Radioe fhaek

5/ iL Jf__\\

u_J’

i

TERAMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT ANO SOFTWARE PURCHASED FROM A RADIO SHACK COMPANY-OWNED
COMPUTER CENTER, RETAIL STORE OR FROM A RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTUMEH assumes full responsibility that this Radio Shack computer nardware puichased (the “Equipment”). and any capies of Radio Shack software included with the Equipment or licensed separately (the

“Boftware™) meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER
B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment n which the Equipment and Software are to function, and for its installation

. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE
A For a period of ninety (80) calendar days from the date of the Radio Shack sales document recewved upon purchase of the Equipment, RADIO SHACK warrants to the original CUSTOMER that the Equipment and

the medium upon which the Software is stored is free from manufactunng defects. THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER
FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS AUTHORIZED LOCATION The warranty is void if the
Equipment's case or cabinet has been apened, or if the Equipment or Software has been subjected to improper or abnormal use If a manufacturing defect is discovered during the stated warranty period, the
defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store participating Radio Shack franchisee or Radio Shack dealer for repair, along with a copy of the sales
document or lease agreement. The original CUSTOMER'S sole and exciusive remedy in the event of a defect is imited to the carrection of the defect by repair, replacement, or refund of the purchase price, at
RADIQ SHACK'S election and sole expense RADIO SHACK has no obligation to replace or repair expendable items

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, excepl as provided in this paragraph. Software is licensed on an “'AS 1S" basis, without warranty

The original CUSTOMER'S exclusive remedy, in the event of a Software manufactunng defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received

upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer along with the

sales document

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any waranlics of any nalure on behall of RADIO SHACK.

Except as provided herein, RADIO SHACK MAKES KO \WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITHESS FOR A PARTICULAR PURPOSE.

Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may nol apply to CUSTOMER

MITATION OF LIABILITY
EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TG CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE

CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT " OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO,
ANY INTERRUPTION OF SERVICE, LOSS QF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE “EQUIPMENT'" OR *'SOFTWARE".
IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY QR IN ANY
MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT' OR "SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES (NCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID
BY CUSTOMER FOR THE PARTICULAR "'EQUIPMENT" OR “'SOFTWARE" INVOLVED.

RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years after the cause of action has accrued or more than four (4) years atier
the date of the Radio Shack sales document for the Equipment or Software, whichever first gccurs

Soms states do not allow the limitation or exclusion of incidental or consequenlial damages. so the above limitation(s) or exclusion(s) may not apply to CUSTOMER

DI0 SHACK SOFTWARE LICENSE

DIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following provisions:
Excepl as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transterred to CUSTOMER, but nol litle to the Software.
CUSTOMER may use Software on one host compuler and access that Software through one or more terminals if the Software permits this function.
CUSTOMER shall not use, make. manufacture, or reproduce copies of Software excep! for use on one computer and as is specifically provided in this Software License. Customer is expressly prohibited from
disassembling the Software.
CUSTOMER is permitted to make additional copies of the Software only for backup or archival purpases or if additional copies are required in the operation of ane camputer with the Software, but only to the
extent the Software allows a backup copy to be made. However, far TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S ewn use,
CUSTOMER may resell ar distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one sold or distribuled The provisions of this Software License
shall also be applicable to third parties receiving copies of the Software from CUSTOMER

G. All copyright notices shall be retained on all copies of the Software

V. APPLICABILITY OF WARRANTY
The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER 1o either a sale of the Equipment and/or Software License to CUSTOMER o to a transaction whereby RADIO

SHACK sells or conveys such Equipment to a third party for lease to CUSTOMER)
B The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and/or licensor of the Software and any 1 er of the Equip sold by RADIO

SHACK

V. STATE LAW RIGHTS
The warranties granted herein give the orlginal CUSTOMER specific legal rights, and the original CUSTOMER may have ather rights which vary from state to state.

»- Moo

m OP®mr3m o o

i

l\ 4\f

J h l

'ﬁl l‘} jt*\

Getting Started with Color BASIC:
Copyright © 1981 Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.
All rights reserved.

Reproduction or use, without express written permission
from Tandy Corporation, of any portion of this manual, is
prohibited. While reasonable efforts have been taken in
the preparation of the manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from any
errors or omissions in this manual or from the use of the
information obtained herein.

TRS-80 Color BasIC System Software: Copyright ©
1980 Tandy Corporation and Microsoft.
All rights reserved.

The system software in the Color Computer is retained in
a read-only memory (RoM) format. All portions of this sys-
tem software, whether in the rom format or other source
code format, and the ROM circuitry, are copyrighted and
are the proprietary and trade secret information of Tandy
Corporation and Microsoft. Use, reproduction, or publica-
tion of any portion of this material, without the prior writ-
ten authorization by Tandy Corporation, is strictly
prohibited.

Printed in the United States of America

10 9 8 7

6

5

4 3

WELCOME NEWCOMERS!

If you don’t know anything about Computers and would like to be spared the long, technical explana-
tions, relax — this book is for you!

Using this as your guide, you’ll be able to interact and enjoy your Computer right away. The first
section is all you need to get going. The rest of the book is frills.

You’ll find that , especially at first — we’ll have you doing a lot of games, songs, and other fun-type
programs. Don’t worry — if you want to do “practical” programs, you’ll find plenty of that later. We
start you off with the fun programs because that’s the quickest way for you to feel at ease with your
Computer. Once you feel it’s truly an extension of yourself, you’ll be able to make it do most anything
you want,

So sit down and spend a couple of hours with it. Type away at it. Play with it. Try to make it do strange
things. In other words.. . . get to feeling comfortable with it. There’s an endless number of things it can
do for you.

... AND HELLO OLD-TIMERS

We haven’t forgotten about you. If you already know how to program, turn to Appendix J. There,
you’'ll find a summary of COLOR BASIC with page numbers you can refer to for the things you want
to know more about. Then, if you want to learn more about your Computer, go straight to Section IV.
It’ll show you how to program high resolution graphics and call machine-language programs.

TO GET STARTED . ..

Connect your Computer by referring to the Chapters on “Installation” and “Operation”, and to
Figure 1 in your TRS-80 Color Computer Operation Manual.

Then power up your Computer:

® Turn ON your television set

® Select channel 3 or 4

® Set the antenna switch to “COMPUTER”

e Turn ON the Computer. The POWER button is on the left rear of your keyboard (when you’re
facing the front).

This message should appear:

COLOR BASIC v.r
© 1980 TANDY
oK

(v.r is two numbers specifying which version and release you have).

If you don’t get this message, turn the computer on and off again. Adjust the
Brightness and Contrast on your T.V. set. Check all the connections. If you still
don’t get this message, refer to “Troubleshooting and Maintenance” in the
TRS-80 Color Computer Operations Manual.

Once you do get this message,you’re ready to begin.

HOW DO YOU TALK TO A COMPUTER?

In this book, you’ll learn how to talk to your Computer. That’s all programming is, by the way. Once
you learn how to communicate, you’ll be able to get your Computer to do whatever you tell it. (well,
almost).

The Computer understands a language called COLOR BASIC. COLOR BASIC is form of BASIC —
Beginners All-purpose Symbolic Instruction Code. There are lots of computer languages. COLOR
BASIC just happens to be the language your Computer understands.

We'll introduce BASIC words in the order that it's easiest to learn them. When you get mid-way in
the book, you might forget what one of the words means. If this happens, simply look up the word in
the back of the book or use your “Quick Reference Card” to find its meaning.

TABLE OF CONTENTS

SECTION I — GETTING THE HANG OF IT

CHAPTER 1: MEET YOUR COMPUTER o crceows o v 6 5 5 s nem e s § ¢ § 5 808 auia 88566 55 5 55 5 5 505 miorormione mioirola 6
CHAPTER 2: YOUR COMPUTER NEVER FORGETS (... unless you turn it off ...} viveieinninnirronnnnn.. 16
CHAPTER 3: SEE HOW BASY TT IS . ¢ vsommemrtos s 5 s 5 5 6lamermmiavess s & § 5 paoersesiaess s 5 55 5 oiaiheasns ot 24
CHAPTER 4: COUNT THE BEAIY . . . vumrsnaemsmn e ¢« 5% goremmeaeses £33 § 5 5 6eimimmas 068 5 5 aasnmman s 34
CHAPTER 5: SING OUT THE TIME ...ttt tteeanteanseassssssseesessssesaseaeenaeeneesesnessnanasans 42
CHAPTER 6: DECISIONS, DECISION S ..t itiiet it ae s ttaeae e aansresssssssssoeeseeennasesesnnseeeenes 54
CHAPTER 7: GAMES OF CHANGCE s sineusmusamss s s oneiiimuisisci e s s s s emitimmemmaiai o s oo sesnese s s 60
CHAPTER 8: SAVE IT ON TAPE s s 5 siommmasasis £ 5 5 5§ ovnealaes & & & s 85 50 508 00660s6,508 6 = o 56« ais sisreisiembeniiatoton 70
CHAPTER 9: COLOR YOUR SCREEN i s s swwamsim s o s s s siammamnass s 655 e 0 ieissaitsas 5555555 a0 emaimioemaiinis 76
CHAPTER 10;: ONE FANTASTIC TEAGHBER sqmwme s s s wmermminn i 6 £ § § 5 5 asmamisms £ 6.5 1 55 4 i aiamnmitetn o 90
CHAPTER 11: HELP WITH MATEL .. . s wovvemsammas s s ¢ 5 sowsmsmelsiis s &5 5 2 580 mesismusme s 5 § 455 swnoamitiss 102
CHAPTER 12: A GIFT WITH WORDS vt tttttteerertnrstroestsstasenasseessssnasssssasassseennneesnnans 112
CHAPTER 13: BEAT THE COMPUTER ++ v+ v vevecanesennesnsanssenensssssnsssssosssssonnnnassesonennns 124
GCHAPTER: 14: POLISH TT DIE a0 issssmsimanaas s 55 5500 pemian s o sirmmeamisiamside s e sl s swieiivointbtormbessiaiorsts 134
SECTION Il — GRAPHICS WITH PIZZAZZ
CHAPTER 15: MOVING PICT U RE S it iitttiiieaeetaenaseonesaneennoesennossensassennssassesessssasssns 148
CHAPTER 16: THE TALKING COMPUTER TEACHERottt it teeeteeeiaeesesensnnnenananss 158
CHAPTER: 17: GAMES OF MOTTION . ;¢ 4 sainmanesase i v 6o s b staisimmmeis s § ¢« 5 560 s aaaiias s 5 685 5 50080 iin ssns & ate 166
CHAPTER. 18: FASTER TEAN MOTIOWN ;s wnimmesas s 6 5 6 o o5emssae s 5 5 8 5osaasms £ 8 s 006 580055 gaiamses s 174
CHAPTER 19: LET'S DANGE vsiis s = 5 5 sonninmssnss v & s 55 6o semaanss o 6 5 s & & s aesiian s €58 35 50 amuniils s 186
SECTION III — GETTING DOWN TO BUSINESS

CHAPTER 20: KEEPING TABS ON EVE R Y THING ..ittiettitineenusenssseososssasessssasnsssassnssnsss 196
CHAPTER 21: PUT POWER IN YOUR WERITING ...ittitiittiituereneenseensenaarossosncssnsesensannnss 208
CHAPTER 22: TAPE YOUR BOOK COLLECTION (... or your records, Christmas list,

CAXSTECCIPLE, TMVEIIEOET &) siorisivesironsisers o vis o0e Sisbimommtedal s o o o ossiusnpasaito; -3 5 o ateswsssasaiIeeta il oo ¢ o s PR LS 218
CHAPTER 23: FILING — AS EASY AS ABC .ttt ttutiuiiientetrereanassoseecsossessssssasssearssssssaannes 232
CHAPTER 24: GETTING ANALYTICAL « v ionccomocssssnsoanomoens oo ssssiosmomnmsiissesss ot 238

SECTION IV—DON'T BYTE OFF MORE THAN YOU CAN CHEW
PART A: HIGH RESOLUTION GRAPHIGS . . v v vnnvonesenammmammmsiossssssiosanissiodissieassss s 252
PART B: USING MACHINE-LANGUAGE SUBROUTINES ...t iiiiiiiitiitattttrsssnsrsssssarnassssesnsns 267
PART G: MEMORY MAP . .:uuasmanmaissss s ssmn s o s s &s s eiasaisegss s s 8 b o e slashmvisiiios|s siale s e sigar coon 271
APPENDIXES
AVBMUSICAT NOTES oosviis 50 5 o5 s ot s msistinacini,i o 8 5 5 b sis0siatarabans e 4 555 5000a i AeIsrsiati st o 8815 o1 aolaneseurarans o oterstatloyatayare sty oot o hrs 274
B i BASIC; COLORS.AND GRAPHICS, 4 s s sreivisioaisia s o ars e d s isiaistaiasans v o s s 5/ wiais diaiosslvio alo/e o888 talags e aiatals s o1als 1ol o ate o la e roreatstora 276
CIPRINT-@ SCREEN-LOCATIONS i esssrstsisiaso ls s s srasisraseralaioisia s 18 s a s (o1 o sietaissataTut s io) s o8 atastabatatata b U T pe SNBSS 277
DI GRAPHICSISCREENIEOCATIONS. 11srdtsinisrersl ol srosisie i stere siatatere sls s larsiarerurassratalstavale reia e s oty T S L RN SR 278
B A SCIHICHARACTERICODES 5151 a-tt otsiaisaie slalats o 5151 5ova ssa et chatasatl s sl s aVrs ol Saseatstararale Slalalelols s Isrets oratistata oy P P SOy 280
B EANSWERS T O ER CISES: oo e 1) irsssiaisiaio s i/ a8 1 ralsietarsaratasdste] slefa arat wistehurareelatagsions siaTorst e e toret o s r o I s S e S LN 282
(O O) e e et o O T e o o P P IS A A s s B 6 B B B B0 287
L] S AMPLEIPR OGRAMS s o vl sioislorsiomholors tatsl otofeinsaiotasatmtniotorsrsls talslo ale o folutntaraletorslela) slslarorere el Raba i o ataTo e o Lo Ee e ey 291
R R R ORIMESSAGE S c/ateesiic1o1% e iare e tote e tomanstato ol sls o[e/oote folarasshela ot <12 olale 3 erepoieiatetar stals o o o S¥o o era iTer cre ete o o T e S rer e e 298
B A SIS U M A R Y o o it s uTale (aista s a (ahs s ataia sls oL /oato\a /ol e 4 auaTabome o s oVakalal o) (AL A¥srbiaalatslal sToa sl slare e Teuse ns toahe e e L e el 300

3|

SECTION 1

~
RS
&
<
S

i
\‘ t,

l

[]

MEET YOUR COMPUTER

rd

L4
-

O

-

*

O

-3
Q
o
avo
S b B2
! J
- — —’ - - G

k1 LT - -

In thes e’re to

21 F O]t e ~ 1 <
vne S many talents, and ev

has. 7

promise!

Yan myyrace tho (6
tnen press tne (&l

£ TH Yy e W e A 1. T T s v T
Den't worry about anythin

it +hha 4 Yiava af 11 @ery n T+ ohas i
but the last line of type on your screen. It should

OK

OK is the Computer’s “prompt”. It’s telling you — “OK, enough foolishness . . .
as soon as you are ready . ..” (It patiently waits for your command.) ¥ou are
the Master — you can tell the Computer to do anything you wish.

Give it your first command. Type this exacily as it is below:

PRINT “HI, I'M YOUR COLOR COMPUTER"

When you reach the end of the line on your screen, keep on typing. The last part
of the message will appear on the next line.

All letters you iype sheuld be BLACK
with a GREEN BACKGROUND. If
they're reversed (green with a black

background), press the (SHIFT) and

(8) (zero) keys at the same time.

See the blinking light? You can type
something wherever you see it.

“Hi, I'm Your Color Computer!”

Now check your line. Did you put the quotation marks where we have them? If
you made a mistake, no problem. Simply press the (3 key and the last
character you typed will disappear. Press it again and the next to the last will
disappear (... and so on and so on . . .).

Ready? This should be on your screen:
0K
PRINT “HI, I'M YOUR COLOR COMPUT
ERII

Press the key and watch. Your screen should look like this:

oK

PRINT “HI, I'M YOUR COLOR COMPUT
ERH

HI, I'M YOUR COLOR COMPUTER

oK

Your Computer just obeyed you by printing the message you had in quotes.
Give it another message to print. Type:

PRINT “'2”

Press (ENTER) The Computer again obeys you and prints your next
message:

Try another one:

PRINT “2 + 2" (ENTER

The Computer obeys you by printing:
2.2

You probably expect a lot more than just an electronic mimic . . . like maybe

some answers! Well, try it without the quotation marks. Type:

PRINT 2 + 2
Much better. This time the Computer prints the answer:

4

These quotation marks obviously must mean something. Try experimenting
some more with them. Type each of these lines:

The Computer thinks of quotes like a

PRINT 5+4 Journalist does. If the message is in
PRINT “'5+4" quotes, the Computer must PRINT it
PRINT \\5+4 EQUALSH 5+ 4 exactly as it appears. If it’S not l:ﬂ.
PRINT 6/2 ™ IS 6/2" (ENTER) quotes, .the Computer can interpret it
PRINT “8/2" by adding, subtracting, multiplying
PRINT 8/2 (ENTER or dividing it.

Have you come up with any conclusions on what the quotes do?

R ‘ i

eRRNNNNRRRRRRR

\

% RULES ON STRINGS VS NUMBERS
\ The Computer sees everything you type as STRINGS or NUMBERS. If it’s in

quotes, it’'s a STRING. The Computer sees it EXACTLY as it is. If it's not in quotes
it’'s a NUMBER. The Computer will figure it out like a numerical problem.

AN S 4 R\ N\ NN\ NN\ NN\ N\

;
/

10

A COLOR CALCULATOR, NO LESS!

Any arithmetic problem is a snap for your Computer. Let it do some long
division. Type:

PRINT “3862 DIVIDED BY 13.2 IS” 3862/13.2 (ENTER)
Let’s do a multiplication problem:

PRINT 1589 * 23 (EMTER

Notice that the Computer’s multiplication sign is an asterisk . rather than the
XLsign Whicn yow've always u sed in math. Thisis because the Computer is such

a precise and literal creature

-6 that it would get the X multiplication sign mixed
up with the X alphabelical Cl

laractel.

Try a few more problems:

RINT “15 * 2 = “ 15*2 (ENTER)
RINT 18 * 18 “ IS THE SQUARE OF 18" ENIER)
R1

p
: p
PRINT 33.3/22.82 (EITER

4 L

Now it’s vour turn. Write two command lines which will print these two
problems as well as their answers:

157 / 132 =
95 * 43 =

If you used “correct” command lines, this is what the Computer should have
printed on your screen:

157 / 13.2 = 11.8939394
95 * 43 = 4085

Ready for the answers:

PRINT “157 / 13.2 =" 157/13.2
PRINT %95 * 43 =" 95%43

IT HAS ITS RULES...

By now, the Computer has probably printed some funny little messages on
your screen. If it hasn’t, type this line deliberately mispelling the
word PRINT:

PRIINT “HI" (ENTER)

The Computer prints:
7SN ERROR

SN ERROR stands for “syntax” error. This is the Computer’s way of saying
“The command ‘PRIINT’ is not in my vocabulary . .. I have no earthly idea
what you want me to do”. Anytime you get a SN error, it’s probably because you
made some kind of typographical error.

The Computer will also give you error messages when it does understand what
you want it to do, but you’re asking it to do something that it feels is illogical or
impossible. For instance, try this:

PRINT 5/0

The Computer prints:

7/0 ERROR

Actually there is no "correct” Com-
mand line. For that matter, thereis no
correct way of handling your
Computer. There are many ways of
getting it to do what you want. Re-
lieved . . . Good!

ol & T T2
- >,
':"'.‘"-..'........
ey R
— -

11

If you don’t get the right colors, refer
to the color test in your Owner’s
Manual.

12

Which means “Don’t ask me to divide by 0 — that’s impossible!!”

If you get a strange error message you don’t understand, flip back to the
Appendix. We've listed all the error messages there and what probably caused
them.

IT’S A SHOW OFF, TOO

So far, all you’ve seen your Computer do is silently print on a green screen. But
your color Computer enjoys showing off. Type:

CLS(3)

Now your screen is a pretty shade of blue with a green stripe at the top. Your
typed command told the Computer to clear the screen and print color number 3
— blue.

But why the green stripe? The Computer cannot type on a blue background.
Anytime it types something on the screen, it must type it on a green
background. Try typing some more characters. Notice that the Computer gives
these characters a green background also.

Colors other than green‘are for printing graphics illustrations. We'll spend lots
more time with this color capability later.

Press (ENTER) so that you get the OK prompt on your screen. Type:

CLS(7)

Now you should have magenta (pinkish purple) on your screen with a green
stripe at the top. Try some more colors if you like. Use any number from O to 8.
Your color Computer has nine colors. Each color has a numeric code.

BUG: If you get a message saying MICROSOFT or an ?FC
Error message, it’s because you are using a number other than 0
through 8.

Type CLS without a number code:
£LS

If you don’t use a number code, the Computer assumes you just want a clear
green screen.

COMPUTER SOUND OFF — ONE, TWO...

Type this:
SOUND 1, 100

If you don’t hear anything, turn up the volume and try again.
What you are hearing is 6 seconds of the lowest tone the Computer can hum.
How about the highest tone? Type:

SOUND 255, 100

OK, so it’s got quite a hum-range. . . hope you're suitably impressed. Try some
other numbers. Hope you like the Computer’s voice (it’s the only one it’s got).

You want to know what the other number is for? (Or maybe you've already
found out). The second number tells the Computer how long to hum the tone.
You can use any number from 1 to 255. Try 1:

SOUND 128, 1

and the Computer will hum the tone for about 6/100ths of a second. Try 10:
)

SOUND 128, 10

The Computer sounds the tone for 6/10ths of a second. Try variations of both
numbers, but stick to numbers between 1 and 255.

“Sound Off!”

13

14

Curious about the reversed colors?
They're for people with a printer. The
printer will print everything typed in
reversed colors as lower case letters.

BUG: Again, if youget an ?FC Error message, it’s because you
are using a number other than I through 255.

ONE MORE THING ...

Press the and (0) (zero) keys, holding both down at the same time. Now
type some letters. The letters you type should now be green on a black
background. If they’re not, try it again pressing slightly before
pressing (0. Be sure to hold both keys down at the same time.

Now, with the colors “reversed”, press (ENTER) and then type this simple com-
mand line:

PRINT “HI" (ENTER

The Computer gives you an 2SN ERROR. It doesn’t understand the command.

Press the SAIFT) and (0) characters again and type some letters. They should
be back to normal: black with the green background. Press (ENTER) and type
the same command line again. This time, it'll work.

We just wanted to show you this in case you ever press and (0) by a
mistake. The computer can’t understand any commands you type with re-
versed colors. If you ever find youre typing with these reversed colors, press
the and (0) keys to get the colors back to normal.

BASIC WORDS

PRINT
SOUND
CLS

mw %h "le ()«.

LEARNED IN CHAPTER 1

KEYBOARD CHARACTERS CONCEPTS
) string vs. numbers “
ENTER error messages i

We'll put a list like this at the end of each chapter. It'll help you make sure you
didn’t miss anything.

NOTES:

15

CHAPTER 2 S|

= M A$ 1) K$
00 APPLES" ‘
[3 ne t
. W3
s$:
P PHS XW4
g oc |[P
=rops |[nes || B3
\ z3 || G I

YOUR COMPUTER NEVER FORGETS

(...unless you turn it off .. .)

a0 e

e
apood

YOUR COMPUTER NEVER FORGETS
(...unless you turn it off . ..)

One of the things that makes your Computer so powerful is its ability to

remember anything you ask it to. To make the Computer remember the
number 13, type this:

A =13

Did it get confused?
Now type anything you want to confuse the Computer. When you’re done, or forgete
press (ENTER). To see if the Computer remembers what A stands for, type:

PRINT A

Your Computer will remember 13 as long as you have it on . . . or until you do

If you already know BASIC, yo
what we're going to do next. Type: fdon aleg g s

might be accustomed to using the
word LET before these command

A =172 lines. Your Color Computer thinks
that word is unnecessary and is con-
Now if you ask it to PRINT A, it will print the number 17.2. [asedihen ol

This is what just happened in your Computer’s memory:

YOUR COMPUTER’S MEMQRY
R 1%
17.2

17

18

To the Computer, a dollar sign means
it’s a string.

You don’t have to use the letter A. You may use any letters from A to Z. (As a
matter of fact, you can use any two letters). Try typing this:

B = 15 (ENTER
C = 20 (ENTER)
BC = 25 (ENTER)

Have it print all your numbers. Type:
PRINT A, B, C, BC

To get it to remember a string of letters or numbers, put a dollar sign next to the
letter. Type:

Il

A% = “TRY TO”

B$ = “"REMEMBER”

C$ = “THIS YOU”

BC$ = “GREAT COMPUTER"

Let’s see how sharp your Computer is. Type:

PRINT AS, B, C$, BCH

Computer types call all these letters variables. So far, we've used these

variables:

YOUR COMPUTER’S MEMORY

CHARACTERS

NUMBERS

A — 17.2 A} =————y “TRY TO"

B ————me——p 15 B$ ~=——» “REMEMBER"

(—— 20 C$ ————> “THIS YOU”

BC ==——w——3 25 BC$ ————p» “GREAT COMPUTER"

Try spot checking these variables to see if the Computer has remembered your
information properly. For instance, type:

PRINT BC

To see if BC still contains 25. Try to set the computer to remember a
letter we haven’t used yet. What hap-
You can think of these variables as little boxes where you can store your pens ... interesting . . .

information. One set of boxes is for strings; the other set’s for numbers. You use
these variables to label each box.

THE COMPUTER IS FUSSY ABOUT ITS RULES Like we said before, the Computer has
it’s rules and might get a little fussy

ith) . 7 :

Do you think the Computer will accept these lines: ith yoiy you dorc pleyibrtien:

D = ““
Z = “THIS IS STRING DATA" (ENTER

With both of these lines, the Computer responds with ?TM ERROR. It’s telling TM stands for Type MisMatch error
you you've got to play according to its rules. It means you didn’t go by the rules.

These are the rules you ignored:
N AQ N QR NN NSSNNNNSNNY

RULES ON STRING DATA
(1) Any data in quotes is STRING DATA

(2) STRING DATA may only be assigned to variables

WITH A $ SIGN

To obey the Computer’s rules, we have to put a dollar sign after D and Z. Type:

19

D$ = “6”
Z$ = “THIS IS STRING DATA”

I

which the Computer accepts.
Do you think the Computer will accept this?

D$ = 6 (ENTER

These are the rules that this command ignored:

N RER TR R VNN

A
4

RULES ON NUMERIC DATA

(1) Numbers not in quotes are NUMERIC DATA

(2) Numeric data can only be assigned to
variables WITHOUT A $ SIGN

Type this, which the Computer will accept:

D = 6 (ENTER)
Z = 12 (ENTER

You have now added this to your Computer’s memory.

YOUR COMPUTER'S MEMORY

NUMBERS STRINGS

D -—_—9 6 D$ _____’ wg!!
l —p 12 71$ ———p “THIS IS STRING DATA"

20

Now you can do something interesting with these letters. Type:
PRINT D * 2

The Computer prints the product of D times 2.
Try this line:

PRINT Z/D

The Computer prints the quotient of Z divided by D.
Would this work:

PRINT D$ * 2

Did you try it? This makes the Computer print the same ?TM ERROR. It
cannot multiply string data.

Cross out the commands that the Computer will reject:

EXERCISE WITH VARIABLES

F = 229999999
M =192

DZ$ = “REMEMBER THIS FOR ME"
M$ =15

Z =F+F

Finished? This is what the Computer will accept.

F = 22.9999999
DZ$ = “REMEMBER THIS FOR ME”
Z=F+F

The computer remembers thatD = 6.

21

22

The first character must be a letter from A-Z; however,
the second may be either a numeral or letter. If you
want to assign it string data, put a dollar sign after it.
Otherwise, it can enly hold numeric data.

You may use any two characters from A-Z for a variable. ’

LEARNED IN CHAPTER 2

CONCEPTS

Variables
String vs. Numeric Variables

Now that you’ve learned how the Computer thinks it will be easy to write some
programs. But before going to the next chapter, how about a break?

NOTES:

23

CHAPTER 3

SEE HOW

SEE HOW EASY IT IS?

NEW

This is just to erase anything that might be in the Computer’s “memory”.

Now type this line: Be sure you type the number 10 first — that’s pretty
important.

10 PRINT “HI, I'M YOUR COLOR COMPUTER” (ENTER
Did you press (ENTER)? Nothing happened, did it? Nothing that you can see, that
is. What you just did is type your first program. Type:

RUN

The Computer obediently runs your program. Type RUN again and again to
your heart’s content. The magic machine will run your program anytime you
wish, as many times as you wish.

Since that worked so well, let’s add another line to the program. Type:

20 PRINT “WHAT IS YOUR NAME?"

25

26

If you make a mistake after press-
ing (ENTER), simply type the line
over again.

Now type:

LIST

Your Computer obediently LISTs your entire program. Your screen should
look exactly like this:

10 PRINT “HI, I'M YOUR COLOR COM
PUTER"”
20 PRINT “WHAT IS YOUR NAME?"

What do you think will happen when you RUN this? Try it. Type:

RUN

The Computer prints:

HI, 'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

Answer the Computer’s question and then press (ENTER) What?
There’s that SN Error. The Computer didn’t understand what you meant when

you typed your name. In fact, the Computer can’t understand anything unless
you talk to it in its own way.

So let’s use a word the Computer understands — INPUT. Type this line:

30 INPUT A$

This tells the Computer to stop and wait for you to type something, which it
will label as A$. Add one more line to the program:

40 PRINT “HI, “ A%
Now list the program again to see if yours looks like mine. Type:

LIST

Your program should look like this:

10 PRINT “HI, I'M YOUR COLOR COM
PUTER”

20 PRINT “WHAT IS YOUR NAME"
30 INPUT A$

40 PRINT “HI, " A3

Can you guess what will happen when you RUN it? Try it:
RUN

That worked well, didn’t it? This is probably what happened when you ran the
program (depending on what you typed as your name):

HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

? JANE

HI, JANE

RUN the program again using different names:

HI, I'M YOUR COLOR COMPUTER HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME? WHAT IS YOUR NAME?

? HUGO 7 772-36-8228

HI, HUGO HI, 772-36-8228

HI, I'M YOUR COLOR COMPUTER HI, I'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME? WHAT IS YOUR NAME?

? NONE OF YOUR BUSINESS ? 1 GET Lni!

HI, NONE OF YOUR BUSINESS HI, I GET IT!!

The Computer doesn’t care what you want to call yourself. Here’s what line 30
did to your Computer’s memory each time you ran the program. (Assuming you
gave it the same names we did):

27

28

OOOOOOOOOOO

Q0000000000

To delete a program line, simply type
and the line number. For
example:

50

erases line 50 from the program.

YOUR COMPUTER’S MEMORY

JANE
HUGO

772-36-8228

NONE OF YOUR BUSINESS
I GET ITH

There’s an easier way to run your program over and over without having to
type the RUN command. Type this line:

50 GOTO 10

Now RUNit....... the program runs over and over again without stopping.
GOTO told the Computer to go back up to line 10:

>10 PRINT “HI, I'M YOUR COLOR COMPUTER™
20 PRINT “WHAT IS YOUR NAME"
30 INPUT A$
40 PRINT “HI, " A$
50 GOTO 10

Your program will now run perpetually, because every time it hits line 50, the
Computer goes up to line 10 again. We call this a “loop”. The only way you can
stop this endless loop is by pressing the (BREAK) key.

SPOTLIGHT YOUR NAME

Change line 50 so we can give your name the kind of attention it deserves. How
do we change a program line? Simply by typing it over again, using the same
line number. Type:

50 GOTO 40

This is what the program looks like now:

10 PRINT “HI, I'M YOUR COLOR COMPUTER"
20 PRINT “WHAT IS YOUR NAME"

30 INPUT A%

40 PRINT “HI, " A%

50 GOTO 40

Type RUN and watch what this loop does. Press the BREAK) key when you've

seen enough. We're leaving out the “HI, ” part

There’s a big change we can make simply by adding a comma or a semicolon. this time.
Try the comma first. Type line 40 again, but with a comma at the end:

40 PRINT AS,

RUN the program The comma seems to print everything in two
columns.

Press (BREAK) and try the semicolon. Type:

Remember, if you make a mistake on

40 PRINT AS$: gg:rog ;:; lines, simply type the line

+and RUN You probably won’t be able to tell what it’s doing until you press
BREAK). See how the semicolon crams everything together?

\ RULES ON PRINT PUNCTUATION ’
\ This is how punctuation at the end of a PRINT line makes the Computer PRINT: ’
(1) a COMMA makes the Computer PRINT in columns.
\ (2) a SEMICOLON makes the Computer cram the PRINTing together.
(3) NO PUNCTUATION makes the Computer PRINT in rows. /

ANNNNNNNNSNNSNSSSSN,

-~ COLOR/SOUND DEMONSTRATION
. NEW (ENIER). .. wish mine worked

that easily! Let’s play around some more with your Computer’s sound and color abilities.
7 j First clean out its memory. Remember how?

In this program we are using T as a Now enter this program:

variable. However, we could use any

letter. 10 PRINT “TO MAKE ME CHANGE MY TONE"

: 20 PRINT “TYPE IN A NUMBER FROM 1 TO 255"
Notice that Line 30 asks for T rather 30

Lol INPUT T
than T$. This is because we want 40 SOUND T, 50
numeric data rather than string data. 50 GOTO 10

RUN through this program to get a sampling of some of the Computer’s tones.

BUG: If you get a ?FC Error when you run this program, it’s
because you used a number other than 1 through 255. This error,
like all errors, will make the Computer stop RUNning the program.

What would happen if we changed line 40 to:

40 SOUND 50, T

HINT: Look back in Chapter 1 where we talk about SOUND.

.................................
..

Did you figure it out? By making this change, the Computer hums the same
tone every time, but hums it for a different length of time, depending on the
number you type in.

Press (BREAK) first and then erase this program by typing NEW. Now see if you
can write a program, similar to the one above, to make the Computer show a
color you ask for. Remember, there are 9 colors, 0 through 8.

DO-IT-YOURSELF PROGRAM

HINT: Line 40 could be:
40 CLS(T)

This is our program:

10 PRINT “TO MAKE ME CHANGE MY COLOR”
20 PRINT “TYPE A NUMBER BETWEEN 0 AND 8
30 INPUT T

40 CLS(T)

50 GOTO 10

ADD POLISH TO THE PROGRAM

Professional programmers would think that pressing the BJEAK) key was a
rather sloppy way of getting the program to stop running. Why not get the
Computer to politely ask us if we are ready to end it? Change Line 50 in the
above program to:

50 PRINT “DO YOU WANT TO SEE ANOTHER COLOR”

Press before typing the line.

31

32

\ Don’t worry about this IF/[THEN
right now. We'll be devoting a whole

chapter to it later.

and add these lines:

60 INPUT R$
70 1IF R$ = “YES” THEN 20

and RUN the program . .. Type YES and the program will keep on running.
Type anything else and the program will stop.

This is what the program looks like:

10 PRINT “TO MAKE ME CHANGE COLORS”

i 20 PRINT “TYPE A NUMBER BETWEEN O AND 8"
N 30 INPUT T

"\ 40 CLS(T)

50 PRINT “'DO YOU WANT TO SEE ANOTHER COLOR”

& 60 INPUT R$

70 IF R$ = “YES' THEN 20

Let’s look at what these new lines did:
Line 50 simply printed a question.
Line 60 told the Computer to stop and wait for our answer -- R$.

Line 70 told the Computer to go back to line 20 IF' (and only IF) your answer
(R$) was YES. If not, the program simply ended since there are no more lines in
the program.

You’ve covered a lot of ground in this chapter. Hope we're just whetting your
appetite for more to come.

Don’t worry if you don’t understand everything perfectly yet. Just enjoy using
your Computer.

LEARNED IN CHAPTER 3

R o i e T ¥ ST o VR S
cey ‘,r ;‘y SR o r 2T ;:" S e e Ak A SN

::::

BASIC WORDS CONCEPTS KEYBOARD

Characters How to Change and Delete a

NEW Program Line

INPUT
GOTO
RUN
PRINT,
PRINT;
LIST
IF/THEN

NOTES:

CHAPTER 4

)
%
o @
Gpdae

COUNT THE BEAT

In this Chapter we are going to do some experimenting with Computer sound
effects. To do this, we have to first teach the Computer how to count.

Type this:
10 FOR X =1 TO 10
20 PRINT "X = “ X
30 NEXT X

40 PRINT “I HAVE FINISHED COUNTING”

RUN the program.

RUN the program several times, each time replacing line 10 with one of these
lines:

10 FOR X = 1 TO 100
10 FOR X = 5 T0 15
10 FOR X = -2 70 2
10 FOR X = 20 TO 24

Do you see what FOR and NEXT are making the Computer do? They are
making it count. Let’s study the last program we suggested you try:

The logic of this will become clear
later.

Remember to type

NEW

before typing a new program.

35

36

10 FORX = 20T0 24
20 PRINT "X = " X
30 NEXT X

40 PRINT "I HAVE FINISHED COUNTING"

Line 10 tells the Computer that the first number should be 20 and the last
number should be 24. It uses X to label these numbers.

Line 30 tells the Computer to keep going back up to line 10 for the next
Number—the NEXT X—until it reaches the last number (24).

Look at line 20. Since line 20 is between the FOR and NEXT lines, the
Computer must PRINT the value of X every time it counts:

20
21
22
23
24

XX X X X
n

o

Add another line between FOR and NEXT:

15 PRINT ™“... COUNTING ...”

and RUN it. With every count, your Computer executes any lines you choose to
insert between FOR and NEXT.

Write a program which will make the Computer print your name 10 times.

DO-IT-YOURSELF PROGRAM 4/A

HINT: The program must count to 10.

Write a program which will print the multiplication tables for 9 (9*1 through
9%10).

DO-IT-YOURSELF PROGRAM 4/B

HINT: PRINT 9%X is a perfectly legitimate program line.

Write a program which will print the multiplication tables for 91 through
gx25.

DO-IT-YOURSELF PROGRAM 4/C

HINT: Byadding acommainthe PRINT line, youcan getall the problems and results
on your screen at once.

37

Finished? These are our programs:

Program 4/A Program 4/B Program 4/C
10 FOR X = 1 T0O 10 10 FOR X =1 T0 10 10 FOR X =1 TO 25
20 PRINT “THOMAS'Y 20 PRINT “9*”X“="9*X 20 PRINT “9*’/X“="9*X,
30 NEXT X 30 NEXT X 30 NEXT X

COUNTING BY TWOS

()
Now we'll make it count a little differently. Erase your program by typing
)' NEW and then type our original program, using a new line 10:
10 FOR X = 2 TO 10 STEP 2
20 PRINT “X= " X
— 30 NEXT X
40 PRINT “I HAVE FINISHED COUNTING”
RUN the program . . . Do you see what the STEP 2 did? It makes the Computer
\\ count by 2’s. Line 10 tells the Computer that:
@ the first X is 2
® the last X is 10
...AND STEP 2. ..
® qgll the Xs between 2 and 10 are 2 apart. . . that is 2, 4, 6, 8, and 10.
*2 4,6,8,..." (STEP 2 tells the Computer to add 2 to get each NEXT X.)

To make the Computer count by 3’s, make all the Xs 3 apart. Try this for line
10:

10 FOR X = 3TO 10 STEP 3

RUN the program. It should print this on your screen:

X=3
X=6
X=9

It passed up the last X (10) because 9 + 3 = 12. Try a few more FOR . . . STEP
lines so you can see more clearly how this works:

10 FOR X = 5 TO 50 STEP 5
10 FOR X = 10 TO 1 STEP-1
10 FOR X =1 TO 20 STEP 4

COUNTING THE SOUNDS

Now that you’ve taught the Computer to count, you can add some sound. Erase
your old program and type this:

10 FOR X =1 TO 255
20 PRINT “TONE ” X
30 SOUND X, 1

40 NEXT X

This program is making the Computer count from 1 to 255 (by ones). Each time
it counts it does what lines 20 and 30 tell it to do:

® It PRINTSs X, the current count (Line 20)
e [t SOUNDs X’s particular tone (Line 30)

For example:

® the first time the Computer got to FOR, in line 10, it made X equal to 1.
® then it went to line 20 and printed 1, the value of X.

¢ then, line 30 had it SOUND tone #1.

® then it went back up to line 10 and made X equal to 2

® efc.

What do you think the Computer will do if you make this change to line 10:

10 FOR X = 255 TO 1 STEP -1

Did you try it? Using STEP, change line 10 so the Computer will sound tones
from:

You might be wondering about the
programs we ran at the first of this
Chapter where we didn’t use STEP. If
we leave out STEP, the Computer as-
sumes we mean STEP 1.

Don’t type the arrow of course. That’s
there to help you understand.

39

10

(1) the bottom of its range to the top, humming every tenth note.
(2) the top of its range to the bottom, humming every tenth note.
(3) the middle of its range to the top, humming every fifth note.

PROGRAMMING EXERCISE

10

10

Try this: To pause the program while

it is running press the and @

keys at the same time. Then press any
| key" to continue.

40

Ready for the answers?

10 FOR X = 1 TO 255 STEP 10
10 FOR X = 255 TO 1 STEP -10
10 FOR X = 128 TO 255 STEP 5

Now see if you can write a program which makes the Computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bottom

DO-IT-YOURSELF PROGRAM

The answer is in the back of this book.

BUT CAN IT SING?

Yes. Although your Computer is slightly off pitch, it can warble out most

songs. The next chapter will show you how to teach it some of your favorite
songs.

LEARNED IN CHAPTER 4

BASIC WORDS

FOR ... TO ... STEP

NOTES:

41

CHAPTER 5

[-1-1-T°9
[
6090,

e

2000

SING OUT THE TIME

You're now ready to show your Computer how to do two things: tell time and
sing (. .. well, as good as the Computer can sing. . .). Since they are actually
closely related — especially to your Computer! — we’re covering them both in
the same Chapter.

Begin by typing this:

10 FORZ =1 TO 460 * 2
20 NEXT Z
30 PRINT “I COUNTED TO 920"

RUN the program. Be patient and wait a couple of seconds. Two seconds, to be
precise. It takes your computer 2 seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making the Computer
count to 920, it keeps the Computer busy for 2 seconds.

As you can see, this gives us the makings of a stopwatch. Erase the program,
and type this:

10 PRINT “HOW MANY SECONDS"
20 INPUT S

30 FOR Z = 1 TO 460*S

40 NEXT Z

50 PRINT S “ SECONDS ARE UP!1!”

43

44

. This is how computerized timers
| work.

RUN it, inputting the number of seconds you want timed on your stopwatch.

It would be nice if the stopwatch could sound some kind of alarm. Add some
lines to the end of the program to make it sound an alarm.

DO IT YOURSELF PROGRAM

Here’s the program we wrote:
10 PRINT “HOW MANY SECONDS”
20 INPUT S

30 FOR Z
40 NEXT Z

1 T0 460 * S

r) 50 PRINT S “ SECONDS ARE UP!!!”
60 FOR T = 120 TO 180

70 SOUND T, 1

80 NEXTT

90 FOR T = 150 TO 140 STEP -1
100 SOUND T, 1

110 NEXT T

L_lzo GOTO 50

Notice the GOTO line we added at the end of the program. This is so the
message would print and the alarm would keep ringing over and over again
until the nervous programmer must press the (BREAK) or SHIFT) @ keys to turn
it off.

COUNTING WITHIN THE TIME

Before we go any further on the clock, we're going to have the Computer keep
count within the time. This concept will become very clear to you shortly.

Type this new program:

10 FORX =1T03
20 PRINT “X = " X

30 FORY =1T02
40 PRINT, Y'Y ="Y
50 NEXTY
60 NEXT X

RUN it . .. This should be on your screen:

X=1
Y =1
Yoi= 2
X =2
Y =1
Y = 2
X =23
Y =1
Y =2

Call it a count within a count or a loop within a loop — whatever you prefer.
Programmers call this a “nested loop”. This is what the program does:

I. It counts X from 1 to 3. Every time it counts
X, it does these things:

A. It PRINT's the value of X

Notice the comma in line 40. Try it

without the comma. The comma
makes Y = 7 Y PRINT on the next

column.

45

' Notice that we changed the TIMER |

- PAUSE in line 40 to 390. (in our pre-
vious program it was 460.) Because of

all the extra things the program is

- doing, we had to adjust the timer to a
- lower number.

B. It counts Y from 1 to 2. Every time it counts
Y, it does this:

(1) It PRINTSs the value of Y

Whenever you put a loop inside another loop, you must close the inner loop
before closing the outer loop:

10
20
30
40

Right
FOR X = 170 3 10
FORY =1T02 20
NEXT Y 30
NEXT X 40

RELATING THIS TO A CLOCK

Wrong
FORX =1T03
FORY = 1T0 2
NEXT X
NEXT Y

With these tools, we can make the Computer do a lot more. Type this:

10
[20

30

40

b

L—-——'(JO

70

FORS = 0 T0 59
PRINT S
SOUND 150, 2

FORT = 1TO 390

NEXT T

NEXT S
PRINT *“1 MINUTE IS UP”

RUN the program . .. This is what it does:

I. It counts the seconds from 0O to 59. every time.

it counts one second —

A. It PRINT's the second
B. It SOUNDs a tone

C. It pauses long enough for one second to pass.

II. When it finishes counting all the seconds from 0 to 59,
it PRINTs a message that one minute is up.

There is a way we can make this program look a little better. Add this line
which Clears the Screen:

15 CLS

Now RUN the program. This time the Computer goes through these steps:

I. It counts the seconds from 0 to 59 (lines 10 and 60).
Every time it counts the seconds.

A. It CLears the screen (line 15).
B. It PRINTSs the second (line 20).
C. It SOUNDs a tone (line 30).

D. It pauses long enough for one second to pass (lines 40 and 50).

II. When it finishes counting all the seconds, from 0 to 59, it prints a
message that one minute has passed (line 70).

47

48

With this groundwork, it is easy to make a full fledged clock:

»10 FORH = 0T023

» 20 FORM = 0 TO 59

30 FORS = 0TO0 59
40 CLS
50 PRINT H":"M":"S
60 SOUND 150, 2
70 FOR T = 1 TO 375
_S 80 NEXT T
~— 9 NEXT S

100 NEXT M

110 NEXT H

Here’s an outline of what the Computer does in this program:

I. It counts the hours from 0 to 23. (Line 10)
Every time it counts a new hour:

A. It counts the minutes from 0 to 59. (Line 20)
Every time it counts a new minute:

1. It counts the seconds from 0 to 59. (Lines 30 and 90)
Every time it counts a new second:

It CLears the Screen. (Line 40)

a.

b. It PRINTSs the hour, minute, and second. (Line 50)

c. It SOUND:s a tone. (Line 60) . PAE

d. It pauses long enough for one second to pass. (Lines 70 and 80) By adding this line:
120 GOTO 10

the clock will run perpetually.

2. When it finishes counting all the 59 seconds,
it goes back up to line 20 for the next minute. (Line 100)

B. When it finishes counting all the 59 minutes,
it goes back up to line 10 for the next hour. (Line 110)

Having a tough time with this bfo-
gram? Skip it for now. IYll seem easy

II. When it finishes counting all hours (0-23), the program ends.
later.

Between lines 90 and 100 you can add some tones which will sound every
minute. Write a program which does this.

DO-IT-YOURSELF PROGRAM

50

But who said this Computer could
make the Opera?

- If you're a real music lover, you will
. probably want to purchase RADIO
i SHACK’s “MUSIC” — Catalog num-
. ber 26-3151. Then you will be able to
| compose songs on your Computer
. with perfect pitch.

Write a program which makes your Computer show each of its nine colors for 1
second each:

DO-IT-YOURSELF PROGRAM

The answers to both of these programs are in the back. N

FOR A COMPUTER, IT SINGS GREAT!

Now back to teaching your Computer how to sing. Flip back to the Appendix.
We have a table, “Musical Tones”, which shows the Computer’s tone number
for each note on the musical keyboard. For example, the Computer’s tone
number 89 corresponds to “middle C”.

Unfortunately, your Computer can’t exactly match most of the musical tones.
That’s why the Computer sings a little off key. . . But to those without perfect
pitch, it can still sound very close to music.

Type this:

20 SOUND 125, 8
30 SOUND 108, 8
40 SOUND 89, 8

RUN the program. It is the first three notes of . . .well you know that, great
piece! .

To get these first three notes to play over again, we can put a FOR/NEXT loop
in the program:

10 FOR X =1 T0 2
20 SOUND 125, 8
30 SOUND 108, 8
40 SOUND 89, 8

50 NEXT X

Now RUN the program again. It’s missing a pause, isn’t it? It’s easy enough to
put a fimer pause in the program. Add these lines:

44 FOR Y =1 TO 230
46 NEXT Y

and RUN it again. Now it’s beginning to sound like the real thing!

51

ki

e@?ﬁa

Three

ﬂ_

‘

blind mice

Ai_a
ol

E
s

& —

See

- Are your programs getting too long to

how they

list? Try this
LIST 1048

. Onlythe first half of this program will

: be listed.

52

run

Here is a program that gets through the first two phrases:

et

THREE BLIND MICE

FOR X =170 2

SOUND 125, 8 “Three"
30 SOUND 108, 8 “blind"’
§\ 40 SOUND 89, 8 “mice”’
é 3\ 44 FOR Y =1 TO 230 (pause)
46 NEXT Y
k———— 50 NEXT X
/——,»60 FOR X = 1T0 2
70 SOUND 147, 8 “See’’
80 SOUND 133, 4 “how"
90 SOUND 133, 4 Ythey'’
‘\é 100 SOUND 125, 8 “run’’
% \ 110 FOR Y = 1 TO 230 (pause)
120 NEXT Y
K—-——130 NEXT X

Finish the song, if you like. Or write a better one. Your Computer songs can
certainly jazz up any program.

LEARNED IN CHAPTER 5

BASIC WORD PROGRAMMING CONCEPT

G Nested Loops

NOTES:

53

CHAPTER 6

A DoES NoT
EQUAL §

1}

~

DECISIONS, DECISIONS...

DECISIONS, DECISIONS. . .

Here’s an easy decision for the Computer:
(1) IF you type RED ... THEN make the screen red
. or
(2) IF you type BLUE ... THEN make the screen blue
Easy enough? Let’s make the Computer do it. Type this program:

10 PRINT “DO YOU WANT THE SCREEN RED OR BLUE?"

20 INPUT C$
— AR " @

30 IF C$ = “RED” THEN 100 Py
W

40 IF C$ = “BLUE” THEN 200% %\

100 CLS(4) <€

110 END j .
\

200 CLS(3) <€~ ‘

RUN the program several times, typing both RED and BLUE.

Let’s see what the program is doing:

Don’t be confused by the arrows or the

spaces between program lines. We |

Just put them in to illustrate the flow
of the program.

55

IF you type RED ... THEN . ..

Line 30 sends your program down to line 100. Line 100 makes your screen red.
At this point, we have to stop the Computer from going on to line 200.

Line 110 does just that. It ends your program right there... Once the
Computer gets to line 110, it will never make it to 200.

... On the other hand . ..
IF you type BLUE ... THEN . ..

Line 40 sends your Computer down to line 200, which makes your screen blue.
| We do not have to put END on the next line. Since line 200 is the last line in the
program, the Computer will end there anyway.

What happens if you type something other than RED or BLUE? Try running
the program, typing GREEN in response to the Computer’s question.

It makes the screen RED, right? Do you know why?

HINT: IF the condition is not true, the THEN part of the line is
ignored and the Computer proceeds to the next program line.

There are two lines you could add to make the Computer ask you to type your
answer again if you don’t type RED or BLUE. We will give you the two lines,

and let you figure out where to put them in the program:
them in the program:

PROGRAMMING EXERCISE
. PRINT “YOU MUST TYPE EITHER RED OR BLUE”
. GOTO 20

insert the line numbers

HINT: The lines must come AFTER the Computer has had a
chance to test your answer for RED or BLUE.

HINT: The lines must come BEFORE the Computer makes
your screen RED.

Did you figure out where the two lines should go in the program? They must
come after line 40 and before line 100:

50 PRINT “YOU MUST TYPE EITHER RED OR BLUE”
60 GOTO 20

See if you can make one more change to the program:

Instead of having the Computer end the program after it makes the screen red
or blue, have it go back and ask you to type RED or BLUE again.

DO IT YOURSELF PROGRAM

HINT: You will need to change line 110 and add line 210.

Have you got a program written? Look on the next page for a diagram of ours.

57

i

A omaz

s

10
720

30
40
50

3
_E 110

\. 60

\ 200
210

To trace the path the Computer takes down this program, simply go down, from
one line to the next, following the arrows when told to. Notice the difference
between the arrows going from the IF/THEN and the GOTO lines:

x
¢
/
/

ARTALALLVURRRRUUNNND

RULES ON IF/ITHEN AND GOTO

IF/THEN is conditional.
You only follow these arrows if the condition

(C$ = “RED” or C$ = “BLUE”) is true.

GOTO is unconditional.
You follow these arrows whenever
you arrive at a GOTO line.

PRINT “DO YOU WANT THE SCREEN RED OR BLUE?”

INPUT C$ >
IF C$ = “RED” THEN 100 i
IF C$ = “BLUE” THEN 200 Q g
PRINT “WYOU MUST TYPE EITHER RED OR BLUE” 3

GOTO 20 §
CLS(4) <

GOTO 10)

CLS(3) <—

GOTO 10

P TITYD s

Although this chapter was short, you've learned one of the most important
programming concepts. We will be getting the Computer to make decisions all
through the rest of this book.

58

LEARNED IN CHAPTER 6

BASIC WORDS

IF/THEN
END

NOTES:

59

CHAPTER 7

GAMES OF CHANCE

Thanks to a BASIC word called RND, your Computer can play almost any kind
of game involving chance or luck. Even if you don’t plan to play games with
your Computer, you’ll want to know how to use RND and PRINT @ — the
words we're introducing in this Chapter. We’ll also show you some more uses
for IF/THEN.

Type this:
10 PRINT RND(10}

RUN it. The Computer just picked a random number from 1 to 10. RUN it some
more times. . .

It’s as if the Computer is drawing a number from 1 to 10 out of a hat. The
number the Computer picks is unpredictable. Type and RUN this program.
Press when you satisfy yourself that the Computer is printing random
numbers:

10 PRINT RND(10);

20 GOTO 10

To have the Computer pick random numbers from 1 to 100, change line 10 to
this:

10 PRINT RND(100);

To make the Computer pause while
running the program, press the
(SHIFT) and @ keys at the same time.
Press any key and the Computer will
continue.

61

62

and RUN. How would you change this program to have the Computer pick a
random number from 1 to 2557

S A - - L IR R R R R ST R R R R R

The answer is:

10 PRINT RND(255);

A COMPLETELY RANDOM SHOW

Just for the fun of it, let’s have the Computer compose a song made up of
random tones. Type this:

10 T = RND(255)
20 SOUND T, 1
30 GOTO 10

RUN it. Great music, eh? Press (BREAK) when you’ve heard enough.

To add a random visual presentation to this program, add a couple of lines to
make the Computer show a random color (1-8) just before it sounds each
random tone.

DO IT YOURSELF PROGRAM

Here’s our program:
P

10 T RND(255)
14 C RND(8)
16 CLS(C)

20 SOUND T, 1
30 GOTO 10

i

We’'ll show you a couple of simple games in this Chapter. Feel free to use your
imagination to add interest to them — or invent your own games.

RUSSIAN ROULETTE

In our “Russian Roulette” game, the gun has 10 chambers. The Computer

picks, at random, which of the 10 chambers will have the fatal bullet. Type:
Remember to always type:

NEW

10 PRINT “CHOOSE YOUR CHAMBER(1-10)" .
before typing a new program.

20 INPUT X
. 30 IF X = RND(10) THEN 100
40 SOUND 200, 1
50 PRINT “--CLICK--"
60 GOTO 10

100 PRINT “BANG — YOQU’RE DEAD"”

First, in line 20, the player INPUTs X — a number from 1 to 10. Then the
Computer compares X with RND(10) — a random number from 1 to 10.

Now look at the arrows we drew:

IF X is equal to RND(10), THEN the Computer goes down 12 100.

IF X is not equal to RND(10), THEN the Computer “clicks” and goes back up to
line 10 where you get another chance. . .

Let’s make the dead routine in line 100 better. Type:

64

Remember how to list a portion of a
program?

LIST 50-130
lists the middle portion of the pro-
gram.

This will also help you in listing a
long program. Press the SHIFD and
keys when the Computer first starts
listing the program. The Computer
will pause the “scrolling” on your
display. Press any key to continue the
listing.

100 FOR T = 133 TO 1 STEP -5
110 PRINT ™
120 SOUND T, 1
130 NEXT T
140 CLS

150 PRINT @ 230, “SORRY, YOU'RE DEAD”
160 SOUND 1, 50

170 PRINT @ 390, “NEXT VICTIM, PLEASE”

RUN the program. Here’s what happens in this program:

Lines 100 through 130 makes the Compute1 produce a sound of descendlng

Line 140 CLears the Screen. Since we did not choose a color number code, the
Computer assumes we want the screen green.

Look at lines 150 and 170. Both of these lines use PRINT @. Here’s the way
PRINT @ works:

Notice the grid we have below, showing each of the 511 positions on your video
screen. When writing the program, we wrote the two messages “SORRY,
YOU’RE DEAD” and “NEXT VICTIM PLEASE” on this grid, positioning
them where we wanted them on the screen.

SORRY, YOU’RE DEAD begins at location 230 (224 + 6). NEXT VICTIM
PLEASE begins at location 390 (384 + 6). Using these numbers in the PRINT
@ line, simply tells the Computer where we want the message printed.

/~ 012345678 910111213141516171819202122232425262726293031 '\
0

32

63

9%

128

160

192

22 SORRY, YOU'RE DEAD

256

288 We put this grid in the Appendix of
zzg this book "PRINT (@ Screen Loca-
= e e R tions”. Uf;g it in planning your pro-

grams, since good screen formatting

a6
as8 can add a great deal of interest to your

\ﬁm y

programs.

Change this program, so that if the player DOES manage to stay alive for 10
clicks, the Computer pronounces the player the winner, printing this message \
on the screen:

/~ 012345678 910111213141516171819202122232425262728293031 '\ //
]

32

64

56

128 i
5 2 I

160
)

192

224 CONGRATULATIONS! !!
256 YOU MANAGED

288 TO STAY ALIVE
320 [

352 . ‘ ‘ \
384
a16
448

" L

S s ok A R e R R R R R R ke R ol R i kR

ok $ORORSOR R R R s RN R R Rk R R SRR SRR R R R sk oK s KR kR R R SR OO R

DO IT YOURSELF PROGRAM

HINT: You can use the FORINEXT loop, so that the Computer can keep count of the

number of clicks.

N

[J
Z L B
\

66

Qur answer to this is in Appendix F.

ROLLING THE DICE

For our next game, we'll first have to teach the Computer to roll the dice. To do
this, the Computer must roll fwo dice; that is, it must come up with two random

numbers. Type:

10
20
30
40
50
60
70
80
90
100

AF = “VYecr

CLS

X = RND(6)

Y RND(6)

R=X4+4+Y

PRINT @ 200, X

PRINT @ 214, Y

PRINT @ 394, “YOU ROLLED A” R

PRINT @ 454, “DO YOU WANT ANOTHER ROLL?”
INPUT A%

IF A$ = “WYES” THEN 10

RUN the program. Let’s look at it:
Line 10 tells the Computer to CLear the Screen.

Line 20 has the Computer pick a random number from 1 to 6 for one of the die.
Line 30 has the Computer pick a random number for the other die.

Line 40 simply adds the two dice to get the total roll.
Lines 50-70 PRINT the results of the roll on the screen.

In line 90, you are able to INPUT whether you want the program to RUN
again. IF you type YES, the Computer goes back to line 10 and runs the
program again. Otherwise, since this is the last line in the program, the
program ends.

CRAPS

Now that you know how to get the Computer to roll the dice, it should be fairly
easy for you to write a Craps program. These are the rules of the game (in its
simplest form):

1. The player rolls the two dice. If he rolls a sum of 2 (“snake eyes”), a 3

\

PN

(“cock-eyes”), or a 12 (“boxcars”) on the first roll, the player loses and the [} m “
game is over. ° n
2. Ifthe playerrolls a7 or 11 on the first throw, (“a natural”), the player wins
and the game is over. “Winner!”
3. Ifany other number isrolled on the firstroll, it becomes the player’s “point”.
He must keep rolling until he either “makes his point” by getting the same
number again to win, or rolls a 7, and loses.
You already know more than enough to write this program. Do it. Make the
Computer print it in an attractive format on your screen and keep the player
informed on what is happening. It may take you awhile to finish, but give it
your best. Good luck!
shesksiesieoieoio e sk skt de sk sheskeslcoioaksloafooloRaofeok sk etttk sfestoioRgl R ek ek sk sk sl sk sttt st ol e skl st ool oo e o B R ool SR SR sR R B s e s s ok sk e e skt sl skt Rk ok sk S ks ok

67

68

DO-IT-YOURSELF PROGRAM

Our answer to this is in the back.

LEARNED IN CHAPTER 7

BASIC WORD

RND
PRINT @

NOTES:

69

f

CHAPTER 8 'l R e

10 Sovntn 108
+ = ROD (255) LyFoR = orbsq

Q6 S008Dd T,1
3p Govo 10

2 PRIRT ! Hl"
A

SAVE IT ON TAPE

You’ll soon be writing longer and more powerful programs. Perhaps you
already are. It certainly cramps your style to have the program disappear
everytime you turn the Computer off!

You can “save” (make a copy of) any of your programs on cassette tape. Once
the program’s on tape, you’ll be able to “load” the program back into your
Computer’s memory anytime you want. We recommend that you use Radio
Shack’s CTR-80A cassette recorder (catalog number 26-1206) along with Radio
Shack’s Computer Tapes (catalog number 26-301).

This chapter is only for those of you that have this type of cassette recorder and
want to use it. If you don’t, you’ll probably want to skip this chapter for now,
remembering that the information’s here whenever you need it.

Once you're used to it, you'll find cassette tape easy to use. Simply follow these
steps:

A. Connect the Tape Recorder

1. Locate the CTR-80A Cassette Recorder, Interconnecting Cable and Radio
Shack Computer Recording Tape cassette.

2. Connect the short cable between the TAPE jack on the back of the TRS-80
and your Cassette Tape Recorder

If you are using a different type of
cassette recorder, the connections
might be different from the explana-
tion in this chapter.

If you are using a tape other than
Radio Shack’s, you need to position it
after the plastic “leader” at the
beginning of the tape.

71

72

You may substitute any name for
NAME.

@ The small grey plug goes into the REM jack on the Recorder.

@ The large grey plug goes into the AUX jack.
e The black plug goes into the EAR jack.

3. Plug the Recorder into the wall outlet

B. Save a Program

1. Type any program into your Computer. RUN it to make sure it works.

2. Load the cassette tape, positioning it to the beginning of the tape. Press the
PLAY and RECORD buttons at the same time until they lock.

. Name the program you want to SAVE. You may use any name with 8 or
fewer letters. For our example, we’ll use “NAME”.

4. SAVE on tape by typing this command:

CSAVE “NAME"

The motor on the Recorder will start and you’ll be recording the Computer’s
program on tape. Watch the screen. When:

0K

returns and the motor stops, your program is recorded on tape. It is also still in
the Computer’s memory. It has only been copied.

LOADING

Reversing the process and loading (copying) the program from tape into the
Computer is just as easy:

1. Be sure the tape is fully rewound and the plugs are all in place.

2. Push the PLAY button down until it locks. Set the Volume Control to your
CTR-80A’s “Recommended Volume Level”. Your CTR-80A Manual gives
this recommended volume.

3. Type NEW to clear out any existing program.
4. Type the CLOAD command with the name of your program. For example:

CLOAD “NAME"

The Tape Recorder’s motor will start. Watch your screen. The letter:

will appear at the top left hand corner. This means the Computer is
Searching for your program. When the Computer has Found your program,
it will print the letter F and the name of your program. For example, if your
program name is NAME:

F NAME
will appear at the top of your screen. When the Computer prints:

0K

and the recorder motor stops, the program is “loaded” in memory. You may
now RUN the program.

SAVING MORE THAN ONE PROGRAM

To SAVE more than one program on the same tape, you must make sure you
are not recording on top of another program. This is an easy way to position the
tape to the end of your last program:

1. Rewind the tape to the beginning.
2. Press the PLAY button until it locks

If you have several programs on tape,
the Computer will print the name of
each program it Finds on the tape pre-
ceeding the one you want loaded.

If you try to load a program that’s not
on the tape, the Computer will not stop
searching for it. Press the RESET
button to stop searching.

73

74

You may replace the name X with any
name you know is NOT on the tape.

3. Type SKIPF and the name of the last program on your tape. For example, if
your last program is named “NAME”, type:

SKIPF “NAME"

The Computer will notify you when if Finds your program called NAME.
When it reaches the end of NAME, the recorder’s motor will stop and:

0K

will appear on your screen.

4. Once you've positioned the tape to the end of the last program, press the
RECORD and PLAY buttons, name your program, and CSAVE it.

If you can’t remember the name of your last program, type:

SKIPF “X”

and watch the screen. The Computer will give you the name of each program it
encounters on the tape. It will print an I/O ERROR when it reaches the end of
the tape, but don’t worry about it. You've found what you were looking for —
the name of the last program on the tape.

Now you can type the SKIPF command with the name of this last program.
(Don’t forget to rewind the tape first).

TIPS ON MAKING GOOD RECORDINGS

Here are some tips for making good recordings:

® When you're not using the Recorder for saving or loading, do not leave the
RECORD or PLAY keys down. Press STOP.

e Don’t attempt to re-record on a pre-recorded Computer tape. Even though
the recording process erases the old recording, just enough information may

be left to confuse the new recording. If you want to use the same tape a
second or third time, use a high-quality bulk tape eraser to be sure you erase

everything.

If you want to save a taped program permanently, break off the Erase
Protect tab on the Cassette (see Tape Recorder’s Manual). When the tab(s)
has been broken off, you can’t press the RECORD key on your Recorder. This

will keep you from accidentally erasing that tape.

Now type as long of programs as you want, knowing you can make a permanent
copy of them on tape. Happy recording!

LEARNED IN CHAPTER 8

BASIC WORDS

CLOAD
CSAVE
SKIPF

75

CHAPTER 9

S R T

oeaoae

-] o

[1-1-0]
>
L]

COLOR THE SCREEN

You've learned enough now to really start using the colors. Since color graphics
ideas usually come very quickly to people — and the good graphics programs
usually end up long — this Chapter just shows you how to get started. While going
through this Chapter, you’ll probably want to stop from time to time and add on to
our programs or build your own. We hope you do. That’s a fast way to learn.

To get started, type:
10 CLS(O)

to make the screen black. Add these two lines and RUN the program: Be sure to type line 30. We'll explain
why later. f

20 SET(0,0,3)
30 GOTO 30

Do you see the blue dot? It’s at the top left-hand corner of your screen. To put
the dot at the bottom right-hand corner, change line 20 and RUN the program:

20 SET(63,31,3)

Want to put it in the middle of the screen? RUN the program using this for line
20:
77

' The computer uses different screen
« locations for SET than PRINT @.
. That's why we have two grids in the

Appendix. Be sure to use the one we
' call “Graphics Screen Locations”.

78

20 SET(31,14,3)

SET tells the Computer to SET a dot on your screen at a certain horizontal and
vertical location.

@ The first number you type is the horizontal location. This may be a number
from 0 to 63.

@ The second number is the vertical location. It may be a number between 0
and 31.

In the Appendix, there’s a grid on your screen, “Graphics Screen Locations™.
The grid divides your screen into the 64 (0 to 63) horizontal locations and 32 (0
to 31) vertical locations. Use this grid in planning your graphics illustrations.

All of this explains what the first two numbers are for, but what about 3, the
third number? Try using some numbers other than 3 for the third number.
Type each of these lines and RUN the program:

20 SET(31,14,4)
20 SET(31,14,1)

Got it figured out? With number 4, you get ared dot, and with number 1 you get
a green dot. The number codes are the same as the CLS number codes — 0 to 8.
These are listed in your Appendix, “BASIC Colors”.

Now, what’s the GOTO line for? Try deleting the GOTO line from your
program and RUN it:

10 CLS(0)
20 SET(31,14,1)

It looks like no dot was SET this time. Actually the dot was SET, but when the
program ended, the Computer printed its OK message on top of the dot.

To avoid this, type the GOTO line at the end of the program. It sets up an
infinite loop (going to itselfover and over again) so that the program will never end.

SETTING TWO DOTS

To SET more than one dot, you need to do a little planning. Erase your program
and RUN this program:

10 CLS(O)

20 SET(32,14,3)
30 SET(33,14,3)
40 GOTO 40

You should now have two blue dots—side by side—in the middle of your
screen.
Now change the color of the right dot so you’ll have one blue and one red dot.
Type:

30 SET(33,144)

and RUN the program. . . Both dots are red.

Look again at the “Graphics Screen Locations” grid in your Appendix.
Notice the darker lines group the dots together into blocks of four. For
instance, the block in the middle of the grid contains these 4 dots:

Horizontal Vertical
Location 32 14
Location 33 14
Location 32 15
Location 33 15

Each dot within the block must either be:

1. the same color (colors 1-8)

or
2. black

In our program, we tried to get the Computer to SET two dots with different
colors — blue and red — within the same block. Since the Computer can’t do
that, it SETs both dots the second color — red.

Type this and RUN the program:

(!

“Set Dot!”

\\

79

30 SET(34,14,4)

Since the dot in location 34, 14 is in a different block, the Computer can SET
the two dots in different colors.

THE COMPUTER’S FACE

With this groundwork, you can draw whatever you want. We’ll draw a simple
Y picture of a Computer. First draw the top and the bottom of the head. We'll

make it buff. Type:

5 CLS(O)

80

“Funny Face!”

10
20
30
40
50

and RUN.

This is what you should have on your screen. (The lines should be buff rather

FORH = 15T0 48

SET 1H,5,5)
SET (H,20,5)
NEXT H
GOTO 50

than white, like we have them):

Notice we've changed line 50 — the
GOTO line.

Lines 10 and 40 set up a FOR/NEXT loop for H — making the horizontal
locations 15 through 48 for the top and the bottom lines.

Line 20 SETSs the top line. The horizontal location is 15 through 48 and the
vertical location is 5.

Line 30 SET's the bottom line. The horizontal location, again, is 15 through 48
and the vertical location is 20.

To SET the left and right sides of the head type these lines:

50 FOR V = 5T020
60 SET(15,V,5)

70 SET(48,V,5)

80 NEXT V

90 GOTO 90

and RUN.

We'll make the nose orange. Type:
90 SET(32,13,8)

and the mouth red. Type:

100 FOR H = 28 TO 36
110 SET(H,16,4)
120 NEXT H

and blue eyes. Type:
130 SET(25,10,3)

140 SET(38,10,3)
150 GOTO 150

RUN the program. This is what your screen should look like now:

81

82

You don’t need to tell the Computer

the color of the dot to RESET (erase)
it.

A BLINKING COMPUTER

By adding a couple of lines, we can make the Computer blink. Type:
150 RESET(38,10)

and RUN the program. What you should have on your screen now is the same
face as above, except the right eye is missing. RESET tells the Computer to

erase the dot in the horizontal location 38 and the vertical location 10. That’s
the right eye.

To make it blink, we’ll simply SET and RESET the right eye over and over
again, by adding line 160:

160 GOTO 140

LIST your program to see if it still looks like mine:

5 CLS(O)

10
20
30
40

50
60
70
80

90

100
110
120

130

140
150
160

FORH = 15T0 48
SET(H,5,5)
SET(H,20,5)

NEXT H

FORV = 5T0 20
SET(15,V,5)
SET(48,V,5)
NEXT V

SET(32,13,8)

FORH = 28 TO 36
SET(H,16,4)
NEXT H

SET(25,10,3)
SET(38,10,3)

RESET(38,10)
GOTO 140

zé—«y

— M
———— U

A lkin.

and RUN it ... Try your hand at some pictures. I'm sure you have better
artistic skills than we do.

THE BOUNCING DOT

By using SET and RESET, we can make a moving picture. Type and RUN

these lines to make the dot go down:

5 CLS(0)

10
20
30
40

FORV = 0TO 31
SET(31,V,3)
RESET(31,V)
NEXT V

Remember to always erase your

program before typing a NEW one.

83

84

Every dot that is SET on line 20 is RESET (erased) on line 30. Add these lines to
make the dot go back up:

50 FORV = 31TOO STEP -1
60 SET(31,V,3)

70 RESET(31,V)

80 NEXTV

and this line to make the dot go up and down, over and over again:

90 GOTO 10

and RUN it. To slow the dot down — it will look a little better — change lines 30
and 70:

30 IFV > O0THEN RESET(31,v-1)
70 IFV < 31 THEN RESET(3L,V+1)

The > sign means the same as it does in math — greater than. The < sign
means less than.

SET and RESET opens up all sorts of possibilities — moving targets, animated
pictures, etc. Use your imagination in experimenting with this combination.

IF YOU HAVE THE JOYSTICKS...

If you have joysticks with your Computer, you have many more options open to
you. If you haven’t connected them yet, do it. Simply plug them in to the back of
your Computer. They only fit in the correct slot, so don’t worry about connect-
ing them to the wrong one.

Now, type this short program which demonstrates how they work:

10 CLS

20 PRINT @ 0, JOYSTK(0);
30 PRINT @ 5, JOYSTK(1);
40 PRINT @ 10, JOYSTK(2);
50 PRINT @ 15, JOYSTK(3);
60 GOTO 20

RUN the program. See the four numbers on your screen. These numbers tell
the Computer the horizontal and vertical coordinates of your two joysticks’
“floating switches”.

Grab the “floating switch” of your right joystick (the one connected to the jack
marked RIGHT JOYSTICK on the back of the Computer). Keeping it in the
center, move it from left to right. The first number on your screen will change,
going through all the numbers from 0 to 63.

Move the “floating switch” of your left joystick from left to right. It will change
the third number on your screen.

Now move the floating switches up and down, keeping them in the center.
Moving the right joystick up and down makes the second number change from
0 to 63. Moving the left joystick up and down makes the fourth number change
from 0 to 63.

This is how the Computer reads the position of your joysticks:

RIGHT JOYSTICK

63
JOYSTK(0) JOYSTK(1) JOYSTK(2)

Be sure to type the semicolons at the
ends of lines 20, 30, 40, and 50.

The second or fourth number might
change also, but NOT from 0 to 63.

LEFT JOYSTICK

63
JOYSTK(3)

85

86

JOYSTK (0) and JOYSTK (1) tell the Computer the read the position of your
right joystick:

® JOYSTKI(0) makes it read the horizontal (left to right) coordinate.

e JOYSTK(1) makes it read the vertical (up and down) coordinate.

JOYSTK (2) and JOYSTK (3) tell the Computer to read the position of your left
joystick:

® JOYSTK(2) makes it read the horizontal coordinate.

e JOYSTKI(3) makes it read the vertical coordinate.

One more thing. Delete line 50 and RUN the program. It works almost the
same, except it doesn’t read JOYSTK(3) — the vertical position of your left
joystick.

Now delete line 20 and change line 60:
60 GOTO 30

RUN the program. Move all the switches around. This time it doesn’t work at
all. The Computer will not read any of the coordinates unless you first have it
read JOYSTK(0). Type these lines:

20 A = JOYSTKI(Q)
60 GOTO 20

and RUN the program. Even though the Computer is not printing the location
of JOYSTK(0), it is still reading it. Everything else works like it’s supposed to.
Remember that anytime you’re having the Computer read to coordinates of

JOYSTK(1), JOYSTK(2), or JOYSTK(3), you must first have it read
JOYSTK(0).

MAKE PAINT BRUSHES OUT OF JOYSTICKS:

Type this:

10 CLS(O)

20 H = JOYSTK(O)

30 V = JOYSTK(1)

40 IFV > 31 THENV =V - 32

80 SET(H,V,3)
90 GOTO 20

RUN it . .. Use the revolving switch of your right joystick to paint a picture.
(Move the switch slowly so that the Computer has time to read its coordinates).

Line 20 reads H — the horizontal position of your right joystick. This could be
a number from 0 to 63.

Line 30 reads V — its vertical position. This also could be a number from 0 to
63. Since the highest vertical position on your screen is 31, we had to add line
40 to the program. Line 40 makes V always equal to a number from 0 to 31.

Line 80 SETs a blue dot at H and V.

Line 90goes back to get the next horizontal and vertical positions of your joysticks.

We haven't even used the left joystick. Perhaps we could use it for color. Add
these lines:

50 C = JOYSTK(2)

60 IFC<31THENC =3

70 IFC > = 31 THEN C = 4
80 SET(H,V,C)

RUN the program. Move your left joystick to the right and the Computer
makes C = 3. It SETs red dots. Move it to the left and the Computer makes C =
4 and SETSs blue dots.

Want to make the buttons on your joysticks do something? Add these lines to
the end of your program:

> = means greater than or equal to

87

88

If you press the buttons when you're
not RUNning the program you will
get @ABCDEFG or HIJKLMNO.

Some of the joysticks will not read 6
“blocks” in each of the four corners
of your screen.

100 P = PEEK(65280)
110 PRINT P
120 GOTO 100

Now type:
RUN 100

This tells the Computer to only RUN lines 100 through the end of the program.
Your computer should be printing either 255 or 127 over and over again.

PEEK tells the Computer to look at a certain spot in its memory to see what
number’s there. We had it look at the number in location 65280. As long as
you’re not pressing either of the buttons, this spot contains the number 255 or
127.

Press the right button. When you press it, this memory location contains either
the number 126 or 254.

Press the left button. This makes this memory location contain either the
number 125 or 253.

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We’ll make it go back to line 10 and CLS(0)—
clear the screen to black — when you press the right button. Change lines 110
and 120:
110 IFP
120 IF P

126 THEN 10
254 THEN 10

o

Delete line 90 and add this line:
130 GOTO 20

RUN the program. Start your paintings. Press the right button when you want
to clear the screen and start over again.

LEARNED IN CHAPTER 9

BASIC WORDS

SET
RESET
JOYSTK
PEEK

NOTES:

89

Ao Bb Ce Dd Ee ¥§ Gg H Ti Jj Kk LI Mm Nn Oe

CHAPTER 10

lr""

@
SpQgace

a
]
9
@
e
o

ONE FANTASTIC TEACHER

Your Computer has all the attributes of a natural born teacher. After all, it’s
patient, tireless, and detail conscious (. . . perhaps a bit nit-picky . . .). Depend-
ing on the programmer — we're talking about you, of course — it can be
imaginative, consoling, and quite enthusiastic.

So lets get on with it! We can use RND to get the Computer to drill us on one
math problem after the next. Type:

> 10 CLS
’ 20 X = RND(15)
30 Y = RND(15)
40 PRINT “WHAT I§" X “*" Y

45 INPUT A
r--—-——-SO IFA = X*Y THEN 90

60 PRINT “THE ANSWER IS" X*Y
70 PRINT “BETTER LUCK NEXT TIME”
80 GOTO 100

L—-——7 90 PRINT “CORRECT!!!"

» 100 PRINT “PRESS <ENTER> WHEN READY FOR ANOTHER"

h 105 INPUT A%
110 GOTO 10

91

92

This program will drill you on your multiplication tables, from 1 to 15, and
check your answers.

How would you change this program to get the Computer to drill you on
addition problems from 1 to 100:

DO-IT-YOURSELF PROGRAM

Here’s the lines we changed: .

20
30
40
45
50
60

X = RND(100)

Y = RND(100)

PRINT “WHAT IS” X “+" Y
INPUT A

IF A= X+ Y THEN 90

PRINT “THE ANSWER IS” X + Y

To make the program a little more interesting we can have the Computer keep
a running total of all the correct answers. Type:

15T

it L

% C=C0C+1
98 PRINT “THAT IS” C “OUT OF” T “CORRECT ANSWERS"

T keeps a count of all the questions the Computer asks y’ou. When you first

RUN the program T equals zero. Then, everytime the Computer gets to line 15,
it adds 1 to T.

C does just about the same thing. It keeps a count of the number of correct
answers. Since it is on line 95, the Computer will not increase C unless you get
a correct answer.

There are many ways to make this program more entertaining. Add some lines
to the program which will get the Computer to do one or more of the following:
1. Call you by name

2. Reward your correct answer with a sound and light show

3. Print the problem and messages attractively on your screen. (Use PRINT @
for this).

4. Keep a running total of the percent of correct answers.

5. End the program if you get 10 answers in a row correct.

Use your imagination on this one. We have a program in back which does all
five of the above.

DO-IT-YOURSELF PROGRAM

When you first turn on the Computer,
all numeric variables equal 0. Also,

when you type NEW (ENTER), all
numeric variables equal 0.

There are many variations you could
try with this program. For instance,
the Computer could test you with
business questions.

93

94

FIRST BUILD YOUR COMPUTER’S VOCABULARY...

To build your Computer’s vocabulary (so that it can build yours!) type and
RUN this program:

10 DATA APPLES, ORANGES, PEARS
20 FOR X = 1 T0 3

30 READ F$

40 NEXT X

So what happened? Nothing? Nothing that you can see, that is. To see what the
Computer is doing, add this line and RUN it:

35 PRINT “F$ = " F$

Line 30 tells the Computer to:

1. Look for a DATA line
2. READ the first item in the list — APPLES
3. Give APPLES an F$ label

4. “Cross out” APPLES

The second time the Computer gets to line 30 it is told to do the same things:

1. Look for a DATA line

2. READ the first item — this time it is ORANGES
3. Give ORANGES the F$ label

4. “Cross out” ORANGES

This is what is happening in your Computer’s memory when you RUN the
program:

YOUR COMPUTER’S MEMORY

F$ a3y APPLES

ORANGES
PEARS

What if you want the Computer to READ the same list over again? It’s already
crossed everything out . .. Type:
60 GOTO 10

and RUN the program. It prints 70D ERROR IN 30. OD means Out of Data.
The Computer has already crossed out its Data.

Type this line and RUN the program:
50 RESTORE

Now it’s as if the Computer never crossed anything out. The Computer will
READ the list over and over again.

The nice thing about DATA lines is that you can put them anywhere you want
in the program. RUN each of these programs:

Remember how to make the Computer
pause while RUNning a program?
Press Press any key to get it
to continue.

10 DATA APPLES 10 DATA APPLES, ORANGES
20 DATA ORANGES 20 DATA PEARS

30 FORX =1T03 30 FORX =1T03

40 READ F$ 40 READ F$%

50 PRINT “F$ = " F$ 50 PRINT “F$ = " F$

60 NEXT X 60 NEXT X

70 DATA PEARS

30 FORX =1T03 30 FORX =1T03

40 READ F$ 40 "EADF$

50 PRINT “F$ = :” F$ 50 PRINT “F$ = " F$

60 NEXT X 60 NEXT X

70 DATA APPLES 70 DATAAPPLES, ORANGES, PEARS
80 DATA ORANGES

90 DATA PEARS

95

“Cataclysmic!”

96

They all work the same, don’t they? This knowledge should be handy for
something . . .

..NOW HAVE IT BUILD YOUR VOCABULARY

Here’s some words and definitions you might want to be tested on:

Words Definitions

10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIQUS, VERY TALKATIVE

30 DATA VOCIFEROUS, LOUD AND VEHEMENT

40 DATA TERSE, CONCISE

50 DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

Now to get the Computer to pick out a word at random from the list. Hmmm.. . .
there are ten items in the list. Maybe this will work:

60 N = RND(10)
70 FORX =1TON
CSO READ A$
90 NEXT X
100 PRINT “THE RANDOM WORD IS :* A$

RUN it a couple of times to see if it works.

It doesn’t quite work like we want it to. The Computer is just as likely to stop at
a definition as a word. What we really want the Computer to do is to pick a
random word from items 1, 3, 5, 7, or 9.

Fortunately, there is a word which will explain this to the Computer. Type:
65 IF INT(N/2) = N2 THENN =N =1

RUN the program a few times. It should work now.

INT tells the Computer to only look at the whole portion of the number and

ignore the decimal part. For instance, the Computer sees INT(3.9) as 3.

Here’s how line 65 works. Say the random number the Computer picks is 10.
The Computer does this calculation:

INT(10/2) = 10/2
INT(5) = 5
5=5

Since this is true, 5 does equal 5, the Computer completes the THEN portion of
the line and makes N equal to 9 (10 — 1).

However, if the Computer picks 9, it does this:

INT(9/2) = 9/2
INT(4.5) = 4.5
4 =45

Since this is not true, 4 does not equal 4.5, the Computer doesn’t subtract 1 from
N. 9 remains 9.

Now that the Computer is able to READ a random word, it must also READ the
word’s definition. You can do this simply by adding these lines to the end of the
program:

110 READ B%
120 PRINT “THE DEFINITION IS :* B$

RUN it several times now. To get the Computer to print one random word and
definition after the next, add this line to the beginning of the program:

5 CLEAR 100

to give the Computer plenty of string space. And add these lines to the end of
the program:

130 RESTORE
140 GOTO 60

So that the Computer can pick out a new random word and its definition from a

97

98

Ifyou like, add sorne more words and
definitions by adding DATA lines.

For variations on this program, you
might try states and capitols, cities
and countries, foreign words and
meanings. Got more ideas?

e she sje s e he o s ok ke R SR Sk ok s ok ok sk o i e e sl s sk e e ik e s shesesleshe sk ejeoitdoiogd

sospeshospotop g skesteiotnintolok gooiogsing

5

10
20
30
40
50

— 60
65

70
C 80
20

100
110
120

130
L—— 140

= A

clean slate of data items.

Here is the way the entire program looks now:

CLEAR

DATA TACITURN, HABITUALLY UNTALKATIVE
DATA LOQUACIOUS, VERY TALKATIVE

DATA VOCIFEROUS, LOUD AND VEHEMENT
DATA TERSE, CONCISE

DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY

N = RND(10)

IF INT(N/2) = N/2THENN =N -1
FORX = 1TON

READ A%

NEXT X

PRINT “A RANDOM WORD IS :" A%
READ B%

PRINT “ITS DEFINITION IS :" B$
RESTORE

GOTO 60

Want to complete this program? Try it before turning the page to see ours.
Program it so that the Computer will:

PRINT the definition ONLY
Ask you for the word
Compare the word with the correct random word

Tell you if your answer is correct. If your answer is incorrect, have it

PRINT the correct word.

she sfe i ke she ofe sfe sfe sfe i e shofe sl s st o R AR Ok sjoge sk shene ik

DO-IT-YOURSELF PROGRAM

Here’s our program:

5
10
20
30
40
50
60
65
70
80
90

110
120
130
140
~= 150
160
170
N 180
190
200

CLEAR 500
DATA TACITURN, HABITUALLY UNTALKATIVE
DATA LOQUACIOUS, VERY TALKATIVE
DATA VOCIFEROQUS, LOUD AND VEHEMENT
DATA TERSE, CONCISE
DATA EFFUSIVE, DEMONSTRATIVE OR GUSHY
N = RND(10)
IF INT(N/2) = N2ZTHENN =N -1
FORX = 1TON

READ A%
NEXT X
READ B%
PRINT “"WHAT WORD MEANS :” B$
RESTORE
INPUT R$
IF R$ = A% THEN 190
PRINT “WRONG"
PRINT “THE CORRECT WORD IS :” A$
GOTO 60
PRINT “CORRECT"
GOTO 60

Feel free to dress the program up with
a good looking screen format, sound,
etc.

99

LEARNED IN CHAPTER 10

BASIC WORDS

DATA
READ
RESTORE
INT
CLEAR

100

NOTES:

101

CHAPTER 11 Ax BY + C) - D + E(GW) - F

<@
vZooopd

(4]
a

o
Qp0e0gQ

o
©

HELP WITH MATH

Solving complicated math formulas with super speed and precision is an area
where your Computer shines. But before driving yourself crazy typing a bunch
of math formulas, there are some shortcuts and hints you'll probably want to
know about.

TINES. Type and RUN this program:

10 PRINT “EXECUTING THE MAIN PROGRAM"
20 GOSUB 500

30 PRINT “"NOW BACK IN THE MAIN PROGRAM*
40 END

500 PRINT “EXECUTING THE SUBROUTINE"
510 RETURN

One easy way to handle complicated math formulas is by using SUBROU- X

Line 20 tells the Computer to GO to the SUBroutine beginning at line 500.
RETURN tells the Computer to return back to the BASIC word immediately
following GOSUB.

Delete line 40 and see what happens when you RUN the program.
Did you delete it?

103

See something different about
INPUT? We can have the Computer
PRINT a message before waiting for
us to INPUT something.

104

If you did, this is what’s on your screen:

EXECUTING THE MAIN PROGRAM
EXECUTING THE SUBROUTINE

NOW

BACK IN THE MAIN PROGRAM

EXECUTING THE SUBROUTINE

7RG

RG means RETURN without GOSUB. Can you see why deleting END in line

ERROR IN 510

40 would cause this error?

At first, the Computer went through the program just like it did before you
line. It was sent to the subroutine in line 500 by GOSUB and

deleted the END
it returned to th

Then, since youdeleted END, it went to the next line in the program which was
the subroutine. When it got to RETURN, it did not know where to return to,

e BASIC word immediately following GOSUB.

since this time it had not been sent to the subroutine by a GOSUB.

Here’s a subrout

/ 40

—2000
2010
2020
2030
2040

ine which raises a number to any power you want:

~— 10 INPUT “TYPE A NUMBER”; N
20 INPUT “TYPE THE POWER YOU WANT IT RAISED T0”; P
——30 GOSUB 2000

PRINT : PRINTN” TOTHE “ P POWERIS " E

50 GOTO 10

REM FORMULA FOR RAISING A NUMBER TO A POWER
E=1

FORX=1T0OP

E=E*N

NEXT X

IFP=0THENE =1

RETURN

Notice we introduced a couple of new things in the program.

Look at line 40. If you find it easier, you can combine two or more program lines
into one, using a colon to separate the two lines. Line 40 contains the two lines:

PRINT
and
PRINT N TO THE"” P’ POWER IS “ E

Line 2000 has something else new — REM.

REM doesn’t mean anything to the Computer. The Computer ignores any line
beginning with REM. You can put REM lines anywhere you want in your
program, so that you can remember what the program does. These REM lines
will make no difference to the way the program works.

If you don’t believe us, add these lines and RUN the program to see if they
make any difference:

5 REM THIS IS A PECULIAR PROGRAM,
17 REM THIS LINE SHOULD MESS UP THE PROGRAM
45 REM THE NEXT LINE KEEPS THE SUBPROGRAM SEPARATED

Satisfied? . .. Good.

Change the program so that the Computer prints a table of squares (a number
to the power of 2) for numbers, say, from 2 to 10.

DO-IT-YOURSELF PROGRAM

The answer is in the back of the book.

PRINT by itself tells the Computer to
skip a line.

105

106

The word “operation” means some-
thing you're getting the Computer to
do. Here, we're talking about the

| “operations” of adding, subtracting,

multiplying, and dividing.

\ The Computer solves arithmetic problems in this order

\ 1. any multiplication and division operations are solved first
3 \ 2. addition and subtraction operations are solved last

\ 3. in case of a tie (that is, more than one multiplication/division or addition/subtrac-
l‘ tion operation) the operations are performed from left to right

N\ \\\vvNrtntZ“hhhwthwhahah

GIVE THE COMPUTER A LITTLE HELP

As math formulas get more complex, your Computer will need some help
understanding them. For example, what if you want the Computer to solve this
problem:

Divide the sum of 13 + 3 by 8

You might want the Computer to solve the problem like this:

13 +3/8=16/8=2
But your Computer solves it differently. Type this command line:

PRINT 13 + 3/ 8 (ENTER)

What the Computer did was logical according to its rules:

RULES ON ARITHMETIC

AN N\ | ¥

FAQ N

In the problem above the Computer followed its rules. It performed the division
operation first (3/8 = .375) and then the addition (13 + .375 = 13.375). To get
the Computer to solve the problem differently, you can use parenthesis. Type
this line:

PRINT (13 + 3)/ 8 (ENTER)

Whenever the Computer sees an operation in parenthesis, it solves that before
solving anything else.

What do you think the Computer will PRINT as the answers to each of these
problems:

COMPUTER MATH EXERCISE

PRINT10 - (5 - 1)/2

PRINT 10 — 5 —1/2

PRINT (10 — 5 — 1) /2

PRINT (10 — 5) — 1/2

PRINT 10 — (5 — 1/2)

Finished? Type each of the command lines to check your answers.
What if you want the Computer to solve this problem?
Divide 10 minus the difference of 5 minus 1 by 2

That is what you're actually asking the Computer to do:
(10 -5 - 1)/2

When the Computer sees a problem with more than one set of parenthesis, it

107

108

solves the inside parenthesis and then moves to the outside parenthesis. In
other words, it does this:

(10 — (i="1)/2

o= / 2

- > 10-4=6
6/2
\ > 6/2=3

\ RULES ON PARENTHESIS

1. When the Computer sees a problem containing parenthesis, it solves the
\ operation inside the parenthesis BEFORE solving the rest of the

operations.
2. If there are parenthesis inside parenthesis, the Computer solves the
innermost parenthesis first and works its way out.

Insert parenthesis in the problem below so that the Computer will PRINT 28 as
the answer:

b COMPUTER MATH EXERCISE

PRINT30 -9 -8-7 -6

Answer;

PRINT 30 — (9 — (8 — (7 — 6)))

IS SAVING WORTH IT?

With what you’ve learned in this chapter, you can let the Computer do all the
math by putting complicated math formulas in your subroutines. The program
below uses two subroutines. It’s for those of you who save by putting the same
amount of money in the bank each month:

10
20
30
40
50
60
70

INPUT “YOUR MONTHLY DEPOSIT"; D
INPUT “BANK’S ANNUAL INTEREST RATE"; I

I=112* .01

INPUT “"NUMBER OF DEPQSITS"; P

GOSUB 1000

PRINT “YOU WILL HAVE $” FV "IN " P " MONTHS"

END

1000 REM COMPOUND MONTHLY INTEREST FORMULA
1010 N=1+1

1020 GOSUB 2000

1030 FV=D* ((E - 1)/D

1040 RETURN

2000 REM FORMULA FOR RAISING A NUMBER TO A POWER
2010
2020
2030 E=E*N
2040 NEXT X

\ 2050 IFP =0THENE =1
2060

E=1
FORX =1TOP

RETURN

Notice that we have one subprogram “calling” another subroutine. This is
perfectly OK with the Computer as long as you have a GOSUB to send the
Computer to each subroutine, and a RETURN in each subroutine to return the

BANK

111!

H

“A PENNY SAVED. . ”

109

110

Computer to the BASIC word following each GOSUB.

One more thing we think you’ll like. Flip back to the Appendix, “Subroutines”.
We’ve put a lot of math formulas into subroutines. You'll probably want to add

some of these to your programs.

LEARNED IN CHAPTER 11

A e

BASIC WORDS

GOSUB
RETURN
REM

e
R e

BASIC SYMBOLS

BASIC CONCEPTS

Order of operations

A S

e
R T S s BRI S e S

NOTES:

111

CHAPTER 12

A GIFT WITH WORDS

One of your Computer’s greatest skills is its gift with words. It can tirelessly
twist, combine, or separate words to anything you want. Because of this gift,
you can teach it to read, write, and even carry on a halfway decent conversa-

tion.

For starters, see what you think of this:

10
20
30
40
50

PRINT “TYPE A SENTENCE"

INPUT S$%

PRINT “YOUR SENTENCE HAS " LEN(S$) “ CHARACTERS”
INPUT “WANT TO TRY ANQTHER"; A$

IF A$ = “YES” THEN 10

Impressed? LEN(S$) tells the Computer to compute the LENgth of the string
S$ — your sentence. Your obedient Computer counts every single character in
the sentence, including spaces and punctuation marks.

Here’s another skill it has. Erase your program and type this to make it
compose a poem (of sorts):

10
20
30
40
50
60
70

A%
B$ =
C$
D3
E$ =
F$ =

1l

“A ROSE”

“IS A ROSE”

B$ + C$

“AND SO FORTH AND SO ON”
A% + D$ + D$ + B$ + ES

PRINT F$

Not impressed? Well, later we’ll talk
about some practical ways to use this

unusual skill,

113

114

Here the Computer combines strings. The plus sign tells it to do this. D$
combines B$ and C$ to get “IS A ROSE”, and you can see what strings are
combined to form F$.

A word of caution about combining strings — add this line to your program and
RUN it:

80 G$ = F$ + F$ + F$ + F$ + F$ + F$ + F3

When you RUN this program, the Computer prints 70S ERROR IN 80. OS
means Qut of String Space. The Computer only reserves about 200 characters
for working with strings. Add this line to the beginning of the program for
reserving plenty of string space:

5 CLEAR 500

RUN the program again. This takes care of the first problem, but there’s still
another.

This time the Computer prints ?LLS ERROR IN 80. LS means string too long.
Line 80 asks the Computer to form a string — G$ — with more than 255
characters. Your Computer simply can’t manage to remember a string with
that many characters.

Now that the Computer has combined strings, let’s get it to take one apart.
Type and RUN this program:

10 INPUT “TYPE A WORD"; W$
20 PRINT “THE FIRST LETTER IS : " LEFT$ (W$,1)

30 PRINT “THE LAST 2 LETTERS ARE : ” RIGHT$ (W§,2)
40 GOTO 10

Here’s what your Computer is doing:

In line 10 you INPUT a string for W$. Let’s say the string is MACHINE:

COMPUTER MEMORY

W$ ----> MACHINE

Your Computer then performs several calculations in lines 20 and 30 to get the
first LEFT letter and the last 2 RIGHT letters of the string:

LEFTS (W$,1) RIGHTS (W$,2)

Try RUNning the program a few times until you get the hang of it.
Add this line to the program:

5 CLEAR 500

So that your Computer will set aside plenty of space for working with strings.
Now INPUT a sentence rather than a word.

How would you change lines 20 and 30 so that the Computer will give you the
first 5 letters and the last 6 letters of your string?

PROGRAMMING EXERCISE

Answers:

20 PRINT “THE FIRST FIVE LETTERS ARE :” LEFT$ (W$,5)
30 PRINT “THE LAST SIX LETTERS ARE :" RIGHT$ (W$,6)

..

115

116

Remember how to erase a program?

Type:
NEW

Erase your program and type this one:

10 CLEAR 500

20 INPUT “TYPE A SENTENCE"; S$

30 PRINT “TYPE A NUMBER FROM 1 TO " LEN(S$)

40 INPUT X

50 PRINT “THE MIDSTRING WILL BEGIN WITH CHARACTER " X
60 PRINT “TYPE A NUMBER FROM 1 TO ” LEN(S$) — X + 1

70 INPUT Y

80 PRINT “THE MIDSTRING WILL BE” Y “CHARACTERS LONG"”
90 PRINT “THIS MIDSTRING IS :” MID$(S$,X,Y)

100 GOTO 20

RUN this program a few times to see if you can figure out how MID$ works.

Here’s how the program works. Say you INPUT “HERE IS A STRING” for your
sentence:

YOUR COMPUTER’'S MEMORY ¢
S$—3 HERE IS A STRING

In line 30, the computer first calculates the LENgth of S§ — 16 characters. It
then asks you to choose a number from 1 to 16. Let’s say you pick the number 6.

The Computer then, in line 60, asks you to pick another number from 1 to 11
(16-6) plus 1. Say you pick the number 4.

YOUR COMPUTER'S MEMORY

X = 6
Y—> 4

Inline 90, the Computer gives you a MID string of S$ which begins at character
number 6 and is 4 characters long:

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
H E R E 1 S A S T 1
<«
MID$(S$,6,4)

Here’s something else you can do with MID$. Erase your program and type:

10 INPUT “TYPE A SENTENCE"”; S$

20 INPUT “TYPE A WORD IN THE SENTENCE"”; W$
30 L = LEN(WS)

40 FOR X = 1 TO LEN(S$)

50 IF MID$(S$,X,L) = W$ THEN 90

60 NEXT X

70 PRINT “YOUR WORD ISN'T IN THE SENTENCE”
80 END

90 PRINT W$ “--BEGINS AT CHARACTER NO.” X

RUN this program a few times. Here’s how it works.

Say you type in the above sentence, and the word you INPUT for W$ is “IS”. In
line 30, the Computer then calculates the LENgth of W$ — 2 characters.

YOUR COMPUTER’S MEMORY

S$ ===p HERE IS A STRING
W$ —=p IS
L P 2

The Computer then goes through the FOR/NEXT loop (lines 40-90) counting
each character in S$ beginning with character 1 and ending with character
number LEN(S$) — 16.

These types of programs can be used
to sort through large files of informa-
tion. For instance, by separating
strings, you could look through a
mailing list for TEXAS addresses.

117

Every time it counts a new character, the Computer looks at a new MID string.
Each MID string begins at character X and is L or 2 characters long.

For example, when X equals 1, the Computer looks at this MID string:

1

HESES R E I & & o A T RW
&2y

MID$(S$,1,2)

The fourth time through the loop, when X equals 4, the Computer looks at this:

(7 B 4
wPZ H E R E I S A TR -
Z &2
Z MID$(S$,4.,2)

AV Yy

AR W
L
il @\\\\

It finally finds the MID string it is looking for when X equals 6.

YOUR COMPUTER CAN BE A TOUGH EDITOR

“#@%/ &S L. : .
Are you beginning to get a picture of the Computer hacking away at your
sentences with a red pen? You can program it to help refine your writing and
save you hours of typing and rewriting.

Say you had a phrase you want to add to:

10 A% = “CHANGE A SENTENCE.”

Add to this one-line program so that the Computer will insert these words at
the beginning of the sentence:

IT'S EASY TO
and PRINT the new sentence:

IT’S EASY TO CHANGE A SENTENCE

118

DO-IT-YOURSELF PROGRAM

This is our program:

10
20
30
40

A$ = “CHANGE A SENTENCE.”
B$ = “IT'S EASY T0”

C$ = B$ + ““ + AS

PRINT C$

Now see if you can add to the program to get the Computer to:

1. Find the beginning location of the MID string:

A SENTENCE

2. Delete the words A SENTENCE, forming a new string:

IT'S EASY TO CHANGE

3. Add these words to the end of the new string:

ANYTHING YOU WANT

4. And PRINT the newly formed string:

IT'S EASY TO CHANGE ANYTHING YOU WANT

119

DO-IT-YOURSELF PROGRAM

HINT: To form the string IT'S EASY TO CHANGE, you need to get the LEFT portion of
the string IT'S EASY TO CHANGE A SENTENCE.

Answer
10 A$ = “CHANGE A SENTENCE.”
20 B$ = “IT'S EASY TO”
30 C$ = B$ + “” + A$
This type of program is the basis of a 40 PRINT C$%
. “word processing’” program — a 50 Y = LEN (A SENTENCE")
popular program for cutting down on 60 FOR X = 1 TO LEN(C$)
officeliypinglecpenses. 70 IF MID$ (C$,X,Y) = “A SENTENCE” THEN 90
80 NEXT X
85 END

90 D$ = LEFT$ (C$X — 1)
100 E$ = D$ + “ANYTHING YOU WANT”
110 PRINT E$

120

IF YOU LIKE A CHALLENGE, TRY THIS. ..

Write a program in which:

1. The Computer asks you to INPUT:
a. a sentence
b. a phrase within the sentence to delete
c. a new phrase to replace the deleted phrase

2. The Computer then PRINTs a new sentence with your change intact.

This may take a while, but you have everything you need to write it. Our
answer is in the back of the book:

DO-IT-YOURSELF CHALLENGER PROGRAM

121

122

LEARNED IN CHAPTER 12

BASIC WORDS BASIC String OPERATOR
LEN +
LEFTS
RIGHTS
MID$
NOTES:

NOTES:

123

CHAPTER 13

LX]

BEAT THE COMPUTER

deo0s
(-

oploese
)

a
e doat

BEAT THE COMPUTER

You'll find the Computer much more adept by getting it to constantly watch
and react to everything you do. By “watching you”, we mean watching the
keyboard to see if you are pressing something. The word INKEY$ makes this
possible.

Type this:

10 A$ = INKEY$

20 IF A$ <>"" GOTO 50

30 PRINT “YOU PRESSED NOTHING”

40 GOTO 10

50 PRINT “THE KEY YOU PRESSED IS---" A$

Press a key while RUNning this program.

INKEY$ tells the Computer to look at the keyboard to see if you have pressed
anything. The Computer does this with super-speed. You will have pressed
absolutely nothing for at least the first 20 times the Computer checks.

The Computer labels this key, or this non-key ("), A$. Then the Computer
makes its decision:

If A$ equals “” — nothing — the Computer prints “YOU PRESSED NOTH-
ING” and goes back up to line 10 to check the keyboard again.

Remember what <> means? (It

means “not equal to”)

“" means an empty string — nothing

125

126

However, if A$ equals something, the Computer goes to line 50 and prints the
key.

For a constant look-out, type this and RUN the program:
60 GOTO 10

No matter how quick you are, the Computer is much faster! Erase line 30 to see
what keys you're pressing.

AN ELECTRONIC PIANO

Try using INKEY$ to make a piano out of your keyboard. Look at that table in
the Appendix, “Musical Tone Numbers”. It lists these as the tones for middle C
through the next higher C:

C-89 E-125 G - 147 B-170
D - 108 F-133 A -159 C-176

We can tell the Computer that if you press a certain key it should SOUND one
of these tones. Erase your program and type:

10 A$ = INKEY$

20 IF A$ =" THEN 10

30 IFA$ ="“A"THENT = 89
40 IF A$ =“S” THEN T = 108
50 IF A$ =“D” THENT =125
60 IF A$ =“F” THENT =133
70 IF A$ = “G” THEN T = 147
80 IF A$ = “H” THEN T = 159
90 IF A$ = “J“ THENT =170
100 IF A$ = “K” THEN T = 176
110 IF T = 0 THEN 10

120 SOUNDT, 5

130 T=0

140 GOTO 10

RUN the program . . . Well, what are you waiting for? Play a tune. Type any of ; e T S
the keys on the third row down on your keyboard — from A to K. How would this change the program?
120 SOUND T, 1 ‘

Why wouldn’t the program work right if you use INPUT rather than INKEY$?

...

If you use INPUT the Computer will wait until you press (ENTER) before
acknowledging what you type. With INKEY#$, it sees everything you type.

There’s another way of writing this program using READ and DATA lines. Do
you know how this would be done?

This is what we came up with:

10 A$ = INKEY$
20 FORX =1T08 : '
30 READBS, T Using these DATA and READ lines

40 IF A$ = B$ THEN SOUND T, 5 will make it easier for you toadd more
50 NEXT X tones to your Computer’s repertoire.
60 RESTORE

70 GOTO 10

80 DATA A, 89, S, 108
90 DATA D, 125, F, 133
100 DATA G, 147, H, 159
110 DATA J, 170, K, 176

127

128

BEAT THE COMPUTER
Type this program:

10 X = RND(4)
20 Y = RND(4)
30 PRINT “"WHAT IS” X “+" Y

40 T=0
50 A$ = INKEYS
60 T=T+ 1

70 SOUND 128, 1

80 IF T = 15 THEN 200
90 IF A$ = Y THEN 50
100 GOTO 10

200 CLS(7)
210 SOUND 180, 30
220 PRINT “TOO LATE"

Here’s what the program tells the Computer to do:

Lines 10, 20, and 30 gets the Computer to pick two random numbers and
ask you what their sum is.

Line 40 sets T to 0. We will use T as a timer.

Line 50 gives you your first chance to answer the question — in one
minute split second.

Line 60 adds 1 to the timer. T now equals 1. The next time the Computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Everytime
the Computer executes line 60 it will add 1 to T.

Line 70’s just there to make you nervous.

Line 80 tells the Computer you have 15 chances to answer. Once T equals
15, time’s up. The Computer will insult you with lines 200, 210, and 220.

Line 90 says if you haven’t answered yet to go back and give you another
chance.

The Computer only gets to line 100 if you do answer. It will go back for
another problem.

How would you get the Computer to give you three times as much time to
answer each question?

Answer:
By changing this line:

80 IF T = 45 THEN 200

CHECKING YOUR ANSWERS

How would you get the Computer to check to see if your answer is correct?
Would this work?

100 IF A$ = X + Y THEN 130

110 PRINT “WRONG"”, X "+" Y "="X + ¥
120 GOTO 10

130 PRINT “CORRECT” e
140 GOTO 10 Remember the problem of mixing

strings with numbers. Chapter 2 will
_ refresh your memory.
If you RUN this program (and answer on time), you’ll get this error message:

?TM ERROR IN 100

That’s because you can’t make A$, a string, equalto X + Y, numbers. You have
to somehow change A$ to a number.

Fortunately, your Computer has a way of doing this. Change line 100 by typing:

100 IF VAL(A%) = X + Y THEN 130
VAL(A$) turns A$ into its numeric VALue. If A$ equals the string “5”;

VAL(A$) equals the number 5. (However, if VAL(AS$) equals the string “C”;
VAL(A$) equals 0 since “C” has no numeric value.)

129

For those that want to make the program a bit more challenging, change these
lines:

10 X = RND(49) + 4

20 Y = RNDU49) + 4

90 B$ = B$ + A%

100 IF VAL(BS) = X + Y THEN 130

And add these lines:

45 B$ =
95 IF LEN(B$) <> 2 THEN 50

A COMPUTER TYPING TEST

Here’s a program that will get the Computer to time how fast you type:

10 CLS

20 INPUT “PRESS <ENTER> WHEN READY TO TYPE THIS PHRASE"; E$
30 PRINT “NOW IS THE TIME FOR ALL GOOD MEN"”
40 T=1

50 A% = INKEY$

60 IF A$ = ™ THEN 100

70 PRINT AS;

80 B$ = B$ + A$

90 IF LEN(B$) = 32 THEN 120

100 T=T + 1

‘110 GOTO 50

120 S =T/74

130 M = 5/60

140 R = 8/M

150 PRINT

160 PRINT “YOU TYPED AT —"R“—WDS/MIN"

130

Here’s how this program works:

In line 40, we set the timer — T — to 1.

Line 50 gives you your first opportunity to type a key — A$. If you're not quick
enough, line 60 sends the Computer directly to line 100 and adds 1 to the

timer.

Line 70 prints the key you typed.

Line 80 forms a string named B$. Each time you type a key (A$), it will be

added to B$. For example, if the first key you type is “N”, then:

A$ = \\NH

and
B$ = B + A$
B$ - W + \\NII
B$ o \\NII

If the next key you type is “O”, then:

A$ = \\OII

and
B$ = B$ + A%
B$ —_ \\NII + \\oll
B$ = \\NOH

And if the third key you type is “W”, then:

A$ — \\WII

and
B$ - \\Nou + \\Wn
B$ = “Now”

When the LENgth of B$ equals 32 characters (the length of “NOW IS THE
TIME FOR ALL GOOD MEN”), the Computer assumes you've finished
typing the phrase and goes to line 120 to compute your words per minute.

131

We calculate the words per minute in lines 120, 130, and 140 by dividing T by
74 (to get the seconds), S by 60 (to get the minutes), and then dividing the 8
words by M to get the rate of words per minute.

We could have made this calcula-
tion in one line by using parenthe- Change this program to get the Computer to check to see if you made a

sts: typographical error.
120 R = 8/(T/74)/60)

DO-IT-YOURSELF PROGRAM

Our answer is in the back of this book.

How about trying a variation of this
program — a speed reading test.

132

LEARNED IN CHAPTER 13

BASIC WORDS

INKEY$
VAL

NOTES:

133

POLISH IT OFF

CHAPTER 14

POLISH IT OFF

Before we let you finish this section, there are a few more BASIC words we
want to tell you about. You don’t have to know them. They’ll just make
programming a little easier for you.

The first word is STOP. Easy enough? Type and RUN this program,;

10 A
20 A
30 S
40 A = A2
50 STOP

60 GOTO 20

The Computer prints:

BREAK IN 30
0K

The Computer STOPped executing the program when it got to line 30. At this
point, you can type a command line to see what your program has done so far.
for example, type:

PRINT A (ENTER

135

136

. To save memory, you can omit

spaces in your program before and
after punctuation marks, operators,

and BASIC words.

The Computer prints 2 — the value of A when it STOPped running the program.
Now type:

CONT (ENTER

The Computer CONTinues to run the program where it STOPped. In other
words it CONTinues running the program at line 40. Then if prints:

BREAK IN 50
the second place you have a STOP. Now, you may type:

PRINT A (ENTER
again. It prints 4, the value of A at line 50. Type CONT again and the Computer
breaks back up at line 30. If you have it PRINT A it will print 5, the value of A
at line 30 the second time through the program.
STOP and CONT are for times when your program isn’t working as you ex-

pected it to. By putting STOP lines in your program you can analyze what'’s
going wrong. Once you fix the program, you can take the STOP lines out.

FOR AMBITIOUS PROGRAMS...

Type NEW to clear memory and then type:

PRINT MEM (ENTER

The Computer prints how much storage space remains in the Computer’s
memory.

When you’re typing a long program, you will want to have the Computer
PRINT MEM from time to time to make sure youre not running out of
memory.

HELP WITH TYPING

Type this program:

10 INPUT “TYPE 1, 2, OR 3“; N
20 ON N GOSUB 100, 200, 300

TC3o GOTO 10
mfd\ ©R100 PRINT “YOU TYPED 1”

T e
Zz 110 RETURN

200 PRINT “YOU TYPED 2”
210 RETURN

300 PRINT “YOU TYPED 3~
310 RETURN

RUN it.
Line 20 could actually be replaced by these three lines:
18 IF N = 1 THEN GOSUB 100

20 IF N = 2 THEN GOSUB 200
22 IF N = 3 THEN GOSUB 300

It’s simply fewer lines to type when you use ON ... GOSUB.

ON ... GOSUB tells the Computer to look at the number following ON — in
this case number N. If it’s a 1, the Computer goes to the subroutine beginning
at the firs¢ line number following GOSUB. If N is 2, the Computer goes to the
subroutine beginning at the second line number; if N is 3, the Computer counts
down to the third line number and goes to that subroutine.

What if N is 4? Since there is no fourth line number, the Computer simply goes
to the next line in the program.

137

Here is a program that uses ON ... GOSUB:

5

10
20
30

40

O :
60

' 70
GETe 80
90

1000
1010
1020
1030

2000
2010
2020
2030

3000
3010
3020
3030

4000
4010
When A doesnotequal X +Y, the con- 4020
dition set up ir line 1020 is not true. 4030

FOR P=1 TO 600: NEXT P

CLS: X=RND(100): Y= RND(100)
PRINT *“(1) ADDITION"

PRINT “(2) SUBTRACTION"”

PRINT *(3) MULTIPLICATION"

PRINT *(4) DIVISION”

INPUT “WHICH EXERCISE(1-4)"; R
CLS

ON R GOSUB 1000, 2000, 3000, 4000
GOTO 5

PRINT “WHAT IS” X “+" Y

INPUT A

IF A=X+Y THEN PRINT “CORRECT” ELSE PRINT “WRONG”
RETURN

PRINT “WHAT IS” X “-"" Y
INPUT A

IF A=X-Y THEN PRINT “CORRECT" ELSE PRINT “WRONG”
RETURN

PRINT “WHAT IS X "¢ Y
INPUT A

IF A=X*Y THEN PRINT “CORRECT” ELSE PRINT “WRONG"
RETURN

PRINT “WHAT IS” X /" Y
INPUT A

IF A=X/Y THEN PRINT “CORRECT" ELSE PRINT “WRONG"
RETURN

Notice the word ELSE in lines 1020, 2020, 3020, and 4020. You can use ELSE if
you want the Computer to do something special when the condition is not true.

In line 1020, IF your answer — A — equals X+ Y the Computer prints COR-
RECT or ELSE it prints WRONG.

You may use ON ... GOTO in a similar way as ON ... GOSUB. The only
difference is that ON GOTO simply sends the Computer to another line number,
rather than a subroutine.

138

Here’s part of a program using ON ... GOTO:

10 CLS

20 PRINT @ 134, (1) CRAZY EIGHTS”

30 PRINT @ 166, *'(2) 500"

40 PRINT @ 198, “'(3) HEARTS”

50 PRINT @ 354, “WHICH DO YOU WANT TO PLAY"

60 INPUT A
65 CLS
=7 70 ON A GOTO 1000, 2000, 3000
4 < 1000 PRINT @ 230, “CRAZY EIGHTS GAME"
'? & 1010 END /‘/]\
2000 PRINT @ 236, “500 GAME" l“ I
2010 END | ##;_g
3000 PRINT @ 235, “HEARTS GAME"” g;;
3010 END == =
==
=_=
=Z =
DOES THE JOB SAY “AND” OR “OR’? == ’2“
==

Anyone who speaks English knows the difference between AND and OR — even
your Computer. For example, let’s say that Radio Shack has a bunch of job
openings in programming. To get the job, you must have:

a degree in programming
AND
experience in programming

Here it is in a program. Erase memory and type:

10 PRINT “DO YOU HAVE ——*

20 INPUT “A DEGREE IN PROGRAMMING"; D$

30 INPUT “EXPERIENCE IN PROGRAMMING'; E$

40 IF D$="YES” AND E$="YES” THEN PRINT “YOU'VE GOT THE
JOB” ELSE PRINT “SORRY, WE CAN'T HIRE YOU”

50 GOTO 10

139

140

glcle

RUN the program. With your experience on the Color Computer, you might
answer the questions this way:

DO YOU HAVE ——

A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
SORRY, WE CAN‘T HIRE YOU

Now let’s say Radio Shack decided to be more lenient. Here are the new job
qualifications:

a degree in programming
OR
experience in programming

All they did is change one little word. They changed AND to OR. To make this
change in your program type:

40 IF D$="YES” OR E$="YES” THEN PRINT “YOU'VE GOT THE
JOB’” ELSE PRINT “SORRY, WE CAN‘T HIRE YOU”

To see the difference that one word makes, RUN the program:
DO YOU HAVE ——
A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
YOU'VE GOT THE JOB
Now that you see your Computer understands the meaning of AND and OR,

you can use them in your programs. We’ll be using these words in the next
sections.

MORE HELP WITH MATH

There’s a couple more words you might want to use to help with math programs:

SGN

SGN tells you whether a number is positive, negative, or 0. Type:

10
20
30
40
50

RUN the program. Try INPUTting some numbers like these:

15

ABS

ABS tells you the absolute value of a number (the magnitude of the number

INPUT “TYPE A NUMBER"; X
IF SGN(X) = 1 THEN PRINT ““POSITIVE"

IF SGN(X) = 0 THEN PRINT “ZERO"”
[F SGN(X) = —1 THEN PRINT “NEGATIVE"
GOTO 10

—-30 -—-.012 0 .22

without respect to its sign). Type:

10

INPUT “TYPE A NUMBER”; N

20 PRINT “ABSOLUTE VALUE IS ABS(N)
30 GOTO 10

RUN the program INPUTting numbers like the ones above.

STRS$

STRS converts a number to a string. Example:

10

INPUT “TYPE A NUMBER"; N

20 A% = STRS$(N)
30 PRINT A$ + “ IS NOW A STRING”

One more thing before we let you finish this section. ..

i

(w)

141

Type and RUN this program:

Notice the OV (Overflow) Error at the 10 X =1

end. The Computer can’t handle 20 PRINT X;
numbers larger than 1E+38 or 30 X = X * 10
smaller than —1E +38. (It rounds off 40 GOTO 20

numbers around 1E-38 and —1E-38 to

2 Sometimes a number will get so large or so small that the Computer will cope

with it by printing it in “exponential notation”. The number “one billion”
Or technically 1*10°, which is I times (1,000,000,000), for example, can be written “1E +09”. This means “the number
ten to the ninth power: 1 followed by nine zeros.”

1*10*10%10%10*10*10*10*10* 10

If an answer comes out “5E—06", that means we must shift the decimal point,
which comes after the 5, six places to the left inserting zeroes as necessary.
Technically, it means 5%10¢, or 5 millionths. (.000,005). It’s really pretty simple
once you get the hang of it, and a lot easier to keep track of numbers without
losing the decimal point.

In our BASIC, that’s 5/10/10/10/10/
10/10

We’ve run you through this Chapter pretty fast, but we think you’ll appreciate
knowing these odds and ends when you go through the next sections or practice
your own programs.

LEARNED IN CHAPTER 14

I e T LTI
e S e e A A e

BASIC WORDS BASIC SYMBOLS BASIC CONCEPT

Exponential notation

142

PICTURE THIS

By programming different positions for
this man, along with a song, you can easily
make him dance. Chapter 19, “Let’s Dance,”
shows how to do it.

(A) and (B) This “Blackjack” game uses different col-
ored cards to represent suits. See Appendix H, “Sam-
ple Programs,”’ for a program listing.

(C) Press any key and the “Electric Dice” will roll.
This program is listed in Appendix H also.

(D) Use your joystick to guide your spaceship through
this maze of asteroids. Chapter 17, “Games of Motion,’
shows how to write this program.

(E) The joysticks propel these two spaceships. The
blue one has a gun. You can fire it by pressing the but-
ton on the joystick propelling it. See “Spaceguns” in
Appendix H, “Sample Programs’;

(F) You can create a random traffic jam that moves
perpetually with graphic strings. Chapter 18 shows you
how.

(G) Chapter 16 shows how to create this “Talking Teacher” by
making the T.V. sound your own taped voice.

(H) This “Etch-a-Sketch” program uses high resolution graphics.
Pressing the */” key changes the colors (I). See Program Listing
#1 in Part A of Section IV for the program listing.

(J) This “Kaleidoscope” program is listed in Appendix H, Sample
Programs.

HIGH RES DLW T

NOTES:

143

(OG9 ' ., We're calling you a programmer, because that’s what you are.
(Y ; You've learned practically the entire BASIC programming
Il = language.

As you know by now, there are as many ways to use the
Computer as there are types of people. What you do now
depends on which type you feel like you are right now.

By

OFFICIAL

Radio
Jhaek

PROGRAMMING
AWARD

144

A CREATIVE SORT

You probably want to do a lot more with color
graphics. That’s why you bought the Color Com-
puter in the first place! The next section,
“Graphics with Pizzazz,” is devoted to you.

A PERSON
ON THE GO

Enough of this reading and learning — you’ve got
a lot of ideas and you're ready to start program-
ming! We think that’s great, and we won’t get
our feelings hurt if you don’t read any more of
this book. Honest!

A PRACTICAL
BUSINESS TYPE

All of this has been fun, but you're ready to put
the Computer to work! Skip section two and go
straight to section three, “Getting Down to Busi-
ness.” We come down to earth there and get very
practical.

A TECHNICAL WHIZ

Armed with a strong curiosity and some staying
power, you can step into section four, “Don’t
Byte Off More Than You Can Chew.” There we
show you how to change some of the inner work-
ings of your Computer to do high resolution
graphics and to call out machine-language pro-
grams.

145

SECTION II

Those of you who want to write colorful and exciting programs will defin-
itely want to read this Section. Here, we’ll put pictures on your screen that
move, dance, and even talk,

To keep things simple, our program examples are short. Once you under-
stand what we’re doing, you can easily create your own much more impres-
sive programs.

CHAPTER 15

e Gpao
.- oo
D [<]
o -]
g Q
Q%o 0CoQ

MOVING PICTURES

Ready to put some life into your programs? Animation is the key to making
your graphics programs fun.

There are two ways to program graphics. The first is by using SET and RESET

to position a “dot” horizontally and vertically. We’ll use this method first. In
Chapter 18 we’ll introduce a new method to you.

Type:
PRINT ASC(“A"")

and the Computer prints:

65
65 is the “ASCII” code for the character A. Type: “ASCII” stands for the American
Standard Code for Information In-
PRINT CHRS(65) (ERTER terchange. By using these standard

codes, your Computer is capable of

- communicating over the tel
and the Computer prints A, to tell you that the CHaRacter that code number with other comi;uters. g

65 represents is A.

Look at the list of “ASCII Character Codes” in your Appendix. Each character on
149

We’ll talk about some more uses for
CHRS$ later on in this sectlion.

Need to review INKEY$2See Chapter
13.

150

your keyboard has a code. Try testing some of the other characters. ..

So how does this help with graphics? With most of the characters on your
keyboard, you can program what your Computer should do when you type
them. For example, you could type these lines in your program:

10 INPUT A
20 IFA = "W” THEN H=H - 1

to tell the Computer what to do when you type the character W.
However if you try to substitute the & key for W, in line 20, the Computer

will not let you do it. This is because the Computer has already decided what to
do when you type the key.

To get around this, we can use CHR$(8) to represent the (& character. Type
NEW to erase your Computer’s memory and type:

10
20
25
30
40
50
60
65
70
75
80

CLS(0)

H =63
SET(H,14,3)

A$ = INKEY$

IF A3 = CHR$(8) THEN 60
GOTO 30
H=H-1

IFH <OTHEN END
SET(H,14,3)
RESET(H + 1,14)
GOTO 30

RUN the program. Press the & character. Each time you press it, it back-
spaces the blue dot.

Line 30 tells the Computer to label whatever key you are pressing or not
pressing as A$. If A$ equals the character represented by code 8 — the
character — then the Computer will go to line 60.

In lines 60 and 70 it “backspaces” H, the horizontal coordinate and SETs a
blue dot. Then, in line 75, it RESETS or blacks out the previously SET blue
dot.

Write some more lines to the program so that when you press the &
character, the Computer will move the dot forward.

DO-IT-YOURSELF PROGRAM

Our answer is in the back of this book.

A TRAIN THAT MOVES

Now that you understand CHRS$, you can use it in a moving picture.

151

Programming will be much easier if
you use this grid to plan your graph-
ics in advance. Use pencil or make
some photo copies of it.

| Want a review of this? We talk about
| itin Chapter9.

Press (BRERK) to get out of program.

152

Before writing the program, we will draw a grid of what it will look like, using
the grid in Appendix D, “Graphics Screen Locations”.

Our scene will look something like this:

4 .)

i
J
o
1
=
g
=
N
11

\
_ J
Notice how the grid is divided into blocks — the groupings outlined with the
dark lines. Each block contains 4 dots. All four dots in a block must be:

¢ all one color, or
e one color and black

Since the track markings are black, we can let them share the same block as
the green grass.

Let’s create the scene first. After typing the lines to create each part of the
scene — the sky, grass, tracks, and train — you might want to RUN the pro-
gram to see what it looks like.

To make the sky cyan, erase memory and type:

10 CLS(6)

For green grass type:

20 FORH = 0T063
30 FORV = 227031
40 SET(H,V,1)
50 NEXT VH

This SETs every dot green (color # 1) from Horizontal locations 0 to 63 and
Vertical locations 22 to 31. Notice that line 50 actually contains two instruc-
tions:

NEXT V
NEXT H

To make the track markings, type:
60 FORH = 0 TO 63 STEP2

70 RESET(H,22)
80 NEXT H

This blacks out (RESETS) every other dot of the green grass in vertical loca-
tion 22.

To make the train, type:

90 FORV = 20 TO 21

100 FORH = 0 TO 15

110 SET(2 + H,V,3): SET(20+ H,V.3)
120 NEXTH,V

This sets a train with two cars, each 16 dots long (0 to 15). One begins at
horizontal location 2 and the other begins at location 20.

RUN the program to make sure your scene looks like the one we graphed
above.

Looks the same? Now we’ll make the train move forward. Type:

Since we haven’t put a GOTO line in
the program to set a perpetual loop,
your screen will have a green stripe
at the top with the OK message.

153

154

F = 0 at this point.

200 A$ = INKEYS
210 IF A = CHRS$(9) THEN GOSUB 1000
220 GOTO 200

This simply tells the Computer that IF you press the £ key — the character
represented by code number 9 — THEN the Computer will go to a subroutine
in line 1000. Here’s the subroutine. Type:

1000 REM FORWARDS

1010 IFF > 26 THEN RETURN

1020 FORV = 207021

1030 FORH = 0T01

1040 SET(2+F+H,V,6): SET(20+ F + HV,6)
1050 SET (18 + F+H,V,3): SET(36+ F+ H,V,3)
1060 F=F + 2

1070 GOTO 1000

RUN the program. Press the 5 key and the train will move forwards.

Line 1040 SETs the first block of each car — the blocks beginning at locations 2
and 20 — the color of the sky.

Line 1050 SETs one block ahead of each car — the blocks beginning at loca-
tions 18 (2 + 16) and 36 (20 + 16) — the color of the train. After the Computer
RUNSs line 1050, the screen looks like this:

& . 7 - P

See how each car has moved over one block. Of course it will only look like this
for a split second. Line 1060 adds 2 to F to make it equal 2. Line 1070 sends the
Computer back up to do the routine again.

The second time through the routine, the blocks beginning at locations 4 (2 +
F) and 22 (20 + F) are SET the color of the sky and the blocks beginning at
locations 20 (18 + F) and 38 (36 + F) are SET the color of the train. This makes
the train move over another block:

(:] 2 Bl s N

& y

The train continues to “move,” block by block, until it reaches the end of the
screen. This happens when F equals 26. After this happens line 1010 will RE-
TURN the Computer back to line 220.

Want to make the train go backwards? Add these lines

215 IF A$ = CHR3(8) THEN GOSUB 2000

2000 REM BACKWARDS

2010 IFF < O THEN RETURN

2020 FORV = 207021

2030 FORH = 0T01

2040 SET(0+F+H,V3): SET(18+ F + H,V,3)
2050 SET(16+F+H\V6): SET(34+F+H,V,6)
2060 NEXT H,V

2070 F=F—-2

2080 GOTO 2000

155

RUN the program. Press & and the train will go backwards. Press & and it
will go forwards.

The method we just showed you works great in getting a small and simple
image to move. However, if you want to move a larger, more complicated
image, you’ll prefer the method that we use in Chapter 18.

LEARNED IN CHAPTER 15

bl i
. 5
8 BASIC WORD |
|
e ASC [
rEN CHRS$ 2
R T Em—
WS B T e T SR N A S CO R
NOTES:

156

NOTES:

157

Ao Bb Cc D4 Be FF Gg Hh Ti Jy Kk LI Mm Nn Oo PpQq

CHAPTER 16

'y

R TEACHER

THE TALKING COMPUTER TEACHER

Who says the Computer can’t talk? Its voice, though, will sound strangely like
your own , . .

We will get the Computer to talk by using your own taped voice. By doing this,
you'll greatly magnify the interest and fun in your programs — particularly
games and teaching programs. Even if you don't have a tape recorder, you’ll
still want to use some of the graphics ideas we have in this Chapter.

Unplug the three-pronged cable connecting your tape recorder to the Com-
puter. Put in a tape, rewind it, press the PLAY and RECORD buttons, and talk
into the microphone. (Plug in a microphone if your recorder doesn’t have one

built in.) Say whatever you want. Even if you don’t have a microphone,
you can try this program using a tape
Now type this program: of music or one of your program tapes.
5 CLS
10 INPUT “PRESS <ENTER> TO HEAR THE RECORDING"; A%
20 MOTOR ON
30 AUDIO ON

Ready? Before running the program you need to prepare your tape for playing:

e rewind the tape with your recording

159

:Chapter 8 shows how to connect i.

160

A
°o:o;o
! =
- --'-';J

e connect your tape recorder to the Computer
e press the PLAY button on your recorder
e turn up the volume on your T.V.

RUN the program. You’ll hear your voice over the T.V.

MOTOR ON turns on your cassette recorder. AUDIO ON connects your re-
corder’s sound to the T.V. speaker.

There’s a way of programming your tape recorder to stop, but for now simply
press the RESET button. It’s on the back right-hand side of your keyboard
(when you’re facing it). LIST your program. It’s still intact.

Add these lines:

35 CLS

40 A% = INKEY$

50 PRINT @ 225, “PRESS <X> TO TURN OFF RECORDER"
60 IF AS<<> “X'"THEN 40

70 AUDIO OFF

80 MOTOR OFF

Prepare your tape for playing and RUN the program.

Line 40 tells the Computer to label whatever key you are pressing or not
pressing as A$. If you are not pressing an “X”, line 60 sends program control
back to line 40. If you do press an X the recorder’s AUDIO connection and

MOTOR are turned off.

Now that you understand how it works, you’re ready to record the Computer
teacher. Ham it up a bit. Here’s the script:

SCRIPT

“Hi, I'm your talking Computer teacher. The first lesson is
math. I will give you a series of addition problems. Press
the ‘W’ key—-"

(pause for a few seconds)

“you’ll hear that every time you give me a wrong answer.
Press the ‘R’ key—-"’

(pause for a few seconds)

“that’s what I’ll reward you with when you answer cor-
rectly. I won’t talk to you again until you give me three
correct answers. Press the ‘G’ key to begin.”

(pause for a few seconds)

“Hello again. Now is a good time to start the next lesson. I
don’t have another lesson, though, so I'm ending the pro-
gram. Press the ‘E’ key to turn off the cassette.”

161

162

This program is a little long but we
think you'll enjoy it. If you want, you
. can go on to the next chapter and
come back to this later.

Finished? The next thing to do is draw the talking teacher. Here’s our grid of
what it will look like:

FDG‘ ; [: : 5 _.,:)/

iy
Wee,
e

IS

Draw the mouth first. Erase memory and type:

5 CLS(0)

200 FORH = 26T0 35
210 FORV =16T021
220 SET(HVA)

230 NEXT VH

That’s a closed mouth. To make it talk, type:

500 RESET(30,18): RESET(30,19)
510 GOTO 200

and RUN. Not as good looking a mouth as mine, but it’ll do. Now draw the
face. Type:

100
110
120
130

FORH = 16 TO 47
FORV = 4T023
SET(H,V,5)

NEXT V,H

and the body. Type:

140
150
160
170
180

FORH = 0T0O 63 STEP 4

FORV = 247031

SET(H,V,2): SET(H + 1,v,2)
SET(H + 2,V,7): SET(H + 3,V,7)
NEXT V.H

and the eyes. Type:

300
310
320
330
340

FORV =10T011

SET(24,V,3): SET(25,V,3)

SET(36,V,3): SET(37,V,3)

NEXT V

PRINT @ O, "THE TALKING COMPUTER TEACHER"”

RUN it now. Want to make the eyes blink? Type:

505

IF RND(4) = 4 THEN SET(24,10,5): SET(37,10,5)

and RUN. That’s the talking teacher.

Now get it to talk. Type:

400
410
420
430
440
450

2000
2010

n

MOTOR ON

AUDIO ON

A$ = INKEY$

IF A$ = "G THEN MOTOR OFF: END

IF A$ = “W” THEN MOTOR OFF: GOSUB 2000
IF A$ = “'R” THEN MOTOR OFF: GOSUB 3000

FORT = 176 TO 89 STEP —10
SOUNDT, 1

2020
2030

3000
3010
3020
3030

Remember, you can always press
RESET to stop your recorder when
it is connected to the Computer.

NEXTT
RETURN

FORT = 89 T0 176 STEP 10
SOUNDT, 1

NEXTT

RETURN

163

Before RUNning the program, prepare your tape for playing (rewind it, connect
the recorder to the Computer, and press the PLAY button). Now RUN it . ..
Do what your voice tells you to do.

Working so far? When you press W you should hear descending tones; R gives
you ascending tones. G just ends the program. That’s because you haven’t
typed the arithmetic routine yet.

Change line 430 and add line 460:

430 IF A$ = “G” THEN MOTOR OFF: GOSUB 1000
460 IF AS = “E” THEN MOTOR OFF: END

I

and add the arithmetic routine:

1000 X = RND(100):Y = RND(100)
T . 1010 PRINT @ 0, "WHAT IS” X “+ " Y
s e 1015 PRINT @ 20,
| - 1020 INPUT A
1030 IFA = X + Y THEN GOSUB 3000:C = C + 1
1040 IFA <> X + Y THEN GOSUB 2000: PRINT @ 0, “WRONG — THE
L RSN . ANSWER IS X + Y

Notice line 1015, It sets the PRINT LERD) A8 & STHE BRI

e, 1070 cotor000

Rewind your tape and press PLAY. RUN the program . . .

There you have it. The Talking Computer Teacher. Perfect for making arith-
metic fun.

164

LEARNED IN CHAPTER 16

BASIC WORDS

MOTOR

NOTES:

165

CHAPTER 17

1

000G9
&

gadgl
]
009

a

GAMES OF MOTION

Ready to play a little video tennis? How about some target practice or space
games? You can teach your Computer to play any of these games as soon as you
learn one more BASIC word. That word is POINT, and we’re devoting this

whole Chapter to it.

Erase memory and type this program:

5

10
20
30

40
50
60
70
80
100
110

CLS(0)

FOR X = 1 T0 5

SET(RND(64) —1, RND(30)+1, 8)

NEXT X

FORV = 2 T0O 31

FOR H = 0 TO 63

IF POINT(H,V) <> 0 THEN GOSUB 100
NEXT H)V

END

PRINT @ 0, “LOCATION” H “,” V “IS SET”
RETURN

In line 60, the Computer scans each POINT (dot) from vertical location 2
through 31 and horizontal location 0 through 63 to see if it is lit up. If it is lit
up—that is, the POINT does not equal 0—line 100 prints its horizontal and

vertical location.

167

Delete lines 40, 50, and 70 and change line 10. Type:

40
50
70
10 FOR X = 1 T0O 300

Now change lines 60 and 100, so that if the POINT at location 63, 31is SET, the
Computer will print a message.

PROGRAMMING EXERCISE

This 1s how we did it:

60 IF POINT(63,31) <> 0 THEN GOSUB 100
100 PRINT @ 0, “LOCATION 63, 31 IS SET”

Erase memory and type this program:

5 CLS(0)

10 € = RND9) -1

20 SET(31,15,0)

30 IF POINT(31,15)=2 THEN PRINT @ 0, “LOCATION 31,15

IS YELLOW”;
40 IF POINT(31,15)=3 THEN PRINT @ 480, “LOCATION 31,15
IS BLUE";

50 FOR T = 1 TO 1000: NEXT T

60 GOTO 5

168

RUN it and watch the screen for a while. POINT not only checks to see
whether a particular POINT on the screen is lit up, it also checks to see if it is
lit up a certain color. The POINT will equal 0 if it is not lit up. If the POINT is
lit up it will equal one of the color code numbers listed in Appendix B.

Add two lines to the program so the Computer will also check to see if the
POINT at location 31,15 is GREEN or RED.

PROGRAMMING EXERCISE

43 IF POINT(31,15)
IS GREEN”

45 IF POINT(31,15)
IS RED”

1 THEN PRINT @ 160, “LOCATION 31,15

]

4 THEN PRINT @ 320, “LOCATION 31,15

?‘{i PLOTTING THROUGH ASTEROIDS

In this game, we’ll be using the right joystick, so make sure it’s connected.

We can create asteroids like the way we SET the random POINTS above. Erase
memory and type:

5 CLS (0) 20 SET (RMD(64) —1, RND (30)+1,8)
10 FOR X = 1 TO 200 30 NEXT X

169

212 FOR H
214 FOR V

170

ATO A+1 216
BTOB+1

To SET the planet your ship must reach, type:

40 FOR H =
50 FOR V =
60 SET(H,V,3)
70 NEXT V,H

54 TO 63
28 TO 31

To read the right joystick’s position, type:

100 A = JOYSTK(Q)
110 B = JOYSTK(1)
120 B = B/2

130 B = INT(B)

A reads the horizontal coordinates (0-63) and B reads the vertical coordinates
(0-63). Since the highest vertical position on your screen is 31, we had to add
lines 120 and 130.

To SET the entire block surrounding the joystick’s position, add these lines:

200 IF INT(A/2) <> A/2 THEN A
210 IF INT(B/2) <> B/2 THEN B
220 FORH = ATO A + 1

»230 FORV = BTOB + 1
240 SET(H,V,6)

250 NEXT VH
999 GOTO 100

A~ 1
B 1

Lines 200 and 210 make sure that the first horizontal and vertical dots SET are
even numbers and lines 220 through 250 SET the entire block.

RUN the program. Move your joystick around. The cyan colored line will move
wherever you position the joystick.

Now make a game out of it. Type:

IF POINT(H,V) = 8 THEN SOUND 128,1: T=T+1
218 NEXT VH

RUN it again. Each time you hit an orange POINT, the Computer will SOUND
a tone.

Notice that line 216 does two things IF the POINT is orange:

e it SOUNDs a tone
e it adds 1 to T, the counter

Add these lines to your program:

235 IF POINT(H,V) = 3 THEN PRINT @ 0, “ CONGRATULATIONS
— YOU MADE IT”: END

300 PRINT @ 28, T

310 IF T > 10 THEN 1000

1000 FOR X = 1 TO 40

1010 CLS(RND(8))

1020 SOUND RND(255), 1

1030 NEXT X

1040 PRINT @ 228, “YOUR SPACESHIP EXPLODED"

and RUN it ... Would you like to have directions printed on the screen? Add
these lines:

80 FOR X = 1T0 8

82 READ A%

84 PRINT @ 0,A%

86 FOR Y = 1 TO 1500: NEXT Y

88 NEXT X

90 R3$ = INKEY$: IF R$ = “ THEN 90

92 FORH = 4 TO 63
94 SET(H,0,8): SET(H,1,8) &
96 NEXT H

2000 DATA YOUR GOAL IS TO PLOT A COURSE
2010 DATA TO GUIDE YOUR SPACESHIP

2020 DATA THROUGH THE ASTEROIDS

2030 DATA TO THE BLUE PLANET

2040 DATA HIT MORE THAN 10 ASTEROIDS

2050 DATA AND YOUR SPACESHIP EXPLODES!!
2060 DATA PRESS ANY KEY WHEN YQUR SPACE-
2070 DATA SHIP IS AT TOP LEFT CORNER

171

172

LEARNED IN CHAPTER 17

BASIC WORD

POINT

NOTES:

NOTES:

173

=S
=
3
3

FASTER THAN MOTION

FASTER THAN MOTION

In this Chapter, we’ll show you an alternate way to program graphics which we
think you’ll like. In many cases, it will make programming simpler, and it will
definitely speed up your moving picture programs.

Type:
PRINT CHR$(128)

The Computer prints a black block which looks like this:

l y

Try some more numbers. Type:

PRINT CHR$(129) (ENTER
PRINT CHR$(130) (ENTER)
PRINT CHR$(131) (ENTER)

The Computer prints three blocks with different combinations of green and
black:

175

176

A grid of “PRINT @ Screen Loca-
tions” is in Appendix C. (We ex-
plained how to use it in Chapter 7).
Be sure to type the semi-colon.

128 129
136 137

Since the green background makes it difficult to see the outline of the blocks,
type this program. It will print the first block against a buff background:

10 CLS(5)
20 PRINT @ 239, CHR$(129);
30 GOTO 30

Remember CHRS$ from Chapter 15?7 CHRS$ converts a code to the character it
represents. For example, CHR$(65) converts the code 65 to the character “A”.
The codes above — 128, 129, 130 and 131 — are codes for graphics characters.

Look at “Graphics Screen Location” in Appendix D. As we explained earlier the
darker lines divide the grid into blocks. Each block contains four dots. These
dots can be arranged in sixteen ways to form these graphics characters;

130 131 132 133 134 135

138 139 140 141 142 143

To print all these graphics characters, type and RUN this program:

10 CLS(5)
20 FOR C = 128 TO 143
30 PRINT @ 0, “PRESS ANY KEY TO CONTINUE";

40 PRINT @ 173, C;
50 PRINT @ 240, CHR$(C);
60 K$ = INKEY$: IF K$ = " THEN 60

70 NEXT C
80 GOTO 10

Line 50 prints the graphics characters for codes 128 through 143 at location 240
on your screen.

... Try something a little different. Type:
PRINT CHR$(129 + 16) (ENTER

The Computer PRINTs the graphics character for 129, except the area that
should be green is yellow.

Type:

PRINT CHR$(129 + 32) (ENTER
PRINT CHR$(129 + 48) (ENTER
PRINT CHR$(129 + 64) (ENTER

These are the numbers you can add to the graphics character codes to create
different colors:

16 — yellow
32 — blue

48 — red

64 — buff

80 — cyan

96 — magenta
112 — orange

To see all the different colored characters, add these lines and RUN the pro-
gram:

Know why it’s important to type a

semi-colon at the end of these

PRINT @ lines? Try it with and |

without the semi-colon.

The semicolon makes the Computer
stop printing as soon as it prints
your characters. Otherwise, it will
continue printing its customary
green background for the rest of the
line.

Notice thai these numbers are all
multiples of 16. (16 = 16*1; 32 =

16*2; 48 = 16*3... 112 = 16*7). ;

177

15 FOR X = 0 T0 7

17 IF X = 1 THEN CLS(1)

40 PRINT @ 170, C “+" X * 16;
Ifyou prefer, you can use the formula 50 PRINT @ 240, CHR$(C + X * 16);
on your Quick Reference Card. I’ll 75 NEXT X
give you the same resulls.

Whrite three lines to create the characters below. Make the first buff; the second,
magenta; and the third, blue:

PROGRAMMING EXERCISE

Answers:

PRINT CHR$(133 + 64)
PRINT CHR$(137 + 96)
PRINT CHR$(140 + 32)

Since these are characters, just like A, B, C, and D are, you can treat them the
same way as strings. For example, you can combine and store them just as you
would combine and store strings. Erase memory and type:

178

10 A$
20 BS

CHR$(129+32) + CHRS$(131+ 32)
CHR$(133+112) + CHR$(143+112) +

CHR$(130+112)

and you can position them at, say, the center of the screen in the same way you
would position two words — by using PRINT @. Type:

30
40
50
60

CLS(O)

PRINT @ 237, AS;
PRINT @ 241, BS;
GOTO 60

and RUN the program. the Computer prints the images of a blue car and an
orange truck at the center of your screen.

Using graphics characters, write a program to create this image in the center of
your screen. Make the chairs yellow and the table orange:

DO-IT-YOURSELF PROGRAM

Note the difference. You PRINT
graphics characters using PRINT
@ Screen Locations (Appendix C).
You SET “dots” using Graphics
Screen Locations (Appendix D).

179

This is how we did it:

10 LC$ CHR$(139+16) + CHRS$(130+16)

20 TA$ = CHR$(142+112) + CHRS$(140+112) +
CHR$(141 +112)

30 RC$ = CHR$(129+16) + CHR$(135+16)

40 CLS(®)

50 PRINT @ 236, LC3 + TAS$ + RCS;

60 GOTO 60

TRAFFIC JAM

Erase memory and type:

10 A = RND(7) * 16: B = RND(7) * 16
20 A3 CHR$(129+A) + CHR$(131+A)
30 BS CHR$(133+B) + CHR$(143+B) + CHR3(130+B)

RUN the program and ask the Computer to print A$ and B$. RUN it and print
A$ and B$ again. Repeat this several times. . .

Each time you run the program, the Computer creates a randomly colored car
and truck. Type:

To review LEN, see Chapter 12.

40 IF RND(2) = 2 THEN VE$ = A$ ELSE VE$} = B$
RUN the program and PRINT VE$ several times. Sometimes you’ll get a car;

sometimes a truck. The Computer creates a randomly colored car or truck — at
random.

Now you can make a traffic jam. Type:

50 IF LEN(TR$+ VE$+SP$) > 32 THEN 100 70 GOTO 10
60 TRY = TR$ + VES 100 PRINT TR$

180

RUN the program several times. Each time, the Computer creates a random
traffic jam 32 characters long. To make it move, type:

100 INPUT “SPEED(1 - 200)";S
110 FOR P = 0 TO 480

120 PRINT @ P, TRS;

130 FOR X = 1 TO S: NEXT X

(]
140 CLS(0) & &
150 NEXT P
and RUN. The traffic will move from the top left corner to the bottom right)

corner of your screen. : }
. . &5/
Line 120 PRINTS the traffic AT location P (0 through 480).

Line 130 puts a pause in the program for the speed you requested.

Line 140 clears the screen so that the traffic can be printed at the next location. We showlyor koo e LB Lo

RIGHTS in Chapter 12.
To make the traffic move across your screen perpetually, type:
110 P = 320
150 P = P + 1

160 IF P = 351 THEN 110

170 PRINT @ P, LEFT$(TRS, 352 =P);
180 PRINT @ 320, RIGHT$(TRS, P—320);
190 GOTO 130

and RUN.

MAKING LARGER PICTURES

Up to now in this Chapter, we have not added height to our graphic images. To
print this mouth, we must form three rows of graphic strings:

181

To create R1$ and R3$, erase memory and type:

10
20
30
40

characters.

50
60
70

80

90

100
110
120
130
140
150

FOR X = 1T0 9

R1$ = R1$ + CHR$(131+48)
R3% = R3% + CHRS$(140+48)
NEXT X

RUN the program and PRINT R1$ and R3$. R1$ now equals a string of nine
number 131 + 48 graphics characters; R3% equals nine number 140 + 48

To create R283, type:

T1$ = CHR$(137464)
T2% = CHR$(136+64)
R2% = CHR$(138+48)+T1$+T1$+ T2+ T1$+T1$+T25+T1S +

CHR$(133 +48)

and to print the entire mouth on your screen, type:

CLS

PRINT @ 5, “LOCATION";
INPUT L

CLS(0)

PRINT @ L, R1S$;

PRINT @ L + 32, R2%;
PRINT @ L + 64, R3$;
GOTO 90

Line 120 PRINTS the first row — R1$ — AT L, the location you requested. Let’s
assume this is location 40.

182

Line 130 PRINTS the second row — R2$% AT L+ 32, which is location 72. Notice
that since there are 32 locations to a row (0-31), location L + 32 is directly
under location L.

Line 140 PRINTs R3$ AT L + 64, which is directly under L. + 32 (R2%’s
location).

With this method, we have made each row a string. We could also make the
whole mouth a string called MO$. To do this, we need to combine all the rows
— R1$, R23, and R3$ — plus BKS$, the background between the rows:

RI$ —< e
i

Type:

1 70 32-9

72 FOR X =
= CHR$(128) + BK$S

74 BK$
76 NEXT X
78 MO%$ = R1$ + BK$ + R2$ + BK$ + R3$%

Since the entire mouth is now one string, you only need one PRINT @ line.
Delete lines 130 and 140 and change line 120:

120 PRINT @ L, MO$;

and RUN it.

By building graphics strings, you’ll be able to make your animated programs
run fast. In the next Chapter, we’ll show you how to make a dancing computer
out of these graphic strings.

183

184

LEARNED IN CHAPTER 18

BASIC CONCEPT

graphics characters

NOTES:

NOTES:

185

CHAPTER 19

%
) 8000
[&

o09)

LET'S DANCE

This chapter will give you a chance to catch your breath and, at the same time
review what you’ve learned. We’re not going to teach you anything new. We’re
just going to have a little fun building a “dancing computer” out of graphics

strings.

Here it is at rest:

e
N T

C¥

|28 U

64

U
B0 [] R) o e O sl N R

Since this will take up a lot of string space, type:

1 CLEAR 1000

-
-

g
-

G

el 9D

187

to reserve plenty of space.

To form the strings made up of black graphics characters, type:

10 D$ = CHR3$(128) + CHR$(128)
On your screen, the light green will 20 G$ = D$ + CHRS$(128)
be buff; the dark green, red; and the 30 BS = G5 + D%
grey area, black. 40 BK$ = B$ + B$ + B$ + D$ + D$%

RUN the program and ask the Computer to PRINT B$, D3, G§, and BK$:

PRINT B$ (ENTER)

PRINT D$
B9 is actually five characters long.
On your screen it will line up with

the word PRINT. PRINT G$ (ENTER)

DS is two characters; G§ is three;
BKS is nineteen; A$ is three.
PRINT BK$

To form the buff colored strings, type:

50 C$ = CHRS$(143+64)
60 F$ = C$ + C%
70 A$S = F$ + C$

RUN the program. PRINT A$, C$, and F$:
PRINT A%

188

PRINT C$

PRINT F$ (ENTER §
C$ is one character long; F$ is two;

E$ is seven.

To form E$, the red string, type:
80 FOR X = 1T07

90 E$ = E$ + CHR$(143+48)
100 NEXT X

RUN the program and print E$:
PRINT E$

Form the strings for HD$, BD$, and L18$, so that after RUNning the program,
you can PRINT them like this:

PRINT HD$ (ENTER)

PRINT BD$

PRINT L1$ (ENTER

P e e
! . 'l

RN AN

189

PROGRAMMING EXERCISE

Here is how we did it:

110 HD$ = B$+ A%+ B$ + BKS + BS + A$ + BS + BKS

120 FOR X = 1 TO 4

130 BD$ = BD$+D$+CH+ES+CSH+ DS+ BKS

140 NEXT X

150 L13 =G$+ES+GS+BKS+GS+ FS+ GS + F$ + GS + BKS + G$ +
F$+GS+ F$+GS

190

To make the Computer dance, we’ll give it two more leg positions:

Add lines to your program to create the strings 1.2$ and L3$.

191

192

500
510
520
530

1000
1010
1020
1030

PROGRAMMING EXERCISE

We did it this way

160
170
180

190

To see the Compu

INPUT “LOCATION (0-243)"; L
INPUT “POSITION (1-3)"; P
GOSUB 1000

GOTO 500

CLS(0)

PRINT @ L, HD$ + BDS;

ON P GOSUB 2000, 3000, 4000
PRINT @ L + 32 * 6, LGS; :

H$ = G$ + G$
= H$ + D%
2% = GS + E$ + AS + BK$ + G +
F$ + H$ + F$ + BK$ + G$ + F$
L3 = A$ + E$ + G$ + BK$ + F$ + H$ +
F$ + G$ + BK$ + I$ + F$

ter’s three positions, add these lines to your program:

2000 LG$ = L1$: RETURN
< 3000 LGS = L2§ : RETURN
RETURN 4000 LGS = L3$: RETURN

RUN the program. Try different locations and positions.
Line 1010 prints the head and the body at the location you requested.

Line 1020 sends the program to a subroutine which makes LG$ equal to L1$,
L2%, or L3$% (depending on whether you typed 1, 2, or 3 for P). Line 1030 then
prints LG$ directly under the head and body, which is 6 columns below the
location you requested.

By controlling these locations and positions, you can easily make the Computer
move. This is how we did it. Change lines 500 and 510 and add these lines:

500 FOR X = 1 TO 17
510 IF X = 1 OR X = 5 THEN RESTORE

5 INPUT “SPEED (1-10)"; S

515 READ L, P, T, D

525 SOUND T, S * D

527 NEXT X

5000 DATA 137, 2, 89, 1, 240, 1, 133, 2
5010 DATA 137, 3, 159, 1, 229, 1, 133, 2
5020 DATA 5, 1, 89, 1, 229, 1, 133, 2
5030 DATA 5, 1, 147, 1, 229, 1, 159, 1
5040 DATA 229, 1, 147, 1, 5, 1, 133, 1
5050 DATA 229, 1, 125, 2, 5, 1, 133, 1
5060 DATA 229, 1, 147, 2

RUN the program and watch it dance.

Line 515 reads the Location, Position, Tone, and the tone’s Duration from lines
5000 through 5060. The first time through the program the Computer will
appear at Location 137, Position 2, and, in line 525, will SOUND Tone 89 for a
Duration of S times 1. The second time through the program the computer will
appear at Location 240, Position 1, and will SOUND Tone 133 for a Duration of
S times 2.

As you can see, by adding more positions, you can make this more entertaining.
Try it, or look at some of our sample programs in the back for more ideas on
how to use graphics characters.

Remember READ and DATA from
Chapter 10?

193

SECTION IIIL

| cETTING DOWN
| ToBUSINESS

Do you have some lists or files you want the Computer to manage? Here,
you'll get the Computer to sort, compare, store, and print your information
faster and more accurately than you could ever do it by hand.

These are some things the Computer has been known to manage:

1. shopping items 16. inventory
2. checkbook receipts 17. sales records
3. winter storage items 18. billing
4. garage sale items 19. payroll
5. tax records 20. payable records
6. medical bills 21. letters
7. addresses 22. poems
8. phone numbers 23. songs
9. appointments 24. essays
10. stock prices 25. test questions
11. book collections 26. term papers
12. coin collections 27. game rules
13. stamp collections 28. game plays
14. program collections 29. cards in a deck
15. record collections 30. card players’ hands

CHAPTER 20

(23 B ()
' § o0Ls3

A A (2)—1 (

- L Q\ l.
A || i ' ; B
e INCY L =) BD

IaN=== — |LH¥ on HT@—‘

K06 o = :
v m el

re [[0 (R e
ARG A\ﬁlﬁ% = Jae P
\ &\(lqy 1 Al20) H\‘ &(a!‘)\ e e L/—:&D—- ' B(aY)

-— -

KEEPING TA " .N VE

RYTHING!

KEEPING TABS ON EVERYTHING!

Have you tried yet to write a program to handle a lot of information? If you
have, you’ll be happy to know your Computer has a built in “labeling and
organizing” system to make this programming much easier! !

To begin, how would you get the Computer to remember these election results?

ELECTION RESULTS

District Votes For Candidate A —
1 143 SR
2 215 —
3 125 5
4 331 ’
5 442 =
6 324
7 213
8 115 ; >
9 318 ot
10 314 * oya\l®
11 223 . =
12 152 =
13 314
14 92

For remembering things, we’ve always used variables. To get the Computer to

197

Look at Chapter 2 if you want a
quick review on variables.

Computer types call an entire list of
labeled variables an ARRAY. Each
labeled variable is an item in the
ARRAY.

PROGRAM
10 DATA 143, 215, 125, 331, 442
20 DATA 324, 213, 115, 318, 314
30 DATA 223, 152, 314, 92
40 READ A, B, C, D, E
50 READ F, G, H, I, J
60 READ K, L, M, N
70 INPUT “DISTRICT NO. (1-14)"; Z
75 IF Z>14 THEN 70
80 IF Z=1 THEN PRINT A “VWOTES”
90 [IF Z=2 THEN PRINT B “VOTES”
100 IF Z=3 THEN PRINT C “VOTES”
110 IF Z=4 THEN PRINT D “VOTES"
120 IF Z=5 THEN PRINT E “VOTES”
130 IF Z=6 THEN PRINT F “VOTES”
140 IF Z=7 THEN PRINT G “VOTES”
150 IF Z=8 THEN PRINT H “VOTES”

198

remember the votes for the first three districts, type:

143 (ENTER)
215 (ENTEB)
125

A
B
c

... but there’s a much better way. Type this:

A(1) = 143 (ENTER)
A(2) = 215

A(3) = 125 (ENTER

Each of these variables has a label — A(1), A(2), and A(3). Other than the label,
they’re the same as the ones above. To see that they work the same, type both
of these lines:

PRINT A; B; C
PRINT A(1); A(2); A(3)

They both work the same, right? So why are labeled variables better? Take a
quick look at these two programs. Both do the same thing:

1 PROGRAM 2
160 IF Z=9 THEN PRINT I “WOTES"” 10 DATA 143, 215, 125, 331, 442
170 IF Z=10 THEN PRINT J “WOTES” 20 DATA 324, 213, 115, 318, 314
180 IF Z=11 THEN PRINT K “WOTES"” 30 DATA 223, 152, 314, 92
190 IF Z=12 THEN PRINT L “VOTES” 40 DIM A(14)
200 IF Z=13 THEN PRINT M “VOTES"” 50 FOR X = 1T0 14
210 IF Z=14 THEN PRINT N “VOTES” (60 READ A(X)
220 GOTO 70 70 NEXT X
4 80 INPUT “DISTRICT NO(1-14)"; Z

85 IF Z > 14 THEN 80
90 PRINT A(Z) “VOTES”
100 GOTO 80

The first program uses “regular” variables. The second uses labeled variables.
Labeled variables simply make it much easier to program a large list of infor-
mation.

Type and RUN the second program. Here’s how it works:

Line 40 says make room for a list — an array — of information named A with 14
labeled items.

Lines 50 and 70 set up a loop to count from 1 to 14. Line 60 READs this into
memory:

YOUR COMPUTER’S MEMORY

143 A(B) ——= 115

A(2) ——> 215 A(9) ——> 318
A(3) —— 125 A(10) ——> 314
A(4) —— 331 A(1ll) —— 223
O A(5) ——= 442 A(12) ——> 152
A(6) ——> 324 A(13) — 314

213 A(14) ——>

This stores all the votes in an array named A. Array A contains 14 labeled
items.

Line 80 asks you to INPUT one of the labels, and line 90 PRINTs what you
requested.

Now that you have the votes stored in an array, it’s easy to do things with
them. For instance, if you want your program to be able to change any of the
vote totals, you could add these lines:

Actually, this leaves room for 15 la-
beled items when you count 0 as a
label.

199

200

The name of the array is A. The X
or Z in parenthesis refers to the label
of one of the items.

You don’t need to study these pro-
grams if you're anxious to move on.
We’re just showing some benefits of
using these variables with labels.

District

COoO=-09mC & W+

92
94
96
97
98

INPUT DO YOU WANT TO ADD TO THIS”; R$

I[F R$ = “NO” THEN 80

INPUT “HOW MANY MORE VOTES”; X

A(Z) = A(Z) + X

PRINT “TOTAL VOTES FOR DISTRICT" Z “IS NOW" A(Z)

Or if you want to PRINT a table like the one at the beginning of this chapter,
you could add these lines:

72 INPUT “DO YOU WANT TO SEE ALL THE TOTALS”; S$
74 IF S$ = “YES” THEN GOSUB 110
110 PRINT “DISTRICT", “"VOTES"
120 FOR X = 1 T0 14
130 PRINT X, A(X)
140 NEXT X
150 RETURN
and change line 100:
100 GOTO 72

MAKING ROOM FOR CANDIDATE B

Let’s assume you also want to keep track of the votes for candidate B:

ELECTION RESULTS

Votes for Candidate A Votes for Candidate B

143 678
215 514
1256 430
331 475
442 302
324 520
213 613
115 694
318 420

District Votes for Candidate A
10 314
11 223
12 152
13 314
14 92

We can simply add another array to our program for candidate B. We’ll call this
array B. This program records the votes for candidate A (array A) and candidate
10 DATA 143, 215, 125, 331, 442 8
20 DATA 324, 213, 114, 318@0101:&_ 6@"'- 01‘1.1103 A
30 DATA 223, 152, 314, 92
50 DATA 520, 613, 694, 420, 518 | cleke {%&‘L ooy B
60 DATA 370, 412, 460, 502
80 FOR X = 1 T0 14
90 READ A(X) Reoda onsoy A delo
100 NEXT X
110 FORX=1T014> Qm
120 READ B(X) M Mﬂ.ﬁva B
140 INPUT “DISTRICT NO.”"; Z
145 IF Z > 14 THEN 140
160 IF R$ = “A” THEN PRINT A(Z)
170 IF R$ = “B” THEN PRINT B(Z)

B (array B):
40 DATA 678, 514, 430, 475, 302
70 DIM A(14), B(14) « AeQ. Nueernny
130 NEXT X
150 INPUT “CANDIDATE A OR B”; R%
180 GOTO 140

KEEPING INVENTORY

Arrays are often used to keep track of business records. Write a program to help
a store keep track of its inventory of 12 items:

Votes for Candidate B

018
370
412
460
502

201

202

Item # Quantity

1 33
12
42
13
15
23
25
30
33
27
14
8

OO ~10C & Wk

e
N =D

DO-IT-YOURSELF PROGRAM

Here’s the program we wrote:

10
20
30
40
50
60
70
75
80
90

DATA 33, 12, 42, 13, 15, 23
DATA 25, 30, 33, 27, 14, 8
DIM I(12)

FOR X = 1 T0 12

READ I(X)

NEXT X

INPUT “ITEM NO.”; N

IF N > 12 THEN 70

PRINT “INVENTORY FOR ITEM” N “IS” I(N)

GOTO 70

MEMORY TEST

Ready for a breather. This program tests both yours and your Computer’s

memory. Type NEW to erase your program and type:

5
10
15

20
30
40
50

60
70
80
90
100
110

120

DIM A(T)

PRINT “MEMORIZE THESE NUMBERS"
PRINT “'YOU HAVE 10 SECONDS"”

FOR X = 1T0 7

A(X) = RND(100)

PRINT A(X)
NEXT X
FOR X = 1 TO 460 * 10 : NEXT X

CLS

FOR X = 1T0 7

PRINT “WHAT WAS NUMBER’' X
INPUT R

IF A(X) = R THEN PRINT “CORRECT” ELSE PRINT “WRONG —

IT WAS” A(X)
NEXT X

Line 5 saves room for an array named A with 7 items.

Lines 20 through 50 assign seven random numbers to the array.

Actually, you don’t need this DIM
line if none of your array items use a
label higher than 10. However, it’s
still a good idea to put this line in
your program to reserve just the
right amount of memory.

Rememaber, you can put instructions
on one line, separating them with a
colon. These two instructions put a
ten second pause in the program.

The Computer uses an array to
memorize these numbers. What are
you using?

203

204

If you like, try it on your own first.
We must warn you though — it’s
tricky.

Line 60 puts a ten second pause in the program, and line 70 clears the screen.

Lines 80 through 120 quiz you on each of the seven numbers in array A.

DEAL THE CARDS

Watch carefully while we show you how to use an array to get the Computer to
deal the cards.

To deal 52 random cards, erase your program and type:

40 FOR X = 1 T0 52
50 C = RND(52)

90 PRINT C;

100 NEXT X

RUN the program . . . The Computer deals 52 random “cards”. However, if you
look closely, you’ll see that some of the cards are the same.

Somehow, we’re going to have to somehow keep track of which cards have been
dealt. To do this, we will first build an array named T which contains all 52
cards. Type:

5 DIM T(52)

10 FOR X = 1 T0 52
20 T(X) = X
30 NEXT X

This simply tells the Computer that T(1) = 1, T(2) = 2, T(3) = 3 and so forth
through T(52) which, of course, equals 52.

Now add these lines, which will zero out each card in array T after it is dealt.

Type:

60 IF T(C) 0 THEN 50

80 T() =0

Now the Computer can’t deal the same random card twice. For example, say
the first card the Computer deals is 2. Line 80 changes the value of T(2) from 2
to 0. Now say the Computer deals another 2. Line 60 says that since T(2) now
equals 0, the Computer must go back to line 50 and deal another card.

RUN the program. Notice how the Computer hesitates before printing the last
cards. This is because it’s trying many different random cards first before
finding one which hasn’t been dealt.

If you want to play card games with the Computer, you’ll need to get it to
remember which cards it has dealt. To do this, we can create another array.
We’ll name it array D. Type:

7 DIM D(52)
70 D(X) = T(O)
90 PRINT D(X);

Now array D contains a list of all the cards the Computer dealt in the order This program is a little tough. Skip
that it dealt them. it and come back to it later if it’s
slowing you down too much.

How would you change this program so it would only print your “hand” — the
first 5 cards dealt?

DO-IT-YOURSELF PROGRAM

205

Here’s ours:

5 DIM T(52)
7 DIM D(52)
10 FOR X = 1 TO 52
20 T(X) = X
30 NEXT X
34 CLS
36 PRINT @ 101, ‘... DEALING THE CARDS”
40 FOR X = 1 T0O 52
50 € = RND(52)
60 IF T(C) = 0 THEN 50
70 DIX) = C
75 SOUND 128, 1
80 T =0
100 NEXT X
110 CLS
Line 130 tells the Computer that 120 PRINT @ 107, “YOUR HAND"
whatever it PRINTS next should be 130 PRINT @ 167,
at location 167. 140 FOR X = 1 TO 5
150 PRINT D(X);
160 NEXT X

We will show you a lot more things you can do with arrays in the next chapters.
This is all you need to remember:

v YRR AW\ Vv
N N

\

§ RULES ON ARRAYS
1. There are two kinds of variables:
% A.SIMPLE VARIABLES, such as A, B, C, and D.
B. “LABELED” VARIABLES or ARRAY ITEMS such as A(5), A(3), B(2),
% and B(6).
9. An ARRAY is a group of labeled items which each have the same variable
name. For example, M(2), M(4), M(5), and M(6) all belong an array named M.

206

LEARNED IN CHAPTER 20

BASIC WORD BASIC CONCEPT

DIM arrays

NOTES:

207

CHAPTER 21

AE(2)=" ESEAYS" [
©
A ()= "PoMs " 0/ :

\‘:'
L$ ()="LETTERR!

PUT POWER IN YOUR WRITING

[T

Ty e ‘:-\.“

g L 2)="BACON "

= $ 3)= "porpToEs "

PUT POWER IN YOUR WRITING

In the last chapter, we only used arrays for lists of numbers. But arrays are also
for words. Not just a simple list of words, but as you’ll see in this Chapter, your
Computer can remember, edit, and print an entire essay filled with words.

We’ll start with a simple list of words — a shopping list:

1. EGGS 7. TOMATOES
2. BACON 8. BREAD

3. POTATOES 9. MILK

4. SALT 10. CHEESE

5. SUGAR 11. FISH

6. LETTUCE 12. JUICE

To get the Computer to remember each of these items, we’ll assign each one to
a labeled string variable. For example, for the first three items, you could type:

S$(1) = “EGGS”
S$(2) = “BACON" (ENTER)
S$(3) = “POTATOES (ENTER)

See the dollar sign? That’s the only
difference between these labeled
variables and the ones in the last
chapter.

209

210

To get the Computer to PRINT these first three items, type:

PRINT S$(1), S$(2), S3(3)

Here’s how to put them in a program:
CEREAL[£
5 DIM S$(12)
T 10 DATA EGGS, BACON, POTATOES, SALT
e 20 DATA SUGAR, LETTUCE, TOMATOES, BREAD
S;AJEI‘ 30 DATA MILK, CHEESE, FISH, JUICE

60 NEXT X

70 PRINT “SHOPPING LIST:"

80 FOR X = 1T0 12 .

90 PRINT X; S$(X) P"\m\x&_ m(U.K S#

100 NEXT X

@ 40 FOR X = 1 T0 12 : : s é?
R Q 50 READ S$(U>RHAA-_, M BJQ\O.LA‘ES

L
e.o

This program puts all 12 items into an array named S$ and PRINTS the list.
Add some lines to this program so that you can change any of the items on this
list.

DO-IT-YOURSELF PROGRAM

Here are the lines we added:

110
115
120
130

INPUT “WHICH ITEM NO. DO YOU WANT TO CHANGE"; N
IF N > 12 THEN 110

INPUT “WHAT IS THE REPLACEMENT ITEM’; S$(N)
GOTO 80

In the back, we show how to add or delete items from this list.

WRITING SONG LYRICS

(...APOEM, A LETTER, ETC....)

Want to compose music? Look up
“Music Composer” in the Sample
Programs Appendix in the back of

Here’s a program using an array to help you write song lyrics. Erase memory by the book.
typing NEW and type:

5

10
20
30
40
50
60
70
80
90

DIM A$(4)
PRINT “TYPE 4 LINES”

FOR X = 1 T0 4 ; .
INPUT AS(X) L@»IM Ferenn s s e, A&e
NEXT x_}

CLS
PRINT “THIS IS YOUR SONG:”
PRINT

FOR X = 1 70 4 .
PRINT X; ™ “: AS(X) Pm:rt:u P\§§
100 NEXT X

RUN it. Add some lines so that you can revise any of the lines in the song.

211

DO-IT-YOURSELF PROGRAM

Here are the lines we added:

110 PRINT

120 INPUT “WHICH LINE DO YOU WANT TO REVISE”; L
Havern’t heard of word processing? 125 IF L > 4 THEN 120
It’s a way of getting the Computer to 130 PRINT “TYPE THE REPLACEMENT LINE”
memorize what you type, make 140 INPUT AS(L)
changes to it, and print it out on de- 150 GOTO 50
mand.

WRITING AN ESSAY

(... ANOVEL, TERM PAPER..))

Here is a better program to help you with your writing. Use it along with what
you learned in Chapter 12 and you've got yourself a word processing program:

212

1 CLEAR 1000

5 DIM A3(50)

10 PRINT “TYPE A PARAGRAPH"

20 PRINT “PRESS </> WHEN FINISHED"”

2 30 X =1
5 40 A$ = INKEYS
- 50 IF A$ = “ THEN 40
<C 60 PRINT AS;
70 IF A$ = “/” THEN 110
80 A$(X) = A$(X) + A$
90 IF A$ = ““ THEN X = X + 1
100 GOTO 40
110 CLS
120 PRINT “YOUR PARAGRAPH:"
130 PRINT

140 FORY = 1 T0 X
150 PRINT A$(Y);
160 NEXT Y

Type and RUN the program. Before reading how the program works, try
experimenting with it. Type:

PRINT A3(1)
PRINT A%(2)
PRINT A$(3)

Got an idea how it works? Here is a run down:

Line 1 CLEARS plenty of string space for the Computer to use.

Line 5 saves room for an array named A$ which may have up to 50 sentences.
Line 30 makes X equal to 1. X will be used to label all the sentences.

Line 40 checks to see which key you are pressing. If it is nothing — remember,
“» is nothing — line 50 sends the Computer back up to line 40.

Line 60 prints the key you pressed.

Need a refresher on some of this? We
talk about CLEAR in Chapter 12
and INKEY$ in Chapter 13.

7 “In the Distance...”

213

214

Line 70 sends the Computer to the lines which PRINT your paragraph when
you press the “/” key.

Line 80 builds a string and labels it with number X. X is equal to 1 until you
press a period. Then line 80 makes X equal to X + 1.

For example, if the first letter you press is “R”
A$(1) EQUALS “R”.
If the second letter you press is “O”,

A$(1) EQUALS A$(1) — WHICH IS “R” + “0O”
OR
“RO’)

This might continue until A$(1) equals “ROSES ARE RED”. At this point,
you press “.” A$(1) now equals your entire sentence — “ROSES ARE RED.”
The next letter you press will belong to A$(2).

Lines 140 through 160 PRINT your paragraph.

A WORD PROCESSOR CHALLENGER

Here’s a tough one (... but it can be done! .. .) for those intrigued with word
processing. Make this into a full fledged word processing program which:

1. PRINTSs whatever sentences you want
2. Lets you revise your sentences

You’ll need to review the challenger program we have at the last of Chapter 12.
Our program’s at the back of the book.

DO-IT-YOURSELF CHALLENGER PROGRAM

FOR THOSE WITH A PRINTER

If you have a printer, you're probably ready to put it to use. Connect the
printer’s cable to the jack marked SERIAL I/0 on the back of your keyboard.
Power it up and insert paper. The manual that comes with the printer shows
you how.

Ready? Type this short program:

10 INPUT A%
20 PRINT #-—2, A$

Now type:

LLIST (ENTER

215

... and watch the printer work. This sure will make listing long programs easy!
If your program doesn’t list on the printer, make sure the printer is ON, ON-
LINE, and connected to your keyboard. Try typing LLIST again.

Now RUN the program ... INPUT whatever you want and watch the printer
work.

PRINT # —2, tells the Computer to PRINT, not on the screen, but on device
By e irouble getting into this # — 2, which is the printer. Be sure to include the comma after the 2, or you will

mode? Read the end of Chapter 1. get a syntax error.

Press the (SHIFT) and (0)(zero) keys simultanecously so that the letters you type
appear in reversed colors on your screen (green with a black background). You
are now in an upper/lower case mode. The reversed colored letters are actually
lower case (non capitalized) letters.

Type a letter while holding the (SHIFT) key down. It is a capital letter, so it
appears in regular colors.

RUN your program by pressing the (SHIFT) key while you type RUN:
RUN (ENTER

INPUT a sentence with both upper and lower case letters. Type:

All the letters in RUN should ap-

g M Y PRINTER PRINTS LOWER CASE LETTERS
pearin regular (not reversed) colors.

A printer with upper and lower case letters would come in handy on a word
processor program. Look at the one we discussed earlier in this chapter. How

would you change lines 140-160 so that your paragraph is printed on the printer
rather than your screen?

--

Got the answer? You would simply change line 150 to:

150 PRINT #—2, A$(Y);

216

LEARNED IN CHAPTER 21

BASIC WORDS

LLIST
PRINT # -2

BASIC CONCEPT

string arrays

T am—

217

CHRISTMAS LIST:
) Relanues RECORDS:

CHAPTER 22 : BookS! - Pop |
| . - COUNTRY / WESTERN
Tax RECEIPTS:) | HICTION - CLASSICAL
* Hovse / NON-FICTICN “7--'RocK‘NRou..
- RUSINESS - MYSTERY = JAZZ
- CAR ‘ROMANCE =L \- OPERA
*TRAVEL. = '
* LTILMES . o ol : AR TOR
ENERTA\NM‘E%Q M, § . NUTS

2"6 i ¢ 7)) ‘ » - BaLrs
et /4 i A .'

* WASHERS

TAPE YOUR% COLL ECTION %%
(or your r@@@'ﬁf@U Christmas list,
tax receipts, inventory . . .)

' SCREWS

Qe
n@ﬂbg 0@9 g
e)
Q@ °e
0P090 0OEIO

TAPE YOUR BOOK COLLECTION
(or your records, Christmas list, tax receipts, inventory . .)

You know you can store programs on tape. You can also use tape to store any
lists you want organized. Once you have a list on tape, you can use the time
saving power of the Computer to print it, change it, add to it, or analyze it
anytime you want.

Ready to get organized? We’'ll start with your books. Here’s a very small book
list:

WORKING

CAT’S CRADLE
SMALL IS BEAUTIFUL
STEPPENWOLF

L G

To put this list on tape, and to read it back into your Computer’s memory from
tape, you need a program. You have to type the whole program before you can
see how it works, so be patient with us.

Begin by typing:
10 OPEN “0”, #—1, “BOOKS”
The “ O” stands for OUTPUT-
TING.

219

220

A “file” is a bunch of information —
such as book titles — stored under
one name.

Actually, you can record anywhere
on tape you want.

If you’re not using a RADIO
SHACK tape, make sure you post-
tion it past the beginning leader.

This tells the Computer to OPEN the lines of communication to device #—1
— the tape recorder. We're going to be sending out — outputting — a file of
information and storing it all under the name BOOKS.
Now type:
15 CLS: PRINT “INPUT YOUR BOOKS—TYPE <XX> WHEN FINISHED"
20 INPUT “TITLE”; T3

30 PRINT #-1, T$
40 GOTO 15

This lets you INPUT T$, the title of a book, over and over again. Each time
you INPUT T$, the Computer PRINTSs it — not on the screen, but to device
#—1 which is the tape recorder.

Add these lines:

25 IF T$ = “XX" THEN 50
50 CLOSE #-1

This permits you to type XX when you've finished typing all your book titles.
The Computer then CLOSEs communication to device #—1, the tape recorder.

Add three more lines:

; glli?NT “POSITION TAPE — PRESS PLAY AND RECORD”
4 INPUT “PRESS <ENTER> WHEN READY”; R$

That’s the program. Before RUNning it, you need to:

e Connect your tape recorder. Chapter 8 shows you how.

« Position a tape in the recorder and rewind it to the beginning.

e Press the RECORD and PLAY buttons so that they are both down.

Ready? LIST your program to see if it still looks like ours:

1 CLS
2 PRINT “POSITION TAPE — PRESS PLAY AND RECORD”
4 INPUT “PRESS <ENTER> WHEN READY”; R$

10 OPEN “0”, #—1, “BOOKS" wapo— &«pmn_,.&wm Lo recsrdo

15 CLS: PRINT “INPUT YOUR BOOKS—TYPE <XX> WHEN FINISHED”

20 INPUT “TITLE”; T$
25 IF T$ = “XX” THEN 50

30 PRINT #-1, T$ i ?nmj:m iJ:LLA, SN I‘“@"‘
40 GOTO 15 .
50 CLOSE #-—1 s u-&'w-w Loon In- nacsn Aoy

Got it typed OK? ... RUN it.

Notice that as soon as you press , the cassette motor turns on. The
Computer is OPENing a “file” on tape and naming it BOOKS.

When it asks you for titles, INPUT the four titles we have above and then type
XX:

TITLE? WORKING

TITLE? CAT'S CRADLE
TITLE? SMALL IS BEAUTIFUL
TITLE? STEPPENWOLF
TITLE? XX

Each time you INPUT a title, the Computer PRINTS it in a special place in
memory reserved for the tape recorder. When you've finished, the tape recorder
motor will run again. The Computer is PRINTing all the titles on the tape (line
30) and then CLOSEing communication to the tape recorder (line 50).

Now all the titles are output to tape. To load or input them back from tape,
type:

60 CLS: PRINT “REWIND THE RECORDER AND PRESS PLAY”
70 INPUT “PRESS <ENTER> WHEN READY”; R$%
80 OPEN “IV, #-—1, “BOOKS"

Line 80 OPENs communication to the tape recorder for a file of information
named BOOKS. This time, rather than being OPEN for output, communication

The Computer will clear the screen
after each title.

The “I”’ stands for INPUT

221

222

Are you wondering what the —1
means? EOF returns a —1 if you
have reached the end of the file.

is OPEN for input from the tape recorder.
Add these lines:

90 INPUT #-—-1, T3
100 PRINT T$

Line 90 inputs the first title — T$. Again, T$ is not input from your typing it on
your keyboard. It is input from the tape recorder. Line 100 PRINTs T on your
screen.

Now add these lines:

85 IF EOF (—1) THEN 120
110 GOTO 85
120 CLOSE #-—1

Line 85 says if you are at the End Of this File of BOOKS then go to 120, which
CLOSEs communication with the tape recorder.

BUG: Be sure to put the EOF(—1) line before the INPUT #—1 line.
Otherwise, you'll get an IE error — Input past the end of the file.

List this last part of the program by typing:

LIST 60 —

It should look like this:

60 CLS: PRINT “REWIND THE RECORDER AND PRESS PLAY”
70 INPUT “PRESS <ENTER> WHEN READY"; R$.
80 OPEN “I", #-—1, “BOOKS"” - Q.‘C_mm/&uw iB-T\MJ\cLW
85 IF EOF (—1) THEN 120 . ;
90 INPUT #-1, T$ == \Qu»\fﬂl, Tt j:&,?_k/
100 PRINT T$
110 GOTO 85 :
120 CLOSE #-—1 <2 QD\M—Q-Q_J &.um,q_;tb— W&M;
Now RUN it. Type: Be sure you only press the PLAY but-
ton. Not RECORD. Also, be sure you
RUN 60 rewind the tape.

Follow the Computer’s instructions . . .

When you press ENTER) , notice that the tape recorder motor is running. The If your Computer becomes “hung
Computer is inputting your items from tape. Once they are input, the Computer up” communicating with the tape re-

PRIN'TS the four items on your screen.
Want a quick review ?

s
e
Vi

e

1
2
4

10
15
20
25
30
40
50

60
70

80
85
90

corder, you can regain control by
pressing the RESET button. It's on
the back right-hand side of your key-
CLS board. Then look for missing or mis-

PRINT “POSITION TAPE — PRESS PLAY AND RECORD" typed lines in your program.
INPUT “PRESS <ENTER> WHEN READY"; R$

OPEN “0”, # -1, “BOOKS”

CLS: PRINT “INPUT YOUR BOOKS — TYPE <XX> WHEN FINISHED"”
INPUT “TITLE”; T$

IF T$ = “XX” THEN 50

PRINT #—1, T3

GOTO 15

CLOSE #-1

CLS: PRINT “REWIND THE RECORDER AND PRESS PLAY”
INPUT “PRESS <ENTER> WHEN READY"; R$

OPEN “I”, # -1, “"BOOKS”
IF EOF (—1) THEN 120
INPUT # -1, T%

100 PRINT T$
110 GOTO 85
120 CLOSE # -1

223

224

In line 30 we PRINTed T$ (the title of the books) on tape. To do this, we had to
OPEN communication to the tape recorder for output. After finishing the
“output” we had to CLOSE communication with the tape recorder.

In line 90 we INPUT T$ from the tape recorder. To do this, we had to OPEN
communication with the tape recorder for input. After finishing the input, we
CLOSEd communication.

Understand it? Think over the answers to these three questions . . .

QUESTIONS
1. What would happen if you leave out line 50 and RUN the program?

...

ANSWER: Without line 50, communication with the tape recorder remains OPEN for OUTPUT. Since it’s already
OPEN, the Computer will not let you OPEN it again for INPUT. Therefore, line 80 will give you an AO error —
Attempt to Open a file that’s already open.

2. Would it be O.K. to leave out both lines 50 and 80 and RUN the program?

...

ANSWER: This won’t work either. Without lines 50 and 80, communication remains OPEN for OUTPUT. When
line 90 asks the Computer to INPUT from the tape recorder, you'll get a NO error — File not Open. The file is not
OPEN for INPUT.

3. Would it work if you changed lines 90 and 100 to:

90 INPUT #-1,X$
100 PRINT X$

...

ANSWER: Yes it does work. The Computer doesn’t care that you called the titles T$ when you put them on tape.
When you're INPUTting them from tape, the Computer simply looks for a string variable on tape and labels it X$.

AN ELECTRONIC CARD CATALOG

Getting ambitious? How about changing the program so you can put all of this
on tape:

TITLE AUTHOR SUBJECT
WORKING Studs Terkel Sociology
CAT’S CRADLE Kurt Vonnegut Fiction
SMALL IS BEAUTIFUL E. F. Schumacher Economics
STEPPENWOLF Hermann Hesse Fiction

First, we’ll work with the first half of the program — the part that outputs to
tape. Add these lines to the program:

26 INPUT “AUTHOR'; A%
28 INPUT “"SUBJECT"; S$
29 IF A$ = “XX OR S$ = “XX” THEN 50

To PRINT all of this on tape, simply change line 30:

30 PRINT #-1, T$, A%, S$

Now for the second half of the program. How would you change line 90 and 100
so that the Computer inputs from tape and PRINTS the title, author and
subject?

225

PROGRAMMING EXERCISE

Here’s the way we did it:

90 INPUT # -1, T$, A3, S$
100 PRINT “TITLE :” T$

102 PRINT “AUTHOR : A3
104 PRINT “SUBJECT :” S$

Like we said earlier, you don’t have to use the same variable names you used
when outputting. This would also work:

90 INPUT # -1, X3, Y3, 2%
100 PRINT “TITLE : X$

102 PRINT “AUTHOR :” Y%
104 PRINT “SUBJECT :* Z3

PICK A SUBJECT

Now you can take advantage of all this organization. For example you might
want to have the Computer print a list of books on any given subject.

226

Add these lines to your program:

130 CLS

140 INPUT “WHICH SUBJECT”; C3$

150 PRINT “REWIND THE TAPE — PRESS PLAY”
160 INPUT “PRESS <ENTER> WHEN READY"; E3
170 CLS: PRINT C$ ™ BOOKS” : PRINT

180 OPEN ™I, #—1, “BOOKS”

190 IF EOF (—1) THEN 230

200 INPUT #-1, T3, AS, S$

210 IF S$ = C$ THEN PRINT T3, A3

220 GOTO 190

230 CLOSE #-1

and RUN it by typing RUN 130. If you choose Fiction, the RUN should go
like this:

WHICH SUBJECT? FICTION

REWIND THE TAPE — PRESS PLAY

PRESS <ENTER> WHEN READY

FICTION BOOKS:

CAT'S CRADLE KURT VONNEGUT
STEPPENWOLF HERMANN HESSE

BALANCING YOUR CHECKBOOK

Now its your turn to try it. Say you have these checks:

NO. DATE PAYABLE TO ACCOUNT
101 5/13 Safeway food

102 5/13 Amoco car

103 5/14 Joe's Cafe food

104 5/17 American Airlines vacation
105 5/19 Holiday Inn vacation

AMOUNT

$52.60
32.70
10.32
97.50
72.30

227

To output data to tape you must:

B o o

?\ b N \\\ \\Qj\\ A\\l;“‘ \\;i \X h N ;_\ \XXX&\ %

xx\\ \ \A N ML _.\ \f‘.\\\ “_\

To INPUT data from tape, you must:
1.
2.

3.
4,

5.

Write a program which outputs all the checks to tape. Then have it input them
from tape so that you can type one account — such as food — and the Computer
will tell you the total amount you’ve spent on food.

Remember how to output information to tape:

\ \\ N _\..\ R -\ \ \ \\xxx

RULES ON OUTPUTTING DATA TO TAPE

OPEN communication to tape for OUTPUT

PRINT data to the tape

Continue PRINTing data to tape until finished, and then
CLOSE communication to tape

and how to INPUT information from tape:

RULES ON INPUTTING DATA FROM TAPE

OPEN communication to tape for INPUT B
Use EQF (—1) to see if you've reached the end of the file on

tape.

INPUT data from tape

Continue INPUTting data until you’ve finished or have

reached the end of the file, and then

CLOSE communication to tape

AN\ VNN NN NN NN\

228

DO-IT-YOURSELF PROGRAM

Here is what we wrote:

10
15
20
25
30
40
50
60
70
80

CLS: PRINT “POSITION TAPE — PRESS PLAY AND RECORD”
INPUT “PRESS <ENTER> WHEN READY"; R$%

OPEN "0, #—1, “CHECKS"”

CLS: PRINT “INPUT CHECKS — PRESS <XX>> WHEN FINISHED"
INPUT “NUMBER :; N$

IF N§ = "“XX” THEN 90

INPUT “DATE :”; D$

INPUT “PAYABLE TO :”; P$

INPUT “ACCOUNT :”; S$

INPUT “AMOUNT :$”; A

PRINT # —1, N$, D%, P3, S§, A

GOTO 15

90

92

95

100
110
120
130
140
150
160
170
180

CLOSE #—1

CLS: T = 0

INPUT “WHICH ACCOUNT”; B$

PRINT “REWIND TAPE — PRESS PLAY”
INPUT “PRESS <ENTER> WHEN READY’; R$
OPEN “I”, #—1, “CHECKS"

IF EOF(—1) THEN 170

INPUT #—1, N$, D$, P$, S$, A

IFBf = SSTHENT =T + A

GOTO 130

CLOSE #—1

PRINT “TOTAL SPENT ON —” B$, “1S $" T

229

Now that you’ve got an understanding of how to put your information on tape,
you might want to look at some of the sample programs in the back of the book.
They’ll give you some more ideas on how to use these tape “files”.

LEARNED IN CHAPTER 22

BASIC WORDS BASIC CONCEPT

OPEN data files i
CLOSE {
PRINT #-—1 1
INPUT #-1
EOF

230

NOTES:

231

CHAPTER 23

BGW QBOZ@
a ao
=}

e
Queae %eaon

FILING — AS EASY AS ABC

Any file clerk can tell you it’s much easier to find things if you have them in
alphabetical order. To save you the tedium of alphabetizing, why not have the
Computer do it? Type this program:

10 INPUT “TYPE TWO WORDS”; A%, B$

20 IF A$ < B3 THEN PRINT A%$ ' COMES BEFORE * BS

30 IF A$ > B$ THEN PRINT A$ ' COMES AFTER * B$%

40 IF A$ = B$ THEN PRINT “BOTH WORDS ARE THE SAME”
50 GOTO 10

RUN the program. Keep INPUTting words until you’re convinced the Com-
puter knows how to alphabetize.

With strings, the greater than, less than, and equal signs that we discussed in
Chapter 11 take on a new meaning. They tell which of two strings comes before
the other in alphabetical sequence:

<< precedes alphabetically

< = precedes or is the same alphabetically
> follows alphabetically

> = follows or is the same alphabetically
= is the same

Since the Computer can alphabetize, you can write a program to alphabetize a
long list of words. Here is ours:

233

You can easily make the Computer
alphabetize more words by chang-
ing the 5 to say, 100, in lines 10, 20,
70, and 90.

234

10
20
30
40
50
60
70
80
90
100
110
120
130
140

DIM A$(5)

FORI1 = 1T05

INPUT “TYPE A WORD”; A$(])
NEXT I

X =20
X=X +1
IF X > 5 THEN GOTO 70

IF A$(X) = “ZZ THEN 60
FORY = 1T05

IF A$(Y) < A$(X) THEN X =Y
NEXT Y

PRINT A$(X)

AS(X) = “ZZ L

GOTO 50

Type and RUN this program.

Before explaining how it works, we’ll show what’s happening when the program

is RUN. Type:

30

READ A$(I)

200 DATA MICHAEL, TRAVIS, DYLAN, ALEXIA, SUSAN

so that we’ll both alphabatize the same words. Delete line 120 and type:

120
5
35
85
105
135
500
510
520
530

CLS

PRINT A3

V=V+1

PRINT @ 15+32*(V—1), A$(X)
GOSUB 500

FORI =1T05

PRINT @ 0+32*%(1-1), AS$(I);
NEXT I

RETURN

These lines are just for appearance — so you can see what is happening in the
program. You don’t need to study them. Just type them like they are. They
don’t have anything to do with alphabetizing.

RUN the program.

Too fast? Type this line. It’ll slow it down so you can see what’s happening:

107 FORT = 1TO600: NEXTT
RUN it again and watch carefully. Look at the second column. See how the
first name changes from Michael to Dylan to Alexia. Next notice what happens

to Alexia in the first column. Alexia becomes ZZ.

Here’s a picture of how the Computer determines the first and second positions:

FIRST POSITION

MICHAEL MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

MICHAEL MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

MICHAEL MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

MICHAEL DYLAN
TRAVIS

DYLAN

ALEXIA

SUSAN

MICHAEL ALEXIA
TRAVIS
DYLAN
ALEXIA
SUSAN

MICHAEL ALEXIA
TRAVIS

DYLAN

zZZ

SUSAN

MICHAEL ALEXIA
TRAVIS MICHAEL
DYLAN

7

SUSAN

SECOND POSITION

MICHAEL ALEXIA
TRAVIS MICHAEL
DYLAN

ZZ

SUSAN

MICHAEL ALEXIA
TRAVIS MICHAEL
DYLAN

2z

SUSAN

MICHAEL ALEXIA
TRAVIS DYLAN
DYLAN

ZZ

SUSAN

MICHAEL ALEXIA
TRAVIS DYLAN
DYLAN

ZZ

SUSAN

MICHAEL ALEXIA
TRAVIS DYLAN
Zz

YA

SUSAN

235

236

When the program begins, MICHAEL is compared with MICHAEL to see
which precedes the other alphabetically. MICHAEL remains at the top. MI-
CHAEL is compared with TRAVIS. MICHAEL still remains at the top.

Next MICHAEL is compared with DYLAN. Since DYLAN precedes MI-
CHAEL, DYLAN now assumes MICHAEL's place at the top.

Now DYLAN is compared with ALEXIA. ALEXIA comes to the top. Finally
ALEXIA is compared with SUSAN. ALEXIA remains at the top.

Now that all the names have been compared for the top position, the Computer
repeats the cycle to determine the second, third, fourth, and fifth positions.
ALEXIA becomes ZZ so that it will not assume other positions.

Now that you see what the program does, lets run through it using the same
names we used above.

Lines 50 and 60 set the value of X. The first time through the program, X equals
1.

Then lines 90 through 110 compare A$(1) — MICHAEL — with every other
pame in array A$ until it reaches a word that precedes A$(1). In our example,
the third word — DYLAN — precedes it. Line 100 then makes A$(X) equal to
A$(3) — DYLAN’s place in the array. When DYLAN is compared with the
fourth word — ALEXIA — A$(X) becomes A$(4).

Line 120 PRINTSs A$(4) — ALEXIA — and line 130 makes A$(4) equal to ZZ.

At this point, lines 50 and 60 make X equal 1 again. A$(1) — MICHAEL — is
again compared with other names in the array.

When MICHAEL’s place in the array becomes ZZ, line 80 sends the Computer
back up to line 60 which makes X equal to 2. A$(2) — TRAVIS is then compared
with all the names in the array.

When all places in the array contain ZZ, line 70 ends the program.

Using this sort routine, change the program from thé last chapter so that the
Computer will alphabetize your books by title, author, or subject.

DO-IT-YOURSELF PROGRAM

Our answer is in the back of the book.

The method of sorting we’ve demonstrated is one of the easiest to program.
There are other more complicated methods which will sort much faster. If you
have a great number of items to sort, you may want to investigate one of the
other sorting methods.

LEARNED IN CHAPTER 23

BASIC SYMBOLS

>
<

237

CHAPTER 24

Getting Analytical
(for those with more than 4K RAM)

If you have more than 4K RAM, you have an easy way to analyze everything.
By giving your information several labels, you’ll be able to look at it all through

several perspectives.

For an example, let’s use the voting program from chapter 15. Here’s the

information:

District

DO =

GETTING ANALYTICAL

(for those with more than 4K RAM)

ELECTION POLL
Votes For Candidate 1

143
215
125

We’re only using 3 districts to keep it
stmple.

Were calling them candidates 1 and
2 this time rather than A and B.

Votes For Candidate 2

678
514
430

239

240

In Chapter 15, we created array A
for candidate 1 and array B for can-
didate 2, Now, we’re putting them in
one array— V.

District 1

District 2

District 3

By giving each item two labels we can put them all in one array. Here’s what it
will look like:

ARRAY V
Candidate 1 Candidate 2

V(1,1) V(1,2)
143 678

Vi(2,1) Vi(2,2)
215 514

V(3,1) V(3,2)
125 430

The first label tells which district the votes are from. The second tells which
candidate they are for.

For example, we used V(1,2) to label the 678 votes. By doing that, we said that
the 678 votes are in an array named V. They are from district 1 and are for
candidate 2.

Let’s put it all in a program. Type:

5 DIM V(3,2
10 DATA 143, 678, 215, 514, 125, 430
20 FORD = 1T0 3
30 FORC = 1702

C 40 READ V(D,C)
50 NEXT C
60 NEXT D
70 INPUT “DISTRICT NO. (1-3)"; D
80 IFD<1O0RD > 3 THEN 70
90 INPUT “CANDIDATE NO. (1-2)"; C
100 IF C < 0 OR C > 2 THEN 90
110 PRINT V(D,C)
120 GOTO 70

Line 5 reserves space in memory for an array named V. Each item may have
two labels. The first label can be no higher than 3; the second, no higher than 2.

RUN the program. Make sure all the votes are labeled like they are above. Try
different combinations of district and candidate numbers.

Lines 20 through 60 READ the votes for candidates 1 and 2 from districts 1, 2,
and 3, label them, and put them in your Computer’s memory:

YOUR COMPUTER’S MEMORY

V(1,1) —» 143

V(3,1) =——> 125

Now that you have two perspectives on the vote groups, you can take advantage

of it. Delete lines 70-120 and type:

V(1,2) —> 678
vi2,1) —— 215 V(2,2) —— 514,
V(3,2) ——> 430

FIRST DIMENSION

Remeber how to delete lines?

70 (ENTER
Deletes line 70

241

242

If you are truly an analytical type,
you're going to love the rest of this
Chapter. If you're definitely NOT
that type, don'’t feel bad. Skip it!

70 INPUT “TYPE < 1 > FOR DISTRICT OR <« 2 > FOR CANDIDATE”; R
80 IF R <1O0RR > 2THEN 70

100 ON R GOSUB 1000, 2000
E 110 GOTO 70

1000 INPUT “DISTRICT NO(1-3)"; D

1010 IF b < 1 OR D > 3 THEN 1000

1015 CLS

1020 PRINT @ 132, “VOTES FROM DISTRICT” D
1030 PRINT

1040 FOR C = 1 TO0 2

1050 PRINT “CANDIDATE” C,

1060 PRINT V(D,C)

1070 NEXT C

1080 RETURN

L——9--2000 INPUT “CANDIDATE NO(1-2)”; C

2010 IF C < 1 OR C > 2 THEN 2000

2015 CLS

2020 PRINT @ 132, “WOTES FOR CANDIDATE” C
2030 PRINT

2040 FOR D = 1T0 3

2050 PRINT “DISTRICT” D,

2060 PRINT V(D,C)

2070 NEXT D

2080 RETURN

RUN the program and analyze to your heart’s content.

What you've just programmed is a two-dimensional array. It’s called two-di-
mensional because all the items in it have two labels — district and candidate
number. In the previous chapters, we were programming one-dimensional ar-
rays — their items only had one label.

There’s no reason to stop with two dimensions. Your Computer will let you
program as many dimensions as you want in your array.

THE THIRD DIMENSION

We're now ready to add interest groups — a third dimension to the array. The
election poll statistics above were all from interest group 1. We also polled some
statistics from groups 2 and 3. Here’s the information:

VOTES FROM INTEREST GROUP 1

Candidate 1 Candidate 2
District 1 143 678
District 2 215 514
District 3 125 430
VOTES FROM INTEREST GROUP2
Candidate 1 Candidate 2
District 1 525 54
District 2 318 157
District 3 254 200
VOTES FROM INTEREST GROUP 3
Candidate 1 Candidate 2
District 1 400 119
District 2 124 300
District 3 5 419

243

244

Here’s how we’ll label all these votes in array V:

ARRAY V

INTEREST GROUP 1
Candidate 1

V(1,1,1)

District 1
143

V(1,2,1)

District 2
215

V(1,3,1)

District 3
125

INTEREST GROUP2
Candidate 1
V(2,1,1)

District 1
525

Candidate 2
V(1,1,2)

678

V(1,2,2)

514

V(1,3,2)

430

Candidate 2
V(2,1,2)

o4

District 2

District 3

District 1

District 2

District 3

V(2,2,1) V(2,2,2)

318 157
V(2,3,1) Vi(2,3,2)
254 200
INTEREST GROUP 3
Candidate 1 Candidate 2
V(3,1,1) V(3,1,2)
400 119
V(3,2,1) V(3,2,2)
124 300
V(3,3,1) V(3,3,2)
75 419

To get all this into your Computer’s memory, erase your program and type:

245

5

10
20
30

DIM V(3,3,2)

DATA 143,
DATA 525,
DATA 400,

678, 215, 514, 125, 430
54, 318, 157, 254, 200
119, 124, 300, 75, 419

40
50

60
70
80

90
100

110
120
130
140
150
160
170
180

FORG = 1T0 3
FORD = 170 3
FORC = 1 T0 2
READ V(G,D,C)
NEXT C

NEXT D

NEXT G

INPUT “INTEREST GROUP NO (1-3)"; G

IFG < 1O0RG > 3 THEN 110
INPUT “'DISTRICT NO. (1-3)”; D
IFD<1O0RD > 3 THEN 130
INPUT “CANDIDATE NO. (1-2)"; C
IFC < 10RC > 2 THEN 150

PRINT V(G,D,C)
GOTO 110

SECOND DIMENSION RUN the program and test all the labels. Line 40 — 100 put this into your

Computer’s memory:

YOUR COMPUTER’S MEMORY

246

V(1,11)—>143
V(1,2,1)—>215
V(1,3,1)—>125

V(3,1,1)—>400
V(3,.21)—»124
V(331 —>»75

V(1,1,2)=—p-678
V(1,2,2)—> 514
V(1,3,2)—>430

V(2,1,1)—>525 V(2,1,2)—>54
V(2,2,1)—>>318 V(2,2,2)—>157
O V(2,3,1)—3>254 V(2,3,2)—>=200

V(3,1,2)—>=119
V(3,2,2)—3300
V(3,3,2)—>419

To take advantage of all three dimensions, delete lines 110-180 and type:

e

110
120
130
140
150

1000
1010
1020
1030
1040
1050
1060
1070
1080
1100
1110
1120
1130
1140

2000
2010
2020
2030
2040
2050
2060
2070
2080
2100
2110
2120
2130
2140

3000
3010
3020
3030

PRINT: PRINT “TYPE <1> FOR GROUP”

PRINT “<2> FOR DISTRICT OR <3> FOR CANDIDATE"

P=224 : INPUT R
ON R GOSUB 1000,2000,3000
GOTO 110

INPUT “GROUP(1-3)"; G

IF G<1 OR G>3 THEN 1000
CLS

PRINT @ 102, “VOTES FROM GROUP” G
PRINT @ 168, “"CAND. 1”
PRINT @ 176, “CAND. 2"
FOR D=1 TO 3

PRINT @ P, “DIST.” D

FOR C=1 TO 2

PRINT @ P+ 8*%C, V(G,D,C);
NEXT C

P=P+32

NEXT D

RETURN

INPUT “DISTRICT(1-3)"; D
IF D<1 OR D>3 THEN 2000
CLS

PRINT @ 102, “VOTES FROM DIST.” D
PRINT @ 168, “CAND. 1”
PRINT @ 176, “CAND. 2”
FOR G=1 TO 3

PRINT @ P, “"GROUP” G

FOR C=1 TO 2

PRINT @ P+8*C,V(G,D,C);
NEXT C

P=P+32

NEXT G

RETURN

INPUT “CANDIDATE(1—2)"; C

IF C<1 OR C>2 THEN 3000

CLS

PRINT @ 102, “VOTES FOR CAND.” C

INTEREST
GROUPS

1——=BLUE COLLAR

Z—T'WHITE COLLAR

33— MINORITIES

THIRD DIMENSION

3040 PRINT @ 168, “DIST. 1”
3050 PRINT @ 176, “DIST. 2“
3060 PRINT @ 184, “DIST. 3”
3070 FOR G=1 TO 3

3080 PRINT @ P, “"GROUP” G
3090 FOR D=1 TO 3

3100 PRINT @ P+8*D, V(G,D,C);
3110 NEXT D

3120 P=P+32

3130 NEXT G

3140 RETURN

247

248

TWO DIMENSIONAL CARDS

Write a program to deal the cards using a two dimensional array. One dimension
can be one of the 4 suits and the other dimension can be the card’s value (1-13).

DO-IT-YOURSELF PROGRAM

Our answer is in the back of this book.

LEARNED IN CHAPTER 24

BASIC CONCEPT

Multi-dimensional arrays

NOTES:

249

SECTION IV

| DORPT BYTE OFF
| MORE THAN YOU
| CAN CHEW

Pardon our pun, but this section is quite a bit (cops— pardon again) more
technical than the rest of this book. It uses some terms and concepts
we haven’t explored yet, such as machine-language and direct memory
addressing.

If you're a technical type, jump right in! But if you're not, be forewarned.
You will have to be extra careful in typing in the sample programs. Then
double- and triple-check them against our program listings before running
them. If your program contains typing errors, it won’t work, and you'll
probably have to reset the Computer to regain control.

... Still with us? O.K.—now that we’ve warned you, we can tell you the
good part. The results of your labors will be very impressive. Part I will
demonstrate how to create high resolution (extremely detailed) graphics
on your screen. Part IT gives you the information you need to do things you
can’t do with BASIC —such as greatly intensifying the speed of graphics
programs — by calling machine-language subroutines.

252

PART A

HIGH RESOLUTION GRAPHICS

CONTENTS OF THIS PART

INTRODUCTION
SAMPLE PROGRAMS (3)
A FEW DEFINITIONS

PREPARING THE COLOR COMPUTER FOR GRAPHICS

PUTTING GRAPHICS TO WORK

TABLES:

1. DESCRIPTION OF THE GRAPHICS MODES AVAILABLE
2. DISPLAY MODE SELECTION

3. VIDEO RAM PAGE SECTION

4, DETAILED DESCRIPTION OF THE GRAPHICS MODES

INTRODUCTION

The Color Computer has many graphics capabilities that cannot be
accessed using the ordinary statements of COLOR BASIC. How-
ever, with the special memory functions PEEK and POKE, you can
use and experiment with many of these powerful features. It does
take some extra work on your part, but the results can be impres-
sive. In this part we’re going to demonstrate how you activate and
use these graphics features.

Note: In Extended COLOR BASIC, many of the graphics capabilities are
quite simple to use. That’s one of the main attractions of Extended COLOR

. BASIC. However, evern if you have Extended BASIC, you may find this

part interesting. Some of the graphics modes described may only be used

via the techniques presented in this part.

First, we’ll list two COLOR BASIC programs which demonstrate
how to select a graphics mode and how to use it. The first runs on
4K or 16K RAM systems; the second, on 16K only. We've also
included a general-purpose program which you can modify to select
any of the graphics modes (it'll be up to you to put the graphics to

use).

After you’ve tried the programs, you’ll be ready for an explanation
of how they work. We’ll start with a few definitions you’ll need.
Then we'll go over the steps required to put the Computer into any
of the graphics modes. These steps aren’t meant to be followed one
at a time; they should be put into your BASIC program and then
executed in succession.

Finally, we’ll suggest a few ways you can put graphics to work.

SAMPLE PROGRAMS

PROGRAM # 1: 64 x 64 GRAPHICS MODE FOR 4K OR 16K
RAM SYSTEMS

This program makes Color Computer act like a drawing board with
a 64 x 64 grid. You may choose between two sets of four colors:

PROGRAM # 1 LISTING

Color# Set 0 Set 1
0 Green Buff 10 'RESERVE 1K
1 Sty Cyan 20 CLEAR 10,3071
30 'SET VIDRAM = 3072
o Bl MagERa 40 FOR 1 = 0 TO 6: READ DT: POKE 65478 + I°2 + DT, 0:
3 Red Orange NEXT
50 DATA ¢,1,1,0,0,0,0
R e mesis tntiiit KO EERGTES (ineson & ?/g FSOERLEICLVgGTgn g?ERgAlg DT: POKE 65472 + 2 + DT, 0:
portion of a line beginning with an apostrophe). Also delete NEXT
all spaces before and after punetuation marks and arithme- 80 DATA 1,0,0
tic operators (.,;: + -/*> < =). You must have at least 335 bytes 90 ‘SET UP VIDEO CONTROL REG.
(characters) remaining in memory to run the program. You can 100 POKE 65314, 135
check this by having the computer PRINT MEM after the program 110 °‘CLEAR VIDRAM
is typed in. Check the program over carefully. Then run it. 120 FORI = 3072 TO 4095: POKE I,0: NEXT
_ _ . 130 ‘BEGIN MAIN PROGRAM
After a few seconds, a block will appear in the middle of the screen. 140 'MP() IS A LIST OF POWERS OF 4
You may move the block, drawing a line in any of four colors; you 150 ‘ TO BE USED BY THE MAPPING FUNCTION
may switch color sets; and you may stop the line. Here is a list of 1680 DIM MP(3): FORI = @ TO 3: READ MP(I): NEXT
the keys that control the drawing board: 170 DATA 1,4,16,64
180 CC = 3: CS = 0 'CC = COLOR, CS = COLOR SET
: v 2 SELECT
Bixgctian of muotion 190 X = 31: Y = 31: XI = 0: YI = 0 'STARTING POINT AND
(@) North (up) INCREMENT
) South 200 ‘SET UP KEYBOARD TABLE
® East 210 US = “A": D$ = CHRS(10): W$ = CHRS(8): E$ =
® West CHRS$(9)
; 220 NWS = “Q"”: NE§ = “W': SW$ = “A": SE$ = “§”
% ﬁﬁfﬁfﬁﬁf 230 CO$ = “0: C1$ = “1: C2§ = “27: (3§ = “3
240 ‘CHECK FOR KEYBOARD CHARACTER
® Southwest 250 AS = INKEYS
® Southeast 260 IF A$ = US$ THEN YI = —1: XI = 0: GOTO 400
Stops motion 270 IF AS = DS THEN YI = 1: XI = 0: GOTO 400
280 IF A$ = W$ THEN XI = —-1: YI = 0: GOTO 400
Four-Color Set: 290 IF AS = E§ THEN XI = 1: YI = 0: GOTO 400
300 IF A$ = NWS$ THEN XI = —1: YI = —=1: GOTO 400
@ Color 1 310 IF AS = NE$ THEN XI = 1: YI = —1: GOTO 400
@ Color 2 320 IF AS = SW$ THEN XI = —1: YI = 1: GOTO 400
@ Color 3 330 IF A$ = SE$ THEN XI = 1: YI = 1: GOTO 400
Color 0 (background color) 340 ‘CHANGE COLORS IF @ —3 WAS PRESSED
Change to other four-color set 350 IF COS < = A$ AND A$ < = C3$ THEN CC = ASC(A$)
- 48: GOTO 400
360 ‘CHANGE COLOR SET IF /" WAS PRESSED
370 IF AS = "/ THEN CS = (NOT CS AND 8) OR (CS AND
To return to BASIC’s normal text screen, press the RESET button. NOT 8): POKE 65314,135 + CS: GOTO 400

253

254

380 IF AS = CHRS$(32) THEN XI = 0: YI = @ ‘STOP DRAWING
IF <SPC> WAS PRESSED

390 ‘GET NEW (X,Y) POSITION

400 X = X + XY =Y + YLIF X < 0 THEN X = @
419 IF X > 63 THEN X = 63

420 IF Y < O THEN Y = 0

430 IF Y > 63 THEN ¥ = 63

440 ‘ PLOT THE (X,Y) POINT

4590 X1 = INT(X/4): OF = X1 + Y*®16: BYTE = 3072 + OF
460 XMOD4 = INT(X—-X1°%4): BIT = 3 — XMOD4

470 X3 = MP(BIT)°CC: X4 = MP(BIT)*3
480 OL = PEEK(BYTE)
490 TE = (255 AND NOT X4) OR (—256 AND X4): NU = (TE

AND OL) OR X3
500 POKE BYTE, NU
510 GOTO 230

Note for Extended BASIC Users: The 64 x 64 mode is not available in
Extended BASIC; however, this program will get it for you. Bul first, make
these changes in the program:

20 CLEAR 19, 15359

30 'SET VIDRAM = 15360

50 DATA 0,1,1,1,1,0,0

120 FOR I = 15360 TO 16383: POKE I, @: NEXT

450 X1 = INT(X/4): OF = X1 + Y*®1l6: BYTE = 15360 + OF

’?‘%SIGRAM #2: 256 x 192 GRAPHICS FOR 16K RAM SYS-
S

This program shows the highest resolution available on Color Com-
puter. Because it requires 6144 bytes of RAM for the graphics
screen, it will not run on a 4K RAM system.

The program draws lines on the screen. You type in (X,Y) coordi-
nates for the starting and ending points, then the program goes into
the graphics mode and draws the points. You can then press any key
and the program will ask you for another pair of coordinates.

Type in the program. BE SURE TO OMIT ALL REMARKS
(STATEMENTS BEGINNING WITH AN APOSTROPHE).
Check the program over carefully. Then run it. There will be a one-
minute delay before you see the program begin.

If you interrupt the program while it is in the graphics mode, you

will need to reset the Computer to get back in the normal mode.

PROGRAM LISTING

12 'RESERVE 6K

20 CLEAR 10,10239

30 ‘SET START AND END OF VIDEO RAM

40 VIDRAM = 10240:VND = 16383

50 PSEL = 65478 'START OF PAGE SELECT REG.

60 VDG = 65472 ‘START OF VDG REG.

70 VCTRL = 65314 'VIDEO CONTROL REG.

80 ‘X(@) AND Y(@) WILL BE COORDINATES OF START POINT

90 'M$(@) AND MS$(1) WILL BE MESSAGES

100 DIM X(1),Y(1),MS3(1)

110 'PH(C) AND VH() CONTAIN HI-RES. BIT PATTERN

120 'PA{) AND VA() CONTAIN TEXT BIT PATTERN

130 'TWO() CONTAINS A LIST OF POWERS OF 2

140 DIM PH(6),PA(6),VH(2) VA(2), TWO(7)

150 FOR I = 0 TO 6: READ PH(I): NEXT

160 DATA 0,0,1,0,1,0,0

170 FOR I = 0 TO 6: READ PA(I): NEXT

180 DATA 0,1,0,0,0,0,0

190 FOR I = Q@ TO 2: READ VH(D: NEXT

200 DATA 0,1,1

210 FOR I = 0 TO 2: READ VA(I): NEXT

220 DATA 0,0,0

230 READ CH ‘HI-RES BIT MASK FOR VID.CTRL. REG.

240 DATA 240

250 READ CA 'TEXT BIT MASK FOR VID.CTRL. REG.

260 DATA 0

270 FOR I = 0 TO 7: READ TWO(I): NEXT

280 DATA 1,2,4,8,16,32,64,128

290 GOSUB 800 'CLEAR OUT VIDRAM

300 'MAIN PROGRAM

310 MS3(0) = “FIRST': M$(1) = “SECOND"

320 FORI = 0 T0 1

330 PRINT “ENTER *; M$U); ** X AND Y*

340 PRINT "0 < = X < = 255, 0 < =Y < = 191"

350 INPUT X(D), Y(D

360 IF X(I) < @ OR X(I) > 255 OR Y(I) < @ OR Y(D > 191
THEN 340

370 NEXT

380 GOSUB 620 ‘GO INTO GRAPHICS

390 'DX,DY CONTAIN XY DISPLACEMENTS

400 'SX,SY CONTAIN DIRECTION OF THE LINE

410

420
430
440

450
460
470
480
490
500
510
520
525
530
540
550
560

570
580
585
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810

DX
SY SGN(DY)

‘USE EQUATION Y = SLOPE * X + B

‘SL = SLOPE OF LINE: B = OFFSET FROM X-AXIS

IF DX = © THEN 550 'SPECIAL CASE FOR VERTICAL
LINES

SL = DY/DX: B = Y(@) — SL * X(0)

T = SL * SL + 1: GOSUB 930 ‘GET SQR(T)

NX =1/T1 * SX '‘NX IS INCREMENT FOR X

FOR XT = X(@) TO X(1) STEP NX

X = INT(XT + .5)

Y = INT(SL * XT + B + .5)

GOSUB 830

NEXT

A$ = INKEYS$: IF AS = " THEN 525

GOSUB 630 ‘GO INTO TEXT

GOTO 320 ‘GET NEXT PAIR OF POINTS

X = X(@

FOR Y = Y(@) TO Y(1) STEP SY ‘DRAW VERTICAL LINE
THRU X(®)

GOSUB 830

NEXT

IF INKEY$ = " THEN 590

GOSUB 630 : GOTO 320

‘END OF MAIN PROGRAM

‘SUBRTNS TO SELECT G6R AND TEXT

GOSUB 650 : GOSUB 700 : GOSUB 750 : RETURN
GOSUB 670 : GOSUB 720 : GOSUB 770 : RETURN
'PAGE-SELECT SUBRTNS

FORI = 0 TO 6: POKE PSEL + I * 2 + PH(DI),0: NEXT
RETURN

FORI = © TO é6: POKE PSEL + I * 2 + PA(D,0: NEXT
RETURN

‘'YDG SELECT SUBRTNS

FORI = @ TO 2: POKE VDG + I * 2 + VH(D),0: NEXT
RETURN

FORI = @ TO 2: POKE VDG + I * 2 + VA(D,0: NEXT
RETURN

'SUBRTNS TO SET UP VIDEO CONTROL REG.

POKE VCTRL, CH OR (PEEK(VCTRL) AND 7)

RETURN

POKE VCTRL, CA OR (PEEK(VCTRL) AND 7)

RETURN

‘SUBRTN TO CLEAR OUT VIDEO RAM

FORI = VIDRAM TO VND:POKE I,8: NEXT

RETURN

X(1) — X(@): DY = ¥Y(1) — Y(@): SX = SGN(DX):

820
830
840
850
860
870
880
890
300
910
920
930
940
950
960
970

Note: This entire program can be duplicated using the LINE statement
of Extended BASIC. However, if you wish to use it for experimentation, it

'‘MAPPING FUNCTION

X1 = INT(X/8)

OF = X1 + Y ° 32: BYTE = VIDRAM + OF
XMOD8 = INT(X - X1 ¢ 8)

BIT = 7 — XMOD8

VLU TWO(BIT)

OLD PEEK(BYTE)

MASK = VLU OR OLD

POKE BYTE,MASK

RETURN

'SQR(X) SUBRTN

IFT < = @ THEN T1 = @: RETURN

T1 =T* 5 T2 =0

T3 = (T/T1 - T1) * 5

IF (T3 = @) OR (T3 = T2) THEN RETURN
Tl = T1 + T3 : T2 = T3: GOTO 950

will run without modification under 16K Extended BASIC.

PROGRAM # 3: GENERAL-PURPOSE SUBROUTINES

These subroutines may be used to select any of the graphics modes
(subject to the RAM limitations of your Computer and the require-
ments of your main program). You supply the main program to
write information onto the graphics screen. You also provide the

correct values for lines 20 and 40.

Later in this section, we provide hints on designing your main

program (Putting Graphics to Work).

PROGRAM LISTING

10 ‘RESERVE RAM FOR GRAPHICS

20 'CLEAR STRINGSPACE, MEMEND

30 ‘SET START AND END OF VIDEO RAM

40 'VIDRAM = MEMEND + 1: VND = 4095 OR 16383
50 PSEL = 65478 'START OF PAGE SELECT REG.

60 VDG = 65472 'START OF VDG REG.

70 VCTRL = 65314 'VIDEO CONTROL REG.

100 DIM X(1), Y(1), M$(1)

116 ‘PH() AND VH() CONTAIN THE GRAPHICS BIT PATTERN

255

120 ‘PAQ) AND VA() CONTAIN THE NORMAL (TEXT) BIT PATTERN A FEW DEFINITIONS
140 DIM PH(6), PA(6), VH(2), VA(2)

150 FOR I = 0 TO 6: READ PH(I): NEXT GRAPHICS

160 ‘DATA X,X,X,X,X,X,X (PAGE-SELECT BIT PATTERN)

170 FOR I = @ TO 6: READ PA(): NEXT ‘READ NORMAL P-S BIT

PATTERN This refers to the ability to set or reset blocks or points called
180 DATA 0,1,0,0,0,0,0 “pixels.” For each pixel, you may choose from two, four or eight
190 FOR 1 = 0 TO 2: READ VH(I): NEXT colors, depending on the particular mode selected. By setting var-
200 ‘DATA X,X,X (GRAPHICS BIT PATTERN FOR VDG) ious combinations of pixels, you can generate lines, geometric fig-
210 FOR I = © TO 2: READ VA(D: NEXT ‘NORMAL VDG BIT ures, pictures, etc,

PATTERN

220 DATA 0,0.0

230 READ CH 'GRAPHICS BIT MASK FOR VID.CTRL. REG. RESOLUTION

240 'DATA XXX (VIDEO CONTROL VALUE)

250 READ CA ‘TEXT BIT MASK FOR VID.CTRL. REG. The pixel density (how many pixels to a screen) determines the
260 DATA © degree of resolution. Depending on the graphics mode, the screen
298 1 GOSUB 800 'CLEAR OUT VIDRAM may contain from 2048 (SET/RESET) to 49152 (G6R) pixels. The
300 higher the resolution, the finer the lines and the more detailed the
310 'YOUR MAIN PROGRAM GOES HERE . .

300 pictures.

599 ‘END MAIN PROGRAM To see the importance of resolution, look at these two diagonal lines.
600 The resolution of Line B is four times as fine as that of line A.

610 ‘SUBRTNS TO SELECT GRAPHICS AND TEXT
620 GOSUB 650 : GOSUB 700 : GOSUB 750 : RETURN

630 GOSUB 670 : GOSUB 720 : GOSUB 770 : RETURN 1T TT
640 ‘PAGE-SELECT SUBRTNS = -
650 FORI = © TO 6: POKE PSEL + I * 2 + PH(D,0: NEXT | (]
660 RETURN

670 FORI = 0@ TO 6: POKE PSEL + I * 2 + PA(D,0: NEXT

680 RETURN

690 ‘VDG SELECT SUBRTNS

700 FORI = © TO 2: POKE VDG + I * 2 + VH(D,0: NEXT

710 RETURN

L1

720 FORI = © TO 2: POKE VDG + I * 2 + VA(D),0: NEXT { mEs
730 RETURN L Ll
740 ‘SUBRTNS TO SET UP VIDEO CONTROL REG. . .

750 POKE VCTRL, CH OR (PEEK(VCTRL) AND 7) LineA. 2l ;

760 RETURN Low Resolution High Resolution
770 POKE VCTRL, CA OR (PEEK(VCTRL) AND 7)

780 RETURN RAM, BYTES AND BITS

790 ‘SUBRTN TO CLEAR OUT VIDEO RAM
800 FORI = VIDRAM TO VND: POKE I,0: NEXT

810 RETURN RAM is divided up into individually addressed locations called

“bytes.” The addresses in RAM run from 0 to 4095 or 16383, de-
pending on whether you have a 4K or 16K RAM system. Each
address references one byte.

256

RAM is “random access memory.” This is the area where your
programs and data are stored. The Computer also uses RAM for
storage of internal values. RAM is erased when the Computer is

turned off.
One byte consists of eight on/off switches called “bits.” Here is one
byte:

Bit # 7 6 5 4 3 2

Notes:

(1) In this discussion, we will refer to the individual bits using the numbers
0 through 7, as shown in the diagram.

(2) When a bit has a value of I, we say it is “set”; when it has a value of 0,
we say it 1s “reset.” These terms will be used throughout this section.

There are 256 possible on/off combinations for a single byte. The
combinations are often interpreted as binary numbers ranging from
00000000 to 11111111 or decimal 0 to 255. (See a math or computer
text for a discussion of binary numbering.)

PEEK AND POKE

These BASIC words allow you to examine (PEEK) or change
(POKE) the contents of memory. Just for review, here is the syntax
for each command (the syntax is the way that the command should
be put together. For an example, with POKE you should first spec-
ify the address, then the value):

PEEK (address)
POKE address, value

PEEK is a function. This means it cannot stand alone in a BASIC
program, but must be used in a statement like:

OLD = PEEK (BYTE)

OLD will be given the contents of address BYTE.

POKE can stand alone. It stores the value specified in the address
specified.

POKE BYTE, NU

The address specified by BYTE will be given the value NU.
BITS AND BOOLEAN ALGEBRA

In the graphics modes, one or two bits may control the color or on/
off status of a pixel. Se we need a way to control a single bit or pair
of bits without affecting other bits.

To change one or two bits in a byte requires a form of computer
logic called Boolean algebra. Boolean algebra uses logical operators
like AND, OR and NOT. These three are available in Color BASIC.

AND and OR compare two values bit-for-bit; NOT takes value and
reverses the state of each of its bits. Here are table summaries

AND| 0 | 1 OR| 0 | 1
0]0]o0 0|0 |1 NOT 0 = 1
1] 0| 1 I S NOT1 =0

Here are some examples of Boolean operations on one-byte binary
values:

10101010 01101110
AND 11110000 OR 10001000
10100000 11101110

NOT (10101010) = 01010101

Suppose you want to set (set to 1) bit 7 in byte #4000, without
changing any of the other bits. You simply OR the current contents
of #4000 with the binary value 10000000, which is equivalent to

257

258

decimal 128:

NB = PEEK(4000) OR 128

Since bit 7 is set in the value 128, bit 7 will always be set as a result
of the operation. The other bits in the result will be the same as
those in address #4000.

VIDEO RAM

When you output to the screen, the information is actually stored
in a portion of memory. The video display circuitry reads from this
“video RAM” in order to generate the screen display.

Text goes
into RAM
You type:
PRINT “HERE IS A MESSAGE”~=>| Video
RAM
Computer generates vV
the correct display Screen

Normally, COLOR BASIC uses the memory area from 1024 to 1535
as video RAM. There are 512 distinct memory locations or “bytes”

in this area, enough to hold 512 alphanumeric characters or 2048
SET/RESET pixels.

The COLOR COMPUTER can be programmed to use any area of
RAM as “video RAM.” This is desirable when:

A. You want to use high-resolution graphics that require a large
video RAM area.

B. You want to switch back and forth between “pages” of video
RAM.

High resolution requires a larger video RAM area than does normal
text. For example, in the highest resolution mode, G6R, 6144 bytes
of memory are required to store a screenful or “page” of informa-
tion.

This increased video RAM requirement has to be taken from the
“user area” at the top of memory. This limits the space available to
your BASIC program. If you have a 4K RAM machine, you will
probably be limited to using the G1C and G1R graphics modes,
which take only 1024 bytes and leave approximately 1300 bytes
for your BASIC program. If you have a 16K RAM machine, you
may use the highest resolution mode and still have about 8400
bytes available for your BASIC program.

VIDEO DISPLAY GENERATOR (VDG) REGISTER

This consists of three pairs of addresses in RAM that control the
graphics mode. (See Table 1 for a description of the graphics modes
available.) These addresses are not actual bytes in RAM, but are
direct links to the VDG circuitry in the Computer.

DISPLAY CONTROL REGISTER

This is a single memory location that determines which color set is
available, and also plays a role in selecting the graphics mode. This
address is not an actual byte in RAM, but is a direct link to certain
display control circuitry in the Computer.

PAGE-SELECT REGISTER

This consists of seven pairs of addresses that determine the start
address of video RAM. Using this register, you can start video RAM
on any 512-byte boundary in RAM. This address is not an actual
byte in RAM, but is a direct link to the page-select circuitry in the
Computer.

PREPARING THE COLOR COMPUTER FOR
GRAPHICS

1. CHOOSE WHICH GRAPHICS MODE YOU WANT

Using Table 1, decide which graphics mode you want to try. There
are several questions to ask yourself:

What is the video RAM requirement? Does your Computer have
enough RAM to accommodate it? If it does, will there be encugh
room for the program that uses the graphics mode?

How much resolution do you need? How many colors? There is a
trade-off between colors and resolution.

For example, G1C and G1R both require 1024 bytes for video RAM,
but after that, they differ. G1C offers a 64 x 64 pixel density, with
four colors available for each pixel. Further, you may select between
two sets of four colors. GIR on the other hand, offers a 128 x 64
pixel density, with two colors available for each pixel. You may
select between two sets of two colors.

Program #1 uses G1C; Program #2, G6R.
2. SELECT A PAGE OF VIDEO RAM FOR GRAPHICS USE

COLOR BASIC uses addresses 1024-1535 for video RAM. This is
sufficient for alphanumerics and SET/RESET graphics, but not
for any of the higher-resolutien graphics modes. For these, you
should reserve a sufficiently large area at the top of RAM. Use the
CLEAR statement to do this.

CLEAR stringspace, memend
stringspace is the amount of space you’ll require for string infor-
mation. Use the smallest number possible that won’t result in
an OS error when your program runs.
memend is the highest address COLOR BASIC will use — ad-
dresses above memend can be used for your graphics video
RAM.

To compute memend, use this formula:
memend = memory size — pagesize

memory size depends on how much RAM is in your system. For
4K systems, it is 4095; for the 16K systems, 16383.

pugesize depends on which graphics mode you are going to use.
For 4K systems, you will probably be limited to G1C or G1R;
in either of these modes, pagesize = 1024. For 16K systems,
you may use any of the modes, even those that use 6144

bytes.

For example, to use G1C in a 4K system, you should start your
program with this statement:

CLEAR 20, 3071

This assumes you won’t need more than 20 bytes for string storage,
and it reserves the highest 1024 bytes for use as video RAM.

In Program #1, see line 20; in Program #2, line 20.
3. "CLEAR OUT” YOUR VIDEO RAM

You will probably want to start out with a clean video screen. To do
this, simply store zero in each byte of video RAM. For example, in
a 4K system, you might use these statements:

FOR I = 3072 to 4095: POKE 1,0: NEXT
In Program #1, see line 120; in Program #2, line 790.

Important Note: Steps 4 and 5 should be performed consecutively, with
no pauses in between steps. Otherwise, the screen will show what is often
called “garbage.”

4. SWITCH IN YOUR VIDEO RAM

Using the page select register, you tell the Color Computer where
your “page” of video RAM starts. A graphics page must start on a
512-byte boundary. To tell Color Computer where the page starts,
use a seven-bit value. (The eight bit, bit 7, is always 0 so is not
needed by the page-select register.) Table 3 lists the correct values
for pages starting at memend + I (see Step 3).

Table 3 doesn’t list all possible addresses where you might want to
start video RAM. The following procedure will let you calculate the
correct value for any valid start address for video RAM. (Addresses
must be on 512-byte boundaries: 0, 512, 1024, etc.)

First calculate the video offset in 512-byte “blocks,” as follows:

OFFSET = VIDRAM / 512

VIDRAM is the start address of your video RAM (usually memend
+ 1).

259

260

For example, in 4K systems with your video RAM starting at 3072,
OFFSET = 3072 /512 = 6.

Then express OFFSET as a seven-bit binary number. For example,

6 decimal = [O|0‘0‘0|1|1‘0Jbinary
Bit # » 6 5 4 3 2 1 0

After finding the correct value, you must give it to the page-select
register.

Remember, this register consists of seven pairs of addresses. Each
pair controls whether a given bit in the page-select circuitry is on or
off. To RESET a bit (make it equal to 0), POKE any value into the
even-numbered address in the pair; to SET a bit (make it equal to
1), POKE any value into the odd-numbered address in the pair.

TO RESET, TO SET,
BIT # POKE HERE POKE HERE
0 65478 65479
1 65480 65481
2 65482 65483
3 65484 65485
4 65486 65487
5 65488 65489
6 65490 65491

For example, to switch in the video RAM starting at 3072, we need
to give the value 000110 to the page control circuitry as follows:

POKE 65478,0 'RESET BIT 0
POKE 65481,0 ‘SET BIT 1

POKE 65483,0 ‘SET BIT 2

POKE 65484,0 ‘RESET BIT 3
POKE 65486,0 ‘RESET BIT 4
POKE 65488,0 ‘RESET BIT 5
POKE 65490,0 ‘RESET BIT 6

In Program #1, see lines 40-50. The formula in line 40.

65478 + 1 * 2 + DT

is a shorthand way to poke the appropriate addresses in the
page-select register. DT is the 0/1 value for each of the
seven bits.

In Program #2, lines 640-670 do the same thing using bit
patterns stored in PH() and PA().

5. SELECT THE DESIRED GRAPHICS MODE

To select a given graphics mode, you must:
5-A. Set the VDG register
5-B. Set the control register.

(5-A.) First, look up the three-bit VDG pattern that selects
the graphics mode (see Column 2 in Table 2).

This is the binary value you must give to the VDG register.
Remember, this register consists of three pairs of addresses.
Each pair can be used to control whether a given bit in the
VDG circuitry is on or off. To RESET a bit (SET it to
zero), POKE any value into the even-numbered address in
the pair; to SET a bit, POKE any value into the odd-num-
bered address in the pair.

TO CLEAR, TO SET,
BIT # POKE HERE POKE HERE
0 65472 65473
1 65474 65475
2 65476 65477

For example, to select graphics mode G1C, we need to give
the value 001 to the VDG registers as follows:

POKE 65473,0 ‘SET BIT 0
POKE 65474,0 ‘RESET BIT 1
POKE 65476,0 ‘RESET BIT 2

(5-B.) Now, select the control value for the graphics mode

yvou want (see Column 3 of Table 2). Then store this value
in the control register without changing bits 0-3 of the con-
trol register.

For example, to select graphics mode G1C with color set 0.

1. Get temporary result with all
bits off except 0, 1, 2. These
are not changed.

POKE 65314, 128 OR (PEEK(65314) AND 7)

2. Turn on bit 7 without chang-
ing bits 0, 1, 2,

When you have executed Steps 2 through 5, the Computer
will be in the graphics mode you selected. The screen should
be blank. The rest of your program can be devoted to using
the graphics mode.

In Program #1, see line 100. In Program #2, see lines 740-
770.

PUTTING GRAPHICS TO WORK

Once you’ve selected the graphics mode, you can control
what appears on the screen by POKEing data into the
graphics page you have selected. How the data is interpreted
will depend on the mode you've selected. In some modes, one
byte may control a sequence of eight bits; in others, one
byte may control a 2x6, 2x 12, etc., “block.”

Table 4 explains how each pixel in a given mode is controlled
by a byte or bit. If youre writing your own main program
to use the subroutines in Program #3, you may want to ex-
periment, storing various values from 0-255 into a single byte
in your page of video RAM.

If you want to get more predictable results, read on...

MAPPING FUNCTIONS

In all the graphics modes, the screen is divided up into (X,Y)

coordinates. Each pixel on the screen has a unique (X,Y)
“address.”

If you've used SET, RESET and POINT, then youre familiar
with this coordinate system. All of these statements allow di-
rect reference to (X,Y) coordinates. For example, to set the
centerpoint on the screen to blue, we simply use:

SET(31,15,3)

Using the higher-resolutions graphics modes is a little more
difficult. We can’'t deal directly with (X,Y) coordinates; we
musl translate or “map” the desired (X,Y) coordinates onto
the appropriate byte of video RAM. When one byte controls
two or more pixels, we must map the (X,Y) coordinates onto
the appropriate bit or bits within a byte.

able 4 shows how each byte of vidleo RAM controls one or
more pixels.
As an example, we’ll take the 256 x 192 mode, G6R.

In this mode, the first 32 bytes of video RAM control the
first row of 256 pixels; the second 32 bytes control the sec-
ond row; etc.

Within each row, each byte of video RAM controls a se-
quence of eight pixels:

One Byte of Video RAM
seen as eight bits:

7 6 5 4 3 2 1 0

¢ Eight pixels

Bit 7 controls the leftmost pixel in the sequence; bit 0, the
rightmost.

With this in mind, we can construct a series of BASIC oper-
ations to map (X,Y) onto one bhit in one byte.

262

Notes: In the following BASIC statements, we assume the

following:

e X is the X-coordinate. (For illustration, X = 128))
oY is the Y-coordinate. (For illustration, ¥ = 96.)

e VIDRAM is the first address of video RAM. (For illustra-
tion, VIDRAM = 10240.)

e The expression “2 X” means “2 to the X power.” (This
function is not available in Color BASIC, but we can simu-
late it with a table of powers or 2.)

1. Which byte “contains” the pixel?

OFFSET = INT(X/8) + Y*32 = 16 + 3072

= 3088
BYTE = VIDRAM + OFFSET = 10240 +
3088 = 13328

2. Which bitin BYTE controls the pixel?
XMOD8 = X — INT(X/8)*8 = 0
BIT = 7 — XMOD8 = 7

3. What one-byte value will set the pixel? What one-byte mask will
set the pixel without changing any of the others controlled by the
same byte? For illustration, assume BYTE contains 8.

VLU = 2 {BIT = 128 = bhinary 10000000
OLD = PEEK(BYTE) = 8 = binary 00001000
MASK = VLU OR OLD = 136 = 10001000
POKE BYTE, MASK

4. What one-byte value will reset the pixel? What one-byte mask
will reset the pixel without changing any of the others controlled
by the same byte? For illustration, assume BYTE contains 136.

VLU = 255 — 2 #BIT = 255 — 128 = 127
= binary 01111111

OLD = PEEK(BYTE) = binary 10001000 =
136

MASK = VLU AND OLD = binary 00001000 =
8

POKE BYTE, MASK

The mapping we have just described is used in Program #2. See
lines 820-910. Another mapping (64 x 64, G1C) is used in Program

#1, lines 440-500.

TABLE 1. DESCRIPTION OF THE GRAPHICS MODES

AVAILABLE

Number of Video RAM
Mode (1) Resolution Colors (2) Regq. (Bytes)
5G6 64 x 48 8 512
SG8 64 x 64 8 2048
SG12 64 x 96 8 3072
SG24 64 x 192 8 6144
Gi1C 64 x 64 4 1024
G1R 128 x 64 2 1024
G2C 128 x 96 4 2048
G2R 128 x 96 2 1536
G3C 128 x 96 4 3072
G3R 128 x 192 2 3072
G6C 128 x 128 4 6144
G6R 256 x 192 2 6144

NOTES:

(1) The mode names are abbreviations. Read “SG6’ as “semigraphics six”;
read “G1C” as “graphics one with color”; read “G1R” as “graphics one
with resolution”; etc. In all of the “semigraphics” modes, you have
eight colors at once. In all of the “with color” modes, you have four
colors at once. In all of the “with resolution” modes, you have two

colors at once.

(2) In the four-color modes, you may select between two sets of four colors
each. In the two-color modes, you may select between two sets of two
colors each. The color-set select bit (bit 3 of the video control register)
determines which set is used. See Table 2 for more details on selecting

the color set.

TABLE 2. DISPLAY MODE SELECTION

TABLE 3. VIDEO RAM PAGE SELECTION

Page Select

VIDRAM Register

Bit Pattern
Size (Bytes) Start Address 6543210
‘”é 512 3584 0000111
A 1024 3072 0000110
M 1536 2560 0000101
512 15872 0011111
16K 1024 15360 0011110
R 1536 14848 0011101
A 2048 14336 0011100
M 3072 13312 0011010
6144 10240 0010100

Video Control
Register Value Data
VDG Register With Color Set* Bits*
Mode Three-Bit Pattern 0/1 7/6
SG6 000 16 /24 1/X
SG8 010 0 /0 1/X
SG12 100 0 /0 1/X
SG24 110 0 /0 X/ X
G1C 001 128 /136 X/ X
G1R 001 144 /152 X/ X
G2C 010 160/ 168 X/ X
G2R 011 176/ 184 X/ X
G3C 100 192 /200 X/ X
G3R 101 208 /216 X/ X
G6C 110 224 /232 X/ X
G6R 110 240 / 248 X/ X

**X" indicates “Don't care.”

263

Table 4. Detailed Description of the Graphics Modes

COLOR DATA Color Resolution
BIT Data Byte(s Comments
SET | g ggla;;acter Background | Border | Columns x Rows Detail ye)
0 0 |Green Black Black 8 dots | ! The Alphanumeric Internal mode uses an internal
1 |Black Green i o1t character generator which contains the following five
Pl anas Black 32x16 12 dots D 7 !_] i | ! | r i l i dot by seven dot characters: @ ABCDEFGHIJK
1 g Black e e ASClicode | LMNOPQRSTUVWXYZ[/]e—SPI"#
1 |[Black Orange ! | code bl Ll s
5 $%&"+,=/0123456789:;=".
Lx C2 C1 CO Color
0 X X X Black The Semigraphics-4 mode uses an internal
1 0 0 0 Green “coarse graphics" generator in which a rectan-
1 0 0 1 Yelow gle (eight dots by 12 dots) is divided into four
1 0 1 0 Blue La|Lz]| one [t]E]ei o])] &]| equal parts. The luminance of each part is deter-
X X |1 0 1 1 Red Black 64 x32 L | L, | lement) et B et BN] mined by a corresponding bit on the VDG data
1 1 0 0 Buff ‘ bus. The color of illuminated parts is determined
1 1 0 1 Cyan by three bits. It requires 512 bytes of display
i 1 1 0 Magenta memory.
1 1 1 1 Orange
Lx C1 CO0 Color
0 X X Black
0 } 8 ? g::g: The Semigraphics-6 mode is similar to the
9 1 0 Blue Ls | L, Semigraphics-4 mode with the following differ-
1 1 1 Red 7 (G]G] [[L[L [L]| ence: The eight dot by twelve dot rectangle is
X Black 64x48 1]l divided into six equal parts. Color is determined
‘13 é ’é gfﬁc“ LG b?rdl.he Itwo remaining bits. It requires 512 bytes
of display memory.
1 1 0 1 Buff ey &
1 1 0 Magenta
1 1 1 Orange
Lx C2 C1 CO Color
0 X X X Black Fometalfoe Bl =
1 0 0 0G 1]cc[c L] XX
e Ll Ele s) The Semigraphics-8 mode requires four column
1.0 0 1 Yellow 1leclc e Lol xx g .
1.0 1 0 Blue LijL L AR A B e consecutive addresses; and produces a 2x4
X X (1 0 1 1 Red Black 64 x 64 L | Ls 1[c,|c o] x I x|, || block. It requires 2048 bytes of display memory.
110 Buff
110‘303“ i 11c (el x [x|u G
1 1 1 0 Magenta
1 1 1 1 Orange
Lx C2 C1 CO Color
0 X X X Black
1 0 0 0 Green Li| L 11C|C|C L L X | X
1 8 ? ?,g'f""w L | L 1]C1C |Colls]| X | X
ue , . . o
Ls | L 1lc.lc, e L | x [x || The Semigraphics-12 mode requires six column
X SRR O I8 R Biack S = e Bl L consecutve addresses; and produces a 2x6
11 0 1 Cyan 7| Ls 1]G)Ci|Go| X | X |Lr|Ls!]| block. It requires 3072 bytes of display memory.
1 1 1 0 Magenta Lik 1[C)Ci|GCo X XLl
1 1 1 1 Orange Lis|Lio N R R

264

Table 4. Detailed Description of the Graphics Modes (Continued)

COLOR DATA Color Resolution
BIT Data Byte(s Comments
SET 6 gg[a;ncter Background | Border | Columns x Rows Detail ¥is(z)
Lx C2 C1 CO Color
0 X X X Black -
1 0 0 0 Green L|L t{c|C |G|l | L | X]|X
1 0 0 1 Yellow
1 0 1 0 Blue Lijl 1]G|C |G L|L|X]X
X X 1 0 1 1 Red Black 64x192 Ly | Ly 1]1C|C |Gl s | L X | X
EAii B I ANMEIE
1 : 1 ? g?fnznéa Lo | Le 1 [Roag o) Gy dy § Ly X0 | W The Semigraphics-24 mode requnres twelve col-
Lis | Lag 1[C;]Cy|Co|Ly|Lig| X | X || umn consecutive addresses,” and produces a
Ly | Lz 11C,1C [Col X | X [LialLra ?nx;ric?}lfck It requires 6144 bytes of display
Lig | Lys 1{c, el X | X |Lis|Lis
Liz|Lig 111G |G |G| X | X |Liz]Lig
LigjLig 1]C,|C|Co| X | X |Lig|Lig
Lo [Ly 1[Co|Cy|Cy| X | X [Lay|lsg
Las | Laz 1[G C|Co| X | X |La|lee
ct C0 Color
0 0 Green
0 0 1 Yellow Green
! g au T!he g:\ ﬁmcs- r1Chmode u$esf1bq24 byteg? of dis-
e Ey|Eo| Ei | E C,|Cy[Ci|Ce|Ci|Co|Ci|C play in which one pair of bits specifies one
X 0 0 Buff e A A CYE Y CA Y picture element.
0 1 Cyan
: 1 0 Magenta Rait
1 1 Orange
Lx Color
U 0 Black Green The Graphics-1R mode uses 1024 bytes of dis-
1 Green [G [[LT TG [l [T G L [L] play RAG in which one bit specifies one picture
X 128x 64
0 Black element.
1 Buff
1 Buff
0 Green The Graphics-2C mode uses 2048 bytes of dis-
Same colors as
X |Graphics one € 128x64 E|E] & [C.]G]ci]G]]Ca]Ci]Co] pllglurF;Aﬁenrr%;anh one pair of bits specifies one
1 Buff p
0 Soro\colorsias Green The Graﬁmcs-QE mode uses 1536 bytes of dis-
X Graphics one R - 128x 96 E I LGLLSI T] L, ’ = | T ’ Lo] Uq l le L;,J L I Ly I L l P , Lo, g:g%l:a in which one bit specifies one picture
1 u
0 Green The Graphics-3C mode uses 3072 bytes of dis-
Same colors as . fe
X | Graphics one C e 128x96 [Ci]Co]Ci[Ca]Ci]Co]Ci] o] gInae pﬁcﬁurelglggllgslone pair of bytes specifies
1 u

265

266

Table 4. Detailed Description of the Graphics Modes (Continued)

DATA Color Resolution
COLOR |y Data Byte(s) Comments
SET & gzgsme' Background | Border | Columns x Rows Detail
0 Green - The Graphics-3R mode uses 3072 bytes of dis-
Same colors as [[Lirlteite | |L] Lt to] | play RAM in which one bit specifies ane picture
X Graphics one R s ! by] ke l L } e l L l e I L[1o | I I I ‘ I lj gler¥r1ent. & :
1 Buff
0 Green The Graphics-6C mode uses 6144 bytes of dis-
Same colors as E;|E | E ; - lay RAM in which one pair of bits specifies one
& Graphics one C ol 128x192 IC | Go l G] G|C l S J G ’ CZ) SICKJFE elelmem. p p
1 u
0 Green The Graphics-6R mode uses 6144 bytes of dis-
x |Same colors as as6x192 ||L]L]L]L]G]L L] L] L] u L] L]LTG]L]| play RAM in which one bit specifies one picture
Graphics one R . element.
1 u

*Column-consecutive addresses starting at HEX 0400 are 0400, 0420, 0440, 0460, etc.

PART B

USING MACHINE-LANGUAGE SUBROUTINES
WITH COLOR BASIC

This part describes how to call a machine-language subroutine from
a BASIC program, and lists certain ROM subroutines that you may
find useful.

“Machine-language” (ML) is the low-level language used internally
by your Computer. It consists of microprocessor instructions. Ma-
chine-language subroutines are useful for special applications sim-
ply because they can do things very fast.

Writing such routines requires familiarity with assembly-language
programming and with the microprocessor’s instruction set. For
more information, see Basic Microprocessors and the 6800, Ron
Bishop, Hayden Book Company, 1979.

In this section, we'll take a step-by-step approach to using ML
subroutines, as follows:

Protecting Memory

Storing the ML Subroutine in RAM
Telling BASIC Where the Subroutine Is
Calling the Subroutine

Returning to BASIC

AR CR AR

As we go along, we'll be presenting a BASIC program that performs
all five operations. You may type in the BASIC program lines as
they are given, but don’t try to run the program until you’ve read
this entire section.

Our ML subroutine will be a simple one. It gets a character from
the keyboard. The character is returned as an ASCII code rather
than as a string.

The subroutine has a few features not available with INKEY$ or
INPUT. First, it will return any key code, including the one for

BREAK) . Second, it will let you key in control codes A-Z
(CTRL-A through CTRL-Z). To key in a control character, press ()
release it, then press any key from to @ . The control
codes generated range from 1 to 26.

]

Upon return from the subroutine, the USR reference is “replaced”
with a character code.

We'll call the subroutine “GETKEY”. For a listing of this ML
subroutine, see the end of this section.

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of RAM for
storage of your ML subroutine. The first CLEAR parameter sets
the string space, and the second sets the memory protection address.
For example:

10 CLEAR 25, 4050

sets the string space to 25 bytes and reserves memory addresses
from 4051 to the end of RAM (see the Memory Map). Your ML
program may then safely be stored in this area.

STEP 2. STORING THE MACHINE LANGUAGE SUBROU-
TINE IN RAM

ML programs may be loaded from tape via CLOADM, or POKEd
into RAM. In our example, we’ll store the individual codes in DATA
statements, then read and POKE each code into the correct RAM
location. The numbers in the DATA statements are derived from
the ML subroutine listed later in this section.

267

268

20 FOR1 = 1 TO 28

30 READ B: POKE 4050 + I, B

40 NEXT I

50 DATA 173, 159, 160, 0

60 DATA 39, 250, 129, 10, 38, 12
70 DATA 173, 159, 160, 0, 39, 250
75 DATA 129, 65, 45, 2

80 DATA 128, 64, 31 ,137, 79

90 DATA 126, 180, 244

STEP 3. TELLING BASIC WHERE THE SUBROUTINE IS

Before you can use the subroutine, you have to tell Color Computer
where it starts. You do this by POKEing the two-byte address into
RAM locations 275-276. The most significant byte (MSB) goes first,
then the least significant byte (LSB).

Our ML will start at decimal 4051, so:

Decimal 4051 = Hexadecimal OF D3 =
Decimal 15 (MSB), Decimal 211 (LSB)

Here’s the program line to accomplish this:
100 POKE 275, 15: POKE 276, 211
STEP 4. CALLING THE SUBROUTINE

At the correct point in your program, insert a USR function refer-
ence:

110 A = USR(0)

In our example, 0 is a “dummy argument.” It won’t be used by the
ML subroutine.

When this statement is encountered, BASIC will call the ML sub-
routine.

Note: On entry to the subroutine, you can get the USR argument (the 0 in .

tﬁhis case) by cqlling a ROM subroutine, INTCNV, which returns with the
integer value in the D register. The address of INTCNV is hexadecimal

. B3ED.

STEP 5. RETURNING TO BASIC

If you do not want to return any values to the BASIC program, end
the subroutine with an RTS instruction. If you want to return a
two-byte integer value, load the integer into register D in MSB-
LSB sequence, then end the subroutine by calling a special ROM
subroutine, GIVABF. The address of GIVABF is hexadecimal B4F4.

After an RTS, the USR-reference in your BASIC program will
return the original dummy argument. After a call to GIVABF, the
USR-reference in your BASIC program will return the value you
loaded into the D register.

THE BASIC PROGRAM

The following program gets the object code into RAM and then
uses the subroutine to get keyboard input. Type it in carefully, then
run it.

Each time you press a key, control returns to BASIC with the

ASCII code for that key. Try pressing (BREAK) - You’ll get the

code for 3. The BASIC program ends when you press
ENTER or ®

To get any of the codes 1 through 26, press @ , release it, then
press a key from to

10 CLEAR 25, 4050 ‘RESERVE MEMORY

15 CLS

20 FOR I = 1 TO 28 'STORE EACH BYTE OF 0BJECT CODE
30 READ B: POKE 4050 + [, B

40 NEXT 1

45 'HERE 1S THE OBJECT CODE

50 DATA 173, 159, 160, 0

60 DATA 39, 250, 129, 10, 38, 12

70 DATA 173, 159, 160, 0, 39, 250

75 DATA 129, 65, 45, 2

80 DATA 128, 64, 31, 137, 79

90 DATA 126, 180, 244

99 ‘TELL BASIC WHERE THE ROUTINE IS

100 POKE 275, 15: POKE 276, 211

110 A = USR(0) ‘CALL THE SUBROUTINE AND GIVE RESULT TO A
115 IF A = 13 THEN END

120 PRINT “CODE =*; A
130 GOTO 110

Note to Customers with 16K RAM: You may change lines 10 and
30:

10 CLEAR 25, 16350
30 READ B: POKE 16350 + I, B

For a variation in the program, change line 120 to:
120 PRINT CHRS(A); ‘DISPLAY THE CHARACTER

Most control keys (f) followed by a key —) will
have no effect when they are printed. But try control—H
(backspace).

ML SUBROUTINE LISTING

Note: Don’t type this in. It is here for those who want to understand how
the ML subroutine works.

Hexadecimal Source Code Comments
Object Code
AD 9F A0 00 LOOP1 JSR [POLCAT] ,;POLL FOR A KEY
27 FA BEQ LOOP1 ;IF NONE, RETRY
81 0A CMPA #10 ;CTRL KEY (DN ARW)?
26 0C BNE ouT ;NQ, SO EXIT
AD 9F A0 00 LOOP2 JSR [POLCAT] ;YES. SO GET NEXT KEY
27 FA BEQ LOOP2 ;IF NONE, RETRY
81 20 CMPA #65 JISITA - 27
2D 02 BLT ouT ;IF < A, EXIT
80 40 SUBA #64 ;CONVERT TO CTRL A/Z
1F 89 ouT TFR AB :GET RETURN BYTE READY
4F CLRA ;ZERO MSB
7E B4 F4 JMP GIVABF ;RETURN VALUE TO BASIC
POLCAT EQU 40960
GIVABF EQU 46324

Notes: “Source code” is not meaningful to the computer. It is a set of mem-

ory aids and symbols we use for convenience. The source code must be

translated or “assembled” into object code, which the computer under-

stands. In the listing above, the object code is given in hexadecimal form.
i We converted it to decimal numbers for our BASIC program.

ROM SUBROUTINES AVAILABLE FOR USE FROM
BASIC

The Color BASIC ROM contains many subroutines that can be
called by a machine-language program; many of these can be called
by a Color BASIC program via the USR function. Each subroutine
will be described in the following format:

NAME — Entry address
Operation Performed
Entry Condition

Exit Condition

Note: The subroutine NAME is only for reference. It is not recognized by
the Color Computer. The entry address is given in hexadecimal form:; you
must use an indirect jump to this address. Entry and Exit Conditionsare
given for machine-language programs.

BLKIN = (A006)
Reads a Block from Cassette

Entry Conditions

Cassette must be on and in bit sync (see CSRDON). CBMFAD contains
the buffer address.

Exit Conditions
BLETYP, which is located at 7C, contains the block type:

0 = File Header

1 = Data

FF = End of File
BLKLEN, located at 7D, contains the number of data bytes in the
block (0-255).
z* = 1,A = CSRERR = 0 (if no errors).
z = 0,A = cSRERR = 1 (if a checksum error cccurs).
z = 0, = CSRERR = 2 (ifa memory error occurs).
(Note: CSRERR = 81)
Unless a memory error occurs, X = CBUFAD + BLKLEN. If a
memory error occurs, X points to beyond the bad address.
Interrupts are masked. U and Y are preserved, all other modified.
*Z isa flag in the Condition Code (CC) register.

269

270

BLKOUT = [A008]
Writes a Block to Cassette
Entry Conditions

The tape should be up to speed and a leader of hex 555 should have

been written if this first block to be written after a motor-on.
CBUFAD, located at 7E, contains the buffer address.
BLKTYP, located at 7C, contains the block type.

BLEKLEN, located at 7D, contains the number of data bytes.

Exit Conditions
Interrupts are masked.

X = CBUFAD + BLKLEN.
All registers are modified.

WRTLDR = [A00C]

Turns the Cassette On and Writes a Leader
Entry Conditions

None

Exit Conditions

None

CHROUT = [A002]

Outputs a Character to Device

CHROUT outputs a character to the device specified by the
contents of 6F (DEVNUM).

DEVNUM = —2 (printer)

DEVNUM = 0 (screen)

Entry Conditions

Onentry, the character tobe outputisin A.

Exit Conditions
All registers except cc are preserved.

CSRDON = [A004]
Starts Cassette
CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IR0 are masked. uand vy are preserved. All others are
modified.

JOYIN = [A00A]

Samples Joystick Pots

JoyInsamples all four joystick pots and stores their values in
poTVALthrough poTvaL + 3.

Left Joystick
Up/Down 15D
Right/Left 15C

Right Joystick
Up/Down 15B
Right/ Left 15A

For Up/Down, the minimum value = UP.
For Right/Left, the minimum value = LEFT.

Entry Conditions
None

Exit Conditions
Y is preserved. All others are modified.

POLCAT = [A000]
Polls Keyboard for a Character

Entry Conditions
None

Exit Conditions

z=1,a = 0(ifno key seen).

z = 0, A = key code, (ifkey is seen).

Band x are preserved. All others are modified.

PART C

MEMORY CONTENTS

This table shows the contents of the Color Computer’s memory.
The first column shows the memory address in decimal notation;
the second, in hexadecimal notation.

Decimal
0-105

112-256

256-273
274-276
277-281
282

283-284
285-337
338-345
346-349
350-1023
1024-1535
1536-4095
1536-16383
16384-32767
32768-40959
40960-49151
49152-65279
65280-65535

Hex
0-69

70-FF

100-111
112-114
1156-119
11A

11B-11C
11D-151
152-159
156A-15D
15E-3FF
400-5FF
600-0FFF
600-3FFF
4000-7FFF
8000-9FFF
A000-BFFF
CO00-FEFF
FF00-FFFF

Memory Contents

Direct page RAM (can be used by machine
language programs)

Direct page RAM (cannot be used by machine
language programs using any of BASIC’s
subroutines)

Internal Use (Interrupt Vector’s)

USRJMP — Jump to BASIC’s USR routine
Can be used by machine language programs
Keyboard Alpha lock — O = not locked, FF =
locked

Keyboard delay constant

Can be used by machine language programs
Keyboard rollover table

Joystick pot values

Internal Use

Video Memory

Program and Variable Storage (4K RAM)
Program and variable storage (16K RAM)
Not Used

Extended Color BASIC

COLOR BASIC (8K ROM)

Program Pak Memory

Input/Output

271

274

APPENDIX A

MUSICAL TONES

Your Computer can come fairly close to matching (although it can’t exactly
match) the musical tones shown below. You may either use the piano keyboard
or the musical staff to produce electronic music.

If you're using the piano keyboard, the Computer tone for each key is directly
over the key. For example, the Computer tone number for Middle C is 89.

If you're using the musical staff, the tone number for each note is below the
note. For example the tone number for:

is 108.

o & P—
9 % J—! =
o @
Mo, = o p g8 r % BegsgiiEE R B SlEme
MIDDLE
F G A B C D E F G A B C D E

If the note is a flat, select the tone number immediately preceeding the note.
For example:

o)
A
| fan)

N

is 99.

If the note is a sharp, select the tone number immediately following the note.
For example:

(as
Ay
is 117.
Chapter 5 shows how to program the Computer to play a song.
2 —@- —P—
@ -3 0
N o ¥ ~ O »n w © -~ © 5 I D -~ N g O N © QD -~ N o =
(o] (=] o =
2 &8 &« &8 8 & w ~ 8§ 8 § & & 88 & 8 & R 3 3 3 3F

275

276

APPENDIX B

BASIC COLORS AND GRAPHICS CHARACTERS

These are the codes for the colors you can create on your screen. Chapters 1 and 9 show how to
create them.

BASIC COLORS

0 — black (absence of color) 3 — blue 6 — cyan
1 — green 4 — red 7 — magenta
2 — yellow 5—Dbuff 8 — orange

When using SET, color 0 will leave a dot’s color unchanged.

GRAPHICS CHARACTERS

These are the codes for the Color Computer’s graphics characters. To produce them, use CHR$
with the character’s code. For example, PRINT CHRS$ (129) produces character 129.

128 129 133 134 135
136 137

To create these characters in one of the colors below, add the appropriate number to the code.
For example, PRINT CHR$ (129 + 16) produces character 129, except the green area is yellow.

131

138 i39 140 141 142 143

To print all these graphics characters, type and RUN this program:

+16 — yellow +64 — buff + 96 — magenta
+32 — blue +80 — cyan +112 — orange
+48 — red

Chapter 18 explains how to use graphics characters.

APPENDIX C

PRINT @ SCREEN LOCATIONS

-
AL
(=)
o0
o
O
Q0|
(o}
I~
g O
O
1 o
i LY
i O
=
O
Y|
B O
j O
oy
N
H O~
{ —i
oo
i —
o |
i r—i
i O
A
-
<
i oy
it} i
i o
3 1
i —
| o
=l
B O
H 0O
i~
o
5.
4,
™|
N
|
o

277

APPENDIX D

GRAPHICS SCREEN LOCATIONS

278

NOTES:

279

280

APPENDIX E

ASCII CHARACTER CODES

These are the ASCII codes for each of the characters on your keyboard. The first column is the
character; the second is the code in decimal notation; and the third converts the code to a
hexadecimal (16-based number).

Chapter 15 shows how to use these codes with CHRS$ to produce a character.

CHARACTER

SPACEBAR
!

-
-

|~ + s~~~ + @R H#

* OO0 IO b W= O N

DECIMAL
CODE

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
63
o4
55
56
57
o8

HEXADECIMAL
CODE

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A

CHARACTER

CHRIOTWOZEZERE R« —~TOomooam> @2V I A -

DECIMAL
CODE

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

HEXADECIMAL
CODE

3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4K
4F
60
ol
02
53
o4
o5

CHARACTER

m) O @
55%@@@8N<N5<
g;ux EOE

DECIMAL

CODE

86
87
88
89
90
94
10

8

9
03
12
13

HEXADECIMAL

CODE

56
57
o8
59
oA
S5E
OA
08
09
03
0C
0D

*If shifted, the code for these characters ure as follows: (CLEAR) is 92
(hex 5C); (D) is 95 (hex 5F); (§) is 91 (hex 5B); @ is 21 (hex 15); and
=) is 93 (hex 5D).

LOWER-CASE CODES

These are the ASCII codes for lower-case letters. You can produce these characters by pressing

the (SHIFDand (@) keyssimultaneously to get into an upper/lower case mode.
The lower case letters will appear on your screen in reversed colors (green with a black

background).
CHARACTER DECIMAL HEXADECIMAL CHARACTER DECIMAL HEXADECIMAL
CODE CODE CODE CODE
a 97 61 n 110 6E
b 98 62 o) 111 6F
(¢ 99 63 P 112 70
d 100 64 q 113 71
e 101 65 r 114 72
f 102 66] 115 73
g 103 67 t 116 74
h 104 68 u 117 75
i 105 69 \ 118 76
J 106 6A w 119 77
k 107 6B X 120 78
1 108 6C y 121 79
m 109 6D Z 122 TA

281

282

APPENDIX F

ANSWERS TO EXERCISES

CHAPTER 4

SOUNDing tones from bottom of range to top and back to
bottom:

18 FOR % = 1 T0 255
28 SOUKD K»1

36 HEXT %

46 FOR ¥ = 255 T0 1 STEP -1
58 SOUND X,1

6 NEXT ¥

CHAPTER 5
Lines added to clock program:

92 FOR T = 288 T 218 STEF 3
24 SOUND T.1

DHERT T

97 FOR T = 218 TO 288 STEP -5
95 SOUND 71

99 MEXT T

Program which Shows 9 colors for 1 second each:

18 FORC =8708
28 CLS(CY

JBFOR X =1T0 468
48 NERT »

38 HEAT C

CHAPTER 7

Craps Game

18 CLS

28 A = RND<ED

38 B = RNDCED

BR=R+B

28 PRINT @ 268, A

68 PRINT 2 214, B

78 PRINT 9 394, “YOU ROLLED R" R
88 IF R = 2 THEN 660

98 IF R = 3 THEN €00

188 IF R = 12 THEN £B@
118 IF R = 7 THEM 568
126 IF R = 11 THEM 508

128 FOR & = 1 10 b6d
148 MEXT ®
158 £LS
168 PRINT @ 193, "ROLL ANOTHER" R “AND YOU WIN"
178 PRINT @ 262, "ROLL A 7 AND YOU LOSE®
1200 PRINT 2 420, “PRESS {ENTER> WHEN RERDY"
183 PRINT @ 456, “FOR VOUR MEXT ROLL®
198 IHPUT RS
208 ¥ = RHIES
218 ¥ = RHDGED
2 =x+y
229 CLS
236 FRINT @ 268, X
248 PRINT 2 214, ¥
299 PEINT @ 394, "YoU ROLLED A" 2
268 IF 2 = R THEH 380
279 IF 2 = 7 THEN €88
229 GOTO 126
598 FOR X = 1 TO 1068
518 MERT ¥
213 CLS
528 FRINT 2 230, "VOU'RE THE WIMHER"
530 PRINT @ 294, "COHGRATULATIONS!!H!™
240 GOTO 638
680 FOR X = 1| TO @08
618 HEXT W
613 £LS
628 FRINT 3 264, "SORRY, YOU LOSE"
30 PRINT @ 458, "GAME'S OVER"

Russian Roulette program

SFORM=1T0 18

18 PRINT "CHOOSE YOUR CHAMBER(1-13"
28 THPUT R

3@ IF X = RNDC18) THEN 188

43 SOUND 208, 1

o8 PRINT "-——CLICK--"

£8 NEXT N

63 CLS

78 PRINT @ 238, “COMGRATULATIONS!!!"
88 PRINT 2 265, "YOU MANAGED"

98 PRINT @ 29. "TO STRY ALIVE"

99 EHD

188 FOR T = 133 TO 1 STEP -3

128 SDUND T. 1

138 NEXT T

148 CLS

138 PRINT @ 238, "SORRY. YOU’RE DERD"
168 SOUMD 1, S8

178 PRINT @ 298, "MEXT VICTIM PLERSE"

CHAPTER 10

Test Your Arithmetic Program

5 CLS

& PRINT @ 238, "YOUR NAKE";

8 INPUT N¢

19 CLS

I5T=T+1

28 X = RND(108)

38 ¥ = RHD(168)

48 PRINT @ 228, "WHAT IS" X "+" 5
45 INFUT A

30 IF A =¥ + Y THEN B2

€0 PRINT @ 326, "THE ANSUER IS" X + Y

78 PRINT @ 383, "BETTER LUCK MEWT TIME," M$

86 GOTO 166

82 CLS(M

B3FORM=1T04

84 SOUND 173, 1

85 SGUND 268, 1

86 NEXT M

87 CLS

98 PRINT @ 232, "CORRECT," N¢ “!!!"
9SC=C+1

97 PRINT & 299, "THAT IS"

92 FRINT @ 32Z, € “OUT OF" T "CORRECT AMSWERS"
99 PRINT @ 362, C/T#180 "% CORRECT"

189 FRINT 2 428, "FRESS <EMTER> WHEM READY"
182 PRINT @ 458, “FOR ANOTHER"

183 THPUT R$

118 GOTO 14

CHAPTER 11
Table of Squares

5 CLS

r

8 PRINT

BF=z

28 FOR M =2 T0 1@

20 GOSUE 2864

30 FRINT M "s" N "=" E,
40 HERT H

28 EMD:

2030 REM FORHULA FOR RASING A NUMBER TO A FOWER
BAE =1
0MFIRA=1T0OF
203 E=E*N

2048 MEXT X

BB IFP=BTHEHE = 1
2063 RETURN

CHAPTER 12

Editing a Sentence

18 PRINT “TYPE A SEWTEMCE :"

15 IHPUT S

28 PRINT "TYPE R PHRASE TO DELETE"
23 INPUT D$

23 L = LEMCD$2

29 PRINT "TYPE A REPLACEMMT PHRASE"
33 IMPUT R$

40 FOR ¥ = 1 TO LEH(S$)

98 IF MIDCS, L3 = D§ THEN 160
68 NEXT X

78 PRINT D$ "-- IS HOT IN YOUR SEMTENCE"
B0 GOTO 28

283

188 E = X - 1 + LEN(D$2 188 H=H+1

118 NS§ = LEFT$(5$.%-1) + R$ + RIGHT$(SE,LEN(SS) - B2 118 IF H > £3 THEM H=63: GOTO 26
128 PRINT “NEW SEMTENCE IS " 128 SET(H, 14,33
138 PRINT NS# 138 RESETCH-1,14)
148 GOTO 3@
CHAPTER 13
CHAPTER 21
Computer Typing Test
i Word processor challenger:
26 INPUT *PRESS <ENTER> WHEM RERDY TO TYFE THIS PHRRSE"; E$ 1 CLERR 1d6@
30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN" ; HDEH RECH)
#B71=1 Lo
58 A% = INKEY$ 19 PRINT “TYFE A PARAGRAFH"
68 IF A$ = "" THEM 168 16 :
78 PRINT A$; 28 PRINT "PRESS </ WHEM FIMISHED"
00 BS = B$ + B¢ N =
99 IF LENCB$) = 32 THEH 129 4 /B$ = THKEYS
M T=T+1 94 IF R$ = "" THEN 4@
118 070 S8 68 FRINT A$:
178§ = T/74 78 IF A$ = "/ THEM 185
28 N = S8 B8 AECHY = AECEY + RE
148 R = B/H BIFAE=""DRAREF="7"RAs="I"THEH X =¥ + 1
142 FOR 2 =1 10 22 168 G0TO 48
144 IF MID$C"MOW IS THE TIME FOR ALL GOOD MEM",%,13 O MID$(EE.X 185 FRINT: PRINT
JAYTHENE =E + 1 118 INFUT "(1> PRINT OR (2} REVISE"; R
146 HEXT % 128 CLS
158 PRIMNT 28 ON R 5OSUB 1968, 2008
168 PRINT "VOU TYPED AT—" R "--WDS/HIN" 149 GOTO 185
178 PRINT "WITH" E "ERRORS" 1884 REM FRINT PRRAGRAPH
1818 FOR ¥ = 1 TO #-1
CHAPTER 15 1820 FRINT A$CYM
' 1838 NEXT ¥
Forward spacing dot: 16848 RETURH
18 CLS(B) 2098 REM REVISE PRRAGRAFH
28 H=63 2619 FOR % = 1 T0 %1
29 SET(H,14,3) 2026 PRINT ¥ “—" R4$(YD
30 A% = INKEY$ 2038 NEXT ¥
40 IF A$ = CHR$(B) THEH &0 2048 IHPUT “SENTEMCE TO REVISE"; S
45 IF R$ = CHR$(9» THEN 160 2845 IF S > X-1 OR S < 1 THEN 2048
29 60T0 38 2658 PRIMT A$(Sy
BH=H-1 2068 PRINT "TVYPE PHRASE TO DELETE"
65 IF H < B THEN H=8: GOTO 30 2678 IHPUT D¢
78 SET(H,14,2) 2688 L = LEN(D$?
75 RESETCH + 1,14) 2898 PRINT “TYFE R REPLACEMENT PHRASE®

88 GOTO 39 2188 INPUT R$

2118 FOR 2 = 1 TO LEH(R$<S)

2120 IF MIDCACSY, 2,L) = D§ THEN 2168

2138 NEXT 2

2148 FRINT D¢ "-- IS HOT IN YOUR SENTENCE"

2158 GOTO 2068

2168 E = 2 - 1 + LENC(D$D

2170 R$(S) = LEFTH(R$(SI.2-1) + RE + RIGHTECA$(S), LENCA$(S)-ED
2188 RETURN

CHAPTER 23
Alphabetizing book collection:
£LS: CLEAR 188@: DIM T6(188), R$C18E), S$C18@), ME(108), Z(l6d

Pt et s

PRINT "POSITION TRPE -- PRESS PLAY AMD RECORD"

4 INFUT "PRESS <ENTER> WHEM RERDY": R$

5 REM

9 REM DUTFUT TO TAPE

18 OPEN "0". #-1, “BOOKS"

15 CLS: PRIMT "IHPUT YOUR BOOKS -- TYPE <{X®» WHEN FINISHED"
28 INPUT "TITLE"; T#

23 IF T = "kK" THEN 3@

26 INPUT “RUTHOR"; A%

28 INPUT "SUBJECT™; S§

38 FRINT #-1. T$, R$, 5%

4@ G070 15

28 CLOSE #-1

£@ CLS: PRIMT "REWIHD THE RECORDER AMD PRESS PLAY"
78 INPUT "PRESS <EMTER> WHEM READY"; R$

74 REM

76 REM IMPUT FROM TAPE
wE=1

29 OPEN “I°, #-1, “BOOKS!

25 IF EDF(-1) THEN fz8

98 INPUT #-1, T$(B), R$¥(B), S$(B
SBE=B+1

118 GOTO 83

1208 CLOSE #-1

498 PRINT

588 INPUT "SORT BY (1) TITLE (2) AUTHOR OR (3> SUBJECT"; R
518 IF A >3 0R A < 1 THEM S@8

320 ON R GOSUB 1990, 2060, 2600
238 &0SUB 4660

248 PRINT

259 FOR & =1 10 B-1

360 PRINT "TITLE =" T$CZ(¥))
578 FRINT "RUTHOR :" A$(Z(R)>
388 FRINT "SUBJECT :" S$(2¢X))
390 HEXT ¥

£68° PRINT: GOTO 503

Bga REM

980 REM BUILD H¢ ARRAY
1683 FOR % = 1 T0 B-1

1818 HECR = TEOD

1628 MEAT A

1838 RETURM

2608 FOR ¥ =1 T0 B-1

2018 MEQD = A$CR)

2628 NEXT X

2638 RETURN

Jeaa FOR » = 1 T0 B-1

2018 MECH) = S4(R)

B2 MERT X

2832 RETURN

3902 REM

4009 REM SORT ROUTIME
45 T = 1

4618 » = 8

4628 % =n + 1

4838 IF X » B-1 THEN RETURM
4040 IF M$CAy = "272" THEN 49820
4658 FOR ¥ =1 TD B~

4068 IF MECH) < MEGD THEN X = ¢
4865 Z(T) = X

4058 MEXT ¢

4985 T=T+1

4698 ME(X: = "Z22"

4106 60TO 4818

285

CHAPTER 25

Deal two-dimensional card deck:

18 DIM S$(4), N$(132, T(413D)
20 DATR SPADES. HEARTS. DIAMONDS. CLUBS

JBFRX=1T04

48 RERD S$(X)

38 NERT A

68 DATR ACE, 2, 3 4, 3 6 7» 8 9, 18, JACK, GUEEN, KING
BFR KX=1T013

88 READ N(X)

99 NEXT X

160 FOR S =1 T0 4

{18 FOR KN =1T0 13
128 T(SN) = (510 * 13 + M
138 REXT N, S

148 FOR & =1 T0 32

198 S = RMD(4>: H = RHD(I32
168 IF T(5.M> = @ THEM 158

178 T(5:Ny = 8

188 PRINT N$(HY °-" 5$(S),

198 HEXT ¥

286

APPENDIX G

SUBROUTINES

These subroutines will let you run programs which require advanced math functions not

directly available in COLOR BASIC.

Each subroutine listing has a set of instructions in the margin. Study them closely. You’ll see
that some subroutines require other subroutines for internal calculations. You must enter
these “auxiliary subroutines” when the instructions call for them.

NOTE: Accuracy of the subroutines is less than the accuracy of the COLOR BASIC’s math operators and
functions. This is due to two factors: 1. The subroutines contain many chain calculations, which tend to
magnify the small error of individual operations. 2. These subroutines are only approximations of the
functions they replace. In general, the subroutines are accurate to five or six decimal places over much of
their allowable range, with a decrease in accuracy as the input approaches the upper or lower limits for

input values.

SQUARE ROOT

Computes: SQR(X), VX

Input: X, must be greater than or equal to zero
Output: Y

Also uses: W,Z internally

Other subroutines required: None

How to call: GOSUB 30030

20068 ENC

28018 REM *SQUARE ROOT* INPUT ¥, OUTRUT !
S8026 REM ALSO LISES W & Z IMTERMALLY
20638 IF ¥ = @ THEM Y = 8: RETURH

20048 IF » > B THEM 30068

29356 PRINT “ROOT OF HEGATIVE HUMBERY": STOP
JB0EA Y = ¥k (51 2=

28070 W = (- % L5

30880 IF (W=8) + (=2 THEM RETURN

28099 ¥ =¥ + W 2 =W GOTO 38878

EXPONENTIATION

Computes: X v (X to the Y power)

Input: X, Y. If X is less than zero, Y must be an odd integer
Output: P

Also uses: E, L, A, B, C internally. Value of X is changed.
Other subroutines required: Log and Exponential

How to call: 30120

28809 END

28180 REM *EXPONENTIRTION® INPUT X.Y%: OUTPUT P

26118 REM ALSD LSES E,L.A.B.C INTERMALLY

36120 P=1: E=@: IF V=B THEN RETURN

20138 IF (RLOXAMDCINT(Y =YD THEN P=1-2a+d¥INT(V/200 K=-H
26148 IF k(>0 THEN GOSUB 28198: k=VY+L: GOSUB 38258

30150 P=P+E: RETURN

287

288

LOGARITHMS (NATURAL AND COMMON)
Computes: LOG(X) base e, and LOG(X) base 10

Input: X greater than or equal to zero

Output: L is natural log (base e), X is common log (base 10)
Also uses: A, B, C internally. Value of X is changed.

Other subroutines required: None

How to call: GOSUB 30190

380808 EHD

28178 REM #HATURAL & COMMOH LOG:IHPUT X, OUTRUT L.%

38175 REM OUTPUT L IS HATURAL LOA, OUTRUT 2 IS COMMON LOG

SH188 REM ALSO USES A.E.C IMTERMALLY

30130 E=B: IF #{8 THEW PRINT "LOG UHDEFIMER AT":; ki
Hl*S A= 1 B=2: C=.3

TP

l: THE! -E‘» E=E—Fr: EDTD
==, TRT LA v O, AT LR L it
20215 L=CC(99507+, 961471 L 42, 5
39228 IF ABSCLI<1E-& THEM L=8
30225 ¥=L#, 42429450 RETURH

EXPONENTIAL

Computes: EXP (X) (e to the X power)

Input: X

Output: E

Also uses: LA internally. Value of X is changed.
Other subroutines required: None

How to call: GOSUB 30250

=088y END

J0248 REM *EXPOMENTIAL® IHPUT ¥, OUTPUT E

39245 REM RLSO USES L.R IWTERMALLY

20258 L=INT(l.4427ei+ls IF L127 THEM 30263

36255 IF %8 THEH PRINT “DUERFLOW“: STOP

0268 E=@: RETURH

30269 E=. 6931474 -R: A=1,32980E-5-1.41316E-4+E

J8Z7H A=(CAHE-8, 301236E-314E+e, 16574E-20E
BE275 E=(((R-. 1E6EEDMEH. D0E-1DeE+H] A=2

36280 IF L{=B THEH R=,5: L=-L: IF L=8 THEN RETURN

38285 FOR ®=1 TD L: E=R#E: NEXT »: RETURN

TANGENT

Computes: TAN(X)

Input: X indegrees

Output: Y

Other subroutines required: Cosine
How to call: GOSUB 30310

J80@d END

20309 REM *TANGENT* INFUT X IN DEBREES. OUTPUT ¥
308310 IF ARS(SIN{(98-%)~57,29577951))<{1E-7
" STOP

38328 Y=CIN(X/57.29577951)/SIN((98-X)/37. 293779513
30338 RETURM

THEN PRINT “UNDEFINED

COSINE

Computes: COS(X)

Input: X in degrees

Output: Y

Other subroutines required: None
How to call: GOSUB 30360

20088 END

28358 REM *COSINE® INPUT ¥ IN DEGREES, OUTPUT Y
20268 Y=CINC(98-X1/57. 29577951

28265 RETURH

ARC COSINE

Computes: Arccos(S), angle whose cosine is S
Input: S, 0<= S<=1

Output: Y in degrees, W is in radians

Also uses: X,Z internally

Other subroutines required: ArcSine

How to call: GOSUB 30500

SH088 EHD

28308 REM +ARCCOSk IMPUT S, OQUTRUT WU

28518 REM Y IS IM DEGREES, W IS IN RADIANS
28320 GOSUE 3855@: Y=98-Y: W=1,57679-W: RETURN

ARC SINE

Computes: ArcSin(S), angle whose sine is S
Input: S, 0<=8S<=1

Output: Y in degrees, W in radians

Also uses: X,Y internally

Other subroutines required: None

How to call: 30550

HEEE EHDR

26530 REM +BRCSIM SUBROUTIME# INPUT 5. QUTPUT Y.l

208525 REM ¥ IS IM DEGREES, W IS IN RADIANS

28548 REM ALSD USES URARIABLES X.Z2 IMTERMALLY

8558 ¥=C: IF AES(S¥<=,7071iB7 THEM 28619

JH366 H=1-S4S: IF ¥{@ THEN PRIMT S:“IS QUT OF RBMBE": STOF
28563 IF #=0 THEN W=98-57.29577951: GOTO 20628

28978 h=Ks2: Z=R

26580 V=G 2 TF GRBSOY ML 1E-2)ANDCY=2) THEN ¥=W: GOTO 3861
Y

20608 W=V 2=\ GOTO 285860

HE1E YRR G NN, BT T RN . 464 286E-2
JBE28 WY HERENE R NN T, B3R 94E-2

28625 IF ABS(S)»>. 767167 THEN W=1.578796-Y

28638 Y=b57.29577951: RETURH

289

290

ARC TANGENT

Computes: ATN(X), angle whose tangent is X
Input: X

Output: C in degrees, A in radians

Also uses: B,T internally. Value of X is changed.

Other subroutines required: None
How to call: GOSUB 30690

20980 END

28668 REM +HRCTRHGENT* INPUT ¥, OUTPUT C.R

28678 REM C IS IN DEGREES. A IS IM KADIRNS

30650 REM ALSO LSES B.T INTERMALLY

20659 T=SGN(: H=RBSCK): C=8

387@8 IF A>1 THEM C=1: #=1/%

20710 A=X+N

30720 B=((2.BEE23E-24R-1. 61657E-24R+4, 29806E-20+A
38730 B=((((B-7,52B9E-2)>+A+, 186563)4R-, 142089)+A+, 199936)4A
38748 A=C(B-.333332)%A+1 2R

30738 IF C=1 THEM A=1.5787%-R

38760 A=T#*A: C=f+37.29577951: RETURN

APPENDIX H

SPACE GUNS

18 CLEAR 1608
BFRY=8T01
38 C = (W+1)*16

48 S$CY) = CHRECISTHCIHTHRE (134T +CHRE (138402

98 S28(Y) = CHREC128+CHCHREC1364C)

68 NEXT Y

180 FORY =8 T0 1

183 € = JOVETK(@)

118 RCYY = JOYSTK(B+Y+2)

128 B(Y) = JOYSTKC1+(Y#2))

138 IF R(YY > 39 THEN A(Y) = 59

148 BCY) = INTCBC(Y)#4) * 4

158 LY = BC(YY * B + INTCH(Y)2)

168 IF L(Y) >= 488 -THEH L(Y> = L<Y) - 32
170 NEWT Y

168 CLS(B)

199 FORY=8T01

200 PRINT @ L(Y, 54433

218 PRINT @ L(V)+32, S24¢V);

220 MEXT Y

3680 P = PEEK(6528@)

918 IF P = 125 OR P = 253 THEN GOSUE 1808
338 §0TO 109

800 REM

908 REM FIRE GUN ROUTIHE

1808 U1 = IHT(B(1)/2)+1

1818 H1 = A(1) + 2

1628 IF ACL> > AC@) THEH 1168

1638 FOR H = H1 + 3 T0 63

1848 IF POINT(H.U1) = 2 THEN SOUND 10,2
1638 SET(H,U1,4)

1068 IF H <= Hl + 4 THEH 1688

1878 RESET(H-2, U1)

1888 NEXT H

1698 RETURM

1168 FOR H = H1 TO 4 STEP -1

1118 IF H = H1 THEN 1168

1128 IF POINT(H-4,U1)=2 THEN SOUND 18@,2

SAMPLE PROGRAMS

1138 SETCH-4.01,4)

1148 IF H »>= Ht - 2 THEN 110
1158 RESETCH-2,U13

1168 HERT H

117@ RETURH

BOUNCING BALL

5 CLEAR 12

& INPUT "BACKGROUWD COLORC1-E3": ©
9 CLSCCY

18 ¥=13: ¥=13

15 8 = 280 Y1 = 15

488 F=5

418 ZT = 2 YT = ¢

2B R =X+ A Y=Y+ W

2B TH =k TV =Va Tl = &M T2 = WM
446 GOSUE 1860

450 X =Tar ¥ =T¥s M =Ti: WM =72
433 H = INT(RT-202: U = INT(YT/ 2092
468 SETCH,U, L) SET(H+L,U,C)

462 SET(H, U+1,L): SET(H+1,U+1,C)

478 RESET(X.Y)

480 GOTD 468

499 REH

1688 REM CHECK BOUNDRRIES

1818 IF Tx > 63 THEN TX = €3: T1 = -Ti
1920 IF TR < B THEM T = 8: Ti = -Ti
1638 IF T4 > 31 THEN TY = 21: T2 = -T2
1046 IF T { @ THEM TY = 8: T2 = -T2
1899 RETURM

291

292

BLACKJACK

5 REM BUILD ARRAYS

7 DIM S6¢), HEC13Y, D523, F(S), ©(D)

18 DATA 16, 32, 48, %, 1

28 DATA *ACER®, *TWOWE, THREE®, #FOURE, #FIUEE, #S
E1GHTH, #NINE#. #TEMwor, $JACKH, GUEEMH, HINGS

39 FOR % = 1 70 5¢ READ S
40 FOR ¥ = 1 TO 13t READ M$: NECXY = H$: HENT 4
45 CLS(6)

46 PT=0: CT =8

A7 FOR Y =170 5 PO = @1 COO = @ NEXT

Ak, SEUENH

SE(My = CHRECL43+5): HEXT X

58 FOR ¥ = 1 TO 52¢ Doy = i NEXT X

68 FOR % = 1 T0 5: GOSUE 1888: Pk} = 2@ HEXT &

78 FOR ¥ =1 TO 3: GOSUE 1@@@: C(RY = 20 HEXT X

72 REM

73 REH PRINT FLAYER’S HAHD

BaL =25 ?

98 FOR M =1 T0 28 © = P(M2: GOSUE 588: PT = FT + Ti HEXT

188 FOR 1 = 1 TO 3¢ § = 53 GOSUE 2083: HEXT

182 REM

185 REM

11a L = 18

128 5§ = 5@ GOSUB Zud8

138 € = C(2): GOSUB S8@: CT =0T+ T
158 FRINT @ &, “COMPUTER’S HAND";

168 PRINT @ 267, "YOUR HAMD":

280 L =269 K =3

205 FRINT @ 238, "AHOTHER CRRDCY/MA?";

218 R$=IMKEV$: IF R$="" THEM 210

226 IF R§ = "N" THEN 23

238 € = P(K): BOSUE D80

M4BPT =FT + T

42FOR®2=1T0OK

244 1F PT > 21 A0 (PCRI-1D/13 =
16

246 MEXT X

247 1F PT > 21 THEN PRINT @ 488, “\DU BUSTED!!!"::

208 K = K + 1& IF K {6 THEN 205

255 L=18

268 C = CCi: GOSUB S@@: CT = CT + 7

268 IF PT {=CT THEM 320

370 PRINT 3 484, "CONGRATULATIOMS WINMER!":

FRINT COMPUTER’S HANE

INTCCPCRI-12/130 THEM PT = PT -

GOTO 409

373 GOTD =94

328 PRIMT 2 487, "TOUGH LUCK. KID;
398 REM

408 FRINT 2 238, "RANOTHER GRHECYAHIT:
418 R$=IHKEY$: IF R$="" THEM 418

428 IF R$ = "Y' THEM 45 ELSE EMD
4MIFHN=1THHT = 11

368 GOSUE daaa: GOSUE Zhed

G165 GOSUE 20@@: RETURM

o908 REM

1868 REM DEAL THE CARDS

1985 2 = RHR(32

1818 IF D2k = @ THEM 1888

1628 23 = @
1533 RETURN
1988 REM

2888 REM

83 L =L
BAFRY=1T0¢6

015 L = L1 + 22

WBFORY =1T03

2828 FRINT @ L1 + (Y-1), S4(8);
2848 HEXT YH)

5Ll =MmL=L+e

2639 RETURN

PRIMT THE SUITS

2980 REM

3008 REM FRIHT THE MUMBERS
MEILI=L-6

B FIR A =1T0¢6

J|WLL=11+ 22

3838 PRINT @ L1+2, MID$CHECHD, ¥, 1N

3848 NEXT A

W5 L1 =8

2658 RETURN

3908 REM

4888 REM COMPUTE MUMBER AND SUIT
4805 S = INT((C-10/13)H

4818 N = C-(5¢13-13)

4815 REM COMPUTE FOINT VALUE
4820 IF M =11 OR N =12 OR M = 13 THEM T = 18 ELSE T=N
4038 IF N =1 THEN T = 1l

4348 RETURM

KALEIDOSCOPE

18 CLsa

28 R=RHD(E2)-1

38 Y=RHD(163-1

48 Z=RHD{2-1

36 GOSUESA

68 GOTOZH

28 IF2=8 OR RND(7=3THEN1SE

188 SETC31-X, 1641, 2)

118 SET(31-¥,15-Y. 2)

128 SET(324%, 1644, 22

138 SET(32+K, 15-Y, 2}

148 RETURN

158 RESET(31-3, 16443

168 RESET(31-},15-1)
78 RESET(324X, 16+

188 RECET (3248, 15-V2

198 RETURN

ELECTRONIC DICE

4 CLEAR Z2ap8

9 CLS(33

6 DIM DB$(6)

8 DIM DFCZ1), F(E), DECED

18 REM FHCES IF DIE
ZBFOR ¥ =1T0 21

38 READ DFCX)

48 HEAT &

29 DATA 39

&0 DATA 14, 64

78 DATA 14, 39, A4

80 DATR 14, 26, 58: b4

98 DATA 14, 28, 39, 58, &4
168 DATA 14, 28, 36, 42, 538, 64
195 FRR=1T07

118 REM

128 REM FLACE IM ARRRY DF
13 FOR # =1 T0 &

148 REAL PCA

1568 HERT

168 Dng 1, 2 4, 7, 11, 16

163 REM

170 REM BUILD DIE STRIMG
ITFOR X =1Th 6

188 1 = PGD

185 FOR V =117

19 FOR 2 =170 1

192 IF '“ Peit+2 5 DF(M) THEH 268
194 DCay = [F08x + CHE$(128)
126 M=HM+1

197 IFH =22 THEH H = §

198 IFH=nTHEH M = @

199 Q0T 236

2680 DECRY = DO + CHRECI424+96)
228 HERT 2

g 7 =i -‘

& s =E 5y 4 1h&$<:143+::2:e
268 HEXT 2

.:rl' HE:}\T 7 :’1

488 REM

498 REH ROLL [ICE

JBAFOR T=1T0 18

918 A=RHD{&): B = RHD(E}

528 PRINT @ 35, D$CRX;

938 PRINT @ 273, D$(E);

540 MEXT T °

258 PRINT @ 113, “PRESS AMY KEY"“:
a68 PRINT 2 149, “FOR MEXT ROLL":
578 K$=IMKEY$: IF K$="" THEH 570
266 GOTO 568

294

PLAY BACK YOUR TUNE

S DIM AC25), S(13), B(2083: Y=L
18 FOR % = 1 TO 25: READ A(R:: HEKT X
20 DRTA 89, 99, 188, 117, 125
38 DATA 133, 148, 147, 132, 159
48 DATA 165, 17@, 176, 188, 125
58 DATA 189, 193, 197. 209, 204
68 DATA 207. 218, 213. 216, 218
78 FOR ¥ = 1 TO 13t READ S§(x)x: MEXT X
89 DATA A,4,5,E:D:F: TG, Y5 He Us 1K
98 CLS
92 FRINT @ 167, "COMPOSE YOUR SOMG"
94 PRINT @ 227, “USE KEVS ON 2ND & 3RD ROWS
96 PRINT @ 292, "PRESS {a» WHEM FINISHED"
168 P$ = INKEYS
118 IF P$ = "" THEM 188
1S FOR X = 1 T0 13
128 IF P$ {> G40 THEM 150
138 SOUMD ACK3: 3
148 B(Y) = ¥
43 Y=Y¥+1
150 MEXT ¥
168 IF P§ (> "A" THEN 1@@
163 CLS
178 PRINT 9 262, "SOHG PLABACK"
174 PRINT @ 264, “WHICH KEY(1-110"5
76 THPUT K
189 FOR » =1 T V-1
198 SOUND RCBCRI+K): 5
208 HEXT X
218 B0TD 163

LEARN THAT TUNE

18 DIN M8, T3
WMFRE=1T08

38 READ T(B)

40 MEXT B

M a=1

6A MRy = RHD(ED

O FIR Y = 1703

20 CLSCMCY)

93 FRINT @ 239, MY
1688 SOUND: TCMC), B
118 HERT ¥

128 C1L5

128 PRIMT 2 231, "PLAY BRCK THE TUME":
148 FOR ¥ =1 7D 4

58 T7=1
168 K$ = IHKEY$
177=T+1

188 IF T > 158 THEM 318

198 IF K§ = "" THEM 168

268 K = URLCK$)

218 IF K > MCYD THEN 218

228 CLSCK

238 FRINT 2 239, K3

248 SOUHD TCK). 3

238 NERT ¥

8% =¥8+1

278 CLS: FRIMT @ 238, "LISTEN TO NEXT TUNE":
260 FOR T =1 TO 508: HEXT T

299 CLS: PRINT @ 238, "LISTEM TO MNEXT TU
308 GOTO 6@

218 [LS@

228 PRIMT @ 235, "YDU LOSE":

230 SOUND {, 23

240 DATA 89, 188, 125, 133, 147, 159, 178, 176

INVENTORY
SHOPPING LIST

5 CLEAR 2880: DIM S$(108)

18 REM INUENTORY.-SHOFPING LIST

28-CLS

38 PRINT @ 71, "DO YOU WANT TO--*

48 FRINT 2 134, "(1) INPUT ITEMS"

38 PRINT @ 166, “(2) REPLACE ITEMS"

68 FRINT 2 198, "(3) ADD TO THE LIST"

78 FRINT 2 238, “(4) DELETE ITEMS"

80 PRINT @ 262, “(5) PRINT ALL ITEMS"

28 PRINT @ 294, "(&3 SRUE ITEMS OM TAPE"
189 FRINT @ 326, “(7» LORD ITEMS FROM TAPE"
118 FRINT @ 339, "“(1-7»";

128 THPUT H

13 IF M < B O0RM>7 THEN 18

148 ON M GOSUB 1808, 2088, 1028, 000, 4008, SBOQ, co00
158 GOTO 18

988 REM

1868 REM INPUT/RDD ITENMS

0|y =1

1628 CLS: PRINT @ &, “INPUT/RDD ITEMS"

1839 PRINT @ 34, "PRESS {EMTER> WHEN FINISHEL"
184D PRINT: PRINT “ITEM" VY3

1845 THPUT 54\

1838 IF 54¢Y» = "" THEM RETLRN

1y =y + 1

1878 GOTO 1946

1968 REM

2088 REM REPLACE ITEMS

2B05H =28

20818 CLS: PRINT @ 9, "REPLACE ITEMS"

2628 PRINT @ 34, "PRESS <ENTER> WHEN FIHISHED"
2039 PRIMT: INPUT “ITEM MO. TO REPLACE"; N
2840 IF H = 8 THEM RETURH

2830 INPUT "REPLACEMENT ITEM": S$CH)

2068 BOTO 2008

2980 REM

3060 REM DELETE ITEMS

3085 N = 8

3018 CLS: FRINT @ 9, “DELETE ITEMS

3828 PRINT @ 34, "PRESS <ENTER> WHEM FIMISHED"
3030 PRINT: INPUT "ITEM TO DELETE"; N

3835 IF H > ¥-1 THEN 2828

3848 IF M = @ THEN RETURH

3898 FOR % = N TO V-2

JOEB SEOL = SE(R+LD

3078 HEXT ¥

2088 SHRy =

2898 Y = ¥-1

3180 G0TD 3960

2988 REH

4993 REM FRINT ITEMS

4618 FOR ® = 1 TO ¥-1 STEP 15

40z8 FOR £ = ¥ TO %+14

4038 FRINT 25 S$(2:

448 HENT 2

4638 IHFUT "FRESS <ENTER> T CONTINUE"; Cf
4868 HEXT X

4579 RETURM

4523 REM

S5 REM SAUE ITEMS OM THPE

Jatg CLS: PRINT @ 135, "SAVE ITEMS OM THPE"
2928 PRINT o 254, “POSITION TRPE®

2638 PRINT @ 294, "PRESS FLAY RAMD RECORD
3849 PRINT 2 388, "PRESS <{EMTER> WHEN RERDY"
838 THPUT R$

D068 OPEM "D", #-1, “LIST"

878 FOR % =1 T0 ¥-1

SBEE PRINT #-1, S0

369 HEXT ¥

2189 CLOSE #-1: RETURM

9988 REM

£088 REH LORD ITEMS FROM TRPE

&818 CLS: PRINT @ 136, "LOAD ITEMS FROM TRPE"
€628 PRINT 2 235, “"REMIND TAPE"

£830 FRINT @ 308, "PRESS FLAY"

£840 PRINT @ 388, "PRESS {ENTER> WHEM RERDY"
£858 INPUT R$

#0360 OPEN "I", #-1, “LIST"

BATA Y = 1

£BB@ IF EOF(-1) THEN 6126

6399 THRUT #-1, S$(\a

6895 PRINT S$¢t)

clgg Y =Y + 1

€118 GOTO 6888

6120 CLOSE #-1: RETURN

295

296

BAR GRAPH

18 DIM A(5:3: 2}, R$(D)

20 DATR UTILITIES, PERSOMMEL. SUPFLIES, REWT. TRAVEL
SBFRRN=1T05

48 RERD A$OD

98 CLS

68 PRINT @ 139, "EWPEMSES"

78 PRINT @ 175 - INTCLENCREC X2, REGD
88 PRINT

WFRY=1TD2

189 PRINT "DEFT" Y

118 INPUT "BUDJETER™: ACX.Ys1x
128 INPUT “RCTURL"; A(H.‘, 23
138 NERT ¥
148 HEKT X
138 (LS
168 PRINT @ 133, “WOULD YOU LIKE TO SEE
1ra L = 2683

188 FOR X =170 5

198 PRINT @ L, ¥5 AFR)

289 L=L+32

218 HEXT &

2728 PRINT 2 468, “(1-53"

238 INPUT X

235 CO=g (2= LC =B (2 =0

2B FRY =1T03

238 CC1y = ROA, Y, 1340CH

268 (2 = AR, 2) + C(2)

278 HEXT ¥

280 IF £(23 > CC1) THEW 318

298 LCC13=38: LCC2)=INTCCC20(1 04302
306 6OTD 320

318 LCC2)=30: LCC=INTCCCL)/CC20#30)
328 P = 129

338 CLS(

340 PRINT @ 11, "ERPENSES":

398 PRINT @ 47 - INTCLEMCA$CK)D/20, A$CR)S
368 PRINT @ 97, "BUDGETED":

370 PRINT 2 257, "RCTUAL":

380 PRINT @ 448, CHR$C15934CHR$(1593;

399 PRINT @ 451, "DEPT 1%

488 PRINT @ 459, CHR$C175M4LHR$CI7S);

418 PRINT @ 462, “DEFT 2"

420 FRINT @ 478, CHR$C19104CHRECIS91);

430 PRINT o 473, "DEFT 3"

448 FRINT 2 486, "PRESS AMY KEY TO CONTINUE":
450 FORM=1T02

68 FORH =110 2

78 Fl = P + 32

450 FOR Y =170 3

498 DY = IHTCAGE, WS M /ACCL L (3]

398 FOR O = 1 TO (Y2

318 PRINT @ P1, CHREC143+164);

228 FL =F1 + 1

338 HEXT 0

248 NEST ¥

DI F=F+ 352

368 NEST H

a8 P = 289

588 NERT H

599 K$ = TMKEY#: IF K$="" THEM 3%

688 GOTO 158

SPEED READING

18 REM SPEER READING

28 CLS: PRINT @ 32, "HOW MANY WORDS PER MIMUTE®
38 INPUT "DO YOU READ": WPHM

8FIR¥=1T023

MUSIC COMPOSER

18 THPUT "LENGTHC1-18)"5
20 H = Mg
38 INFUT “TEMFO (1-42"3 T1

: . 4 IF T1 = 4 THEH &8
68 RERD R$: FRINT @ 236, A$ ST =Tl : GOTO 70
7O FOR V' = 1 TO (36Q/WFMY * 468 5 MEXT ¥ aT=8

88 REW Y LODP SETS LINES-HIN -8 FOR K = 1 T0 18

98 NEXT X @ END

188 DATA SCARLETT OHARA WAS MOT BERUTIFUL
112 DATA BUT MEN SELDOM RERLIZED IT WHEN
128 DATA CAUGHT BY HER DWH CHARM RS THE
126 DATA TARLETON TWINS WERE. IM HER FACE
149 DATR YERE TOO SHARPLY BLENDED

138 DATA THE DELICATE FERTURES OF HER

168 DRTA "MOTHER. A COAST ARISTOCRAT OF

28 GOSUR 1900

99 B = RND(Z) & T

168 SOUND P, B

118 LLE(5)

128 NEXT K

128 IF RMD(18) <=8 THEN 158
148 SOUND 125, 184T

145 EHD
178 DATA "FRENCH DESCENT, AND THE HEAUY" 159 SOUND S8, 1647
188 DATA ONES OF HER FLORID IRISH FRTHER 168 END

198 DATA "BUT IT WAS AN ARRESTING FACE."
208 DATA "POINTED OF CHIM. SRUARE OF JAW®

1863 K = RND(1a8)

=) B8 IF R <{=20 AND X (=25 THEH P =98 : S =1
218 DATA HER EVES YERE PALE GREEM 1020 IF S 5> 20 AND X <=25 THEM P =188 : S = 2
BT L R 138 IF % > 25 AND ¥ (= 4B THEN P = 125 ¢ 5 = 3
238 DATA STARRED WITH BRISTLY BLACK 1048 IF S > 40 AND ¥ <= 5SS THEH P = {32 : S =4
248 DATA LASHES RHD SLIGHTLY TILTED 1050 IF Y >SS AND R <=5 THENP =147 : §=5
259 DATA "THE EWDS, RBOVUE THEM, HER THICK" 1068 IF X D 7S AND X (=85 THEHP =159 : S =6
268 DATA "BLACK BROWS SLAMTEL UFWARDS.™ 78 IF Y SBSAND X <=5 THEM P =16t S =7

276 DATA CUTTING R STARTLING OBLIGUE LIME
288 DATA IN HER MAGHOLIR-WHITE SKIN—THAT
299 DATR "SKIN S0 PRIZED BY SOUTHERN WOMEN"
368 DRTH AKD SO CRAREFULLY GUARDED WITH

310 DATR "BOMMETS, VEILS, AND MITTEMS"

320 DATA AGRINST HOT GEORGIA SUMS

1658 IF X > 93 THEM P =58 : 5 =8
1699 RETURH

297

298

APPENDIX I

10

AO

BS

CN

DD

DN

DS

FC

FD

FM

ID

IE

10

ERROR MESSAGES

Division by zero. The Computer was asked to divide a number by 0, which is impossible.
Attempt to open a data file which is already open.

Bad subscript. The subscripts in an array are out of range. Use DIM to dimension the
array. For example, if you have A(12) in your program, without a preceding DIM line
which dimensions array A for 12 or more elements, you will get this error.

Can’t continue. If you use the command CONT and you are at the END of the program,
you will get this error.

Attempt to redimension an array. An array can only be dimensioned once. For example,
you cannot have DIM A(12) and DIM A(50) in the same program.

Device number error. Only three devices may be used with OPEN, CLOSE, PRINT, or
INPUT: 0, — 1, or — 2. If you use another number you will get this error.

Direct statement. There is a direct statement in the data file. This could be caused if you
load a program with no line numbers.

Illegal Function Call. This happens when you use a parameter (number) with a BASIC
word that is out of range. For example SOUND (260,260) or CLS(10) will cause this
error. Also RIGHT$(S%,20), when there are only 10 characters in S$, would cause it.
Other examples are a negative subscript, such as A(— 1), or a USR call before the address
has been POKEd in.

Bad file data. This error occurs when you PRINT data to a file, or INPUT data from the
file, using the wrong type of variable for the corresponding data. For example, INPUT
—1, A, when the data in the file is a string, causes this error.

Bad file mode. This error occurs when you attempt to INPUT data from a file OPEN for
OUTPUT (O), or PRINT data into a file OPEN for INPUT (I). 0

Illegal direct statement. You can only use INPUT as a line in the program, not as a
command line.

Input past end of file. Use EOF to check to see when you’ve reached the end of the file.
When you have, CLOSE it.

Input/Output error. Often this is caused by trying to input a program or a data file from a
bad tape.

LS
NF

NO
oD

OM
0Ss

ov
RG

SN

ST

T™M

UL

String too long. A string may only be 255 characters.

NEXT without FOR. NEXT is being used without a matching FOR statement. This error
also occurs when you have the NEXT lines reversed in a nested loop.

File not open. You cannot input or output data to a file until you have OPENed it.

Out of data. A READ was executed with insufficient DATA for it to READ. A DATA
statement may have been left out of the program.

Out of memory. All available memory has been used or reserved.

Out of string space. There is not enough space in memory to do your string operations.
Use CLEAR at the beginning of your program to reserve more string space.

Overflow. The number is too large for the Computer to handle.

RETURN without GOSUB. A RETURN line is in your program with no matching
GOSUB.

Syntax error. This could result from a mis-spelled command, incorrect punctuation, open
parenthesis, or an illegal character. Type the program line or command over.

String formula too complex. A string operation was too complex to handle. Break up the
operation into shorter steps.

Type Mismatch. This occurs when you try to assign numeric data to a string variable
(A$=3) or string data to a numeric variable (A =“DATA").

Undefined line. You have a GOTO, GOSUB, or other branching line in the program
asking the Computer to go to an unexisting line number.

299

300

APPENDIX J

WORD

ABS
ASC

AUDIO

CHR$

CLEAR

CLOAD

CLOADM

BASIC SUMMARY

PURPOSE

Computes the absolute value of a number.

Converts the first character in a string to

its ASCII code. For example, ASC (“CAT”)
converts “C” to its ASCII code, 67.

A listing of ASCII codes is in Appendix E.

Connects or disconnects the sound coming
from your tape recorder to your T.V.
speaker.

Converts an ASCII code to the character
it represents. A listing of the codes is in
Appendix E. The graphics codes are listed
in Appendix B.

Reserves space in the Computer’s memory
for working with strings. (Without
CLEAR, the Computer reserves 200
characters). If you are loading a machine
language program, you can use a second
number to specify the highest address
BASIC can use. CLEAR always sets all
numeric variables to zero and string
variables to null (nothing).

Loads the first program from cassette
tape. You may specify the name of the
program.

Loads a machine-language program from
cassette tape. You can specify an offset
address for the Computer to add to the
program’s loading address.

PAGES
EXAMPLES DISCUSSED
PRINT ABS(-5) 141
PRINT ASC("B") 149
X = ASC(T$)
AUDIO ON 159-64
AUDIOC OFF
PRINT CHR$(143) 149, 154-5,
PRINT CHR$(67) 175-194
Y$ = CHR$(32)
CLEAR 97-100
CLEAR 500
CLEAR 100, 14000
CLOAD 72-75
CLOAD “PROGRAM"
CLOADM “PROG" 267

CLOADM
CLOADM “PROG", 1000

CLOSE Closes a file by closing communication to ~ CLOSE #-1 220-30
the device you specify. CLOSE #-2
See OPEN for a listing of devices.

CLS Clears the screen to green, or to the color ~ CLS 12, 13, 47,
code you specify. See Appendix B for alist CLS(2) 221
of the color codes.
CONT Continues executing a program after CONT 136
pressing BREAK or using STOP.
CSAVE Saves a program on cassette tape. You CSAVE 71-75
may use a program name with up to 8
letters. CSAVE “PROGRAM"
DATA Stores data in your program. Use READ DATA 5, 3, PEARS 94-100, 127
to assign this data to variables. DATA PAPER, PEN
DIM Reserves space in memory for the arrays DIM R(65), W(40) 198-9, 201,
you specify. DIM W$(8,25) 203, 241-8
END Ends your program. END 55-58
EOF Checks to see if you've reached the end of IF EOF(—1) THEN CLOSE 222
the data in a file. If you have, EOF(—1) IF EOF(0) THEN INPUT #-1
will be true; if you haven’t, EOF(0) will be
true.
EXEC Transfers control to a machine-language EXEC —

program at the address you specify. If you EXEC 32453
don’t specify an address, the Computer

will use the address specified at the last

CLOADM command.

301

302

FOR...TO
STEP/
NEXT

GOSUB

GOTO

IF/THEN. ..

ELSE

INKEY$

INPUT

INT
JOYSTK

LEFT$

Creates a loop in your program which
the Computer must repeat from the first
number to the last number you specify.
You may use STEP to specify how much
to increment the number each time
through the loop. if you omit STEP, 1 is
the increment.

Sends the Computer to the subroutine
beginning at the line number you specify.

Sends the Computer to the line number
you specify.

Tests the relationship. If it is true, the
Computer executes the instruction
following THEN. If it is not true the
Computer executes the instruction
following ELSE or, of ELSE is omitted,
the next line in the program.

Strobes the keyboard and returns the key
or non-key being pressed.

Causes the Computer to stop and await
input from the device you specify. If you
do not specify a device number, the
Computer will await input from the
keyboard. See OPEN for device numbers.

Converts a number to an integer.

Returns the horizontal or vertical
coordinate of the left or right joystick:
0 — horizontal, right joystick
1 — vertical, right joystick
2 — horizontal, left joystick
3 — vertical, left joystick

Returns the left portion of a string. You
specify the string and the length of the
left portion.

FOR X = 2 TO 5/NEXT X

FORA = 1TO 10 STEP 5/
NEXT A

FORM = 30 TO 15 STEP
=5/
NEXT M

GOSUB 500
GOSUB 5000

GOTO 300

IFA = 5THEN 300

IF B$ = “YES” THEN PRINT
“Xyz”

IF A = 3 THEN PRINT
“CORRECT" ELSE PRINT
“WRONG”

A%$ = INKEY$

INPUT X$
INPUT “NAME"; N$
INPUT R—-1, A, B$

X = INT(5.2)

M = JOYSTK(O)
H = JOYSTK(2)

P$ = LEFT$(M$,7)

35-36, 64,
117-8

103-10

28-31, 58

32, 55-8, 63,
138

125-31

26, 27, 63,
104-5, 113,
220-30

96-100
84-9, 169-71

115-22

LEN Returns the length of a string. X = LEN(M$) 113-22

LIST Lists the entire program, or the lines in LIST 26, 64
the program you specify. LIST 50-85
LIST 30
LIST -30
LIST 30-
LLIST Lists the entire program, or the lines you LLIST 215-6
specify, on the printer. LLIST 20-50
MEM Tells you how much space the Computer MEM 136
has remaining in memory.
MID$ Returns a substring within a string. You PRINT MID$(“WORDS,’2,3) 116-22

specify the string, the position which
begins the substring, and the length of
the substring. For example,
MID$(“HOMES,2, 3) returns OME.

MOTOR Turns the cassette ON or OFF. MOTOR ON 159-64
MOTOR OFF

NEW Erases everything in memory. NEW 25

ON...GOSUB Sends the Computer to one of the ON Y GOSUB 50, 100 137
subroutines you specify.

ON...GOTO Sends the Computer to one of line ON X GOTO 190, 200 138
numbers you specify.

OPEN Opens communication to a device for OPEN “I"" #—1, “FILE” 219-20, 228
Inputting (I) or Outputting (O) data. OPEN 0", #—1, "DATA”

The devices are:

#0 — screen of keyboard

—1 — cassette recorder

— 2 — printer
(It is not necessary to Open
communication when you are INPUTting
from the keyboard or PRINTing on the
screen).
You may specify an 8-character name of
the data file

303

304

PEEK

POINT

POKE

PRINT

PRINT@

READ

REM

RESET

RESTORE

RETURN

Returns the contents in the memory
location you specify.

Tells whether a dot at the horizontal and
vertical location you specify is lit up. It
will return a —1 if the dot is in the
character mode, 0 if it is off, or a color
code if it is on. See Appendix B for the
color codes.

Puts a value in the memory location you
specify. The value may be a number
between 0 and 255.

Prints the message you specify on the
device you specify. If you do not specify a
device, your message will be printed on
the video screen. See OPEN for device
numbers.

Prints your message at the screen position

you specify. See Appendix C for the screen
positions.

Reads the next item in the DATA line and
assigns it to the variable you specify.

Allows you to insert a comment in
your program. The Computer ignores
everything on a REM line.

Erases the dot SET on the screen location
you specify. See Appendix D for the screen
locations.

Sets the Computer’s pointer back to the
first item on the DATA lines.

Returns the Computer from the
subroutine to the BASIC word following
GOSUB.

A = PEEK(32076)

IF POINT(15,12) = 3 THEN
PRINT “BLUE"

POKE 15872,255

PRINT “HI"
PRINT A%

PRINT #—-1, A$
PRINT #—2, "HI"

PRINT "HI", 256
PRINT A$, 331

READ A$

READC, B
REM THIS IS IGNORED

RESET(14,15)

RESTORE

RETURN

88, 257

167-72

257

9-11, 104,
209-30

64, 164-94

94-100, 127

105

83-4, 149-64

97-100

103

RIGHT$

RND

RUN
SET

SGN

SIN
SKIPF

SOUND

STOP

STR$

TAB

USR

VAL

Returns the right portion of the string
you specify beginning at the position
you specify.

Returns a random integer between 1 and
the number you specify.

Executes a program.

Sets a dot at the screen location you
specify, using the color you specify. See
Appendix D for the screen locations and
Appendix B for the color codes.

Tells the sign of a number. Returns a 1 if
the number is positive, 0 if it is zero, or
—1if it is negative.

Returns the sine in radians

Skips to the end of the next program on
cassette tape, or to the end of the program
you specify.

Sounds the tone you specify for the
duration you specify. Both the tone and
the duration may be a number between
1 and 255.

Makes the Computer stop executing
the program.

Converts a number to a string.
TABs to the position you specify.
Calls a machine-language subroutine

whose address is stored at 275-276.

Converts a string to a number.

ZP$ = RIGHT$(ADS$,5)
PRINT RIGHT$("ONE",2)

A = RND(10)

RUN
SET(14,13,3)

PRINT SGN(—-4)

X = SGN(A*B)
Y = SIN(5)
SKIPF

SKIPF “PROGRAM"

SOUND 128, 3

STOP

X$ = STR$(5)
X = STR$(Y)

PRINT TAB(2)"'HI"
PRINT # -2, TAB(5) “HI"

X = USR(Y)

A = VAL(B$)

115-22

61-8, 91-3
25

77, 78-88,
149-55

141

74

13, 30, 39-41,
50-2, 126-8,
163-4

135

141

267

129-30

305

306

KEYBOARD CHARACTERS

PAGES
CHARACTER PURPOSE DISCUSSED
= Backspaces the cursor 8
(the blinking light)
ENTER Tells Computer you’ve reached 7,25
the end of your program line
or command line.
(BREAK) Stops execution of your program. 28-33
SHIFT Pauses execution of your program. 61
Press any key to continue.
© Switches Computer to and from 14, 216
upper/lower case mode.
BASIC SYMBOLS
PAGES
SYMBOL EXPLANATION DISCUSSED
T n Indicates that the data in 8,9,125
quotes is a constant.
Separates program “statements” 104
on the same line.
Q) Tells the Computer to perform 107, 108
the operation in the inside
parenthesis first.
; Causes constants and variables 29, 85, 177
to be PRINTED right next to
each other.

BASIC OPERATORS

OPERATOR PURPOSE
+ Combines strings
+ Addition
= Subtraction
* Multiplication
/ Division
= Equals
> Greater Than
> = or = > Greater than or equal to
< = or = < Less than or equal to
< Less than
<> or >< Not equal to
AND Logical AND

OR Logical OR
NOT Logical NOT

PAGES
DISCUSSED

113-4

8-11

8-11

8-11

8,11

84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
84, 87, 125, 233-8
139-40, 257
139-40, 257

957

Index

Subject Page Subject Page
INEYS 5o nb i olbe o R 141 CRBITIOS s 55 5 5% 55 5 5 = somomnssmin mm o s o n o o eiimgesimgonnt o o 167-194
AlpPha0etZIMGMER T, L bbb & v v s & 5 s e *233-8 GBI v iy i 50 n 20 n wnammmmy o 5 v m o w3 8 o s *103-10
ANDRSE L. e I N o et mviige e saperas 139-40, 257 BOTE | ... e v n 5 nr o 0 s seis oo = s 4x *28-31, 58
ADITTATIORIR 2 2 Fie fvarsssitirns s havnre o 0 4w aesssamie & 65 6 o 55 % 5 5 149-94 Graphics 77-89, 149-93
[N & e e S G S *199-207, 239-48 Highresolution 252
TLIIE S I o Sttt v s v & 4 et S § 8 5 5 5 8 5 6 6 Ak 206 Graphics characters Appendix, 175-93
Stng S et Sl S © S R B £ R LR R 209-16 Greater than (>)
N R v v ihs = & S0/ e 0 S 6 6 5 8 Appendix, 149 NUMETC ... 84,87
U IO it s e e P P 159-64 OTTITEI L I 1. i R ST A o B P, oo 233
BASICE e s s 555 50 35 83 SEweE G d s 5 e e Appendix, 3 Grici o LN - n . o g Appendix, 65, 78, 152
ST G e b S e S 257 High resolution graphies 252
Boolean algebral < « s s s 56 s s chmmimmansinnenes s 257 IBETREN. . . v - comssommn s 5 o0 55 5 seupmssmsmng & § & 32, 55-8, 63
SIRISES 0.0 om0 ot ma o SR S P 28-33 L L T A *125-31
SIVHES Sinemon Ao O TP O 257 INPUT & <o s mmmmmone v o 5 £ 5 6 sammas 26, 27, 63, 104-5, 113
(CECTRE o boin s ric i SRS RS See “Recorder” INPUT # =1 6osimniumammsassse5ssis s o s 220-30
Changingwords ..., 26, 28-9 I i W5 5 5 5 5 8 3 B AEEA 0 5 15 & 2 o b et o 5 *96-100
Charactercodes Appendix, 149 JOYSHEKS +:cuis s e e s s immimimiminint o o s *84-9, 169-71
(CIIRE olneo ot b Do e R — See “Character codes,’ JOYSTHK oot e e s See “Joysticks"
Appendix, 149, 154-5, 175-194 LABBIS imics 505 0 8 ¢« Gomiesmns st o a1 a0 & o i badtobemmsntet s 199-206
USRI kot ol SO P S e A *97-100, 212 I S P 115-22, 181
(LTI e *72-75 P S T e S B Ry T e 113-22
CILOVADIV & i e T T T 268 Less than (<)
ClUORI= L anan o R T *220-30 U] 5T 84
CIUS] rsimmat oot T 12, 13, *47, 221 S e 233
(CTRIETE] 015 o o A et S SR 104 LISTE oo s o e55 5 smsmsiomomn & 8 9 5 & 5 p 3 SSomamaieg ¢ £ 06 o5 AR 26,64
CISIAIF o s i ey R SIS s 7,12,14,77-89, 177 LEIST soonespmmainie s = 43 5 soromeres v & 3 5 5 8§ S ERsmETy L) 215-6
CEIIIEN) 0 nos oan st st e ST S S 29 Load fFOm 18DE : : . cwmmeues o6 3 555 s memmsie ¢ See “CLOAD"
COINIT, 6o burceid b i B e g e s RN 136 LOOD jo5uv e 1 s ¢ 5 pmamemie 07 3 5 585 SEREEERT 0T D15 28, 45-52
Counting(time) 35-41, 43-9 LowerCaseModeccciviivirinrnnnnnnnenennnnn. 181
CESTAIR " b o dres o ek S P *71-75 Machine-Languageo, 267
BV o o bororoaronit s o i L S *94-100, 127 Sub-routines
YY) 50 b naston Se i 28,118 BRI e G nn 55 5 msettiioronr = s 50 e T ey 103-10, *106
D R . s i e & *198-9, 201, 203, 241-8 MEM! ol s O mimoiindings Bl i SR S 136
BIVIISTAIG] o v it Clen By i s et SRSy S 10 ¥ = o] e T e - 50 1t 660 B 17, 136, 203
BDollanSIgn (D) a5 o5 s 55 e e e e ee e s *18-20 NI CTODAGHE b a . e il S ot VI o e e 159-64
= o e o b o e e ST 138 MIBS moecconsise don i g it e et sones 116-22
[ERTEIRISININE) 500 ot o o e e i e *125-131 O IO rrcon gt o e T o AN Sty R MR See “Animation”
SID), i b i 2 e o i e AR S SR 55-58 MOLAE Lo v st &t e S L R ST 159-66
ENMIZEL 555 000520000k 5 o eh 80 o e SR e % 1] o T o P e S e s Wiy i e o iy i e 10
HOIF &5 n 000 omabesoD nad 6 A Bl R 222 Nested LaOp: =« v x 2o il s e s e G 45-52
EEEE oassmenonn s ool b b i S SR 28,118 INEWE i st o « oo ezl st sl sl she s anebabarstioscabay vt o 25
Error messages 11, 12, 19, 21, 30, 95, 104, 114, O B s e ot e o o 257
Appendix Notequal toi (<>, <) ¢ ivvmeinii st o s 125
Exponentialnotation 142 NUumenc dalal o domeae s s s s s e 9, 20
FES s 0 moninann A B b BERa o i e N 220-30 O ot 11 oo s B P e L s e 7
[FIIRE] - ommp o G o s R See “Alphabetizing” ONL . GOSUBT (i i e el s 5 e oo 137
EORVIN EXTRIEE S i d e st o 60 s 1 35-36, 64, 117-8 GONLG GOION «omd o R R e 138

307

308

Index

Subject Page
) N e b o e PN § B £ § A8 8 w5 219-20, 228
DB LIS B S rfiin s = o 5 554 5 SHTRS RS 8 4 5 95 8 5 5 8 3 106
DIBE. & o o' oot e SO RO I E S F S § g 140, 257
(OITEIIE st A SRRNE R S S P 219-21,228
PATEMINESEEI[) iioeartin o s virr v sa mnssinisins w6 65885 5 107, *108
CENEE 44 ne o oomaar o S S SR S S O 40
FISIElE ot e L A AR S 88, 257
RIS SIGMI (55 o i it eossiB o5 6 v o 5 wie wimioimamiat 032w 1 113-22
BEICE PR o SRS B L 5 L L oo s B e s ey 257
CIONNIT & 5 00 48 e i s S R 167-72
BRINITE Siiiensams o s o 5 s wmimasse e 6 5 6 5 9-11, 104, 209-30
RN e v tianrn s 0 is & w5 & sammrsmssi & o s v 6 v & 220-30
BRINMEE S 28V rimsaiis a0 o5 8 5 § 5lsmsss 68 85 6w & & s 216
PRINTR @Bt s s s s s bsts 0 8 ¢ Appendix, *64, 164-94
[BITIET o oo o on A e g R P 215-16
Printpunctuationl 29,177
REOGIAMIBETIERE IR\ o e ienimmmcn i n mn @ o8 s SRR 3,25
O e e e s psentio £ 5 n 5 5 an mose wmpngmspimse 7
Quotation marks (“) .« .oiii i 8,79, 125
BEADMmeR % 5 o B I U SRR *94-100, 127
EISSOIROLET s 5 o b o m Al e e R U 71-5, 169-64, 219-30
Relationall .o s o vamsme sy e e vss cn s See “Alphabetizing”

OPERAIOLSH 21s e iistuiatirs 64 spa e 85 51 3 dbnsnaie &b b o s 84, 87,125
BEMIBEmMAark) i - fes i st oo s o o5 s s o o 105
RESEIE S s st i s 5 f s ity £ 6 5 83-4, 149-64
BESTIORE R r o s o w5 s oemmenils 16 & 05 5 5 58 igissmme *97-100

Subject Page
BETURN . « 1« o aommcemmmon mss s n s o0 n omsmmssmisms = s 0 s 5 0 08 ssemmss 103
REVEISEGOIOIE: oo v msv« wm o wsmosmess s 46 w5 w5 0 e o wprstnnsias 7,14
BRIGEID: szl aat s wece Formialmmsuitins = 9.8 5 o = sile dunsm 115-22, 181
BIND: & s s sie 75 5 8 5 5 Brsswnsse e o 5 v 84 § § @ 6 g *61-8,91-3
L e s 25
SaVe ONIAPE: i vvssvusssmmmmmussoiss sy See “CSAVE"
SemiscoloN () civissssvmmpersnsosssss svmumms 29, 85, 177
SET swavepesesss pommees s S E S 3 5B B 77,*78-88, 149-55
] B 141
SHIET (@ . conmeniiv s s a5 555 6 G 852§ 5 55 55 5 HEASESRES 65 5 61
BB o mi v o = &0 s s A T Y 5 E RS R] 74
SOUND 13, 30, 39-41, 50-2, 126-8, 163-4
SIIER o s snuse i oms xR bl s o mon B 6 s FTE G YL 38-40
STEP: - %oy cig o E 5T » G o 2 5 = a » %5 SRS NN, 135
SIS o L e et i w1 = 5 5% & ot S S *9, 19, 113-22
STR% ... 141
SUBTOUNNGS: - ovrasssss o3 vammss £assoes s & wovne o e *103-10

Machine-language ... 267
21 o[- IS S o See "Recorder”
TEIERBE oowiss o o & xn o m ssrmmmsteo s 5.8 5 8 5 § 9 5 0R AR Ea 0 b 2 5 44-52, 128
ISR, . e sesammsmsts o s 5w wn & & mmpeioeish 57e 5 55 Rahs niin) 3 s £ e 00 268
WAL, ¢ o sovmvamem 6w a & w5 o misimbosmnt & 5 5 5 o #5854 5 AT 200 05 208 129-30
Varables: « s - ovmsmine o x v s 2 o o n v 5 18, 22, 197-206
“Labeled” o s s wmemsimnts b s e ekl 00 199-206
WOrd proCessing .. .covvvevnieenerneenneaaneens 213-15

8749457-683-SL

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A. CANADA
FORT WORTH, TEXAS 76102 BARRIE, GNTARIO, L4M4WS5

TANDY CORPORATION

AUSTRALIA BELGIUM UNITED KINGDOM
91 KURRAJONG ROAD PARC INDUSTRIEL NANINNE BILSTON ROAD, WEDNESBURY
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

PRINTED IN U.S A

	Front Cover
	Limited Warranty
	Copyrights
	Welcome Newcomers!
	To Get Started...
	Table of Contents
	Section I - Getting the Hang of it
	Chapter 1: Meet Your Computer
	Chapter 2: Your Computer Never Forgets (unless you turn if off)
	Chapter 3: See How Easy It Is
	Chapter 4: Count the Beat
	Chapter 5: Sing Out the Time
	Chapter 6: Decisions, Decisions
	Chapter 7: Games of Chance
	Chapter 8: Save It to Tape
	Chapter 9: Color Your Screen
	Chapter 10: One Fantastic Teacher
	Chapter 11: Help With Match
	Chapter 12: A Gift With Words
	Chapter 13: Beat the Computer
	Chapter 14: Polish It Off

	Picture This
	Section II - Graphics With Pizzazz
	Chapter 15: Moving Pictures
	Chapter 16: The Talking Computer Teacher
	Chapter 17: Games of Motion
	Chapter 18: Faster Than Motion
	Chapter 19: Let's Dance

	Section III - Getting Down to Business
	Chapter 20: Keeping Tabs on Everything
	Chapter 21: Put Power in Your Writing
	Chapter 22: Tape Your Book Collection
	Chapter 23: Filing - As Easy as ABC
	Chapter 24: Getting Analytical

	Section IV - Don't Byte off More Than You Can Chew
	Part A: High Resolution Graphics
	Part B: Using Machine-Language Subroutines
	Parc C: Memory Map

	Appendixes
	A / Musical Notes
	B / BASIC Colors and Graphics
	C / PRINT @ Screen Locations
	D / Graphics Screen Locations
	E / ASCII Character Codes
	F / Answers to Exercices
	G / Subroutines
	H / Sample Programs
	I / Error Messages
	J / BASIC Summary

	Index
	Back Cover

