

ltadl8/haeK

Getting Started with btended Color BASIC,
Cl1984 Tandy Corporation, Fort Worth, Texas 76102 U.s.A.

All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation, of any
portion of this manual is prohibited. While reasonable efforts have been taken in the prep
aration of this manual to assure its accuracy, Tandy Corporation assumes no liability re
sulting from any errors or omissions in this manual, or from the use of the information
contained herein.

TRS-80 btended Color BASIC System Software;
@ 1984 Tandy Corporation and Microsoft.

All Rights Reserved.

The system software in the Color Computer is retained in a read-only memory (ROM) for
mat. All portions of this system software, whether in the ROM format or other source
code form format, and the ROM circuitry, are copyrighted and are the proprietary and
trade secret information of Tandy Corporation and Microsoft. Use, reproduction, or publi
cation of any portion of this material without the prior written authorization by Tandy Cor
poration is strictly prohibited.

10987654321

To All New Customers ...
If you don't know a thing about computers, relax~ this book's for you! It
has you "program" .your computer using ils own language - Extended
Color BASIC. You'll slart a little crazy by:

Composing music Playing games

Conducting light shows Painting pictures

If you're straight business, be patient. Having fun's the fastest way to learn,

So spend a few hours with your computer. Type whatever you want. Play
with it. Be bold and strange. In other words ... feel at ease! You have an
amazing tool to command.

And to All Upgrading Customers •••

Welcome back to the Color BASIC family! Let us introduce you to ... slight
drum roll, please Extended Color BASIC. It has all the features of
non-Extended Color BASIC plus much more.

For example, with Extended Color BASIC you can:

Draw a circle . • Edit a line

Paint a house

Cool off with a cube

Square a root

Playa symphony

And even try a triangle!

If you've read Getting Started with Color BASIC, you can skip half this·
book:

Skip Section I except for Chapter 9. Chapter 9 shows how to use the
Extended Color BASIC "Editor" - a great time-saver in typing prog
rams.

Read Section II. You'll learn to use the most exciting features of
Extended Color BASIC - high-resolution graphics and music.

Skip Section III.

Read Section IV. This shows how to use the re~t of Extended Color
BASIC's expanded features.

This Is How to Start ...
Connect your computer by referring to your In/roducing Your Color Com
puter 2 or Introducing Your Deluxe Color Computer.

Then power up your computer:

1. Turn on your television set

2. Select Channel 3 or 4 on the television set.

3. Set the antenna switch 10 COMPUTER.

4. Turn on the computer. The POWER button is on the left rear of your
keyboard (when you're facing the front).

This message appears on your screen:

EXTENDED COLOR BASIC v.r.
© 1880 TANDY
OK

(v.r. is two numbers specifying which version and release you have.)

If you don't get this message:

Turn the computer on and off again.

Adjust the brightness and contrast on your television set.

• Check all the connections.

If you still don', get this message, refer 10 "Troubleshooting and Mainte+
nance" in Introducing Your Color Computer 2 or Introducing Your Deluxe
Color Computer.

Once you do get the above message, you're ready to start.

How Do You Talk to a Computer?
In this book, you'll learn how to talk to your computer. That's all program
ming is, by the way. Once you learn how 10 talk to your computer, you can
tell it to do whatever you want. (Well, almost.)

Your computer understands a language called Extended Color BASIC. This
is an enhanced form of BASIC - Beginners All-Purpose Symbolic Instruc
tion Code. There are lots of computer languages. Extended Color BASIC
just happens to be the one your computer understands.

We'll introduce BASIC words in the order that they're easiest to learn.
When you gel midway in the book, you may forget what a word means. If
this happens, simply look il up in your QuiCK Reference Card.

?
•

............... ---_-::=====!: ~~=.=':. -==. ':.':.-'- --

CONTENTS

Section I THE BASICS

Chapter 1

Chapter 2

Chapter 3

Meet your Computer•.......•.
PRINT SOUND CLS

Your Computer Never Forgets
(. .. unless you turn it off ...J ..•...•••••.•.•.
Strings Variables

See How Easy It Is? .
NEW INI'UT COTO RUN PRINT, PRINT;

LIST IFfTHEN

13

19

24

. 53

65

....•................. 71

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapler 11

Chapter 12

Chapter 13

Count the Beat. .. • .• 30
FOR ..• TO •.. STEP NEXT

Watch the Clock • • . . • • . • • • 35
CLS Nested Loops

Decisions, Decisions.•.••...•.•••...... 40
IFfTHEN END

Garnes o(Chance. • . . ••.. 43
RND PRINT@

Reading..............•...... 47
DATA READ RESTORE INT CLEAR

Writing .
EDIT DEL RENUM

Arith~tk•........... ~

GOSUB RETURN REM

Words, Words, Words•.........
LEN LEFTS RIGHTS MID$

A Pop Quiz .
INKEYS VAL

More Basics. .. 75
SlOP SGN CQNT ABS MEM STRS AND OR

Section II SIGHTS AND SOUNDS

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter'8

Chapter'9

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Chapter 24

let's Get to the Point•.......•...... 85
PS£T PRESET Pf'OINT

Hold That line. • . . •. . . . • 89
LINE COLOR

The Silver Screen. • . •. . . .• •.• 95
SCREEN PelS

Minding Your PModes•....•..•...... 98
PMODE

Finding the RighI Page 102
PCLEAR PMODE PeOPY

Going in Circles. • . • • . • 107
CIRCLE

The Big Brush-Off•.•.•.. .. 11 2
PAINT

Draw the line Somewhere 11 S
DRAW

Get and Put The Display That Went Array 123
GET PUT

A New Kind of Point 127
SET RESET P'l'STK PEEK

Play It Again, TRS-80••.••...••.••...... 133
PlAY

Section III GETTING DOWN TO BUSINESS

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Taping•..... 145
OPEN CLOSE PRINT#-I lNPUT#-, EOF

Managing Numbers.•..... 150
DIM Arrays

Managing Words.•.•....••..... 1SS
LUST PRINT#·2 String Arrays

Sorting•.•....••..... 1S9

Analyzing
Multidimensional Arrays•.••....•.••..... 162

180

Chapter 30

Chapter 31

Section IV BACK TO BASICS

The Numbers Game 171
SQR SIN COS TAN ,\TN LOG EXf' FIX DEF FN

It Don't Mean a Thing
If It Ain't Got That String
STRINGS iNS' R MID$

Chapter 32

Chapter 33

Chapter 34

In One Door and Oul the Other .
LINE INPUT PRINT USING 1'05

A Little Byte of Everything .
LET TRON TROFF TIMER HEX$

Using Machine-Language Subroutines
USRn DEF USRn VARI'TR Memory Map

Section V ODDS AND ENDS

186

193

197

Suggested Answers to Do-It-Yourself Programs ... 207
Sample Programs. • . .. 226
ASCII Character Codes . • . 241
Graphics Screen Worksheet. . . • . . • • . . • • . . • • . 244
SET/RESET Worksheet • 247
PRINT@Worksheet•.......•........ 248
Extended CoJor BASIC Colors.•...•........... 249
Extended Color BASIC Error Messages•......••........... 250
Mathematical Formulas. 252
Derived Functions • 253
Color Computer Line Printer Variables . . • . . . •. .•...•. 255
ROM Routines . .. 257
BASIC Summary. •. . 260

Index .. • . . 265

SECTION I

THE BASICS
In this section you'll learn how to program. Before you start, though, put
yourself in the right frame of mind.

Don't try to do everything the "correct" way. Don', lry to understand
everything. Above all, please don', take-our word for anything!

Do have fun with your Color Computer. Try oul your own ideas. Prove us
wrong (if you can). Type anything and everything that comes to mind.

Ready? Turn the page and begin.

CHAPTER 1

MEET YOUR COMPUTER
Have you connected and turned on your computer? Are you ready to give
il a first workout?

This chapter and the next introduce you to your computer-the way it
thinks, some of its talents, and even a couple of its quirks. By the time you
reach Chapter 3, you'll be ready to program ... promise!

Type whatever you want. Then press the cmn:ID key. Don't worry about
anything but the last line of type on your screen. It says:

OK

OK is the computer's "prompt" It's telling you, "OK, enough foolishness
... as soon as you are ready ..." (It patiently waits for your command.)
You're the master-you tell the computer to do whatever you wish.

,

\---"I~",
AI/leiters you type should be
BLACK with iJ GREEN
BACKGROUND. If they're
reversed (green with a black
background). press the
(IHIfD andC[) (zero)keys at
the same time.

, ." , .'. ,". .". ." , .' ., ""
:0 "'0 ': 0 '.' 0'" 0": 0': 0"

Give the computer your first command. Type this exactly as it is below:

PRINT "HI, 1 ' M YOUR COLOR COMPUTER"

When you reach the right side of your screen, keep typing. The last part of
the message appears on the next line.

Now check your line. Did you put the quotation marks where we have
them? If you made a mistake, no problem. Simply press theG key and the
last character you typed disappears. Press it again and the next to the last
disappears (. .. and so on and so on ...).

13

14

See the blinking light?
Wherever you see it, you c.:m
Iype something.

Ready? This should be on your screen:

OK
PRINT "HI I I'M YOUR COLOR COMPUT
ER"

Press the cmnID key and watch. Your screen should look like this:

OK
PRINT "HI I I'M YOUR COLOR COMPUT
ER"
HI I I'M YOUR COLOR COMPUTER
OK

Your computer just obeyed you by printing the message you have in
quotes. Have it print another message. Type:

PRINT "2"

Press wtnID. The computer again obeys you and prints your next
message:

2

Try another one:

PRINT "2 + 2" CIHllID
The computer obeys you by printing:

2 + 2

You probably expect much more than an electronic mimic ... maybe
some answers! Give your computer some numbers without the quotation
marks. Type:

PR I NT 2 + 2 CEtIIEID
Much better. This time the computer prints the answer:

The quotation marks obviously have a meaning. Experiment with them
some more. Type each of these lines:

PRINT 5+£I~
PR I NT "5+£!" (IHIrn)
PR I NT "5+4 EQUALS" 5+£1~
PRINT 6/2 "IS 6/2" (EHImJ
PRINT "8/2" cmnID
PRINT 8/2lEfITER)

Any conclusions on what the quotes do?

RULES ON STRINGS v NUMBERS

The computer sees everything you type as strings or numbers. If it's in
quotes. irs a sfring. The computer sees it exactly as it is. If it's not in
quotes. it's a number. The computer figures it out like a numerical
problem.

A Color Calculator, No Less!
Any arithmetic problem is a snap for the computer. Do some long division.
Type:

PRINT "3862 DIVIDED BY 13,2 IS" 3862/13.2(EmB)

Do a multiplication problem:

PRINT 1588 * 23 CEHllID
Notice that the computer's multiplication sign is an asterisk (tl, rather than
the sign you use in math (Xl. The computer's so precise that it would get the
X multiplication sign mixed up with the X alphabetical character.

Try a few more problems:

PRINT "15 * 2 =" 15*2(illfID
PRINT 18 * 18 "IS THE SQUARE DF 18" lEBIEID
PRINT 33.3/22.82~

Now it's your turn. Write two command lines that print these two problems
as well as their answers:

157113.2=
85*43=

DO-IT-YOURSELF COMMAND liNES

The computer thinks of
quotes as a journalist does. If
the number's in quotes, the
computer must PRINT it ex
aClly as il appears. 1/ irs not
in quotes, the computer can
interpret it by adding, sub·
tracting, mulliplying, or di
viding il.

Notice how the compurer
handles paris in quotes v
parIS not in quotes.

IS

...-:-c:-'(r---J
Actually, there's no "cor
reet" command line. For
that maUer, there is no cor
reet way of handling your
(ampUler. There are many
ways of gelting it to do what
you wan!. Relieved? .
Good!

If you don't get the right col
ors, refer to the color leSt in
Introducting Your Color
Compuler 2.

16

If you use the "correct" command lines, this is what the computer prints on
your screen:

157 / 13.2 '" 11.8838384
85 * 43 = 4085

Ready for the answers:

PRINT "157/13.2 =" 157113.2
PRINT "85 * 43 =" 95*1I3

It Has Its Rules ...
By now, the computer has probably printed some funny little messages on
your screen. If it hasn't, type this line, deliberately misspelling the word
PRINT,

PRJ INT "HI" tEHIEID
The computer prints:

?SN ERROR

?SN ERROR stands for "syntax" error. This is the computer's way of saying,
"The command 'PRtINT' is not in my vocabulary ... I have no earthly idea
what you want me to do." Any time you get the ?$N error, you probably
made some kind of typographical mistake.

The computer also gives you error messages when il does underSfand what
you want it to do, but it feels you're asking it 10 do something that is
illogical or impossible. For instance, try this:

PRINT 5/0 (mIEBJ

The computer prints:

?/0 ERROR

which means, "Don't ask me to divide by D-that's impossible!"

If you get an error message you don't understand, flip to the Appendix.
We've listed all the error messages there and what probably caused them.

It's a Show-off Too
So far, all you've seen your computer do is silently print on a green screen.
But your color computer enjoys showing off. Type:

CLS (3) cmnID

Now your screen is a pretty shade of blue with a green stripe at the top.
Your command told the computer to clear the screen and print color
number 3-blue.

But why the green stripe? Whenever the computer prints characters, it must
use a green background, not a blue background. Type some more charac
ters. The computer uses a green background for them also.

Colors other than green are for printing pictures. You'll learn how to do that
later.

Press (IHllID to get the OK prompt. Then type:

CLS(7l~

Now your screen is magenta (pinkish purple) with a green stripe at the top.
Try some more colors. Use any number from 0 to 8. The Color Computer
has nine colors. Each color has a numeric code.

Type CLS without a number code:

CLS iEllIEBI
If you don't use a number code, the computer assumes you simply want a
clear green screen.

BUG: If you see a message
saying MICROSOFT, or If
you see a ?FC Error message,
you're using a number OIher
than 0 through 8.

Computer Sound Off-One, Two • • •

Type this:

SOUND 1 , 100 cm.TIID
If you don't hear anything, turn up the volume and try again.

What you're hearing is 6 seconds of the lowest tone the computer can
hum. How about the highest tone? Type:

SOUND 255 I 100 CEHIEID

OK, so it has a good "hum-range" ... hope you're suitably impressed. Try
some other numbers. Hope you like the computer's voice (it's the only one
it has).

You want to know what the other number is for? (Or maybe you've already
found ouL) The second number tells the computer how long to hum the
tone. You can use any number from 1 to 255. Try 1:

SOUND 128, 1 CEHIml
The computer hums the tone for about 6110Qths of a second. Try 10:

SOUND 128, 10 CE:m1!D
The computer sounds the tone for 611 Oths of a second. Try variations of
both numbers, but keep in the range of 1 to 255.

BUG, Again, I(you get a ?FC
Error message, you're using
a number olher than I
Ihrough 255.

17

Curious aboul the reversed
colorsf They're for people
with a Color Computer 2
and a printer. The printer
prints all "reversed" letlers
in lowercase.

If you have a Deluxe Color
Computer, your computer
can understand commands
in "reversed" or "lower·
case' type. See Introducing
your Deluxe Color Com
puter to learn how to get in
the upper/lower case mode.

Before You Continue •••

Press the CSHIrn and (OJ (zero) keys, holding both down at the same time.
Now release them and type some letters. The letters you Iype should be
green on a black background. If they're not, try again, pressing @!ill)
slightly before CDJ. Be sure to hold down both keys at the same time and
then release them.

Now, with the colors "reversed," press (IHllB) and then type this simple
command line:

PRINT "HI"~

The computer gives you a ?SN ERROR. It doesn't understand the
command.

Press the (IHI£I) and @characters again and release them. Type some
letters. They should be back to normal: black with the green background.
Press~ and type the same command line again. This time it works.

The computer can't understand any commands you type with reversed
colors. If you ever press cmIrnCID by mistake and find you're typing with
these reversed colors, press 1lHll!l@ again 10 get Ihe colors back 10
normal.

Learned in Chapter 1
BASIC WORDS KEYBOARD CONCEPTS

CHARACTERS

PRINT
SOUND

CLS

string v numbers
error messages

18

A refresher like this is at the end of each chapter. It helps you make sure
you didn't miss anything.

Notes

CHAPTER 2

YOUR COMPUTER NEVER
FORGETS

(... unless you turn it
off ...)

One skill that makes your computer so powerful is its "memory." Have it
"remember" the number 13. Type:

A ~ 13 iEHI£!!)

Now "confuse" the computer by typing whatever you want. When you're
done, press~. See if the computer remembers what A means by
typing:

PR I NT A CEJ1llB)

GJDCO _.~

EJ 0 •• '"[
, "" w•..

IIU x s
T as • I'... '..

Gill[§]"0 •
CD " [ED@]
CD b GD!B:l

Your computer remembers that A is 13 as long as you have it on ... or until
you do this. Type:

A ~ 17 • 2 iEHI£!!)

If you ask it to PRINT A now, it prints 17.2.

This is what happened in your computer's memory:

YOUR COMPUTER'S MEMORY
A-13

00 17.2

Vou don't have to use the leller A. You can use any letters from A to Z. In
fact, you can use any two letters from A to Z. Type:

B ~ 15 IENrnil
C ~ 20 iEHI£!!)
BC ~ 2S lEHITID

Did il gel confused' or
forget?

If you already know BASIC,
you may be accustomed !O
using the word LET before
lhese command lines. The
Color CompUler doesn'l leI
you use the word LET.

19

To the computer, a dollar
sign means a string.

Try to sel the computer 10
remember a leIter we
haven't used yet. What hap
pens? Interesting . •.

As we said before, the com
puter has its rules and might
get a little fussy with you if
you don't play by them.

TM stands for Type Mis
Match error. It means you
didn't go by the rules.

20

Have it print all the numbers you've asked it to remember. Type:

PR I NT A , B, C, BC

If you want the computer to remember a "string" of letters or numbers, use
a letter with a dollar sign ($). Type:

A$ = "TRY TO"
B$ = "REMEMBER"
C$ = "THIS, YOU"
BC$ = "GREAT COMPUTER"

Then type:

PRINT A$, B$, C$, BC$ CEfITEB)

"Computer types" have a name for alt the letters you've used: "vari
ables." So far, you've used these variables:

YOUR COMPUTER'S MEMORY

NUMBERS CHARACTERS

A -17.2 A$-"TRY TO"
B -15 B$-"REMEMBER"
C_20 C$-"THIS, YOU"

BC -25 BC$- "GREAT COMPUTER"

Spot-check the above variables to see if the computer remembers the right
information. For instance, to see if BC still contains 25, type:

PR I NT BC cmnID
Think of variables as little boxes in which you can store information. One

.set of boxes is for strings; the other set's for numbers. Each box has a label.

The Computer Is Fussy About Its Rules
Do you think the computer accepts these lines?

D="G"~

Z = "THIS IS STRING DATA" CE.frrm)

The computer responds to both above lines with ?TM ERROR. It's telling
you that you have to play by its rules.

The rules "ignored" by the above lines are:

RULES ON STRING DATA

(1) Any data in quotes is STRING DATA.

{2l You can assign STRING DATA only to variables WITH A $ SIGN.

To make the above lines obey the computer's rules, use a dollar sign with
the D and Z. Type:

D$= "6"~
Z$ = "THIS IS STRING DATA" crnIEID

The computer now accepts these lines.

How about this line? Do you think the computer accepts it?

D$ ~ G IEHm!I

The above line ignored these rules:

RULES ON NUMERIC DATA

(1) Numbers not in quotes are NUMERIC DATA.

(2) Numeric data can only be assigned to variables WITHOUT A $
SIGN.

Type this, which the computer accepts:

D ~ G iIHm!I
z~ 12~

You've now added this to your computer's memory.

YOUR COMPUTER'S MEMORY

NUMBERS STRINGS

0_6
Z-12

D$_ "6"
Z$ -"THIS IS STRING DATA"

Now do something interesting with what you've asked the computer to
remember. Type:

PR I NT D * 2 CEHIEID
The computer prints the product of D times 2.

Try this line:

PRINT Z/D

The computer remembers
lhat 0 = 6.

21

The computer prints the quotient of Z divided by D.

Would this work?

PR I NT D$ * 2 CfHllID
Did you try it? This makes the computer print the same ?TM ERROR. It
cannot multiply string data.

Cross out the commands below that the computer rejects:

= "19.2"
"REMEMBER TH I 5 FOR ME"

= 15
= F + F

EXERCISE WITH VARIABLES

= 22.9999988F
M
DZ$ =
M$
Z

Finished? These are the commands the computer accepts.

F = 22.8899999
DZ$ = "REMEMBER TH I 5 FOR ME"
Z = F + F

RULES ON VARIABLES

You may use any two characters from A to Z for a variable. The first
character must be a letter from A to Z; however, the second may be
either a numeral or a leiter. If you want to assign it string data, put a
dollar sign after it. OthelWise, it can hold only numeric data.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

Now that you've learned how the computer thinks, it will be easy to write
some programs. How about a break, though, before going to the next
chapter?

22

Notes

23

24

CHAPTER 3

SEE HOW EASY IT IS?

Type:

NEW IIHllID
This erases whatever may be in the computer's "memory."

Now type this line. Be sure you type the number 10 first-that's important.

10 PRINT "HI, I'M YOUR COLOR COMPUTER" WJnB)

Did you pressmnIID? Nothing happened, did it? Nothing you can see, that
is. You just typed your first program. Type:

RUN IIHllID
The computer obediently runs your program. Type RUN again and again
to your heart's content. The computer runs your program any time you
wish, as many times as you wish.

--_.
-::;---- -
e _~

.6 ~r.

Since this works so well, add another line to the program. Type:

20 PRINT "WHAT IS YOUR NAME?"~

Now type:

Ll S T IIHllID
Your computer obediently /isis your entire program. Vour screen should
look exactly like this:

10 PRINT "HI, I'M YOUR COLOR COM
PUlER"
20 PRINT "WHAT 15 YOUR NAME?"

What do you think will happen when you run this? Try it. Type:

RUN (EBlEB)

The computer prints:

HIt I'M YOUR COLOR COMPUTER
WHAT 15 YOUR NAME?

Answer the computer's question and then press (IHIEID.... What? There's
the ?$N Error again.

When you simply type your name, the computer doesn't understand what
you mean. In fact, the computer can't understand anything unless you talk
to it in its own way.

Use a word the computer understands: INPUT. Type this line:

30 INPUT A$ CERIEID
This tells the computer to stop and wait for you to type something, which it
labels as A$. Add one more line to the program:

40 PRINT "HI t" A$ (mIE8)

Now list the program again to see if yours looks like mine. Type:

LI S T ll!!llID
Your program should look like this:

10 PRINT "HI, 1 ' M YOUR COLOR COM
PUTER"
20 PRINT "WHAT IS YOUR NAME?"
30 INPUT A$
40 PRINT "HI," A$

Can you guess what will happen when you run it? Try it:

RUN CEIill!II
That worked well, didn't it? This is probably what happened when you ran
the program (depending on what you typed as your name):

HI t I 'M YOUR COLOR COMPUTER
WHAT I S YOUR NAME?
? JANE
HI I JANE

RUN the program again using different names:

H I I I I M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? HUGO
HI. HUGO

HI t 1 ' M YOUR COLOR COMPUTER
WHAT I S YOUR NAME?
? 772-36-8228
HI t 722-36-8228

HI t 1 ' M YOUR COLOR COMPUTER
WHAT I S YOUR NAME?
? NONE OF YOUR BUS I NESS
HI J NONE OF YOUR BUS I NESS

HI J 1 ' M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? I GET IT! !
HltIGETIT!!

(The computer doesn't care what you call yourself.)

Here's what Line 30 did to your computer's memory each time you ran the
program (assuming you gave it the same names we did):

If you make a mistake after
preHing {[fIllID. simply
type the line over again.

2S

To delete a program line,
simply lype and lIHIE]l)
the line number. For
example:
50 (Ill!lBl
erases line 50 from the
program.

We're leaving out the "HI,"
part this lime.

26

There's an easier way to run your program over and over without having to
type the RUN command. Type this line:

50 GOTD 10

00000000000

O~O. 0 A O'
o 0
00000000000,

Now run it. The program runs over and over again without stopping.
COTO tells the computer to go back fo line 10:

(

10 PR I NT "H I , I'M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME?"
30 INPUT A$
40 PRINT "HI," A$
50 GOTO 10

Your program now runs perpetually. Each time it gets to line SO, it goes
back to line 10. We call this a "Ioop." The only way you can stop this
endless loop is by pressing the~ key.

Spotlight Your Name

Change Line SO to give your name the attention it deserves. How do you
change a program line? Simply type it again, using the same line number.
Type:

50 GOTO 40

This is what the program looks like now:

10 PRINT "HI, I'M YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME?"
30 INPUT A$

All 0 PRINT "HI," A$
\.50 GOTO 40

Type RUN and watch what this loop does. When you've seen enough,
press the rnmAK:l key.

There's a big change you can make simply by adding a comma or a
semicolon. Try the comma first. Type line 40 again, but with a comma at
the end:

40 PRINT A$,

Run the program. The comma seems to print everything in two columns.

Press~ and try the semicolon. Type:

40 PRINT A$;

and run ... You probably won'l be able to tell what the program's doing
until you presslJBm). See how the semicolon crams everything together?

RULES ON PRINT PUNCTUATION

This is what punctuation at the end of a PRINT line makes the
computer do:
1. Acomma makes thecomputergo to the next column. Use it to print

in columns.
2. A semicolon makes the computer stay where ;t is. Use it to "cram"

what you print together.
3. No punctuation makes the computer go to the next line. Use it 10

print in rows.

Color/Sound Demonstration
Wanl to play with color and sound some more? First, erase memory.
Remember how?

Then enter this program:

10 PRINT "TO MAKE ME CHANGE MY TONE"
20 PRINT "TYPE IN A NUMBER FROM 1 TO 255"
30 INPUT T
.Q0 SOUND T, S0
50 GOTD 10

Run through the program to get a sample of the computer's tones.

BUG; If you get a ?FC Error when you run this program, you used a number
OIher than 1 through 255. This error, like all errors, will make the computer
stop running the program.

What happens if you change Line 40 10;

40 SOUND S0 • T

HINT: look back in Chapter 1 where we talk about SOUND.

Know the answer? If you make the above change, the computer hums
the same tone each time, but for a different length of time, depending
on what number you use.

r=: DO-IT-YOURSELF PROGRAM

Press (lBm)firsr. and then erase this program by typing NEW. Now see
if you can write a program, similar to the one above, to make the
computer show a certain color. Remember, there are 9 colors, 0
through 8.

HINT: line 40 could be; 40 CL5m.

Remember, if you make a
mistake 00 ot1E' 01 the line5,
simply type the line over
again.

NEW lEHIEB) . wish
mine worked that easily!

In this program we're using
T as a variable. However.
we could use any Ieuer.

Notice !hat line 30 asks 101
T rather than 1$. This is
be<:ause we wanl numeric
~ta ra/her /h.ln sui"8 data .

27

Press~ before typing
the line.

Don't worry about IFITHtN
right now. We devote a
whole chapter to it later.

This is our program:

10 PRINT "TO MAKE ME CHANGE MY COLOR"
20 PR I NT "TY PE A NUMBER BETWEEN 0 AND 8"
30 INPUT T
£10 CLS(T)
50 GOTD 10

Add Polish to the Program
Pressing the~ key is a sloppy way to stop the program from running.
Why not have the computer politely ask if you're ready to end? Change
line 50 in the above program to:

50 PRINT "DO YOU WANT TO SEE ANOTHER COLOR?"

Then add these lines:

60 INPUT R$
70 IF R$ = "YES" THEN 20

Run the program. Type YES and the program keeps running. Type anything
else and the program ends.

This is what the program looks like now:

PRINT "TO MAKE ME CHANGE COLORS"
PRINT "TYPE A NUMBER BETWEEN 111 AND 8"
INPUT T
CLS (T)
PRINT "DO YOU WANT TO SEE ANOTHER COLOR"
INPUT R$
IF R$ = "YES" THEN 20

This is what the new lines do:

line 50 prints a question.

line 60 tells the computer to stop and wait for an answer: R$.

line 70 tells the computer to go back to Line 20 IF (and only if)
your answer (R$) is "yes." If not, the program ends, since it has
no more lines.

You've covered a lot of ground in this chapter. Hope we're just whetting
your appetite for more.

Don't worry if you don't yet understand it perfectly. Just enjoy using your
co~puter.

28

BASIC WORDS

Characters
NEW

INPUT
GOTO

RUN
PRINT,
PRINT;

LIST
IFfTHEN

Learned in Chapter 3
CONCEPT

How to Change and Delete a
Program Line

KEYBOARD

IB!!WI

Notes

29

FOR X ;: 1 TO 10
PRINT"X;:"X
NEXT X
PRINT "I HAVE FINISHED COUNTING"

The logic Oflhis will become
clear liller.

Remember 10 lype NEW
IEIIIEBl before typing a new
program.

30

CHAPTER 4

COUNT THE BEAT
In this chapter you'll experiment with computer sound effects. Before
doing this, you need to teach the computer to count.

Type:

10
20
30
40

Run the program.

Run the program a few more times. Each time, replace line 1awith one of
these lines:

10 FOR X := 1 TO 100
1..0 FOR X := 5 TO 15
10 FORX:=-2T02
10 FOR X := 20 TO 2a

Do you see what FOR and NEXT make the computer do? They make it
count. Look at the last program we suggested you try:

10 FOR X := 20 TO 2a
20 PR I NT "X := " X
30 NEXT X
a0 PRINT" I HAVE FINISHED COUNTING"

Line 1a tells the computer the first number should be 20 and the last
number should be 24. It uses X to label all these numbers.

Line 30 tells the computer to keep going back to line 10 for the next
number-the NEXT X-until it reaches the last number (number 24).

look at line 20. Since line 20 is between the FOR and NEXT lines, the
computer must print the value of X each time it counts:

x ~ 2.
X ~ 21
X ~ 22
X ~ 23
X ~ 2.

Add another line between FOR and NEXT:

15 PRINT" ... COUNTING.

and run the program. With each count, your computer runs any lines you
choose to insert between FOR and NEXT.

DO-IT-YOURSELF PROGRAM 4-1

Write a program thaI makes the computer print your name 10 times.

HINT: The program must count to 10.

DO-IT-YOURSELF PROGRAM 4-2

Write a program to print the multiplication tables (or 9 (9*1 through
9*10).

HINT: PRINT 9*X is a perfectly legitimate program line.

DO-IT-YOURSELF PROGRAM 4-3

Write a program that prints the multiplication tables for 9.1 through
9·25.

HINT: By adding a comma in the PRINT line, you can get all the
problems and results on your screen at once.

Finished? These are our programs:

Program 4-1

10 FOR X = 1 TO 10
20 PRINT "THOMAS"
30 NEXT X

Program 4-2

10 FORX=1T010
20 PRINT "S*"X"="S*X
30 NEXT X

Program 4-3

10 FOR X " 1 TO 2S
20 PRINT "S*"X"="S*X,
30 NEXT X

31

You may be wondering
about Ihe programs you ran
at the first of Ihis chapter
withoul using STEP. If you
omit STEP, Ihe computer
assumes you mean STEP ,.

32

Counting by Twos
Now make the computer count somewhat differently. Erase your program
by typing NEW and then type the original program, using a new line 10:

10 FORX=2T010STEP2
20 PRINT "X= " X
30 NEXT X
£10 PR I NT "I HAVE FIN I SHED COUNT I NG"

Run the program. Do you see what the STEP 2 does? It makes the computer
count by 2s. line 10 tells the computer that:

The first X is 2

The last X is 10

... AND STEP 2 ...

All the Xs belween 2 and 10 are two apart . .. that is 2, 4, 6, 8, and 10.
(STEP 2 tells the computer to add two to get each NEXT X.)

To make the computer count by 3s, make all the Xs three apart. Try this for
line 10:

10 FORX=3T010STEP3

Run the program. This prints on your screen:

X = 3
X = G
X = 9

It passes up the last X (number 10) because 9 + 3 = 12. Try a few more
FOR ... STEP lines so you can see more clearly how this works:

10 FOR X = 5 TO 50 STEP 5
10 FOR X = 10 TO 1 STEP-1
10 FORX=lT020STEPli

Counting the Sounds

Now that you've taught the computer to count, you can add some sound.
Erase your old program and type this:

('.2.
3.4.

FOR X = 1 TO 255
PRINT "TONE" X
SOUND X t 1
NEXT X

Don't Iype [he arrow, of
course. /['s there to help you
understand.

This program makes the computer count from 1 to 255 (by 15). Each time it
counts a new number, it does what Lines 20 and 30 tell it to do:

Line 20-It prints X, the current count.

Line 3D-It sounds X's tone.

For example:

The first time the computer gets to FOR, in Line 10, it makes X equal
to 1.

Then it goes to line 20 and prints 1, the value of X.

Then line 30 has it sound lone #1.

Then it goes back to line 10 and makes X equal to 2

Etc.

What do you think thecompulerwill do if you make this change to line 10:

10 FOR X = 255 TO 1 STEP-1

Did you try it?

PROGRAMMING EXERCISE

Using STEP, change Line 10 so the computer will sound tones
from:

(1) The bottom of its range to the top, humming every tenth note.

(2) The top of its range to the bollom, humming every tenth note.

(3) The middle of its range to the top, humming every fifth note.
101 _

101 _

10

Ready for the answers?

10 FOR X = 1 TO 255 STEP 10
10 FOR X = 255 TO 1 STEP -10
10 FOR X = 128 TO 255 STEP 5

DO-IT-YOURSELF PROGRAM 4-4

Now see if you can write a program that makes the computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bollom

The answer is in the back of this book.

Try this: To pause the pro
gram while it's running,
press the CIIIIID and@keys
al the Silme time. Then press
any key !O continue.

33

34

But Can It Sing?
Yes. In Section II. you'll learn how to comJX>se your favorite songs.

Learned in Chapter 4
BASIC WORDS KEYBOARD CHARACTER

FOR ... lO ... STEP ~

NEXT

Notes

CHAPTER 5

Watch the Clock

You're now ready 10 show your computer how 10 tell time. Type:

10 FORZ=lTD1I60*2
2121 NEXT Z
3121 PRINT II I COUNTED TO 820"

Run the program. Be patient and wait a couple of seconds. Two seconds, to
be precise. It takes your computer two seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making the
computer count 10 920, you keep the computer busy for two seconds.

As you can see, this is groundwork for a stopwatch. Erase the program and
lype:

1121 PRINT "HOW MANY SECONDS?"
20 INPUT 5
30 FOR Z = 1 TO aGI~HS

40 NEXT Z
50 PRINT S " SECONDS ARE UP! ! !"

Run it. Input the number of seconds you want timed on your stopwatch.

DO-IT-YOURSELF PROGRAM 5-1

II would help if the stopwatch could sound some kind of alarm. Add
lines to the end of the program to give it an alarm.

35

This is how compUleriZed
limers work.

NOlieI.' the comma in Line
40. Try it without the com
ma. The comma makes "Y
= " Y print on the next
column.

36

Here's the program we wrote:

I. PRINT "HOW MANY SECONDS"
2. INPUT S

3. FOR 2 = 1 TO '160 * S
4. NEXT 2

5. PRINT S " SECONDS ARE UP! ! ! "

6. FOR T = 120 TO 180
7. SOUND T, 1
8. NEXT T

90 FOR T = 150 TO 1'10 STEP-l
100 SOUND T, 1
110 NEXT T

120 GOTO 50

Notice the GOTO line at the end of the program. It causes the message to
keep printing and the alarm to keep ringing until you press~ or
(illlI)(@)

Counting Within the Time
Before doing more with the dock, have the computer keep count within
the time. This concept will become dear to you shortly_

Type this new program:

10 FOR X = 1 TO 3
20 PR I NT "X = " X
30 FOR Y = 1 TO 2
'10 PRINT, "Y=" Y
50 NEXT Y
60 NEXT X

Run it. This should be on your screen:

X , 1
Y ~ 1
Y , 2

X ~ 2
Y ~ 1
Y ~ 2

X ~ 3
Y ~ 1
Y ~ 2

Call it a count within a count or a loop within a loop----whatever you prefer.
Programmers call this a "nested loop." This is what the program does:

I. It counts X from 1 to 3. Each time it counts X:

A. It prints the value of X

B. It counts Y from 1 to 2. Each time it counts Y:

1. It prints the value of Y

Wrong
FOR X = 1 TO 3
FOR Y = 1 TO 2
NEXT X
NEXT Y€'.2.

3.a.

Whenever you put a loop inside another loop, you must close the inner
loop before closing the outer loop:

Right
FOR X = 1 TO 3
FOR Y = 1 TO 2
NEXT Y
NEXT X

Making a Clock
With these tools, you can make the computer do much more. Type this:

,. FORS=0T058

1
2. PRINT S
3. SaUNa 150,2

t· FOR T = 1 TO 380

5. NEXT T

6. NEXT S
7. PRINT" 1 MINUTE IS UP"

=
Run the program. This is what it does:

I. It counts the seconds from 0 to 59. Each rime it counts one second:

A. It prints the second.

B. It sounds a tone.

C. It pauses long enough for one second to pass.

II. When it finishes counting all the seconds from 0 to 59, it prints a
message that one minute is up.

37

By adding this line, /20
cora 10, theclockwillrun
perpetUill/y.

Hilving a tough time with
this program? Skip it for
now. It'll seem easy later.

38

There's a way to make this pro~ram look better. Add this line to clear the
screen:

15 CL8

Now run the program. This time the computer goes through these steps:

I. It counts the seconds from 0 to 59 (lines 10 and 60). Each lime il
counls one second:

A. It clears the screen (line 15).

B. II prints the second (line 20).

C. It sounds a tone (line 30).

D. It pauses long enough for one second to pass (lines 40 and 50).

II. When it finishes counling all the seconds from 0 10 59, il prints a
message that one minute has passed (line 70).

Using Ihis as groundwork, ii's easy 10 make a full-fledged clock:

10 FOR H = 0 TO 23

20 FOR M = 0 TO S9

30 FOR 8 = 0 TO S9

40 CLS

50 PRINT H": "M": "8

60 80UND 1S0 t 2

70 FOR T = 1 TO 37S

80 NEXT T

90 NEXT 8

100 NEXT M

110 NEXT H

Here's an outline of what the computer does in lhis program:

I. It counts Ihe hours from 0 10 23 (line 10). Each time it counts a new
hour:

A. It counts the minules from 0 to 59 (line 20). Each time it counts a
new minute:

1. It counts the seconds from 0 to 59 (lines 30 and 90). Each
time it counts a new second:

a. II clears the screen (line 40).
b. It prints the hour, minute, and second (line 50).
c. It sounds a lone (line 60).
d. It pauses long enough for one second to pass (Unes 70

and 80).

2. When it finishes counting all the 59 seconds, it goes back to
line 20 for the next minute (line 100).

B. When il finishes counting all the 59 minutes, il goes back 10 line
10 for the nexi hour (line 110).

II. When it finishes counting allihe hours (0-23), the program ends.

OO-IT-YOURSElF PROGRAM 5-2

Between lines 90 and 100 you can add some tones that wilt sound
each minute. Write a program that does this.

DO·IT·YOURSHF PROGRAM 5-3

Write a program that makes your computer show each of its nine
colors for 1 second each.

The answers to both programs are in the back.

Learned in
BASIC WORD

elS

Chapter 5
PROGRAMMING CONCEPT

Nested Loops

Notes

39

CHAPTER 6

DECISIONS, DECISIONS •••

Here's an easy decision for the computer:

If you type "red" ... then make the screen red

... or

If you type "blue" ... then make the screen blue

Easy enough? Then have the computer do it. Type this program:

10 PRINT "00 YOU WANT THE SCREEN RED OR BLUE?"
20 INPUT C$

,.-,,-,-..,--J(r-----J
Don', be confused by the
arrows or the spac~s be
tween program lines. We
just put them in to illustrate
the flow of Ihe program.

30 IF C$ = "RED" THEN 100

1I0 IF C$ = II BLUE" THEN 200

100 CLS<ll>
110 END

200 CLS(3l

-"-

40

Run the program a few times. Try both "red" and "blue" as answers.

This is what the program does:

If you answer "red" ... then.

1. line 30 sends the computer to Line 100.

2. line 100 turns your screen red.

3. line 110 ends the program. (If the computer gets to Line 110, it never
makes it to 200.)

... On the other hand .

If you answer "blue" ... then .

1. Line 40 sends the computer to Line 200.

2. Line 200 turns your screen blue.

3. Since Line 200 is the last line in the program, the program ends there.

What happens if you answer with something different from "red" or
"blue"? Run the program again. This time, answer "green."

This makes the screen red. Do you know why?

HINT: If the condition is not true, the computer ignores the THEN part
of the line and proceeds to the next program line.

PROGRAMMING EXERCISE

There's a way to get this program to reject any answer but "red" or
"blue." These are the two lines to add. You figure out where they go in
the program:

~ PRINT "YOU MUST TYPE EITHER RED OR BLUE"

.... GOTO 20

Insert the line numbers.

HINT: The lines must come after the computer has had a chance to test
your answer for "red" or "blue."

HINT: The lines must come before the computer makes your screen
"red."

Answer: The lines need to come after Line 40 and before line 100:

50 PRINT "YOU MUST TYPE EITHER RED OR BLUE"
60 GOTD 20

DO-IT-YOURSELF PROGRAM 6-1

After the computer turns the screen red Of blue, have it go back and ask
you to type "red" or "blue" again.

IF C$ = "RED" THEN 100 ~

IF C$ = "BLUE" THEN 200 - __~ j ~
I~ .~

PRINT "YOU MUST TYPE EITHER RED OR BLUE" '1'"
'" uGOTD 20 ~

CLS (ll)

GOlD 10

CLS(3l
GDTD 10

10
20

iJ
30

00

~I 50

"U 60

100
110

200
210

HINT: You need to change line 110 and add line 210.

Here's a diagram of how we wrote this program.

PR I NT "DO YOU WANT THE SCREEN RED DR BLUE?"
INPUT C$

Trace the path the computer takes through this program. Go from one line
10 the next; follow the arrows where indicated. Notice the difference
between the arrows going from the IFITHEN and the GOTO lines.

41

42

RULES ON IFrrHEN AND GOTO

IfrrHEN is conditional. The computer "branches" only if the condi·
tion is true.

GOTO is unconditional. The computer always branches.

Although this chapter is short. you've learned an important programming
concept. You'll have the computer make decisions all through this book.

Learned in Chapter 6
BASIC WORDS

IFITHEN
END

Notes

T = RND(255)
SOUND Ttl
GOTO 10

CHAPTER 7

GAMES OF CHANCE
Thanks 10 a BASIC word called RND, the computer can play almost any
game of chance.

And even if you don't want to play computer games, you'll want to learn
two words this chapter introduces: RND and PRINT@. You'll also find in
this chapter some more uses of IFITHEN.

Type this program:

10 PRINT RND(101

Run it. The computer just picked a random number from 1 La 10. Run it
some more times ...

It's as if the computer is drawing a number from 1 to 10 out of a hat. The
number it picks is unpredictable.

Type and run this next program. Press C8BE!K) when you satisfy yourself
thai the numbers are random.

10 PRINTRND(10)i
20 GOlD 10

To gel random numbers from 1 to 100, change Line 10 and run the
program.

10 PRINT RNO(100) j

How can you change the program to get random numbers from 1 to 255?

The answer is:

10 PRINT RND(255) j

A Random Show
Just for (un, have the computer compose a song made up of random tones.
Type:

~
,.
2.
3.

To make the computer
pause while running the
program, press the IlHIED
and @[) keys at the same
time. Press any key to
continue.

43

:>neak preview: Enjoying
graphics and sound? Go
ahead and /fy OUI some
programs in Section II,
"SighlS and Sounds."

Run it. Great music, eh? Press mJIEAK) when you've heard enough.

DO-IT-YOURSELF PROGRAM 7-1

Add some lines to make the computer shol.v a random color (1·8l just
before it sounds each random tone.

Here's our program:

(

'0I.
16
20
30

T = RND(2551
C = RND(B)
elS(e)
SOUND T. 1
GOTO 10

Remember always 10 lype
NEwmEKl before enlering
a new program.

We have a few simple games in this chapter. Feel free to use your imagina
tion to add interest to them--or invent your own.

Russian Roulette
In this game, a gun has 10 chambers. The computer picks, at random,
which of the 10 chambers has the fatal bullet. Type:

10 PRINT "CHOOSE YOUR CHAMBER(1-10)"
20 INPUTX
30 IF X = RNO(10) THEN 100
40 SOUND 200 t 1
S0 PRINT "--CLICK--"
60 GoTD 10

100 PRINT "BANG--YOU'RE DEAD"

First, in line 20, the player inputs X (a number from 1 to 10). Then, the
computer compares X with RND(1 Q) (a random number from 1 to 10).

Then it follows the "arrows":

'lo If X is equal to RND(l 0), the computer goes to line 100, the "dead
routine."

• If X is not equal to RND(10}, the computer "clicks" and goes back to
line 10, where you get another chance ...

Make the dead routine' in line 100 better. Type:
Remember how [0 list parI of
a program? L1 ST 50-130
lim Ihe program's middle
p'rt.

Try /his when listing a long
program: AI /he St.ltl of the
listing, press <IIInDand~.

This causes the listing 10
pause. Then ptess any key 10
conlinue.

(

'00
110
120
130,.0
150
160
170

FOR T = 133 TO 1 STEP-S
PRINT" BANG!!!!!"
SOUND T, 1
NEXT T
CLS
PR INT ~ 230 t "SORRY, YOU'RE DEAD"
SOUND 1 J S0
PRINT @ 390, "NEXT VICTIM, PLEASE"

44

Run the program. Here's what the routine does:

lines 100-130 make the computer sound descending tones and print
BANG!!!!! over and over again on the screen.

Line 140clears the screen. Since no color is given, the computer makes the
screen green.

Lines 1S0 and 170 use a new word-PRINT@.-topositiontwomessages
on your screen: SORRY, YOU'RE DEAD and NEXT VICTIM, PLEASE.

The grid below shows the 511 positions on your screen. line 150 prints
SORRY, YOU'RE DEAD at position 230 (224 + 6). line 170 prints NEXT
VICTIM, PLEASE at position 390 (364 + 6).

•
"•
•
••
~

••,.
~'".,
*
'"M

... • •

The grid is in the Appendix.
"PRINT @ Screen Loca·
lions." Use ilIa plan your
programs'screen formats .

DO-IT-YOURSELF PROGRAM 7-2

Change this program so that if the player does manage to stay alive for
10 dicks, the computer pronounces the player the winner, printing
this message on the screen:

•
•
••
••
m
~'"-*."••
M

HINT: You can use the FOR/NEXT loop, so that the computer can keep
count of the number of dicks.

Our answer is in the Appendix.

Rolling the Dice
This game has the computer roll two dice. To do this, it must come upwilh
two random numbers. Type:

45

,
"~

•

10
o

30
a0
50
60
70
80
80
100

CLS
X" RND<Gl
Y '" RND<Gl
R '" X + Y
PRINT @ 200. X
PRINT @ 2111. Y
PRINT @ 394, "YOU ROLLED A" R
PRINT @ ltSll, "DO YOU WANT ANOTHER ROLL?"
INPUT AS
IF A$ = "YES" THEN 10

46

Run the program.

Li ne 10 clears the screen.

Line 20 picks a random number from 1 to 6 (or one die. Line 30 picks a
random number for the other die.

Line 40 adds the two dice to get the total roll.

lines 50-70 print the results of the roll.

line 90 lets you input whether you want another roll. If you answer "yes,"
the program goes to Line 10 and runs again. Otherwise, since this is the last
line in the program, the program ends.

DO-IT-YOURSELF PROGRAM 7-3

Since you know how to roll dice, it should be easy to write a "Craps"
program. These are the rules of the game (in its simplest (arm):

1. The player rolls two dice. If the firSI roll's a 2 ("snake eyes"), a 3
{"cock-eyes"}, or a '2 ("boxcars"), the player loses and the game's
over.

2. If the first roll's a 7 or 11 ("a natural"), the player wins and the
game's over.

3. If the first roll's any other number, it becomes the player's "point."
The player must keep rolling until either "making the point" by
getting the same number again to win, or rolling a 7, and losing.

You already know more than enough to write this program. Do it.
Make the computer print it in an attractive format on your screen and
keep the player informed about what is happening. II may take you a
while 10 finish, but give it your best. Good luck!

Our answer's in the back.

learned in Chapter 7
BASIC WORDS

RNO
PRINT @.

Notes

CHAPTER 8

___READING
Your computer is a natural at teaching. It's patient, tireless, and never
makes a mistake. Depending on the programmer (you, of course), it also
can be imaginative, consoling, and enthusiastic.

Using RND, have it teach you math. Type:

10 CLS
20 X=RND(15J
30 Y=RND(lSl
40 PRINT "WHAT IS" X "*" Y " ? "
as INPUT A
50 I F A = X * Y THEN 80

60 PRINT "THE ANSWER IS" X*Y
70 PRINT "BETTER LUCK NEXT TIME"
80 GOlD 100

80 PRINT "CORRECT!!!"

00 PRINT "PRESS <ENTER> WHEN READY FOR
ANOTHER"

105 INPUT A$
110 GOlD 10

The above program drills you on the multiplication tables, from 1 to 15,
and checks your answers.

AQ Bb C, \Xl E.H Gg ~\, I, Jj kk 1I M", N" O.

DO-IT-YOURSELF PROGRAM 8-1

Make the program drill you on addition problems from 1 to 100.

Are your program5 getting
long? If you have a caS5eue
recorder, read your compul·
er's inlroduclion manual !O

learn how to save your pro
grams on tape. If you have
a Deluxe Color Compuler,
you can also save programs
in memory. See your inlro
dUClion manual to learn
holY.

47

48

When you first lurn on the
computer, all numeric vari
ables equal O. When you
type NEW 1IImlll, all
numeric variables also
equalO.

l '---)

Here are the lines we changed:

20 X=RNO<100l
30 Y=RNO<100l
40 PRINT "WHAT IS" X "+" Y
lI5 INPUT A
50 I F A = X + Y THEN 80
60 PRINT "THE ANSWER IS" X + Y

Make the program more interesting. Have it keep a running total of all the
correct answers. Type:

15 T=T+l
85 C = C + 1
88 PRINT "THAT IS" C "CORRECT OUT OF" T

"ANSWERS"

T is a "counter." It counts how many questions you're asked. When you
first start the program, T equals zero. Then each time the computer gets to
Line 15, it adds 1 to T.

C is also a counter. It counts your correct answers. Since C's in Line 95, the
computer doesn't increase C unless your answer's correct.

DO-IT-YOURSELF PROGRAM 8-2

Make the program more fun. Have it do one or more of the following:

1. Call you by name.

2. Reward your correct answer with a sound and light show.

3. Print the problem and messages attractively on your screen. (Use
PRINT @ for this.)

4. Keep a running total of the percentage of correct answers.

5. End the program jf you get 10 answers in a row correct.

Use your imagination. We have a program in back that does this all.

First, Build Your Computer's
Vocabulary ...

To build your computer's vocabulary (so that it can build yours!), type and
run this program:

10 DATA APPLES I ORANGES, PEARS
20 FOR X = 1 TO 3
30 READ F$
£10 NEXT X

What happened ... nothing? Nothing that you can see, that is. To see what
the computer is doing, add this line and run the program:

35 PRINT "F$ = :" F$

line 30 tells the computer to:

1. Look for a DATA line.

2. READ the first item in the list-APPLES.

3. Give APPLES an F$ label.

4. "Cross out" APPLES.

The second time the computer gels to line 30 it is told to do the same:

1. look for a DATA line.

2. READ the first item-this time, it's ORANGES.

3. Give ORANGES the F$ label.

4. "Cross out" ORANGES.

When you run the program, this happens in the computer's memory:

x 1
2
3

YOUR COMPUTER'S MEMORY
F$ APPLES

ORANGES
PEARS

What if you want the computer to read the same list again? It's already
"crossed out" all the data ... Type:

60 GOTo 10

Run the program. You get an error: ?OO ERROR IN 30. OO'means "out of
data." The computer's crossed out all the data.

Type this line and run the program:

50 RESTORE

Now it's as if the computer never crossed out any data. It reads the same list
again and again.

You can put DATA lines wherever you want in the program. Run each of
these programs. They all work the same.

Remember how [0 make Ihe
compu[er pau5e while run
ning a programr Pre5s
WIIED ® 10 pause and any
key [0 ge[il [0 cominue.

" DATA APPLES I. DATA APPLES t ORANGES

2. DATA ORANGES 2. DATA PEARS

a:
FOR x = 1 TO 3 3. FOR X = 1 TO 3
READ F$ 4. READ F$

5. PRINT "F$ = : II F$ 5. PRINT "F$ 0 : II F$
6. NEXT X 6. NEXT X
7. DATA PEARS

C
FOR X = 1 TO 3 3. FOR X = 1 TO 34. READ F$ 4. READ F$

5. PRINT "F$ = : II F$ 5. PRINT "F$ = :" F$
60 NEXT X 6. NEXT X
70 DATA APPLES 7. DATA APPLES t ORANGES.
B0 DATA ORANGES PEARS
90 DATA PEARS

49

Now Have It Build Your Vocabulary

Here are some words and definitions to learn:

Words Definitions

10 DATA TACITURN I HABITUALLY UNTALKATIVE
20 DATA LOOUACIOUS I VERY TALKATII)E
30 DATA VOCIFEROUS I LOUD AND VEHEMENT
40 DATA TERSE, CONCISE
50 DATA EFFUSIVE. DEMONSTRATIVE OR GUSHY

Now gellhe computer to select one of these words al random. Hmmm .
there are ten items. Maybe this works'

60

(
70
80
90
100

N=RND(10J
FOR X = 1 TO N
READ A$
NEXT X

PRINT "THE RANDOM WORD IS:" AS

50

Run the program a few times. It doesn't work quite right. The computer's
just as likely to stop at a definition as at a word.

What the computer really needs to do is pick a random word only from
items 1, 3, S, 7, or 9. Fortunately, BASIC has a word that helps with this.
Type:

GS IF INT(N/ZJ = N/2 THEN N = N - 1

Now run the program a few times again. This time, it should work.

INT tells the computer to look at only the "whole part" of the number and
ignore the decimal part. For instance, the computer sees INT(3.9) as 3.

Assume N, the random number, is 10. The IF clause in Line 65 does this:

INT(10/2) = 10/2
INT(5l = 5
5 = 5

The above is true: 5 does equalS. Since it's true, the computer completes
the THEN clause. N is adjusted to equal 9 (10 - 1).

Now assume N, the random number, is 9. The IF clause in Line 65 does
this:

INT(S/2l = 9/2
INT(a.Sl = a.s
a = a. S

The above is not true: 4 does not equaI4.5. Since it's not true, the computer
doesn't complete the THEN clause. N remains 9.

Besides reading a random word, the computer also must read the word's
definition. Add these lines to the end of the program:

110 READ B$
120 PRINT "THE DEFINITION IS:" B$

Now run the program a few times.

Have the computer print one random word and definition after the next.
Add this to the start of the program:

5 CLEAR 100

This reserves plenty of "string space." Add these lines to the end of the
program:

130 RESTORE
1110 GDTD G0

This lets the computer pick a new random word and its definition from a
"restored" group of data items.

Here's how the program now looks:

5 CLEAR 100

10
20
30
00
50
60
65
70
80
SO
100
110
120
130
100

DATA TACITURN, HABITUALLY UNTALKATIVE
DATA LOQUACIOUS, VERY TALKATII)E
DATA VOCIFEROUS, LOUD AND VEHEMENT
D~TA TERSE, CONCISE
DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
N=RNDCt01
IF INT(N/Z) = N/2 THEN N = N - 1
FOR X = 1 TO N
READ AS
NEXT X

PRINT "A RANDOM WORD IS :" A$
READ B$
PRINT" ITS DEFINITION IS :" B$
RESTORE
GOTO G0

DO-IT-YOURSELF PROGRAM 8-3

Want to complete this program? Program it so that the computer:

I. Prints the definition only.

2. Asks you for the word.

3. Compares the word with the correct random word.

4. Tells you if your answer is correct. If your answer is incorrect, prints
the correct word.

If you like. add some more
words and definitions by
adding DATA lines.

For variations on this pro
gram, you might try states
and capitals, cWes and
countries, foreign words and
meanings.

51

Feel free 10 add (rills such as
a good·looking screen for
ma! or sound

52

Here's our program:

5 CLEAR 500
10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LDOUACIOUS, VERY TALKATIVE
30 DATA VOCIFEROUS, LOUD AND VEHEMENT
40 DATA TERSE, CONCISE
50 DATA EFFUSIVE, DEMONSTRATIVE DR GUSHY
60 N=RNo(10l
65 IF INT(N/2) = N/2 THEN N = N - 1
70 FOR X = 1 TO N
80 READ A$
80 NEXT X
110 READ B$
120 PRINT "WHAT WORD MEANS:" B$
130 RESTORE
140 INPUT R$
150 IF R$ = A$ THEN 180
160 PRINT "WRONG"
170 PRINT "THE CORRECT WORD IS :" A$
180 GoTO 60
180 PRINT "CORRECT"

00 GOTD 60

Learned in Chapter 8
BASIC WORDS

DATA
READ

RESTORE
INT

CLEAR

Notes

ED IT S0 cmnID

CHAPTER 9

WRITING

Up to now. you've probably been changing programs the long and boring
way-by retyping them. If so, you'll be glad you've arrived at this chapter.
You'll learn a new, easy way to change programs-by "editing" them.

Don't Throw Away That Line
Edit It!

(EDIT)

Pretend you make a mistake typing a program. line 50 somehow ends up:

S0 DABA EFFFUSIVE, GIMPY MUSHY

Vou can change this line the hard way, by retyping il- or the easy way, by
editing it. To get into line 50's "edit mode," type:

I

Vou see:

S0 DABA EFFFUSIVE, GIMPY MUSHY
5.

You're now in the edit mode. While in this mode, you can use any of the
special "edit keys" to display or change line 50. They're all listed later in
this chapter <Table 9.1).

Start by pressing CD. the edit key for "list" The CD key displays theentire
tine again and then puts you back at the start.

MOVE ON DOWN THE LINE (CURSOR MOVEMENn

Press (SPACEBARJ a few times. This key moves you forward. To move
backward, press G. Note that while in the edit mode G merely back
spaces; it doesn't delete characters.

If you h,lI'e a Deluxe Color
Computer, EDIT will not
work for you. You have a
bener way of editing pro·
gram Jine5 - the I1tIl key.
The IUD key i5 described in
Introducing Your Deluxe
Color Computer.

53

54

Once you emer Ihe edit
mode, you don't have to
press lEHIIBl after subcom
mands such as change, in
sert, list, and so on,

Move to the start of Line SO and press rn (SPACEBARl. This moves you five
spaces forward - afl at once. Do the same with G. Press a number, such
as rn, and 8 and move that many spaces backward.

Move to the start of Line 50 and press ® (for "search") and then m (the
character for which you want to search). This moves you to the first E.
Move back to the start and press mm m. This moves you to the secane!
E in Line 50. .

CHANGE THE LINE (CHANGE)

Make your first change to Line SO. Change DABA to DATA:

Move to the "wrong" character - the B in DABA.

Press © for "change."

Type the new character, in this case, T.

To be sure the change is made, press CD and you see:

50 DATA EFFFUSIVE, GIMPY MUSHY

Now make the next change: Change GIMPY to GUSHY. This time you'll
change three characters at a time:

Move to the first wrong character - the I in GIMPY.

Press rn m for "change three characters."

Type the three new characters - USH

Line 50 is now:

50 DATA EFFFUSIVE. GUSHY MUSHY

If this were all you needed to do to line 50, you could press (mfID and get
out of the edit mode. As you can see, though, you have much more work to
do.

YOU'RE OUT! (DELETE)

You need to delete a character - one of the F's in EFFFU$IVE:

Move to the offensive character - the third F in EFFFUSIVE.

Press CD] for "delete."

And iI's done. To confirm this, press OJ again:

50 DATA EFFUSIVE, GUSHY MUSHY

You can delete more than one character at a time. Forexample, if you press
CIl ®, you'll delete four characters at a time.

SQUEEZE IT ALLIN (INSERT)

You now need to insert some characters: GUSHY should be DEMON
STRATIVE OR GUSHY.

Move to where you want to insert characters - the space before
the G in Gushy.

Press CIJ for "insert mode."

Type your insert - DEMONSTRATIVE OR

At this point, you're still in the insert mode. For example, if you press
(SPACEBAm, you'll insert a blank space; if you press m, you'll insert an L.
Therefore, you need to:

Press CSHI£DGJ to get out of the insert mode.

Now you can press OJ to list the line:

50 DATA EFFUSIVE, DEMDNSTRATIVE DR GUSHY
MUSHY

HACKAMORE OR HACKAlESS? (HACK)

With "hack" you alter (halter?) a line by hacking the end of it and inserting
new characters, Try hacking at Line 50:

Move to the first character you want hacked off-the M in MUSHY.

Press OD for hack. This hacks 0((the rest of the line and puts you in
the insert mode.

Type your insert - in this case, type CRUSTY.

Press ilHI£D(]J to get out of the insert mode.

If you list the line now (by pressing ffi), you see:

50 DATA EFFUSIVE. DEMONSTRATIVE DR GUSHY
CRUSTY

When we say "characters,"
we mean "spaces" too.

If you press CD to list /he line
while using insert, you'll in
serf the letter "L" into the
program line ins/ead of
listing the line.

55

KILL THE •.. AH ••• MISTAKE (KILl)

Kill is almost the opposite of hack. It "kills" everything up to the nth
occurrence of a character. Suppose that, just for kicks, you want to kill the
first half of line 50-everything up 10 the comma. Move to the start of Line
50 and press these keys:

000
If you list line 50 now, you see:

50 ,DEMONSTRATIVE OR GUSHY CRUSTY

EXTENDED COLOR BASIC STRIKES AGAIN! (EXTEND)

Perhaps you want to "extend" Line 50:

• Press CX) for extend. The cursor moves to the end of and you enter the
insert mode.

• Type YOllr insert: AND MUSHY

• Press~rn to get out of the insert mode.

line 50 is now:

50 ,DEMONSTRATIVE OR GUSHY CRUSTY AND MUSHY

Table 9.1/ Edit Keys

(n is a number. If you omit n, BASIC uses 1.)

56

Key

CD
n©characters

rn
nlID
CID

00
nmcharacter

00
n(KJcharacter

n(SPACEBARJ
n8

Action

lists the line and moves to the start.
Changes the next n characters
to new characters.
Inserts characters.
Deletes n characters.
"Hacks'" the rest of the line and
puts you in the insert mode.
Lets you extend the line
Searches for the nth
occurrence of character.
Kills rest of line.
Kills (deletes) up to the nth
occurrence of character.
Moves n spaces forward.
Moves n spaces backward.

Mass Delete
(DELETE)

Up 10 now, you've deleted lines the simple way, like this:

50 iIHllID
This works fine for one or two lines, but what if you want to delete 50 or 60
tines? You may find it easier to start over.

Extended Color BASIC comes to the rescue again with an easy way to
delete program lines - the DEL command. For instance, if you want to
delete Lines 30-50, type:

DEL 30-50 (illfID

Your Number's Up!
(RENUM)

So now you can change everything about a program line except the line
number itself. Well, despair no more, because you can even do that with
RENUM.

To see how RENUM works, type this small program:

10 PRINT "THIS IS THE FIRST LINE"
20 PRINT "THIS IS THE SECOND LINE"
30 PRINT "HERE'S ANOTHER LINE"
1I0 GOlD 10

Now renumber it. Type:

RENUM 100~

list the program and you see the new line numbers beginning with 100.
Line 100 is what we call the newline:

100 PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
120 PRINT "HERE'S ANOTHER LINE"
130 GOTD 100

Notice that even the Goro line number reference is renumbered.

Renumber the program again with a newline of 200. Type:

RENUM 2001120~

Here, the newline is 200, but the renumbering starts with line 120. line
120 is what we call the startline;

100 PRINT "THIS IS THE FIRST LINE"
110 PRINT "THIS IS THE SECOND LINE"
200 PRINT "HERE'S ANOTHER LINE"
210 GOTD 100

57

58

Renumber the program one more time giving it an increment of 50 be
tween each line:

RENUM 300,,50~

Here the newline is 300, Since you omitted the slartline, BASIC renumbers
the entire program. The increment between the lines is 50:

300 PRINT "THIS IS THE FIRST LINE"
350 PRINT "THIS IS THE SECOND LINE"
000 PRINT "HERE'S ANOTHER LINE"
050 GOTO 300

Here is the "syntax" of the RENUM command:

RENUM newline, start/ine, increment
Renumbers a program.
newline is the first new renumbered line. If you omit newline,

BASIC uses 10.
start/ine is where the renumbering starts. If you omit

start/ine, BASIC renumbers the entire program.
incremenl is the increment between each renumbered

line. If you omit increment, BASIC uses 10.

Note: RENUM does not rearrange the order of lines.

Try some other variations of this command. Type:

RENUM ,/20

This renumbers your entire program. The newline is 10, and the increment
is 20:

10 PRINT "THIS IS THE FIRST LINE"
30 PRINT "THIS IS THE SECOND LINE"
50 PRINT "HERE'S ANOTHER LINE"
70 GOTO 10

Type RENUM 40,30,~. Here, the newline is 40; the start/ine is 30;
and the increment is 10:

10 PRINT "THIS IS THE FIRST LINE"
00 PRINT "THIS IS THE SECOND LINE"
50 PRINT "HERE'S ANOTHER LINE"
60 GO TO 10

Type RENUM 5,40~ and you get a ?FC Error. This is because the
result would move line 40 ahead of line 10.

Learned in Chapter 9
BASIC WORDS

EDIT
DEl

RENUM

Notes

S9

CHAPTER 10

ARITHMETIC
Solving long math problems fast and accurately is a task your computer
does with ease. Before typing long, difficult formulas, though, there're
some shortcuts you'll want to use. .

An easy way to handle complicated math formulas is with "subroutines,"
Type and run this program:,.

~
2.

3.
a.
5 ••
51.

PRINT "EXECUTING THE MAIN PROGRAM"
GOSU6 500 /
PRINT "NOW BACK IN THE MAIN PROGRAM"
END

PRINT "EXECUTING THE SUBROUTINE"
RETURN

60

Ax IBY + C) - D + E IO/WJ - F

COSUB 500 tells the computer to go to the subroutine that starts at Line
500. RETURN tells the computer to return 10 the BASIC word that im
mediately follows COSUB.

Delete Line 40 and see what happens when you run the program.

If you did this, your screen shows:

EXECUT I NG THE MA I N PROGRAM
EXECUT I NG THE SUBROUT I NE
NOW BACK I N THE MA I N PROGRAM
EXECUT I NG THE SUBROUT I NE
?RG ERROR IN 510

RG means "RETURN without COSUS," Do you see why deleting END in
line 40 causes this error?

At first, the program runs just as it did before. It goes to the subroutine in
line 500 and then returns to the PRINT line that immediately follows
COSUS.

Then, since you deleted END, it goes to the next line--the subroutine in
line 500. This lime, though, it doesn't know where to return. This is
because it's merely "dropping" into the subroutine; it is nOI being sent to
the subroutine by a COSUS line.

,.
2.

2010
2020
2030
20110
2050
2060

This subroutine raises a number to any power:

INPUT "TYPE A NUMBER" j N
INPUT "TYPE THE POWER YOU WANT IT RAISED
TO" i P
GOSUB 2000
PRINT: PRINT N "TO THE POWER OF" P "IS" E

50 GoTo 10
2000 REM FORMULA FOR RA I SING A NUMBER TO A

POWER
E = 1
FOR X = 1 TO P
E = E * N
NEXT X
IF P = 0 THEN E = 1
RETURN

Also introduced in this program are:

The colon (:), in Line 40. You can combine program lines using the
colon to separate them. Line 40 contains the two lines: PRINT and
PRINT N "TO THE" P "POWER 1$" E.

REM, in Line 2000. REM means nothing to the computer. Put REM
lines wherever you want in your program to help you remember
what the program does; they make no difference in the way the
program works. To see for yourself, add these lines and run the
program:

5 REM TH I SIS A PECUL I AR PROGRAM,
17 REM WILL THIS LINE CHANGE THE PROGRAM?
lI5 REM THE NEXT LINE KEEPS THE SUBPROGRAM

SEPARATED

DO~[T-YOURSELF PROGRAM 10-1

Change the above program so that the computer prints a table of
squares (a number to the power of 2) for numbers. say, from 2 to 10.

The answer's in the back.

Give the Computer a Little Help

As math formulas get more complex, your computer needs help under
standing them. For example, what if you want the computer to solve this
problem:

Divide the sum of 13 + 3 by 8

You may want the compuler to arrive at the answer this way:

13+3/8=16/8=2

But, instead, the computer arrives at another answer. Type this command
line and see:

PRINT 13 + 3 I 8 CEHllID

\------'1'7:-::---,
See something different
abou! INPUT? You can have
the computer print a mes
sage before wailing for your
input.

PRINT by itself tells the com
poler 10 skip a line.

61

1

62

An "operalion" is a problem
you wan! the compuler !O
solve. Here Ihe operalions
are addition, subrraclion,
mulliplication. and division.

The computer solves problems logically, using its own rules:

RULES ON ARITHMETIC

The computer solves arithmetic problems in this order:

1. First. it solves any multiplication and division operations.

2. Last. it solves addition and subtraction operations.

3. If there's a tie (that is, more than one multiplication/division or
addition/subtraction operation), it solves the operations from left to
right.

In the problem above, the computer follows its rules:

First, it does the division (3/8 = .375)

Then, it does the addition (13 + .375 = 13.375)

For the computer to solve the problem differently, you need to use paren
theses. Type this line:

PRINT (13 + 3) / B~

Whenever the computer sees an operation in parentheses, it solves that
operation before solving any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of
these problems?
PRINT 10 (5 - 1) /2 _

PRINT 10 5 - 1 / 2 _

PRINT (10 - 5 - 1) /2 _

PRINT (10 - 5) - 1 /2 _

PRINT 10 - (5 - 1 /2) _

Finished? Type each of the command lines to check your answers.

What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2

You're actually asking the computer to do this:

110-15-1)1/2

When the computer sees a problem with more than one set of parentheses,
though, it solves the inside parentheses and then moves to the outside
parentheses. In other words, it does this:

no - (5 ~ 1))/2

l-__~)5_1~4
no - 4) / 2

\... '"6/2 ------~7' 10 - 4 ~ 6

l'- ~> 6/2 ~ 3

RULES ON PARENTHESES

1. The computer solves operations enclosed in p<lrentheses first. be
fore solving any others.

2. The computer solves the innermosl parentheses first It then works
its way out.

COMPUTER MATH EXERCISE

Insert parentheses in the problem below so that the computer prints 28
as the answer:

PRINT30 -9- B -7- 6

Answer:

PR I NT 30 - (8 - (8 - (7 - G)))

Saving Routines
The program below uses two subroutines. It's for those of you who save by
putting the same amount of money in the bank each month:,.

2.
3.
a.
•G.

7.
1000
1010
1020
1030
1040
2000

2010
2020
2030
20110
2050
2080

INPUT "YOUR MONTHLY DEPOSIT" j 0
INPUT "BANK '5 ANNUAL INTEREST RATE" j I
1=1/12*.01
INPUT "NUMBER OF DEPOSITS" i P
GOSUB 1000
PRINT "YOU WILL HAVE $" FV "IN" P "MONTHS"
END

REM COMPOUNO MONTHLY INTEREST FORMULA
N = 1 + I
GOSUB 2000
FV = 0 .. ((E - 1) / I)
RETURN
REM FORMULA FOR RA I SING A NUMBER TO A
POWER
E = 1
FOR X = 1 TO P
E = E .. N
NEXT X
IF P = 0 THEN E = 1
RETURN

63

Notice that one subroutine "calls" another. This is fine with the computer
as long as:

there's a GOSUB to send the computer to each subroutine. and

there's a RETURN at the end of each subroutine.

Turn to the Appendix, "Subroutines." You'll find useful math subroutines
you can add to your programs.

Learned in Chapter 10
BASIC SYMBOLS BASIC CONCEPTS

64

BASIC WORDS

GOSUB
RETURN

(I

Notes

Order of operations
REM

CHAPTER 11

WORDS, WORDS,
WORDS ...

Agreat skill of the computer is its gift with words, It can tirelessly twist and
combine words any way you want. With this gift, you C<in get it to read,
write, and even talk.

Combining Words
Type and run this program:

10 PRINT "TYPE A SENTENCE"
20 INPUT S$
30 PRINT "YOUR SENTENCE HAS" LEN(S$) "

CHARACTERS"
1I0 INPUT "WANT TO TRY ANOTHER" j A$
50 IF A$ " "YES" THEN 10

Impressed? LEN(S$) computes the length of string S$-your sentence. The
computer counts each character in the sentence, including spaces and
.p~nctuation marks.

•

Erase the program and run this, which composes a poem (of sorts):,. A$ ~ "A ROSE"2. 5$ ~ " "
3. C$ ~ "IS A ROSE"

•• D$ ~ B$ + C$
5. E$ ~ II AND SO FORTH AND SO ON"
6. F$ ~ A$ + 0$ + 0$ + B$ + E$7. PRINT F$

Here the plus sign (+) combines strings. For example, 0$ ("IS A ROSE") is
acombination of B$ + C$.

There are two problems you may encounter when combining strings. Add
the following line and run the program. It shows both problems:

80 G$ = F$ + F$ + F$ + F$ + F$ + F$ + F$

When the computer gets to line 80, it prints the first problem with this line:
lOS ERROR IN 80 ("out of string space").

You will nOI gel Ihe as er
ror if you have not st<lfled
up your computer since
you ran Ihe program from
Chapter 8 with Ihe CLEAR
500 line.

(),

6S

66

Not impressed? tater, we'll
show practical uses of this
unusual skill.

On startup, the computer reserves only 200 characters of space for wo"rk·
ing with strings. Line 80 asks it to work with 343 characters. To reserve
room for this many characters and more (up to 500), add this line to the
start of the program and run:

5 CLEAR 500

Now when the computer gets to Line-BO, it has enough string space, but
prints the second problem with this line: ?L5 ERROR IN 80 ("string 100

long").

A string can contain no more than 255 characters. When storing more than
255 characters, you need to put these characters into several strings.

Twisting Words
Now that you can combine strings, try to take a string apart. Type and run
this program:

10 INPUT "TYPE A WORD" j W$
20 PRINT "THE FIRST LETTER IS: "LEFT$ (W$.1)
30 PRINT "THE LAST 2 LETTERS ARE: " RIGHT$

(W$.2)
40 GOTO 10

Here's how the program works:

COMPUTER MEMORY

W$ I MACHINE

In Lines 20 and 3D, the computer computes the first left letter and the last
two right letters of the string:

MACHINE
LEFT$ (W$ d) RIGHT$ (W$,2)

Run the program a few more times to see how it works.

Now add this line to the program:

5 CLEAR 500

so that your computer will set aside plenty of space for working with
strings. Run the program again. This time input a sentence rather than a
word.

PROGRAMMING EXERCISE

Howwould you change Lines 20 and 30 so that the computer will give
you the first 5 letters and the last 6 letters of your string?
20 _

30 ~ _

Answers:

20 PRINT "THE FIRST FIVE LETTERS ARE:" LEFT$
(Wi ,5)

30 PRINT "THE LAST SIX LETTERS ARE:" RIGHT$
(W$.6)

Erase your program and type this one:

10 CLEAR 500
20 INPUT "TYPE A SENTENCE" j S$
30 PRINT "TYPE A NUMBER FROM 1 TO " LEN(S$)
1I0 INPUT X
50 PRINT "THE MIDSTRING WILL BEGIN WITH

CHARACTER" X
60 PRINT "TYPE A NUMBER FROM 1 TO "LEN(S$) - X

+ 1
70 INPUT Y
80 PRINT "THE MIOSTRING WILL BE" Y

"CHARACTERS LONG"
80 PRINT "THIS MIOSTRING IS:" MIO$(S$.X,Y)
100 GOTO 20

Run this program a few times to see if you can deduce how MID$ works.

Here's how the program works:

In line 20, assume you input HERE IS A STRING:

(YOUR COMPUTER'S MEMORY ",,0·
~ S$ -HERE IS A STRING

In Line 30, the computer first computes the length of $$, which is 16
characters. It then asks you to choose a number from 1 to 16. Assume you
choose 6.

In Line 60, the computer asks you to choose another number from 1 to 12
(16·6 + 1). Assume you choose 4.

,,-.--...,...------...............

In line 90, the computer gives you a "mid-string" of$$ that starts at the 6th
character and is four characters long:

Remember how to erase a
program? Type:
NEW <EHIEID

1 2 3 1I
HER E

567891011
I S A S

4
MIO$(S$,6,lIl

12
T

13
R

1£1 15
I N

IS
G

For another example of MID, erase the program and run this:

10 INPUT "TYPE A SENTENCE" j 5$
20 INPUT "TYPE A WORD IN THE SENTENCE" j W$
30 L = LEN (W$)
40 FOR X = 1 TO LEN(S$)
50 IF MIO$(8$.X ,Ll = W$ THEN 90
60 NEXT X
70 PRINT "YOUR WORD ISN'T IN THE SENTENCE"
80 END
90 PRINT W$ "--5EGINS AT CHARACTER NO." X

You can use this kind of
program to sort through in
fOrmalion. For instance, by
separating s!rings, you could
look through a mailing /ist
for TEXAS addresses.

67

Here's how the program works:

In Line 20, assume you input the word 1$ for W$. In Line 30, the computer
counts Wi's length: 2 characters.

o
YOUR COMPUTER'S MEMORY 0
S$- HERE IS A STRING

W$-IS
L-2

In Lines 40-90 (the FOR/NEXT loop), the computer counts each character
in $$, starting with character 1 and ending with character LEN(S$), which
is 16.

Each time the computer counts a new character, it looks at a new mid
string. Each mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string:

1
HER E I S A S T R I N G
-2

MID$(8$d .2)

The fourth time through the loop, when X equals 4, the computer looks at
this mid-string:

a
HER E 1 S A S T R I N G

68

-2
MID$(S$,4,2)

When Xequals 6, the computer finally finds IS, the mid-string for which it is
searching.

DO-iT-YOURSELF PROGRAM 11-1

Start with a one-fine program:

10 A$ = "CHANGE A SENTENCE."

Add a line that inserts this to the start of A$:

iT'S EASY TO

Add another line that prints the new sentence:

IT'S EASY TO CHANGE A SENTENCE

This is our program:

10 A$ = II CHANGE A SENTENCE, "
20 15$ = "IT '5 EASY TO"
30 C$:: 15$ + " " + AS
40 PRINT C$

OO-IT-YOURSElF PROGRAM 11-2

Add to the above program to make it:

Find the start of this mid-f>lring:

A SENTENCE

Delete the above mid.string to form this new string:

IT'S EASY TO CHANGE

• Add these words to the end of the new Siring:

ANYTHING YOU WANT

Print the newly formed string:

IT'S EASY TO CHANGE ANYTHING YOU WANT

HINT: To form the string IT'S EASY TO CHANGE, you need to get the
left portion of the string IT'S EASY TO CHANGE A SENTENCE.

Answer:

10
20
30
40
50
60
70
80
85
90
100
110

AS = "CHANGE A SENTENCE."
6$ '" "IT'S EASY TO"
CS '" 15S + " " + AS
PRINTCS
Y :: LEN I "A SENTENCE")
FOR X:: 1 TO LEN<CS)
IF MIDS (C$,X ,Y) = "A SENTENCE" THEN 90
NEXT X
END
OS :: LEFT$ (CS ,X - 1)

E$:: OS + "ANYTHING YOU WANT"
PRINT E$

DO-IT-YOURSELF CHALLENGER PROGRAM

This program is the basis ofa
"word processing" pro
gram-a popular pt'ogram
that CUB down typing
e1fPenses.

Write a program that:

• Asks you to input a sentence.

o Asks you to input (1) a phrase within the sentence to delete and (2) a
phrase to replace il.

o Prints the changed sentence.

This may lake a while, but you have everything you need 10 write it.
Our answer's in the back.

69

70

Learned in Chapter 11
BASIC WORDS BASIC String OPERATOR

LEN +
LEFT$

RIGHT$
MID$

Notes

l

CHAPTER 12

A POP QUIZ
By using a word named INKEY$, you can get the computer to constantly
"watch," "time," or "test" what you're typing. Type and run this program:

10 A$ '" INKEY$
20IFAS<)""GOT050
30 PR I NT "YOU PRESSED NOTH I NG II

40 GOlD 10
50 PRINT "THE KEY YOU PRESSED 18---" AS

INKEY$ checks to see if you're pressing a key. It does this in a split second.
At least the first 20 times it checks, you've pressed nothing (" "),

line 1a labels the key you press as A$. Then the computer makes a
decision:

If A$ equals nothing (" "), it prints YOU PRESSED NOTHI~G and
goes back to Line 10 to check the keyboard again.

If A$ equals something (anything but" "), the computer goes to line
50 and prints the key.

Add this line and run the program:

80 GOlD 10

No matter how fast you are, the computer is faster! Erase Line 30 to see
what keys you're pressing.

Beat the Computer

Type this program:

10 X = RND(4l
20 Y = RND(4l
30 PRINT "WHAT IS" X "+" Y
40 T = 0
50 A$ = INKEY$
80 T = T + 1
70 SDUND 128,1
80 IF T = 15 THEN 200
90 IF A$ = "" THEN 50
100 GDTD 10

200 CLS(7)
210 SDUND 180,30
220 PRINT "TDD LATE"

Here's how the program works:

Lines 10, 20, and 30 have the computer print two random numbers and ask
you for their sum.

Line 40 sets T to O. T is a timer.

Remember that < > means
"not equal to."

" " is an "empty string"
(nothing).

71

Line 50 gives you your first chance to answer the question-in a split
second.

Line 60 adds 1 to T, the timer. T now equals 1. The next time the computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Each time the
computer runs Line 60 it adds 1 to T.

Line 70's there just to mi1ke you nervous.

Line 80 tells the computer you have 15 chances to answer. Once T equals
15, time's up. The compuler insults you with Lines 200, 210, and 220.

line 90 says if you haven't answered yet the computer should go back and
give you another chance.

The computer gets to line 100 only if you do answer. line 100 sends it
back for another problem.

How can you get the computer to give you three times as much time to
answer each question?

Answer:

By changing this line:

80 IF T = liS THEN 200

. , .r

--- --r

-=-=:::::=-

----=-=

Checking Your Answers
How can you get the computer to check to see if your answer is correct?
Would this work?

If you run this program (and answer on time), you'll get this error message:

?TM ERROR IN 100

That's because you can't make a string (A$) equal to a number (X + Y). You
somehow must change A$ to a number.

72

Remember the problem of
mixing strings Wilh num
bersr Chapter 2 will refresh
yoor memory.

l)

100
110
120
130
140

IF A$ = X + Y THEN 130
PRINT "WRONG". X "+" Y "=" X + Y
GOTO 10
PRINT "CORRECT"
GOTo 10

Change Line 100 by typing:

100 I F VAL (AS) = X + Y THEN 130

VAUA$) converts A$ into its numeric value. If A$ equals the string "5:' for
example, VAL(A$) equals the number 5. If VAl(A$) equals the string "C:'
VAUA$) equals the number o. ("C" has no numeric value.)

To make the program more challenging, change these lines:

10 X=RND(48)+1I
20 Y = RND(48) + 1I
80 BS = BS + AS
100 IF VAL<B$) = X + Y THEN 130

Then add these lines:

LIS BS = ""
95 IF LEN(BS) <> 2 THEN 50

A Computer Typing Test

Here's a program that times how fast you type:

10 CLS
20 INPUT "PRESS <ENTER> WHEN READY TO TYPE

THIS PHRASE"; E$
30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN"
40 T = 1
50 AS = INKEY$
60 I F AS = "" THEN 100
70 PRINT AS j

80 BS = B$ + A$
90 IF LEN(BS) = 32 THEN 120
100 T = T + 1
110 GoTo 50

120 S = T/711
130 M = 5/60
140 R=8/M
150 PRINT
160 PRINT "YOU TYPED AT--"R"--WDS/MIN"

73

74

We coul; have made this
calculation in one line by us
ing parenlheses:

120 R-S/IIT/7all
50'

=
y'

How about a variation Oflhis
program-a speed-reading
lest?

line 40 sets T, the timer, to 1.

line 50 gives you your first chance to type a key (A$). If you're not fast
enough, line 60 sends the program to line 100 and adds 1 to the timer.

line 70 prints the key you typed.

line 80 forms a string named B$. Each time you type a key (A$), the
program adds this to B$. For example, if the first key you type is uN," then:

AS = "N"
ond
BS=B$+A$
BS=""+"N"
B$ = "N"

If the next key you type is "0," then:

A$ = "0"
ond
B$ = B$ + AS
B$="N"+"O"
B$ = "NO"

If the third key you type is "W," then:

AS = "101"
on d
B$ '" "NO" + "101"
B$ = "NOW"

When the length of B$ is 32 (the length of NOW 15 THE TIME FOR All
GOOD MEN), the program assumes you've finished typing the phrase and
goes to line 120 to compute your words per minute.

lines 120, 130, and 140 compute your typing speed. They divide T by 74
(to get the seconds), 5 by 60 (to get the minutes). They then divide the eight
words by M to get the words per minute.

Learned in Chapter 12
BASIC WORDS

INKEY$
VAL

Notes

CHAPTER 13

MORE BASICS
Before you're finished wi"th the "basics," you need to know a few more
words.

The first is STOP. Type and fun this program:

10 A = 1
20 A'" A + 1
30 STOP
40 A = A * 2
50 STOP
60 GOlD 20

The computer starts running the program. When it gets to Line 30, it prints:

BREAK IN 30
OK

You now can type a command line to see what's happening. For example,
type:

PR I NT A em:Iml

The computer prints 2-A's value when the program's at Line 30. Now
type:

CON T IfHrni)

The computer continues the program. When it gets 10 Line 50, it prints:

BREAK IN 50

Type:

PR I NT A (EJflll)

This time the computer prints 4-A's value at line 50.

Type CONT again, and the computer breaks again at Line 30. If you have it
again print A, it prints S-Ihe value of A at line 30 the second time through
the program.

Inserting STOP lines in your program helps you figure out why it's not
working the way you expect. When you fix the program, take the STOP
lines out.

75

For Long Programs • • •

76

10 5ilve memory, you can
amilspaces in your program
before and afler punclUalion
milrlcs, operillo,s, and BASIC
words.

l)

Clear memory and type:

PRINT MEM CEBIEID
The computer prints how much storage space remains in the computer's
memory.

When you're typing a long program, you will want 10 have the computer
PRINT MEM from time to time to make sure you're not running out of
memory.

Help with Typing

Type this program:

10 INPUT "TYPE 1! 2, OR3"j N
20 ON N GOSUB 100, 200, 300
30 GOTD 10

100 PRINT "YOU TYPED 1"
110 RETURN

200 PRINT "YOU TYPED 2"

" 210 RETURN
Z

300 PRINT "YOU TYPED 3"
310 RETURN

Run it.

ON . COSUS in line 20 works the same as three lines:

18 IF N = 1 THEN GOSUB 100
20 IF N = 2 THEN GOSUB 200
22 IF N = 3 THEN GOSUB 300

ON ... COSUS looks at the line number following ON-in this case N.

• If N is 1, the computer goes to the subroutine starting at the first line
number following COSUB.

If N is 2, the computer goes to the subroutine starting at the second
line number.

If N is 3, the computer goes to the subroutine starting at the third line
number.

What if N is 47 Since there's no fourth line number, the computer simply
goes to the next line in the program.

Here is a program that uses ON ... COSUS:

5 FOR P = 1 TO 600: NEXT P
10 CLS: X = RND(100): Y = RND(100)
20 PRINT" (i) ADDITION"
30 PRINT "(2) SUBTRACTION"
40 PRINT "(3) MULTIPLICATION"
50 PRINT "(4) DIVISION"
60 INPUT "IolHICHEXERCISE(l-lI)"j R
70 CLS

PRINT "WHAT IS" X "+" Y
INPUT A
I FA::: X + Y THEN PR I NT "CORRECT·" ELSE
PR I NT "WRONG"
RETURN

PRINT "WHAT IS" X "_" Y
INPUT A
IF A '" X-V THEN PRINT "CORRECT" ELSE
PR I NT "WRONG"
RETURN

PRINT "WHAT IS" X "*" Y
INPUT A
IF A = X*Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"
RETURN

PRINT "WHAT IS" X "I" Y
INPUT A
IF A = X/V THEN PRINT "CORRECT" ELSE
PRINT "WRONG"
RETURN

ON R GOSUB 1000/ 2000 t 3000 t 4000
GOTD 5

000
1010
1020

~

•
"- 1030

2000
2010
2020

2030

3000
3010
3020

3030

L1000
4010
l/020

4030

Notice the word ELSE in Lines 1020,2020,3020, and 4020. You can use
ELSE if you want the computer to do something special when the condition
is not true. In Line 1020, if your answer-A-equals X + V, then the
computer prints CORRECT or else it prints WRONG.

You may use ON ... GOrO in a similar way as ON ... GOSUB. Theonly
difference is that ON GOTO sends the computer to another line number
rather than to a subroutine.

When A does not equal X +
Y, the condition set up in
line 1020 is not/rue..-------'

Here's part of a program using ON ... GOTO:

10 CLS
20 PRINT @ 134, "(1 1 CRAZY EIGHTS"
30 PRINT@lGG,"(ZlS00"
40· PRINT@198,"(3lHEARTS"
50 PR I NT @ 354, "WH I CH DO YOU WANT TO PLAY"
60 INPUT A
65 CLS
70 ON A GOTD 1000, 2000, 3000

000 PRINT @230. "CRAZY EIGHTS GAME"
1010 END

PRINT @ 236, "500 GAME"
END

3000 PRINT @ 235, "HEARTS GAME"
3010 END

77

78

Does the Job Say"AND" or "OR"?
Anyone who speaks English knows the difference between "and" and
"or"-even your computer. For example, assume there's a programming
job opening. The job requires:

A degree in programming
AND

Experience in programming

Erase memory and type:

10 PRINT "DO YOU HAVE--"
20 INPUT "A DEGREE IN PROGRAMMING"; OS
30 INPUT "EXPERIENCE IN PROGRAMMING" j E$
1I0 IF OS = "YES" AND E$ = "YES" THEN PRINT "YOU

HAVE THE JOB" ELSE PR I NT II SORRY. WE CAN'T
HIRE YOU"

50 GOlD 10

Run the program. You may answer the questions this way:

DO YOU HAVE--
A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
SORRY. WE CAN'T HIRE YOU

Now, assume the requirements change so that "or" becomes "and," The
job now requires:

A degree in programming
OR

Experience in programming

To make this change in the program, type:

40 IF 0$ = "YES" OR E$ = "YES" THEN PRINT
"YOU'VE GOT THE JOB" ELSE PR I NT "SORRY I WE
CAN'T HIRE YOU"

Run the program and see what a difference AND and OR makes:

00 YOU HAVE--
A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
YOU HAVE THE JOB

More Arithmetic

These words can save many program lines:

SGN

SGN tells you whether a number is positive. negative, or zero:

10 INPUT "TYPE A NUMBER" i X
20 IF SGN(X) = 1 THEN PRINT "POSITIVE"
30 IF SGN(X) = 0 THEN PRINT "ZERO"
40 IF SGN(X) = -1 THEN PRINT "NEGATIVE"
:50 GOTO 10

Run the program, inputting these numbers:

15 -30 -.012 0 .22

ADS

ASS tells you the absolute value of a number (the magnitude of the number
without respect to its sign). Type:

10 INPUT "TYPE A NUMBER" j N
20 PRINT "ABSOLUTE VALUE IS" ABS(Nl
30 GOTO 10

Run the program inputting the same numbers as the ones above.

STRS

STRS converts a number to a string. Example:

10 INPUT "TYPE A NUMBER" iN
20 AS = STR$(Nl
30 PRINT AS + .. IS NOW A STRING"

Exponents

Type and run this program to see how the computer deals with very large
numbers:

10 X::: 1
20 PRINT Xi
30 X::: X * 10
40 GOTO 20

The computer prints very large or very small numbers in "exponential
notation." "One billion" (1 ,000,000,000), for example, becomes 1E+ 09,
which means "the number 1 followed by nine zeros."

If an answer comes out "5E..Q6," you must shift the decimal point. which
comes after the 5, six places to the left, inserting zeroes as necessary.
T€(;hnically, this means 5.10-6, or 5 millionths .(oo5סס0.)

Exponential notation is simple once you get used 10 it. You'll find it an easy
way to keep track of very large or very small numbers without losing the
decimal point.

Noticeo theo OV (oveorfJow)
eorror at the eond. The com·
puteor can't handle numbers
largeor /han IE +38 or smaJ
leor than -, E+38. (It rounds
off numbers around /£·38
and -, E·38 10 0.)

~--J

Or teochnkally /. 109, which
is / times 10 to the nin/h
power: /.10./0.10.
/0.10·10·10.10·/0

In oor BAS/C,lhat's 51/ 011 01
'0110110110

79

80

Congratulations, Programmer!
You've now learned the "basics" and can no doubt write some decent
programs. The next section will help you add excitement to your programs
with graphics and music.

e.- __ I~¥7.="=w.1~!1
,(err'rlll
"

Learned in Chapter 13
BASIC WORDS BASIC SYMBOLS BASIC CONCEPT

STOP SGN AND Exponential
CONT ABS OR notation
MEM STR$

Notes

SECTION /I

SIGHTS AND SOUNDS
Have you reached your fill of BASIC basics? In this section, you'll lake a dra
matic leap and learn 10:

Draw a circle

Paint a house

Compose a song

Cool off with a cube

And much more!

And you'll also be amazed at how quickly and easily you can do thisl So
turn the page and we'll get right to the point.

CHAPTER 14

LET'S GET TO THE POINT
One of the most exciting features of Extended Color BASIC is its ability 10
display precise, varied, and easy-la-use graphics called "high-resolution
graphics."

Just howeasy-to-use are these graphics? Well, let's start with the most basic
(pun intended) graphic element-a dot (or poinO-and build from there.

Extended Color BASIC makes it simple 10 put a dot on the screen. Type the
following program and see:

5 PMODE 1 d
10 pelS
20 SCREEN 1,1
30 PSET (10.20.8)
a0 GOlD 1I0

Now run the program. The screen should be buff, and if you look carefully,
you can see a small orange dot in the upper left corner. That dot was put
there by the PSET (point sell in Line 30.

........... ,

"' ..

. . .

PSET (h,v;cl sets a point on the current graphics screen

h is the horizontal position (0 to 255).
v is the vertical position (0 to 191).
c is the color (O to B). If you omit c, BASIC uses the current

foreground color.

Even though you can't see it, the computer has divided your screen into a
grid of nearly 50,000 dots-256 across and 192 down-so that you can
put a dot precisely where you want it. Simply look up the dol's position in
the Graphics Screen Worksheet in the back of this manual.

look at Line 30 again and see how PSET specifies the dot's position (10
over and 20 down):

-30 PSET (10,20,8>

A IO,600-mile iourney
starts with <l single step,
and even the Mona Lisa
began with a single Woke
on the canvas. (A Jackson
Pollock might begin with a
single splaner!1

Don't worry about any of I
the new words. PMODE
and SCREEN, for imtance,
determine the degree of de
t<lil <lnd the r<lnge of color
They are covered in later
chapters .

You'iJ see these "synt<lx
blocks" throughout this
section. They'll help you un
derstand the "parameters"
you can use with gr<lphic
statements.

85

Very Impor!ant No!e! The
Color Computer can pro
duce 9 colors: black, green,
yellow, blue, red, 00((,
cyan, magenta, and orange.
The actual shade you gel,
though, depends on your
T.v.-no! the computer we
wgge51 you perform Ihe
color adjustment te51 pro
gram in your introduction
manual before running Ihese
programs.

Here's the statement you would use to set an orange dot in the center of the
screen:

PSET (128,96,8)

Now add a program line that sets an orange dot in the lower right corner
(255 over and 191 down).

Is this the line you used?

35 PSET (255t191,8)

If so, congratulations! You've made your point. Run your program and
you'll see.

Now list the program. It should look like this:

5 PMODE 1 t1
10 pelS
20 SCREEN 1,1
30 PSET (10,20,8)
35 PSET (255 t191 ,81
40 GDTD 40

You're off to a great start .

. . . But What About the Color?
By now, you've probably figured out that you can change colors by
changing c to a different number in the range a to 8.

Within limits, this is true. However~and ii's a big however-you may not
get the color you specified. There's a good reason for this, which we'll
cover later in the discussion of the different graphic "modes." For now,
don't worry if you don't always get the color you want.

The 8 gives the color (or
ange). Lale/; we'll discuss
how to change the color.
For now, simply use orange.

86

Here is the list of color codes:

Code Color

a Black
1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Orange

If you want to try changing the dots' colors, use buff (5), cyan (6), or
magenta (7). Then change the color back to orange (8) before proceed-

ing. (These 4 colors are the only ones available with your current
program.)

Now You See It ... Now You Don't

Any guesses how to turn off a dot? Here's a hint: II's easy and it has to
do with color.

You see, you don't really turn off the dot, you simply change its color so
that it blends into the background. You do this with a new statement:
PRESET (point reset). PRESET "knows" you want to use the background
color, so you don't need to give the color.

PRESET (h,v) resets a point on the current graphics screen

h is the horizontal position (O to 255).
v is the vertical position (O to 191).

DO-IT-YOURSELF PROGRAM 14-1

Get to know the dot positions on your TV screen by using your
Graphics Screen Worksheet.

Select several points on the worksheet, identify them in terms of their
(X,Y) coordinates, and display them on the screen using the program
we used to get you started. Don't change any program lines except
those that contain P5ET(h,v,c).

r DO-IT-YOURSELF PROGRAM 14-2

Do you remember the RND (random) function (rom Section I? If
not, review it; then write a short program that fills the screen with
random dots of random colors.

The last Point

1

Before you finish this chapter, we want to make one more point. You
can use PPOINT to find out what color any dot on the screen is.

PPOINT (h,v) tells what color a poi~l! ison the current graphics screen

h is the point's horizontal position (0 to 255).
v is the point's vertical position (0 to 191).

This example shows how PPOINT can be handy to include in a program:

5 PMODE 3 J1
10 PClS
15 SCREEN 1,1
30 X = RNO(10l
35 Y = RNO(10l
40 C = RND(8)
50 PSET (X,Y,Cl
60 IF PPOINT (5,5l=8 THEN GOTO 105
70 GOTO 30
105 CLS
110 PRINT @ 100, "POSITION <5,5l

IS NOW ORANGE"

87

88

The computer fills a 10Xl a "square" (in the upper left corner of the screen)
with random colored dots. When the dot in Position (5,5) is filled with an
orange dot (Code 8), the computer displays the message POSITION (5,5) IS
NOW ORANGE.

Learned in Chapter 14
BASIC WORDS CONCEPTS

PSET Selling points
PRESET Resetting points

Changing colors
PPOINT Finding a point's color

Notes

CHAPTER 15

HOLD THAT LINE!
So you can put a dot on the screen---even several dots. But what kind of
starting point is that, you may wonder, when you're eager to create some
"real" graphics.

To answer that question, think of some of your very first "drawings" on
paper. Perhaps they were detailed pictures of clowns and trained seals and
other wonderful things. How did you draw such marvels? Probably by
connecting a bunch of dols.

And that is exactly how your computer "draws." You tell it which dols 10
connect, and it draws a line.

That's Some Line You Have

One way to tell the computer to draw a line between dots is \0 use the
Extended Color BASIC statement LINE. To see LINE at work, modify the
program that set the dots. (For the sake of convenience, call the program
"lines.")

First change Line 30 as follows:

30 LINE (0,0) - (255J181> ,PSEl

Then delete Line 35 by typing:

35 cmrnJ
Your program should now read:

5 PMOOE 1 J1
10 PClS
20 SCREEN 1 /1
30 LINE (0,0)-(255.191> ,PSET
40 GOlD 40

Now run the program. The screen should display an orange line that runs
from the upper left to the lower right on a buff background.

How about changing the direction of the line so that it runs from the lower
left to the upper right?

89

Using Ihe Graphics Screen
Worksheet plol the poinlS
used in crealing Ihe in
tersecling lines in the
"Lines" program.

. You've probably already figured this one out, but-just in case-here's the
new Line 30:

30 LINE (01191)-(255,0) ,PSET

X Marks the Spot
What about intersecting lines?

Reinsert the original Line 30 that drew the first line. (First, renumber it
as Line 25.) Then run the program. Does your screen display 2 orange
lines intersecting in the center?

In fact, you can put as many lines on the screen as you want-once
you learn the format. Here it is:

LINE (hI,vl)-(h2,v2),a,b draws a line or a box on the current
graphics screen

(h I,v I) is the Iine's start point.
(h2,v2) is the line's end point.
a is either PSET (set) or PRESET {resell.
b is either B (box) or BF (box filled). This is optional.

Note: You may omit the start point as discussed below.
I

90

Just as in the old dot-to-dot days, you may often want to draw a line that
begins at the last line's end point. Whenever this is the case, you may omit
the start point. The computer automatically starts at either the end point set
by the latest LINE statement or-if you haven't yet used LINE in the
program-at (128,96). Here is an example:

30 LINE (O,O)-(2551191) ,PSET
35 LINE -(191,0) ,PSET

Line 20 draws a line from (0,0) to (255,191). Line 30 then draws anolher
line, thiS one from (255,191) to point (191,0).

Regardless of whether or not you include the start point, you must precede
the end point with a hyphen {oj.

How About Dropping a Line?
We've discussed the line's start and end points. Now let's turn to the next
parameter in the LINE statement-PSET or'PRESET.

Take another look at the program lines that created the intersecting lines:

30 LINE (0,0)-(255t191) ,PSET
35 LINE (01191)-(255,O) ,PSET

From your experience with turning on and off dots in Chapter 14, do you
have any idea what the PSET parameter is doing and what would happen if
you change it to PRESET? Try it and see. Change the PSET in Line 25 to
PRESET and run the program again:

30 LINE (0,0)-(255t191) ,PRESET

If you guessed that the orange line that ran from the upper left to the lower
right would "disappear," you were right.

Now replace PSET in line 30 with PRESET. The screen went blank, right?
The reason is the way PSET and PRESET work in a LINE statement:

PSET sets the line in the pre-specified foreground color.

PRESET sets the line back 10 the pre-specified background
color so that you can'l see it.

Note: The PSET and PRESET parameters in a LINE statement are
not the same as the PSET and PRESET statements discussed in
Chapter 14. They do not specify a dot or a color code. They
merely specify that the line be set to the foreground or the back
ground color.

Before proceeding, change the PRESET parameters in Lines 25 and 30
back to PSET.

To B (a Box) or Not to B •..

We've almost made it through LINE, but a few items still need to be (to B?)
covered.

B stands for "box."

With Extended Color BASIC, you can make a box without having to write a
separate program line for each side. All you have to do is specify two
opposing corners of the box and add ,B to the statement. Then, when you
run the program, your computer creates a box instead of a line.

To illustrate this, call your "Lines" program back into service.

5 PMODE 1 t1
10 pelS
20 SCREEN 1 ,1
25 LINE (0,0)-(255t181),PSET
30 LINE (01181)-(255,O) ,PSET
D0 GoTo DO

As is, the program creates 2 orange lines that intersect in the center of the
screen. Delete Line 30 and add the suffix ,B to line 25. Now see what
happens when you run the program.

25 LINE (0,0)-(255t191l,PSET,6

Did you box yourself in?

The color specification is
elsewhere in the program,
not in the LINE command, so
we·1I come back to il later.
For now, iust concentrale on
LINE.

91

92

DO-IT-YOURSELF PROGRAM 1S-1

Write a program that creates a box with a pair of lines intersecting in
the center. We'll tell you why these are the only available colors when
we discuss PMODE and SCREEN in the next 2 chapters.

Fill It Up
We're almost at the end of the LINE, so let's try to finish.

If you refer to the format of LINE, you can see you have the option of adding
F to the optional suffix ,B.

F lets you "fill" the box with the foreground color. Try it. Change Line 25 as
follows:

25 LINE (0,0)-(255d91),PSET,BF

How about that! You should have a big orange box (256 x 192) on a buff
background. .

That's Color with a Capital C,
Capital 0, Capital ...

In Chapter 14, we explained how to use the c parameter of the PSET
command to change the color of a dol. But we've also been talking for
some time about foreground and background colors. Now it's time to
explain them further.

Naturally, if you're using one color heavily, you don't want to have to
specify it each time you put something on the screen. With the COLOR
feature, you don't have to.

Within certain limits, the graphics feature COLOR lets you set the
foreground/background colors. (See "PMODE" and "SCREEN" later in
this book.) Here is its format:

COLOR foreground,background sets the foreground and background
color on the current graphics screen

foreground is the code (0 to 8) for the foreground color.
background is the code (0 to 8) for the background color.

Note: As stated in Chapter 14, the only colors available with your
current program are buff (5), cyan (6), magenta (7), and orange
(8).

When you don't specify the foreground and background colors, your
computer automatically chooses the highest-numbered available color
code for the foreground color and the lowest-numbered available color
code for the background color. That's why the crossing lines in the "Lines"
program are orange (6) on a buff background (5).

To see COLOR in action, call on "Lines" again:

5 MOOE 1 11
10 PClS
20 SCREEN 1 d
25 LINE (0,0)-(2551191> ,PSET

30 LINE (0d91)-(255,0),PSET
lI0 GOTO lI0

Insert line 6 into your program:

6 COLOR 517

Now run the program. What do you think of buff lines crossing on a
magenta background?

Do you want to see what the colors look like when reversed? If so, retype or
edit the line like this:

6 COLOR 7,5

In the next chapter, you'll learn how to make even more colors available.

DO·IT·YOURSElF PROGRAM 15·2

Ready 10 Iry your own "lines" programr Can you build a houser Slart
wilh lines 5, 10, and 20 of the "Lines" program and lake it from lhere.
Be sure 10 add:

A frool door, of course.

AI least one window. (Don't forgello lurn Ihe lighls on or off.)

A chimney. (You won'l need a chimneysweep, nOI yet anyway!)

The overall design is up 10 you (Cape Cod, Ranch, or whatever), bUI
we've included a sample house (good view, no pets) program in the
back of the book. Don't worry about doorknobs; we'll add those later.

Be sure to save this program on casselle, since you'll be needing it
later. (You'll find il much easier 10 draw the house if you plot its poinls
on a Graphics Screen Worksheet.)

DO·IT-YOURSElf PROGRAM 15·)

This should be a real challenge for you.

As you know, a straight line is the shortesl distance between two
points. Well, put a few exIra miles between our two points. Use LINE
to draw a crooked line.

To get started, use Lines 5, 10, and 20 from the "Lines" program.

Learned in Chapter 15

Ifyou used)'OUr caJar Com
poler 10 draw an airplane
and used COLOR 10 gi~ it
the right caJar, would you
h.J~ ing colors?

COLOR is no! an acfion
statement; it must precede
an adiot! statement (such as
PetS or UNO before /he
foreground and background
colors are actually changed.

BASIC WORDS

LINE

COLOR

CONCEPTS

Drawing a line
Erasing a line
Drawing a box
Filling in a box

Changing foreground and
background colors

93

94

Notes

CHAPTER 16

THE SILVER SCREEN
Are you ready to find out about another statement? If so, turn down the
lights and butter the popcorn, because we're about to raise the curtain on
the silver screen.

A Word About Video Memory
Whenever you want to display an image on your TV, the computer
stores the screen image in "video memory:' The computer's TV-circuitry
then "reads" the screen image and displays it on your TV.

The "normal" video memory is large enough for text (letters and num
bers) but not for graphics (circles, lines, boxes, and so on). Conse
quently, the computer has two video memories: one for text and one for
graphics.

Lighting the Silver Screen

Take a look at OUf "lines" program for a second. Concentrate on the
SCREEN statement in Line 20:

5 PMODE 1 d
10 pelS
20 SCREEN 1 ,1
25 LINE (0,0)-(2551181> ,PSET
30 LINE (01181)-(255,O) ,PSET
40 GOTO 40

SCREEN tells the computer to display a screen image on your TV. What
kind of screen it displays depends on the instructions you give it:

First, you tell the computer whether to use the TV screen for text (such
as letters or numbers) or graphics (such as lines and circles).

Second, you tell the computer what "color set" to use.

95

Any lime your program OUI

puts text (PRINT, INPUT!,
lhe compuler automatically
performs a SCREEN 0,0
command. In a "24:010r
mode," described in the
next chapler, lhis gives you a
black and green screen.

SCREEN type, color set displays the current graphics or text screen

type is 0 (text screenl or 1 (graphics screen)
color set is 0 or ,

Note: If type or color set is any positive number greater than 1, your
computer uses 1.

In the "Lines" program, change Line 20 to:

20 SCREEN 0,0

Then run the program. Does your computer "hang up"? (press cmuK) to
regain controL)

Actually, the computer ran "Lines," just as before. This time, though, it did
not show you the graphics screen. You asked to see the text screen instead.

Now change Line 20 to:

20 SCREEN 1,0

Notice that you have the graphics screen again, but this time the color set
has been changed. I
At first glance, it appeJrs that you have only 2 color choices-O and 1.
Actually, though, you're choosing from a much greater variety: You're
switching color sets, not individual colors.

Color Set 0

Color Set 1

GreenIYellow/Blue/Red

BuWCyan/Magenta/Orange

96

DO-IT-YOURSELF PROGRAM 16·1

Do you understand SCREEN? If you do, write a program that switches
from text screen tographicsscreen. You might want to put a loop in the
program so that it changes the color set after it loops through the
program. This way you can see all the SCREEN features at work.

Clearing the Silver Screen
(PCLS)

Your "lines" program should look like this:

5 PMODE 1 ,1
10 PClS
20 SCREEN 1 ,1
25 LINE (0,0)-(2551181> ,PSET
30 LINE (01181>-(255,0) ,PSET
1I0 GOTD £10

Look at Line 10. It contains the PClS statement. This statement simply
clears the graphics screen. (It serves the same function for the graphics
screen as CLS does for the text screen.)

Here is the syntax for PClS:

PelS color clears the current graphics screen

color is 0·8. If you omit the color, the computer clears the
screen to the current background ColClf.

The "Lines" program doesn't make use of PClS's color option. Therefore,
the computer uses the current background color, buff. Retype Line 10:

10 pelS G

Run the program. Your screen now displays orange lines on a cyan
background.

Learned in Chapter 16

BASIC WORDS

SCREEN
IUS

CONCEPTS

Displaying the current screen
Clearing the graphics screen

Notes

97

CHAPTER 17

MINDING YOUR PMODES
What lets you produce exciting graphics is the massive size of graphics
memory. To get a perspective on this, contrast graphics and text memory:
Text memory has 512 memory locations; graphics memory has up to
12,288!

::=======:.~::.:.'::.
---~-----

You can use the power of graphics memory in three ways:

To produce graphics with very high resolution (fine detail),

To produce graphics with many colors.

To produce fast-changing, "animated" graphics by retaining many
graphics screens in memory at once.

How much you can use of each of these features depends on how you
"set" graphics memory. The more you use of one feature-such as
retaining many screens in memory-the less you can use of the other
features (high resolution and colors).

PMODE-the unknown statement in the "Lines" program-is what sets
the features you want to use. PMODE lets you set 5 "modes," shown in
Table 17-1. Each mode, of course, has its own trade-off o(features.

Table 17-11 PMOOE Settings

98

PMODE 4
PMODE 3
PMODE 2
PMODE 1
PMODE 0

Resolution
high
medium
medium
low
low

Colors
2
4
2
4
2

Screens
2
2
4
4
8

"lines" in Mode 4
Bring back "lines" and see what it looks like in a different mode. In case
you've forgotten "lines:' here it is:

5 PMODE 1 ,1
1121 pelS
2121 SCREEN 1 ,1
25 LINE (121.121)-(2550191> ,PSET
3121 LINE (1211181)-(255,121) ,PSET
a!21 GOlD 1I!21

Now change from Mode 1 10 Mode 4.

5 PM ODE 1I, 1

Run the program. You should spot two feature changes right away:

The color changes because you shifted from a 4-color mode
to a 2-co!or mode.

The lines are much finer because they're in high resolution.

(The next chapter talks about the third feature; the one having to do
with storing more than one graphics screen in memory.)

Colors a la Mode
A 2-calor mode, just like a 4-color mode, has 2 color sets. You saw one of
the 2-calor sets-black and buff-when you ran "lines" in Mode 4. To see
"Lines" in the other 2-color set-black and green-make this change:

20 SCREEN 1,0

Table 17-2 shows what color sets you can use in 2-color and 4-color
modes.

Table 17-21 Color Sets

Think of when you first
slarted drawing. You prob
dbly used wide Cfdyons.
When you gOI beller, you
began using thin crayons 50
that you could drdw Ihin
lines-Jines with better
"resofution. "

SCREEN 1,0
SCREEN 1,1

2-Color

Black/Green
Black/Buff

4-Color

Green/Yellow/BJue/Red
BufflCyan/Magenta/Orange

"Lines"-Through Thick and Thin
Notice that when you ran "Lines" in high resolution (Mode 4), you didn't
have to change any dol positions. Color BASIC uses the same 256 x 192
screen grid, no mailer what Ihe resolution is.

For example, (128,96) is always the cenler of the screen, no mailer what
resolution you're using, and (0,0) is always the upper-left corner of the
screen.

The size of each dot on the screen, though, is different in each resolution:

Low resolution uses {our grid dots 10 set a screen dol. When the
computersels Dol (0,0), for example, it also sets (1 ,0), (1,1), and (0,'),

Medium resolution uses two grid dots to set a screen dol. When the

99

computer sets Dot (O,OJ. it also sets (1,0).

High resolution uses only one grid dot to set a screen dot. When the
computer sets Dot (0,0), that's all it sets.

Thus, a diagonal line in low resolution looks more like a stairstep than one
drawn in high resolution:

low resolution High resolution

And the number of different screen positions you can use in low resolution
is only one-fourth what you can use in high resolution (see Table 17·3).

Table 17-31 Graphics Screen Resolution

High resolution

Medium resolution

Low resolution

Screen Positions
Available

256 x 192

128x 192

128x96

Size of
Each Dot

o
B
ill

100

Here is a program that shows a box cyde through each mode. Notice
that with each mode the box's lines go from thick to thin and its colors
go from 2 colors to 4 colors.

5 FOR MODE = 0 TO a
10 PMODE MODE ,1
20 PClS
30 SCREEN 1 ,1
40 lINE (75,50)-(125,100) ,PSET.B
50 FOR Y = 0 TO 500: NEXT Y
60 NEXT MODE
70 GO TO 5

This is PMODE's format. The next chapter shows how to use use the
second parameter, start page.

PMODE mode.start page sets the current graphics screen in graph-
ics merTIOfY

mode specifies the features you want to use in graphics Keep i, mind "'.. ,he
merTIOfY. If you omit mode. the computer uses the last graphics scrren is always
mode or (if none) Mode 2. full o/"dots...T~ issues dfe

starl page Specifies 00 which page in graphics memory to simply how many. whdf
start a graphics screen. If you omit slarl page. the com- size. and whal color.
puter uses the last slarl page or (if none) Page 1.

Therefore. if you omit PMOOE. the computer uses PMODE
2.1.

Learned in Chapter 17

BASIC WORDS

PMODE

CONCEPT

Selecting a resolution mode
Selecting color availability

Notes

101

102

CHAPTER 18

FINDING THE RIGHT PAGES
In writing this book, we've "stored" chapters on pages. Some chapters
require more pages; some less.

In the same sense, Color BASIC stores graphics screens on 1,536-byte
blocks of graphics memory called "pages." Some screens require more
pages; some less.

Table 18-1 shows how many pages it takes to draw a screen in each mode.
As you can see, a screen drawn in a higher mode (which offers higher res
olution or more colors) consumes more memory pages than a screen drawn
in a lower mode.

Table 18-11 Pages Required for Graphics Screens

Screen Pages Required

Mode 4 Screen 4 pages
Mode 3 Screen 4 pages
Mode 2 Screen 2 pages
Mode 1 Screen 2 pages
Mode 0 Screen 1 page

See what happens jf you store the now famous (infamous) "lines" screen
on different pages.

5 PMODE 1 11
10 PClS
20 SCREEN 1 ,1
25 LINE (0,0)-(255.191) ,PSET
30 LINE (0119l)-(255.0),PSET
£10 GOTO 1I0

Focus on PMODE. As you know, the first PMODE parameter tells the
computer to start a Mode 1 screen. And, as Table 18-1 tel [s you, a Mode 1
screen requires two pages.

The second parameter tells the computer to start the screen on Page 1.
Thus, the 2-page "Lines" screen is on Pages 1 and 2.

To put the 2-page "lines" screen on Pages 3 and 4, type:

5 PMODE 1.3

Run the program. This shows the same screen, but the screen is in on
entirely different pages.

stores screen on
Pages 1-2

stores screen on
Pages 3-4

How about storing two screens-one on Pages 1 and 2, and another on
Pages 3 and 4?Change line 5, delete Line 20, and add Lines 27 and 28.
What you end up with is this:

5 PMOOE 1 t1
10 PCLS
25 LINE (0,0)-(255t191) ,PSET

27 PMODE 1,3
28 PCLS
30 LINE (0t191>-(255,0),PSET

40 GOTD 40

The first part of the program starts a Mode 1screen on Pages 1-2. It "clears"
this screen and puts a line on it.

The next pari of the program starts another Mode 1 screen on Pages 3-4. It
clears this screen and puts a line on il.

Run the program and you won't see either screen, because there's no
SCREEN statement. So add SCREEN:

35 SCREEN 1,1

Now run the program and you see one screen~the one stored on Pages
3-4.

Whenever Color BASIC displays a screen, it uses your most recent PMODE
instruction to tell it what the "current graphics screen" is. In this case, the
most recent PMODE~PMODE 1,3-tells Color BASIC that the current
graphics screen is a Mode 1 screen on Pages 3-4.

Insert another PMODE line just before SCREEN, and Color BASIC displays
a Mode 1 screen on Pages 1-2:

32 PMODE 1,1

Just for kicks, have Color BASIC display a .Mode 2 screen that starts on
Page 2. Any guesses on what you'll see? Change line 32 to PMODE 2,2
and run the program. Since Mode 2 requires two pages, you see what's
on Pages 2-3. And, since this is Mode 2, you see this screen in 2 colors
with medium resolution.

Flipping Screens
As you know, animators make cartoons by drawing many still pictures and
then "flipping" through them.

50 here's the moment you've been waiting for! This program flips screens
to show two lines in motion:

5 PMDDE 1 t1 ~
10 PCLS stores Page 1-2 screen
25 LINE (0,0)-(255,191> ,PSET

27 PMDDE 1 ,3 d
28 PCLS stores Page 3-4 screen
30 LINE (0t191)-(255,0) ,PSET

32 PMODE 1 ,1 ~
34 SCREEN 1,1 displays Page 1-2
3"6 FOR 1=1 TO 200: NEXT I screen

You may have noticed thar
all rhe graphics statements
(LINE, PPO/NT, PSET, PRE
SET, PelS, SCREEN, and
COLOR) produce graphics
on lhe "current graphics
screen." The most recent
PMODE starement is whar
sels Ihe curren! graphics
screen.

Did you know thaI il rakes
morerhan 12,OOOindividual
drawings 10 make jusr one
7-minurecarroon? Wouldn'r
a compurer be a help there!

103

38 PI'100E 1,3
40 SCREEN 1,3
.lI2 FOR 1=1 TO

aa GOTO 32
2••'NE;:]- displays Page 3-4

screen

If you ew.'r h.Jve a con
flict benVE'efl program
memory requil'f'1JJ(>fflS and
video memory require
menlS, you'/1 gel a ?OM
ERROR (Our 01 Memory).

104

Adding Pages
You can use a maximum of 8 pages of graphics memory-Pages 1-8.
However, when you first start up, Color BASIC gives you only half that
amount-Pages 1-4. For example, make this change to "lines":

S PMODE 1,a

Run "lines" and you get a ?FC Error. You're asking Color BASIC to use
Pages 4-S, but Page 5 is not available!

To remedy the problem, insert Line 4 and you now have all 8 pages.

4 PCLEAR 8

PCLEAR lets you reserve from 1 to 8 pages of memory. If you use
PCLEAR, it needs to be your program's first or second statement (after
CLEAR, if you use CLEAR):

PCLEAR pdges reserves pages of graphics memory

pages is the amount of graphics memory to reserve <0-8)

On startup, the computer automatically reserves 4 pages. Use P(lEAR
to reserve more or fewer pages.

You may wonder why we don't use PCLEAR 8 all the time. The reason:
'PCLEAR 8 decreases program memory. Sometimes you need more
program memory; other times you need more graphics memory. PCLEAR
sets the balance.

Up and Down, Up and Down
You probably think your computer is a little crazy, but now we'll prove that
it's a real yo-yo. In fact, you can call this program "Yo-Yo." Enter and run
it.

10 PCLEAR 8
20 FOR P=1 TO 8
30 PMODE 0,P
40 PCLS
S0 LINE (128,0)-(l38r10+(P-1)*1Sl ,PSET
60 CIRCLE (128,P*1Sl liS
70 NEXT P
80 FOR P=1 TO 8:GOSUB 110:NEXT P
90 FOR P=7 TO 1 STEP -2:GOSUB 110:NEXT P
100 GOTO 80
110 PMODE 0,P
120 SCREEN 1,0
130 FOR T=1 TO 10:NEXT T
140 RETURN

With the exception of CIRCLE (see the next chapter), you've already
learned all the features used by this program.

peopy

Using PCapy ("page copy") you can copy one page o(graphics memory
to another. Here is the format for PCapy:

PCOPY paget TO page 2 copies pdgel to page2

For example, if you want to copy Page 3 to Page 8, type:

peOpy 3 TO 8

One advantage of PCapy is it can shorten your programs by eliminating
repetition.

Keep in mind PCapy copies one graphics' memory page. Unless you're in
Mode 0, this is not one screen. For example, in Mode 4, the above
statement copies only one-fourth of a screen.

DO·IT-YOURSELF PROGRAM 18-1

The following program displays 4 squares that are on 4 dif(erep(
memory pages on the screen at the same time. Run it, and then shorten
the program using peOPY.

4 PClEAR 8
5 PMooE 3,4
10 PClS
11 SCREEN 1 ,J
12 lINE (110,20)-(120,30) ,PSETd5
20 PHoDE 3 ,3
21 SCREEN 1 t1
22 lINE (110,20)-(120,30) ,PSET,B
30 PM ODE 3,2
31 SCREEN 1,1
32 lINE (110,20}-(120,30) ,PSET,B
40 PM ODE 3,1
41 SCREEN 1 t1
42 LINE (110,20)-(120,30) ,PSET,B
50 GO TO 50

105

DO-IT-YOURSELF PROGRAM 18-2

Using LINE and start page, simulate a lightning storm. (Put "crazy
lines" at random positions on different pages. Then switch back and
forth between pages.)

Learned in Chapter 18

106

BASIC WORDS
PClEAR

PMODE

peopy

CONCEPTS
Reserving pages for graphics

Selecting a start page
Flipping pages to simulate motion

Copying graphics from one page to another

Notes

CHAPTER 19

GOING IN CIRCLES
Does all this talk about SCREEN, PMODE, and PClEAR have you going in
circles? If so, you haven't seen anything yet!

For example, you can create a full circle or ellipse, or a partial circle or
ellipse using a single statement, CIRCLE. Here is the syntax of CIRCLE:

CIRCLE (h,v),r,c,hw,start,end draws a circle on the currenl graphics
screen

h is the horizontal position of the centerpoint (Q to 255).
v is the vertical position of the centerpoint (0 to 191).
r is the radius in screen points.
c is any available color (0-8). If you omit c, the computer uses

the foreground color.
hw is the height to width ratio (0 to 255). If you omit hw, the

computer uses 1.
start is the starting point (0 to 1). If you omit start, the computer

starts al O.
end is the ending point (0 to 1). If you omit end, the computer

uses 1.

If the s/afl point is equal to the end point or if you omit both the
s/afl and the end, the computer draws the complete
ellipse.

To draw a circle, you need only the centerpoint (h,v) and the radius (fl,
which is the distance from the center in points.

First, count over on the h-axis, then down on the v-axis to locate the
desired center. Then. once you specify that point, indicate the circle's
radius. The largest radius that fits on the screen is 95.1£ the radius is larger
than 95, the circle "nattens" against the edges of the screen.

Bring your "Lines" program back into service.

5 PMOOE 1 01
10 PClS
20 SCREEN 111
25 LINE (010)-{2550191> ,PSET
30 LINE (00191>-(255,0) ,PSET
£10 GOTO tJ0

107

Your progrilm should read:

5 PMOOE 1 .t
10 PCLS
20 SCREEN 1,1
30 CIRCLE (128,96)

,"
40 Gala 40

108

Delete Line 25 and change line 30 as follows:

30 CIRCLE (128,88) ,85

Run the program. Your TV should display a somewhat scruffy, orange
circle on a buff background. Are you wondering why the circle isn't truly
round? look at Line 5 and you'll see; the computer is in Mode 1 (medium
resolution), .

Change Mode 1 to Mode 4 (high resolution) as follows:

5 PMODE lid
10 PClS
20 SCREEN 1,1
30 CIRCLE 028,86J ,85
lI0 GoTo lI0

Run the program. Now that's a circle! (It should be a buff circle on a black
background.)

DO-IT·YOURSELF PROGRAM 19·1

Using the program above, generate a bull'seye. You can do this one of
two ways:

Add a separate program line for each concentric circle but use a
common center (h,v coordinate).

Use a FOR ... NEXT loop with a STEP 10 to have the computer
do the work for you.

DO·IT·YOURSElF PROGRAM 19-2

Do you still have the program for the house you built? How do you
expect to get into the house without a doorknob? Use CIRCLE to put a
doorknob on the front door. Your Graphics Screen Worksheet is
helpful in locating the exact point you need.

Note: If you use medium or low resolution, a circle small enough
to serve as a doorknob does not have much detail. Run the pro
gram in Mode 4 for more detail.

Coloring the Circle
After you decide on the circle's radius, choose its color. Using 2-color
mode, you haven't much choice, but using 4-color mode (Mode 1 or 3),
you'll find the color option an exciting feature.

Your program should read:

5 PMooE 1 tl
10 PClS
20 SCREEN 1,1
30 CIRCLE (128,86) ,85
110 GoTo 110

First, make the circle a more manageable size:

30 CIRCLE (128,86) ,30

Now, for a little variety, change the color to cyan:

30 CIRCLE (128,86) ,30,6

It's as easy as that! In (act, you can change the circle's color to any of the
available colors.

Putting on the Squeeze
Did you ever take a Hula-Hoop, bicycle tire, or buggy wheel and squeeze
it with both hands to form an ellipse?

Similarly, you can change circle on your screen into an ellipse by using the
heighllwidth ratio (hw) option.

The width of the ellipse is equal to the radius. The height is determined by
hw. If hw is 1, the computer draws a circle. If hw is greater than 1, it draws
an ellipse that is higher than it is wide. If hwis less than 1, it draws an ellipse
that is wider than it is high. For example, this program draws a circle:

5 PMoDE II tl
10 PClS
20 SCREEN 1,1
30 CIRCLE (128,86) ,30,,1
110 GoTo 110

If however, you change hw as shown here, the program draws a vertical
ellipse:

30 CIRCLE (128,86) ,30,,3

If you change hwas shown here, it draws a horizontal ellipse:

30 CIRCLE <128 ,S8) ,30, ,,25

If hw equals 0, then the "ellipse" becomes "infinitely" wider than it is
high. In other words, it becomes a horizontal line.

•As hw increases past 1, the "ellipse" approaches a vertical line.

Change Line 30 in the following ways and run the program:

30 CIRCLE (128,86),30,1!~

30 CIRCLE (128,86) ,30,,100

Nolice that your CIRCLE
statement does nOl include
the color code. Omitting the
code tells the computer to
use the foreground color.
You must include the com
ma. though, to indicate to
the computer that you are
omilting the c and that the
number specifies the hw
ratio.

You could say the circle is
finally on the straight and
narrow path,

When you use 0, imagine
you're looking at a coin from
the edge, and you'll have a
good idea of what we mean.

109

From Start to Finish ...
Suppose you want 10 draw only part of a ellipse (an arc). To do this, you
must list the ellipse's center point (h,v), its radius (rl, and ils heighVwidth
ratio (hw). If you wish, you may precede hw with the color (el.

Note: To draw an arc, you must specify hw. For a normal arc, use
hw 1. .

From the above information, the computer knows the location, width, and
height of the ellipse. Now you can tell it how much of the ellipse to draw.

To do this, specify the 51aft of the arc (0 to 1) and end (0 to 1) of the arc,
following the chart below. Keep in mind that the computer always draws
clockwise. .75

.so o

110

.25
Suppose, for example, you want to draw this arc:

.75

.25

To do so, use this statement:

30 CIRCLE (128.86).3011,.25,.75

Now change the statement to draw this arc:
.75

.25
Is this your new Line 3D?

30 CIRCLE (128,96) ,3011 ,.75 •• 25

DO-IT-YOURSELF PROGRAM 19-3

Has night fallen on the house you built? If so, you might want to shed
some light on the subject by putling a crescent moon in the corner.
This requires two intersecting arcs and some trial and error on your
part.

DO-IT-YOURSELF PROGRAM 19-4

Maybe it's cold, as well as dark, around your house. If so, build a fire in
the fireplace and show smoke coming out the chimney_ (Use CIRCLE
to generate a spiral that simulates the smoke.)

Learned in Chapter 19

BASIC WORDS

CIRCLE

CONCEPTS

Drawing a circle or an ellipse
Coloring a circle or an ellipse
Drawing an arc

Notes

111

112

CHAPTER 20

THE BIG BRUSH-OFF
You might think we've forgotten this is a Color Computer. $0 far, it's been a
little dab here and a splotch or two there. You'll never create a masterpiece
that way! Well, it's time to loosen up a little and painllhe town, jf not red,
then at least a bright orange.

The Extended Color BASIC graphics function PAINT lets you "paint" any
shape with any available color.

Here is the syntax for PAINT:

PAINT (h,v),c,b paints the current graphics screen

h is the horizontal position (0 to 255) of the point at which
painting is to begin.

v is the vertical position (0 to 191).
c is the color (0 to 8l-
b is the border color at which painting is to stop (0 to 8).

If the computer reaches a border other than that of the specified COIOf, il
paints over that border.

Change the "Lines" program as follows:

5 PMODE 3 t1
10 PClS
20 SCREEN 1,1
30 LINE (0,0)-(255t181l,PSET
40 LINE (0t181)-(255,0) ,PSET
50 CIRCLE (128,86),80
60 PAINT (135t125) ,S,S
70 GOTD 70

Before you run the program, can you predict the results? Lines 30 and 40
make the intersecting lines. Line 50 generates a circle the center ofwhich is
at the point where the two lines intersect. That part should be easy, but
what about PAINT in Line 60?

If you guessed the computer goes to screen position (135,125) and paints
with orange until the paint reaches an orange border, you're right!

Delete line 30 and then run the program. Now that you redefine the
borders, the computer paints half the circle.

DO-IT-YOURSELF PROGRAM 20-1

Can you paint the entire circle? You can do this two ways. One
involves adding a line; the other involves deleting a line.

By the way, did you notice the computer's mode and color set? Mode 3 is a
4-color mode, and Color Set' -gives you buff. cyan, magenta, and orange.

Stay in Mode 3, hut change the color set (SCREEN 1,0) and run the
program. Without changing any other lines, you should get a red circle
(border) on a green background.

To avoid confusion about color, change the PAINT colorto fit thecolorset:

60 PAINT (1351125) 12,lj

Now when you run the program, the semicircle should be painted yellow
(Code 2) until the computer encounters the red (Code 4) border.

DO-IT-YOURSELF PROGRAM 20-2

Do you still have your house? It probably looks a little plain, maybe
even shabby. Why don't you spruce it up with some paint?

DO-IT-YOURSELF PROGRAM 20-3

Add a garage to your house, then use PAINT to raise and lower the
garage door. Since the painting action always goes up first. this takes a
lillie refining on your part. Add a delay before and after the opening.
(With CIRCLE, add the sun.) By the way, did you notice the computer's
mode and color set' Mode 3 is a 4-color mode, and Color Set 1 gives
you buff, cyan, magenta, and orange.

Learned In Chapter 20

Remember. you can paint
using only those colors that
Me iJVailable in your mode
and COIOf sel.

But you didn't specify red
lines and red paint! Do
you have any idea what
hJppened?

When the computer is in a
4-color mode a.nd you
specify <t color it c<tn't sup
ply; the computer subtrilcts
.. from Codes 5 through 8.
lit interprets 0 JS 3.1
~

BASIC WORDS

PAINT

CONCEPTS

Painting any figure

113

114

Notes

CHAPTER 21

DRAW THE LINE
SOMEWHERE

You already know how to create lines, ellipses, and boxes. Now how
would you like to learn a shortcut for doing some of those things? The
shortcut is DRAW, which leIs you draw a line (or series of lines) by
specifying direction, angle, and color-all in the same program line! Here
is the syntax of DRAW:

DRAW line draws a shape on the current graphics screen

line is a string expression that may include the following motion
commands, modes, and options:

Motion Commands

M = Move the draw position
U = Up
0= Down
l = lefl
R = Right
E = 45-degree angle
F = 135-degree angle
G = 225-degree angle
H = 315-degree angle
X = Execute a substring and return

Modes

C = Color
A = Angle
5 = Scale

Options

N = No update of draw position
B = Blank (no draw, just move)

Note: If line is a string constant, you must enclose it in quotes.

Always insert the B option directly before the M motion
command; otherwise, unwanted lines may appear.

115

This progrilm prOOlbly hils
replaced your dog as your
best friend.

5 PMOOE 3, I
10 PCLS
20 SCREEN I, I
25 ORAW "BM128 ,96;

U25; R25; 025;
L25"

40 GOTO 40

10 milke the program easicr
10 read, we've separated
eJch motion statement with
a semicolon (;1. You
needn't do this. You must.
however, always separate
the fh.v) coordinates with a
comma U.

116

Earlier you learned how to create a box using LINE. To do this, you may
have had to do some difficult figuring with the Graphics Screen Worksheet
to locate the necessary start and end points.

With DRAW, you have to locate only the start point and then tell the
computer in which direction to draw and how far to do so. If you omit the
start point, the computer starts at the last DRAW position or-if you
haven't previously used DRAW-at the center of the screen.

Use your "Lines" program to tryout DRAW. Delete Line 30 and change
Line 25 to the following:

25 DRAW "BM12B,8S;U251R2S;D2S;L2S"

Presto! Can you guess why the square's lower left corner is at (128,96)1
look at the first two numbers inside the quotes.

The motion command, M, tells the computer al which point to later begin
drawing.

M h,v tells the computer at which point to begin drawing

h is the horizontal position (0 to 255).
v is the vertical position (0 to 191).

Note: Always preface M by the letter B; if you do not,
unwanted lines appear.

The above program tells the computer to start drawing at (128,96), draw up
(U) 25 points, right (R) 25 more, down (D) 25 more points, and finally left
ILl 25

Note: If you omit the line's length, the computer uses 1 as the
length.

Setting the Square on Edge
(Diagonal Lines)

Instead of drawing horizontal and vertical lines, stand the square on one of
its corners. To do this, substitute E, F, C, and H for U, R, l, and D in line 25:

25 DRAW "BM12B,8S;E2S;F2S1G251H25"

This DRAW starts at (l28,96) too. Instead of going up, however, the first
line angles off at 45 degrees; the computer draws the next 3 lines altheir
designated angles.

If you are in Mode 0 or 1 and use E, F, C, or H to generate a line that has an
odd-number length and at least 1 odd-number coordinate (h,v). Lines F
and H have a slight "hitch" at the midpoint. If both coordinates are
even-numbered, Lines E and C have the "hitch." This is normal.

DO-IT-YOURSELF PROGRAM 21-1

You already know your computer is the star of the show, but can you
prove it by drawing a star? Use the DRAW motion commands for both
perpendicular and diagonal lines.

Absolute M v Relative M
Suppose you draw a square and then want to draw another one nearby.
You know exactly how far away you want the second square to be. but
don't want to have to locate the coordinates (h,lI).

Another form of the M command leis you specify "relative" motion instead
of "absolute" motion. So far. you have used absolute motion; you have
specified points in terms of their coordinates (h,lI). Using relative motion,
you can specify points in relation 10 the current point tthe poinllastdrawnl.

Here's the syntax for relative molion:

Y sign h-offset, v-offset lets you specify points relative to the cur
renl point

h-offset is the distance to move horizonlally from the current
position. If you precede it with a plus sign (+ L the
h·position increments by the specified amount. If you
precede it with il minus sign (-), the h-position
decrements.

v-o((sel is the distance to move vertically from the current. If you
precede v-o((sel with a plus sign (+) or if you omit the
sign, thev-lX>sition increments by the specified amounl. If
you precede it with a minus sign H, the v-position
decrements.

Forexample. if you wish to creale il second box at a position relalive 10 Ihat
orthe first box in Ihe (redefined) "Lines" program, you mighl add Ihis line:

30 DRAW "BM+1S,lS;U2SiR2S;OZSiL2S"

When the computer executes line 30. the current draw posl1lon is
(128,96), which is Ihe the lasl draw position in line 25. So the lower left
corner of Ihe new square is at (238+ 15,96+15) or (255.111).

Change Line 30 as follows:

30 DRAW "BM+IS.-1SiU2SIR2Si02SiL2S"

Run the program. The start point of the new square is (128 + 15,96-15) or
(143,81).

DO-IT-YOURSELF PROGRAM 21-2

After all this heated activity, you're probably ready to cool off. so why
don't you use DRAW to create an ice cube?

You can generale the entire cube using DRAW. or you can incorporate
a couple of LINE commands within the program. Try to use both
absolute and relative motion.

Tipping the Scales
Whal if the figures you draw lurn oul to be too big or too small?

The solution's easy. Your computer has a built-in function that lets you
"scale" (up or down) any display generated by DRAW. All you have to do

~
I

Abso/tJIe mortOn: "Co 10
I1If' cOt"net 01 SJrd S/reet
olnd Bomber lane."

~ollive morion: EJ'eo,
bIocb oown. loll;e ol righi,
olnd go I morE" block."

When you USt' tl~/colle-l
oown oplion, the COfIlJUfef
rounds I1If' I"f!SUIllng fine
It'ngIh 10 lhe flNl"f!S/ whole
numbt't. if if is flO! oltready
ol ,,-hok number.

=:...----1
Fcx eLm..... "S1U1SRl5D
15(15" resu/u in ol /1-1/1
" /1-1/1 sqUolrt'. Tfw. com
puler draws 01 IJ " lJ
sqUolrt'.

117

118

is use the $x command in the string.

Sx lets you scale a display

x is a number in the range I 10 62 thaI indicale~ the scale
factor in units oj 1/4 as shown hert>:

1 = 1/4 scale
2 = 214 scale
3 = 3/4 <;COlle
4 = 4/4 lfulll scale
5 = 5/4 (125%1 scale
8 = 6/4 (double) scale
12 = 1214 (triple) scale
elc.

If you omil x, the computer uses 4 (4/4 = I).

After you enter an $x command, the computer scales all absolute and
relative motion commands accordingly until you enter another.

Make your refined "Lines" draw a single square again. Do this by deleting
Line 30 and changing line 25 as follows:

25 DRAW ·S2;FM128,9S;U2S;R2S;02S1L2S·

Run the program. The square in the lower left corner should be half the size
you specified.

To see how small or large a square can be, run the following program:

5 PMDOE ad
10 pelS
20 SCREEN 1 11
2S FOR SCALE = 1 TO 62
30 Sf = MS· + STR$(SCALEl + ";"
3S DRAW S$ + "BM10,100U20R20020L20"
40 NEXT SCALE
S0 GOlD S0

Don't make the mistake of thinking thai the smallest square is the one
specified in line 35. The one we specified is the fourth one from the edge.

/

Color Me ...
DRAW's C option lets you specify the color of a particular line.

First, list the "Lines" program:

S PMDDE 3 tl
10 PClS
20 SCREEN 1,1
30 DRAW "S2;BM128,8SiU2SiR2SiD2Sil2S"
1I0 GOTD 1I0

Go back to full scale either by changing 52 to 54 or by deleting 52. Then,
just inside the first set of quotation marks in Line 30, insert:

C6

Run the program. Does it display a cyan square on a buff background?

Replace the C6 (in program Line 30) with C8 and run the program. Did the
square turn orange?

C must take the following form:

ex lets you specify a line's color

x is the color code (0 to 8). If you ami! x, the computer uses the
foreground color.

You can insert ex anywhere inside the DRAW statement. All actions that
follow are the color you specify. For instance, change Line 30 to read:

30 DRAW "C8i BM128,9SiU2SiR2Si
CSi D2Sil2S"

Run the program. The program displays a 2-color square. The first 2 lines
drawn are orange. The second 2 are cyan.

What's Your Angle?

Another option that is available with DRAW is A. This option lets you
specify the angle at which a line is to be drawn. After you include A in the
DRAW command, the computer draws all subsequent lines with the angle
displacement specified by Ax until you specify otherwise.

Your program should now read:

S PMDDE 3 tl
10 PClS
20 SCREEN 1,1
30 DRAW "CSiBM128,9SiU2Si

R25jD2Sil25"
1I0 GOTD 1I0

If you "'.In! to "erdSe'· il

Iiiif', drilw another line on
top of il using the bdck·
ground color.

119

120

Here is the syntax for the A command:

Ax lets you specify the angle of a line

x is the angle code (Q to]). All angles are measured clockwise.

o = 0 degrees
1 YO degrees
2 = 180 degrees
3 = 270 degrees

It you omit Ax, the the computer uses AO.

To illustrate this, change program Line 30 to read:

30 DRAW "A0iBM128.9S;U25"

Run the program. Your screen displays a vertical line that is 25 points long.
Now change line 30:

30 DRAW "Al;BM128.9SiU25"

Run the program. The line is now horizontal.

Just Shootin' Blanks
If you want the next line you draw to be a "blank" or an invisible line,
include the B option.

For example, let's say you are drawing lellers of the alphabet and are ready
for the letter C which is nothing but a square with the right side blank.
Change line 30 as follows SO the program generates such a figure:

30 DRAW "BM128 ,9S ;U25 ;R25 ;B ;025 ;L25"

Run the program. Remember, only the line immediately following the B is
blank.

DO-IT-YOURSELF PROGRAM 21-3

Print your name on the screen using DRAW. This means you'll have to
stay in the graphics screen. Sure, it would be easier to write your name
on the lext screen, but you can't have "true" text and graphics at the
same time.

What! More Options?

Another of DRAW's many features is N, the "no update" option. N tells the
computer to return to its original (current) position after it draws the next
line. To see this, change line 30 to read:

30 DRAW "M128.9Si N; U25; N; R25; N;
025; N i L25 i II

Run the program. The computer draws a 25-point line straight up from
(128,96}.ltlhen returns to{128,96), draws the next line, returns, draws the
next, and so on. As a result, four lines radiate from the center of the screen,
each in a different direction (up, righi, down, and left).

DO-IT-YOURSELF PROGRAM 21-4

Using DRAW's N option (and CIRCLE), have the complller draw a pie
that has 8 pieces. Once you've done that, cut out apieceofthepie,lnd
put it over to one side.

String Constants v String Variables
As stated earlier, the string following DRAW can be either a coosIJnt-<lS
in the previous examples--or a variable.

To use a string variable, precede the DRAW stalement with a program line
that identifies the variable as a string; then substitute the string for the
quoted material in DRAW. For example, add line 25 and change line 30
as follows:

25 A$="BM128,8S;C8iU25;R25;025iL25"
30 DRAW A$

Run the program. The computer displays an orange box (25 x 25), the
lower left corner of which is in the ceoter of the screen.

Exteoded Color BASIC offers a variation on this, called the "execute" (X)
action. While you execute a DRAW routine, the execute action lets you
execute another DRAW string, then return to and complete the first
operation. Todo this, leave Line 25 as is so that it defines A$; then change
Line 30. The two lines read:

25 A$=~BM128!9GiC8;U25iR25;D25;L25"

30 DRAW "BM85,50;U25iR25; XA$; D25;L25 H

Run the program. The computer starts drawing at (95,50) a line that
extends up (U25) and then right (R25). II then executes A$ so that it draws a
25 x 25 square, starting al (128,%). After executing A$, it returns to the
original (current) string and completes its execution (D25,125).

DO-IT-YOURSELF PROGRAM 21-5

Do-It-Yoursel(Program 21-3 shows that you c<m simulate text (let
ters) on the graphics screen by drawing the letters. Use DRAW to
creale all 26 letters of the alphabet. Store the DRAW commands in
strings. Then use the "execute" (X) action to arrange the letters into
words.

DO-IT-YOURSELF PROGRAM 21-6

Do you still have your house? If so, load the program again and use
DRAW to make the front doo, open and close.

Does that mean iI', .1

drawstring!

A semicolQlI must ,lIIVJys
follolV the dollar sign (even
though the mher semi
colons are not necessary):

XAjXXiXC$

121

122

Learned in Chapter 21

BASIC WORDS CONCEPTS

DRAW Drawing visible lines
Drawing invisible (blank) lines
Scaling figures 10 size
Coloring lines
Returning the draw to ils original position
Using siring variables to draw
Executing a second draw in the middle of the
fir;;.

Notes

CHAPTER 22

GET AND PUT:
THE DISPLAY WENT

THAT ARRAY

In previous chapters, you've learned a few ways to move figures from one
screen to another, but none is very efficient. Have no fear; there is a better
array (groan). It has to do with GET and PUT.

Using these statements, you can "get" a rectangular area from the screen,
store its contents in an "array" (an area of memory), and then "put" it back
anywhere you want on the screen. This is the best method for simulating
motion.

A who? A what? Arrays are
covered in Part III, later in
this manual.

We use the term "rectan
gle" to refer to the area
that contains the graphic
display_ or course, you
can't actually see the rec
lang/e. You'll have 10 visu·,
alize it. Here's an
il/USlration to help you:

The formats for GET and PUT are:

GET hJ,vl-h2,v2,array, G gets a rectangle from the current graph
ics screen and stores it in an array

hl,vl is the rectangle's upper-left corner.
h2,v2 is the rectangle's lower-right corner.
array is an area in memory that stores the rectangle.
G stores the array in full graphic detail. It is required when

using high resolution (Mode 4 or Mode 3 with colors)
or when using the PUT action parameters. Otherwise,
garbage appears on your screen.

PUT h1;v1-h2;v2;arra)';dction puts a rectangle, stored in an array,
on the current graphics screen

hl,vl is the rectangle's upper-left corner.
h2.v2 is the rectangle's lower-right corner.
array is an area in memory where the rectangle is stored.
action (shown on Table 22-1) tells the computer what to do

with the points stored in the rectangle.

Note: Be sure the computer is in the same PMODE for GET
as it is {or PUT. Otherwise, you may not "put" what you
"got."

123

How large a reclangle you
can store in an array de
pends on how much mem
ory yOll have. Each point,
when stored in an array,
COn5l1mes 5 bytes of mem
ory. In a 16K RAM system,
you can store no more than
1400 points in an array. If
YOllr program is long, yOll
may have to lise it smaller
itnity.

124

Type and run this program to see how GET and PUT work:

5 PClEAR II
113 PMOOE 3d
15 PClS
213 SCREEN 1,1
25 DIM 1,.)(213,213)
30 CIRCLE (213,213)1113
35 GET (113010)-(30,313) ,I)

lI13 PClS
lI2 FOR OLAV = 1 TO 3130: NEXT OLAV
lJ5 PUT (11001113)-(130o13!llJ,V
50 FOR OLAV = 1 TO 300: NEXT OLAV
60 GOTO 60

The program draws a circle on one part of the screen and then moves itto
another. To do this, the computer:

1. Creates an array named V in memory (Line 25). Array V is big enough
to store a 20 X 20 rectangle.

2. Draws a circle on the screen (line 30).

3. Gets a 20 X 20 rectangle containing the circle and stores it in the
Array V (line 35).

4. Clears the screen (Line 40),

5. Puts the 20 X 20 rectangle (stored in Array V) bJck on the screen.

Storing the Rectangle

As you can see from the above program, GET and PUT use an array to store
the rectangle. So, before you use GET or PUT, you need to create this array.

The DIM statement lets you do Ihis.

DIM dfray(1ength, width) creales an array for storing a rectangle
the size of length X width points

Note: DIM should be one of the first lines in your program (after
CLEAR and PCLEAR, if you use them).

How large does the array need to be? This depends on how large a
rectangle you want to "get" or "put":

Width = h2 - hl
length = v2 - vl

For example, the above program's GET statement uses (10,10) and (30,30)
10 specify a rectangle. Thus, the rectangle is 20 X 20: It has a width and
length of 20. The PUT statement uses the same size rectangle: 20 X 20.

Put Not What You See

You've now put a rectangle on the screen one way-with the PSET ac
tion. (When you don't specify another action, the computer uses PSET)
There's more than one way, though, to put rectangles on the screen.

To see how the other actions work. start by running this program. 11 puts 15
rectangles on the screen with the P5ET action.

5 PCLEAR II
10 DIM V (30,30l
15 PMOOE 2,1
20 PClS
25 SCREEN 1,1
30 CIRCLE (128 ,86l ,30
35 PAINT (128,85),2,1I
lI0 PAINT (128,87> ,3 ,1I
lI5 GET (98,81l-(128t111J,V,G
50 PCLS
55 FOR I = 150 TO 1 STEP -10
60 PUT 1I ,81-1/5l-(1+60t111-I/5l ,V,PSET
65 NEXT I
70 GOTO 70

PSET sets and resets each point as it is in the array rectangle. Each rectangle
it puts on the screen is the same as the one stored in the array.

Now change Line 60 in various ways to try other actions. First. try PRESET.

60 PUT (I,81-I/5J-(I+G0d11-I/5),I),PRESET

PRESET sets and resets the reverse of each point in the array rectangle. Each
rectangle it puts on the screen is the reverse of the one stored in the array.

Try the OR action:

60 PUT (! ,81-I/5l-(!+G0t111-I/5l ,V,oR

OR sets each point that's either (1) set in the arrdY rectangle or (2) already
set in the position where it's pUlling the screen rectangle. Each rectangle it
puts on the screen has all points set that are stored in the array plus what is
currently on the screen.

For a strange effect, try the NOT action.

60 PUT (! ,81-!/5)-(I+601111-1/5l ,V,NoT

NOT sets and resets the reverse of what's on the screen. (NOT doesn't care
what's stored in the array.) Each rectangle it puts on the screen is the
reverse of the previous one.

Try the AND option with this program, and you won't see anything:

60 PUT (I ,81-I/5l-(I+60dl1-I/5l ,V,AND

AND sets each point that (1) is set in the array and (2) is already set on the
screen in the position where it's putting the rectangle. Any points that don't
meet both of those conditions are reset. In this case, each rectangle AND
puts on the screen has all points reset-you see nothing.

If the compuler pUIS garbage
on your screen, perhaps you
have omitted the G oplion
with CET.

125

This is a summary of each action:

Option Function

PSET

PRESET

AND

OR

NOT

Sets each poinllhat is set in the array.

Resets each point that is set in the array; sets each
point that is reset in the array.

Compares each point in the array rectangle with the
screen rectangle. If both are set, the computer sets
the screen point; if not, it resets the screen point.

Compares each point in the array rectangle to the
screen rectangle. If either is set, the computer sets
the screen point.

Reverses the slate of each point in the screen rec
tangle regardless of the array rectangle's contents.

DO-iT-YOURSELF PROGRAM 22-1

Use GET and PUT to send a spaceship up the screen and across ils
"outer limits." You might want to add a (ew asteroids and aliens to
make the voyage more exciting!

126

BASIC WORDS

GET

PUT

Learned In Chapter 22
CONCEPTS

Storing a screen display in an array

Returning the display to the screen in either
the same or a different position

Determining the state of the returned points
of the display

Notes

CHAPTER 23

A NEW KIND OF POINT

As you recall from the SCREEN and PMODE chapters, your computer has
two kinds of video memory-text and graphics. And it uses these two
memories to create two kinds of screens-text and graphics.

All the extended graphics statements (such as LINE, CIRCLE, PPOINT. and
PMODE) create graphics screens using the massive power of graphics
memory. This lets you draw exciting, high-resolution, and fast-moving
images.

There are two kinds of images, though, that you can', produce on a
graphics screen:

An image that uses a!l9 colors (You can use no more than 4 colors on
a graphics screen,)

An image that uses text, as well as pictures (You cannol print text on a
graphics screen.)

To produce these kinds of images, you need to draw pictures on a text
screen. Extended Color BASIC has 3 statements you can use for this
purpose:

SET-sets a dot on your text screen

RESET-resets a dot on your text screen

POINT-tells what color a dot is on your text screen.

If these statements remind you of PSET, PRESET, and PPOINT, that's no
accident. SET, RESET, and POINT perform the function on the text screen
as PSET, PRESET, and PPOINT perform on the graphics screen.

The analogy ends there, though. There are no text screen equivalents to
such powerful statements as DRAW, PAINT, and PMODE. On a text
screen, you can draw only one dot at a time.

First make your screen black:

10 CLS(0l

Now set a dot-a blue one--on the top-left corner of your lext screen. Type
and run this program:

20 SET(0,0,3l
30 GOTO 30

Set another dot-a buff one--on the bottom-right corner of your screen.

20 SET{63J31,Sl

As you may see, you do not use the 256 X 192 graphics grid to set dots on
your text screen. Instead, you use a 31 X 63 grid called the SET/RESET grid
(shown in the back of this book).

127

Setting Two Dots
To set two dots on a tex! screen. you need to plan. To find out why. run
a few programs. First. type and run this:

10 CLS(!2l)
20 SET(32dll.3)
30 SET(33dll.3)
ll0 GoTo ll0

You should now have two blue dots-side by side-in the middle of your
screen. Change the color of the right dot so you'l(have one blue and one
red dot. Type:

30 SET(33dll.4)

Vertical
14
14
15
15

Position
Position
Position
Position

Run the program again. This time. both dots are red.

Look again at the SET/RESET grid. Notice that the darker lines gruup the
dots into "blocks." Each block contains 4 dots. For instance, the block
in the middle of the grid contains these 4 dots:

Horizontal
32
33
32
33

Each dot within a block must either be:

the same color
0'

black

When yuu resel a dot on the
lext screen. lhe computer
makes lhe dOl black.

The above program asks the computer to set lwodifferent~colored dots (red
and blue) within the same block. Since the computer can't set them in
different colors, it sets them both the second color: red.

Type and run this program:

30 SET(3lldll.4l

Since the dot in Position 34, 14 is in a different block, the computer
can set the two dots in different colors.

The Computer's Face
Drawing pictures on the text screen will seem primitive to you after using
statements such as CIRCLE, DRAW, and PAINT. But if you want pictures
and text, you can use the following program as a guide.

Run this program, and you see computer's face and text on the same
screen. SET and RESET draw the picture (using the SET/RESET grid) and
PRINT @ prints the text (using the PRINT @ grid).

5 CLS(!2I)
7 PRINT @ 387, "HELLO" j

(

10 FOR H '" 15 TO llB
2121 SET(H.S,5)
3121 SET(H,20,S)

·.....4121 NEXT H ~ ~

12B

50 FOR V = 5 TO 20
60 SET<15,V,5)
70 SETUI8,V,5)
80 NEXT V

908ET(32d3,8)

100 FOR H = 28 to 36
1108ET(Hd6,1I)
120 NEXT H

130 SETl 25,10,3)
11108ET(38110,3)

150 RE8ET (38 tl0)
160 GOTO 1110

Notice that this program is able to draw 5 colors on one screen~andcould
actually draw aff 9 cofors.

These are the formats of SET, RESET, and POINT:

Nolice we've changed Line
50-the cora line.

POINT h,v tells what color a point is on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-31)

SET h,v,c sets a point on the text screen

h is the horizontal coordinate (0-6])
v is the vertical coordinate (0-31)
c is the color code (0-8)

RESET h,v resets a point on the text screen

h is the horizontal coordinate (0-63)
v is the vertical coordinate (0-] 1)

_J
]
~

If You Have the Joysticks ...
If you have joysticks, connect them now by plugging them into the back of
your computer. They fit in only the correct slots, so don't worry about
plugging them into the wrong places.

Now run this short program to see how joysticks work:

10 CL8
20 PR I NT @ 0, JOY8TK (0) j

30 PR I NT @ 5, JOY8TK (1) j

1I0 PR I NT @ 10, JOYSTK (2) j

50 PR I NT @ 15, JOYSTK (3) j

60 GOTO 20

See the 4 numbers on your screen? They're the horizontal and vertical
positions of the 2 joysticks' "floating switches."

Grasp the right joystick's floating switch. (The joystick connected to the
RIGHT JOYSTICK jack on the back of the computer.) Keeping it in the
center, move it from left to right. The first number on the screen changes
from 0 to 63, going through all the intervening numbers.

\------- 1,---,
Be sure to type lhe semi·
colons at the ends of Lines
20, 30, 40, and 50.

129

[

The Sffond or fourth (wm·]
ber rna)' change,llso, but not
from 0 /0 6J.

Move the left joystick's floating switch from left to right. The third number
on the screen changes.

Now move the floating switches lip and down. keeping them in the center.
Moving the right joystick up and down chilnges the :c,econdnumber from 0
to 63. Moving the left joystick up and down ch.:lt1ges the fourth number
from 0 to 63.

This is how the computer reads the joysticks' posilions:

JOYSTKlO) and JOYSTK(l) read the right joystick's positions:

JOYSTK(O) reads the horizontal (left to right) coordinate.

JOYSTK(l) r€'<1ds the vertici11 (up ilnd dO\\lll coordin,lte.

JOYSTK(2) and JOYSTK(J) read the {eli joystick's positions:

JOYSTKm reads the horizontal coordin<Jte.

JOYSTK(3) reads the vertical coordinate.

Whenever you read any of the joysticks, you must read JOYSTKlO). To find
out for yourself, delete Line 50 ilnd run the program. It works almost the
same, except it doesn't read JOYSTK(3) - the vertical position of your left
joystick.

Delete Line 20 and change Line 60:

60 GOTD 30

Run the program. Move all the switches around. This time the program
doesn't work at all. The computer won't read any coordinates unless you
first have it read JOYSTK(O). Type these (ines and run the program:

20 A = JDYSTK(0l
60 GOTD 20

Although the computer's not printing JOYSTK(O)'s coordinates, it's still
reading them. Because of this, it's able 10 read the other joystick
coordinates. Whenever you want to read JOYSTK(1). JOYSTK(2), or
JOYSTK(3), you first need to read JOYSTK(O).

Painting with Joysticks

Type and run this program:

Use the revolving switch of your right joystick to paint a picture. (Move the
switch slowly so that the computer has time to read its coordin(l\es.)

Line 20 reads H-the horizontal position of your right joystick. This can be
a number in the range 0 to 63.

Line 30 reads V-its vertical position. This also Gin be a number in the
range 0 to 63. Since the highest vertical position on your screen is 31, line
40 is necessary: It makes V always equal a number in the r;mge 0 to 31.

l
T~i5 program uses i~Y51ic',1
with lext screen /J1c/ures.
You can iust as easily use the
joystirks with ,;ra/JllIcs
screen picrures.

130

10
~20

30
40
B0
90

CLS(0)
H = JOYSTK(0)
V = JDYSTK(l)
IF V > 31 THEN V
SET(H,V,3l
GOlD 20

V - 32

Line 80 sets a blue dot al H and V.

LinE' 90 goes back to get the next horizontal and vertical posilions of your
joysticks.

This uses only the right ioystick. Perhaps you could use the left one for
color. Add these lines and run the program;

S0 C = JOYSTK (2)
60 IF C < 31 THEN C = 3
70 IF C > = 31 THEN C = 1I
80 SET(H,V,C)

Move your left joystick In the right, and the computer makes C equal to 3;
thl:' dots it s{'f~ ,lre r('d Move il to the leit. and the computer makes C equal
to 4; the dab il ~eb .He blue.

W..mt to use your joystick buttons? Add these lines to the program:

100 P = PEEK(SS280)
110 PRINT P
120 GOTO 100

Now type;

RUN 100 (]HllB)

This tells the computer to run the program starting at line 100. Your
computer should be printing either 255 or 127 over and over.

PEEK tells lhe computer to look at a certain spot in its memory to see what
number's there. line 100 looks at the number in Position 65280. As long as
you're not pressing either of the buttons, this spot contains the number 255
or '27.

Press the right button. When you press it, this memory location contains
either the number 126 or 254.

Press the left bunon. This makes this memory location contain either the
number 125 or 253.

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We'll make it go back to line 10 and
ClS(O) (clear the screen to black) when you press the right bullon. Change
Lines 110 and 120;

110 IF P = 126 THEN 10
120 IF P = 2S4 THEN 10

Delete line 90 and add this line:

130 GOTO 20

Run the program and start "painting." Press the right button when you
want to clear the screen and start again.

If)'00 press the bullOllSl
whl'n you're nor runn;ns
rhe PT08ram, you'll see
@ABCDEfCorHljKLMNO.

Some ioysticks will flO(read
silc "blocks·' in t>ach oIlhl'
foor COlnt'l5 01 your screen.

131

132

learned in Chapter 23

BASIC WORDS

SET
RESET

JDYSTK
PEEK

Notes

CHAPTER 24

PLAY IT AGAIN, TRS-8-=-O _
$0 you think your computer is a good artist, huh? Well, you haven't heard
anything yet! Wait until you find out about its musical talents! Ready? Then
let's gel down to work and PLAY.

Your computer's PLA Y function allows you not only to play music, but to
compose it, as well.

Note: PLAY, of course, is not a graphics function. Therefore, you needn't
preface your programs with PMODE, pelS, or SCREEN.

Listen Carefully

Here is the syntax for PLAY:

PLAY music plays the value of music, " string expression including
the following:

flOle (a letter from "A" to "G" or a number from 1 to 12).
octave (0 followed by a number from 1 to 51. If you omit

the octave, the computer uses Octave 2.
nOle-length (l followed by a numeral from 1 10 255). If you

omit the note-length. the computer uses the current
length.

tempo (T followed by a number from 1 to 255). If you omit
the tempo, the computer uses T2.

volume (V followed by a number from 1 to 31). If you omit
the volume, the computer uses V15.

pause-length (P followed by a number from I to 255).
subslrings. Precede substrings with an X and follow them

with a semicolon. Example: XA$;

133

, 34

let's Compare Notes
(NOTE)

Obviously, you can'! have music without notes. PLAY gives lwo ways to
specify the precise note you need.

The first-and probably easier-way to play the note you wanl is to enter
one of the standard musical notes-A, B, C, D, E, For G. To indicate a
sharp note, follow the note with a plus sign (+) or with the pound sign (#).
To indicate a flat, follow it with a minus sign (~).

For example, A represents A natural; A# is A sharp; and A - is A flal. Type
the following to see (hear?) what we mean:

PLAY "A" CEHIEID
To hear the change that a sharp and a flat can make, enter these lines:

PLAY "A jAa" CEHIEID
PLAY "A-iAjA#;AiA-"~

You can do the same with al! seven notes lA-G) on the seille, ex<:ept Band
C. Since B# = C, you must use C. Likewise, since C - = B, you must use B.

A New "Note"-ation
Another way to specify a musical note is to use a number between 1 and
12, prefaced by the leiter N. (If you ami'! N, the number alone indicates the
note.)

The numbers 1 through 12 represent every note on the musical scale,
including all sharps and flats. This is a more concise notation, although it is
more difficult to read if you already know the standard notation.

Note: Since PLAY does not recognize the notation B# or C-. use the
numbers 1 and 12, respectively, or substitute C for B# ,'nd B for C -.

To hear the full 12-tone scale, run the "Scale" program, which follows.

5 CLS
10 FOR N = 1 to 12 'N = NOTE
15 PRINT "NOTE#"; N
20 PLAY STR$(Nl
30 NEXT N

Add a delay in the program so you can compare the numbers to the notes
as the scale goes up from 1 to 12 (C to Bl,

25 FOR I = 1 TO 500: NEXT I

- - -

, D , , G A , ,
681012

MusiCllI Note/Number Table

Number Note, C
2 C"O, D

• E ON
5 EF-
6 eE., "0
8 0
9 Gil A-

" A

" Alii B-

" 8

2 •

3 5

,
9 "

DO·IT·YOURSELF PROGRAM 23-1

Modify the "Scale" program so it goes down instead of up.

Whole Notes, Half Notes,
Quarter Notes.

(NOTE-LENGTH)

Because the "Scale" program does not specify note-length. the com
puter automatically uses quarter notes, the initi;d "current value."

To choose the note-length, use L followed by a number from' to 255. The
number 1, for instance, denotes a whole note, 2 a half note, 4 a quarter
note, 8 an eighth note, 16 a sixteenth note, and so on.

In fact, you can use any number from 1 to 255. (Who ever heard of a 1/1 5th
note?)

Vary the note~!engths to produce a drum roll. Type:

PLAY "L2iAjL4jA;AjL2jAjA"~

Lnumber Note-Length Note

L1 Whole note 0
L2 Half note d
L3 Dotted quarter note ••L4 Quarter note •L8 Eighth note ~
L16 1116 note '"L32 1132 note ::L64 1/64 note

L255 1/255 note

l
Oid you time the notes to be
sure they are four limps as
long" Il's lIot necessary; the
compUle,'S intern<J1 dock

.did il for you. .

135

We bel you've heard of
"turning down the stereo"
bUI nOI "fuming down the
computer"!

136

l2 indicates a half note; l4 a quarter note, so we played as follows: "half,
quarter, quarter, r.alf, half."

PLAY "Ll i AiAa:jA-" ClliIEID
Notice that you needn't repeat the l option for each note. PLAY uses the
current note value until you enter another l comm<md to tell it otherwise.

In fact, most PLAY options discussed in the rest of this chapter use a
"current" value until you change them.

Just for fun, try playing three 1/255 notes on A:

PLAY "L255jAjA+jA-" IENTER)

Now that's staccato.

Love That Dotted Note

If you read mUSIC, you already know about "dotted notes." The dot tells
you to increase the length of the note by one half its normal value. For
example, a dotted quarter note is equal to a "3/8" note.

You can play such a note by adding a period I.) or a series of periods
(...J to the Lnumber. Each period increases the note-length by 1/2 its
normal value. For example:

l4. = 1/4 + 1/8 = a 3/8 note

Try this:

PLAY "La. jAjLBiCiLa. jEjLBiCjEjCjEjCjLajA"
1I!mID

Let's Go Up (or Down) an Octave or Two
(OCTAVE)

Our single octave (Octdve 2) sounds fine, but, variety being the spice of
music as well as Irish ste\y, it gets a little boring vvhen played over and
over (like a piano with only 12 keys).

To change octaves, use the letter 0 followed by a number in the range
1 to 5. {Any number out of this range results in an illegal function call
error.)

If you don't specify the octave, the computer automatically uses Octave
2, which includes middle-C. let's try to playa simple C scale:

PLAY "CD.EFGABAGFEDCBA" IENTER)

What happened? G is the highest note in Octave 2, so when the com
puter reached A, it st'Hted over ,It the beginning of the octave. To get
out into Octave 3, try this:

PLAY "COEFG j 03 j ABA02 j FEOCBA" CE:ffl1ID

Play It Again-louder!
(VOLUME)

Sure, you can adjust the volume of your music by using the TV volume
control, but who wants to sit by the set all of the time? Especially when the
computer can adjust the volume for you.

Yourcornputer does this with the V (volume) feature. All you need to do is
use V followed by a numeral between 0 and 31. If you don't specify the
value of V, your computer automatically uses V15.

The computer uses the current V value until you change it.

Adjust the volume on your TV to a normal setting and run this short
program:

5 CLS
10 PLAY "I)5IAj V10jAj V15jAj V20jAj V2SjAj

1.130 iA"
20 GOTo 10

Gelling a headache? Press cmEm to get out of the loop.

A Moment of Silence, Please
(PAUSE)

Maybe that last little program would be easier to listen to if all the notes
weren't played together. Use the P (pause) feature for a few moments of
silence between the notes and see if they sound belter.

To put a pause between notes, use P followed by a number from 1 to 255.
Pause-lengths correspond to note-lengths with one important difference.
You can't use dots (periods) with P. To compensate, just type a series of
pauses. For example, to get a 3/8 pause, type 1'41'8.

Change Line lOin the last program to read:

10 PLAY "V5jAi P2j V10jAj P2j V15jAj
P2 j V20 j A j P2 j I,/2S j A j P2 j V30 j A j P2"

Actually, a half note pause (P2) between all those As doesn't make them
sound much better, but you should get the idea of how P works.

It's Time to Pick Up the Tempo
(TEMPO)

Right now the test program looks like this:

5 CLS
10 PLAY "VSjAjP2j V10jAiP2j V15jAjP2j

V20jAjP2j V2SjAiP2j V30jAjP2"
20 GoTD 10

We've left spaces be/ween
e,)ch volume/note combin,)·
lion 50 you can read the
line without difficulty, The
spaces are not required,

137

A tempo that ,low is alm~"
enough to keep yOI!

awake-almo51.

If you use maChine-lan-l
guage 10 generate the music
and "Tn"toslowlhelempo,
would your computer be a
Slow-POKE!

It's passable, if not pleasurable, but the tempo (speed) is a lillie slow. You
can increase or decrease the tempo with T and a number from 1 to 255.11
you don't specify a tempo, your computer automatically uses T2. Start by
slowing down the tempo of the program:

10 PLAY "T1 j V5jAiP2j V10jAjP2j ~J15jAjP2;

V20jAjP2j V25jA;P2; V30iAjP2"

Speed it up by changing T1 to T1 S. Now thaI's more like il.

How about speeding it to the maximum, 255, and running the program.
That didn't take long, did it?

Executing the Substring
(X)

Remember DRAW's execute (X) option? PLAY has a similarfeature that lets
you execute it substring, then return to the original string and complete it.

The execute function takes the following form:

XA$;

A$ contains a sequence of normal play commands and functions. X tells
the computer to PLA Y A$.

Rearrange the demonstration program so that it executes a substring:

5 CLS
10 A$ = "AjA_;A_"
20 B$ = "05jXA$;"
30 C$ = "01 ;XA$;XB$ j"
40 PLAY C$

Run the program and follow its execution.

Note: Whenever you use the execute function, a semicolon I:)
must follow the dollar sign ($). In this example, you can delete all
semicolons except those following the dollar sign.

One Further Note
<+,-,<,»

.. .

138

No, we're not going to spring a new note, like H or L on you. We just have
one final way you can use some of PLAY's options. With 0 (octave), V
(volume), T (tempo), and L (note-length), you can use one of the following
suffixes instead of adding a numeral:

Suffix Purpose

+ Adds 1 to the current value.
Subtracts 1 from the current value.

> Multiplies the current value by 2.
< Divides the current value by 2.

Use the sample program to learn about these features.

5 CLS
10 PLAY "T2"

20 PLAY "A;A_;A_"
30 GOTO 20

Notice thai line 10 sets the tempo. Run the program once just to get an ear
for it. Nothing's changed; it's the same as always, Now insert T in line 20,

20 PLAY "T+' AjA.,A-"

Run Ihe program. The plus sign automatically increases the value ofT by I
each time line 20 is played. From a slow start you can really begin 10 fly!
Did you hear it shift gears somewhere around T1 00?

ow reduce the tempo, using a minus sign (-):

5 CLS
10 PLAY "T255"
20 PLAY "T-; A;A.;A-"
30 GoTo 20

After a fast start, the computer finally manages to slow the tempo down 10

l-one step al a lime.

Isn't multiplication faster fhan addition? In line 10, reset the tempo to 2,
change T in line 20 to T>, and lei it rip.

10 PLAY "T2"
20 PLAY "T); A;A_jA_"

You started out with T2, right? The computer mullipled thai value by 2104,
4 x 2 (06,6 x 2 to 16, and 50 on until it reached 255.

You can slow the tempo down just as quickly by dividing the current
tempo by 2 using "<."

10 PLAY "T255"
20 PLAY "T(; A,A_;A_"

Remember, you can do the same thing with l, V, and 0 to change the
note-length, the volume, and the octave,

Roll Over, Beethoven
After all the hard work you've done lately, you deserve to be serenaded.

Here islhe formula rhar you
can use 10 calcul.Jle lhe
flQ/e-lenglh: note·length +
(note-length • nunlber of
ckJ(sY1

Haven'l you had days I,ke
fhal? Yoo Slart ar 155 and bl'
/he end of rhe day, yoo'ff'
hilling on one cylmder.

139

SAINTS"
SAINTS"
SAINTS

THE
THE
THE

WHEN
WHEN
WHEN

Are you familiar with all the PLAY functions? If so, watch them at work in
the following program and see if you can name this tune!

5 ClS
100 A$ =
105 B$ =
110 C$ =
115 D$ =
120 E$ "

T5 iC iE iF iU iG iPa ila iC iE iF iU iG"
pa ila iC iE iF il2 iGjE iC iE iU iO"
P8 ila iE iE iO il2. iC ila jC il2 iE"
laiGiGiGjll jFjlajEjF"
l 2 i Gi E i LLI i C i l8 j 0 j0 + j 0 iE ; Gjl4 i Aj L1
03iC"

125 X$ = XAjXBiXC$;XO$iXE$j"
130 PLAY X$

Do you recognize that song? Dress it up a bit by adding these lines:

10 PRINT @ 86, STRING$ (32,"*")
20 PRINT @ 167, "WHEN THE SAINTS"
30 PRINT @ 232, "GO MARCHING IN"
35 PRINT @ 288, STRING$ (32,"*")
40 FOR X = 1 TO 500: NEXT X
45 ClS
50 PRINT @ 128, "oH
55 PRINT @ 168, "OH
60 PRINT @ 182, "OH

GO MARCHIN IN"
65 PRINT @ 224, "YES I WANT TO BE IN THAT

NUMBER"
70 PRINT @ 256, "WHEN THE SAINTS GO MARCHIN

IN"

We dropped the "G" (rom
MARCHING in Lines 60 and
7050 the lines can fit on lhe
screen.

Run the program now and sing along with TRS~80. What? You liked it so
much you want to hear it again. Okay, add these lines:

15. eLS
16. PRINT • 130, "PLAY 1T AGAIN, TRS-8."

If you use PeLS] to ele;;., the 165 FOR X " 1 TO 500: NEXT X
graphics screen and then 17. eLS
make the computer playa 175 PRINT @ 233, "I '0 BE GLAD TO"
sad song, does lhal mean iI's 18. FOR I " 1 TO 500: NEXT Isinging the blues?

185 GoTo 5

DO-IT-YOURSELF PROGRAM 24-2

Our rendition of "Saints" sounds fine, but it isn't true New Orleans
style. Jazz it up to suit your own musical tastes. Try changing oc
taves or adding a few sharps or fJats.

DO-IT-YOURSELF PROGRAM 24-3

Try some musical arrangements of your own. We've included sev
eral in the Sample Programs at the back of the book.

140

Learned in Chapter 24

BASIC WORDS

PLAY

CONCEPTS

Generating musical notes, including dOlled
notes
Determining note-length
Changing octaves
Adjusting the volume
Pausing between notes
Changing the tempo
Executing substrings
Using suffixes to give values relative to the cur
rent value

Notes

141

A special section showing displays
created by programs in this book.

Spiral
There's a tunnel at the end of the
tunnel. When you assign variables
to CIRCLE, it's possible 10 create a
spiral. This is one way you can sim
ulate smoke coming from the chim
ney of your house (see DO-IT
YOURSELF PROGRAM 19-4).

THE REAL THING

Fantastic!
DO-IT-YOURSELF PROGRAM 21-2
shows you how to cool off with an
ice-cube. Another way is to turn on
the fan and watch it spin. And if
you let this program run for a
while, that's exactly what happens.
See Sample Program #19 for a list
ing of this program.

Box

This is a 2-step process. First the
cube (created by DRAW and
PAINT) appears in its 3-dimensional
form. After a shorl delay, the box
unfolds so you can see all 6 of its
sides. This uses DRAW, along with
several LINE and PAINT statements.
See Sample Program #8.

Projection Studies
Starting at the upper left and going
down, you can see different views
(top, front, side, and oblique) of a
"block." You can also scale the (irst
three views up or down using
DRAW's "Scale" feature. (Since the
45-degree oblique view contains
three LINE statements, it can', be
scaled.) See Sample Program #7.

In-Out
When you assign variables to a
COLOR and a LINE statement, this
is one thing the computer might do
with it. Take a look at Sample Pro
gram #5 to see how easy this is.

Navaho Blanket
Actually, the size of this makes it
more like a muffler instead of a
blanket, but you should be able to
finish "weaving" it. Basically, the
program uses only a couple of LINE
statements that increment at speci
fied "steps" and a PAINT statement
or two. Incidentally, tl:lis might help
you with DO-IT-YOURSELF PRO
GRAM 15·3. Sample Program #12
gives you a complete program
listing.

Home, Sweet Home

After the Boom Is
Over ...

These concentric circles (increment
ing at STEP 2) are used al the end
of the "Timebomb" program (Sam
ple Program # 18). Notice thai
when you use buff with high reso
lution, it appears to produce several
colors, giving a metallic lusler to
the display.

One of your exercises throughout
this book is to "bui Id" a house (see
DO-IT·YOURSELF PROGRAMS 15
2 and 19-4). Here's one you might
use as a model. In this instance, the
garage door is up (using PAINT),
the light is on, and the grass (gener
ated by RND, DIM, and PSETj is
growing.

Painted Lace
This program requires DRAW state
ments, a few buckets of PAINT, and
a lot of patience. Look at Sample
Program #13 and you'll see the
way it's done.

Open and Closed
Cubes

In DO-IT-YOURSELF PROGRAM
21-2 you drew the closed cube.
Now "open" it.

Rolling in the Clover
Sample Program # 17 shows you
how to create an eight~feaf clover.
By changing the COS value in Line
35 to 2, you can generate a four
leaf clover. What happens if you
change the COS value to I? This
program is a good illustration of
PSET, SIN, and COS and a novel use
of pi.

Random Graphics
Random graphics arc generated
when you assign random (RND)
values to LINE, CIRCLE, COLOR,
and PAINT and then let the com
puter take over. For a listing of this
program, see Sample Program #11.

Riding the Waves
Here the computer uses PSET, SIN,
and COS 10 draw sine/cosine waves
and LINE to draw the H-V 3l1"CS.
Notice that each wave travels 360
degrees (from + 180 to - 180) and
that the H-axis increments 30 de
grees at each gradation. This is a
good exercise in mapping (scaling
down) a program to fit the TV
screen. Sample Program #9 gives a
complete listing of this program.

SECTION 11/

GETTING DOWN
TO BUSINESS

This section deals with information you want to manage. Forexample, you
may want to manage:

Checkbook receipts

Shopping items

Tax records

Inventory

Addresses

Records, books, or tape collections

In this section, you'll learn how to store, update, sort, and analyze informa
tion to fit your own needs.

CHAPTER 25

TAPING
Your first and foremost l,l:,k i~ to qore your" inl0rm"tiol1 perm,mentl)' all
cassette tape. This, of course. reqllirl'~ ,1 l,)pC recorder.

Ready 10 gel org.J.oized? We'll stiHt with your buok collection. Here's a
smalilisl of boob:

1. WORKING
2. CAT'S CRADLE
3. SMALL IS I3EAUTIFUl
4. STEPPENWOLF

If you've read your introduction rn,mu,ll, you know how to s.lVe I3ASIC
programs on tape. To S;lve illfofllJdlioll, you need a program lhilt follows
these steps:

STEPS FOR STORiNG INFOf.:MATION ON TAPE

Open commlmicillion to Ihl:' tal* recorder so thai you Gill outpvt
(send null infnrm,llion to <l fi/l'_

2. ampul all information to the tJI">e recorder file.

3. (/ose communiC<llion to the tape recorder.

Start the program with this line:

10 OPEN "0", #-1, "BOOKS"

This "opens" communication to the tape recorder ("device #-1 ") so that
you can "output" ("0") information. Whatewr information you output,
the computer stores on tape in a "file" named BOOKS.

Now output the information. Type:

15 CLS: PRINT "INPUT YOUR BooKS--TYPE <XX>
WHEN FINISHED"

20 INPUT "TITLE"; T$
30 PRINT #-1, T$
a0 GoTo 15

•
h I~~

A "file" is d collection o(in·
forma/ion-such dS book li

lIes-slored under one
namE'.

145

Line 20 "prints" (outputs) your book titles---notto the screen, but to device
- I, the tape recordel

Then close communications. Type:

25 IF T$ ~ "XX" THEN 50
50 CLOSE #-1

The computer then closes communication to the tape recorder.

Add three more lines to the program:

CLS
PRINT "POSITION TAPE--PRESS PLAY AND
RECORD"
INPUT "PRESS <ENTER> WHEN READY"; R$

OPEN "0", #-1. "BOOKS"
CLS: PRINT "INPUT YOUR BOOKS - TYPE <XX>
WHEN FINISHED"
INPUT "TITLE"; T$
IF T$ ~ "XX" THEN 50
PRINT #-1, T$
GoTo 15
CLOSE #-1

1 CLS
2 PRINT "POSITION TAPE - PRESS PLAY AND

RECORD"
4 INPUT "PRESS 'ENTER' WHEN READY"; R$

The progr,lJll should now look like this.

1
2

4
--;1.

15

2.

f4<t.;tdt..~-----1 ~g4.
"-~~ -----1 5.
w~M~~

Prepare the recorder.

Connect the recorder. Your computer's introduction manual shows
how.

Position a tape in the recorder, and, if necessary. rewind the tape so
you'll have room for recording. Of you're using a non-Radio Shack
tape, position it past the starting leilder.)

Press the recorder's RECORD and PLAY buttons so that they are both
down.

Then run the program. As soon as you press crnllID, the cassette motor
turns on: The computer is opening a "file" on tape and naming it BOOKS.

The program then asks for titles. Type:

The computer clear5 lhe
5creen after eilCh tille.

TITLE?
TITLE?
TITLE?
TITLE?
TITLE?

WORKING
CAT'S CRADLE
SMALL IS BEAUTIFUL
STEPPENWoLF
X""

Each time you input a title, the computer prints it in a special place in
memory reserved for the tape recorder. When you finish, the tape recorder
motor turns on: The computer is printing all the titles to the recorder (Line
30) and then closing communication with the recorder (Line 50).

Your book titles are now all saved on tape in a file named BOOKS. To read
them back into memory, use just about the same steps.

146

STEPS FOR INPUTTING INFORMATION FROM TAPf

,. Open communie<llion to a tape recorder so that you can mpuf
information from a file.

2. Check to see if you"re at the end oi Ihe file.

3. Input information from the tape recorder file

4. Repeat Steps 2 and 3 until you reacn the end 01 the file.

S Close communication to the tape recordf'r

To oren communication tvpe:

60 CLS: PRINl "REWIND THE Rf:..CLJr~OU"l' AND
PRESS PLAY"

70 INPUT "PRESS <ENTER> WHEN READY"; R$
80 OPEN "I", # 1, "BOOKS"

This opens communication to the tape recorder-this time, to input in
formation from the BOOKS file.

To input information. add these lines:

90 INPUT #-1, B$
100 PRINT B$

Line 90 inputs the first book title (B$j from the BOOKS file stored on tape.
(The variable name you choose makes no difference.) Line 100 displays
this title on your screen.

To check for the end of the file and close the file, add these lines:

85
110
120

IF EOF (-1>
GOTO 85
CLOSE #-1

THEN 120 Are you wondering what the
-/ means? EOF returns a-r
when you reach the end of
lhe file.

Line 85 says if you are at the end of this file (in this Cdse, the BOOKS file). go
to '20 and dose communication with the tape recorder.

Note that EOF(-l) comes before the INPUT #-1 line. If it's after INPUT #-1,
you'll get an IE error-"input past the end of the file."

List this last part of the program by typing UST 60 - cmnID. It should look
like this:

60 CLS: PRINT "REWIND THE RECORDER AND
PRESS PLAY"

70 INPUT "PRESS <ENTER> WHEN READY"; R$
80 OPEN "I", #-11 "BOOKS"
85 IF EOF (-1) THEN 120
90 INPUT #-1, B$
100 PRINT 51
110 GOTO 85
120 CLOSE #-1

Now run this part of the program. Type:

RUN 60 (fHllID

When you press~, the recorder's motor comes on while the com
puler inputs items from tape. When finished, it displays the four items on
your screen.

Be sure to press only the
PLAY bulton, Not RECORD.
A/so, be sure 10 rewind lhe
tape.

If your computer becomes
"hung up" communicating
wilh the tape recorder, you
can regain control by press
ing lhe RESET bUllon. It's on
the back righI-hand side of
your keyboard. Then look
for missing or mistyped lines
in your program.

147

An Electronic Card Catalog
Assume you need 10 change the program so it can ,lise store [he books'
authors and subjects:

TITlE
Working
Cal's Cradle
Small /~ Beautiful
Sleppem\'o/f

AUTHOR
Studs Terkel
Kurt Vonnegul
E. F. S<:humilcher
Hermann Hesse

SUBJEG
SocIology
Fiction
Economics
Fiction

Start by changing the "outpUt" part of the program (the first halO. Type
these lines:

26 INPUT "AUTHOR"; As
28 INPUT ·SUBJECT: S5
29 IF AS = ·XX· OR S5 = ·XX· THEN S0
30 PRINT #-1. T$, As, 5$

Then change the "input" part o(the program. Type these lines:

90 INPUT #-1. 55, AS, 55
100 PRINT "TITLE :" 5$
102 PRINT "AUTHOR :" AS
104 PRINT "SUBJECT :" 5$

Now take advantage of this organization. For example, have the program
print a book list on any given 5ubjecl. Add these lines:

13.
1••
IS.
16.
17.

---180
19.

-----7200
21.
22.

-----7 2 30

CLS
INPUT "WHICH SUBJECT"; Cf
PRINT -REWIND THE TAPE - PRESS PLAY·
INPUT ·PRESS <ENTER> WHEN READY-; £$
CLS: PRINT C$.. BOOKS" : PRINT
OPEN "I ". #-1, "BOOKS"
IF EOF (-1) THEN 230
INPUT #-1. 8S, AS, Sf
IF Sf = C$ THEN PRINT BS, A$
GOlD 190
CLOSE #-1

KURT VONNEGUT
HERMANN HESSE

148

Run the input part of the program by typing RUN 130CEHIEID. If you choose
"fiction," this happens:

WHICH SUBJECT? FICTION
REWIND THE TAPE - PRESS PLAY
PRESS <ENTER} WHEN READY

FICTION BOOKS:

CAT'S CRADLE
STEPPENWOLF

OO-IT-YOUR5ElF PROGRA.\1125-1

Assume vou ha\'(' these checks:

NO. DATE I}AYABLE TO ·\CCOU'\IT AMOU~T

101 5.13 5<lfewar lood S52.(.o
102 StU Amoco car 32.70
103 5/14 Joe's Cafe food 10.32
104 5117 American Airlin~ vacalion 97.50
105 5/19 Holiday Inn vacation 72.30

Write a program lhat oulpulS all the checks 10 tape. Then have it inpul
lhem from lape so thaI you can lype one account-such as food-and
the computer will lell you the lolal amount you've spent on food.

Learned on
BASIC WORDS

OPEN
CLOSE

PRINT #-1
INPUT :#-1

EOF

Chapter 25
BASIC CONCEPT

data fries

Notes

149

CHAPTER 26

MANAGING NUMBERS
Have you tried to write programs to handle much information? If so.
you'll be glad to know Color BASIC has an easy-la-manage w,)y to keep
track of information. \

Assume, for example. you want to write a program that leIs you manage
this information:

District
1
2
3
4
5
6
7
8
9
10
11
12
13
14

ElECTION RESULTS

Votes for Candidate A
143
215
125
331
442
324
213
115
318
314
223
152
314
92

150

Up 10 now, you've used variables to store information in memory. For
example, to slore the votes of the first three districts, lype:

A = 1lJ 3 lEHIEID
B = 2 15 lIHllID
C = 125~

Bullhere's a beller kind of variable you call use. Type:

A (1) = ill 3 CEJIT.rn)
A<Zl = 215~
A(3l = 125 I1tiTIID

Each of the above variables has a "subscript"-(ll, (2), and OJ. Other
than how they use the subscript, these vilriables work the same as any
other variables. To see for yourself. type both of these lines:

PRINT Ai B; C cmnm
PRINT A(1); A(2) i A(3) CEmID

Now take a quick look and compare lhe two programs below. Both work
the same: Program 1 uses "simple variables" Program 2 uses "subscripted
variables."

PROGRAM 1

10 DATA Ill3, 215,125 1331. llll2
20 DATA 32ll, 213, 115.318, 31ll
30 DATA 223, 152, 31ll, 92
ll0 READ A , B, C, D, E
50 READ F , G, H, I , J
60 READ K • L , M, N
70 INPUT "DISTRICT NO. Cl-111)"i Z
75 IF Z>l11 THEN 70
80 IF Z=I THEN PRINT A "VOTES"
90 IF Z=2 THEN PRINT 6 "VOTES"
100 IF Z=3 THEN PRINT C "VOTES"
110 IF Z=ll THEN PRINT D "VOTES"
120 IF Z=5 THEN PRINT E "VOTES"
130 IF Z=6 THEN PRINT F "VOTES"
1110 IF 2=7 THEN PRINT G "VOTES"
150 IF 2=8 THEN PRINT H "VOTES"
160 IF 2=9 THEN PRINT I "VOTES"
170 IF 2=10 THEN PRINT J "VOTES"
180 IF Z= II THEN PRINT K "VOTES"
190 IF Z= 12 THEN PRINT L "VOTES"
200 IF Z= 13 THEN PRINT H "VOTES"
210 IF Z= III THEN PRINT N "VOTES"
220 GOTO 70

PROGRAM 2

I"
20
30
a0
50
60
70

(

80
85
90
100

DATA Ill3, 215, 125 ,331. ll1l2
DATA 32ll, 213, liS 1318, 31ll
DATA 223, 152, 31ll 192
DIM A(la)
FOR X = 1 TO 14
READ A (X)
NEXT X
INPUT "OISTRICTNO(1-14)"i Z
IF Z > 1a THEN 80
PRINT A(Z) "VOTES"

GOTo 80

Program 1 is cumbersome to write. Program 2 is short and simple to write.

Enter and run Program 2. Here's how it works:

line 40 reserves space for a list of information-called an "array"
named A-with 14 subscripted items.

lines 50 and 70 set up a loop to count from 1 to 14. line 60 reads all
14 VOles into Array A:

Actually, this leaves room
for '5 subscriplW ilems

~o".'"~

lSI

YOUR COMPUTER '5 MEMORY

ocP

Atll---143
A(2) ----215
A(3l ---125
A(4) 331
A(5) 442

A(Gl - 324
A(7l __ 213

AlB) -115
Al8i "31B
A(10) -314
A(11)-223
A(12) -152
At 13) ---314
A(141 ---82

ThE' name of the array is A.
The X or Z in parentheses
refers 10 the subscript of one
of the ifems.

You don't need 10 study
these programs if ~'ou're an
xioustomol'eon, We're iust
showing somebeneFiIS of us
ing subscripted variilbles.

Line 80 asks you to input a subscript, and Line 90 prints the item you
requested.

Now that you've stored information in an array, it's e<lsy to manage it. For
instance, you C.1D add these lines, which let you change the information:

92 INPUT "DO YOU WANT TO ADD TO THIS"; R$
84 IF R$ '" "NO" THEN 811'1
8G INPUT "HOW MANY MORE VOTES"; X
87 AlZ) '" A(Z) + X
98 PRINT "TOTAL VOTES FOR DISTRICT" Z "IS

NOW" AlZ)

Or you can add these lines to display the information:

72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS" j

S$
74 IF S$ '" "YES" THEN GOSUB 110
100 GOTO 72
110 PRINT "DISTRICT", "\)OTE5"
120 FOR X '" 1 TO 14
130 PRINT X, A(X)
140 NEXT X
150 RETURN

A Second Array

Assume you also want to keep track of a second candidate's votes---
Candidate B:

1S2

District

1
2
3
4
5
6
7
8
9

10
11
12
13
14

ElECTION RESULTS

Votes for
Candidate A

143
215
125
331
442
324
213
115
318
314
223
152
314

92

Votes for
Candidate B

678
514
430
475
302
520
613
694
420
518
370
412
460
502

DATA 143.215.125.331, 4~2 ~fr.-
DATA 324,213,114,318,314 (JMO-IfPr
DATA223, 152,314,92 U
DATA678'514'430'475'~ ~
DATA 520,613,694,420,518 d.oJp... 8
DATA 370.412.460,502
DIM A< 1L1) , B< 1L1) -------J('".,~

FOR X = 1 TO 1:]
READ A (X) .------~a~"",

NEXT X 1\ rJ.iJJO.--- ,
FOR X = 1 TO 14~
REA 0 B 0:) 1--. ~ II""""
NEXT X P.>~ U
INPUT "DISTRICT NO,"; Z
IF Z > 14 THEN 140
INPUT "CANDIDATE A OR B"; R$
IF R$ = "A" THEN PRINT A(Z}
IF R$ = "B" THEN PRINT B(Z)

To do this, add another array to the program. Call it Array 13. The following
program records the votes for Cll1didate A (Array AI and Cand,(ble B
(Array B):

10
20
30
a0
50
60
70
80
90
100
110
120
130
1a0
145
150
160
170
180 GO TO 140

DO-IT·YOURSELF PROGRAM 26-1

Write an inventory program that keeps track of 12 items Inllmbered
1-12) and the quantity you have of each item

Deal the Cards
To keep track of 52 "cards," you need to use an array. Erase your program
and type and run this one:

40 FOR X = 1 TO 52
50 C = RND (52)
90 PRINT C;
100 NEXT X

The computer deals 52 random "cards," but if you look closely, you see
that some of the cards are the same.

To make sure the computer deals each carel only once, you can build
another array-Array T-that keeps track of each card dealt. Add these
lines:

5 DIM T(52)
10 FOR X = 1 TO 52
20 T (X) = X
30 NEXT X

The above lines build ArrayT and putal152 cards in it: T(l) = 1, T(2) = 2,
T(31 ~ 3 ... T(52) ~ 52.

Then add some lines that "erase" each card in Array T after it's dealt. Type:

60 IF T<C) = 0 THEN 50
80 T (C) = 0

You don·' need a DIM line if
none of your Mray items use
,1 label higher than 10,
However, it's srill a good
idea to put this line in yOUt
progrilm to teserl'e iust 'he
right JmOUIll of memory.

()

153

Now the computer can't deal the same random card twice. For example,
assume the computer first deals a two. Line 80 changes T{2l's value from 2
to O.

Then assume the computer deals another two. Since T(2) now equals O.
Line 60 goes back to Line 50 to deal another card.

Run the program. Note how the computer slows down at the end of the
deck. It must try many different cards before it finds one that it hasn't dealt
yet.

To playa card game, you need to keep track of which cards have been
dealt. You can do this by building another array-Array D. Add these lines,
which store all the cards, in the order they are dealt, in Array D:

7 DIM 0(52)
70 D(X) = TlC)
90 PRINT D(X) j

DO-IT-YOURSELF PROGRAM 26-2

Add lines to the program so that it displays only your "hand"-the first
5 cards dealt.

Learned in
BASIC WORD

DIM

Chapter 26
BASIC CONCEPT

arrays

154

Notes

CHAPTER 27

MANAGING WORDS
In the last chapter, you used arrays to manage numbers. Here, you'll use
arrays to manage words by editing, updating, and printing an entire essay.

Starl with a simple list of words: a shopping list:

Assign each word to a subscripted variable-this lime use a subscripted
string variable. For example, for the first three items, type:

S$(1) = "EGGS" CEmID
5$(2) = "BACON" Cillrnl
S$(3) = "POTATOES" (ENTER)

To see how the items are stored, type:

PRINT S$(1),5$(2), S$(3) CEHIEID

Now build a program that reads these words into an array named 5$ and
then displays them:

1. EGGS
2. BACON
3. POTATOES
4. SALT
5. SUGAR
6. LETTUCE

7. TOMATOES
8. BREAD
9. MILK

10. CHEESE
11. FISH
12 JUICE

Thedollar sign's lhe only dif
ference between lhese sub·
scripted variables and lhe
ones in the last chapter.

('),

5

g
30
a0
50
60
70
80
80
100

DIM S$(12)
DATA EGGS, BACON, POTATOES. SALT
DATA SUGAR, LETTUCE, TOMATOES, BREAD
DATA MILK, CHEESE, FISH, JUICE
FDR X = 1 TD]-2 •
READ S$(X) ~ c!4iIL;...a, (JAA,.,.. S f
NEXT X --~(-

PRINT "SHOPPING LIST: n

FOR X = 1 TO~2
PRINT X; S$(X) ptV-is~ 5. ~

NEXT X

155

Want 10 (ompo<;e music?
Look up "Mlls!(Compo<;er"
in Ihe "Sample Programs"
appendix,

Haven'! heard of word pro
(e"ing? It's a kind of pro
gram that lets you type and
store infqrmation, make
(Hanges to it, and print if out
on demafld.

l) ,

Need 'I refresher on <;ome of
this? (LEAR is in Chapter 8
and /NKf'Yj is in Chapler , I.,

156

OO-IT-YOURSEL~ PROGRAM 27-1

Add rome lines to the abow program so that you can change any item
on this list. .

OO·IT YOURSELF PROGRAM 27-2

Here is a program that uses an array to write song lyrics.

5 DIM A$(L!l
10 PRINT "TYPE Ll LINES"
20 FOR X " 1 TO 4
30 INPUT A$(X)
40 NEXT X
50 CLS
60 PRINT "THIS IS YOUR SONG:"
70 PRINT
8~ FOR X " 1 TO Ll
90 PRINT X;'" "; A$(X)
100 NEXT X

Add some lines so that you can revise any line.

Writing an Essay
(0 0 • A Novel, Term Paper. 0 oj

Now that you've learned how to use Siring arrays, it will be easy to write a
program that stores and edits what you type. Type this program:

1 CLEAR 1000
5 DIM A$(50l
10 PRINT "TYPE A pARAGRAPH~

20 PRINT "PRESS <I> WHEN FINISHED"
30 X" 1
£10 A$" INKEY$
50 IF A$ ~ ",' THEN £10
60 PRINT A$j
70 IF A$ " '!/" THE~ 110
130 A$(x) " A$(x) + A$
80 IF A$ " "." THEN X " X + 1
100 GOTD 40
11 ~ CLS
120 PRINT "YOUR PARAGRAPH:"
130 PRINT
1£10 FOR Y = 1 TO X
150 PRINT A$(Yl j

16~ NEXT Y

Run the program. To see how each sentence is stored, type these lines:

PRINT A$(I) CEmID
PRINT A$(2l ~
PRINT A$(3l ~

Here's how the program works:

Line 1 clears plenty of Siring space.

line 5 ~a\e~ rool11 for ,111 ,tn.1\' Ihlrl1ed AS 111<11 111.1\ have up 10 10
sentences.

Line jO ll1ake~ X equal Iu I. X willlw u~ed tu 1.1hl'l ,til the ~el1tel1(.:es

Lint:' 40 check~ to ,>ee whilh kev VOU MP pre~sill~. II il i~ nothing (" "l,
Line 50 sends tlw (.Oll1puh'r 1>.11.. k 10 t !IW ..W.

Line 60 prints tht, key yuu pre~~ed.

Line 70 send~ lh(' I..omputvr to the Ilf)e~ th,l! prinl vour paragr,lph when
you prps~ the """ key.

Line 80 bLlild~ ,1 ~Irillg ,mel I,lbels il \\ ilh number X. X i~ equ,ll 10 I un
Iii ~'r)u prt'S~ .1 pf'riod Lt. 1h('11 Line HO nl,lke~ \ I:'qu.1l 10 X -I- I.

For example, illhe lirsl 1f'Ilf'r \OU PI('~~ I~ R ,.

A$!]I E<.)UALS "R".

If Ihe second leHer you press is "0",

A${]) EQUALS A$(], - VVHI(H IS "R" + "'()"
OR
··RO".

Assume lhal when A$f I) equals ROSES ARE RED, you press a period.
A$(]) then f'quals the entire sentence; ROSES ARE RED. Thp nexl leller
you press i~ in A$(2}.

lines 140- t&U print your par.\waph.

DO-IT-YOURSELF CHALLENCER PROGRA,'" 27-3

Here'~ d tOl.lgh ol)e (but it Cdn be done!l for those inlrigued with word
processin~, Change the above program so that you can;

1 Print ,lny sentence

2. Revise ;Iny senlence

You may need to review the challenger program III Ch,lpter 12. Our
answer's in the back.

Using the Printer
If you have a prinler. connect il now by plugging it into the jack morked
SERIAL I/O. Turn on the printer and insert paper. The n;Jnual that comes
with the printer shows how.

Ready? Type this short program:

10 INPUT A$
20 PR I NT *' - 2. A$

Now lype:

L LI S T CENIEID
If your program doesn't list on the printer, be sure the printer is on,
"on-line," and connected to your keyboard. Then type LL I ST CEHIEID
again.

157

Hilling trouble getting in/o
thi5 mode? Rf'dd the f'nd 01
Chi~ef I.

•

All the If'tler5 in RUN 5hould
ippeir In rf'gular (nol re·
lIerred) color5.

Run the program and watch the printer work. PR I NT u - 2, tells the
computer to print, not on the screen. but on device # - 2, which is the
printer. Be sure to type a comma after the -2, or you get a syntax error.

Press the <SHIED and rn (zero) keys simultaneously and release them so
that the letters you type appear in reversed colors on your screen (green
with a black background). You are now in an upper- lowercase mode. The
reversed colored leiters are actually lowercase (noncapilalized) letters.

To type a capital letter, use the~ key as you do with a typewriter. It
appears in regular colors .

Run the program, using the CSHIf..D key so that the word RUN is capital.
ized. Input a sentence with both upper· and lowercase lelfers. Type:

MY PR INTER PR I NTS LOWERCASE LETTERS CEHllB)

DO-IT-YOURSELF PROGRAM 27-4

Look at the "Writing an Essay" I}rogram earlier in this chapter. Change
lines 140-160 so thai the paragraph prints on the printer rather than
the screen.

If you hil\ff' 11 Deluxe Color
Compl.Jler, you Cin get true
lower-Cise lellers (rather
than re\ll?rsed letter5) to ap
pear on your 50een. See
Introducing Your De/un!
CaJar Computer.

Learned in
BAStC WORDS

LliST
PRINT # - 2

Chapter 27
BASIC CONCEPT

string arrays

158

Notes

CHAPTER 28

SORTING
Any file clerk knows it's easier 10 find information that's sorted alphabeli~

cally. Type this program and run it. until you're convinced the computer
can alphabetize:

10 INPUT "TYPE TWO WORDS"; A$. S$
20 IF A$ < B$ THEN PRINT A$ " COMES BEFORE" B$
30 IF A$ > Bf THEN PRINT A$ " COMES AFTER" B$
L10 IF A$ = B$ THEN PRINT "BOTH WOPDS ARE THE

SAME"
50 GOrD 10

With strings, the greater than (», less than «l, and equal (=) signs have a
new meaning. They tell which of two strings comes before the other in
alphabetical sequence:

< precedes alphabetically
< = precedes or is the same alphabetically
> follows alphabetically
> = follows or is the same alphabetically
= is the same

Since the computer can alphabetize, it's easy to write a sorting program.
Type and run this program, which sorls 5 words:

10
20
30
a0
50
60
70
80
90
100
110
12.
13.
1a.

DIM A$(5)
FOR I = 1 TO 5
INPUT "TYPE A WORD" j A$(I)
NEXT I
X = 0
X = X + 1
IF X> 5 THEN GOTO 70
IF A$(X)="ZZ" THEN 60
FOR Y = 1 TO 5

IF A$(Y) < A$(X) THEN X = Y
NEXT Y
PRINT A$(X)
A$(X)="ZZ"
GO TO 50

l
YOU can easily make the
compUler alphabetize more
words by changing the 5 to
say, 100, in Lines 10,20,70,
and 90.

159

" .,

To see how the program worb, delete Line 120 alld add the following
lines, (These lines only show \vhdlthe program does-they have nothing to
do with ~orting,J

120
5 CLS
45 CLS
85 V = V + 1
105 PRINT@ 15+32*(V-1). A$(Xl
135 GOSUB 500
500 FOR I = 1 TO 5
510 PRINT @ 0+32*<1-1l ,A$(ll j"

520 NEXT I
530 RETURN

Run the program. Too fast? Type this line. It slows down the program so
you can see what's happC'ning:

107 FOR T = 1 TO 800: NEXT T

Now run the program again. Input these words ilnd walch carefully:

MICHAEL
TRAl) I S
DYLAN
ALEXIA
SUSAN

Look ilt Column 2. See how the first name changes (rom Michaelta Dylan
to Alexia. Next, notice what happens to Alexia in the first column. Alexia
bccome~ ZZ.

Thi<; illustrates how the program sons the first and second words:

FIRST WORD

MICHAEL MICHAEL
TRAVIS TRAt) I S TRAl) I S
DYLAN DYLAN
ALEXIA ALEXIA ALEXIA
SUSAN SUSAN SUSAN

MICHAEL MICHAEL MICHAEL ALEXIA
TRAVIS TRAVIS TRAl,! I S
DYLAN DYLAN DYLAN

ALEXIA ZZ
SUSAN SUSAN

SECOND WORD

ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA
TRAinS TRAVIS
DYLAN DYLAN
ZZ ZZ ZZ
SUSAN SUSAN SUSAN

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA
TRAIn S TRAI) I S TRAVIS DYLAN
OYLAN OYLAN ZZ

ZZ ZZ
SUSAN SUSAN

160

Here's how the program works:

Lines 50 and 60 set X's value. At the start, X is 1.

Then Lines 90-' 10 compare A$(Xl-Michael-with every other name in
Array A$ until a word is reached that precedes Michael-Dylan.

Line 100 then makes A$(X) equal to Dylan's place in the array: A$(3).
When Dylan is compared with the fourth word-Alexia-A$(X) becomes
A1141.

When all the words have been compared with one another, Line 120
displays the first sorted word: Alexia. line 130 changes Alexia's position
A$(4}-to ZZ.

At this point, Lines 50 and 60 make X equal' again. A$(X}-Michael-is
compared with other names in the array to find the second sorted word.

When Michael's place in the array becomes ZZ, line 60 sets X to 2. Then,
A$(Xl-which is now Travis--is compared with all the names in the array
to find the next sorted word.

When the array's values are all changed to ZZ, line 70 ends the program.

DO·IT·YOURSELF PROGRAM 28-1

Using this sort routine, change the program from the last chapter so
that it alphabetizes your books by title, author, or subject.

This chapter shows a simple way to sort. If you need to sort many items,
you may want to research faster sorting methods (such as the bubble sort).

Learned in Chapter 28
BASIC SYMBOLS

>
<

Notes

161

CHAPTER 29

ANALYZING

If you have more than 4K RAM, you have an easy way to analyze informa
tion. By giving each item more than one subscript, you can see it through
different dimensions.

Take the voting program from Chapler 19. Here's the information. (We're
using only the first three districts to make the program simple.)

We',e only using three dis- ELECTION POll
Iriets fa keep it simple.

District Votes for Votes for
We're calling them (andi- Candidate 1 Candidate 2dates 1 and 2 chis lime rather
than Candidates A and 8. 1 143 678

l '-) 2 215 514
3 125 430

In Chapter 19, you stored the above "items" (groups of votes) in lwo
one-dimensional arrays: Arrays A and B. In this chapter, you'll store them
in one easy-la-manage two-dimensional array: Array V.

The following program puts the items in Array V.

5 DIM V(3.2)
10 DATA 1a3. 678, 215, 5la, 125, a30

~
20 FOR D = 1 TO 3

(
~50~ FOR C = 1 TO 2
... READ V(O.C)

NEXT C
60 NEXT D

70 INPUT "DISTRICT NO. (1-3)"; D
80 IF D < 1 OR 0) 3 THEN 70
90 INPUT ~CANOIOATE NO. (1-2)"; C
100 IF C < 0 OR C) 2 THEN 90
110 PRINT V(O,C)
120 GOTO 70

162

Type and run the program. Notice that each item is labeled by two
subscripts.

Here's how the program works:

Line 5 reserves space in memory for Array V. Each item in Arrav V can have
two subscripts: the first. no higher than 3; the second, no higher than 2.

Lines 20-60 read all the votes into Array V. giving them each two
subscri pts:

The first subscript is the district (Districts 1-3).

The second suhscript is the candidate (Candidates 1-2).

YOUR COMPUTER'S MEMORY

V(I,1)-1113
V(2 ,1)--215
V(3 d)-125

V(1,2)-678
V(2,2)-514
V(3,Z)--430

For example, 678 is labeled V(l ,2). This means 678 is (rom District 1and is
for Candidate 2.

With all the votes in a two-dimensional array, it's simple to analyze
them-in two dimensions. By adding these Jines, for example, you can
print all the votes in two ways: by district and by candidate.

(Delete Lines 70-120 first)

70

80
100
110

INPUT "TYPE < 1 > FOR DISTRICT
< 2 > FOR CANDIDATE"; R
IF R < 1 OR R > 2 THEN 70

ON R GDSUB 1000, 2000
GDTD 70

OR Remember how 10 de/ell"
lines? 70 (fJ!IIB) Deleles
Line 70.

1000
1010
1015
1020
1030
1040
1050
1060
1070
1080

2000
2010
2015
2020
2030
2040
2050
2060
2070
2080

INPUT "DISTRICT NO(1-3)"i 0
IF 0 < 1 OR 0 > 3 THEN 1000
CLS
PRINT @ 132. "VOTES FROM DISTRICT" 0
PRINT
FOR C = 1 TO 2
PRINT "CANDIDATE" C,
PRINT V(D.C)
NEXT C
RETURN

INPUT "CANDIDATE NO(I-2J"; C
IF C < 1 OR C > 2 THEN 2000
CLS
PRINT @ 132, "VOTES FOR CANDIDATE" C
PRINT
FOR 0 = 1 TO 3
PRINT "DISTRICT~ D.
PRINT V(D,CJ
NEXT 0
RETURN

163

If you are truly an analytical
lype, you're going to love
lhe rest of this chapter. If
you're definitely NOT that
type, skip it!

l '-------),

The Third Dimension
You can continue with as many dimensions as you want. You're limited
only by how much information you can fit into the computer's memory.

Add a third dimension to Array V: interest groups. Here's the information:

VOTES FROM INTEREST CROUP 1

Candidate 2

District 1
District 2
District 3

Candidate 1

143
215
125

VOTES FROM INTEREST CROUP 2

678
514
430

Candidate 1 Candidate 2

District 1
District 2
District 3

525
318
254

VOTES FROM INTEREST CROUP 3

54
157
200

District 1
District 2
District 3

Candidate 1

400
124

75

Candidate 2

119
300
419

To get all this into your computer's memory, erase your program and type

5 DIM V(3,3,2l
10 DATA 143, 678, 215, 514, 125, 430
20 DATA 525, 54, 318, 157, 254, 200
30 DATA 400,118,124,300,75,418

00

~~
10

120
130,.0
150
160
170
180

FOR G = 1 TO 3
FOR D = 1 TO 3
FOR C " 1 TO 2
READ V(G,D,Cl
NEXT C
NEXT D
INPUT "INTEREST GROUP NO (1-3)"; G
IF G < 1 OR G > 3 lHEN 110
INPUT "DISTRICT NO. (1-3); D
IF D < 1 OR D > 3 THEN 130
INPUT ~CANOIDTE NO. 11-2)"; C
IF C < 1 OR C > 2 THEN 150
PRINT V(G,O,C)
GOTO 110

164

Run the program and test the subscripts. Lines 40-100 read all the votes
into Array V, giving them each three subscripts:

The first subscript is the interest group (Interest Groups 1-3),

The second subscript is the district (Districts 1-3).

The third subscript is the candidate (Candidates 1-2).

YOUR COMPUTER'S MEMORY

V(1 Ii d l---la3
V(112dl-215
Vl1,3dl 125
V(2,111l-525
V(2 ,2 tl l--318
1,1(2,3 t1 l 25a
V(3,111l--a00
Vl312,ll--1211
V(3 ,] tl)--75

V(1 t1 ,2l---678
VllI2,2)--51a
V(I,312l--a30
V(2,1,2l--5a
V(2,2,2l--157
V(2,3,2l--200
V(3t1 ,2)-119
V(] ,2 ,2)-300
V(3 ,3 ,2)~aI9

For example, 678 is now labeled V(l, 1,2). This means 678 is from Interest
Group 1, is from District 1, and is for Candidate 2.

To take advantage of all three dimensions, delete Lines 11 O~, 80 and type:

110 PRINT: PRINT "TYPE <1> FOR GROUP"
120 PRINT "<2> FOR DISTRICT OR <3> FOR

CANDIDATE"
130 P = 22a : INPUT R
1a0 ON R GOSUB 1000,200013000
150 GOTO 110

1000 INPUT "GROUP(1-3)"; G
1010 IF G<l OR G>3 THEN 1000
1020 CLS
1030 PRINT @ 102 , "VOTES FROM GROUP" G
10110 PRINT @ 168 I "CAND. I "
1050 PRINT @ 176 • "CAND. 2"
1060 FOR 0 ~ I TO 3
1070 PRINT @ P. "DIST. " 0
1080 FOR C ~ I TO 2
1100 PRINT @ P + 8*C, V(G ,0 IC l ;
1110 NEXT C
1120 P ~ P + 32
1130 NEXT 0
11110 RETURN

2000 INPUT ·"OISTRICT(I-3)"; 0
2010 IF 0<1 OR 0>3 THEN 2000
2020 CLS
2030 PRINT @ 102, "VOTES FROM OIST. " 0
2040 PRINT @ 168, "CANO. I "
2050 PRINT @ 176, "CANO. 2"
2060 FOR G ~ I TO 3
2070 PRINT @ P. "GROUP" G
2080 FOR C ~ I TO 2
2100 PRINT @ P + 8*CIV(G,DICli
2110 NEXT C
2120 P ~ P + 32
2130 NEXT G
2140 RETURN

3000 INPUT "CANDIOATE(I-2l"i C
3010 IF C<1 OR C>2 THEN 3000

165

166

3020 CLS
3030 PRINT @ 102, "VOTE8 FOR CANO. " C
3040 PRINT @ 168, "OI8T. 1 "
3050 PRINT @ 176, "OI8T. 2"
3060 PRINT @ 184, "OI8T. 3"
3070 FOR C • 1 TO 3
3080 PRINT @ P. "GROUP" C
3090 FOR D • 1 TO 3
3100 PRINT @ P + 8*0. V(G.O ,C) ;
3110 NEXT D
3120 P • P + 32
3130 NEXT G
3140 RETURN

Run the program. You can now get three perspectives on the information.

DO-IT-YOURSELF PROGRAM 29-1

Write a program to deal the cards using a two-dimensional array.
Make the first dimension the card's suit {1-4) and the second dimen
sion the card's value (1-13).

Learned in Chapter 29
BASIC CONCEPT

Multidimensional arrays

Notes

SECTION IV

BACK TO BASICS
This section sends you back to school. You'll learn some new Extended
Color BASIC words thai will help you refine and polish your programs.

169

CHAPTER 30

THE NUMBERS GAME

Your "extended" Color Computer includes several advanced mathematical
functions. This chapter gives a rundown of each function and shows the
ways to use it.

Before continuing, however, you need to knuw abuut a LUuple of functions
and definitions discussed below.

Exponentiation
CD

Quick! What's 1.5 squaredt How about 77 LUbed? If you don't know. ask
the computer. Anytime you want to raise a number to the nih power, fo[low
this format:

number (]) power

number is the base (I he number you wish to raise to the nth
power), It may be any numeric expression.

up-arrow is generated by pressing m.
power is the exponent to which the ba~l' i~ ",ised. It may be any nu
meric expression.

Note: Exponentiation has precedence over other operators, For exam
ple, if the computer calculates - 2 up-arrow 2, the result is a negative
number. To raise - 2 to the 2d power "correctly" (resulting in positive
number), enclose - 2 in parentheses.

Start with 77 cubed, After looking at the syntax block, can you give the
command? Your answer should be 456533.002.

If your screen looks like this, you're off to a good start:

PRINT 77 t 3
1I5G533.002
OK

Try raising J0 to the 10th power. The screen displays:

1.00000001E+10

Don't worry about the
".OOZ." This is called a
"round-off error" and is
necessary because lhe
compuler isn't the "per
(ect"' calculalof. But then,
no machine is.

171

Trigonometry is the investi
gation of the relationship
of a triangle's sides to its
angles.

172

Since 10,000,000,000 has more than 9 significant digits, the computer
went into the E notation explained in Chapter 13.

How about 100 to the 1DOth power? Does the screen display an ?OV ER
ROR (overflow)? This means that the answer is too large for the computer
to handle. Anything outside the range ~ 1Ol~ to + 1O'~ causes an overflow
error.

DO-IT-YOURSELF PROGRAM 30-1

Write a short program that displays the square of each whole number
from 1 to 10.

SQ"
SQR enables you to find the square root of a number. Here is its syntax:

$OR (number)

number is zero or any positive number.

For example, if you want the square root of 100, type:

PR I NT SQR (100) CEHIEID
and you'll find out (if you didn't already know) thaI the answer is 10.

DO-IT-YOURSELF PROGRAM 30-2

Write another short program to display the square root of every tenth
number from 100 to o.

TRIG Functions
Look at this triangle. You'll be using it throughout the discussion of trigon
ometric functions.

AB

SC
SA

A A L.L_--::::-_...L.J AC
SB

Trigonometry has many practical applications. For instance, imagine that
your triangle is actually the roof of a house you're building. Trigonometric
functions can help you determine either the length of the rafters or the slope
of the roof (the "pitch"). So if math turns you off but building things turns
you on, this section might be just what you're looking for.

Notice that we've labeled angles with the prefix A and sides with the prefix
S. Angle A, for example, is AA; the side opposite it is SA.

Using the triangle, we can define the common trig functions in the follow
ing manner:

Sine of AA = SIN (AA) = SA/SC

Cosine of AA = COS (AA) = SB/SC

Tangent of AA = TAN (AA) = SA/S6

Degrees v Radians
To define an angle, you may use either of two units of measurement. The
more common unit is the degree; the "more technical" unit is the radian.

Your computer assumes all angles are measured in radians. Since radians
may be somewhat alien to you, you can convert them to degrees (and vice
versa) this way:

Degrees to Radians: Degrees / 57.29577951
Radians to Degrees: Radians * 57.29577951

This chapter's sample programs include a "converter" that takes the de
grees you input and automatically converts them into radians (and vice
versa for some purposes).
SIN

That's sine-pronounced like "sign:'

Its syntax is:

SIN (angle)

angle is angle's size in radians.

Given the length of one side and the sizes of two angles, you can use SIN
to determine the lengths of the other sides.

Enter and run the following program, inputting any values.

5 CLS
10 INPUT "WHAT IS ANGLE A IAA)"; AA:

IF AA<=0 OR AA>=180 THEN 100
20 INPUT "WHAT IS ANGLE BlAB)"; AB:

IF AA <=0 OR AB >=180 THEN 100
30 INPUT "WHAT IS SIDE C ISC)"; SC:

IF SC <=0 THEN 100
40 AC = 180-IAA+AB) 'VALUE OF ANGLE AC
50 IF IAA+AB+AC) < > 180 THEN 100

'TRIANGLE=180 DEGREES
60 AA=AA/57.29577951: AB=AB/57.29577951:

AC=AC/57.29577951
, CONVERT DEGREES TO RADIANS

70 SA=I(SINIAA)/ISIN(AC») * SC: IF SA<0
THEN 100

80 SB=IISINIAB»/ISINIAC») * SC: IF SB<0
THEN 100

90 PRINT "SIDE A ISAl IS" SA "LONG":
PRINT "SIDE BISB) IS"
SB "LONG": GOTO 10

100 PRINT "SORRY. NOT A TRIANGLE.
TRY AGAIN": GOTO 10

In the Sample Program
section is a program called
Drawing Triangles. Tha!
program draws [,jangles
based upon sides ,md an
gles that you specify.

173

174

When the computer asks you for AB and AC. input degree-measures of the
angles. If you enter a negative number or a number that is greater than or
equal to 180, the computer goes to Line 100. It then prints the message and
again asks for the sizes. Ii you enter a negative number for Sc, it does the
same thing.

Since you don't know the size of AC, the computer automatically computes
this in Line 40. If the sum of the three angles is not equal to 180 degrees.
the computer takes appropriate action in Line SO. Line 60 converts degrees
to radians so the computer can do the sine calculations.

Sine Waves
You may have seen sine waves before. They're used to indicate AC povver
and other electrical conditions. Run the following program to see a "hori
zontal scrolling" sine wave (and check the Sample Program section for a
more conventionill sine wave).

5 CLS
10 FOR A = 180 TO -179 STEP-10
20 RO = A / 57.29577951 'RADIANS
30 CL = SIN(RO) * 1a + 16.5

'CL = COLUMN POSITION
40 PRINT TAB(CL) ;"5" 'PLOT SINE OF RO
50 NEXT A
60 GOTO 60

cos
The cosine function is related to the sine function and has the following
syntax:

COS (angle)

angle IS angle's size in radians.

Given the lengths of two sides dno thE;' size of one angle, yuu can use cosine
to determine the length of a triangle's third side, as shown here:

5 CLS
10 INPUT "WHAT IS ANGLE C lAC)"; AC:

IF AC<=0 OR AC>=180 THEN 100
20 AC=AC / 57.29577951

'CONVERT DEGREES TO RADIANS
30 INPUT "WHAT IS SIDE A (SA)"; SA:

IF SA<=0 THEN 100
40 INPUT "WHAT IS SIDE B (SB)"; SB:

IF SB=<0 THEN 100
50 SC = «SA + 2)+ISB t 2)1-(2*lSA*SB*

CoS(AC»): IF SC<0 THEN 100
60 PRINT "SIDE C (SC} IS" SQR(SC) "LONG":

GOTO 10
100 PRINT "SORRY, NOT A TRIANGLE.

TRY AGAIN": GoTo 10

Notice that the program works almost the same as the SIN program except
for the use of exponentiation (up-arrow) in Line SO and SQR in Line 60.

DO-IT-YOURSELF PROGRAM 30-3

Cosine can make waves of its own. Rewrite the "Sine Wave" program
so that it plots COS(RO) instead of SIN(RO). UseC (for cosine) to display
the Wilve made by COS. What is the difference between the two?

TAN

The third trigonometric function, TAN, lets you calculate the tangent of an
angle. Here is its syntax:

TAN (angle)

angle is angle's size in radians.

You can use TAN to determine, among other things, one side of a triangle,
given another side and one angle.

Enter and run this program:

5 CLS
10 INPUT "WHAT IS SIDE B (SB)"; SB:

IF SB<=0 THEN 100
20 INPUT "WHAT IS ANGLE A CAA)"; AA:

IF AA<=0 OR AA>=180 THEN 100
30 AA=AA/57.28577851 'CONVERT DEGREES

TO RADIANS
40 SA=S6*CTAN(AA»: IF SA<=0 THEN 100
50 PRINT "SIDE A CSA) IS" SA "LONG":

GDTO 10
100 PRINT "SORRY, NOT A TRIANGLE.

TRY AGAIN": GoTO 10

The key to this program, of course, is line 40, where the tangent of AA is
multiplied by the length of 56 to determine the length of SA.

ATN

ATN (arctangent) is the inverse ofTAN and has the following syntax:

ATN (angle)

angle is angle's size in radians.

The following program uses ATN and TAN to calculate two unknown angles
of a triangle when two sides and one angle are known.

10 CLS
20 INPUT "WHAT' IS SIDE A (SA)"; SA:

IF SA<=0 THEN 150
30 INPUT "WHAT IS SIDE· C (SC)"; BC:

IF SC<=0 THEN 150
40 INPUT "WHAT IS ANGLE B CAB)"; AB:

IF AB<=0 OR AB>=180 THEN 150
50 X=(180-AB) 'AA+AC=180-AB
60 X=X/57.28577851 'CONVERT DEGREES

TO RADIANS
70 Y=((SA-SC>/CSA+SC»*TANCX/2>

175

176

80 Z=ATN(Y)
90 AA=(X/2)+(Zl
100 AC=(X/2)-(Z)
110 AA=AA*57.29577951 'CONVERT

RADIANS TO DEGREES
120 AC=AC*57.29577951 'CONVERT RADIANS

TO DEGREES
130 PRINT "ANGLE A (AA) IS" AA "DEGREES"
140 PRINT "ANGLE C (AC) IS" AC "DEGREES":

GOTD 20
150 PRINT "SORRY, NOT A TRIANGLE.

TRY AGAIN": GoTo 20

TAN ((AA-AC)/2) is equal to ((SA-SC)/(SA + SO) * TAN ((AA + ACl/2). Also
notice that it was necessary to convert the "computer's" radians to "your"
degrees (Lines I J0 and 120).

lOG

LOG returns the natural logarithm of a number. This is the inverse of EXP,
so X = LOC(EXP(X)). Here is LaC's syntax:

lOG (number)

number is greater than zero.

The logarithm of a number is the power to which a given "base" must be
raised 10 result in the number. "Logs" are useful in scientific and mathe
matical problems. In Ihe lOG function, if you omit the base, the computer
assumes you are specifying Base e (2.718281828l.

To find the logarithm of a number 10 another base, B. use this formula:

log base B (x) = tog e (x) / log e (B)

For example. LOG (32768)/LOG(2) returns the logarithm 10 Base 2 of
32768. (It returns the power to which 2 is raised to get 32768.)

Try these:

PRINTLOG(I)~

PR I NT LOG (100) (lliaID
PRINT LOG (2.718281828) (IH'[EID

DO-IT-YOURSELF PROGRAM 30-4

Compute the LOG of each of the following numbers:

a) 1003 b) 74.9865 c} 3.354285

DO-IT-YOURSELF PROGRAM 30-5

Compute the log to Base lOaf each of the following numbers:
a) 1 W10 c) 100
d) 500 e) 0.1 f) 1001

log e x
Hint: log 10 x -'"
log e 10

EXP

The EXP function returns the natural exponential of a number (enumber).
EXP is the inverse of LOC; therefore, X = EXP(LOG(X)). Here is EXP's
syntax:

EXP (number)

number is less than 87.3365.

Run this program to see EXP at work.

10 CLS
20 INPUT "ENTER X"; X
30 PRINT "~XP(X)="; EXPIXl
LJ0 GOlD 20

FIX

It's impressive when your computer carries a number out to 9 significant
digits, especially when 8 of those numbers are to the right of the decimal
point.

However, sometimes you might not want all those numbers; you may want
only the whole-number portion (the number to the left of the decimal point).
FIX lets you gel this whole number by simply chopping off all digits to the
right of the decimal point. Here is FIX's syntax:

FIX (number)

For example, type:

PRINT FIX (2,26£13851>~

The computer displays:

2
OK

Here's a program that breaks a number into its whole and fractional
portions.

10
20

~~
50
80
70

CLS
~N~UT "A NUMBER LIKE X,YZ"; X
w=FIX(X)
F,=ABS (X) -ABS (W)
~~INt ~WHOLE PART="; W
P~INt "FRACTIONAL PART="; F
GOTO 20

DEF FN

Extended Color BASIC has one numeric function, DEF FN, that is un
like any others we've talked about so far. DEF FN lets you create your
own mathematical function. You can use your new function the same
as any of the available functions (SIN, COS, TAN, and so on). Once
you've used DEF FN to define a function, you may put it 10 work in

When you use lhis fealure,
don't forgel 10 use lhe Off
FN Slalement before you
try to execule lhe function
it defines. Otherwise a rUF
ERROR (undefined func
tion) occurs.

177

178

your program by attaching the prefix FN to the name you assign to the
new function. Here is the syntax for DEF FN:

DEF FN name (variable list) - formula

name is the name you assign to the function you create.

variable list contains one "dummy variable" for each v<lri·
able to be used by the function.

formula defines the operation ill terms of the variables given
in the v.1riable list

Note: Variable names that appear in formula serve only to define
the formula; they do not affect program variables that have the
same name. You may have only one argument in a formula call;
therefore, OEF FN must contain only one variable.

You may use OEF FN only in a program, not in the immediate
mode.

For example, one math operation you've had to use several times in
this chapter is degree-to-radian conversion. Wouldn't it be nice if the
computer did that for you?

If you'll change the sample program we used for SIN, you'll see how
to create a DEF FN that converts degrees to radians.

7 DEF FNRCX)=X/57.28577851
60 AA=FNR(AA): AB=FNR(AB): AC=FNR1AC)

You can see right away how much typing this saves, since you had to
enter 57.29577951 only once. Whenever FNR is called into use, the
computer automatically inserts whatever values you have used and
performs the prescribed operation.

DO·IT·YOURSELF PROGRAM 30-6

Use OEF FN to:

1. Convert radians to degrees.

2. Create a math function that cubes numbers.

You'll find a quick reference table of many useful mathematical formu·
las (plane geometry, trig, and algebra} in the Appendix.

Learned," Chapter 30

BASIC WORDS

SQR
SIN

cos

TAN

ATN

lOG

EXP

fiX

OEF FN

CONCEPTS

Computing a square root
Computing the sine;
Determining two unknown sides of a trian
gle, given two angles and a side.
Computing the cosine;
Determining the unknown side of a trian
gle. given two sides and an angle
Computing the tangent;
Determming the unknown side of a trian
gle, givE'n one sidE' anff an angle
Computing the arctangent;
Determining two unknown angles of a tri
angle, given two sides and the third angle
Computing the natural logarithm of a
number
Computmg the natural exponential of a
number
Rounding a decimal number to a whole
number
Defining a function

Notes

179

180

CHAPTER 31

IT DON'T MEAN A THING
IF IT AIN'T GOT THAT

STRING

Earlier, we discussed string at great length. Now ii's lime for informa
tion about more of Extended Color BASIC's sIring functions.

STRING$

Zing goes STRING$... and when you use it to create a string of char
acters, you can produce graphs, tables, and any other lext display. The
syntax of STRING$ is as follows:

STRING$ (/ength,chdraC!er)

length is a number from 0 to 255.

character is either a string expression for a character or a
numeric expression for an ASCII code. If you use a string
constant, enclose it in quotes.

The number of characters displayed depends on the number you spec
ify in length. Which characters are used depends on either the charac
ter or the ASCII code you specify. See the Appendix for a complete lis!
of ASCII character codes.

For instance, jazz up your overworked "Lines" program by changing it
as (ollows:

5 ClS
8 X$ = STRING$ (13."*")
7 PRINT @ 98, X$ j "lINES" j X$
9 FOR X = 1 TO 1000: NEXT X
10 PHODE 3,1
15 pelS
20 SCREEN 1 .1
25 LINE (0.0)-(255.191) .PSEI
30 LINE (0.1911-1255.0) ,PSET
40 GOlD a0

line 6 assigns X$ the value STRINGS (13,"·")-a string of 13 asterisks.

line 7 tells the computer to print (starting at Print Screen location 96)
X$, then the word LINES, followed by X$ again. (See the Text Screen
Worksheet in the Appendix.) Since X$ equals 13 asterisks ('J. those
characters are printed before and after LINES.

What? You want to spruce up the title even more! All right, add these
two Jines:

8 Y$ = SIRING$(31,42): PRINT @ 384 ,Yi

This time, you tell the computer to display the character represented
by ASCII Code 42. And, as you probably guessed, ASCII Code 42 rep
resents an asterisk.

DO-IT-YOURSELF PROGRAM 31-1

Have you ever written lists to check off jobs that you or other peo
ple have to do?

Using STRINGS, write a program Ihat creates a check-off list.

I Think I See Some-String Ahead!
(INSTR)

If you want to search through one string for a second string, use
INSTR.

INSTR's syntax is:

INSTR (Position,search·string,target)

position specifies the position in the search-string at which
the search is to begin (0 to 255). If you omit position, the
computer automalically begins al the first character.

search-suing is the string fO be searched.

larget is the Siring for which to search.

INSTR returns a 0 if any of the foHowing is true:

The position is greater than the number of characters in the
search-siring.

The search-Siring ;s null.

It cannot find the target.

Watch Ihe way J STR works in the following program:

161

182

5 CLEAR 500
10 CLS
15 INPUT "SEARCH TEXT" iSS
20 INPUT "TARGET TEXT" iTS
25 C=0: P=l 'P = POSITION
30 F = INSTR(P,S$,T$)
35 IF F=0 THEN 60
110 C=C+1
liS PRINT LEFT$ (S$,F-1)+STRING$(LEN<T$),

CHR$(128)) + RIGHT$(S$,LEN(S$) -F
LEN<T$)+1)

50 P=F+LEN (T$)
55 IF P<=LEN(S$)-LEN(T$)+1 THEN 30
60 PR I NT "FOUND"; C i "OCCURRENCES"

The following is a sample run. However, you can input whatever text
you need.

SEARCH TEXT? YOU SHOULD TRY TO USE YOUR TRS
80 COLOR COMPUTER AS MUCH AS POSSIBLE.
TARGET TEST? TR
YOU SHOULD .IIY TO USE YOUR TRS-80 COLOR
COMPUTER AS MUCH AS POSSIBLE
YOU SHOULD TRY TO USE YOUR .IIIS-80 COLOR
COMPUTER AS MUCH AS POSSIBLE
FOUND 2 OCCURRENCES
OK

Here's what happens:

1. Line 15 assigns S$ (search) the value, YOU SHOULD TRY
TO USE YOUR TRS-80 COLOR COMPUTER AS MUCH AS
POSSIBLE.

2. line 20 assigns T$ (target) the value of TR.

3. line 30 tells the computer to start searching for TS at the
first position (P) in 5$.

4. In lines 45 and 55, INSTR locates T$ and then prints and
blocks out T$ (CHR$(128)). It searches for the next occur
rence of T$ and does the same.

5. Line 60 tells the computer to display the number of occur+
rences of T$ in 5$.

DO·IT·YOURSElF PROGRAM 31-2
Write a program that returns the first and second occurrences of
the B in ABCDEB.

The following data storage program contains a mailing list of names
and addresses. This is an·easy way to store information. Notice that
we've saved storage space by not putting spaces between the words.
Doing so makes it difficult for you to read but not for the computer to
do so.

Notice also that we assign a leading asterisk (") to zip codes so the
computer doesn't confuse them with street numbers.

In this case, we're looking for the names and addresses of all individu
als who live in the area specified by zip code 650-. Consequently,
*650 is the target (A$).

5 CLS
10 A$ = "*650"
20 X$ = "JAMES SMITH ,6550HARRISON,

OALLASTX*75002:SUE
SIM,RT3,GRAVIOSMO*65084:LYDIA
LONG,3445SMITHST,ASBURYNJ*32044:
JOHN GARDNER,BOX60EDMDNTONALBERTACA"

30 Y$ = "KERRY FEWELL ,456MAPLE I
NEWORLEANS*886G7: BILL
DOLSEIN,6313E121 KANSASCITYMO*64134:
STEVE HODGES, RT4FLORENCEME*65088

40 Z$ = "KAREN CROSS ,314HURLEY
WASHINGTONDC*10011: ASHER
FITZGERALDI2338HARRISONFTWORTHTX
*76101: LIZ DYLAN,BDX988NEWYORKNY
*88866"

So that your computer can search X$, add this line:

50 PRINT INSTR(XIA)

Run the program. Your screen displays:

62
OK

This tells you the string contains a name and address you need.

What about Y$? Edit Line 50 so that the computer searches through
those addresses. Does it tell you it found the needed name?

Now try Z$. Displaying a zero is your computer's way of saying,
"There aren't any names you need on this list"

DO-IT-YOURSELF PROGRAM 31-3

Modify the mailing ost program so that the following are true:

X$ contains two addresses that have a 650- zip.

The computer looks for every occurrence of '650, not
only for the first.

Never Change Horses in Midstring
(MID$)

MID$ statement gives you a powerful string editing capability by let
ting you replace a portion of one string with another. The syntax of
MID$ is as follows:

MID$ (oldstring,position,Jength) =newstring

oldstring is the variable-name of the string to replace.

posilion is the number of the position of the first character to
be changed.

length is a number of characters to replace. If you omit
length, the computer replaces all of oldstring

newstring is the string that replaces the specified portion of
oldstring.

Note: If newstring has fewer characters than lenglh specifies,
the computer substitutes all of newstring. newstring is always
the same length as olds/ring.

183

To see what we mean, run this program:

5 CLS
10 A$ = "KANSAS CITY. MO"
20 MID$(A$.111l="KS"
30 PRINT A$

Line 10 assigns A$ the value KANSAS CITY, MO. Then Line 20 tells
the computer to use MID$ to replace part of the oldstring (A$) with KS,
starting at Position 14. .

Change Position 14 to 8 and run the program. The result is:

KANSAS CITY. MD

Now add the length option to Line 20:

20 MID$(A$.11l.2)="KS"

Notice that it doesn't affect the result since newsu;ng and oldstring are
both two characters long. Change length to 1;

20 MIDa{A$.11l.1 l ="KS"

The computer replaces only one character in oldsrring, using the first
character in KS.

You'll find MID$ to be doubly effective when used with INSTR. Using
the two, you can "search and destroy" text. INSTR searches; MID$
s:hanges or "destroys." The following program illustrates this:

5 CLS
10 INPUT "ENTER A MONTH AND DAY (MM/DDl. ";X$
20 P = INSTR(X$."/")
30 IF P = 0 THEN 10
£10 MID$(X$.P.1)= "-"
50 PRINT X$ " IS EASIER TO READ. ISN'T IT?"

In this program, IN5TR searches for a slash (I), When it finds one,
MID$ replaces it with a hyphen (-).

DO-IT-YOURSELF PROGRAM 31-4

Pretend you worked at a telephone company in the days when
lelephone exchanges were being switched from alpha·characters
10 numeric-characters. Write a program that uses M!DS to replace
all alpha-exchanges with numbers. Be sure to clear enough sIring
space or you'll get an 105 ERROR.

Learned in Chapter 31

1B4

BASIC WORDS

STRINGS
INSTR
MID$

CONCEPTS

Creating a string of characters
Searching for a string
Replacing one string for another

Notes

185

186

CHAPTER 32

IN ONE DOOR AND
OUT THE OTHER

Input/output statements let you send data (rom the keyboard to the
computer, from the computer to the TV, and from the computer to the
printer. These functions are primarily used inside programs to input
data and output results and messages.

A Line Drive
(LINE INPUT)

The first input/output statement is LINE INPUT, Its syntax is as follows:

LINE INPUT "prompt" string variable

prompt is the prompting message.

string variable is the name assigned to the line that is input
from the keyboard.

LINE INPUT is similar to INPUT, except for these differences:

When the statement executes, the computer does not dis
playa question mark while awaiting keyboard input.

Each LINE INPUT statement can assign a value to only one
variable.

The computer accepts commas and quotation marks as part
of the string input.

Leading blanks, rather than being ignored. become part of
the string variable.

With LINE INPUT, you can input string data without worrying about
accidentally including delimiters such as commas, quotation marks,
and colons. The computer accepts everything. In fact, some situations
require that you input commas, quotation marks, and leading blanks as
part of the data.

Examples:

LINE INPUT X$ (UillID

lets you input X$ without displaying any prompt.

LINE INPUT "LAST NAME, FIRST NAME? ";N$ lIJITEID
displays the prompt "LAST NAME, FIRST NAME? " and inputs data.
Commas do not terminate the input string. Notice that the prompt in
cludes the question mark and the following space.

To understand LINE INPUT better, enter and run the following
program:

10 CLEAR 300: CLS
20 PRINT TAB(8) j "LINE INPUT STATEMENT":

PRINT
30 PRINT: PRINT "*** ENTER TEXT ***"
40 ' *** GET STRING, THEN PRINT IT ***
50 A$ = "" 'SET A$ TO NULL STRING
60 LINE INPUT "==) "j A$
70 IF A$ = "" THEN END' IF STILL NULL

STRING, STOP!
80 PRINT A$
80 GoTo 50

Customized Printing
(PRINT USING)

By now you know that the more you work with your computer, the
more it can work for you. For instance, maybe you want to create a ta
ble that uses numbers, but you don't want to type the plus and minus
signs repeatedly.

PRINT USING makes short work of this kind of problem by enabling
the computer to print strings and numbers in a "customized" format.
This can be especially useful for accounting reports, checks, tables,
graphs, or other output that requires a specific print format.

Here is PRINT USING's syntax:

PRINT USING format;item-list

format is a string expression that tells the computer the for
mat to use in printing each item in item-lisl. It consists of
"field specifiers" and other characters and is one (or one
set).

item-lisl is the data to be formalted.

Note: PRINT USING does not automatically print leading
and trailing blanks around numbers. It prints them only as
YOU indicate in format.

You may use the following field specifiers as part of format:

#..
$

$$
"$
+

The examples in Ihe field
specifier lisl are in the im
mediate mode but may be
incorporated into a pro
gram line.

187

Below is an explanation at each tield specltler. lollowed by examples
!=If its use.

A number sign specifies the position of each digit in the
number you enter The number of number signs establishes
the length of the numeric field.

If the field is larger than the number, the computer dispta}'s
the unused positions to the left of the number as spaces and
those to the right as zeros.

PRINT USING "#####" j GG. 2~
GG

If the field is too small for the number. the computer dis
plays the number with a leading % sign.

PRINT USING "#" j 66.2~
IGG

You can place the decimal point at any field location that
you established with the number sign. The computer auto
matically rounds off any digits to the right of the decimal
point that don't fit into the field.

PRINT USING "#.#0<; 66.25~
'X.66.3

PRINT USING "##,#" i 58.76 cmHID
58.8

PRINT USING "##,##

";10.215.3,66.789 t.23lJ
10.20 5.30 66.79

lOOIID
0.23

Note: In the last example, formal contains three
spaces after the final number sign. These spaces sepa
rate the numbers when the computer displays them.

The comma, when placed in any position between the first
digit and tre decimal point, displays a comma to the left of
every third digit. The comma establishes an additional posi
tion in your numeric field. To avoid an overflow (indicated
by <! leading percent sign), place a comma at every third
position in the numeric field. Overflows occur when the
field isn't large enough.

PRINT USING "#########." j 123lJ5678
12.3'15,678

PRINT USING "#########." j 123lJ56789
%123,lJ56,789

186

..
PRINT USING "###,###,###" i 123lJ58789
123tlJ56,789

When you place two asterisks at the beginning of the nu
meric field, the computer fills all unused positions to the left
of the decimal with asterisks. The two asterisks establish
two more positions in the numeric field.

PRINT USING "**####" j lJ4.0
****1I4

Net resu/IS? 15 thiS tenniS or
big business?

190

Line 10 also sets up the numeric field using the # sign. Thus, when
ever you enter a number that is smaller than the numeric field, the
computer precedes the number with asterisks to fill the unused spaces.
Included in Line 10 are two more field specifiers, the decimal point
and the comma.

The computer displays the decimal point at only those positions speci
fied. Because you tell the computer to include two places to the right
of the decimal (for cents), the computer rounds all numbers of more
than IwO digits to two digits. If you enter a number that has one or no
digits to the right of the decimal point, the computer inserted zeros.

The exclamation marks in Line 80 tell the computer to use only the
first character (the initial) of F$ (your first name) and of M$ (your mid
dle name).

DO-IT-YOURSELF PROGRAM 32-1

Change the program so that no leading asterisks appear on the
check.

DO-IT-YOURSELF PROGRAM 32-2

Write a program that creates a table showing your income and ex
penses on a monthly ba~is. Don't bother to itemize your expenses;
just calculate the totals and the net result (plus or minus).

Use STRING$ to organize the table, making it flexible enough so
you can use it month after month without changing the entire
program.

pas
POS is an input/output function that returns the current cursor position
on the screen or the carriage position on the printer. Here is its syntax:

POS (device number)

device number is 0 (screen) or -2 (printer)

PRINT TAB 181 POS(OI

returns lhe number 8 at Column 8 in the current line.

Note: The leading space before "8" causes it to appear in Col
umn 9.

One way to use POS is to disable the "wrap-around" feature on the
screen or the printer. Doing this prevents words from being broken in
the middle. On the other hand, it necessarily shortens lhe line length.
Run the following program to see POS at work:

5 CLS
10 Ai = INKEYi
20 IF Ai = "" THEN 10
30 IF POS (0) > 22 THEN IF AS = CHRi(32) THEN

A$=CHRS(13)
£10 PRINT Ai;
50 GOTD 10

This program lets you use the keyboard as a typewriter (except that
you can't correct mistakes unless you first disable the printer). POS
watches the end of the line so no word is divided.

In Line 30, the computer checks to see if the "current" cursor position
is greater than Column 22. (The screen is 32 columns wide.) If the cur
sor passes Column 22, the computer begins a new line the next time
you press the space bar (CHR$02)). When the computer decides to
begin a new line, it does so by printing a carriage return (CHR$(13));
in effect, the computer presses cmIEID.

DO-IT-YOURSELF PROGRAM 32-3

Write a program that uses POS to space words evenly on a single
line.

De-Vice Squad
Did you ever think of your video display as an "output" device and
your keyboard as an "input" device?

With PRINT, PRINT USING, LINE INPUT, and POS, you can use de
vice numbers 10 direci input or output. For instance, suppose you type;

PRINT .-2, USING " ••••••• "j123.L15678~

The screen remains "silent" while the printer prints:

123.L156

You can use any of the available field specifiers with PRINT #-2,
USING.

POS(-2) returns the printer's current print position (the current carriage
position}. Run the following program:

5 CLS
10 FOR I = 1 TO 10
20 PRINT .-2 I "*" j
30 PRINT "PRINTER POS="; POS(-21
40 NEXT I
50 PRINT .-2,""

The screen shows the print carriage position as it changes. Note that
the position is figured internally, not mechanically. Most printers can't
print until Line SO executes.

We chose to tesl cursor
position ZZ since il was 10
spaces less than the maxi
mum screen widlh, 32;
Ihal gives plenty of room
to COmplele a long word.

191

LINE INPUT # works similarly, with the one difference th<it il lets you
read a "line or data" from a cassette file.

LINE INPUT # reads everything from the first character up to which
ever of the following comes firSI:

A carriage-return character that is not preceded by a line
feed character

The 249th data character

The end-of~file

Other characters encountered (quotes, commas, leading blanks, and
line feed/carriage return sequences) are included in the string. For
instance;

LINE INPUT #-l,A$

inputs a line of cassette file data into A$.

The following program uses II E INPUT # 10 count the number of
lines in any casselle-stored program that is (SAVEd in ASCII format
(using the A option);

10 CLEAR 500
20 LINE INPUT "NAME OF DATA FILE? "iF'S
30 K=0 'K IS THE COUNTER
a0 OPEN "I" 1-1 IF$
S0 IF EOF (-1) THEN 100
60 LINE INPUT #-1 I A$
70 K=I'\+l
80 PRINT A'S
90 GOTD S0
100 CLOSE#-l
110 PRINT "FILE CDNTAINEO";Ki"LINES"

learned in Chapter 32

192

BASIC WORDS

LINE INPUT
PRINT USING

POS

CONCEPTS

tnpulling a line from the keyboard
Displaying strings and numbers in a cus
tomized format
Determining the current cursor position or
the current carriage position

Notes

CHAPTER 33

A LITTLE BYTE
OF EVERYTHING

-----"

This chapter contains a hodge-podge of Extended Color BASIC features
thai don't fit ne,llly into categories but that, nonetheless, can be very
helpful.

LET
Many versions of BASIC require that you Lise LET whenever you assign
a value to a variable as in the statement LET X = 5. Although eXler1ded
Color BASIC does not require LET, you may want to use it anyway.
One reason is 10 ensure compat.ibility with those versions of BASIC
thaI do require it.

For example, these statements are the same:

lQLETA$ = "A#"

10 A$ = "A#"

TRON/TROFF Commands

TRON ("trace on") and TROFF ("trace off") are debugging aids that
help you trace the execution of program statements.

TRON turns on a "tracer" that displays each line number of the pro
gram as it is executed. The numbers appear enclosed in brackets.
TROFF turns off the tracer.

Examples:

TRON t.ENllID
TROFF tnrnID

193

194

Trace the execution of the "lines" program. Type TRON (EHllID.
Then run the program:

5 PClS
10 PMODE 3.1
20 SCREEN 1 ,1
30 LINE (0.0)-(255.181> .PSET

The computer displays:

(5) (10) (20) (30)
OK

This display indicates that the program first executed line 5, then 10,
20, and finally 30. Remember to type TROFF (fHliID to turn off the
tracer.

Time After Timer
(TIMER)

Your computer also has a built-in "timer" that measures time in six
tieths of a second (approximately). The moment you power-up the
computer, the timer begins counting at zero. When it counts 10 65535
(approximately 18 minutes later), the timer starts over at zero. It pauses
during cassette and printer operations.

At any instant, you can see the count of the timer by using the TIMER
function. Type:

PRINT TIMER~

The TIMER function displays a value from °to 65535.

You can also reset the timer to any specified time by typing:

TIMER = number~

number is in the range °to 65535.

To see TIMER (and PRINT @ USING, another "new" function), run the
following program called "Math Quiz." It presents you with a math
problem. When you press 00, C[), ©, or 00, the computer tells
you whether the answer is right or~wrong. Then the computer uses the
timer to tell you the time you look to answer (using TIMER).

10 DIM CH(31 .l$(3) 'CH(#I=CHOICES.
l$=ANSWER FORMATS

20 lL=10:UL=20 'LOWER lIMIT AND UPPER lIMIT
FOR H AND V

30 NV=UL-LL-+1
a0 P$="WHAT'S ### -+ ### ?~ 'QUESTION FORMAT
50 FOR I = 0 TO 3 'I NIT I ALI 2E CH (
60 L$(I)=CHR$(I-+G5J-+~1 ###"
70 NEXT I
80 CLS
80 X=INT<RNO(NV(-+LL-,Sl 'GET RANDOM X

BETWEEN LL AND Ul
100 '(=INT(RND(NVHLL-,S) 'GET RANDOM '(

BETWEEN LL AND Ul
110 R=INT(X-+'(-+.5> 'CORRECT ANSWER

130 FOR I 0: 0 TO 3 'GET MUL T. CHOICES
140 CHiIJ=INT(RNO(NV)+LL-.5)
150 NEXT I
160 RCo:RND(ll}-l 'MAKE ONE CHOICE RIGHT
170 CH(RC)o:R
180 PRINT @ 32/ USING PljX,Y

'DISPLAY PROBLEM
190 FOR LN=3 TO 6
200 PRINT @ LN * 32+10/USING Ll(LN-3) jCH

(LN-3)
210 NEXT LN
220 TIMER 0: 0
230 A$o:" " 'CLEAR KEYBOARD
2t.l0 A$=INKEYl: IF A$o:"O< THEN 2t.l0
250 SV=TIMER 'IF KEY PRESSED, SAVE TIMER

CONTENTS
260 IF Al<"A" DR A$)"O" THEN 2110 'INVALID

KEY-GO BACK
265 PRINT @ 8 * 32+10,A$
270 K=ASC(A$)-65
280 IF CH(KJo:R THEN PRINT "RIGHT! ": GOTO 300
290 PRINT "WRONG! ANSWER IS "; R
300 PRINT "YOU TOOK" j SV/60; "SECONDS"
310 INPUT "PRESS <ENTER) FOR NEXT PROBLEM" j

EN
320 GOTO 80

Through trial and error, change the upper and lower limits (Line 20)
for hand v. Make the program perform a mathematical operation other
than addition or have the computer keep score, based on your time.
Add 5 seconds for each incorrect answer.

Hexadecimal and Octal Constants
Extended Color BASIC lets you use both hexadecimal and octal
constants.

Hexadecimal numbers are quantities represented in Base 16 notation,
composed of the numerals 0 to 9 and the "numerals" A to F. Hexa
decimal constants must be in the range 0 to FFFF, corresponding to the
decimal range 0 to 65535.

To indicate that a number is an octal constant, precede it with the
symbol &H, as shown here:

&HA010 &HFE &HDl &HC &H4000

Octal numbers are quantities represented in Base 8 notation, com
posed of the numerals 0 to 7. Octal constants must be in the range 0
to 177777. The computer stores them as two-byte integers that corre
spond to the decimal range 0 to 65535.

To indicate that a number is an octal constant, precede it with the
symbol &0 or &, as shown here:

&070 &044 U1777 &7170 &17 &01234

The use of "hex" and octal constants is convenient in programs that
reference memory locations and contents. For further information, read
a book on machine-language programming.

195

HEX$

To convert a number from decimal to hexadecimal, use HEX$. The
syntax is as follows:

HEX$ (number)

numbf', is a decimal number of variable from 0 to 655.15.

For example, the following program displays the hex<lclecimdl value of
any decimal number smaller than 65536. II returns a string that repre
sents a hex value.

5 CLS
10 INPUT "IF A NUMBER'S DECIMAL l.JALUE IS";

DEC
20 PRINT "ITS HEXADECIMAL VALUE IS "

HEX$(DEC)

Learned in Chapter 33

196

BASIC WORDS

lET

fRON, TROFF

TIMER

HEX$

CONCEPTS

Using LET to make programs compatible
with other versions of BASIC
U~il1g the tr,Ker to follow the execution
of program slatement~

Keeping track of <1nd changing the time
in a program
Converting a number from decimal to
hexadecimal

Notes

Chapter 34

USING MACHINE
LANGUAGE SUBROUTINES

"Machine-language" (Ml) is the lo\V~level language that your computer
uses internally. It consists of microprocessor instructions. ML subroutines
are useful (or special applications simply because they can do things
much faster than BASIC.

Writing such routines requires familiarity wilh assembly-language pro
gramming and with the microprocessor's instruction set. For more infor
mation, see 6809 Assembly Language Programming, lance Leventhal,
Osborne/McGraw Hill, 1981.

This section follows the step-by+step approach for using ML subroutines:

1. Protecting Memory
2. Storing the Ml Subroutine in Memory
3. Telling BASIC Where the Subroutine Is
4. Calling the Subroutine
5. Returning to BASIC

We present a sample BASIC program that performs all five steps. You
may type in the BASIC program lines as they are given, but don't try to
run the program until you've read all the steps.

Our Ml subroutine is simple. It gets a character from the keyboard.
Then it returns the ASCII code for this character to the BASIC program.
An assembly-language listing of this routine is later in this section.

Our ML subroutine has a few features not available with BASIC's IN
KEY$ 0' INPUT statements. First, it returns any key code, including the
one for ~. Second, it lets you key in control codes A-Z (CTRL-A
through CTRL-Z).

To key in a control character, press m. release it, then press any key
from rn to CD. The contra! codes generated range from 1 to 26.

197

198

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of memory for
storing your ML subroutine. The first (LEAR parameter sets the string
space; the second sets the memory protection address. For eX<lmple:

5 CLEAR 25/ 12000

sets the string space to 25 bytes and reserves memory addresses from
12000 to the end of memory (see the Memory Map). You C<ln now
safely store your ML subroutine in this area.

STEP 2. STORING THE ML SUBROUTINE IN MEMORY

You can load an ML subroutine from tape (vi<l ClOADMJ, or you can
poke it into memory (using the BASIC POKE statement). In our example,
we'll store the individual machine codes in DATA statements, then read
and poke each code into the correct memory address. The codes are in
the ML subroutine's assembly listing, shown later in this section.

20 FOR I = 1 TO 28
30 READ B: POKE 12000 + 1/ B
a0 NEXT I
50 DATA 173. 159/ 160.0
60 DATA 39/250.129.10.38.12
70 DATA 173.159.160.0.39.250
75 DATA 129. 65. 45. 2
80 DATA 128. Ga. 31. 137. 79
90 DATA 126. 180. 2aa

STEP 3. TElLING BASIC WHERE THE SUBROUTINE IS

Before you can use the ML subroutine, you have to tell BASIC where
the routine starts. Do this with the DEFUSR statement, which has this
format:

OEFUSRn - dddress tells where. in memory, an ML subroutine
starts

n is the number of the ML subroutine (0·9).
address is Ihe first address in memory where the ML subrou

tine is stored.

In this example, the ML subroutine (which we'll call ML Subroutine 1)
is stored in memory starting at Address 12000. To tell this to BASIC, use
th is statement:

10 DEFUSR1 12000

STEP 4. CALLING THE SUBROUTINE

To "call" the ML subroutine, use the USR function with this format:

dummy variable = USRn(argument) calls an Ml subroutine

n is the number of the ML subroutine (O-9}.
argument is a value you want 10 pass to the ML subroutine.
dummy variable is a variable you can use to slore the d"ta

returned b USR.

For example:

110A=USR1(0)

calls Ml Subroutine 1 and passes it Argument O. In this example, 0 is a
~'dummy argument:' The Ml subroutine won't use it. (The purpose of
Variable A is explained in the next step.)

STEP 5. RETURNING TO BASIC

If you want to return a specific integer value to BASIC, as we do in this
example. your Ml subroutine must: III load the integer into Register O.
(2) end by calling GJVABF, a special ROM subroutine. GIVABF causes
your BASIC program's USR function to "return;' replaced by the integer
you stored in Register D.

In this example, our ML subroutine loads the key you press into Register
o and then calls GIVABF. This causes USR to return replaced by the key
you press. Since Variable A equals the value USR returns, Variable A
e<lual~ the key you press.

If you don't want to return a specific value to BASIC, end the subroutine
with an RTS instruction. USR "returns" your original dummy argument
101.

The BASIC Program
This is the entire program with the Ml subroutine poked into memory.
Type it in carefully; then run it.

Each time you press a key, control returns to BASIC with the ASCII code
for that key. Try pressing CIBnX). You'll get the code for (IftEAK) 3. The
BASIC program ends when you press <IHnID or m00.
To get any of the codes 1 through 26. press CD, release it, then press a
key from CAl to m.

5 CLEAR 25. 12000 'RESERVE MEMORY
10 DEFUSR1=1200015 CLS
20 FOR I = 1 TO 28 "STORE EACH BYTE OF OBJECT

CODE
30 READ B: POKE 12000 + I. B
a0 NEXT I
a5 'HERE IS THE OBJECT CODE
50 DATA 173,159,160.0
60 DATA 39.250.128.10.38.12
70 DATA 173.159,160.0.39.250
75 DATA 129. 65, 45. 2
80 DATA 128. 64, 31.137,78
90 DATA 126.180. 21111
99 'TELL BASIC WHERE THE ROUTINE IS
100 POKE 275. 15: POKE 276. 211
110 A = USR1(0) 'CALL THE SUBROUTINE AND GIVE

RESUL T TO A
115 IF A = 13 THEN END
120 PRINT "CODE ="; A
130 GOTD 110

For a variation in the program, change line 120 to:

Th(' add,('ss of G/VABF is
HeKadKiffldl B4f4 or OK;
1IloJ146324. ~t. If tott
haVl~ Advanc('d Color
BASIC or Exl('nded Color
IMSIC version '.2 or liller,
Ihis address may have been
changed.

If)'OtI hal'(' a De/Ul«' Color
Compuler, U5(' the~
k~ rarher Ihan (j).

.---

120 PRINT CHRS(A); 'DISPLAY THE CHARACTER

Most control keys (CD followed by a key) have no effect when printed.
Try CD 00, though, tlnd you see the cursor btlckspace.

t99

ML Subroutine Listing

This is the assembly-language listing of our Ml subroutine example. To
use it, you must have an assembler, such as EDTASM (Catalog #26
3250) or Disk EDTASM (Catalog #26-3254). You can't use this ilssem
bly-Ianguage listing (rom BASIC.

Hexadecimal Source Code Comments
Object Code

Assembly lan~uage i5 nor AD 9F A' 00 LOQPl JSR (POLCAT) ; POLL FOR A KEY
mean;nllfvl 10 In", com· 27 FA OEO LOOPt jIFNONE, RETRY
puler. II is a sel of memory Bl 0A CMPA 010 ;CTRL KEY (ON
aids ilnd symbols we USE' ARW)?
for convenience. Assembly

26 'C ONE OUT ;NO, SO EX ITlangudge muH be lrans-
l"Jlec(Of "assembled:' into AD 9F A0 00 LOOP2 JSR (POLCAT) iYES. SO GET NE){T

machine code. which the KEY
computer understands. In 27 FA OEO LOOP2 iIFNONE, RETRY
the listing above. tilt' n1<1- Bl 20 CMPA oGS ; I 5 IT A - Z,;,
crine code is given in hex· 20 02 5LT OUT ; I F < A, EXIT
adecimal form. W, B0 " SUBA oG' ;CON~IERT TO CTRL
convened il /0 decimi.ll A/Z
numbers (or ou, BASIC 1 F B9 OUT TFR A,5 iGET RETURN BYTEprog,am.

READY
4F CLRA ; ZERO MSEl
7E 54 F' JMP GIVA6F ; RETURN VALUE TO

BASIC
PDLCAT EOU 40960
GrVABF EOU 46324

Passing Values to an ML Subroutine

USING THE INTCNV ROUTINE

The Jdd,ess of INTCNV is
Hexadecimal B3ED. How
ever. it you hJve AdvJnced
Color BASIC 0' Ex/ended
Coior BASIC Ikrsion 1.2 OF

Ii.ller. lhis Jek;kess may have
been changed.

200

If you want to pass an integer 10 your ML subroutine, use the integer as
the "argument" in your USR function. For example:

A=USR1(S)

calls Machine Code Program 1 and passes the argument 5 to it. You
can then call the INTCNV routine, which gets the integer and stores it
in Register D.

USING THE VARPTR FUNCTION

Another way to pass an argument to your ML Subroutine is to pass a
"pointer" to the address where a variable's value is stored. You can do
this with the VARPTR function:

VARPTR variable returns a pointer to wllere the variable's value is
stored

For example:

A=USRlIVARPTRIB»

calls Ml Subroutine 1 and passes a pointer to Variable B's address. The
pointer is stored in Register X. Your ML subroutine needs to know
whether the variable is string or numeric.

Byte 1
Byte 2 ;

Byte 3 ~

Byte 4 ;

Byte 5 ~

If lhe variable is string, your Ml subroutine can find the string's 5-byte
descriptor in Register X. This descriptor tells where the string is:

Byte 1 = the length of the siring lin characters/
Byte 2 = reserved for the compuler'~ use
Bytes 3 ,md 4 = address of the fihl byte in the siring
Byte 5 = reserved for the coml>Uler's use

If Ihe variable is numeric. your program can find Ihe dddress of the
number's floating point value in Register X. This floating point value has
this format:

lhe exponent of Ihe mantissa
Ihe mantissa's most significant byte IMSBI
the mantiss<l's next MSB
the mantiSSil's next MSB
the mantissa's least significant byte (lSBl

The exponent is a signed 8-bit integer with 128 decimals added to it.
An exponent of 0 means lhe number is O. in which c<lse the mantissa is
insignificant. The exponent's most signific<lnt bit stores the exponent's
sign: 0 if positive, 1 if negative.

The mantissa is stored in normalized form with the most significant bit
of the mantissa's MSB assumed to be ,. This bit can indicate the man
tissa's sign: 0 if positive, 1 if negative.

You may wanl to use VARPTR to pass an array variable's pointer 10 an
Ml subroutine. For example:

A=USRl<VARPTR<B(Sl l

calls Ml Subroutine 1 and passes a pointer to Array B's Element 5.

Your Ml subroutine can find the elements' values in memory as follows
(from low to high memory):

Value of first element of last dimension

Value of last element of lasl dimension

Value of first element of first dimension

Value of last element of first dimension

Each element is five bytes long.

Returning Values to BASIC

USR always returns at least one value to BASIC. This value is the argu
ment you originally pass to the Ml subroutine, unless your Ml subrou
tine changes or modifies it. as described below.

USING GIVABF TO RETURN AN INTEGER

To return a specified integer to BASIC. you can have your Ml subroutine
load the integer into Register D and call GIVABF, as demonstrated
earlier.

MODIFYING BASIC VARIABLES

You can return any specified value to BASIC by having your Ml subrou
tine modify a BASIC variable's value, For example, assume you call an
Ml subroutine with this statement:

201

202

A$=(USR1CVARPTR(5$»

You can have your ML subroutine modify B$'s value and then end the
routine with an RT$ instruction. This causes U$R to return with 8$'s
modified value.

If your ML subroutine modifies a string variable, be careful of the
following:

Although you can change a string descriptor's length byte to
"shorten" a string, you cannol "lengthen" a string. If you
don't know what size string your ML subroutine will return,
reserve 255 bytes (the maximum size) for the string's value
before passing il to the ML subroutine. For example:

5$=STRING$(255)
A$ = USR0 (VARPTR (B$»

passes a pointer to a 255-character string of blank spaces to
the USR function. The ML subroutine can then put a string
of up to 255 characters into the memory pointed to by B$ or,
if necessary, shorten the string's length byte.

You can modify the starling address of a string by changing
the 2-byte pointer in the string descriptor. When you do this,
though, we recommend the new starting address be an ad
dress included in the original string.

You can swap the starting addresses of two strings. This may
be useful for sorting strings. If you do this, though, be careful
not 10 "intersect" two strings.

If your ML subroutine modifies a variable that already points
to a string literal, this will change your BASIC program. For
example, assume you have this statement in your BASIC
program:

5$ = "ABC"

If your ML subroutine modifies B$, your BASIC program is
changed. To avoid this problem, add a null string ("") to any
string literal that your ML subroutine will modify. For
example:

B$ = "ABC" + ""

The null string forces BASIC to copy the string into string
space, where your ML subroutine can safely modify it.

Using Stack Space
An ML subroutine, called by USR, that requires more than 30 bytes of
stack storage must provide its own stack area. Save BASIC's stack
pointer upon entry to the USR function, setting up a new stack pointer
and restoring BASIC's stack pointer prior to returning to BASIC. The val
ues of the A, B, X, and CC registers need not be preserved by USR.

Notes

203

SECTION V

ODDS AND ENDS

SUGGESTED ANSWERS
TO DO-IT-YOURSElF

PROGRAMS

Do-It-Yourself Program 4-4
Sounding tones from bollom of range to lOp and back 10 bonom:

10 FOR X = 1 TO 255
20 SOUND X.l
30 NEXT X
40 FOR X = 255 TO 1 STEP -1
S0 SOUND X.l
60 NEXT X

Do-it-Yourself Program 5-2
Lines added to dock program:

92FORT=200 TO 210 STEP 5
911 SOUND T, 1
95 NEXT T
97FDRT=210 TO 200 STEP -5
98 SOUND T, 1
99 NEXT T

Do-It-Yourself Program 5-3
10 FOR C = 0 TO 8
20 CLS<Cl
30 FOR X = 1 TO 460
40 NEXT X
S0 NEXT C

Do-it-Yourself Program 7-2
5 FOR N = 1 TO 10
10 PRINT "CHOOSE YOUR CHAMBER(1-10)"
20 INPUT X
30 IF X " RND(10) THEN 100
1I0 SOUND 200. 1
S0 PRINT "--CLICK--"
60 NEXT N
GS CLS
70 PRINT @ 230, "CONGRATULATIONS!!!"
80 PRINT @ 265. "YOU MANAGED"
90 PRINT @ 296 I "TO STAV ALIVE"
95 END
100 FOR T " 133 TO 1 STEP -5
110 PRINT "BANG!!!!!"
120 SOUND T, 1
130 NEXT T
140 CLS
150 PRINT @ 230. "SORRY, YOU'RE DEAD"
160 SOUND 1. 50
170 PRINT @ 290. "NEXT VICTIM PLEASE"

207

208

Do-It-Yourself Program 7-3

113 CLS
20 A = RND (6)
313 B = RNO(S)
40 R = A + B
50 PRINT @ 200, A
60 PRINT @ 214. B
70 PRINT @ 3911, "YOU ROLLED A" R
80 IF R = 2 THEN 600
90 IF R = 3 THEN 600
100 IF R = 12 THEN 600
1 10 IF R = 7 THEN 500
120 IF R = 11 THEN 500
130 FOR X = 1 TO 800
140 NEXT X
150 CLS
160 PRINT @ 195, "ROLL ANOTHER" R "AND YOU

WIN"
170 PRINT @ 262, "ROLL A 7 AND YOU LOSE"
180 PRINT @ 420, "PRESS <ENTER> WHEN READY·
185 PRINT @ 456. "FOR YOUR NEXT ROLL"
190 INPUT AS
200 X = RNO'S)
210 Y = RNOCS)
220 Z = x + y
225 CLS
230 PRINT @ 200. X
240 PRINT @ 214, y
250 PRINT @ 3911. "YOU ROLLED A" Z
260 IF Z = R THEN 500
270 IF Z '" 7 THEN 600
280 GOTO 180
500 FOR X = 1 TO 10013
510 NEXT X
515 CLS
520 PRINT @ 230, "YOU'RE THE WINNER"
530 PRINT @ 29£1, "CONGRATULATIONS!!!"
S1l0 GO TO 630
600 FOR X = 1 TO 1000
Si0 NEXT X
815 CLS
620 PR I NT @ 2GlI, "SORRY, YOU LOSE"
830 PRINT @ lI5S, "GAME'S OVER"

Do-It-Yourself Program 8-2

5 CLS
6 PRINT @ 230, "YOUR NAME";
8 INPUT N$
10 CLS
15T;T+l
20 X.; RND(100)
30 Y; RND(100)

lI0 PRINT @ 228, "WHAT IS" X "+" Y i
lI5 INPUT A
50 IF A = X + Y THEN 82
60 PRINT @ 326, "THE ANSWER IS" X + Y
70 PRINT @ 385, "BETTER LUCK NEXT TIME ," N$
80 GoTo 100
82 CLS (7)
83 FOR M = 1 TO LI
8L1 SOUND 175. 1
85 SOUND 200 I 1
86 NEXT M
87 CLS
90 PR I NT @ 232, "CORRECT," N$ "! ! I "

95 C = C + 1
97 PRINT @ 299, "THAT IS"
98 PRINT @ 322, C "OUT OF" T "CORRECT

ANSWERS"
88 PRINT @ 362. C/T*100 "I CORRECT" :IF T=10 THEN
END
100 PRINT @ L120, "PRESS <ENTER> WHEN READY"
102 PRINT @ lI58, "FOR ANOTHER"
105 INPUT AS
110 GoTo 10

Do-It-Yourself Program 10-1

5 CLS
7 PRINT @ 38, "TABLE OF SQUARES"
8 PRINT
10 P = 2
20 FOR N = 2 TO 10
25 GoSUB 2000
30 PRINT N "*" N "=" E,
lI0 NEXT N
50 END
2000 REM FORMULA FOR RAISING A NUMBER TO A

POWER
2010E=1
2020 FOR X = 1 TO P
2030 E = E * N
20L10 NEXT X
2050 IF P = 0 THEN E = 1
2060 RETURN

Do-It-Yourself Challenger Program (Chap. 11)

10 PRINT "TYPE A SENTENCE :"
15 INPUT SI
20 PRINT "TYPE A PHRASE TO DELETE"
23 INPUT OS
25 L = LEN(o$)
30 PRINT "TYPE A REPLACEMENT PHRASE"
35 INPUT R$
L10 FOR X = 1 TO LEN(S$)
50 IF MIOI(SI,X,LJ = 0$ THEN 100

2D9

210

60 NEXT X
70 PRINT 0$" IS NOT IN YOUR SENTENCE"
80 GOTO 20
100 E '" X - 1 + LEN (0$1
110 NS$ '" LEFT$(S$,X-1) + R$ +

RIGHT$(S$,LEN(S$) - E)
120 PRINT "NEW SENTENCE IS :"
130 PRINT NS$

Do-It-Yourself Program 14-2

5 PMODE 1 ,1
10 PClS
20 SCREEN 1 ,1
30 X '" RND(256l-1
40 Y '" RND(192)-1
50 C '" RND(9)-1
60 PSET(X.Y.C)
70 GO TO 30

Do-It-Yourself Program 15-1

5 PMODE 101
10 PClS
20 SCREEN 1,1
25 LINE (0.0)-(2550191> ,PSET
30 LINE (00191)-(255.0) ,PSET
35 LINE (10010)-(2550191),PSET,B
40 GOTD 40

Do-It-Yourself Program 15-2

5 PI'lODE 1 01
10 PClS
20 SCREEN 1,1
30 LINE (720188)-(200,72),

PSET,B 'FRAME
1I0 LINE (72,72)-(136,36).

PSET 'ROOF
a5 LINE (200,72)-(136,36) I

PSET 'ROOF
50 LINE (1200168)-(1520100) I

PSET,B 'DOOR
55 LINE <152,60)-(168,361.

PSET,BF 'CHIMNEY
60 LINE (1650128)-(19101001.

PSET,B 'WINDOW
65 LINE (1780128)-(1780100).

PSET 'WINDOW PART
70 LINE (1650114)-(1910114).

PSET 'W I NOOW PART
75 LINE (850128)-(1110100),

PSET,B 'WINDOW

80 LINE (85.114)-(111.114).
PSET 'WINDOW PART

85 LINE (98.100)-(981128).
PSET 'W I NOOW PART

90 GOTO 90

Do-It-Yourself Program 15-3

5 PMOOE 1 11
10 PCLS
20 SCREEN 1 .1
30 Y=0
40 FOR X = 0 TO 200 STEP 10
50 OY = Y
60 Y = 30-oy
70 LINE (X.100-Y)-(X+10.100-OY) ,PSET
80 NEXT
90 GoTo 90

Do-It-Yourself Program 16-1

1 Y = -1
5 CLS
10 PRINT @ 193."00 YOU WANT TO SEE A SQUARE?"
20 FOR X = 1 TO 1000: NEXT){
30 PMoOE 1.1
35 PCLS
40 SCREEN 1.Y+1
60 LINE (751150)-(150.75) .PSET.B
70 FOR X = 1 TO 1000: NEXT){
75 Y = - Y
80 GoTO 5

Do-It-Yourself Program 18-1

Make the following ch<1nges:

22 PCOPY 4 TO 3
32 PCOPY 3 TO 2
42 PCOPY 2 TO 1

Delete Lines 11,21, and 31.

Do-It-Yourself Program 18-2

10 PCLEAR 8
20 PMoDE 4.1
25 PCLS
30 SCREEN 1 .1
40 LINE (0.0)-(255.191) .PSET
45 FOR Y = 1 TO 20: NEXT Y
50 PMOOE L1, 2

211

212

55 SCREEN 1,0
60 LINE (O,O)-(255.191) ,PSET
65 FOR Z :: 1 TO 20: NEXT Z
70 PMOOE 0,3
75 SCREEN 1,1
80 LINE (0,0)-(255.191) ,PSET
85 FOR A :: 1 TO 20: NEXT A
90 PMOOE 1.L1
95 SCREEN 1 ,1
96 PCLS
100 LINE (O,O)-(255.191> ,PSET
105 FOR R :: 1 TO 20: NEXT R
110 GOTO 20

Do-It-Yourself Program 19-1

10 PMOOE LI ,1
20 PCLS
30 SCREEN 1,0
40 FOR RADIUS:: 1 TO 100 STEP 10
50 CIRCLE (128, 86l ,RADIUS
60 NEXT RAO I US
70 GOTO 70

Do-It-Yourself Program 19-3

5 PMODE LI .1
10 PCLS
20 SCREEN 1.0
30 CIRCLE (200,40) ,30,,1 ,.13,.83
L10 CIRCLE (230,10),52, .1 ,.28,.48
50 GOTO 50

Do-It-Yourself Program 19-4

5 PMOOE 1 .1
10 SCREEN 1,0
15 PCLS 3
20 COLOR 1,0
25 CIRCLE (200,L10),30,,1,.13,.63 'MOON
30 CIRCLE (230110),52,.1,.28,.48 'MOON
35 LINE (100,185)-(180,125) ,PSET,B

'HOUSE FRAME
40 LINE -(1L10,85) ,PSET 'ROOF
L15 LI NE - (100 ,125) ,PSET 'ROOF
55 LINE (110,160)-(125,130) ,PSET,B

'WINDOW ...•
60 LINE (1551160)-(170.130) ,PSET,B

'w I NDOW
70 LINE (130d30)-(1L181185) ,PSET,B

'DOOR
75 PSET (13L1 li57 d) 'DOOR KNOB
80 LINE (160,105)-(160,80) ,PSET 'CHIMNEY

85 LINE -(175.80) .PSET 'CHIMNEY
80 LINE -(175.115) ,PSET 'CHIMNEY
100 ' SMOKE STARTS HERE
105 X=167:Y=89 'CIRCLE CENTERPOINT
110 SP=0: EP=0 'CIRCLE START AND END

POINT
115 FOR R = 1 TO 50 STEP .05 'CIRCLE RADIUS
120 EP=EP+.02: IF EP > 1 THEN EP = 0
125 CIRCLE O:+R, Y-R) ,R ,lI .I ,SP ,EP 'SMOKE
130 NEXT R
200 GOTo 200

Do-It-Yourself Program 20-1

Delete Line 40 and add Line 65:

65 PAINT (150.100) ,8,8

Do-It-Yourself Program 20-3

5 PMOoE 1 .I
10 PClS
15 SCREEN 1,0
20 PClS 3
25 COLOR 1.0
30 CIRCLE (200,30) ,15
35 PAINT (200,30) .2,1
1I0 LINE (100d85)-(180tl25)",PSET,6
1I5 LINE -(140,90) .PSET
50 LINE -(100.125) ,PSET
55 PAINT (135.115) ,lItl
60 LINE (110.160)-(125.130) ,PSET,B
65 LINE (155,160) - (170,130) ,PSET ,B
70 PSET (1311 .157 d)
75 PAINT (120.180) ,0t1
80 LINE (130d30)-(1119t185) ,PSET,B
85 LINE (101 d35)-(1I1 d85) ,PSET,B
90 LINE (91 d1l0)-(51 d85) ,PSET,B
95 PAINT (55.138) ,0.1
100 PAINT (89,183) ,lI,1
105 FOR X = 1 TO 500: NEXT X
110 PAINT (89.183) ,2tl
115 FOR X = 1 TO 500: NEXT X
120 PAINT (89.155) ,lI t1
1110 GOTO 110

Do-It-Yourself Program 21-1

5 PMoDE 1I .I
10 PClS
20 SCREEN 1,0

213

214

30 DRAW "BMG8,116;E20iBE20iE20;F20;BF20;
F20;l40;Bl40;l40;BU40;R40iBR40i
R40jG20jBG20;G20iH20jBH20iH20jBMI28,96;
NU40jND40jNE20;NF20;NG20iNH20jNl40;R40"

tl0 GOTO tl0

The star you created probably isn't as (ancy as this one because you
haven't been introduced to B or N yet. But don't worry; you will be
before the end of the chapter.

Do-It-Yourself Program 21-2

5 PMODE 4,1
10 PClS
20 SCREEN 1 ,1
25 DRAW "BMtl0,80;Utl0jRtl0;Otl0;l40"
30 DRAW "BM+20,20iUtl0;Rtl0;Dtl0;Ltl0"
tl0 LINE (G0.l00)-(tl0,80) ,PSET
50 LINE (60,50)-(40,tl0) ,PSET
50 LINE (100,G0)-(80,tl0) ,PSET
70 LINE (100.100)-(80,80) ,PSET
80 GOTO 80

Do-It-Yourself Program 21-3

5 PMODE 4,1
10 PClS
20 SCREEN 1 ,1
25 DRAW "BM50,50l30030R30D30L30"
30 DRAW "BM90,50D60R30UG0"
tl0 DRAW "BM160 ,500G0R30BU60l30030R30"
50 GOTD 50

Do-It-Yourself Program 21-4

5 PMDOE 4.1
10 PCLS
20 SCREEN 1,0
30 DRAW "BM98,96iNU80;NE56jNR80iNF56i

ND80jNG56iNl80iNH56"
40 CIRCLE (98,96),8001.1,.125.1
50 CIRCLE (135.110),80t1t1tl,.125
60 LINE (135.110)-(190.167) ,PSET
70 LINE <135t110)-(213d10) ,PSET
80 GDTO 80

Do-It-Yourself Program 21-5

1 CLEAR 2500
5 DIM AZ$(25)
G FOR lE = 0 TO 25
10 READ AZ$(lE)
15 NEXT lE

20 NCS="BRGBU7" 'NEXT CHARACTER
25 NLS="BDG" 'NEXT LINE
30 BS$="BL8" 'BACKSPACE
35 HM$="BM0,10" 'HOME POSITION
10'0 CW=G: CH=8 'SIZE OF CELL
11'0 R1=7: R2G"'181 'ROW POSITION
12'0 C1=8: CG2=2G7 'COLUMN POS
125 CC=1: CL=1 'CURRENT ROW/COL
20'0 PMOOE G, 1
210 PCLS
220 SCREEN 1 ,0
225 DRAW "SG"
230 DRAW HMS
250 A$"'INKEYs: IF AS"''' " THEN 250
260 IF "A">AS OR "2" < AS THEN 250
262 CC=CC+ 1
265 IF CC>27 THEN DRAW NLS: FOR I = 1 TO 27:

DRAW BSS: NEXT I:CC"'l: GOTO 27'0
268 DRAW NCS
270 DRAW AZS(ASC(AS)-65)
280 GOTO 250
1000 ' A
1010 DATA BD1D6UGNR5U2E1R3F1DG
1020 ' B
1030 DATA ND7RlIF1D1G1NLGF1D2G1NLGBR1
10110 ' C
1050 DATA BD1D5F1R3E1U1BU3U1H1L3G1BD6BR5
10G0 ' 0
1070 DATA D7RGE1U5HILGBD7BR5
1080 ' E
1090 DATA NR5D3NRlIDlIR5
1100 ' F
1110 DATA NR5D3NRlIDlIBR5
1120 ' G
1130 DATA Bo1D5F1R3E1U2NL2BU2U1H1L3G1BoGBR5
11110 ' H
1150 DATA D7UlIR5NU3DlI
1160 ' I
1170 DATA RlIL2D7L2RlIBRl
1180 ' J
1180 DATA BD5D1F1R3E1UGBD7
1200 ' K
1210 DATA D7UlIR3E2NU1G2F2D2
1220 ' L
1230 DATA D7R5
1240 ' M
1250 DATA ND7R2ND7R2D7BR1
1260 I N
1270 DATA D1NDGEIR3F10G
1280 ' a
1290 DATA BD1D5F1R3E1U5H1L3G1BDGBR5
1300 I P
1310 DATA ND7RlIF1D2G1LGBD3BR5
1320 ' Q

1330 DATA BD1D5F1R3E1U5HIL3GIDlIBR3F2
13110 ' R
1350 DATA ND7RlIF1D1G1NLlIF1D3

215

216

1360 ' 5
1370 DATA BDIDIFIR3F1D2GIL3HIBU5EIR3FIBDG
1380 ' T
1390 DATA RllL2D7BR3
11100 ' U
11110 DATA 06FIR3EIU6BD7
11120 ,

V
11130 DATA D5F2E2U5BD7BRI
111110 ' "11150 DATA D7R2NU6R2U7BD7BRI
11160 ' X
11170 DATA DIF5DIBL5UIE5UIBD7
11180 ' Y
11190 DATA D2F2ND3E2U2BD7BRI
1500 ' Z
1510 OATA R5DIG5DIR5

Do-It-Yourself Program 21-6

5 PMOOE 301
10 PCLS
15 SCREEN 1,0
20 DRAW "BM50,170;U80iNG30iE801F80iNF30i

D80iL501U70iL5010701L60"
25 LINE (500170)-(1700170) ,PSET
30 LI NE (11001 70) - (16001 70) ,PSET
35 FOR x '" 1 TO 500: NEXT X
£10 LINE (1000170)-(1600170) ,PRESET
lI5 LINE (1200180)-(1200110) ,PSET
50 LINE (1600100)-(1250110) ,PSET
55 LINE (160,170)-(125,180) ,PSET
60 LINE (1200180)-(120.110) ,PRESET
65 LINE (160,100)-(125,110) ,PRESET
70 LINE (1600170)-<1250180) ,PRESET
75 DRAW "BMI10,170iBU70iBR50iG251070iE25"
80 CIRCLE <130.125) 010,,1 ,.135,,9
85 DRAW "BMI30,130iDI5iD15iGI0;EI0iU15iLI0"
90 LINE (12001115)-(1200135) ,PSET
91 FOR X '" 1 TO 60: NEXT X
95 LI NE (120 01115) - (120 0135) ,PRESET
96 FOR X '" 1 TO 120: NEXT X
100 LINE (12001115)-(11001115) ,PSET
101 FOR X '" 1 TO 60: NEXT X
105 LI NE (120 01115) - <110 01115) ,PRESET
106 FOR X '" 1 TO 60: NEXT X
110 LINE (12001115)-(1200135) ,PSET
120 FOR X '" 1 TO 120: NEXT X
121 CIRCLE (1300125) 01001
122 DRAW "BMI30,130iCI iD30iGI0iEI0;UI5;LI0"
125 DRAW "BM1100170iBU70iBR50iCl;

G25iD70iE25i"
130 COLOR II 01
135 LINE (120,180)-(120,110) ,PSET
1110 LINE (160.100)-(1250110) ,PSET
1115 LINE (1600170)-(1250180) ,PSET

150 LINE <120I1B0)-(1201110) ,PRESET
155 LI NE (16011 00) - (125 Ii 10) ,PRESET
160 LINE (1601170)-(125dB0) ,PRESET
165 LINE (1101170)-(160d70) ,PSET
170 FOR X = 1 TO 500: NEXT X
175 GO TO 20

Do-It-Yourself Program 22-1

5 PClEAR LI
10 PMODE LI ,1
15 PClS
20 SCREEN 1,1
25 DIM V(35,35)
30 X=10: Y=10
35 DRAW "BM10d0i S2i H10iR15iF10iR20i F10i

Gl0iL20iGl0iL15iEl0iU20iDLliNlBiDlIiNl12i
OLlNl16i DLliNLI2iDlIiNlB"

1I0 GET (X-X,Y-Y)-(X*3,5,Y*3,S) ,I,IIG
1I5 AS=INKEYS: IF AS=" " THEN L15 'PRESS ANY

KEY TO START
50 PClS
55 FOR A = 10 TO 200 STEP 5
60 PUT (X+AIY)-(X+A+35IY+35) ,V,PSET
65 NEXT A
70 PClS
75 GOTO 55

Notice that we've used the options for both GET and PUT. If you want
this rocket to go faster, delete the options and switch to Mode 3.

Do-It-Yourself Program 24-1

5 ClS
10 FOR N = 12 TO 1 STEP-l
15 PRINT "NOTE" j N
20 PLAY STRS (N)
25 FOR 1=1 TO 500: NEXT I
30 NEXT N

Do-It-Yourself Program 24-2
Change the following lines:

100 A$ ~ "T5 i C i.E iF j l 1 i G j PlI j lLi j C i E j F iLl i
105 B$ ~ "PLI iLlI iC iE jF il2 jG jE iC iE iLl iO"
110 e$ ~ " PLI j LLI i D+ i l B i E j G j E i PB i LLI i C i L8 i

D+"
115 0$ ~ "lll iE iC jl2 j03 jC iL8 j03iO iL8 i02 j
120 E$ ~ "G i E i LLI j G j L1 j F j PlI j l8 j G j FiE j F"
125 F$ ~ "L2 jG iE jlll iC jl8 iO iD+ iE jG jlLl jA j

L1 j D3 j e"
130 X$ ~ "XASiXBSiXCSjXDSjXESiXFSj"

G"

0;

B-"

Add Line 140:

1110 PLAY XS

217

218

Do-It-Yourself Program 25-1

5 CLS: PRINT "POSITION TAPE - PRESS PLAY
AND RECORD"

7 INPUT "PRESS <ENTER) WHEN READY"; R$
10 OPEN "0" I #-1, "CHECKS"
15 CLS: PRINT "INPUT CHECKS - PRESS <xx>

WHEN FINISHED"
20 INPUT "NUMBER:"; N$
25 IF N$ = "XX" THEN 8Q1
30 INPUT "DATE:"; 0$
aft'! INPUT "PAYABLE TO :"; Pi
50 INPUT "ACCOUNT:"; S$
60 INPUT "AMOUNT: $"; A
70 PRINT#-l.N$,Dl,P$.S$.A
80 GOTD 15
80 CLOSE #-1
92 CLS: T = 0
95 INPUT "WHICH ACCOUNT" j B$
11210 PRINT "REWIND TAPE - PRESS PLAY"
110 INPUT "PRESS <ENTER> WHEN READY" i R$
120 OPEN "1"/ #-1. "CHECKS"
130 IF EOF (-1) THEN 170
lQ0 INPUT #-1, N$, D$~ Pl, Sf, A
150 IF B$ = S$ THEN T = T + A
160 GOTD 130
170 CLOSE #-1
180 PRINT "TOTAL SPENT ON II B$, "IS $" T

Do-It-Yourself Program 26-1

10 DATA 33,12, liZ, 13, 15,23
20 DATA 25, 30, 33, 27 I 1£1, 8
30 DIM 1(12)
1I0 FOR X = 1 TO 12
50 READ I (X)

60 NEXT X
70 INPUT" I TEM NO."; N
75 IF N > 12 THEN 70
80 PRINT "INVENTORY FOR ITEM" N "IS" I(N)
80 GOTO 70

Do-It-Yourself Program 26-2

5 DIM T(52)
7 DIM D(52)
10 FOR X = 1 TO 52
20 T (X) = X
30 NEXT X
311 CLS
36 PRINT @ 101! " ••• DEALING THE CARDS"
£10 FOR X = 1 TO 52
50 C" RND (52)
60 1FT (C) = 121 THEN 50

7. o (X) o C
75 SOUND 128, 1
8. T (C) o •,.. NEXT X
11. CLS
12. PR I NT @ 107 t "YOUR HAND"
13. PRINT @ 187, " "
1a. FOR X = 1 TO 5
150 PRINT O(X);
16. NEXT X

Do-It-Yourself Program 27-1

Lines that change items:

110 INPUT "WHICH ITEM NO. DO YOU WANT TO
CHANGE"; N

115 IF N > 12 THEN 110
120 INPUT "WHAT IS THE REPLACEMENT ITEM" j

S$ (N)

130 GOlD 80

The appendix has a sample program that adds and deletes items from
this list.

Do-It Yourself Program 27-2

Lines that change the song lyrics:

110 PRINT
120 INPUT "WHICH LINE DO YOU WANT TO

REVISE"jL
125 IF L > 1I THEN 120
130 PRINT "TYPE THE REPLACEMENT LINE"
1110 INPUT A$(l)
150 Goro 50

Do-It-Yourself Program 27-3

1 CLEAR 1000
5 DIM A$(S0)
7 CLS
10 PRINT "TYPE A PARAGRAPH"
16
20 PRINT "PRESS (/> WHEN FINISHED"
30 X = 1
1I0 A$ = INKEY$
50 IF A$ = 1111 THEN 110
60 PR I NT A$ j

70 IF A$ = "I" THEN 105
80 A$(X) = A$(X) + AS
90 I F AS = "." OR AS = "?" OR AS = "I" THEN X

= X + 1
100 GoTo 40

219

220

105 PRINT: PRINT
110 INPUT "(ll PRINT OR (2) REVISE"i R
120 CLS
130 ON R GoSUB 1000, 2000
11I0 GoTo 105
1000 REM PRINT PARAGRAPH
1010 FOR Y = 1 TO X-I
1020 PRINT A$(Y) j

1030 NEXT Y
10110 RETURN
2000 REM REVISE PARAGRAPH
2010 FOR Y = 1 TO X-I
2020 PRINT Y "--" A$(Y)
2030 NEXT Y
20110 INPUT "SENTENCE NUMBER TO REVISE" j S
2011S IF 5> X-lOR 5 < 1 THEN 20110
2050 PRINT A$(S)
2060 PRINT "TYPE PHRASE TO DELETE"
2070 INPUT 0$
2080 L ::: LEN (0$)
2080 PRINT "TYPE A REPLACEMENT PHRASE"
2100 INPUT R$
2110 FOR Z ::: 1 TO LEN(A$(S»
2120 IF MID$(A$(S) ,Z,l) ::: 0$ THEN 2160
2130 NEXT Z
21110 PRINT 0$ "-- IS NOT IN YOUR SENTENCE"
2150 GoTo 2060
2160 E = Z - 1 + LEN(D$)
2170 A$(S) ::: LEFT$(A$(S) ,Z-1> + R$ + RIGHT

$(A$(S) ,LEN(A$(S»-E)
2180 RETURN

Do-It-Yourself Program 27-4

Change this line to print on the printer:

150 PRINT **-2, A$(Y) j

Do-It-Yourself Program 28-1
CLS: CLEAR 1000: 0 I M T$ (1(0) , A$ (1(0) ,
S$(1(0), M$(1(0), Z(1(0)

2 PRINT "POSITION TAPE -- PRESS PLAY AND
RECORD"

1I INPUT "PRESS <ENTER> WHEN READY" j R$
8 REM
8 REM OUTPUT TO TAPE
10 OPEN "0", **-1, "BOOKS"
15 CLS: PRINT" INPUT YOUR BOOKS -- TYPE <XX>

WHEN FIN I SHEO"
20 INPUT "TITLE" i T$
25 IF T$ = "XX" THEN 50
26 INPUT "AUTHOR" j A$

SORT ROUT I NE

INPUT FROM TAPE

6U I LO M$ ARRAY
=IT06-1
= TS (X)

28 INPUT "SUBJECT" i S$
30 PRINT #-1, T$, A$, S$

40 GOTO 15
50 CLOSE #-1
60 CLS: PRINT "REWIND THE RECORDER AND PRESS

PLAY"
70 INPUT "PRESS <ENTER> WHEN READY" i R$
7tJ REM
76 REM
78 B = 1
80 OPEN" I", #-1, "BOOKS"
85 IF EOF(-I) THEN 120
90 INPUT #-1. T$(B). A$(J), S$(B)
95 B = B + 1
110 COTO 85
120 CLOSE #-1
490 PRINT
500 INPUT "SORT BY (1) TITLE (2) AUTHOR OR

(3) SUBJECT" i A
510 IF A > 3 OR A < 1 THEN 500
520 ON A COSUB 1000, 2000, 3000
530 COSUB 4000
540 PRINT
550 FOR X = 1 TO 6-1
560 PRINT "TITLE :" T$(Z(X»
570 PRINT "AUTHOR: " A$(Z(X»
580 PRINT "SUBJECT :" S$(l(X»
590 NEXT X
600 PRINT: COTO 500
800 REM
900 REM
1000 FOR X
1010 M$(X)
1020 NEXT X
1030 RETURN
2000 FOR X = 1 TO B-1
2010 M$(X) :=: A$(Xl
2020 NEXT X
2030 RETURN
3000 FOR X = 1 TO B-1
3010 M$(X) = S$(Xl
3020 NEXT X
3030 RETURN
3800 REM
4000 REM
4005 T = 1
4010X=0
4020 X = X + 1
4030 IF X > B-1 THEN RETURN
4040 IF M$(X) = "ll" THEN 4020
4050 FOR Y = 1 TO B-1
4060 IF M$(Y) < M$(X) THEN X = Y
4065 Z<T) :; X
4080 NEXT Y
4085 T = T + 1
4090 M$(X) :; "Z2"
4100 COTO 4010

221

222

Do-It-Yourself Program 29-1

10 DIM 5$(L1). N$(13l I 1(4d3)
20 DATA SPADES, HEARTS. DIAMONDS. CLUBS
30 FOR X = 1 TO a
£10 READ S$(Xl
50 NEXT X
60 DATA ACE, 2. 3. lit 5. 6. 7. 8.~, 10.

JACK, QUEEN, KING
70 FOR X = 1 TO 13
80 READ N$(X)
90 NEXT X
100 FOR S = 1 TO a
110FORN=lTOI3
120 TeSIN) = (5-1) * 13 + N
130 NEXT N ,5
140 FOR X = 1 TO 52
1505::: RND(lI): N = RNO(13)
160 IF T(S,N) = 0 THEN 150
170 TCS.Nl = 0
180 PRINT N$(Nl "-" 5$(5),
190 NEXT X

Do-It-Yourself Program 30-1

5 CLS
10 FOR NUMBER = 1 TO 10
20 PRINT NUMBER A 2
30 NEXT NUMBER

Do-It-Yourself Program 30-2

5 CLS
10 FOR NUMBER = 100 TO 1 STEP -10
20 PRINT SQR(NUMBERl
30 NEXT NUMBER

Do-It-Yourself Program 30-3

5 CLS
10 FOR A = -180 TO 179 STEP 10
15 RD=A/57.29577951
30 CP=COSCRO)*111+16.5 'COS POSITION
L10 SP=SIN(RO)*111+1G.5 'SIN POSITION
50 IF SP<=CP THEN 70
60 PRINT TABlep); "C"iTABCSP);"S": GOTO 80
70 PRINT TAB(SP) j"S" iTABlCPl ;"C"
80 NEXT A
90 GOTO 10

Do-It-Yourself Program 30-4

a.) ?LOG (110103)
6.8110751078

b.l ?LOC(74.88GSl
LJ.3173081

c,) ? LOG(3.35L12851
1.211023863

Do-It-Yourself Program 30-5

5 CLS
110 INPUT "WHAT NUMBER ~; NUMBER
15 X~LOG(NUMBER)/LOG(10)

210 PRINT "THE LOG BASE 10 OF" NUMBER "IS" X
25 GOlD 110

a.) 7.101088101077 E -11

Note: The log of 1 in any base is O. The answer the com
puter displays is the result of a round-off error. All computers
produce this answer.

b .) 1
c,) 2
d,) 2,688971001
e ,) - 1
f.) 3.0001131108

Do-It-Yourself Program 30-6
1,) DEFFNR (X) = X*57. 28577851
2. I
5 CLS
10 OEF FNCO() = X ... 3
210 INPUT "WHAT NUMBER DO YOU WANT TO CUBE" jX
30 X=FNC<Xl
£110 PRINT X
50 FOR A = 1 TO 7S
55 NEXT A
610 GOlD 20

Do-It-Yourself Program 31-1

5 CLS
110 X$ = STRING$(30,"-")
210 FOR X = BlI TO 41G STEP SlI
310 PRINT @ X, X$
410 PRINT @ 97, "BILL"
III PRINT @ 161. "SUE"
42 PRINT @ 225. "JON"
1I3 PRINT @ 289. "MARY"
50 PRINT @ 38. "MATH"
51 PRINT @ 1I5. "SPELL"

223

224

52 PRINT @ 53, "READ"
6. PRINT @ 103, "X"
61 PRINT @ 175, "X"
62 PRINT @ 231. "X"
63 PR I NT @ 311, " X"
7. NEXT X8. GOTO 80

Do-It-Yourself Program 31-2

5 CLS
10 X$ = "ABCDEB"
20Y$="B"
30 PRINT INSTR(X$.Y$) j INSTRC4.X$,Y$)

Do-It-Yourself Program 31-3

15 X = 1
20 X$ = "JAMES SMITH,G550HARISON,DALLASTX*

75002:SUE SIM,RT3.GRAVIOSMO*650S4; LYDIA
LONG,34Q5SMITHST,ASBURYNJ*32004:BOB
STRONG,BDX 80,EDMONTONALBERTACA:TIMMY
DUNTON, PIERMONTMO*G5078"

50 P = INSTR(X.X$.A$): PRINT P
60 IF P < > 0 THEN X = p+ 1: GOlD 50

Do-It-Yourself Program 31-4

10 DIM TBL$(2Gl
20 FOR 1=0 TO 25
30 READ TBl$ (I) : NEXT I
40 PRINT "ENTER OLD-STYLE PHONE NUMBER"
S0 INPUT N$
60 IF N$=" " THEN 40
70 FOR 1=1 TO LEN(N$)
80 C$=MID$(N$I!,1)
80 IF C$< "A" OR C$ >"2" THEN 120
100 C$=TB$(ASC<C$)-6S1
110 MID$(N$,I)-C$
120 NEXT I
130 PRINT "NEW-STYLE = "j N$
1110 REM ABC D E F
150 DATA "2" ,"2" ,"2" ,"3" ,"3" ,"3"
1G0 REM G H I J K L
170 DATA "1I" ,"1I" ,"1I" ,"5" ,"5" ,"5"
180 REM M N 0 P Q R
190 DATA "G" ,"G" ,"6" ,"7" ,"0" ,"7"
200 REM STU V W X
210 DATA "7" ,"8" ,"8" ,"8" ,"9" ,"9"
220 REM Y Z
230 DATA "9" ,"Z"

Do-It-Yourself Program 32-1

10 A$ '" "$$## ,######. ## DOLLARS"

Do-It-Yourself Program 32-2

5 CLS
10 INPUT" INCOME" j I .
15 INPUT "EXPENSES" iE
20 N = I -E 'NET GAIN OR LOSS
25 AS :: "SS####. ##"

30 5$ = "$$#u##. ##"

35 [$ = "+$$####.##"

110 CLS: PRINT @ 33. "MONTHLY ECONOMIC STATUS
REPORT"

liS PRINT @ 86. STRINGS (32,"-")
50 PRINT @ 180 I "INCOME"
55 PRINT @ 256. "EXPENSES"
60 PRINT @ 352, "TOTAL (+) OR (-)"
65 PR I NT @ 3110, STR I NG$ (10 ," -")
70 PRINT @ 180, USING AS; I
75 PRINT @ 276. USING 5$; E
80 PRINT @ 371, USING [$; N
90 GOTD 90

Try modifying this program to keep track of your electricity bills and 10
store the information on a yearly basis.

Do-It-Yourself Program 32-3

5 CLS
10 PRINT "THIS" TABIPOS(Q)+4)"IS";
20 PRINT TABIPOSIQ)+4)HEVENLY"

TABIPOStQ)+lI> "SPACED"

225

226

SAMPLE PROGRAMS

Sample Program #1
Type this program and save it on cassette, but don't open it (or run it)
until Christmas!

5 CLS
10 PRINT @ GlI, STRING$ (32,"*")
15 PRINT @ 3521 STRING$ (32,"*")
20 PRINT @ 188, "JOY TO THE WORLD"
25 FOR X :: 1 TO 1000: NEXT X
30 CLS
35 PR I NT @ 6£1 J "JOY TO THE WORLD"
£10 PRINT @ 86 I "THE LORD IS COME"
liS PR I NT @ 128, "LET EARTH REeE HIE HER KING"
50 PR I NT @ 160, "LET EVERY HEART"
55 PRINT @ 182, "PREPARE HIM ROOM"
60 PRINT @ 22£1, "AND HEAVEN AND NATURE SING"
65 PRINT @ 256, "AND HEAVEN AND NATURE SING"
70 PRINT @ 288, "AND HEAVEN AND HEAVEN AND

NATURE SING"
100 A$="Tl!i 03; L2iCiLL!iOZiBiLBjAiL2. iGiLLli

F iL2 iE iD i"
105 B$="L2. iCiP32iLlliGjL2jAiLlljP3ZjAiL2. lBi

P32jLlIiBi03iLl, ie"
110 C$="LlliCiCi02iLlIiBiAiGiLlI. iGiL8iFiLlliEj

03iC"
115 0$ =" 03 i Lli j C i 02 i 6 i Ai G i P32 i LlL i G i L8 i F i Lli i

EjP32iEiP32iEiP32iEiP32iEiP32iL8iEiF"
120 E$="L2, iGiL8jFiEiLlJiDiP32jDiP32iDiP32i

L8iDiEiL2, iFiL8iEiD"
125 F$="02iLlIiCi03iL2iCi02iLlIiAiLlI, iGiL8iFi

Llii EjFiL2iEiDiLl iC"
130 X$ = "XA$iX6$iXC$;XD$iXEjXFj"
135 PLAY X$
200 PMOOE 3,1
205 PCLS 1I
210 SCREEN 1,0
215 COLOR 1,a
220 LINE (80,86)-(118,26) ,PSET
225 LINE <1a6,86)-(118,26) ,PSET
230 LINE (90,86)-(la6,86) ,PSET
235 DRAW "6Ml12,86iD15iR10;U15"
2a0 LINE (0,112)-(255,86) ,PSET
2as PA I NT .(238 ,S5) ,1 ,1
250 x = RNO(255)
255 Y = RNO (115)
260 A = RNO(lI)
265 PSET (X,Y ,Al: GOTD 250

Sample Program #2

1 '*** BACK TO BACH ***
2 '

5 CLS
10 PRINT @ 96. STRING$(32. H *")
20 PRINT @ 320! STRING$(32 ."*")
25 PRINT @ 201! "BACK TO BACH"
a0 FOR X 1 TO 1000: NEXT X
55 A$ = "T6i02iL2iGiLaiCjOiEiFjL2iGiCiPI6i

C"
60 B$="L2iAiLaiFiGjAiBi03iL2iCi02iCiPI6iCi

FiLa iC iF iE ;0"
65 C$="L2iEiLaiFiEiOiCiL2;0IiBi02iLaiCiDi

E iC"
700$="L2iE;L1iOjL2iGiLaiCjDiEiFiL2iGiCi

P16 i C"
75 E$="L2 iA iL4 iF iG iA iB i03 ;L2 iC ;02 iC jP1G iC i

F iL4 jG iF iE jO"
80 F$="L2jEjLaiFiEiDiCiOiEiL2iFiOliBiL1i02i

C"
85 X$="XA$iXBiXCiXDiXEiXF$;"
90 PLAY X$

Sample Program #3
1 ' ***MEXICAN HAT OANCE***
2 '
5 CLS
10 PRINT @ S6,STRING$(32,"*")
20 PRINT @ 320.STRING$(32."*")
30 PRINT @ 199 ,"MEXICAN HAT DANCE"
00 FOR X = 1 TO 500: NEXT X
125 REM S TAR T TUN E
130 0$="(.115 iT3 ;02;"
135 P$="L8CFP8CFP8CFP4P8"
la0 OS="CFGFEP8FGPap8"
las XS="XOSiXPSiXOSi"
150 PLAY XS
155 RS="CEP8CEP8CEPaPB
160 SS="CEFEOPBEFP4P8
165 Y$='·XO$;XRSiXS$;"
170 PLAY Y$
180 REM 2ND TI ME
1850$= "V2SiT3;OI"
190 PLAY XS
1950$="T3j04"
197 S$="CEFEOP8EFoaC03AF"
200 PLAY Y$
210 A$="03C02B03C02AA-AFEFCPO"
220 BS="COIB02COEFGAB-03CEG"
2250$="VI5iT4i"
230 Z$="X04iXA$iXB$i"
235 PLAY 0$
2a0 C$="03B-AB-GF+FEG=ECEG"
245 D$="04LI6CPI6CPI6CPI6L8DC03B-AGFP4"
250 ES="XOSjXCiXOj"
255 PLAY F$
260 F$="02LI6GPI6GPI6GPI6DPI6DPI60PI6EPI6FP

16L8EL16GP1601GP16L8G

227

228

265 G$=~VI502LI6GPI6GPI6GPI60PI6DPI6DPI6EP

16FPI6L8EC01GC"
2713 H$="XF$jXGSj"
2813 PLAY HS
285I$="XFSj"
2813 PLAY IS
285 J$="02LI6GPI6GPI6GPI6API6GPI6GPI6API6BP

1603L4CP8"
3013 PLAY "XJS;"
3113 K$="D4L1DL4DEOEL80EOELI6DEDEDEDEL

32DEDEDEDEDEDEDEDEL64DEDEDE
DEDEDEOEDEDEDEDEDEL32DD-C03BB-AA
GF+FEE-DD-LlIDD-"

320 PLAY "XKS j"

330 M$="T5L8D02BB-BGF+GLlIDP8"
340 N$="L8DC+DEF+GAB03C02LlIAP8"
350 AAS="03LBC02BOEC02AG+AF+FF+LlIDPB"
3713 BBS="03LBDDDEDC02BA03DEDC02BA"
3813 CCS="020EDC01BA04DEDDEDDEDDEF+

GD03BGTlID02BGT3DOIT2BLlIP2V3QlLIG"
lIQl~ PLAY "XMS;XNSjXAAS;XBBS;XCCSj"
500 PMODE 1I .1
505 FOR Y = 1 TO 5
510 SCREEN 1.0
520 PCLS
550 CIRCLE (128.96·) .50.1 ,,2.,85 •• 67
560 CIRCLE (128.96) .25.1 ,2 •• 5.1
570 LINE (105.96l-(151.96).PSET
600 PMODE 1I .1
6113 SCREEN 1.13
6213 PCLS
6313 CIRCLE (128.75) .50.1 ,,2.,85 •• 67
660 CIRCLE (128.75) tI.2,.5 tI
670 LINE (105.75)-(151.75) .PSET
675 NEXT Y
680 IF Y > 5 THE:-J 6813
685 GO TO 5013
6913 CLS
71313 PRINT @ 227, "NOW THAT'S A HOT TAMALE"
710 FOR X = 1 TO 6QlQl:NEXT X
7213 GOTO 5

Sample Program #4

1 ' ***BUFFALO GALS***
2 '
5 CLS
10 PRINT @ 611. STRINGS(32."*")
15 PR I NT @ 3811. STR I NGS (32." *")
213 PRINT @ 201. "BUFFALO GALS"
25 FOR X = 1 TO 101313: NEXT X: CLS
30 PRINT @ 32. "AS I WAS WALKING DOWN THE

STREET"
35 PRINT @ S4. "DOWN THE STREET. DOWN THE

STREET"
413 PRINT @ 96. "A PRETTY GAL I HAPPENED"

lI5 PRINT @ 133, TO MEET"
50 PRINT @ 160, JUST AS LOVELY AS"
55 PRINT @ 197, THE MORNING DEW"
60 PRINT @ 224, BUFFALO GALS WON'T YOU"
65 PRINT @ 261, COME OUT TONIGHT"
70 PRINT @ 288. COME OUT TONIGHT."
75 PRINT @ 320. COME OUT TONIGHT."
80 PRINT @ 352. BUFFALO GALS WON'T YOU"
85 PRINT @ 381. "COME OUT TONIGHT"
80 PRINT @ 1116. "AND DANCE IN THE"
95 PRINT @ 1153. "LIGHT OF THE MOON."
100 A$'="Tll jC jE jP32 jE jF jP32 iF jA iG jL2 jE j"
105 B$'="LlliGiFiL2iOiLlliA;GjEiCi"
110 C$,="LlljEjP32jEjFjP32jFjL8iAjP32iAiLllj

G j E j 03 j L8 j C j P32 i C j"
115 D$,="02iBiP32jBjGjP32iGiLlliFjol jBj02i

Ll iCjP16j"
120 E$="L8jCjP32jCjLlljP32iCiEjL8iGjP32iGj

A j P32 j A j Lll j G j L2 i E"
125 F$="L8jGjP32iGjL4iFiL2iojLlliAjL8jGj

P32jGjL2iE"
130 G$= "L8 jC j P611 jC j P611 jLll jC jE j L8 iG j P32 j G j

Lll j A j LB j G j P32 i G j Lll j E j 03 i C j II

135 H$="02jBjLBiGiP32iGiFjP32iFiLlljDiL2.;
C j"

1110 X$ = "XAjXB;XC$jXOSjXE$jXFSjXGSj XH$j"
145 PLAY XS
150 CLS
155 PRINT @ 230. "THAT'S ALL FOLKS"

Sample Program #5

1 '*** IN-OUT ***
2 '
5 PMODE 3 rl
10 PCLS3
15 SCREEN 1.0
20 FOR I = 3 TO 7
25 FOR J = 2 TO 6
30 FOR S = 0 TO 3
35 FOR R = 0 TO 3
40 COLOR R.S
45 A = 0:B=255:C=0:0=181
50 LINE (A.Cl-(B.Dl .PSET.B
55 A=A+J:B=B-J:C=C+I:D=D-I
60 IF A<255 AND C<181 THEN 50
65 NEXT R
70 NEXT S
75 NEXT J tI
80 GOTD 30

Sample Program #6

1 '*** DRAW I NG TR I ANGLES ***
10 CLS: CLEAR
75 PRINT @8G.STRING$(32,"*"l

229

230

80 PRINT @ 288, STRING$(32."*")
100 PR I NT @ 180, "TH I S PROGRAM DRAWS THE

TRIANGLE YOU SPECIFY AND THEN CALCULATES
ITS AREA"

110 FOR X=1 TO 2200: NEXT: CLS
120 CLS:PRINT"FOR 3 SIDES TYPE! SSS 10-100)"
125 PRINT"FOR 2 SIDES 11-100) AND 1 ANGLE 10-

80) TYPE, SAS"
130 PRINT "FOR 1 SIDE 10-80) AND 2 ANGLES (0-

801 TYPE. ASA"
140 INPUT A$: IF A$="SAS" GOTO 300
150 IF A$="ASA" GOTO 400
200 'SSS
2H'l PRINT "ENTER 3 SIDES, lLONGEST SIDE

FIRST1"
220 INPUT L1 ,LZ ,L3
225 IF L2>L1 DR L3>L1 THEN PRINT "***LONGEST

FIRST PLEASE, • ,": PRINT: COTO 210
230 S=IL1+L2+L3)/2
235 IF S<=L1 THEN PRINT "***NOT A

TRIANGLE***": PRINT: GOTO 210
240 Y3=2*SQRlS*(S-L2)*IS-Ll)*(S-L3)/L1
250 A=Y3/L2: A=ATNlA/SQRI-A*A+111
280 X3=COSlA1*L2
270 AR=ILl*Y3)/2
280 GOTO 480
300 'SAS
310 PRINT "ENTER 2 SIDES AND 1 ANGLE: AB ,AC.

THETA <LARGEST SIDE FIRST)"
320 INPUT Ll ,L2 ,T
325 T=(T*3.14158)/180
330 Y3=L2*SIN(T1
340 X3=COS(T)*L2
350 AR=ILl*Y31/2: GOTO 480
400 'ASA
410 PRINT "ENTER 2 ANGLES AND 1 SIDE: THETA 1 ,

THETA2, AB"
420 INPUT Tl ,T2 ,L2
425 Tl=IT1*3.141581/180: T2=(T2*3.1111591/

18.
430 Y3=L2*SIN(Tl1
440 Bl=COSlT11*L2
450 B2=Y3/TANlT21
480 L1=Bl+B2: X3=B1: IF L2>L1 THEN X=L1:

Ll=L2: L2=X
470 AR=(L2*Y31/2
480 CLS: PMODE4, 1: PCLS: SCREEN 1 ,1
500 F= 1
510 VC=(3.14158 * (L1*F-X3*F1*IY3*F1~21/3

520 VS=(3.14158 *(X3*F1*IY3*F)~21/3:

VT=VC+l,JS
530 SI=Y3/X3: S2=Y3/1X3-Ll1
532 I F I NT (X3 1 = 0 THEN 1100
533 IF INT(X31=INT(L1) THEN 1000
535 IF X3>Ll THEN 1188
537 IF X3=L2 THEN 1000
540 FOR Y=20 TO Ll*2+20 STEP 2:

PSET(Y ,Y3+5,5): NEXT
550 FOR X=0 TO X3
551 PSET(X*2+20,S1*(X3-X)+5,5): NEXT
560 FOR X=X3 TO L1: PSET(X*2+20,Y3+(S2* (L1-

X) +5) ,5): NEXT
580 FOR X= 1 TO 600: NE){T X
610 PRINT @ 130,"AREA="iARj" SQ. UNITS"j
630 PRINT @352, "*" j: INPUT "TO RUN AGAIN,

PRESS <1> <ENTER>"; B6: IF B6=1 THEN 120
640 STOP: GOTO 10
1000 FOR Y=5 TO Y3+5: PSET(X3*2+20,Y,4):

NEXT: GOTO 540
1100 FOR Y=5 TO Y3+5: PSET(20 ,Y .5): NEXT:

GO TO 540
1200 FOR X=Ll TO X3: PSET(X*2+20,Y3+{S2*(Ll

X)+5) ,5): NEXT: GOTO 540
1300 FOR X=X3 TO 0: PSET(X*2+20,Y3+(S1*(0

X)+5) ,al: NEXT: GOTO 540

Sample Program #7

1 '*** PROJECT I ON STUD I ES ***
2
5 PMoDE 4 tl
10 PCLS
15 SCREEN 1.0
20 DRAW "BM50.50R60D10NL20D20L20NU20L20NU

20L20U20NR20U10" 'TOP VIEW
25 DRAW"BM50,100R20ND20R20ND20R20D20NL20D

10LG0U10NR20U20" 'FRONT VIEW
30 DRAW "BM150,100R30D30L30U10NE20U20"

'SIDE VIEW
35 ' OBLIQUE VIEW_LINES 40-60
40 DRAW "BM150,50U5E15R10BF20BD30NR5L20H

25U10
45 DRAW"BMI50,50U5F8UI5R15H8F8LI5FBNR15D

15FBND10E15NR10HB
50 LINE (175,30)-(200,55) .PSET
55 LINE -(200,B0) ,PSET
60 LINE (167,60)-(183,46) ,PSET
65 GoTo 65

Sample Program #8

1 '*** UNFOLD I NG BOX ***
2
5 PCLEAR B
10 PMoDE 3,1
15 peLS
20 COLOR 6.5
25 DRAW"BMI00.100U30NR30EI56R30NGI5D30GIG

NU30L30"
30 PAINT (105,95) ,B,G
35 PAINT (135.B0) .8.G

231

232

L10 PAINT (110.65) .8,6
LIS SCREEN 1 ,1
50 FOR X = 1 TO 600: NEXT X
110 PMOOE 3,5
112 PCLS
115 COLOR 6,5
120 DRAW ~BMI00,100U30NR30E20R30G20030NL

30F20L30H20
125 LINE (100t100)-(70,85) ,PSET
130 LINE -(70.65) ,PSET
135 LINE - (100.70) ,PSET
lL10 LINE (70,95)-(L10,65) ,PSET,B
lLl5 LINE (130t100)-(160,85) ,PSET
150 LINE -(160,65) ,PSET
155 LINE - (130,70) ,PSET
160 PAINT (95,95) ,8,6
165 PAINT (105,85) ,8,6
170 PAINT (135,85) .8,6
175 PAINT (L15,85) ,8,6
180 PAINT (115,65) ,8,6
185 PAINT (125t11L1) ,8,6
180 SCREEN 1,1
185 FOR X = 1 TO 600: NEXT X
200 GOTO 10

Sample Program #9

1 '*** SINE WAVE ***
2
5 PMOOE LI t1
10 PCLS
15 SCREEN 1,1
20 LINE (0,86)-(255,86) ,PSET
25 PI=3.1L1158
30 Al =-L1*PI
35 A2=L1*PI
L10N=180
LIS R=50
50 X= (A2-Al) /N
55 F=255/(A2-A1)
60 FOR I =Al TO A2 STEP X
65X=I*F
70 Y=R*SIN(I)
75 PSET «X+1L10)'(80+Y)t1)
80 NEXT I
90 GOTO 80

Sample Program #10

1 '*** SIN/COS ***
2 '
10 PMOOE LI ,1
20 PCLS

30 SCREEN 1,0
40 LINE 1127,5)-1127,185) ,PSET
S0 LINE (7,95)-1247,951 ,PSET
60 FOR XSCALE::7 TO 247 STEP 20
70 PRESET IXSCALE,9Sl
80 NEXT XSCALE
-80 FOR YSCALE::5 TO 185 STEP 10
100 PRESET(127,YSCALEJ
110 NEXT YSCALE
130 FOR X::-180 TO 180 STEP 1.5
140 AX::X/57,29578
14S XP=X/1.5+127
150 Fl=-{SINeAXl*90J+95
160 F2=-ICOSIAX)*90l+95
170 PSET(XP,Fltl): PSET(XP,F2tl)
180 NEXT X
190 GOTO 190

Sample Program #11

1 '*** RANDOM GRAPHICS ***
2 '
10 PMODE 3,1
15 PCLS
20 SCREEN 1 ,I
25 F ::RNO(4) :B::RNoe8l: IF B::F OR (B-4::F)

THEN 25
30 COLOR F, B: PCLS B: FOR L :: 0 TO 5
35 LINE -(RND(2551,RND(1811),PSET
a0 CIRCLE (RND(255l,RNDt 191) J ,RNO(100l
50 NEXT: FOR P::0 TO 10
5S PAINT (RNO(255) ,RNO(191» ,RNO (1I) ,F
60 NEXT: FOR H :: 1 TO 7
65 FOR T:::0 TO 600: NEXT T: GOTO 10

Sample Program #12

1 '***NAVAHO BLANKET***
2
5 PMODE 3,1
10 peLS 1I
15 SCREEN 1,0
20 COLOR 1,0
25 FOR X ::: 0 TO 255 STEP 18
30 OY ::: Y
35 Y ::: 30-0Y
a0 LINE (X,100-Y)-(X+10,100-0Y) ,PSET
as LINEeX,120+YJ-(X+10,120+0YJ ,PSET
50 NEXT
60 FOR C ::: 2 TO 8
65 PAINT 10tl10) ,C tl
70 NEXT
80 GOTO 5

233

234

Sample Program #13

1 '*** PAINTED LACE ***
2
5 PMODE 3 Ii
Ie pelS
213 SCREEN 1.1
30DRAW"BM5Il1,180UG0BU20UG0RG0BR20RG0DG0

BD20D60LG0BL20LG0
413 DRAW fi BM50,180UG0R40BR20R80D20BL20L60

BL20L20D20R20BRG0R20U20
513 DRAW"BM50,180RG0U80BU20U40L40BD20D20

BDG0D20R20UG0BU20U20L20
613 DRAW"BM50,180UG0BU40BR20RG0BR20R20U20

L20D60B020D20R20
70DRAW"BM50.180BRB0U40BU20U80
813 DRAW"BM50.180BUB0R80BR20R40
90 PAINT <85 tI28).6.8
95 PAINT (95,78).6.8
97 PAINT (155,85) ,6.8
98 PAINT <13SdaSl ,6,8
99 PAINT <128.185>.7.8
1130 PAINT (751150) ,7,8
lei PAINT (1613 115(3) ,7,8
102 PAINT (7S ,75) ,7,8
103 PAINT (1613,75) ,7,8
1011 PAINT (120)110) ,7.8
110 FOR X =1 TO 600: NEXT X
200 GOTD 5

Sample Program #14

1 '*** DRAWING BOARD ***
2
3 CLS
5 PRINT @128,STRING$(32,"*"):PRINT@288,

STRING$(32,"*")
10 PRINT @ 200, "DRAWING BOARD"
15 FOR X :: 1 TO 600: NEXT X
20 ClS
25 PRINT @ 96, "PRESS <t> FOR UP, <DOWN

ARROW> FOR DOWN, <BACKSPACE> FOR lEFT,
<TAB> FOR RIGHT, <A> FOR SOUTHWEST, <S>
FOR SOUTHEAST, <W> FOR NORTHEAST, <Q> FOR
NORTHWEST"

30 PRINT @ 2B8,"PRESS <1> FOR INVISIBLE
LINE, <2> ,<3>, OR <£I> FOR DIFFERENT
COLORED VISIBLE lINES, PRESS <I) TO
CHANGE COLOR-SET"

35 PR I NT @ 1I118, "PRESS <SPACEBAR> TO PAUSE"
£10 FOR X:: 1 TO 1I800: NEXT X
£15 CC::£I: TG"'0
50 PMoDE 3,1
55 PClS

60 SCREEN 1,TG
70 X=128:Y=86:XI=0:YI=0
80 U$="''': D$=CHR$(101: W$=CHR$(81:

E$=CHR$(81
90 NW$="Q": NE$="W": SW$="A": SE$="S"
100 Cl$="l":C2$="2":C3$="3": C4$="Q"
110 A$=INKEY$
120 IF A$=U$ THEN YI=-1:XI=0: GOTD 2a0
130 IF A$=D$ THEN YI=1:XI=0: GOlD 240
1£10 IF A$=W$ THEN XI=-1:YI=0: GOTD 240
150 IF A$=E$ THEN XI=1:YI=0: GOlD 2a~

160 IF A$=NE$ THEN XI=1:YI=-1: GOTO 240
170 IF A$=NW$ THEN XI=-1:YI=-1:GDTD 240
180 IF A$=SE$ THEN XI=1:YI=1:GDTD 240
180 IF A$=SW$ THEN XI=-1:YI=1:GOTD 240
200 IF C1$<=A$ AND A$<=C4$ THEN CC=ASC(A$l

48: GOTO 240
210 IF A$="/" THEN TG=(NDT TG AND 11 DR (TG

AND NOT 11: GDTD 240
220 SCREEN 1 , TG
230 IF A$=" " THEN XI=0: YI=0
240 X=X+XI :Y=Y+YI: IF X<0 THEN X=0
250 IF X>255 THEN X=255
260 IF Y<0 THEN Y=0
270 IF Y>181 THEN Y =191
275 IF CC=l THEN PSET(X,Y,31
280 PSET (X,Y,CCl
290 GOTD 110

Sample Program #15

1 '*** INTERACTING LINES ***
2 '
5 CLS
20 C = C + 1
25 IF C > 8 THEN C = 5
30 COLOR C, 1
50 PRINT "TYPE X0,Y0";
60 INPUT X0,Y0
70 PRINT "TYPE Xl IY1" i
80 INPUT Xl ,Yl
90 PMOOE 3,1
85 PCLS
100 SCREEN 1,1
110 LINE (X0,Y0)-(X1 ,Yl1 ,PSET
115 FOR X = 1 TO 2000: NEXT X
120 GDTD 20

Sample Program #16

1 '*** RANODM LINES ***
2 '
20 PMODE 411
25 PCLS

235

236

30 SCREEN 1.1
35 X = RND(255): Y = RND(181)
40 LI NE - (X. Y) • PSET
45 FDR X = 1 TD 200: NEXT X
50 GDTD 35

Sample Program #1 7

1 '*** 8-lEAF ClDl.JER ***
2 '
5 PClEAR 8
10 PMDDE 4,1
15 PClS
20 SCREEN 1,0
25 PI=3.14158
30 Al=0: A2=2*PI
35 N=360: A=50
40X= (A2-All/N
45 FDR I = Al TD A2 STEP X
50 R = A * CDS (Ih I)
55X=R*SIN(I)
60 Y =R * CDS (I)
65 PSET(128 + X .86+Y .5)
70 NEXT I
75 GDTD 25

Sample Program #18

1 '*** T I MEBDMB ***
2 '
10 PMDDE 4. 1
15 PClS
20 SCREEN 1,1
25 CIRCLE (128,86) .80
30 CIRCLE (128.86) .80
35'PAINT C0.0).5
40 FDR T=30 TO -30 STEP -1
45 A=C2*3.1415)*T/60
50 lINE (128.86)-(75*SIN(A)+128.75*

COSCAl+86) .PSET
55 SOUND 0*2+ 1 .201 C0+ 1 l+ 1
60 lINE (128.86)-C75*SIN(A)+128.75*

COS (A) +86) • PRESET
65 0=60-2*T:FDR Y=O TO 0 STEP -1:NEXT
70 NEXT
75 ClS
80 PClS
85 PR I NT @ 237." BOOM! "
80 SOUND 1 .30
85 PMOOE 4.1
100 SCREEN 1.1
105 FOR I =2 TO 200 STEP 2
110 CIRCLE (128.86).1
115 NEXT I

120 SCREEN 1,1
125 FOR X =2 TO 200 STEP 2
130 CIRCLE (128,96) ,X,.3
135 NEXT X
1110 FOR I = 2 TO 200 STEP 2
1115 CIRCLE (128,86) d .3,.5
150 NEXT I
155 GOTO 155

Sample Program #19

'*** ROTATING FAN ***
2 '
5 PCLEAR 8
50 GOTO 600
60 LINE ((255-X),(191-Y»)-(X,Y).PSET
61 J = J+l:IF J>A THEN J=0:A=RND(50)
63 RETURN
600 REM ROTATING FAN
601 FOR I = 1 TO 5 STEP 1I
602 PMODE 3, I
603 PCLS
6011 SCREEN 1,0
605 A=25:X=0: Y=0: J=0
610 FOR X =0 TO 2511
612 COLOR X/32+1,5
615 GOSUB 60: NEXT X
620 FOR Y =0 TO 190
623 COLOR Y/2a+l,5
625 GOSUB 60: NEXT Y
630 FOR X = 255 TO 1 STEP -1
633 COLOR X/32+1 ,5
635 GOSUB 60: NEXT X
6110 FOR Y = 191 TO 1 STEP -1
6113 COLOR Y /2a+ 1,5
6a5 GOSUB 60: NEXT Y
650 NEXT I
660 FOR I = 1 TO 5 STEP a
670 PMOOE 3, I
680 SCREEN 1 ,0
690 FOR T = 1 TO 30: NEXT T
700 NEXT I
710 GOTO 660

Sample Program #20

1 '***WALKING TRIANGLES ***
10 FOR A = 90 TO 0 STEP -a
15 Sl=A*8: S2=191
20 A3=A/57.29578
30 Xl=0:Yl=191
a0 X2=Sl+Xl: Y2=Yl
50 X3;Xl+S2*COS(A3):Y3=Yl-S2*SIN(A3)
55 eOSUB 1000
90 NEXT A

237

238

99 GOTO 99
1000 PMODE lI,l
1005 PCLS
1010 SCREEN 1,0
1020 LINE (Xl,Y11-(X2,YZ1 ,PSET
1030 LINE -(X3,Y31 ,PSET
10110 LINE -(Xl,Y11 ,PSET
1060 RETURN

Sample Program #21

1 '*** COUNTING ***
2 '
10 CLS
20 CLEAR 1000
30 PRINT "WHERE DO YOU WANT TO START

COUNTING?"
35 INPUT A$
lI0 P"LEN(A$)
50 PRINT:PRINT A$
60 C=VAUMIO$(A$,P d))+1
70 MS$=A$: MR$=RIGHT$(STR$(Cl,ll: PS=P:

GOSUB 200: A$"MS$
80 IF C< 10 THEN lI0
90 P=P-l
100 IF P"0 THEN IF LEN(A$)"255 THEN PRINT

"OVERFLOW": END: ELSE A$=" 1" +A$: GOTO £10
110 GOTO 60
200 LS=LEN (MS$)
210 IF LS< > LEN(MR$)+LS-l OR PS< 1 THEN STOP
220 MS$"LEFT$(MS$,PS-11+MR$+RIGHT$ (MS$,LS-

PSl
230 RETURN

Inventory Shopping List
5 CLEAR 2000: DIM S$(1001
10 REM INVENTORY/SHOPPING LIST
20 CLS
30 PRINT @ 71, "DO YOU WANT TO--"
lI0 PRINT @ 13£1. "(1) INPUT ITEMS"
50 PRINT @ 166, "(2) REPLACE ITEMS"
60 PRINT @ 198, "(3) ADO TO THE LIST"
70 PRINT @ 230, "(ll) DELETE ITEMS"
80 PRINT @ 262, "(5) PRINT ALL ITEMS"
90 PRINT @ 29l1, "(6) SAVE ITEMS ON TAPE"
100 PRINT @ 326, "(7) LOAD ITEMS FROM TAPE"
110 PRINT @395, "(1-7)";
120 INPUT M
130 IF M < 0 OR M > 7 THEN 10
ll10 ON M GOSUB 1000, 2000, 1020, 3000, lI000 ,

5000, 6000
150 GOTO 10
900 REM
1000 REM INPUT/ADD ITEMS

1010Y=1
1020 CLS: PRINT @ 8. "INPUT/ADD ITEMS"
1030 PRINT @ 341 "PRESS <ENTER> ~HEN

FINISHED"
1040 PRINT: PRINT "ITEM" Y;
10£15 INPUT S$(Y)
1050 IF S$(Y) = " " THEN RETURN
1060Y=Y+1
1070 GOTD 1040
1800 REM
2000 REM REPLACE ITEMS
2005N=0
2010 CLS: PRINT @ 9, "REPLACE ITEMS"
2020 PRINT @ 341 "PRESS <ENTER> ~HEN

FINISHED"
2030 PRINT: INPUT "ITEM NO. TO REPLACE"; N
2040 IF N = 0 THEN RETURN
2050 INPUT "REPLACEMENT ITEM"; S$(N)
2060 GOTO 2000
2800 REM
3000 REM DELETE ITEMS
3005N=0
3010 CLS: PRINT @ 8, "DELETE ITEMS"
3020 PRINT @ 34. "PRESS <ENTER> ~HEN

FINISHED"
3030 PRINT: INPUT "ITEM TO DELETE" j N
3035 IF N > Y-1 THEN 3030
3040 IF N = 0 THEN RETURN
3050 FOR X = N TO Y-2
3060 S$(X) = S$(X+ll
3070 NEXT X
3080 S$(X) = " "
3090 Y = Y-1
3100 GOTO 3000
3800 REM
4000 REM PR I NT ITEMS
4010 FOR X = 1 TO Y-1 STEP 15
4020 FOR Z = X TO X+14
4030 PRINT Zi S$(Z>
l/0l/0 NEXT Z
4050 INPUT "PRESS <ENTER) TO CONTINUE"; C$
4060 NEXT X
4070 RETURN
l/900 REM
5000 REM SAVE ITEMS ON TAPE
5010 CLS: PRINT @ 135, "SAVE ITEMS ON TAPE"
5020 PRINT @ 234, "POSITION TAPE"
5030 PRINT @ 294, "PRESS PLAY AND RECORD"
5040 PR I NT @ 388, "PRESS < ENTER) WHEN READY"
5050 I NPUT R$
5060 OPEN "0" t #-1 t "LIST"
5070 FOR X = 1 TO V-I
5080 PRINT #-1, S$(Xl
5090 NEXT X
5100 CLOSE # -1: RETURN
5800 REM
6000 REM LOAD ITEMS FROM TAPE

239

240

Speed Reading

10 REM SPEED READING
20 CLS: PRINT @ 32. "HOW MANY WORDS PER

MINUTE"
30 INPUT "DO YOU READ"; WPM
1I0 FOR X = 1 TO 23
60 READ A$: PRINT @ 256, A$
70 FOR Y = 1 TO (360/WPM) * L1G0 : NEXT Y
80 REM Y LOOP SETS LINES/MIN
90 NEj<T X : END
100 DATA SCARLETT OHARA WAS NOT BEAUTIFUL
110 DATA BUT MEN SELDOM REALIZED IT WHEN
120 DATA CAUGHT BY HER OWN CHARM AS THE
130 DATA TARLETON TWINS WERE. IN HER FACE
lL10 DATA WERE TOO SHARPLY BLENDED
150 DATA THE DELICATE FEATURES OF HER
160 DATA "MOTHER. A COAST ARISTOCRAT OF
170 DATA "FRENCH DESCENT. AND THE HEAVY"
180 DATA ONES OF HER FLORID IRISH FATHER
180 DATA "BUT IT WAS AN ARRESTING FACE."
200 DATA "POINTED OF CHIN. SQUARE OF JAW"
210 DATA HER EYES WERE PALE GREEN
220 DATA "WITHOUT A TOUCH OF HAZEL ,"
23121 DATA STARRED WITH BRISTLY BLACK
211121 DATA LASHES AND SLIGHTLY TILTED
25121 DATA "THE ENDS, ABOVE THEM, HER THICK"
26121 DATA "BLACK BROWS SLANTED UPWARDS,"
27121 DATA CUTTING A STARTLING OBLIQUE LINE
28121 DATA IN HER MAGNDLIA-WHITE SKIN--THAT
29121 DATA "SKIN SO PRIZED BY SOUTHERN WOMEN"
3121121 DATA AND SO CAREFULLY GUARDED WITH
31121 DATA "BONNETS, VEILS, AND MITTENS"
32121 DATA AGAINST HOT GEORGIA SUNS

Memory Test

This program uses an array to test both yours and your computer's
memory:

5 DIM A(7J
1121 PRINT "MEMORIZE THESE NUMBERS"
15 PRINT "YOU HAVE 1121 SECONDS"
20 FOR X = 1 TO 7
3121 A(XJ = RND(lI21I21J
1I121 PRINT A(XJ
5121 NEXT X
6121 FOR X = TO 1I6121 * 1121 NEXT X
7121 CLS
8121 FOR X 1 TO 7
9121 PRINT "WHAT WAS NUMBER" X
1121121 INPUT R
11121 IF A(XJ = R THEN PRINT "CORRECT" ELSE

PRINT "WRONG - IT WAS" A(XJ
120 NEXT X

ASCII Character Codes

These are the ASCII codes for eJeh of the Ch,H<lcter~ all your keyboard.
The first column is the ChMJcter; the second is the code in decimal no-
tation; and the third converts the code to a hex<:ldecilllal '1 (l-based
number).

CHARACTER DECIMAL HEXADECIMAL
CODE CODE

(SPACEBAR) 32 20, 33 21
34 22

35 23
$ 36 24
% 37 25
& 38 26

39 27
40 28
41 29

• 42 2A
+ 43 213

44 2C
45 2D
46 2E

I 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

58 3A
59 3B

< 60 3C
= 61 3D
> 62 3E, 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
1 73 49
J 74 4A
K 75 4B
l 76 4C
M 77 4D
N 78 4E

241

CHARACTER DECIMAL HEXADECIMAL
CODE CODE

0 79 4'
P 80 50
Q 81 51
R 82 52
5 83 53
T 84 54
U 85 55
V 86 56
w 87 57
X 88 58
Y 89 59
Z 90 SA

m· 94 5E
m· 10 OA
8· 8 08
8· 9 09

(8I!E!K) 03 03
ccmm 12 DC
(rnrnJ 13 00

-If shifted, the codes for these characters are as follows:~ is 92
(hex 5C); (JJ is 95 (hex SF); CD is 91 (hex 56); 8:) is 21 (hex 15);
and fa is 93 (hex SO).

lowercase Codes
These are the ASCII codes for lowercase lellers. You can produce these
characters by pressing the (IIJ]lIJ and CID keys simultaneously to get
into an upper· lowercase mode. The lowercase lelfers will appear on
your screen in reversed colors (green with a black background).

CHARACTER DECIMAL HEXADECIMAL
CODE CODE

a 97 61
b 98 62
c 99 63
d 100 64
e 101 65
r 102 66
g 103 67
h 104 68

105 69
j 106 6A
k 107 66
I 108 6C
m 109 60
n 110 6E
0 111 6'
P 112 70
q 113 71

242

CHARACTER DECIMAL HEXADECIMAL
CODE CODE

, 114 72
s 115 73
I 116 74
u 117 75
v 118 76
w 119 77, 120 78
Y 121 79
z 122 7A

243

GRAPHICS SCREEN WORKSHEET (128 x 192)

i f i i ~ iii iii iii ij iii i =iii I = I ~ t ~ ~ c ~ t I =• t • • = I ~ X ; =
fl-'- 'I -4 1-'
jj 4~

.•

" .

, .

; ,

, ...
of

i I· 'f It'-
t r f:t :::

, I .,.f

"

"
~. , .

f,

,
,' f'

"f
~f

, f'

" •• f,
f

IIi IT' •

• I +
" 'I, ",

'II

"
'" H

11< '-"

"""

" It t t,
t< i
f.-,

"If r'I'

-,I,,
'.HI ... it' 1'-'

1 I " Hr

I'"

.'

-.

. 'H·~·" +

...
j, 11

..! I ~ '1'

ft! h '-I
I It I -1

, n.

, f

" .
.. ",...ofl"....

"11, HI

"

" "e,, .., "
-,

" "_ If ,
",

"f • ~ -,
-.

- ,- '+-

'1 Iii "I It'
i'ttlt

-,

I
: ' fi- ••, ~i, I
I,ll' M ..',...~l-ft.

f ','.,-, r b I~-th

W,,'!11 'f. ,.., !hlt
j !' - -1 ~,1.1 I

'.- It' ;' 1 I' _J ..I r" 'I'
.. II.I.--It tl t,j",.j

i<lt't" .. 't ,,-I'tt'-t1
t t;I ., t' -'t It

., If'
1",1 '1, ,
~ i;-! j-

f

,-- 'r

- " " , I,

'e " •
" '-I ~ ... "

.•. _ I..

.,
~

, .,
,. '"f' ' .. -. "e .,. L

t-' -_ - .. I.-

-'rl-"
.l.;~ Itt~! f-

244

GRAPHICS SCREEN WORKSHEET (256 x 192)

!-t-+-~
, i

I
I'
I
I
I
I
I

••,, ,
I

,
~

I -I'
I,,,,,,,,,,,,
••,
!

•!
!
!
!,,,
••
••
•
•
•
•
•
•
•·.,
•
••
•
•
•
•
•
•,

, .1
; ,

~I, ,

'-

, '

..L.LL
! ~

LL,
I

'.~

Hoot-
I

'.I ",!!,!,!!! !!'f'f! , , ,
245

GRAPHICS SCREEN WORKSHEET 1128 x 96)

i f iii i f iii iii iii iii ~ i f i • • • ! • , ~ • I • • • • I • • l • I • ; ;

246

.•

GO

••

~G

~N

~O

NN

-.

•

SET/RESET WORKSHEET (64 x 321

• o- •- G-

247

PRI T (rl WORKSHEET (32 x 16)

f-+-+-+---+-+-+---i-+-+-+---+-+-+--1-t---l"w
•

f-+-+-+---+-+-+--1_+-+-+--+--+-+--1_t---l W

f-+-+-+--+--+-+--1-+--+-+--+--+-+--1-t---l W

f-+-+-+--+--+--+--1-+--+-+--+--+-+--1-t---l'
f-+-+-+--+--+-+--1-+--+-+--+--+-+--1_t---l W

f-+-+-+--+--+-+--1-+--+-+--+--+-+--1_t---l W

f--t--t---j---j---j---j--+--+--+--+--+--+-+-+-+--I 0-

w_

1---+-+-+--+-+--+-1--+-+-+--+-+---+--11--+-----4

,-

0"I--+---+-f--+--+-+--+---I-+--+-f--+---+--+--+----I
-"I--+---+-f--+--+-+--+---I-+--+-f--+---+--+--+----I

f--t--+--+--+-+--+--f--!----1--f--t--+--+-+-+---1" "
f--t--+--+--+-+--+--f--!----1--f--t--+--+-+-+---1 w"

f--t--+--+--+-+--+--f--!----1--f--t--+--+-+-+---1. "
f--t--+--+--+-+--+--f--!----1--f--t--+--+-+-+---1 W"

f--t--+--+--+-+--+--+--!--I--f--t--+--+-+-+---1 W"

'"I--+---+-f--+--+-+--+---I-+--+-I--+---+--+--+--+
W"f-+-+-+---+-+-+---ir--+-+-+--+--+-+--1-t---l
owf-+-+-+--+--+-+--I'--+--+-+--+--+-+--1-t---l

248

Extended Color BASIC Colors

Here are the codes for the nine colors you (<In cre;'lte on your
computer:

Code Color

0 Black
1 Green
2 Yellow
3 Blue
4 Red
5 Buff
6 Cyan
7 Magenta
8 Ora-m~e

The color may vary in shade from these, depending on your TV. Color 0
(black) is actually an <lbsence of color.

COLOR-SET

Color Two-Color Four-Color
Mode Set Combination Combination

4 0 Black/Green -
1 Black/Buff -

3 0 - G recnlYellow/Blue/Red
1 - BufflCyan/Magenta/Orange

2 0 Black/Green -
1 Black/Buff -

1 0 - GreenlYelfow/l3lueJRed
1 - BufflCyan/MagentalOrange

0 0 Black/Green -

1 Black/Buff -

MUSICAL NOTE/NUMBER

Number Note

1 C
2 C#/O-
3 0
4 E-/O#
5 E/F-
6 F/E#
7 F#/G-
8 G
9 G#/A-
10 A
11 A#/B-
12 B

Note: PLAY does not recognize the notation B# or C-. Use the num
bers 1 and 12 respectively or substitute C for B# and B for C - . A ?FC
Error occurs if you try to use either of these notations.

249

Extended Color Basic
Error Messages

250

Abbreviation
10

AO

BS

CN

DO

ON

Os

FC

FD

FM

Explanation
Division by Zero. It's impossible 10 divide
by zero, even for computers.

Attempt 10 Open a file that is already open.
If you press RESET during casselle 110,
you'll get this message. Turn the computer
off and on again.

Bad Subscript. The subscripts in an array
are out of range. For example, if you have
A(12l in your program without a preceding
DIM line that dimensions array A for 12 or
more elements, you'll get th is error. Use
DIM to dimension the array.

Can't Continue. If you use the CONT com
mand and you're at the END of program or
in other non-continue situations, you'll get
this error.

Attempt to Redimension an Array. You can
dimenension an array only once. For exam
ple, you can't have DIM A(12) and DIM
A(SO) in the same program.

Device Number Error. You may use only
three device numbers with OPEN, CLOSE,
PRINT, or INPUT-a, .1, or -2. If you use
another number, you'll get this error.

Direct Statement. The data file contains a
direct statement. This error can be caused
by attempting to ClOAD a data file,

Illegal Function Call. This error occurs
when you use a parameter (number or vari
able) with a BASIC word that is out of
range. For example, PLAY":" causes this
error.

Bad File Data. This error occurs when you
PRINT data to a file or INPUT data from the
file, using the wrong type of variable for the
corresponding data. For example, INPUT
#-l,A, when the data in the file is a string,
causes this error.

Bad File Mode, This error occurs when you
try to INPUT data from a file OPEN for
OUTPUT(O}, or PRINT data into a file
OPEN for INPUT(I).

Abbreviation

ID

IE

10

LS

NF

NO

OD

OM

OS

ov

RG

SN

ST

TM

UL

Explanation

IlIeg.:d Direct Statement. For example, you
can use INPUT only as a line in the pro
gram, not as a command line.

Input past End of file. Use EOF 10 check 10
see when you've reached the end of the file.
When you have, CLOSE the file.

Input/Output Error. This error is often
caused by trying to input a program or dala
file from a bad tape.

SIring loa long. A string may contain only
255 characters.

NEXT without FOR. NEXT is being used
without a FOR statement. This error also oc,
curs when you have the NEXT lines re
versed in a nested loop.

File Not Open. You can't input or output
data 10 a file until you have OPENed it.

Out of Data. A READ was executed with
insufficient DATA for it to READ. A DATA
statement may have been left out of the
program.

Out of Memory. All available memory has
been used or reserved.

Out of String Space. There is not enough
space in memory to do your string opera
tions. You may be able to CLEAR more
space.

Overflow. The number is too large for the
computer 10 handle. (ABS(X»JE38)

RETURN without COSUB. A RETURN line
was encountered without a prior COSUB.

Syntax Error. This could result from a mis
spelled command, incorrect punctuation,
open parentheses, or an illegal character.
Retype the program line or command.

String formula too complex. A string opera
tion was too complex to handle. Break it
into shorter steps.

Type Mismatch. This occurs when you try
to assign numeric data to a string variable
(A$ = 3) or string data to a numeric variable
(A = "DATA").

Undefined Line. The program contains a
COTO, COSUB, or other branching line
Ihal asks the computer to go to a nonexist
ing line number.

251

»
3'

~h
0 3

c:
S·~-_.
:r.::l
11>::I:
Cll'"
O::loc..
"'"'"

·N
~
N

l:

~
m

I \ / ,~
> ~ m
n >

~~~000
'9.'9.'9.g.~ft
<I> <I> Cl> 0 0- <ll
00»
II II II II II II
:t>hhUJUJUJ
Otl:l:t>()tl:lh

3"(6-
'<; -.!!?
~::J-~
ibll>O
;:,.9."0
C;ll>"
"00
00"
'--:;';:;'_0

o~

~~
~~

~

Quantity Standard Formulas BASIC Statement

Tofal Degrees of a Triangle IScr "" A+B+C TTL "" AA+A8+AC

Solve lor Area A .. 180-(B+C; AA '" 180-(A6+ AC) [then convert AA, AS and
Given Side e, Angles B

a"sinB·smC
AC to radians)

andC Area '"
2 sin A AREA .. SAo2'SIN(AB;"SIN(ACjl(2'$IN(AA))

Given Sides a. band c S = 'h(a+b+c) S = (SA+SB+SC)f2

Alea = "'/S(5 a)(s b)(s 0) AREA'" SOR(S'(S-SA)o(S-SBJ'{S-SC))

Lawol Sines a sin A smA SA = ($IN(AA)/5IN(AB))'SB
-=--or8=--·b
b sinS sinB

Law 01 Cosines a;> .. b2 +c"-2bc· cos A or SA"" SQR(SBo2-$Co2-2-SB'SC'COS(AA))

8= Yb2 +c2 2bc·cos A

Lawai Tangents 8-C Ian '/;>(A-C) REM Y = TAN((AA-AC)12)
~~. 0'
a+c Ian '/;>(A+C) Y .. (SA-SC)/(SA+SC)'TAN((AA+AC)/2)

,-e
Ian 'h(A-C) "'- -- . Ian 'I2(A+C)

He

Given Three Sides, s = 'h(a+b+c) S = (SA + S8 + SC)/2
Solve for an Angle

,\jr' a)(s b)(s e) R = SQR«S - SANS - SB)-(S - SC)/S),
,

A = 2 arctan (--) AA .. 2-ATN(R/(S-SA))
. s-a

Quadratic ax2 +bx+c ,. 0 REMA'Xo2+B-X+C = 0
Equations

-b'" Vb2 -4ac
Z = Bo2-4-A·C
X1 = (-B+SQR(Z))/(2'A) 'IFZ> = 0

'" 2' X2 = (-B-SQR(Z))/(2'A) 'IFZ> = 0

Algebraic (a")Y = a'Y Z = (AoX)oY or Z = Ao(X·Y)
Equalions

a-' =..!-

"
Z=Ao(-X) or Z = lI(AoX)

/ogxY = y·/ogx Z",- LOG(XoY) or Z = Y'LOG(X)

/ogxy '" /ogx+/ogy
.

Z "" LOG(X·Y) or Z = LOG(X) + LOG(Y)

,
Of Z .. LOG(X)-LOG(Y)log- = logx-Iogy Z = LOG(XIY)

y

•

~.,-:r



~

~

w

Function Expressed In Terms of Extended Color SII.SIC Functions.
Function x Is In radians.

SECANT SEC(X) - lfCOS(X)

COSECANT CSC(X) - IfSIN(X)

COTANGENT COT(X) ... 1fTAN(X)

INVERSE SINE ARCSIN(X) ATN(XlSQR( - X'X+ 1))

INVERSE COSINE ARCCOS(X) = -ATN(XISQR( -X'X+ 1)) +1.5708

INVERSE SECANT ARCSEC(X) = ATN(SQR(X'X -1}) + (SGN(X) -1)'1.5708

INVERSE COSECANT ARCCSC(X) = ATN(1ISQR(X'X-1))+(SGN(X)-1j"l,5708

INVERSE COTANGENT ARCCOT(X) - ATN(X) + 1.5708

HYPERBOLIC SINE SINH(x) - (EXP(X) EXP( Xl)12

HYPOBOLIC COSINE COSH(X) - (EXP(X) + EXP( - X))12

HYPERBOLIC TANGENT TANH(X) - - EXP( - X)I(EXP(X) +EXP( - X))'2+ 1

HYPERBOLIC SECANT SECH(X} = 21(EXP(X) + EXP( - X))

HYPERBOLIC COSECANT CSCH(X) = 21(EXP(X) - EXP( - Xl)

HYPERBOLIC COTANGENT COTH(X) - EXP( X)/(EXP(X) EXP( X))"2+1

INVERSE HYPERBOLIC SINE ARGSJNH(X) - LOG(X+SQR(X'X+1}j

INVERSE HYPERBOLIC COSINE ARGCOSH(X) - LOG(X + SQR(X'X - 1))

INVERSE HYPERBOLIC
TANGENT ARGTANH(X) ... LOG((l +X)I(l X))/2

INVERSE HYPERBOLIC SECANT ARGSECH{X) LOG((SQR( -X'X+ 1)+ l)/X}

INVERSE HYPERBOLIC
COSECANT ARGCSCH(X) - LOG((SGN(X)'SQR(X'X + 1) + 1)/X)

INVERSE HYPERBOLIC
COTANGENT ARGCOTH(X) - LOG((X+1)/(X-1))12

c
/l)...-<:
/l)
c..
.."
c:
:::l
1"\-o
:::l
<I>



Valid Input Ranges

Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Hyper. Cosine
Inverse Hyper. Tangent
Inverse Hyper. Secant
Inverse Hyper. Cosecant
Inverse Hyper. Cotangent

-1<X<l
-l<X<l
X<-or x> 1
X<-l or X>I
X>1
X"X<l
O<X<l
X<>O
X·X>I

254

Certain special values are mathematically undefined, but our functions
may provide invalid values:

TAN and SEC of 90 and 270 degrees
COT and SCS of a and 180 degrees

For example, TAN(1.5708l returns a value bul TAN(90"'.01745329) re
turns a DIVISION BY ZERO error. 90'".01745329 = 1.5708

Other values that are not available (rom these functions are:

ARCSIN{-II ~ -PJ/2
ARCSIN{ 1) ~ PI/2
ARCCOS{-11 PI
ARCCOS{ II ~ 0
ARCSEC{-I) ~ -PI
ARCSEC{ 1 0
ARCCSC{-II -P1/2
ARCCSC{ 1) Pill

Please note thai the above information may not be exhaustive.

Decimal Address Contents Hex Address

0-1023 System Use Q·3FF

25' Direct Page RAM OFF
1023 Extended Page RAM 3FF
1024-1535 Text Screen Memory 400-SFF

Graphic Screen MemDl)'
1536-3071 Page 1 600-BFF
3072·4607 Page 2 COO-11FF
4608-6143 Page 3 12QO.-17FF
6144-7679 p... , 1800-1DFF
7680-9215 p... , 1EOO-23FF
9216-2559 p.... 2400-9FF
2560-12287 p... , 2A00-2FFF
12288-13823 p... , 3000-35FF

Program and Variable
t3824-16383 S""... 3600-3FFF
32768-40959 Extended Color BASIC 8000-9FFF
40960-49151 Color BASIC AO()()-BFFF
49152-65279 Cartridge Memory COOD-FEFF
65280-65535 In'" ttciJ..... ,t FFOO-FFFF



Color Computer Line
Printer Variables

Variable I Hexadecimal I Decimal I Initial I Value
Address Address He' Dec

LPTBTD Baud
M5S I 0095 I 149 I 00 I 0
L5B 0096 150 57 87

LPTLND Line Deja

M5B I 0097 I 151 I 00 I 0
L5B 0098 152 01 1

LPTCFW Comma Field Width

I 0099 I 153 I 10 I 16
LPTLCF Last Comma Field

I 009A I 154 I 70 I 112
LPTWID Line Printer Width

I 009B I 155 I 84 I 132
LPTP05

I DOge I 156 I 00 I 00

Your computer's software uses the following initial conditions:

• The baud rate is 600
• The printer width is 132 columns

The printer generates a busy output when not ready
The printer automatically executes a carriage return at 132
columns.

The RS-232 Interface uses a four-pin DIN connector. A diagram of the
Pin out is shown in your introduction manual.

Pin 4 is the computer output to the printer. Pin 3 is ground. Pin 1 is not
used for a printer. Pin 2 should be connected to the busy output (or sta
tus line) of the printer. If your printer does not provide a status indica
tion, then this line must be connected to a positive voltage of greater
than 3 volts. This tells the computer that the printer is ready at all times.
In addition, the line delay variable should be set to the proper value.

The following list of alternate values for the line printer variables is pro
vided as an aid in interfacing nonstandard printers.

Decimal Value
Baud Rate (msb Isb) Hexadecimal Value

120 baud 458 (1 and 202) OleA
300 baud 180 OOBE
600 baud 87 0057
1200 baud 41 0029
2400 baud 18 0012

255



256

Line Delay Decimal Value (";') Hexadecimal Value
(seconds)

.288 64 ilnd 0 4000

.576 128 ilnd 0 8000
1.15 255 and 255 FFFF

Line Width Decimal Value (";') Hexadecimal Value
(chJrilcters/l ine)

16 16 10
32 32 20
64 64 40
255 255 FF

The last comma field variable should be set to the width value-the
comma field width. (The comma field width normally stays at 16.)

In Color BASIC Version 1.0, the output format to the printer is 1 start
bit, 7 data bits (LSB first). and 2 stop bits vvith no parity.



ROM Routines
The Color BAStC ROM contains many subroutines that can be called by
a machine-language program. Each subroutine will be desnibed in the
(allowing (ormal:

NAME - Enlry address
Operatioll Performed
Entry Condition
Exit Condition

Note: The subroutine NAME is only for reference. II is not
recognized by the Color Computcr. The entry address is
given in hexadecimal form; you must use an incJirer.:l ;ump 10
Ihis address. Enfry and Exil Conditions are given for ma
chine-language programs.

BlKIN = [A0061
Reads a Block from Cassette

Entry Conditions
Cassette must be all <"Ind in bit sync (see CSRDON). CBUFAD contains
the buffer <lddress.

Exit Conditions
I3LKTYP. which is loeflled at 7C, contains the block l)pe:

o = File Header
1 = Data
FF = End of File

BLKLEN, located at 7D, contains the number of data bytes in the block
(0-2551.
Z'" = 1,A = C$RERR = °(if no errors).
Z = 0, A = CSRERR = 1 (if a checksum error occurs).
Z = 0, A = C$RERR = 2 (if a memory error occurs).

Note: CSRERR = 8/
Unless a memory error occurs, X = CBUFAD + BLKEN. If a memory
error occurs, X points to beyond the bad address. Interrupts are masked.
U and Yare preserved, all other modified.

"Z is a flag in the Condition Code (CO regisler.

BLKOUT =- [ADOS]
Writes a Block to Cassette

Entry Conditions
The tape should be up to speed and il leader of hex 55s should have
been written if this is the first block to be wrillen after a motor-on.
CBUFAD, located al 7E, contains the buffer address.
BLKTYp, localed at 7C, conlains the block lype.
BLKLEN, located at 7D, contains the number of dalJ bytes.

Exit Conditions
Interrupts are masked.
X = CBUFAD + BLKLEN.
AI! regisler~ are modified.
WRTLOR = [AOOCI
Turns the Cassette On and Writes a Leader

Entry Conditions
None

257



258

Exit Conditions
None

CHROUT = [A002]
Outputs a Character to Device

CHROUT outputs a character to the device specified by the contents of
6F (DEVNUM).
DEVNUM = -2 (printer)
DEVNUM = 0 (screen)

Entry Conditions
On entry, the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON = IA004!
Starts Cassette

CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Yare preserved. All others are
modified.

GIVABF = [B4f4]
Passes parameter to BASIC

Entry Conditions
o = parameter

Exit Conditions
USR variable = parameter

INTCNV ~ [83ED]
Passes parameter from BASIC

Entry Conditions
USR argument = parameter

Exit Conditions
D = parameter

IDYl N = IAOOAJ
Samples Joystick Pots

JOYIN samples all four joystick pots and stores their values in POTVAL
through POTVAL + 3.

left Joystick
Up/Down lSA
Righi/left lSB

Right Joystick
Up/Down lSC
Right/left 150

For Up/Down, the minimum value = UP.
for RighI/Left, the minimum value = LEFT.

Entry Conditions
None



Exit Conditions
Y is preserved. All others are modified.

POlCAT = [AOOO]
Polls Keybo..,rd for a Character

Entry Conditions
None

Exit Conditions
Z == 1, A == 0 (if no key seen).
Z == O. A == key code. (if key is seen).
B and X are preserved. All others are modified.

259



260

BASIC SUMMARY

STATEMENTS

BASIC statements are commands that tell your computer to do some ac
tion, such as drawing a circle on the screen. Use BASIC statements as
lines in your program.

AUDIO Connects or disconnects cassette output to TV speaker.

CIRCLE (x,y),r,c,hw,start,end Draws a circle with center at point (x,y),
radius r, specified color c, height/width ratio (hw) of 0-4. Circle
can start and end at specified point (0-11,

CLEAR n,h Reserves n bytes of string stori'lge space. Erases variables. h
specifies highest BASIC address.

ClOAD loads specified program file from cassette. If filename is not
specified, first file encountered is loaded. Filename can be a maxi
mum of 8 characters.

CLOADM loads machine-language progri'tm cassette. You may specify
an offset address to add to the loading address.

CLOSE#DEV Closes access 10 specified file. If you do not specify de
vice, all open files are closed.

CLS c Clears display to specified color c. If you do not specify color,
green is used.

COLOR (foreground,background) Sels foreground and background
color.

CONT Continues program execution after you have pressed~
or used the STOP statement.

(SAVE Saves program on cassette (program name can be 8 characters
or fewer). Jf you specify A, program is saved in ASCII format.

(SAVEM name, start, end, transfer Saves a machine-language file on
cassette.

DATE Stores data in your program. Use READ to assign data to
variables.

DEF FN Defines numeric function.

DEFUSR n Defines entry point for USR 1unction n.n::=:0-9.

DEL Deletes program lines.

DIM Dimensions one or more arrays.

DRAW Draws a line beginning at specified starling point of specified
length of specified color. Also draws to scale, draws blank lines,
draws nonupdated lines, and executes substrings. If you do not
specify starting point, last DRAW position or (128,96) is used.

EDIT Lets you edit a program line.



END Ends program.

EXEC (address) Transfers control 10 machine-language programs al
specified address. If you omit address. control is transferred to ad
dress sel in lasl ClOADM.

FOR _.. TO STEP/NEXT Creates a loop in program thai the computer
must repeat from the fir!>t number to the la~l number you specify.
Use STEP 10 specify how much to increment the number each
time through the loop. If you omit STEp, the computer uses I.

GET (startHend),destination,C Reads Ihe graphic conlents of a rectan-
gle inlo an array for future use bv PUT.

GOSUB C<llls a subroutine beginning at specified line number.

COTO Jum~ to specified lillt;' number.

If test THEN ... action 1 elSE, aclion 2 Performs a test. If it is
true, the computer executes aClion I. If false, the computer exe
cutes ae/ion 2.

INPUT Causes the computer to stop and await input from the
keyboard.

INPUT#·l Input data from cassette.

INSTR (position, search, target) Searches for the first occurrence of
target Siring in search string beginning al position. Relurns the po
sition at which Ihe match is found.

LET Assigns value 10 variable (optional).

LIST lists (displays) specified line(sJ or enlire program on screen.

LUST lists specified program line(s) or entire program 10 printer.

LINE (xl,y7)-(x2,y2), PSET or PRESET,Sf Draws a line from (xl,yl) to
(x2,y2). If you omit (x I,y I), the lasl end point or (128,96) is used.
PSET selects foreground color, and PRESET selects background
color. B draws a box with (x, ,y 1) and (x2,y2) as lhe opposing cor
ners. Sf fills in the box with foreground color.

LINE INPUT Inputs line form keyboard.

MIDS (oldstr, position, length) Replaces a pori ion of oldslr with an-
other string.

MOTOR Turns cassette ON or Off.

NEW Erases everything in memory.

ON ... COSUS Multiway branch to call specified subroutines.

ON _ . _ com Multiway branch 10 specified lines.

OPEN m,#dev,f Opens specified file (f) for data transmission (m) to
specified device (dt.."\ /. OJ may be I (Input) or 0 (Output). dev may
be #0 (screen or keyboard), #-1 (cassette), or #-2 (printer).

PAINT (x,y),c,b Paints graphic screen slarting at point (x,y) with speci
fied color (c} and Slopping al border (bl of specified color.

PCLEAR n Rt.....er\"~ Il llumber of 1.5 K graphics memory pages.

PCLS c Clears screen with specified color (c). If you omit color code,
current background color is used.

261



262

PCOPV Copy graphics trom source page to tk~tilldtl(j1l page

PLAY Plays music of specified note (A-G or 1-12), octave (0), volume
(V), note-length (Ll, tempo(T), pause (Pl, and allows execution of
substrings. Also sharps (# or +) and flats (-).

PMQDE mode, start-page Selects resolution and first memory page.

POkE (location, value) Puts value {O-255l into specified memory
location.

PRESET Resets a point to background color.

PRINT Prints (displays) specified message or number on TV screen.

PRINT #-1 Writes data to cassette.

PRINT #-2 Prints an item or list of items on the printer.

PRINT TAB Moves the cursor to specified column position.

PRINT USING Prints numbers in specified formal.

PRINT @ scr pos Prints specified message at specified text screen
position.

PSET (x,y,c) Sets a specified point (x,y) to specified color (c). If you
omit c, foreground is used.

PUT (start)-(end), source, action Stores graphics from source onto
start/end rectangle on the screen. (Array rectangle size must match
GET rectangle size.)

READ Reads the next item in DATA line and assigns it to specified
variable.

REM Lets you insert comment in program line. The computer ignores
everything after REM.

RENUM newline, start/ine, increment Lets you renumber program
lines.

RESET (x,y) Resets a point.

RESTORE Sets the computer's pointer back to first item on the first
DATA line.

RETURN Returns the computer from subroutine to the BASIC word fol
lowing GOSUB.

RUN Executes a program.

SCREEN screen-type, color-set Selects either graphics (1) or text (0)
screen and color-set (0 or 1).

SET (x,y,c) Sets a dot at specified text screen position to specified
color.

SklPF Skips to next program on cassette tape or to end of specified
program.

SOUND tone, duration Sounds specified tone for specified duration.

STOP Stops execution of a program.

TROFF Turns off program tracer.

TRON Turns on program tracer.



FUNCTIONS

BASIC functions are built-in subroutines that perform some kind of com
putation on data, such as computing the square rool of a number. Use
BASIC functions as data within your program lines.

ABS (numeric) Computes absolute value.

ASC (str) Returns ASCII code of first character of specified string.

ATN (numeric) Returns arctangent in radians.

CHR$ (code) Returns character for ASCII, control, or graphics code.

COS (numeric) Returns cosine of an angle given in radians.

EOF (dev) Returns FALSE = 0 if there is more data; TRUE = -1 if
end of file has been read.

EXP (numeric) Returns natural exponential of number (e number).

HEX$ (numeric) Computes hexadecimal value. PRINT HEX$ (30)

INKEY$ Checks the keyboard and returns the key being pressed (if
any).

INT (numeric) Converts a number to an integer.

JOYSTK (j) Returns the horizontal or vertical coordinate (j) of the left
or right joystick:
o = horizontal. left joystick
1 = vertical, left joystick
2 horizontal. right joystick
3 vertical, right joystick

LEN (str) Returns the length of a string.

lOG (numeric) Returns natural logarithm.

MEM Finds the amount of free memory.

MID$ (str;pos,Jength) Returns a substring of another string starting at
pos. If you omit leng/h, the entire string right of position is returned.

PEEK (mem loe) Returns the contents of specified memory location.

POINT (x,y) Tests whether specified graphics cell is on or off. x (hori
zontal)=O-63; y (vertical) =0-31. The value returned is -1 if the
cell is in a text character mode; 0 if it is off, or the color code if it is
on. See CLS for color codes.

POS (dev) Returns current print position.

PP01NT (x,y) Tests whether specified graphics cell is on or off and re
turns color code of specified cell.

RIGHT$ (str,length) Returns right portion of string.

RND (n) Generates a "random" number between 1 and n if n > 1, or
between 0 and 1 if n = O.

SGN (numeric) Returns sign of specified numeric expression:
-1 = negative; 0=0; 1= positive.

SIN (numeric) Returns sine of angle given in radians.

263



STRING$ (length, code, or string) Returns a string of characters (of
specified length) specified by ASCII code or by the first character of
the string.

STR$ (numeric) Converts a numeric expression to a string.

SQR (numeric) Returns the square root of a number.

TAN (numeric) Returns tangent of angle given in radians.

TIMER Returns contents or lets you set timer (0-65535).

USRn (numeric) Calls your machine-language subroutine.

VAL (str) Converts a string to a number.

VARPTR (var) Returns addresses of pointer to the specified variable.

OPERATORS

BASIC operators perform some kind of operation on data, such as add
ing two numbers.

264

ill
-,+
',1
+,
<,>,=,<=,>=,<>
NOT
AND
OR

Exponentiation
Unary negative. positive
Multiplication, division
Addition and concatenation, subtraction
Relational tests



INDEX

$ See STRING$
; See print
, See print
:, separating BASIC statements 61
+. addition 1$
+.concatenalion 65
~. subtraction 1$
., multiplication 1$
j, division '1$
CD exponentiation 174
illill) 26
~ 18,158
WilITCD 55
(SPACEBAR) 53
'/0 ERROR 16
'L5 ERROR 66
'05 ERROR 65
?SN ERROR 16
?TM ERROR 20
ASS 79
absolute motion 117
alphabetizing See sorting
analyzing 162
AND

operator 78
PUT parameter 125

angle 199
Answers 10 Do-it-Yourself Programs 207-25
arc See CIRCLE
arctangent See ATN
arrays

multidimensional 162
numeric 150
string 155

ASCII character codes 241
ATN 175
B See DRAW
BF See DRAW
background color 92
BASIC summary 260-62
black-on·green 18
Bull's Eye, program 108
Card Dealing, program 153, 166
change, edit key 54
CIRClE 107
CLEAR 66
CLOSE 145
CL5 16
COlOR 92
color See also CIRCLE. COLOR, DRAW, PAINT,

PSE1

265



266

INDEX

codes 16
modes 99
sets 96
foreground and background 92
reference 249

concatenate( +) 65
constants 195
CONT 75
correcting mistakes See errors
COS 174
cosine See COS
Craps, program 46
Crooked Line, program 93
current grtlphics screen 103
DATA 48
data

numeric v string 15.20-2'1
sorting 159
storing on tape 145

debugging 193
DEFFN 193
DEFUSR 198
degrees '177
DEL 57
delete

edit key 54
program line 26,57

derived functions 253
device See OPEN
DIM 124
division(/) 15
division error 16
Do-It-Yourself Programs

answers 207-25
Bull's Eye 108

Card Dealing 153.166
Craps 46
Crooked Line 93
House 93, '108. 110, '113
Ice Cube 117
Inventory Shopping List 238
Lightning 106
Mailing List 183
Memory Test 240
Rolling Dice 45
Russian Roulette 44
Sine Waves 174
Speed Reading 240
Star 116
Triangle F2
Typing Test 73



INDEX

Vocabulary 48
Voting Tabulation 150
When Saints Go Marchin' In 140
Writing an Essay 156
Yo-Yo· 104

DRAW 115
Enotation 79
EDIT 53
Ellipse 109
ELSE 77
END 40
EOf 145
errors

I/O ERROR 16
ILS ERROR 66
lOS ERROR 65
?SN ERROR 16
?TM ERROR 20
correcting a program line 26
correcting a typographical error 13
description of all error messages 250-$1

EXP 177
exponentiation 174
exponents 79
extend. edit key 56
field specifiers See PRINT USING
FIX 177
flipping screens 103
foreground color 92
fOR ... NEXT JO
formulas, mathemaliGiI 252
functions

BASIC 263-64
derived 253

games 43
GET 123
G IVABF, ROM routine 199
GOSUB ffi
graphics

memory 98, 102
resolution 99
screen 103

Graphics Screen Worksheet
grid 244-46
use of 85

green-on-black 18
grid, screen See Graphics Screen

V\brksheel, PRINT @ Worksheet,
SET/RESET V\brksheet

grid size 99
hack. edil key 55
height/widlh ratio See CIRCLE

267



268

INDEX

HEX$ "1%
House, program 93,108,110, 113
Ice Cube, program 117
IF 40
information See Data
INKEY$ 71
INPUT 25
insert, edit key 55
I STR "181
INT 50
INTCNV 220
Inventory Shopping List, program 238
joysticks 129
JOYSTK See joysticks
kill, edit key 56
LEFT$ 66
LEN 65
LET 193
lightning. program 106
II E 89
II E I PUT 186
line printer variables 255-56
LIST 24
list,edit key 53
LlIST 157
LOG 176
logarithm See lOG
loops 30-39
lowercase codes 242-43
machine-language subroutines 197-200

returning values 201
stack space, use with USR 202

Mailing list, program 183
mathematical for mulas 252
MEM 76
memory See also MEM,graphics memory

description 19
map 254

Memory Test, program 240
MID$ 67,183
mistakes See errors
modes, DRAW parameter 115
motion commands, DRAW parameter 115
mulliptication(") 15
musical notes See PLAY
nested loop 37
NEXT 30
NOT, PUT parameter 125
notes, musical 134
numbers 15
numeric

arrays 150



INDEX

data 21
octave 5ee PLAY
~ds and Ends 205
ON GOSUB 76
ONGOrO 77
OPEN 145
operators

+, addition 15
+, concatenation 65
-, subtraction 15
., multiplication 15
/ . division 1S
m. exponentiation 174
AND, logical 78
OR, logical 78

options, DRAW parameter 115
OR

operator 78
PUT parameter 125

pages
c1earing(PClEAR) 104
description 102
copying(PCOPVj 105

PAINT 112
parentheses, rules on 63
pause·lenglh See PLAY
PCLEAR 1()4
PCLS 96
peapy 105
PEEK 131
PLAY 133
PMODE. 98-106
POINT 127
POS '181
PPOINT 87
PRESET 87, 91
PRESET, PUT parameter 125
print

display (PRINT) 14
printer (PRINT #-2) 191
punctuation, rules on 27
recorder (PRINT :;;-1) 145

PRli'.'T@ 45
PR INT @ Worksheet

grid 248
use of 45

printer
line pnnter variables 255-56
lisling a program (lUST) 157
prinling data (PRINT ;t-2) 191
use of 157

PRINT USING 187

269



270

INDEX

prompt 13
PSET 85
PSET, PUT parameter "125
PSET, LINE parame er 89
PUT 123
radians 173
READ 48
relative motion 117
renumber, program lines 57
RESET 127
resolution 99
RESTORE 49
RETURN 60
reversed characters 18. 158
RIGHT$ 66
RND 43
Rolling Dice, program 45
ROM routines 257-$9
RUN 24
Russian Roulette, program 44
sample programs 226-38
scale See PLAY
scale a display See DRAW
scientific notation See Enotation
search See EDlr
SCREEN 95
screen positions See Graphics Screen

Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet

SET 127
SETfRESH Worksheet

grid 247
use of 128

SGN 79
SIN 173
sine See SIN
Sine Waves, program 174
sorting 159
SOUND 17,33
Speed Reading, program 240
square root See SQR
SQR 172
stack space, use wjmach-l 202
Star. program 116
start page 103
STEP 32
STOP 7S
STR$ 79
string See also LEFTS, LEN, MID$, RIGHTS

arrays 155
data 21

description 15,20,180



INDEX

STRING$I80
slJbscripted variables See arrays
subroutines See GOSUB, machine-

language subroutines
TAN 175
tangent See TAN
taping 145
technical information See machine

language subroutines, ROM routines,
memory map, printer variables

tempo See PLAY
THEN 40
TIMER 194
tone, SOUND parameter V
Triangle, program 172
trigonometry functions 172
TROFF 193
TRON "193
truncate See FIX
Typing Test, program 73
USR 198
VAL 73
valid input ranges 254
variables

simple 19-22
subscripted See arrays

VARPTR 200
video memory 9S
Vocabulary, program 48
volume See PLAY
Voting TabJlation, program 150
When Saint Go Marchin' In, program 140
whole numbers See FIX, INT
Word Processing, program 157,182
worksheets See Graph ics Screen

Worksheet, PRINT @ Worksheet,
SET/RESET Worksheet

Writing an Essay, program 156
Yo-Yo, program 104

271







RADIO SHACKMA DIVISION OF TANDY CORPORATION

::---------'CANADA'----------.
BAR"IE, ONTAIUD. UMM

--'---.-----'~-

TANDY CORPORAnON

5A4

PRINTED IN KOREA

811013700A


	Front Cover
	Copyrights
	To All New Customers...
	And to All Upgrading Customers...
	This Is How to Start
	How Do You Talk to a Computer?
	Contents
	Section I - The Basics
	Chapter 1 - Meet Your Computer
	A Color Calculator, No Less!
	It Has Its Rules...
	It's a Show-off Too
	Computer Sound Off - One, Two...
	Before You Continue
	Learned in Chapter 1

	Chapter 2 - Your Computer Never Forgets (...unless you turn it off...)
	The Computer is Fussy About Its Rules
	Learned in Chapter 2

	Chapter 3 - See How Easy It Is?
	Spotlight Your Name
	Color/Sound Demonstration
	Add Polish to the Program
	Learned in Chapter 3

	Chapter 4 - Count the Beat
	Counting by Twos
	Counting the Sounds
	But Can It Sing?
	Learned in Chapter 4

	Chapter 5 - Watch the Clock
	Counting Within the Time
	Making a Clock
	Learned in Chapter 5

	Chapter 6 - Decisions, Decisions...
	Learned in Chapter 6

	Chapter 7 - Games of Chance
	A Random Show
	Russian Roulette
	Rolling the Dice
	Learned in Chapter 7

	Chapter 8 - Reading
	Now Have It Build Your Vocabulary
	Learned in Chapter 8
	First, Build Your Computer's Vocabulary...

	Chapter 9 - Writing
	Don't Throw Away That Line... Edit It! (EDIT)
	Move on Down the Line (Cursor Movement)
	Change the Line (CHANGE)
	You're Out! (DELETE)
	Squeeze It All In (INSERT)
	Hackamore or Hackaless? (HACK)
	Kill the... Ah... Mistake (KILL)
	Extended Color Basic Strikes Again! (EXTEND)
	Mass Delete (DELETE)
	Your Number's Up! (RENUM)
	Learned in Chapter 9

	Chapter 10 - Arithmetic
	Give the Computer a Little Help
	Saving Routines
	Learned in Chapter 10

	Chapter 11 - Words, Words, Words...
	Twisting Words
	Learned in Chapter 11

	Chapter 12 - A pop Quiz
	Beat the Computer
	Checking Your Answers
	A Computer Typing Test
	Learned in Chapter 12

	Chapter 13 - More Basics
	For Long Programs...
	Help with Typing
	Does the Job Say "AND" or "OR"?
	More Arithmetic
	Congratulation, Programmer!
	Learned in Chapter 13


	Section II - Sights and Sounds
	Chapter 14 - Let's Get to the Point
	...But What About the Color?
	Now You See It... Now You Don't
	The Last Point
	Learned in Chapter 14

	Chapter 15 - Hold that Line!
	That's Some Line You Have
	X Marks the Spot
	How About Dropping a Line
	To B (a Box) or Not to B...
	Fill It Up
	That's Color with a Capital C, Capital O, Capital...
	Learned in Chapter 15

	Chapter 16 - The Silver Screen
	A Word About Video Memory
	Lighting the Silver Screen
	Clearing the Silver Screen (PCLS)
	Learned in Chapter 16

	Chapter 17 - Minding Your PMODEs
	"Lines" in Mode 4
	Colors à la Mode
	"Lines" - Through Thick and Thin
	Learned in Chapter 17

	Chapter 18 - Finding the Right Pages
	Flipping Screens
	Adding Pages
	Up and Down, Up and Down
	PCOPY
	Learned in Chapter 18

	Chapter 19 - Going in Circles
	Coloring the Circle
	Putting on the Squeeze
	From Start to Finish...
	Learned in Chapter 19

	Chapter 20 - The Big Brush-Off
	Learned in Chapter 20

	Chapter 21 - Draw the Line Somewhere
	Setting the Square on Edge (Diagonal Lines)
	Absolute M v Relative M
	Tipping the Scales
	Color Me...
	What's Your Angle?
	Just Shootin' Blanks
	What! More Options?
	String Constants v String Variables
	Learned in Chapter 21

	Chapter 22 - GET and PUT: The Display Went That Array
	Storing the Rectangle
	Put Not What You See
	Learned in Chapter 22

	Chapter 23 - A New Kind of Point
	Setting Two Dots
	The Computer's Face
	If You Have the Joysticks...
	Painting with Joysticks
	Learned in Chapter 23

	Chapter 24 - Play it Again, TRS-80
	Listen Carefully...
	Let's Compare Notes (NOTE)
	A New "Note"-ation
	Whole Notes, Half Notes, Quarter Notes... (NOTE-LENGTH)
	Love That Dotted Note
	Let's Go Up (or Down) an Octave or Two (OCTAVE)
	Play It Again - Louder! (VOLUME)
	A Moment of Silence, Please (PAUSE)
	It's Time to Pick Up the Tempo (TEMPO)
	Executing the Substring (X)
	One Further Note... (+, -, <, >)
	Roll Over, Beethoven
	Learned in Chapter 24


	The Real Thing
	Spiral
	Fantastic!
	Box
	Projection Studies
	In-Out
	Navaho Blanket
	After the Boom Is Over...
	Home, Sweet Home
	Painted Lace
	Open and Closed Cubes
	Rolling in the Clover
	Random Graphics
	Riding the Waves

	Section III - Getting Down To Business
	Chapter 25 - Taping
	An Electronic Card Catalog
	Learned in Chapter 25

	Chapter 26 - Managing Numbers
	A Second Array
	Deal the Cards
	Learned in Chapter 26

	Chapter 27 - Managing Words
	Writing an Essay (...A Novel, Term Paper...)
	Using the Printer
	Learned in Chapter 27

	Chapter 28 - Sorting
	Learned in Chapter 28

	Chapter 29 - Analyzing
	Third Dimension
	Learned in Chapter 29


	Section IV - Back to Basics
	Chapter 30 - The Number Game
	Exponentiation
	TRIG Functions
	Degrees v Radians
	Sine Waves
	Learned in Chapter 30

	Chapter 31 - It Don't Mean a Thing If It Ain't Got That String
	STRING$
	I Think I See Some-String Ahead! (INSTR)
	Never Change Horses in Midstring (MID$)
	Learned in Chapter 31

	Chapter 32 - In One Door And Out the Other
	A Line Drive (LINE INPUT)
	Customized Printing (PRINT USING)
	De-Vice Squad
	Learned in Chapter 32

	Chapter 33 - A Little Byte of Everything
	LET
	TRON/TROFF Commands
	Time After Timer... (TIMER)
	Hexadecimal and Octal Constants
	Learned in Chapter 33

	Chapter 34 - Using Machine-Language Subroutines
	The BASIC Program
	ML Subroutine Listing
	Passing Values to an ML Subroutine
	Returning Values to BASIC
	Using Stack Space


	Section V - Odds and Ends
	Suggested Answers To Do-It-Yourself Programs
	Do-It-Yourselft Program 4-4
	Do-It-Yourselft Program 5-2
	Do-It-Yourselft Program 5-3
	Do-It-Yourselft Program 7-2
	Do-It-Yourselft Program 7-3
	Do-It-Yourselft Program 8-2
	Do-It-Yourselft Program 10-1
	Do-It-Yourselft Challenger Program (Chap. 11)
	Do-It-Yourselft Program 14-2
	Do-It-Yourselft Program 15-1
	Do-It-Yourselft Program 15-2
	Do-It-Yourselft Program 15-3
	Do-It-Yourselft Program 16-1
	Do-It-Yourselft Program 18-1
	Do-It-Yourselft Program 18-2
	Do-It-Yourselft Program 19-1
	Do-It-Yourselft Program 19-3
	Do-It-Yourselft Program 19-4
	Do-It-Yourselft Program 20-1
	Do-It-Yourselft Program 20-3
	Do-It-Yourselft Program 21-1
	Do-It-Yourselft Program 21-2
	Do-It-Yourselft Program 21-3
	Do-It-Yourselft Program 21-4
	Do-It-Yourselft Program 21-5
	Do-It-Yourselft Program 21-6
	Do-It-Yourselft Program 22-1
	Do-It-Yourselft Program 24-1
	Do-It-Yourselft Program 24-2
	Do-It-Yourselft Program 25-1
	Do-It-Yourselft Program 26-1
	Do-It-Yourselft Program 26-2
	Do-It-Yourselft Program 27-1
	Do-It-Yourselft Program 27-2
	Do-It-Yourselft Program 27-3
	Do-It-Yourselft Program 27-4
	Do-It-Yourselft Program 28-1
	Do-It-Yourselft Program 29-1
	Do-It-Yourselft Program 30-1
	Do-It-Yourselft Program 30-2
	Do-It-Yourselft Program 30-3
	Do-It-Yourselft Program 30-4
	Do-It-Yourselft Program 30-5
	Do-It-Yourselft Program 30-6
	Do-It-Yourselft Program 31-1
	Do-It-Yourselft Program 31-2
	Do-It-Yourselft Program 31-3
	Do-It-Yourselft Program 31-4
	Do-It-Yourselft Program 32-1
	Do-It-Yourselft Program 32-2
	Do-It-Yourselft Program 32-3

	Sample Programs
	Sample Program #1
	Sample Program #2
	Sample Program #3
	Sample Program #4
	Sample Program #5
	Sample Program #6
	Sample Program #7
	Sample Program #8
	Sample Program #9
	Sample Program #10
	Sample Program #11
	Sample Program #12
	Sample Program #13
	Sample Program #14
	Sample Program #15
	Sample Program #16
	Sample Program #17
	Sample Program #18
	Sample Program #19
	Sample Program #20
	Sample Program #21
	Inventory Shopping List
	Speed Reading
	Memory Test

	ASCII Character Codes
	Lowercase Codes

	Graphics Screen Worksheet (128x192)
	Graphics Screen Worksheet (256x192)
	Graphics Screen Worksheet (128x96)
	SET/RESET Worksheet (64x32)
	PRINT @ Worksheet (32x16)
	Extended Color BASIC Colors
	Extended Color Basic Error Messages
	A Formula in Hand Is Worth Two in the Book...
	Derived Functions
	Valid Input Ranges
	Color Computer Line Printer Variables
	ROM Routines
	BASIC Summary
	Index

	Back Cover

