everything is OK, but if not probably only one or two of the
RAMS need to be replaced. Use 4164 64K Dynemic RAMs.

APPENDIX C Pagc -1 -

Appendizx C. Modifying the 32K Color Computer.

Error Culprit

01 U20
02 U21
04 U22
08 U23
10 U24
20 U25
40 U26
80 U217

Revision 'F! Board

The.Revision 'F' board is very simple to upgrade. If you have a Radio Shack 32K &
Revision 'F! board then all you have to do is run the test program because the F'
board has the 64K Mod in it from Radio Shack!

Upgrading a 16K Revision 'F' board to 64K:

Remove these capacitors near the memory chips:
C58, C60, C62, C64, C66, C68, CT0, C72

Add a jumper to the left of PIA 6821

Move the jumpers labeled 16/64 from 16 to 64

Instell 8 64K chips.

You still need Extended Color Basic to run FLEX unless you have

"The Solution"

APPENDIX C Page - 2 -

Appendx C, Memory Test

This test is from the October 1982 issue of Color Computer News, pagz
68. It is patterned after a program published by FHL in the February issue of Color
Computer News, This program was written by Jim Brown, 31 Richie Drive, Pleasant

gill, CA 94523,

Basic initialization and machine code load require about 3 seconds., Full
range test time for good RAM takes less than 3 seconds.

' TEST MEMORY IN MODIFIED

! 32K TRS80 COLOR COMPUTER
30 ' FOR FULL 64K ADDRESSING

' RANGE WHEN MAP TYPE=1

T

60 CLEAR 50,&H3000

80 B=&H1D00: ' RELOCATION BASE
100 ' MACHINE CODE:

120 ' SETUP & CLR MEM

130 DATA 34011A50B7FFDF4F
140 DATA AESCEBAT80ACSCES
150 DATA 23F943

160 ' WAIT FOR REFRESH
170 DATA 8E02A0301F26FC

180 DATA 8E02A0301F26FC

190 ' MAIN LOOP

200 DATA AES8CD26384A184

210 DATA 27028D1F6380

220 DATA ACS8CC723F11F894D
230 DATA 271A

246 ' MID LOOP

250 DATA AES8CBB4FA1842702
260 DATA 8D096380ACSCB1

270 DATA 23F320C8

280 ' EXIT SEQUENCE

290 DATA E6843540EF8CAC

300 DATA EDSCA7TAFSCA2

310 DATA B7FFDE3581

326 ' RESUME SEQUENCE

330 DATA 34011A50BTFFDF

340 DATA EESC9TAES8C90

350 DATA A68CS8FBEC4

376 ' DEFINE CONSTANTS
390 H$="&H"

400 SA=B+&H00:'START ADDR
410 EA=B+&H02:'END ADDR

420 XA=B+&H04:'EXIT ADDR
430 DA=B+&H06:'RD/WR DATA
440 E0=B+&HOA:'START ENTRY
450 E1=B+&H6T:'RESUME ENTRY
460 LA=B+&HT8:'LAST CODE BYTE
470 DEFUSRO=E0:DEFUSR1=E1
490 ' LOAD MACHINE CODE
510 FOR A=E0 TO LA

520 IF HX$="" THEN READ HX$
530 POKE A,VAL(H$+LEFT$(HX$,2))
540 HX$=MID$(HX$,3,255)

550 NEXT A

580 PRINT "LOWEST,HIGHEST:";
600 PRINT "3000,FEFF®

610 PRINT "LOWER,UPPER BOUND";
620 INPUT 1$,J$

630 BT=VAL(H$+MID$(1$,1,2))

640 POKE SA,BT

650 BT=VAL(H$+MID$(1$,3,2))

660 POKE SA+1,BT

670 BT=VAL(H$+MID$(J$,1,2))

680 POKE EA,BT

690 BT=VAL(H$+MID$(J$,3,2))

700 POKE EA+1,BT

720 ' TEST MEMORY SEGMENT
740 X=USR0(0)

760 ' PRINT TEST RESULTS

780 WD=PEEK(DA):RD=PEEK(DA+1)
790 IF WD=RD THEN 960

800 FA=PEEK(XA)*256+PEEK(XA+1)
810 PRINT"ADDRESS:"HEX$(FA);
820 PRINT"WROTE"HEX$(WD);

830 PRINT'READHEX $(RD);

850 ' RESUME TESTING

870 X=USR1(0)

890 ' LOOP BACK FOR REPORTING
910 GOTOC 780

930 ' END OF CURRENT TEST
940 ' ALLOW FURTHER TESTING
960 PRINT'TEST COMPLETED"

970 PRINT

980 GOTO 580

For loop testing,

replace 980 with:

980 GOTO 780

Hold <BREAK> key for about 6
seconds to break the test loop.

576 ' INPUT LAST MEM TEST BOUNDARIES

APPENDX C Page - 3 -

Appendix D. Software Vendors Appendix E - FHL Color FLEX Specifications.

1. Computer Systems Center
13461 Olive Blvd.
Chesterfield, MO 63017
* Dynacale, an electronic spreadsheet Dynamite disassembler.

These specifications are in addition to the normel FLEX
specifcations, as documented in the FLEX User's Manual and FLEX
Programmer's Manual.

2. Computerware 1. Disk System.

4403 Manchester Ave,, Suite 103
Encinitas, CA 92024
* Business and Accounting packages.

User Callable Routines

$DE1E (ULH) Unload Heads

3. Frank Hogg Laboratory, Ine.
The Regency Tower
770 James Street
Syracuse, NY 13203
(315) 474-7856
* FHL Color FLEX Editor and Assembler (ED/ASM), Dynastar and Stylograph Word
Processors, FORTH, Dynasoft PASCAL (p—code system), Dyna-C (C-language subset)
CRASMB Cross A@sembler for various miecros, Super Sleuth?and Dynamxte+
Disassemblers, Autotask procedure file executor, Programmer's toolklt Basie toolkﬁ
spelhng—checker, Data-Base systems, Business and Accounting packages, Mailing and
Correspondence systems, JCP Job Control Program, many more,

This routine causes all of the selected drive to be
deselected. It still remains the current drive, and if the
motor was running it remains running, but the heads are
unloaded. Uses no registers.

$DE21 (MTROFF) Turn Off Drive Motors

This routine causes the currently selected drive to be
deselected, and the drive motors to be turned off. The
eurrent drive remains the current drive. Uses no registers.

ULH and MTROFF should be called instead of sccessing the Drive
Register directly. This is because the disk drivers keep a local copy
of the Drive Register, which must be kept up to date,

4. Introl Corp.
647 West Virginia St,
Milwaukee, WI 53204
* T H

A full 'C' Compiler. $DE24 (FCTE) Find Configuration Table Entry
Lucidate Ltd,
P.O, Box 128
Cambridge CB2 5EZ ENGLAND
* Lucidata PASCAL, & p-code system with floating point.®

This routine returns the address of the Drive Configuration
Table Entry for the current drive in X. If the current
drive is not 0, 1, 2, or 3, a "Drive Not Ready" error will
be returned in B and a Z will be 0. Otherwise, no

Omegasoft registers are used.

P.O. Box 70265
Sunnyvale, CA 94086
* PASCAL native code compller'

The following entries are defined for the Drive Configuration Table,

Offset Function The st Tt
Technical Systems Consultants, Inc.
111 Providence Road
Chapel Hill, NC 27514
* Native code Pascal Compller, Text Edltor, Assembler, 68000 Cross-Assembler,
XBASIC Extended Basic? Sort/Merge, Utilities, Debug.,’

=1 if drive exists

=1 if double sided

=1 if double density

Stepping rate: 0=6ms, 1=12ms, 2=20ms, 3=30ms
Physical drive 0-3 selection code: 1=0, 2=1, 4=2, 64=3

0
1
2
3
4
Universal Data Research Ine. (55 Treck to start precompensation at
7
8
9
1

2457 Wehrle Dr.
Buffalo, NY 14221
* Business and Accounting Packages.

Sectors/track single density

Sectors/track double density

Maximum track number (po. of tracks minus one)
Seek time limit I{no.tracks*step rate +1)] *60

Washington Computer Service 0,11 variasbles (reserved)

3028 Silvern Lane
Bellingham, WA 98225
* RMS Record Management System.

The physical drive selection code may be used to cause a
drive wired with a certain physical drive number to behave as if it
had @ different logical drive number. Do not use more than one
physical drive number for any logical drive number, or vice versg;
also, do not use physical drive number 3 (selection code 64) if the
system has eny double sided drives.

kS
MOST OF THE ABOYE SOFTWARE IS AVAILABLE FROM FRANEK HOGG LABS

APPENDIX D Page - 1 -

APPENDIX E Parge - 1 -

Appendix E - FHL Color FLEX Specifications.
Console 1/0 specifications

User settable options in the Console 1/O package

These addresses are veéctors which point to the address where the
actual option resides.

$D3D1 Debounce count

This is the number of times the keyboard is scanned before
a key is registered.

$D3D3 Blink Period
The reciprocal of the cursor blink frequency, on a relative
scale.

$D3D5 Motor Off Blink Limit
After this many blinks the motors shut off, whether the
blinks are visible are not,

$D3D7 Cursor Type
$00 = underline cursor
$FF = blinking block cursor

$D3D9 VDG Mode
The upper five bits of this word set the VDG mode.

$D3DB Reserved for future system use,
$D3DD Reserved for future system use.

$D3DF Reserved for future system use.

$D3E1 Bell Tone Cycle Count.
The length of the Control-G tone, in half-cycles.
{Frequency dependent.)

$D3E3 Bell Tone Half Period
The reciprocal of the frequency of the Control-G tone on
a relative scale,

$D3E5 INCHNE Get a character from the keyboard without echo.
Used in the form JSR {$D3E5)

APPENDIX E Page - 2 -

Appendix E - FHL Color FLEX Specifications,

Output Character Control Funetions and Displays

Holding down the shift and up arrow key is the control key., We refer to the
control key in this table by the '"'. Therefore, "B means to hold down the shift,
up arrow and the 'B' key.

0z
03
04
05
06

07
08
09
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24

iy 28
4 26

(#)

> ¥ 3

>

> ¥y »

St mEDO®

»

y > ¥ >

>

> > > ¥

>

HEon o=

> > 3

N = <

¥

Home and Clear screen (ineluding protected areas).
NOT USED

Remove all status lines,

Erase cursor to end of line,

Put line cursor is on in reverse video

Bell tone

Cursor left, non-destructive.

Cursor right,

Cursor down (LF), initializes beginning of line
pointer if in first eolumn.

Cursor up.

Used to flag Protected areas,
CR

Erese all Unprotected areas.
Home cursor.

Toggle printer on and off.,

NOT USED

NOT USED

Erase cursor to end of sereen, e s Sl
Cursor addressing, ~T,row,column. °T,32,32 = home ~ s
where 32 refers to the decimal equivilant of the Ay Wi <y 4
actual character typed.

Unprotects all lines.

Variable scroll rates. Follow with a "A - °F,
Allocate status line(s) at bottom of screen,
Cancel line.

Erase entire line,

Toggle cursor between underline and block.

Place the cursor on a line and type "L then move cursor to another line

and type "L again. The lines between will now be protected, Use cursor
addressing to put text into the protected lines,

{*) Each time the "W is typed, another status line will be added to the bottom
of the screen. The number of stetus lines is limited to four. Use cursor
addressing to put text into the lines.

APPENNIX F Paoe -2

Appendix E ~ FHL Color FLEX Specifications,
APPENDIX F - System Memory Map

KEY FUNCTIONS
The following is a brief list of the RAM space required by the FHL Color FLEX

1 Shift funetions Operating System. All addresses are in Hex,
shift 'shift’
Shift-" “etrl' (abbrev °) 0000 - B7FF User RAM
Shift-"-break 'super-shift’ #*Note: Some of this space is used by
Shift-"-0 Toggle 'Alpha-lock’ NEWDISK, COPY and other utilities,
Alpha is on when first booted up. B800 ~ BFFF Hi-Res Screen Drivers and character tables.
2. Normal Key Functions C000 - ESFF Disk Operating System
E600 - FDFF Hi-Res Screen Memory
REY NORMAL NORMAL, Alpha-lock Shift CTRL Super-Shift FEO0 - FEFF Misc. routines
e g same) ' nul F§ (10 COT7F System Stack
A-1 a1 A1 h-Z Aj-AZ
4 Cursar Up same "CTRL" n/a n/a C100 - C6FF Utility Command space
¥ LF " LF LF LF
£ BS " X DEL(7F) 65($1D) CDhoo FLEX cold start entry address
-3 TAE (HT) " ~ nothirg RS ($1E)
CDO03 FLEX warm start entry address
space spare ! space Space space
0 0 " see(1) same
1 1 " ! ! |
2-5 -5 " {as shown on keyboard) For a more detailed memory map, consult the 'Advanced Programmer's Guide,'
[6 ! {as showr on kegboard)
7 7 " (a5 showr on keyboard)
8 8 Y { L L
9 9 B)] I
4 ' o X X X
! " - . U5 ($1F)
\ \ " G A A
/ / " ?
enter CR ! CR CR R
EREAY ESC ! n/a super-shift n/a

APPENDIX E Page - 4 - APPENDIX F Page -1 -

Index Abbreviations:

APG : Advanced Programmer's Guide
AP(): Appendix
TUT : Tutorial

Add B-Register to X-Register (ADDBX) APG 13
APPEND A.l.l

ASN A.2.1 - A.2.2

Automatic Drive Searching 1.6

Backspace T.2.1, AFG 3
Backspace Echo T.2.2, APG 4
BASIC c.2.1

Bell Tone AP(E) 3

Bell Tone Cycle Count AP(E) 2
Bell Tone Half Period AP(E) 2
Binary Files APG 45

Blink Period AP(E) 2

BUILD B.1l.1

Call DOS as a Subroutine (DOCMND) APG 15
Cancel Line AP(E) 3

Carriage Return AP(E) 3

CAT T 2, C.1.1 - C.1.2

CBASIC C.2.1

Check Terminal Input Status (STAT) ARG 15
Classify Character (CLASS) ARG 11

CLOADM c.2.1

Coldstart Entry Point (COLDS) ARG 8
Command Descriptions 1.7

Command Flag ARG 6

Command Surmary = 3.1

Commands, entering of 1.5 - 1.6

Computer Plus AP(B) 1

Computer Systems Center AP(D) 1 :
Computerware AP(D) 1 ?
Control Key 0.3, AP(E) 3 |
CoPY C.3.1 - C.3.2
Current Character APG 5 i
Current Line Number APG 5

Current Output Column ARG 6

Cursor Addressing AP(E) 3

Cursor Down AP(E) 3

Cursor lLeft AP(E) 3

Cursor Toggle, underline and block AP(E) 3
Cursor Type AP(E) 2

Cursor Up AP(E) 3

Data Sectors (Descp) APG 44
DATE D.1.1

Index Page - 1 -

Index Abbreviations:

APG : Advanced Programmer's Guide
AP(): Appendix
TUT : Tutorial

Date Registers ARG 4

DBASIC D.2.1 - D.2.3

Debounce Count AP(E) 2

Delete Character T.2.2, APG 3

Depth Count (Terminal) T.2.2, ARG 3
Directory Sectors (Descp) APG 44

Disk Capacity 1.8

Disk Drive Support 0.2

Disk Drivers APG 41 - 42

Disk Error Mumbers 1.10

Disk Files and their Names 1.3 -1.4

Disk Operating System (DOS), General info 1.1
Disk Operating System (DOS), Standard FLEX ARG 1 - 7
DOS Main Loop Re-entry Points (RENTER) ARG 8
DOS Routines, Examples ARG 19

Disk Resident Commands 1.7, ARG 17

Diskette Initialization APG 43

DISPLAY D.4.1

Display Features 0.3

DOCMND ARG 15

Drive Configuration Table 0.2, AP(E) 1

Eject Count APG 4

Eject Line Count (Terminal) T.2.3

End of Line (BOL) Character 1.6, T.2.2, APG 3
End of Page Pause Feature T.2.3

Entry Points (FMS) ARG 26

Erase Cursor to End of Line AP(E) 3

Erase Cursor to End of Screen AP(E) 3
Erase Line AP(E) 3

Erase Unprotected Areas AP(E) 3

Error Messages 2.1

Error Name Vector APG 7

Error Numbers 1.10, APG 38 - 40

Error Type ARG 6

ERROR.SYS 1.10

Escape Character T.2.4, ARG 4

Escape Return Register AFG 5

EXEC c.2.1, E.l.1 - E.1l.2, S.4.1 - S.4.2
EXT E.2.1 - E.2.2

Extensions (for files) 1.3 - 1.4

Features of FHL Color FLEX 0.2 - 0.4

Field Separator 1.3
File Management System See FMS

Index Page - 2 -

Index Abbreviations:

APG : Advanced Programmer's Guide
AP(): Appendix
TUT : Tutorial

File Input Address ARG 6

File Input Echo Flag ARG 7

File Loader (LOAD) APG 12

File Output Address APG 6

Find Configuration Table Entry AP(E) 1 - 4
FLEX, General Information 1.1

FLEX References AP(A) 1

FLEX Specifications, FHL Color FLEX AP(E} 1 - 4
FMS 1.1, APG 1, APG 21 - 40

FMS Entry Points APG 26

FMS File Control Blocks APG 21,22

FMS Function Codes APG 21,28 - 36

FMS Global Variables ARG 27

Formatting TUT 5 - 6

Frank Hogg Laboratory, Inc. AP(D) 1

General Information, FLEX 1.1

GET G.1.1

Get Character (GETCHR) 1.11, APG 9
Get File Specification (GETFIL) APG 12
Get Hexadecimal Number (GETHEX) APG 14
Get Next Buffer (NXTCH) APG 11

Halting Output 2.1

Hardware Vendors AP(R) 1
HELP H.1l.1

HELPCOCO.DIR H.1.1

Hi-Res Screens X.2.1

Home and Clear Screen AP(E) 3
Home Cursor AP(E) 3

I I.1.1

INCHNE AP(E) 2

Initialize Printer ARG 7

Input Character (INCH) (INCH2) ARG 9
Input Decimal Number (INDEC) ARG 15
Input into Line Buffer (INBUFF) APG 10
I/0 Subroutines 1.11

Input Switch ARG 6

INT I.2.1

Interrupts 57

Introl Corporation AP(D) 1

IM I.3.1 - 3.11

JUMP J.1.1

Index Page - 3 -

Index Abbreviations:

APG : Advanced Programmer's Guide
AP(): Appendix
TUT : Tutorial

Key Functions 0.2 - 0.3, AP(E) 4

Last Terminator APG 5

Line Buffer APG 3

Line Buffer Pointer APG 5
LINK ARG 51, L.1.1, TUT 8
LIST L.2.1

LoAD, file loader APG 12
Loader Address Offset APG 5
Lucidata Ltd. AP(D) 1

Memory End ARG 7

Memory Map, FHL Color FLEX AP(F) 1
Memory Map, Standard FLEX ARG 3 - 7,57
Memory Resident Commands 1.7, AKG 16
Memory Test for 64K AP(C) 3

Minimum Hardware Configuration 0.1
Modification for 64K AP(C) 1 - 2

MON M.1.1

Motor Off Blink Limit AP(E) 2

Motor Shut-off 0.3, AP(E) 1

MOVEROM M.2.1

N N.1.1

NEWDISK N.2.1, TUT 5 -6
NEWDISKA N.2.1, TUT 5 -6
Null Count T.2.3, ARG 4
NXTCH APG 11

0] 0.1.1

Omegasoft AP(D) 1

Output Character (OUTCH) (OUTCH2) APG 9

Output Character Control Functions and Displays AP(E) 3
Output Decimal Number (OUTDEC) ARG 13

Output Hexadecimal (OUTHEX) APG 13

Output Hexadecimal Address (OUTADR) APG 14

Output Switch APG 6 l

P 1.9, P.1l.1

Pl P.1.1

Pause Control T.2.3, APG 4
PCHK 1.14

PINIT 1.14

POUT 1.14

Previous Character APG 5

Index Page - 4 -

|
|

Index Abbreviations:

: Advanced Programmer's Guide
AP(): Appendix
: Tutorial

Print Carriage Return and Line Feed (PCRLF) ARG 11
Print Spooling ARG 53

Print String (PSTRNG) 1.11, ARG 10
Printer, Hooking-up 0.4

Printer, Toggle on and off AP(E) 3
Printer Driver 1.9

Printer Driver Sample, Serial 1.16
Printer Initialize AYXG 7

Printer Output ARG 7

Printer Ready Check APG 7

Printer Routines APG 53 - 55
Printer Support 0.3

PRINT.SYS 1.9, Pp.1l.1, APG 53
PROT p.2.1

Protected Area Flag AP(E) 3

PSTRNG 1.11, APG 10

Put Character (PUTCHR) ARG 10
PUTBOOT . LDR 3.1, TUT 6 -7, 10
PUTCHR 1.11

Random files APG 37

Remove Status lines AP(E) 3

RENAME R.1.1

RENTER, DOS Main Loop Re-entry Point APG 8
Report Error (RPTERR) APG 14

Reset 1.8

Restore I/O Vectors (RSTRIO) ARG 12
Reverse Video (line) AP(E) 3

ROM M.1.1, R.2.1

RTF D.2.3

SAVE S.1.1

SAVE.LOW S.1.2

Screen, Hi-res X.2.1

Scroll Rates AP(E) 3

sDnC ™T 7 -9, S.2.1

Sectors 1.3, 1.8

Serial Printer Driver, Sample 1.16
Set Extension (SETEXT) ARG 13
SETUP 0.4, s.3.1 - 5.3.6

Single Drive Copy T 7 - 9, S.2.1
Software Vendors AP(D) 1

Special I/0 Flag ARG 6

Spooling, printer APG 53

STARTUP S.4.1 - s.4.2

Index Page - 5 -

Index Abbreviations:

APG : Advanced Programmer's Guide
AP(): Appendix
TUT : Tutorial

STAT, Check Terminal Input Status 1.12, ARG 15
Status lines AP(E) 3

Summary of Commands 3.1

Super-shift 3

System Constants ARG 7

System Date Registers APG 4

System Drive 1.6

System Drive Number APG 4

System Memory Map, FHL Color FLEX AP(F) 1
System Requirements, General FLEX 1.2
System Routines, User Callable ARG 8
System Scratch ARG 4,6,7

TAB Character T.2.3, APG 4

Technical Systems Consultants, Inc. AP(D) 1
TED T.1l.1 - T.1.5

Terminal Depth Count T.2.2

Terminal width Count T.2.3

Terminator APG 5

Text files (Descp) ARG 46

Transfer Address 1.5, 8.1.1, ARG 6
Transfer Flag APG 5

TSC, Inc. AP(D) 1

TTYSET 1.1, 1.5, 1.6, T.2.1 - T.2.4
Turn off Drive Motors AP(E) 1
Tutorial, FHL Color FLEX 0.4 - TUT 11

Ucs 1.1, 2.1, A.l.1 -Y.1l.1

Universal Data Research Inc. AP(D) 1

Unload Heads (Drives) AP(E) 1

Unprotect all lines AP(E) 3

User Callable Routines, FHL Color FLEX AP(E) 1
User Callable System Routines APG 8

User Command Table APG 16 - 18

User Command Table Address ARG 5

User Written Commands APG 16, 47 - 50

Utility Command Set (UCS) 1.1, 2.1, A.1.1 -Y.1l.1

Variable Scroll Rates AP(E) 3
VDG Mode AP(E} 2

Vendors, Hardware AP(B) 1
Vendors, Software AP(D) 1
VERIFY V.l.1

VERSION v.2.1

Index Page - 6 -

Index Abbreviations:

APG : Advanced Programmer's Guide
AP(): Appendix
TUT : Tutorial

Warmstart Entry Point (WARMS) ARG 8
Washington Computer Service AP(D) 1
width, Terminal T.2.3, AFG 3

Work Drive 1.6

Working Drive Number ARG 4

Write Protect 1.8, ARG 1

Xcommands X.2.1
XOUT X.1l.1

Y Y.1l.1

- Index Page - 7 -

