

Getting Started with Color BASIC:
© 1984 Tandy Corporation, Fort Worth, Texas 76102 U.S.A.
All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation, of any
portion of this manual is prohibited. While reasonable efforts have been taken in the prep-
aration of this manual to assure its accuracy, Tandy Corporation assumes no liability re-
sulting from any errors or omissions in this manual, or from the use of the information
contained herein.

TRS-80 Color BASIC System Software:
© 1984 Tandy Corporation and Microsoft.
All Rights Reserved.

The system software in the Color Computer is retained in a read-only memory (ROM) for-
mat. All portions of this system software, whether in the ROM format or other source
‘code form format, and the ROM circuitry, are copyrighted and are the proprietary and
trade secret information of Tandy Corporation and Microsoft. Use, reproduction, or publi-
cation of any portion of this material without the prior written authorization by Tandy Cor-
poration is strictly prohibited.

10987654321

Welcome, Newcomers!

If you don’t know anything about computers and want us to spare you the
long, technical explanations, relax—this book’s for you!

Using this as your guide, you can enjoy your computer right away. The first
section’s all you need to get going. The rest is frills.

You'll find—especially at first—that this book has you do many games,
songs, and ““fun’’ programs. If you want to do “‘practical” programs in-
stead, be patient. You'll find plenty of that later. We start you off with the
fun programs because they're the quickest way to feel at ease with the
computer. Once you feel it's truly an extension of yourself, you can make it
do whatever you want.

So sitdown and spend a couple of hours with the computer. Type whatever
you want. Play with it. Make it do something strange. In other words . . .
feel comfortable with it. It can do endless things for you.

. . . And Hello, Old-Timers!

We haven't forgotten you. If you already know how to program, see your
Quick Reference Card. It summarizes all Color BASIC words. If you wantto
learn more about Color BASIC words, use the index of this book to find the
pages that describe them.

To learn what the Color Computer is capable of, read Section IV. It shows
how to program high-resolution graphics and call machine-language
programs.

To Get Started . . .

Connect your computer by referring to Introducing Your Color Computer 2
or Introducing Your Deluxe Color Computer.

Then power up your computer:

1. Turn on your television set.

2. Select Channel 3 or 4 on the television set.
3. Set the antenna switch to “COMPUTER.”
4

" Turn on the computer. The POWER button is on the left rear of your
keyboard (when you're facing the front).

This message appears on your screen:

COLOR BASIC v.r.
© 198@ TANDY
OK

(v.r. is two numbers specifying which version and release you have.)

If you don't get this message:

. Turn the computer on and off again.

. Adjust the brightness and contrast on your television set.
Check all the connections.

If you still don’t get this message, refer to “Troubleshooting and Mainte-
nance’’ in Introducing Your Color Computer 2 or Introducing Your Deluxe
Color Computer.

Once you do get the above message, you're ready to start.

How Do You Talk to a Computer?

In this book, you'll learn how to talk to your computer. That's all program-
ming is, by the way. Once you learn how to communicate, you’ll be able to
get your computer to do whatever you tell it. (Well, almost.)

The computer understands a language called Color BASIC. Color BASIC is
aform of BASIC—Beginners All-purpose Symbolic Instruction Code. There
are lots of computer languages. Color BASIC just happens to be the
language your computer understands.

We'll introduce BASIC words in the order that it's easiest to learn them.
When you get midway in the book, you may forget what one of the words
means. If this happens, look up the word in your Quick Reference Card.

P

Chapter 1

Chapter 2

Chapter 3

Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11

Chapter 12

CONTENTS

Section | THE BASICS

Meet Your Computer
PRINT SOUND CLS

Your Computer Never Forgets
(...unless you turnitoff ...)
Strings Variables

See How Easy It is? . o cmmvsiwismsms smsmenasnn s
NEW INPUT GOTO TURN PRINT, PRINT;
LIST IF/THEN

(8510] 31 5110 (=H 0 -1 L U S
FOR . .. TO...STEP NEXT

Sing Outthe Time................ i B
cLs Nested Loops

Decisions; DECISIONS 5 v « wsws s samsnsmns @ s wweiss
IF/THEN END

Gamies Of TRANCE & e omesssw s ms o s oo sms s s
RND PRINT@

SChool DAYS « « sas.smaas s s e sss v o sewns b
DATA READ RESTORE INT CLEAR

AT TERINEHIE . 05 5 55 6 676 5 515 18 v i i 35
GOSUB RETURN REM

A, Gt With WNOTAS: o meess 50s e 56 s a5 @8 wns o s
LEN LEFT$ RIGHT$ MID$

A POPIQUIZ s 5 555 womamamsmse g ga) o iews e ds o oa
INKEY$ VAL

NACTE. BASIES! r0rie 605550 6 5t o 8 505 G55 i e, R 1 9 i
STOP CONT MEM SGN ABS STR$
AND OR

Section Il DRAWING PICTURES

Chapter 13
Chapter 14
Chapter 15
Chapter 16

Chapter 17

COlOr THE SEIREN s co s n s s wnins s smads ST5F
SET RESET JOYSTK PEEK

Garies OF MABHIG +.cx 5 goon swmnn s o6 s mi £
POINT

The Talking-Computer Teacher..................
MOTOR AUDIO

FASTEFGIAPRIES wame amsme saews v vesme e i
ASCIl CHR$

LEUSTIANEE! &5 5o ms oimpm s s s oo 5o i s 5 6 i

13

18

Section 11l GETTING DOWN TO BUSINESS

Chapter 18

Chapter 19
Chapter 20

Chapter 21
Chapter 22

TABUNE 510 w500 v s it 535 6 B0 S0 8 00 B 99
OPEN CLOSE PRINT#-1 INPUT#-1

EOF

Managing NUMDBErS . « « s a2 sosvsssnasmusinensos 105
DIM

MATAgIAg WOTHS sawamssismis sidsmavas swnmsmas 110
LLIST PRINT#-2

SORNG. 5 v memm s @ osm s #5855 AT @5 0w armm s mos 114
IIVAIVZIIG o momcos s o 5 508 0 8 58 0 5 e 0 o 117

Multidimensional Arrays

Section IV A LITTLE BYTE OF EVERYTHING

Part A
Part B

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Appendix]

INDEX

High-Resolufion Graphics. 0. .. 5 vevwesssnsasanny 124
Using Machine-Language Subroutines

with Color BASICo 141

APPENDIXES

MUSICAl TONES . « v v vcwcvsvpsasw s msms osssgamssss 149
BASIC Colors and Graphics Characters........... 150
PRINT@ Screen Locations 151
Graphics Screen Locations 152
ASCIl Character Codesccovviiininnnnn. 153
Answers to Exercises 155
SUBIOULINES . .ttt 164
Sample Programs 168
ErTOr MESSAZES o s Lus s oo smrnimw smamumsmown om 178
BASIC SUNIMATY « o5 50+ 6 0 s misms's s w3 60855 .8 08 5 5w 180
.. 185

SECTION |

THE BASICS

In this section you’ll learn how to program. Before you start, though, put
yourself in the right frame of mind . . .

Don't try to do everything the “‘correct” way. Don't try to understand
everything. Above all, please don't take our word for anything!

Do have fun with your Color Computer. Try out your own ideas. Prove us
wrong (if you can). Type anything and everything that comes to mind.

Ready? Turn the page and begin.

CHAPTER 1

MEET YOUR COMPUTER

Have you connected and turned on your computer? Are you ready to give
it a first workout?

This chapter and the next introduce you to your computer—the way it
thinks, some of its talents, and even a couple of its quirks. By the time you
reach Chapter 3, you'll be ready to program . .. promise!

Type whatever you want. Then press the (ENTER) key. Don’t worry about
anything but the last line of type on your screen. It says:

OK
OK is the computer’s ““prompt.” It's telling you, “OK, enough foolishness
... as soon as you are ready . ..” (It patiently waits for your command.)

You're the master—you tell the computer to do whatever you wish.

Give the computer your first command. Type this exactly as it is below:
PRINT "HI I'M YOUR COLOR COMPUTER"

When you reach the right side of your screen, keep typing. The last part of
the message appears on the next line.

Now check your line. Did you put the quotation marks where we have
them? If you made a mistake, no problem. Simply press the key and the
last character you typed disappears. Press it again and the next to the last
disappears (. .. and so on and soon . . .).

&=

All letters you type should be
BLACK with a GREEN
BACKGROUND. If they’re
reversed (green with a black
background), press the
and (@) (zero) keys at
the same time.

See the blinking light?
Wherever you see it, you can
type something.

Ready? This should be on your screen:

oK
PRINT "HIs I’M YOUR COLOR COMPUT
ERII
Press the (ENTER) key and watch. Your screen should look like this:
oK
PRINT "HI,» I‘’M YOUR COLOR COMPUT
ER"
HI, I‘M YOUR COLOR COMPUTER
OK
\ /

Your computer just obeyed you by printing the message you have in
quotes. Have it print another message. Type:

PRINT "2"

Press (ENTER). The computer again obeys you and prints your next
message:

i

Try another one:
PRINT "2 + 2" (ENTER
The computer obeys you by printing:

242

< =

You probably expect much more than an electronic mimic ... maybe
some answers! Give your computer some numbers without the quotation
marks. Type:

PRINT 2 + 2 (ENTER
Much better. This time the computer prints the answer:

4

The quotation marks obviously have a meaning. Experiment with them
some more. Type each of these lines:

PRINT 5+4 (ENTER
PRINT "S+4" (ENTER

PRINT "5+4 EQUALS" 5+4 (ENTER

PRINT 6/72 "I5 6/2" (ENTER The computer thinks of

" mu quotes as a journalist does. If

PRINT Bé"’ ENTER the number’s in quotes, the
PRINT 8/2 (ENTER computer must PRINT it ex-

: ctly as it . If it’s not

Any conclusions on what the quotes do? ?n qngfe;'?ﬁgii%pu;efg;

interpret it by adding, sub-
tracting, multiplying, or di-
viding it.

RULES ON STRINGS v NUMBERS

The computer sees everything you type as strings or numbers. If it's in < ,
quotes, it's a string. The computer sees it exactly as it is. If it's not in

quotes, it's a number. The computer figures it out like a numerical
problem.

A Color Calculator, No Less!

Any arithmetic problem is a snap for the computer. Do some long division.
Type:

PRINT "3862 DIVIDED BY 13,2 IS" 38B62/13.2 (ENTER
Do a multiplication problem:

PRINT 1589 * 23 (ENTER

Notice that the computer’s multiplication sign is an asterisk (x), rather than
the sign you use in math (X). The computer's so precise that it would get the
X multiplication sign mixed up with the X alphabetical character.

Try a few more problems:

PRINT "15 * 2 = " 15%2 (ENTER Notice how the computer
PRINT 18 * 18 "1IS THE SQUARE OF 18" (ENTER handles parts in quotes v
. PRINT 33,3/22.82 (ENTER parts not in quotes.

Now it’s your turn. Write two command lines that print these two problems
as well as their answers:

157 /7 13.2 =
95 % 43 =

DO-IT-YOURSELF COMMAND LINES

(=

Actually, there’s no “‘cor-
rect’” command line. For
that matter, there is no cor-
rect way of handling your
computer. There are many
ways of getting it to do what
you want. Relieved? . ..
Good!

If you use the ““correct” command lines, this is what the computer prints on
your screen:

187/ 13.2=11.,8838394
95 % 43 = 4085

Ready for the answers:

PRINT "157 / 13,2 =" 157/13.2
PRINT "95 % 43 =" 95%43

It Has Its Rules . ..

By now, the computer has probably printed some funny little messages on
your screen. If it hasn't, type this line, deliberately misspelling the word
PRINT:

PRIINT "HI" (ENTER
The computer prints:
TSN ERROR

(<?SN ERROR stands for “‘syntax’’ error. This is the computer’s way of saying,

&

/1Fyou get an error message you don't understand flip to the Appendlx
Med all the error messages there and what probably caused them.

If you don’t get the right col-
ors, refer to the color test in
Introducing Your Color
Computer 2.

10

“The command ‘PRIINT” is not in my vocabulary . . . | have no earthly idea
what you want me to do.”” Any time you get the ?SN error, you probably
made some kind of typographical mistake.

The computer also gives you error messages when it does understand what
you want it to do, but it feels you're asking it to do something that is

Jl_/ggl/CgLQLions_sil)_/gFor instance, try this:

PRINT 5/@ (ENTER

| The computer prints:
(/y ?/0 ERROR
\“’-__—/

whuch ‘means, “Don’t ask me to divide by O—that s impossible!”

25

e A B —

It’s a Show-off Too

So far, all you've seen your computer do is silently print on a green screen.
But your color computer enjoys showing off. Type:

CLS(3) (ENTER

Now your screen is a pretty shade of blue with a green stripe at the top.
Your command told the computer to clear the screen and print color
number 3—blue.

But why the green stripe? Whenever the computer prints characters, it must
use a green background, not a blue background. Type some more charac-
ters. The computer uses a green background for them also.

Colors other than green are for printing pictures. You'll learn how to do that
later.

Press to get the OK prompt. Then type:
CLS(7)

Now your screen is magenta (pinkish purple) with a green stripe at the top.
Try some more colors. Use any number from 0 to 8. The Color Computer
has nine colors. Each color has a numeric code.

Type CLS without a number code:
CLS (ENTER

If you don’t use a number code, the computer assumes you simply want a
clear green screen.

Computer Sound Off—One, Two . ..

Type this:
SOUND 1, 100 (ENTER
If you don’t hear anything, turn up the volume and try again.

What you're hearing is 6 seconds of the lowest tone the computer can
hum. How about the highest tone? Type:

SOUND 255, 100

OK, so it has a good ““hum-range’’ . . . hope you're suitably impressed. Try
some other numbers. Hope you like the computer’s voice (it's the only one
it has).

You want to know what the other number is for? (Or maybe you've already
found out.) The second number tells the computer how long to hum the
tone. You can use any number from 1 to 255. Try 1:

SOUND 128 1 (ENTER
The computer hums the tone for about 6/100ths of a second. Try 10:
SOUND 128+ 1@ (ENTER

The computer sounds the tone for 6/10ths of a second. Try variations of
both numbers, but keep in the range of 1 to 255.

BUG: If you see a message
saying MICROSOFT, or if
you see a ¢FC Error message,
you’re using a number other
than 0 through 8.

BUG: Again, ifyou geta ?FC
Error message, you're using
a number other than 1
through 255.

1

Curious about the reversed
colors? They’re for people
with a printer. The printer
prints all “reversed” letters
in lowercase.

12

Before You Continue. ..

Press the GHIFT) and (0) (zero) keys, holding both down at the same time.
Now release them and type some letters. The letters you type should be

reen on a black hackground. If they’'re not, try again, pressing (SHIFT
slightly before (0). Be sure to hold down both keys at the same time and
then release them.
Now, with the colors ““reversed,” press ENTER) and then type this simple
command line:
PRINT "HI" (ENTER

The computer gives you a ?SN ERROR. It doesn’t understand the
command.

Press the SHIFT) and (0) characters again and release them. Type some
letters. T= e‘ should be back to normal: black with the green background
Press (ENTER) and type the same command line again. This time it works.
The computer can’t understand any commands you type with reversed

colors. If you ever press GRIFT)(@) by mistake and find you're typing with
these reversed colors, press SHIFD(@) again to get the colors back to

normal.

Learned in Chapter 1
BASIC WORDS KEYBOARD CONCEPTS
CHARACTERS
PRINT string v numbers
SOUND ENTER error messages
CLS

A refresher like this is at the end of each chapter. It helps you make sure
you didn’t miss anything.

Notes

CHAPTER 2

YOUR COMPUTER NEVER
FORGETS

(. . . unless you turn it
off ...)

One skill that makes your computer so powerful is its “‘memory.”” Have it
“remember’’ the number 13. Type:

A = 13 (ENTER

Now ‘‘confuse’” the computer by typing whatever you want. When you're | pjd it get confused? or
done, press (ENTER). See if the computer remembers what A means by | forget?

typing:
PRINT A (ENTER

Yourdcortrgputﬁz_r rerTlembers that A is 13 as long as you haveiton. . . or until e e
you do this. lype: you may be accustomed to
- = using the word LET before
A=17.2 [ENTER these command lines. The
. s : Color Computer doesn’t let

If you ask it to PRINT A now, it prints 17.2. Vol so e YdLET

This is what happened in your computer’s memory:

YOUR COMPUTER’S MEMORY

A—13

17.:2

You don’t have to use the letter A. You can use any letters from Ato Z. In
fact, you can use any two letters from A to Z. Type:

To the computer, a dollar
sign means a string.

Try to set the computer to
remember a letter we
haven't used yet. What hap-
pens? Interesting . . .

As we said before, the com-
puter has its rules and might
get a little fussy with you if
you don’t play by them.

TM stands for Type Mis-
Match error. It means you
didn’t go by the rules.

y

14

Have it print all the numbers you've asked it to remember. Type:
PRINT A+ B+ C» BC

If you want the computer to remember a “‘string”’ of letters or numbers, use
a letter with a dollar sign ($). Type:

A$ = "TRY TO"
B$ = "REMEMBER"
C$ = "THIS, YOU"

BC% = "GREAT COMPUTER"
Then type:
PRINT A% : B$, C$» BC% (ENTER

“Computer types’’ have a name for all the letters you've used: “vari-
ables.” So far, you've used these variables:

YOUR COMPUTER’S MEMORY
NUMBERS CHARACTERS

As=17.2 A$— “TRY TO"”

B—15 B$ — “REMEMBER"”
C—20 C$—"THIS, YOU”
BC$ — “GREAT COMPUTER"”

Spot-check the above variables to see if the computer remembers the right
information. For instance, to see if BC still contains 25, type:

PRINT BC (ENTER

Think of variables as little boxes in which you can store information. One
set of boxes is for strings; the other set’s for numbers. Each box has a label.

The Computer Is Fussy About Its Rules

Do you think the computer accepts these lines?

D="G" (ENTER
Z="THIS IS STRING DATA" (ENTER

“

The computer responds to both above lines with 2ZTM ERROR. It's telling
you that you have to play by its rules. fheadats i 7

R ——

The rules “ignored’” by the above lines are:

RULES ON STRING DATA
(1) Any data in quotes is STRING DATA.
(2) You can assign STRING DATA only to variables WITH A $ SIGN.

To make the above lines obey the computer’s rules, use a dollar sign with
the D and Z. Type:

D¢ = "G" (ENTER
Z% = "THIS IS STRING DATA" (ENTER

The computer now accepts these lines.

How about this line? Do you think the computer accepts it?

D¢ = G (ENTER

The above line ignored these rules:

RULES ON NUMERIC DATA
(1) Numbers not in quotes are NUMERIC DATA.

(2) Numeric data can only be assigned to variables WITHOUT A $
SIGN.

Type this, which the computer accepts:

You've now added this to your computer’s memory.

YOUR COMPUTER’S MEMORY
NUMBERS STRINGS

D—=6 D$— 6"
Z—12 Z$—"THIS IS STRING DATA"

“ow do something interesting with what you've asked the computer to
remember. Type:

PRINT D * 2 (ENTER c

The computer remembers

that D = 6.

The computer prints the product of D times 2.
Try this line:

PRINT Z2/D

15

16

The computer prints the quotient of Z divided by D.
Would this work?
PRINT D$ % 2

Did you try it? This makes the computer print the same ¢TM ERROR. It
cannot multiply string data.

Cross out the commands below that the computer rejects:

EXERCISE WITH VARIABLES

F =22,9999999
M ="19,2"

DZ$ = "REMEMBER THIS FOR ME"
M$ =15

Z =F+F

Finished? These are the commands the computer accepts.

F=22,9999999
DZ$ = "REMEMBER THIS FOR ME"
Z=F+F

RULES ON VARIABLES

You may use any two characters from A to Z for a variable. The first
character must be a letter from A to Z; however, the second may be
either a numeral or a letter. If you want to assign it string data, put a
dollar sign after it. Otherwise, it can hold only numeric data.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

Now that you’ve learned how the computer thinks, it will be easy to write
some programs How about a break, though, before going to the next
chapter?

Notes

17

CHAPTER 3

SEE HOW EASY IT IS?

18

Type:
NEM |
This erases whatever may be in the computer’s “‘memory.” 1
Now type this line. Be sure you type the number 10 first—that’s important. ‘
19 PRINT "HIs I‘M YOUR COLOR COMPUTER" |

Did you press (ENTER)? Nothing happened, did it? Nothing you can see, that
is. You just typed your first program. Type:

RUN (ENTER |

The computer obediently runs your program. Type RUN again and again
to your heart’s content. The computer runs your program any time you
wish, as many times as you wish.

Since this works so well, add another line to the program. Type:
29 PRINT "WHAT IS YOUR NAME?" (ENTER)

Now type:
LIST

Your computer obediently [ists your entire program. Your screen should
look exactly like this:

18 PRINT "HI, I‘MYOUR COLOR COM
PUTER"
2@ PRINT "WHAT IS YOUR NAME™"

What do you think will happen when you run this? Try it. Type:
RUN (ENTER
The computer prints:

HIs I‘'MYOUR COLOR COMPUTER
WHAT IS YOUR NAMET

Answer the computer’s question and then press (ENTER). . . . What? There's
the ?SN Error again.

When you simply type your name, the computer doesn’t understand what
vou mean. In fact, the computer can’t understand anything unless you talk
to it in its own way.

Use a word the computer understands: INPUT. Type this line:
3@ INPUT A% (ENTER)

This tells the computer to stop and wait for you to type something, which it
labels as A$. Add one more line to the program:

49 PRINT "HI»" A% (ENTER
Now list the program again to see if yours looks like mine. Type:

LIST (ENTER

Your program should look like this:

1@ PRINT "HI: I‘'M YOUR COLOR COM
PUTER"

20 PRINT "WHAT IS YOUR NAME?"
30 INPUT A%

49 PRINT "HI»" A%

Can you guess what will happen when you run it? Try it:

RUN (ENTER

That worked well, didn’t it? This is probably what happened when you ran
the program (depending on what you typed as your name):

HI, I‘MYOUR COLOR COMPUTER
WHAT IS YOUR NAME?

7 JANE

HI s JANE

RUN the program again using different names:

HI, I‘M YOUR COLOR COMPUTER
WHAT IS YOUR NAME®

7 HUGD

HI: HUGO

HI, I’'M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
?772-36-B2Z28

HI, 722-36-8228

HI, I’'M YOUR COLOR COMPUTER
WHAT 15 YOUR NAME?

? NONE OF YOUR BUSINESS

HI» NONE OF YOUR BUSINESS

HI+ I'MYOUR COLOR COMPUTER
WHAT IS YOUR NAME?

TIGET IT!!

HI+ I GET IT!!

The computer doesn’t care what you call yourself.)

Here’s what Line 30 did to your computer’s memory each time you ran the
program (assuming you gave it the same names we did):

If you make a mistake after
pressing (ENTER), simply
type the line again.

19

YOUR COMPUTER’S MEMORY

JANE

HUGO

772-36-8228

NONE OF YOUR BUSINESS
| GET IT!!

°s0

There’s an easier way to run your program over and over without having to

type the RUN command. Type this line:

5¢ GOTO 1@

00000000000
O @)
.O O-

&) @)
Q0000000000

Now run it. The program runs over and over again without stopping.
GOTO tells the computer to go back to Line 10:

ple PRINT "HI, I’M YOUR COLOR COMPUTER"
‘ 2@ PRINT "WHAT IS YOUR NAME?"
| 30 INPUT A%

| 40 PRINT "HI." A%

\.5¢ GOTO 1@

Your program now runs perpetually. Each time it gets to Line 50, it goes
back to Line 10. We call this a ““loop.” The only way you can stop this
endless loop is by pressing the (BREAK) key.

Spotlight Your Name

Change Line 50 to give your name the attention it deserves. How do you

To delete a program line, D2 Qi . : 4 .
type and ENTER) the line ghan.ge a program line? Simply type it again, using the same line number.
number. For example: ype:

50
erases Line 50 from the 50 GOTO 4o
el This is what the program looks like now:

19 PRINT "HI,» I‘'M ¥YOUR COLOR COMPUTER"
20 PRINT "WHAT IS YOUR NAME™"
30 INPUT A%

()éHZi PRINT "HI:" A%

\5¢ GOTOD 49

T o Type RUN and watch what this loop does. When you've seen enough,
We're leaving out the “HI press the (BREAK) key.

part this time.

There’s a big change you can make simply by adding a comma or a
semicolon. Try the comma first. Type Line 40 again, but with a comma at
the end:

4@ PRINT A%

Run the program. The comma seems to print everything in two columns.

Press (BREAK) and try the semicolon. Type:

20

49 PRINT A%3

and run . . . You probably won't be able to tell what the program’s doing
until you press (BREAK). See how the semicolon crams everything together?

RULES ON PRINT PUNCTUATION

This is what punctuation at the end of a PRINT line makes the

computer do:

1. A comma makes the computer go to the next column. Use it to print
in columns.

2. A semicolon makes the computer stay where it is. Use it to “‘cram”’
what you print together.

3. No punctuation makes the computer go to the next line. Use it to
print in rows.

Color/Sound Demonstration
Want to play with color and sound some more? First, erase memory.
Remember how?
Then enter this program:

10 PRINT "TO MAKE ME CHANGE MY TONE"
20 PRINT "TYPE IN A NUMBER FROM 1 TO 233"

30 INPUTT
4® S0UND T 50
5@ GOTO 1@

Run through the program to get a sample of the computer’s tones.

BUG: If you get a 2FC Error when you run this program, you used a number
other than 1 through 255. This error, like all errors, will make the computer
stop running the program.

What happens if you change Line 40 to:
4¢ SOUND SO, T
HINT: Look back in Chapter 1 where we talk about SOUND.

Know the answer? If you make the above change, the computer hums the
same tone each time, but for a different length of time, depending on what

number you use.

DO-IT-YOURSELF PROGRAM

Press (BREAK) first and then erase this program by typing NEW. Now see
if you can write a program, similar to the one above, to make the
computer show a certain color. Remember, there are 9 colors, 0
through 8.

HINT: Line 40 could be: 40 CLS(T).

NEW ENTER . . . wish

mine worked that easily!

Remember, if you make a
mistake on one of the lines,
simply type the line again.

In this program we’re using .
T as a variable. However,
we could use any letter.

Notice that Line 30 asks for
T rather than T$. This is
because we want numeric
data rather than string data.

21

Press (BREAK) before typing
the line.

Don’t worry about IF/THEN
right now. We devote a
whole chapter to it later.

B

22

This is our program:

1@ PRINT "TO MAKE ME CHANGE MY COLOR"
2@ PRINT "TYPE A NUMBER BETWEEN @ AND 8"

30 INPUTT
49 CLS(T)
50 GOTD 1@

Add Polish to the Program

Pressing the BREAK key is a sloppy way to stop the program from running.
Why not have the computer politely ask if you're ready to end? Change

Line 50 in the above program to:
5@ PRINT "DO YOU WANT TO SEE ANOTHER COLOR?T"

Then add these lines:

6@ INPUT R%
7¢ IF R$ = "YES" THEN Z@

Run the program. Type YES and the program keepsTtunning. Type anything
else and the program ends.

This is what the program looks like now:

19 PRINT "TO MAKE ME CHANGE COLORS"
29 PRINT "TYPE A NUMBER BETWEEN @ AND 8"
30 INPUTT

49 CLS(T)
5S¢ PRINT "DO YOU WANT TO SEE ANOTHER COLOR?"

6@ INPUT R#%
7¢ IF R$ = "YES" THEN Z@

This is what the new lines do:
Line 50 prints a question.
Line 60 tells the computer to stop and wait for an answer: R$.

Line 70 tells the computer to go back to Line 20 IF (and only if)
your answer (R$) is “‘yes.” If not, the program ends, since it has
no more lines.

You've covered a lot of ground in this chapter. Hope we're just whetting
your appetite for more.

Don’t worry if you don’t yet understand it perfectly. Just enjoy using your
computer.

Learned in Chapter 3
BASIC WORDS CONCEPTS KEYBOARD

Characters How to Change and Delete a

NEW Program Line

INPUT

GOTO
RUN

PRINT,

PRINT;
LIST

IF/THEN

Notes

23

CHAPTER 4

COUNT THE BEAT

The logic of this will become
clear later.

EF=)

Remember to type NEW
(ENTER) before typing a new
program.

24

In this chapter you'll experiment with computer sound effects. Before
doing this, you need to teach the computer to count.

Type:

10 FORX=1T010
20 PRINT "X = " X

30 NEXT X

40 PRINT "I HAVE FINISHED COUNTING"

Run the program.

Run the program a few more times. Each time, replace Line 10 with one of |
these lines:

1@ FORX=1TO 100
12 FORX=5TO 15
18 FORX=-2T02
18 FOR X =20T7T0 24

Do you see what FOR and NEXT make the computer do? They make it
count. Look at the last program we suggested you try:

10 FOR X =2070 24
('2@ PRINT "X = " X
3@ NEXTX
4¢ PRINT "I HAVE FINISHED COUNTING"
Line 10 tells the computer the first number should be 20 and the last
number should be 24. It uses X to label all these numbers.

Line 30 tells the computer to keep going back to Line 10 for the next
number—the NEXT X—until it reaches the last number (number 24).

Look at Line 20. Since Line 20 is between the FOR and NEXT lines, the
computer must print the value of X each time it counts:

X =20
X=21
K=22
X =23
X =24

Add another line between FOR and NEXT:
15 PRINT ",., COUNTING +.."

and run the program. With each count, your computer runs any lines you
choose to insert between FOR and NEXT.

DO-IT-YOURSELF PROGRAM 4-1

Write a program that makes the computer print your name 10 times.

HINT: The program must count to 10.

DO-IT-YOURSELF PROGRAM 4-2

Write a program to print the multiplication tables for 9 (9+1 through
9+10).

HINT: PRINT 9#X is a perfectly legitimate program line.

DO-IT-YOURSELF PROGRAM 4-3

Write a program that prints the multiplication tables for 9«1 through
9+25.

HINT: By adding a comma in the PRINT line, you can get all the
problems and results on your screen at once.

Finished? These are our programs:

“rogram 4-1 Program 4-2
1 FORX=1T0 12 10 FORX=1T0 10
Z2 PRINT "THOMAS" 20 PRINT "9#"X"="9%X
I8 NEXT X 3@ NEXT X
Program 4-3

10 FOR X =170 25
20 PRINT "9#"X"="9x%X,
30 NEXT X

25

You may be wondering
about the programs you ran
at the first of this chapter
without using STEP. If you
omit STEP, the computer
assumes you mean STEP 1.

26

Counting by Twos

Now make the computer count somewhat differently. Erase your program
by typing NEW and then type the original program, using a new Line 10:

210 FORX=27T010 STEP 2
[20 PRINT "X= "X

\ 38 NEXT X
.40 PRINT "I HAVE FINISHED COUNTING"

"2,4,6,:8;.”

Run the program. Do you see what the STEP 2 does? It makes the computer
count by 2s. Line 10 tells the computer that:

. The first X is 2
. The last X is 10
...AND STEP 2 . ..

. All the Xs between 2 and 10 are two apart . . . thatis2,4,6,8,and 10..

(STEP 2 tells the computer to add two to get each NEXT X.)

To make the computer count by 3s, make all the Xs three apart. Try this for ‘

Line 10:
1@ FOR X =3TO 1@ STEP 3
Run the program. This prints on your screen:

3
B
g

It passes up the last X (number 10) because 9 + 3 = 12. Try a few more
FOR ... STEP lines so you can see more clearly how this works:

12 FOR X =5TO0S@ STEP S
1¢ FOR X =10TO 1 STEP-1
1# FOR X =1TO0 20 STEP 4

o~
L AR

>
Honon

~
P2

Counting the Sounds

Now that you've taught the computer to count, you can add some sound.
Erase your old program and type this:

i

18 FOR X =1T0 255
20 PRINT "TONE " X
30 SOUND X» 1

4@ NEXT X

This program makes the computer count from 1 to 255 (by 1s). Each time it
counts a new number, it does what Lines 20 and 30 tell it to do:

Line 20—It prints X, the current count.
Line 30—It sounds X’s tone.

For example:

The first time the computer gets to FOR, in Line 10, it makes X equal
to 1.

Then it goes to Line 20 and prints 1, the value of X.
Then Line 30 has it sound tone #1.
Then it goes back to Line 10 and makes X equal to 2

Etc.

Whatdo you think the computer will do if you make this changeto Line 10:

1 FOR X =255 701 STEP -1

Did you try it?

PROGRAMMING EXERCISE

Using STEP, change Line 10 so the computer will sound tones
from:

(1) The bottom of its range to the top, humming every tenth note.
(2) The top of its range to the bottom, humming every tenth note.
(3) The middle of its range to the top, humming every fifth note.

10
10
10

2=ady for the answers?

1@ FOR X =170 255 5TEP 10
1 FOR X =255T0 1 STEP -10
19 FOR X =128 T0 255 STEP S

DO-IT-YOURSELF PROGRAM 4-4
Now see if you can write a program that makes the computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bottom

The answer is in the back of this book.

Don’t type the arrow, of
course. It’s there to help you
understand.

Try this: To pause the pro-
gram while it’s running,
press the and @ keys
at the same time. Then press
any key to continue.

27

But Can It Sing?

Yes. Although your computer is slightly off pitch, it can warble out most
songs. The next chapter shows how to teach it some of your favorite songs.

28

Learned in Chapter 4
BASIC WORDS KEYBOARD CHARACTER
FOR...TO ... STEP
NEXT
Notes

CHAPTER 5
SING OUT THE TIME

You're now ready to show your computer how to do two tasks: tell time
and sing (well, as good as the computer can sing). Since both are closely
related—especially to your computer!—we’re covering them in the same
chapter.

Start by typing this:

18 FORZ=1T0 460 * 2
20 NEXT Z
30 PRINT "I COUNTED TO 9Z2@"

Run the program. Be patient and wait a couple of seconds. Two seconds, to
be precise. It takes your computer two seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making the
computer count to 920, you keep the computer busy for two seconds.

Asyou can see, this is groundwork for a stopwatch. Erase the program and
type:

1 PRINT "HOW MANY SECONDS?"

20 INPUT S
30 FORZ=1T0 460@*S
49 NEXT Z

5¢ PRINT S " SECONDS ARE UP! ! 1"

Run it. Input the number of seconds you want timed on your stopwatch.

DO-IT-YOURSELF PROGRAM

It would help if the stopwatch could sound some kind of alarm. Add
lines to the end of the program to give it an alarm.

29

Here’s the program we wrote:

1@ PRINT "HOW MANY SECONDS"
20 INPUTS

30 FORZ=1TO 462 * S
490 NEXT Z

5¢ PRINT S " SECONDS ARE UP!II™
6@ FORT=120T0 180

This is how computerized 70 SOUND T 1

timers work. 80 NEXTT
99 FORT =150 TO0 140 STEP -1
10@ SOUND T 1

110 NEXTT
120 GOTO 5@

Notice the GOTO line at the end of the program. It causes the message to
keep printing and the alarm to keep ringing until you press (BREAK) or

SHIFD)(@.

Counting Within the Time

Before doing more with the clock, have the computer keep count within
the time. This concept will become clear to you shortly.

Type this new program:

18 FORX=1TO3
20 PRINT "X = "X
30 FORY=1T02

Notice the comma in Line T
40. Try it without the com- 40 PR\I,NT\,’ = I
ma. The comma makes 'Y 30 NEXT ¥
= " Y print on the next B@® NEXT X
column.

Run it. This should be on your screen:

X =1
‘|I=1
\'I::I:‘).__
X =2
\Il=1
Y=2
X =3
\(:1
Y =2

30

Call it a count within a countor a loop within a loop—whatever you prefer.
Programmers call this a “nested loop.”” This is what the program does:

I It counts X from 1 to 3. Each time it counts X:
A. It prints the value of X
B. It counts Y from 1 to 2. Each time it counts Y:
1. It prints the value of Y

Whenever you put a loop inside another loop, you must close the inner
loop before closing the outer loop:

Right rong
i@ FORX=1TO3 1¢ FORX=1TO03
@2@ FORY =1TO 2 20 FUR ¥=1T0 2
30 NEXTY 3@ NEX
49 NEXT X 49 NEXT ‘|’

Making a Clock

With these tools, you can make the computer do much more. Type this:
19 FORS=0TOD 59
20 PRINTS

f 30 SOUND 150, 2
49 FORT=1T0 390

5@ NEXTT

B® NEXTS
7¢ PRINT "1 MINUTE IS UP"

Run the program. This is what it does:
It counts the seconds from 0 to 59. Each time it counts one second:
A. It prints the second.
B. It sounds a tone.
C. It pauses long enough for one second to pass.

When it finishes counting all the seconds from 0 to 59, it prints a
message that one minute is up.

31

By adding this line, 120
GOTO 10, the clock will run
perpetually.

Having a tough time with
this program? Skip it for
now. It'll seem easy later.

32

There’s a way to make this program look better. Add this line to clear the
screen:

13 CLS
Now run the program. This time the computer goes through these steps:

I It counts the seconds from 0 to 59 (Lines 10 and 60). Each time it
counts one second:

A. It clears the screen (Line 15).

B. It prints the second (Line 20).

C. It sounds a tone (Line 30).

D. It pauses long enough for one second to pass (Lines 40 and 50).

II. When it finishes counting all the seconds from 0 to 59, it prints a
message that one minute has passed (Line 70).

Using this as groundwork, it's easy to make a full-fledged clock:

1 FORH=@TO0Z23
20 FORM=0TO0S39
30 FORS=0T0S59
a8 CLS

5@ PRINTH":"M":"S

6@ SOUND 132, 2

70 FORT=1T0O 375
tB@ NEXT T

90 NEXTS

t 100 NEXT M
110 NEXT H

Here’s an outline of what the computer does in this program:

I It counts the hours from 0 to 23 (Line 10). Each time it counts a new
hour:

A. It counts the minutes from 0 to 59 (Line 20). Each time it counts a
new minute:

1. It counts the seconds from 0 to 59 (Lines 30 and 90). Fach
time it counts a new second:

a. It clears the screen (Line 40).

b. It prints the hour, minute, and second (Line 50).

c. It sounds a tone (Line 60).

d. It pauses long enough for one second to pass (Lines 70
and 80).

2. When it finishes counting all the 59 seconds, it goes back to
Line 20 for the next minute (Line 100).

B. When itfinishes counting all the 59 minutes, it goes back to Line
10 for the next hour (Line 110).

Il. When it finishes counting all the hours (0-23), the program ends.

DO-IT-YOURSELF PROGRAM 5-1

Between Lines 90 and 100 you can add some tones that will sound
each minute. Write a program that does this.

DO-IT-YOURSELF PROGRAM 5-2

Write a program that makes your computer show each of its nine
colors for 1 second each.

The answers to both programs are in the back.

For a Computer, It Sings Great!

Now, to teach your computer to sing . . .

Flip to the Appendix. There’s a table, “Musical Tones,” that gives the
computer’s tone number for each note in the musical scale. The tone
number, for example, for middle C is 89.

Unfortunately, the computer’s tones can’t exactly match most of the notes.
That's why it sings somewhat off key . . . But to those without perfect pitch,
it’s still very close to music.

Type this:

20 SOUND 125, 8
3@ SOUND 108.: 8
49 SOUND B9, 8

Run the program. It's the first three notes of . . . well, you know that. Great
piece!

To get these first three notes to play over again, puta FOR/NEXT loop in the
program:
18 FORX=1T0Z
20 SOUND 125, 8
3@ SOUND 108 8

49 SOUND 89, 8
S0 NEXT X

Now run the program again. It's missing a pause, isn't it? This is easy
enough to add. Type these lines:

44 FOR Y =170 230
46 NEXT Y

Then run the program again. Now it’s starting to sound like the real thing!

Here’s a program that gets through the first two phrases:

But who said this computer
could make the opera?

33

THREE BLIND MICE
i@ FORX=1TOZ

2 SOUND 125, 8 “Three"”

3¢ GSOUND 128, 8 “blind”’

49 S0OUND 89, B ““mice”
;Qda FORY =1 T0O 2390 (pause)

30 NEXT X

B@ FORX=1T02Z

70 SOUND 147, 8 “See”’

8¢ SOUND 133 4 “how”’

99 SOUND 133+ 4 “they”’

ig® SOUND 125, 8 “run”’
§ 110 FORY =1T0O 230 (pause)

Q120 NEXT Y
130 NEXT X

Are your programs getting
too long to list? Try this: LIST

' 10-48 (ENTER). Only the first
half of this program will be
listed.

Finish the song if you like. Or write a better one. A good computer song
helps jazz up any program.

Learned in Chapter 5
BASIC WORD PROGRAMMING CONCEPT
CLS Nested Loops

Notes

[

CHAPTER 6

DECISIONS, DECISIONS ...

Here's an easy decision for the computer:

If you type “red”’ . .. then make the screen red
.or
. If you type “‘blue” . .. then make the screen blue

Easy enough? Then have the computer do it. Type this program:

1@ PRINT "DO ¥YOU WANT THE SCREEN RED OR BLUE?"
20 INPUTC%

‘))‘ 30 IFC$ = "RED" THEN 102 {]
w
v 490 IF C$ = "BLUE" THEN 2@0 P TR
‘,V 190 CLS((4) arrows or the spaces be-
tween program lines. We
LG = just put them in to illustrate
200 CLS(3) the flow of the program.

Run the program a few times. Try both “red’” and “blue” as answers.
This is what the program does:

If you answer “‘red”’ ... then ...

1. Line 30 sends the computer to Line 100.

2. Line 100 turns your screen red.

3. Line 110 ends the program. (If the computer gets to Line 110, it never
makes it to 200.)

... On the other hand . . .
If you answer “‘blue” .. . then . ..
1. Line 40 sends the computer to Line 200.
2. Line 200 turns your screen blue.

3. Sinceline 200 is the last line in the program, the program ends there.

35

What happens if you answer with something different from “red” or
“blue”’? Run the program again. This time, answer “‘green.”

This makes the screen red. Do you know why?

HINT: If the condition is not true, the computer ignores the THEN part
of the line and proceeds to the next program line.

PROGRAMMING EXERCISE

There’s a way to get this program to reject any answer but “red” or
“blue.” These are the two lines to add. You figure out where they go in

the program:
*. .. PRINT “YOU MUST TYPE EITHER RED OR BLUE"

....GOTO 20

Insert the line numbers.

HINT: The lines must come after the computer has had a chance to test
your answer for “red”’ or “blue.”

HINT: The lines must come before the computer makes your screen
“red.”

Answer: The lines need to come after Line 40 and before Line 100:

PRINT "YOU MUST TYPE EITHER RED OR BLUE"
GOTO 20

50
517

DO-IT-YOURSELF PROGRAM 6-1

After the computer turns the screen red or blue, have it go back and ask
you to type “‘red”’ or “’blue”” again.

HINT: You need to change Line 110 and add Line 210.

Here's a diagram of how we wrote this program.

1¢ PRINT "DO YOU WANT THE SCREEN RED OR BLUE?"
20 INPUT C$
30 IF C$ = "RED" THEN 100 cs.
3¢ | 40 IFCs = "BLUE" THEN 200
‘g} 50 PRINT "YOU MUST TYPE EITHER RED OR BLUE"
@ GOTO z@
100 CLS(4) 4
110 GOTO 10
200 CLS(3) &
210 GOTO 1@

Trace the path the computer takes through this program. Go from one line
to the next; follow the arrows where indicated. Notice the difference
between the arrows going from the IF/THEN and the GOTO lines.

36

RULES ON IF/THEN AND GOTO

IF/THEN is conditional. The computer “branches’”” only if the condi-
tion is true.

GOTO is unconditional. The computer always branches.

Although this chapter is short, you’ve learned an important programming
concept. You'll have the computer make decisions all through this book.

Learned in Chapter 6
BASIC WORDS

IF/THEN
END

Notes

CHAPTER 7

GAMES OF CHANCE

To make the computer
pause while running the
program, press the
and keys at the same
time. Press any key to
continue.

38

&

Thanks to a BASIC word called RND, the computer can play almost any
game of chance.

And even if you don’t want to play computer games, you'll want to learn
two words this chapter introduces: RND and PRINT (@ . You'll also find in
this chapter some more uses of IF/THEN.
Type this program:

1@ PRINT RND(1@)

Run it. The computer just picked a random number from 1 to 10. Run it
some more times . . .

It's as if the computer is drawing a number from 1 to 10 out of a hat. The
number it picks is unpredictable.

Type and run this next program. Press (BREAK) when you satisfy yourself
that the numbers are random.

10 PRINT RND(1@) 3
20 GOTOD 1@

To get random numbers from 1 to 100, change Line 10 and run the
program.

18 PRINT RND(1@@) 3

~1
-1
o~

How can you change the program to get random numbers from 1 to 2
The answer is:

18 PRINT RND(Z2553) 3

A Random Show

Just for fun, have the computer compose a song made up of random tones.
Type:

18 T =RND(2353)
20 SOUND T 1
30 GOTO 1@

Run it. Great music, eh? Press (BREAK) when you've heard enough.

DO-IT-YOURSELF PROGRAM 7-1

Add some lines to make the computer show a random color (1-8) just
before it sounds each random tone.

Here’s our program:

18 T =RND(Z53)
14 C=RND(B)
16 CLS(C)

20 SOUND T 1
30 GOTO 1@

We have a few simple games in this chapter. Feel free to use your imagina-
tion to add interest to them—or invent your own.

Russian Roulette

In this game, a gun has 10 chambers. The computer picks, at random,
which of the 10 chambers has the fatal bullet. Type:

1@ PRINT "CHOOSE YOUR CHAMBER(1-10)"

20 INPUT X

" Remember always to type
30 IF X =RND(1@) THEN 120 NEW (ENTER) before entering
4¢ SOUND 200+ 1 a new program.

5¢ PRINT "--CLICK--"
6@ GOTD 1@

100 PRINT "BANG--YOU'RE DEAD"

First, in Line 20, the player inputs X (@ number from 1 to 10). Then, the
computer compares X with RND(10) (a random number from 1 to 10).

Then it follows the ““arrows’”:

. If X is equal to RND(10), the computer goes to Line 100, the ““dead
routine.”

If X is not equal to RND(10), the computer ““clicks” and goes back to
Line 10, where you get another chance . . .

\ake the dead routine in Line 100 better. Type:

Remember how to list part of
199 FOR T =133 TO 1 STEP -5 aprogram? LIST 50-130
119 PRINT " BANG! 111 1Y lists the program’s middle
120 SOUND T+ 1 i
138 NEXT T Try this when listing a long
14¢ CLS program: At the start of the

listing, press SHIFT) and (@).
150 PRINT @ 232+ "SORRY » YOU'RE DEAD" e e ,,.‘;‘Zn
16@ SOUND 1+ 50 pause. Then press any key to
170 PRINT @ 390+ "NEXT VICTIM, PLEASE" continue.

2un the program. Here’s what the routine does:

Lines 100-130 make the computer sound descending tones and print

39

Line 140 clears the screen. Since no color is given, the computer makes the
screen green.

Lines 150 and 170 use a new word—PRINT @—to position two messages
on your screen: SORRY, YOU'RE DEAD and NEXT VICTIM, PLEASE.

The grid below shows the 511 positions on your screen. Line 150 prints
SORRY, YOU’'RE DEAD at position 230 (224 + 6). Line 170 prints NEXT
VICTIM, PLEASE at position 390 (384 + 6).

(" 0R2oR k70 0NRDISlele9202122030475262 1029500, i)
04 ; i !
32 i
64
%
128 :
160 i
- - s
224 SORRY .. YOUI ' RE DEAD
256
288
320
352
384 NEXT VICTIM. PLEASE
a1k 1
a8
80 i .
_ .S

The grid is in the Appendix,
““PRINT @ Screen lLoca-

tions.” Use it to plan your
programs’ screen formats. DO-IT-YOURSELF PROGRAM 7-2

Change this program so that if the player does manage to stay alive for
10 clicks, the computer pronounces the player the winner, printing
this message on the screen:

f oiz3is 59;9412“557%219‘&;3;}&&22&31&&%%;«\

s |

56 YOU MANAGED
288 TD STAY ALIVE
320

2452

ta ' i
a8 i : il

i b i . | - "

HINT: You can use the FOR/NEXT loop, so that the computer can
keep count of the number of clicks.

Our answer is in the Appendix.

Rolling the Dice

This game has the computer roll two dice. To do this, it must come up with
two random numbers. Type:

40

10
on
30
40
S0
G0
I 70
80

“yes ©

A3

CLS

X = RND(B)
¥ = RND(B)
R=X+Y

PRINT @ 200, X

PRINT @ 214, Y

PRINT @ 394, "YOU ROLLED A" R

PRINT @ 454+ "DO YOU WANT ANOTHER ROLL™"
INPUT A%

90
\iﬁﬁ IF A% = "YES" THEN 10

Run the program.

Line 10 clears the screen.

Line 20 picks a random number from 1 to 6 for one die. Line 30 picks a
random number for the other die.

Line 40 adds the two dice to get the total roll.

Lines 50-70 print the results of the roll.

Line 90 lets you input whether you want another roll. If you answer “‘yes,”
the program goes to Line 10 and runs again. Otherwise, since this is the last
line in the program, the program ends.

1.

Since you know how to roll dice, it should be easy to write a “Craps"”
program. These are the rules of the game (in its simplest form):

. If the first roll’s a 7 or 11 (““a natural”’), the player wins and the

You already know more than enough to write this program. Do it.
Make the computer print it in an attractive format on your screen and -
keep the player informed about what is happening. It may take you a
while to finish, but give it your best. Good luck!

DO-IT-YOURSELF PROGRAM 7-3

The player rolls two dice. If the first roll’s a 2 (“snake eyes”), a 3
(“cock-eyes’’), or a 12 (““boxcars”), the player loses and the game’s
over.

game’s over.

P

If the first roll’s any other number, it becomes the player’s “point.”
The player must keep rolling until either “making the point” by
getting the same number again to win, or rolling a 7, and losing.

Our answer's in the back.

Learned in Chapter 7
BASIC WORDS

RND
PRINT @

Notes

41

CHAPTER 8

SCHOOL DAYS

Your computer is a natural at teaching. It's patient, tireless, and never
makes a mistake. Depending on the programmer (you, of course), it also
can be imaginative, consoling, and enthusiastic.

Using RND, have it teach you math. Type:

19 CLS
20 X =RND(13)
30 Y = RND(13)
Are your programs getting b FRINT “WHAT 157 X "% ¥ ¥ 7 ¥
long? If you have a cassette as INPUT A
recorder, read your comput- 50 IFA=X*Y THEN 90
er’s introduction manual to
learn how to save your pro- B@ PRINT "THE ANSWER I8" X*Y
grams on tape. If you have a 7@ PRINT "BETTER LUCK NEXT TIME"
Deluxe Color Computer, 8¢ GOTO 100
you can also save programs
in memory. See your intro- 99 PRINT "CORRECT! I I™
duction manual to learn
how. 109¢ PRINT "PRESS <ENTER:> WHEN READY FOR
ANOTHER"

185 INPUT A%
119 GOTO 10

The above program drills you on the multiplication tables, from 1 to 15,
and checks your answers.

Aa Bb Cc Dd Ee Ff Gg Hh Ti Jj Kk LI Mm Nn Os

DO-IT-YOURSELF PROGRAM 8-1

Make the program drill you on addition problems from 1 to 100.

Here are the lines we changed:

20 X =RND(10@)

30 Y =RND(i0®)

43 PRINT "WHAT IS" X "+" ¥

45 INPUT A

5@ IFA=X+Y THEN 90

6@ PRINT "THE ANSWER IS" X + Y

Make the program more interesting. Have it keep a running total of all the
correct answers. Type:

15 T=T+1

95 C=C+1

98 PRINT "THAT IS" C "CORRECT OUT OF" T
"ANSWERS"

T is a “counter.” It counts how many questions you're asked. When you
first start the program, T equals zero. Then each time the computer gets to
Line 15, itadds 1 to T.

Cis also a counter. It counts your correct answers. Since C's in Line 95, the
computer doesn’t increase C unless your answer’s correct.

DO-IT-YOURSELF PROGRAM 8-2
Make the program more fun. Have it do one or more of the following:
1. Call you by name.
2. Reward your correct answer with a sound and light show.

3. Print the problem and messages attractively on your screen. (Use
PRINT @ for this.)

4. Keep a running total of the percentage of correct answers.
5. End the program if you get 10 answers in a row correct.

Use your imagination. We have a program in back that does this all.

First, Build Your Computer’s
Vocabulary . ..
To build your computer’s vocabulary (so that it can build yours!), type and
un this program:

18 DATA APPLES: ORANGES s PEARS
20 FORX=1T0O3

30 READF%

49 NEXT X

What happened . . . nothing? Nothing that you can see, that is. To see what
“e computer is doing, add this line and run the program:

33 PRINT "F$=:"F%
_ine 30 tells the computer to:
Look for a DATA line.
2. READ the first item in the list—APPLES.

)

When you first turn on the
computer, all numeric vari-
ables equal 0. When you
type NEW (ENTER), all
numeric variables also
equal 0.

43

Remember how to make the
computer pause while run-
ning a program? Press
(SHIFT) @) to pause and any

key to get it to continue.

44

3.
4.

Give APPLES an F$ label.
“’Cross out’’ APPLES.

The second time the computer gets to Line 30 it is told to do the same:

1.
2
3.
4.

Look for a DATA line.

READ the first item—this time, it's ORANGES.
Give ORANGES the F$ label.

“Cross out”” ORANGES.

When you run the program, this happens in the computer’s memory:

>[

Wr -

YOUR COMPUTER 'S MEMORY
F$——> APPLES

ORANGES

PEARS

What if you want the Computer to read the same list again? It's already

“crossed out”” all the data . . . Type:

60 GOTO 10

Run the program. You get an error: 20D ERROR IN 30. OD means “out of
data.”” The computer’s crossed out all the data.

Type this line and run the program:

5% RESTORE

Now it’s as if the computer never crossed out any data. It reads the same list
again and again.

You can put DATA lines wherever you want in the program. Run each of
these programs. They all work the same.

1@ DATA APPLES i1 DATA APPLES: ORANGES
20 DATA DRANGES 20 DATA PEARS

30 FORX=1T03 30 FORX=1T03

49 READ F% 49 READF$

S@ PRINT "F$ =:"F% 5@ PRINT "F&=1:"F%

6@ NEXT X B@ NEXT X

7% DATA PEARS

30 FORX=1T03 30 FORX=1TO3

49 READF% 49 READFs

50 PRINT "F$ =:"F% S@ PRINT "F$=:"F#%

6@ NEXT X B@ NEXT X

7% DATA APPLES 70 DATA APPLES» ORANGES:
80 DATA DRANGES PEARS

99 DATA PEARS

Now Have It Build Your Vocabulary

Here are some words and definitions to learn:

Words Definitions

1 DATA TACITURN s HABITUALLY UNTALKATIVE

20 DATA LOQUACIOUS: VERY TALKATIVE

33 DATAVOCIFEROUS, LOUD AND VEHEMENT

49 DATA TERSE s CONCISE

5¢ DATA EFFUSIVE » DEMONSTRATIVE OR GUSHY
Now get the computer to select one of these words at random. Hmmm . ..
there are ten items. Maybe this works:

6@ N =RND(1@)

70 FORX=1TON

80 READ A%

90 NEXT X

18® PRINT "THE RANDOM WORD IS:" A%

Run the program a few times. It doesn’t work quite right. The computer’s
just as likely to stop at a definition as at a word.

What the computer really needs to do is pick a random word only from
items 1, 3, 5, 7, or 9. Fortunately, BASIC has a word that helps with this.
Type:

B5 IF INT(N/Z2) =N/Z2 THENN=N-1
Now run the program a few times again. This time, it should work.

INT tells the computer to look at only the ““whole part”” of the number and
gnore the decimal part. For instance, the computer sees INT(3.9) as 3.

4ssume N, the random number, is 10. The IF clause in Line 65 does this:

INT(10/2) = 10/2
INT(5) = 5
5=5

The above is true: 5 does equal 5. Since it's true, the computer completes
she THEN clause. N is adjusted to equal 9 (1@ - 1).

Now assume N, the random number, is 9. The IF clause in Line 65 does

this:
INT(9/2) = 9/2
INT(4.5) = 4,5
4 =4,3

The above is not true: 4 does not equal 4.5. Since it's not true, the computer
doesn’t complete the THEN clause. N remains 9.

3=sides reading a random word, the computer also must read the word's
“=finition. Add these lines to the end of the program:

11® READ B%
120 PRINT "THE DEFINITION IS :" B%$

45

If you like, add some more
words and definitions by
adding DATA lines.

For variations on this pro-
gram, you might try states
and capitals, cities and
countries, foreign words and
meanings.

46

)

Now run the program a few times.

Have the computer print one random word and definition after the next.
Add this to the start of the program:

5 CLEAR 109

This reserves plenty of “’string space.” Add these lines to the end of the
program:

13@ RESTORE
14¢ GOTO 6@

This lets the computer pick a new random word and its definition from a
"restored”” group of data items.

Here’s how the program now looks:
5 CLEAR 100

10 DATA TACITURN, HABITUALLY UNTALKATIVE
20 DATA LOQUACIOUS: VERY TALKATIVE
30 DATAVOCIFEROWS: LOUD AND VEHEMENT
40 DATA TERSE:» CONCISE
5¢ DATA EFFUSIVE: DEMONSTRATIVE OR GUSHY
6@ N =RND(12)
65 IF INT(N/Z2) =N/2 THENN=N-1
70 FOR X =1TON
(80 READ A%
99 NEXT X
1¢®@ PRINT "A RANDOM WORD IS :" A%
112 READ B%
120 PRINT "ITS DEFINITION IS :" B%
13 RESTORE
14@ GOTO 6@

DO-IT-YOURSELF PROGRAM 8-3
Want to complete this program? Program it so that the computer:
1. Prints the definition only.
2. Asks you for the word.
3. Compares the word with the correct random word.
4

. Tellsyou if your answer is correct. If your answer is incorrect, prints
the correct word.

Here’s our program:

5
10
20
30
40
50
50
(‘s
70

80

90
110
120
130
140
150
160
170
180
190
200

CLEAR S00
DATA TACITURN: HABITUALLY UNTALKATIVE
DATA LOQUACIOUS s VERY TALKATIVE
DATA VOCIFEROUS s LOUD AND VEHEMENT
DATA TERSE s CONCISE Feel free to add frills such as
DATA EFFUSIVE » DEMONSTRATIVE OR GUSHY a good-looking screen for-
N=RND(1®) mat or sound.
IF INT(N/2) =N/2 THENN=N -1
FORX=1TON
READ A%

NEXT X

READ B%

PRINT "WHAT WORD MEANS :" B%

RESTORE

INPUT R%

IF R$ = A% THEN 190

PRINT "WRONG"

PRINT "‘THE CORRECT WORD IS :" A%

GOTO G@

PRINT "CORRECT"

GOTOD G@

Learned in Chapter 8
BASIC WORDS
DATA
READ
RESTORE

INT
CLEAR

Notes

47

CHAPTER 9

ARITHMETIC

48

Solving long math problems fast and accurately is a task your computer
does with ease. Before typing long, difficult formulas, though, there’re
some shortcuts you'll want to use.

An easy way to handle complicated math formulas is with “subroutines.”
Type and run this program:

10 PRINT "EXECUTING THE MAIN PROGRAM"

20 GOSUB 500
3¢ PRINT "NOW BACK IN THE MAIN PROGRAM"

4@ END

509 PRINT "EXECUTING THE SUBROUTINE"
519 RETURN

Ax(BY + C) - D + E(GW) — F

GOSUB 500 tells the computer to go to the subroutine that starts at Line
500. RETURN tells the computer to return to the BASIC word that im-
mediately follows GOSUB.

Delete Line 40 and see what happens when you run the program.

If you did this, your screen shows this:

EXECUTING THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
NOW BACK IN THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
7RG ERROR IN 510

RG means “RETURN without GOSUB.” Do you see why deleting END in
Line 40 causes this error?

At first, the program runs just as it did before. It goes to the subroutine in
Line 500 and then returns to the PRINT line that immediately follows
GOSUB.

Then, since you deleted END, it goes to the next line—the subroutine in
Line 500. This time, though, it doesn’t know where to return. This is
because it's merely ““dropping’ into the subroutine; it is not being sent to
the subroutine by a GOSUB line.

This subroutine raises a number to any power:

19 INPUT "TYPE A NUMBER"3i N

29 INPUT "TYPE THE POWER YOU WANT IT RAISED
TO"3 P

3¢ GOSUB Zooo

4¢ PRINT : PRINTN "TO THE POWER OF" P "IS" E

5S¢ GOTO 1@

2909 REM FORMULA FOR RAISING A NUMBER TO A
POMWER

2010 E =1

2020 FORX=1TOP
2030 E=E*N

2040 NEXT X

2050 IFP=0@0THENE =1
2069 RETURN

Also introduced in this program are:

. The colon (:), in Line 40. You can combine program lines using the
colon to separate them. Line 40 contains the two lines: PRINT and
PRINT N “TO THE"” P “POWER IS E.

. REM, in Line 2000. REM means nothing to the computer. Put REM
lines wherever you want in your program to help you remember.
what the program does; they make no difference in the way the
program works. To see for yourself, add these lines and run the
program:

5 REM THIS IS A PECULIAR PROGRAM:

17 REM WILL THIS LINE CHANGE THE PROGRAMT

45 REM THE NEXT LINE KEEPS THE SUBPROGRAM
SEPARATED

DO-IT-YOURSELF PROGRAM 9-1

Change the above program so that the computer prints a table of
squares (a number to the power of 2) for numbers, say, from 2 to 10.

The answer’s in the back.

Give the Computer a Little Help

As math formulas get more complex, your computer needs help under-
standing them. For example, what if you want the computer to solve this
problem:

Divide the sum of 13 + 3 by 8
You may want the computer to arrive at the answer this way:
13+3/8 =16/8 =2

But, instead, the computer arrives at another answer. Type this command
line and see:

PRINT 13 + 3 / 8 (ENTER

L

See something different
about INPUT? You can have
the computer print a mes-
sage before waiting for your
input.

PRINT by itself tells the com-
puter to skip a line.

49

=

An ““operation”’ is a problem
you want the computer to
solve. Here the operations
are addition, subtraction,
multiplication, and division.

50

The computer solves problems logically, using its own rules:

RULES ON ARITHMETIC
The computer solves arithmetic problems in this order:
1. First, it solves any multiplication and division operations.
2. Last, it solves addition and subtraction operations.

3. If there’s a tie (that is, more than one multiplication/division or
addition/subtraction operation), it solves the operations from left to
right.

In the problem above, the computer follows its rules:
. First, it does the division (3/8 = .375)
: Then, it does the addition (13 + .375 = 13.375)

For the computer to solve the problem differently, you need to use paren-
theses. Type this line:

PRINT (13 + 3) / 8 (ENTER

Whenever the computer sees an operation in parentheses, it solves that
operation before solving any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of
these problems?

PRINT 1@ - (5 -1) / 2
PRINT 1@ -5 -1/ 2
PRINT (10 -5 -1) /
PRINT (10 - 5) -1/
PRINT 10 - (5 -1/ 2)

r

3

Finished? Type each of the command lines to check your answers.
What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2
You're actually asking the computer to do this:

(10-(5-1))/2

When the computer sees a problem with more than one set of parentheses,
though, it solves the inside parentheses and then moves to the outside
parentheses. In other words, it does this:

(10— & = 10/ 2

(10 — 4) /2

(-

6/2

L S

g 6/2 =3

RULES ON PARENTHESES

1. The computer solves operations enclosed in parentheses first, be-
fore solving any others.

2. The computer solves the innermost parentheses first. It then works
its way out.

COMPUTER MATH EXERCISE

Insert parentheses in the problem below so that the computer prints 28
as the answer:

PRINT 30 -9-8-7-6

Answer:

PRINT 3@ - (8 - (B - (7 -6)))

Saving Routines

The program below uses two subroutines. It's for those of you who save by
outting the same amount of money in the bank each month:

1@ INPUT "YOUR MONTHLY DEPOSIT"3 D

29 INPUT "BANK’S ANNUAL INTEREST RATE" 3 I
30 I=1/12=* .01

49 INPUT "NUMBER OF DEPOSITS"3 P

590 GOSUB 1000

G® PRINT "¥YOU WILL HAVE " FY "IN" P "MONTHS"
79 END

10@® REM COMPOUND MONTHLY INTEREST FORMULA
1010 N=1+1

192@ GOSUB 2000

1030 FY =D* ((E-1) /1)

1040 RETURN

200® REM FORMULA FOR RAISING A NUMBER TO A
POWER

2010 E =1

2020 FORX=1TOP

2030 E=E*N

2049 NEXT X

L-ZQS'D IFP=0THENE =1

2062 RETURN

51

52

Notice that one subroutine “‘calls’ another. This is fine with the computer
as long as:

. there’s a GOSUB to send the computer to each subroutine, and
. there’s a RETURN at the end of each subroutine.

Turn to the Appendix, “‘Subroutines.” You'll find useful math subroutines
you can add to your programs.

Learned in Chapter 9

BASIC WORDS BASIC SYMBOLS BASIC CONCEPTS
GOSUB) e
RETURN () Order of operations
REM

Notes

CHAPTER 10

A GIFT WITH WORDS

A great skill of the computer is its gift with words. It can tirelessly twist and
combine words any way you want. With this gift, you can get it to read,
write, and even talk.

Combining Words

Type and run this program:

19 PRINT "TYPE A SENTENCE"

20 INPUT 5%

3¢ PRINT "YOUR SENTENCE HAS " LEN(S%) "
CHARACTERS"

49 INPUT "WANT TO TRY ANOTHER?" i A%

5@ IF A$ = "YES" THEN 1@

Impressed? LEN(S$) computes the length of string S$—your sentence. The
computer counts each character in the sentence, including spaces and
punctuation marks.

Erase the program and run this, which composes a poem (of sorts):

18 A% = "AROSE"

20 B$=""

30 C%="I5AROSE"

40 D% =B% +C%

5¢ E%$ = "AND SO FORTH AND 50 ON"
B¢ F$ =A% +D% +D% +B%+ES

7@ PRINT F%

Here the plus sign (+) combines strings. For example, D$ (IS AROSE") is
a combination of B$ + C$.

There are two problems you may encounter when combining strings. Add
the following line and run the program. It shows both problems:

B GCs=Fs+Fs+Fs+Fs+FE+Fs+F3%

When the computer gets to Line 80, it prints the first problem with this line:
?0S ERROR IN 80 (“out of string space”’).

Not impressed? Later, we’'ll
show practical uses of this
unusual skill.

You will not get the OS er-
ror if you have not started
your computer since you
ran the program from
Chapter 8 with the
CLEAR 5@ line.

53

On startup, the computer reserves only 200 characters of space for work-
ing with strings. Line 80 asks it to work with 343 characters. To reserve
room for this many characters and more (up to 500), add this line to the
start of the program and run:

5 CLEAR 500

Now when the computer gets to Line 80, it has enough string space, but
prints the second problem with this line: ?LS ERROR IN 80 (“'string too

long”).

A string can contain no more than 255 characters. When storing more than
255 characters, you need to put these characters into several strings.

Twisting Words

Now that you can combine strings, try to take a string apart. Type and run
this program:

1@ INPUT “TYPE A WORD" 3 W$

20 PRINT "THE FIRST LETTER IS : " LEFTS$ (W% 1)

390 PRINT "THE LAST 2 LETTERS ARE : " RIGHT%
(W% +2)

49 GOTO 192

Here’s how the program works:
In Line 10 you input string W$. Assume the string is MACHINE:
" COMPUTER MEMORY

S0 Ws—MACHINE
In Lines 20 and 30, the computer computes the first left letter and the last
two right letters of the string:
MACHINE
LEFTS (W$:1) RIGHTS (W% :2)

Run the program a few more times to see how it works.
Now add this line to the program:
5 CLEAR 500

so that your computer will set aside plenty of space for working with
strings. Run the program again. This time input a sentence rather than a

word.

PROGRAMMING EXERCISE

How would you change Lines 20 and 30 so that the computer will give
you the first 5 letters and the last 6 letters of your string?

20
30

Answers:

29 PRINT "THE FIRST FIVE LETTERS ARE :" LEFT#%
(W% +3)

3@ PRINT "THE LAST SIX LETTERS ARE :" RIGHT®
(W +6)

Erase your program and type this one:

18 CLEAR 500

20 INPUT "TYPE A SENTENCE" i 5%

30 PRINT "TYPE A NUMBER FROM 1 TO " LEN(S%)

40 INPUT X

5@ PRINT "THE MIDSTRING WILL BEGIN WITH
CHARACTER " X

6% PRINT "TYPE A NUMBER FROM 1 TO " LEN(S%) - X
+1

7@ INPUT Y

80 PRINT "THE MIDSTRING WILL BE" Y
"CHARACTERS LONG"

99 PRINT "THIS MIDSTRING IS :" MID®(5% X sY)

109 GOTO zZ@

Run this program a few times to see if you can deduce how MID$ works.
Here’s how the program works:

In Line 20, assume you input HERE IS A STRING:
YOUR COMPUTER 'S5 MEMORY
S¢—HERE IS5 A STRING

In Line 30, the computer first computes the length of S$, which is 16
characters. It then asks you to choose a number from 1 to 16. Assume you
choose 6.

In Line 60, the computer asks you to choose another number from 1 to 12
(16-6+1). Assume you choose 4.

YOUR COMPUTER 'S MEMORY

H———>6

Y ——4

In Line 90, the computer gives you a “‘mid-string”’ of S$ that starts at the 6th
character and is four characters long:

1 z3 458 ({8 810 11 12 13 14 15 16
HERE I-& A s T R I N G

-] —

MID%(S%+6 +4d)

For another example of MID, erase the program and run this:

1@ INPUT "TYPE A SENTENCE"} S%

20 INPUT "TYPE A WORD IN THE SENTENCE" § W%
30 L =LEN(WS$)

490 FOR X =1 TOLEN(S%)

S50 IFMID$(S%:X:L) = W$ THEN 90

6@ NEXT X

7@ PRINT "YOUR WORD ISN‘T IN THE SENTENCE"
80 END

99 PRINT W$ "--BEGINS AT CHARACTER NO." X

Remember how to erase a
program? Type:
NEMW (ENTER

You can use this kind of
program to sort through in-
formation. For instance, by
separating strings, you could
look through a mailing list
for TEXAS addresses.

55

56

Here’s how the program works:

In Line 20, assume you input the word IS for W$. In Line 30, the computer
counts W$'s length: 2 characters.

YOUR COMPUTER ‘S MEMORY

S$——HERE IS5 A STRING
W§——1I8

L——2

o O

In Lines 40-90 (the FOR/NEXT loop), the computer counts each character

in S$, starting with character 1 and ending with character LEN(S$), which
is 16.

Each time the computer counts a new character, it looks at a new mid-
string. Each mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string:

1
HERE IS A STRING
ey

MID$(5%+14+2)

The fourth time through the loop, when X equals 4, the computer looks at
this mid-string:
4

HERE IS8 A S TR ING
{23

o=

MID$(5%:4,2)

When X equals 6, the computer finally finds IS, the mid-string for which it is
searching.

\2
VRN

W
\ ‘ﬂ._

ALY
A

ANLTLAAAYY W

AR M Y

DO-IT-YOURSELF PROGRAM 10-1
Start with a one-line program:
10 A$ = “CHANGE A SENTENCE.”
Add a line that inserts this to the start of A$:
IT'S EASY TO
Add ahother line that prints the new sentence:
IT'S EASY TO CHANGE A SENTENCE

This is our program:

10 A% = "CHANGE A SENTENCE."
20 B$="IT'S EASY TO"
30 Cs=DBs+""+A%

49 PRINT C%

DO-IT-YOURSELF PROGRAM 10-2
Add to the above program to make it:
* Find the start of this mid-string:
A SENTENCE
* Delete the above mid-string to form this new string:
IT'S EASY TO CHANGE
* Add these words to the end of the new string:
ANYTHING YOU WANT
* Print the newly-formed string:
IT'S EASY TO CHANGE ANYTHING YOU WANT

HINT: To form the string IT'S EASY TO CHANGE, you need to get the
left portion of the string IT'S EASY TO CHANGE A SENTENCE.

Answer:

1@ A% = "CHANGE A SENTENCE.,"

20 B$="IT'S EASY TO"

30 C$=DBs+" "+ A% This program is the basis of a

49 PRINTCS% “‘word proceslsing" pro-
W u " gram—a popular program

=4 ' - L\,EN ("A SENTENCE®) that cuts down typing

B@ FOR X =1T0OLEN(CS$) expenses.

70 IF MID% (C%sX+¥) = "A SENTENCE" THEN 9@
80 NEXT X

85 END

90 D% = LEFT$ (C$:X - 1)

100 E$ =D%$ + "ANYTHING YOU WANT"

11¢ PRINTES

DO-IT-YOURSELF CHALLENGER PROGRAM
Write a program that:
* Asks you to input a sentence.

* Asks you to input (1) a phrase within the sentence to delete and (2) a
phrase to replace it.

* Prints the changed sentence.

This may take a while, but you have everything you need to write it.
Our answer’s in the back.

57

Learned in Chapter 10

BASIC WORDS BASIC String OPERATOR
LEN +
LEFT$
RIGHT$
MID$
Notes

- CHAPTER 11

A POP QUIZ

By using a word named INKEY$, you can get the computer to constantly
“watch,” “time,”” or “test” what you're typing. Type and run this program:

1% A% = INKEY$
20 IF A% <x"" GOTO 5@

3¢ PRINT "YOU PRESSED NOTHING" Remiamber thit « = mean:
49 GOTO 1@ “not equal to.”
5¢ PRINT "THE KEY YOU PRESSED IS---" A%

5 y . 5. % : ' s an “empty string’’
INKEY$ checks to see if you're pressing a key. It does this in a splitsecond. | (hothing).

At least the first 20 times it checks, you've pressed nothing ().

P—

Line 10 labels the key you press as A$. Then the computer makes a
decision:

. If A$ equals nothing ("), it prints YOU PRESSED NOTHING and
goes back to Line 10 to check the keyboard again.

. If A$ equals something (anything but * ”’), the computer goes to Line
50 and prints the key.

Add this line and run the program:
6¢ GOTO 1@

No matter how fast you are, the computer is faster! Erase Line 30 to see
what keys you're pressing. '

An Electronic Piano

Look again at “Musical Tones” in the Appendix. It lists these as the tones
‘or middle C through the next higher C:

C-89 E-125 G-147 B-170
D-108 F-133 A-159 C-176

Erase memory and type this program:
10 A% = INKEY$

20 IF A% =""THEN 10

30 IF A% = "A" THENT = 89
49 IF A% = "S" THENT = 108
5@ IF A% = "D" THENT = 125
6@ IF A% ="F" THENT =133
7¢ IF A% = "G" THEN T = 147
80 IF A% = "H" THEN T = 139
99 IF A% ="J" THENT =170

100 IF A% = "K" THENT =176
119 IFT =0 THEN 10

120 SOUND T3

130 T=20

1490 GOTO 10

1\

How would this change the Run it. Well, what are you waiting for? Play a tune. Type any of the keys on
program? the third row down on your keyboard—from A to K.
120 SOUND Tl

60

Why will the program not work right if you use INPUT rather than INKEY$?

Answer: If you use INPUT, the computer waits until you press (ENTER
before it sees what you type. With INKEY$, it sees everything you type.

There’s another way of writing this program using READ and DATA lines.
Do you know how?

This is what we came up with:

19 A% = INKEY$

20 FORX=1T7T08

30 READB$ T

490 IF A% = B$ THEN SOUND T 45
S NEXT X

G0 RESTORE

79 GOTO 1@

8¢ DATAA:; B9, S5, 108
99 DATADs 123, F+ 133
i@ DATAG, 147, H,s 1358
119 DATA J» 170+ K» 176

Beat the Computer

Type this program:

18 X =RND(4)

20 Y = RND(4)

30 PRINT "WHAT IS" X "+" ¥
49 T=0

5@ A% = INKEY$

B0 T=T+1

70 SOUND 12811

80 IFT=15 THEN 200
890 IF A% ="" THEN 590
1090 GOTO 1@

200 CLS(7)

219 SOUND 180, 30
220 PRINT "TOO LATE"

Here’s how the program works:

Lines 10, 20, and 30 have the computer print two random numbers and ask
you for their sum.

Line 40 sets Tto 0. T is a timer.

Line 50 gives you your first chance to answer the question—in a split
second.

Line 60 adds 1 to T, the timer. T now equals 1. The next time the computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Each time the
computer runs Line 60 it adds 1 to T.

Line 70’s there just to make you nervous.

Line 80 tells the computer you have 15 chances to answer. Once T equals
15, time’s up. The computer insults you with Lines 200, 210, and 220.

Line 90 says if you haven’t answered yet the computer should go back and
give you another chance.

The computer gets to Line 100 only if you do answer. Line 100 sends it
back for another problem.

How can you get the computer to give you three times as much time to
answer each question?

Answer:
3y changing this line:
80 IFT =45 THEN 200

61

Remember the problem of
mixing strings with num-
bers? Chapter 2 will refresh
your memory.

62

)

Checking Your Answers

How can you get the computer to check to see if your answer is correct?
Would this work?

19¢ IF A% = X+ Y THEN 130

110 PRINT "WRONG" s X "+" Y "=" X+ ¥
120 GOTO 10

13 PRINT "CORRECT"

149 GOTO 1@

If you run this program (and answer on time), you'll get this error message:
?TM ERROR IN 100

That's because you can’t make a string (A$) equal to a number (X+Y). You
somehow must change A$ to a number.

Change line 100 by typing:
100 IF VAL(A%) = X + ¥ THEN 130

VAL(A$) converts A$ into its numeric value. If A$ equals the string 5, for
example, VAL(A$) equals the number 5. If VAL(A$) equals the string “C,”
VAL(A$) equals the number 0. (“C" has no numeric value.)

To make the program more challenging, change these lines:

10 X =RND(49) + 4

20 Y = RND(49) + 4

990 B% =B% + A%

100 IF VAL(B$) = X + Y THEN 13@

Then add these lines:

45 B =""
95 IF LEN(B$) <> Z THEN 50

A Computer Typing Test

Here's a program that times how fast you type:

1@ CLS

20 INPUT "PRESS <ENTER» WHEN READY TO TY¥PE
THIS PHRASE" i E%

30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN"

4o T =1
50 A% = INKEYS$
B¢ IF A$ = "" THEN 100

70 PRINT A%$:

B0 B% =B% + A%

99 IF LEN(B%) = 32 THEN 120
1e¢ T =T+1

11¢ GOTO 5@

120 S=T/74
130 M=5/G60
14¢ R =8B/M

15@ PRINT
16@ PRINT "YOU TYPED AT--"R"--WDS/MIN"

Line 40 sets T, the timer, to 1.

Line 50 gives you your first chance to type a key (A$). If you're not fast
enough, Line 60 sends the program to Line 100 and adds 1 to the timer.

Line 70 prints the key you typed.

Line 80 forms a string named B$. Each time you type a key (A$), the
program adds this to B$. For example, if the first key you type is “N,"" then:

A$ = uNn
and
B¢ = B% + A%
B$ - o + "NH
B$ = IINII
If the next key you type is “O,” then:
A$ = lIDII
and
B$ = B$ + A%
B$=IINII+HDII
B$ = "NO"
If the third key you type is “W,” then:
A$ = IIHII
and
B$ - IIND" + llHII
B$ = "NOW"

When the length of B$ is 32 (the length of NOW IS THE TIME FOR ALL
GOOD MEN), the program assumes you've finished typing the phrase and
zoes to Line 120 to compute your words per minute.

Lines 120, 130, and 140 compute your typing speed. They divide T by 74
to get the seconds), S by 60 (to get the minutes). They then divide the eight
words by M to get the words per minute.

&

Learned in Chapter 11
BASIC WORDS

INKEY$
VAL

&R

We could have made this
calculation in one line by us-
ing parentheses:
120 R=8/((T/74)/
6@)

How about a variation of this
program—a speed-reading
test?

63

64

Notes

CHAPTER 12

MORE BASICS

Before you're finished with the “basics,”” you need to know a few more
words.

The first is STOP. Type and run this program:

10 A=1
20 A=A+1
3@ STOP
49 A=A=*2
50 STOP

6@ GOTO 2@
The computer starts running the program. When it gets to Line 30, it prints:

BREAK IN 3@
OK

You now can type a command line to see what's happening. For example,
type:
PRINT A
The computer prints 2—A’s value when the program’s at Line 30. Now
type:
CONT
The computer continues the program. When it gets to Line 50, it prints:
BREAK IN 5@
Type:
PRINT A
This time the computer prints 4—A’s value at Line 50.

Type CONT again, and the computer breaks again at Line 30. If you have it
again print A, it prints 5—the value of A at Line 30 the second time through

the program.

Inserting STOP lines in your program helps you figure out why it’s not
working the way you expect. When you fix the program, take the STOP

lines out.

For Long Programs. ..

Clear memory and type:

PRINT MEM (ENTER

The computer prints how much storage space remains in the computer’s
memory.

When you're typing a long program, you will want to have the computer
PRINT MEM from time to time to make sure you’re not running out of
memory.

To save memory, you can
omit spaces in your program
before and after punctuation
marks, operators, and BASIC
words.

=

65

66

3
#nl

Help with Typing

Type this program:

Ny

1@ INPUT "TYPE 1,2+ 0R3"5 N
20 ONNGOSUB 100, 200, 300
30 GOTD 1@

199 PRINT "YOU TYPED 1"
11 RETURN

2909 PRINT "YOU TYPED 2"
210 RETURN

30¢ PRINT "YOU TYPED 3"
319 RETURN

Run it.

ON

ON .

.. GOSUB in Line 20 works the same as three lines:

1 THEN GOSUB 100
290 IFN =2 THEN GOSUB 200
22 IF N =3 THEN GOSUB 300

.. GOSUB looks at the line number following ON—in this case N.

18 IFN

If N is 7, the computer goes to the subroutine starting at the first line
number following GOSUB.

If N is 2, the computer goes to the subroutine starting at the second
line number.

If N is 3, the computer goes to the subroutine starting at the third line
number.

What if N is 42 Since there’s no fourth line number, the computer simply
goes to the next line in the program.

Here is a program that uses ON ... GOSUB:

5 FORP=1T0GB@O®: NEXTP

1@ CLS: X =RND(1@@): ¥ = RND(10@)
20 PRINT "(1) ADDITION"

30 PRINT "(2) SUBTRACTION"

49 PRINT "(3) MULTIPLICATION"

5@ PRINT "(4) DIVISION"

B® INPUT "WHICH EXERCISE(1-4)"3 R
7¢ CLS

8@ ONR GOSUB 1002, 2000, 3000, 4000
9@ GOTOS

19@0® PRINT "WHAT IS" X "+" Y

1019 INPUT A

1020 IFA=X+Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

193® RETURN

2000 PRINT "WHAT IS" X "-" Y

2010 INPUT A

2020 IF A =X-Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

2030 RETURN

3000
3010
3020

30392

4000
4019
4020

4930

PRINT "WHAT IS" ¥ "#" ¥

INPUT A

IF A = X*Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

RETURN

PRINT "WHAT IS" X "/" ¥

INPUT A

IF A =3X/Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"

RETURN

Notice the word ELSE in Lines 1020, 2020, 3020, and 4020. You can use

ELSE if you want the computer to do something special when the condition
is not true. In Line 1020, if your answer—A—equals X + Y, then the

computer prints CORRECT or else it prints WRONG.

When A does not equal X +

Youmay use ON . .. GOTO inasimilarway as ON ... GOSUB. The only Y, the condition set up in

difference is that ON GOTO sends the computer to another line number

rather than to a subroutine.

Line 1020 is not true.

Here’s part of a program using ON ... GOTO:

10
20
30
a0
S0
6o
63
70

1000
1010

2000
2010

3000
3010

ELS

PRINT @ 134,
PRINT @ 166+
PRINT @ 198
PRINT @ 354
INPUT A

CLS

"(1) CRAZY EIGHTS"

"(Z) 500"

"(3) HEARTS"

"WHICH DO YOU WANT TO PLAY"

ON A GOTOD 1000+ 2000+ 3000
PRINT @ 230+ "CRAZY EIGHTS GAME"

END

PRINT @ 236G+ "S00 GAME"

END

PRINT @ 235+ "HEARTS GAME"

END

Does the Job Say “AND”” or “OR’’?

Anyone who speaks English knows the difference between “and” and
“or"’—even your computer. For example, assume there’s a programming
job opening. The job requires:

A degree in programming

AND

Experience in programming

Erase memory and type:

1@
20
30
ae

PRINT "DO YOU HAVE--"

INPUT "A DEGREE IN PROGRAMMING" 3 D%

INPUT "EXPERIENCE IN PROGRAMMING" i E%

IF D$ = "YES" AND E$ = "YES" THEN PRINT "¥YOU
HAUVE THE JOB" ELSE PRINT "SORRY » WE CAN'T

HIRE YOU"
GOTO 192

67

Run the program. You may answer the questions this way:

DO YOU HAVE--

A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
SORRY + WE CAN'T HIRE YOU

Now, assume the requirements change so that “‘or”” becomes ““and.”” The
job now requires:

A degree in programming
OR
Experience in programming

To make this change in the program type:

49 IFD$ = "YES" ORE$ = "YES" THEN PRINT
"YOU‘VE GDT THE JOB" ELSE PRINT "SORRY » WE
CAN'T HIRE YOU"

Run the program and see what a difference AND and OR makes:

DO ¥Y0OU HAVE--

A DEGREE IN PROGRAMMING?T NO
EXPERIENCE IN PROGRAMMING?T YES
Y0OU HAVE THE JOB

More Arithmetic

These words can save many program lines:

SGN
SGN tells you whether a number is positive, negative, or zero:

1@ INPUT "TYPE A NUMBER" 3§ X

20 IF SGN(X 1 THEN PRINT "POSITIVE"
30 IF SGN(X @ THEN PRINT "ZERO"

49 IF SGN(X -1 THEN PRINT "NEGATIVE"
5@ GOTO 10

Run the program, inputting these numbers:
15 -30 -.012 0 22

ABS

ABS tells you the absolute value of a number (the magnitude of the number
without respect to its sign). Type:

1@ INPUT "TYPE A NUMBER"3 N
20 PRINT "ABSOLUTE WALUE IS" ABS(N)
30 GOTO 1@

Run the program inputting the same numbers as the ones above.

STR$
STR$ converts a number to a string. Example:

1@ INPUT "TYPE A NUMBER" 3 N
20 A% = STR&(N)
30 PRINTA$ + " IS5 NOWASTRING"

Exponents Notice the OV (overflow)
Type and run this program to see how the computer deals with very large ;Zg, i;;t’fhi:gj,gssnfggs
numbers: larger than 1E+ 38 or smal-

% ler than -TE+ 38. (It rounds
10 X=1 off numbers around 1E-38
20 PRINT X3 and -1E-38 to 0.)

—

30 X=X*10
49 GOTO 2@ (J

The computer prints very large or very small numbers in “‘exponential

notation.” ““One billion’" (1,000,000,000), for example, becomes 1E+ 09, Ortechnically 1x109, which
is 1 times ten to the ninth

which means “the number 1 followed by nine zeros. Eower fiii0ilo

If an answer comes out “/5E-06,”” you must shift the decimal point, which Joelos [G eld

comes after the 5, six places to the left, inserting zeroes as necessary. In our BASIC, that's 5/10/10/
Technically, this means 5+¥10-6, or 5 millionths (.000005). 10/10/10/10

Exponential notation is simple once you get used to it. You'll find it an easy
way to keep track of very large or very small numbers without losing the
decimal point.

Congratulations, Programmer!

You've now learned the “’basics’’ and can no doubt write some decent
programs. The rest of the book is extra—to help expand and refine your
skills.

If you want to keep learning, skip to any of these sections:

. To improve your graphics programs, read Section I, “Drawing
Pictures.”

. To write programs that handle large volumes of information, read
Section Ill, ““Getting Down to Business.”

. To call ““machine-language programs’ from BASIC and, using
machine language, create high-resolution graphics, read Section 1V,
“Bits and Bytes.”” You need to already understand machine language
to use this section.

Learned in Chapter 12
BASIC WORDS BASIC SYMBOLS BASIC CONCEPT
STOP SGN AND Exponential
CONT ABS OR notation
MEM STR$
Notes

69

SECTION 11

DRAWING PICTURES

This section shows how to write colorful and exciting programs. Here,
you'll put pictures on your screen that move, dance, and even sing songs.

CHAPTER 13

COLOR THE SCREEN

)

Besure to type Line 30. We'll
explain why later.

72

Having fun? If so, you're sure to enjoy the subject of this chapter: computer
graphics.

Since graphic ideas will come to you quickly—and your programs may
end up long—this chapter just shows how to start. While running this
chapter’s programs, you may want to stop and improve or rewrite them.
We hope you do. That's a fast way to learn.

Start by making the screen black. Type:
1¢ CLS(®)
Add these two lines and run the program:

20 SET(04+0:3)
30 GOTO 3@

See the blue dot? It’s at the screen’s top left-hand corner. To put the dot at
the bottom right-hand corner, change Line 20 and run the program:

20 SET(B3,31:3)
Want to center the dot? Use this for Line 20:
20 SET(31,14,3)

SET tells the computer to set a dot on your screen at the position you
choose:

. With the first number, you choose the dot’s horizontal position (a
number from O to 63).

. With the second number, you choose the dot’s vertical position (a
number from 0 and 31).

In the Appendix, there’s a screen grid, ““Graphics Screen Locations.” It
divides your screen into the 64 (0 to 63) horizontal positions and 32 (0 to
31) vertical positions. Use this grid to position dots on your screen.

What about 3, the third number? Try replacing 3 with other numbers. Type
each of these lines and run the program:

20 SET(31.14,4)
20 SET(31+14,1)

Have you decided what this number does? When you use 4, the dot’s red;
with 1, it's green. The color codes for SET are the same as those for CLS
(codes 0-8). They're listed in your Quick Reference Card.

Now see why the GOTO line is necessary. Delete Line 30 and run the
program:

1@ CLS(@)
20 SET(31:14,1)

Although you can't see it, a dot is set. But when the program ends, the
computer prints OK on top of the dot.

The GOTO line sets an infinite loop in the program so that it will never end
(that is, unless you press (BREAK)).

Setting Two Dots

To set more than one dot, you need to do more planning. To find out why,
run a few programs. First, run this:

18 CLS(®)
20 SET(32:14,3)
30 SET(33:14,3)
49 GOTO 40

You should now have two blue dots—side by side—in the middle of your
screen. Change the color of the right dot so you'll have one blue and one
red dot. Type:

30 SET(33:14.,4)
Run the program again. This time, both dots are red.

Look again at the ““Graphics Screen Locations”” grid. Note the darker lines
group the dots into ““blocks.” Each block contains four dots. For instance,
the block in the middle of the grid contains these four dots:

Horizontal Vertical
Position 32 14
Position 33 14
Position 32 15
Position 33 15

Each dot within a block must either be:

. the same color
or
. black

The above program asks the computer to set two different-colored dots (red
and blue) within the same block. Since the computer can’t set them in
different colors, it sets them both in the second color—red.

Type this and run the program:

30 SET(34:14,4)

The screen positions for SET
are different than those for
PRINT (@). That's why there
are two grids in the Appen-
dix. Be sure to use “Graphics
Screen Locations’” for SET.

73

(=

Notice we've changed Line
50—the GOTO line.

74

Since the dot in position 34, 14 is in a different block, the computer can set
the two dots in.different colors.

The Computer’s Face

Using dots, you can draw whatever you want. We'll draw a simple picture
of a computer. First draw the top and the bottom of the head. We’'ll make it
buff. Type:

5 CLS(®)

18 FORH=15T0 48
20 SET (H15:43)

30 SET (H2043)
49 NEXTH

50 GOTD 5@

Run the program. This is what you see on your screen. (The lines should be
buff rather than white, like we have them.)

Lines 10 and 40 set up a FOR/NEXT loop for H, making the horizontal
positions 15 through 48 for the top and the bottom lines.

Line 20 sets the top line. The horizontal position is 15 through 48, and the
vertical position is 5.

Line 30 sets the bottom line. The horizontal position, again, is 15 through
48, and the vertical position is 20.

To set the left and right sides of the head, type these lines:

30 FORWY=5T020
B@ SET(15,:U,5)
70 SET(48,U,45)
8@ NEXTV

99 GOTO 90

and run the program.-

We'll make the nose orange. Type:
99 SET(32,+13:8)

And the mouth red. Type:

100 FORH=28T0 36
11@ SET(H:16:4)
120 NEXTH

And the eyes blue. Type:

130 SET(Z25,+10,3)
1490 SET(38:10:3)
15¢ GOTOD 15@

Run the program. This is what your screen should look like now:

A Blinking Computer

With a few more lines, you can make the computer “blink.”” Type:

150 RESET(3B:1@)

Run the program. You now see the same face, except the right eye is
missing. RESET erases the dot in the horizontal position 38 and the vertical

position 10. That's the right eye.

To make the eye blink, simply set and reset it by adding this line:

16¢ GOTO 140
List your program to see if it's the same as ours.

o CLS(2)

1@ FORH=15T0 48
20 SET(H:3:3)

30 BSET(H20,5)

49 NEXTH

59 FORWUV=35T020
B@ SET(13:U4+3)
70 SET(48:U43)
8@ NEXTV

90 SET(32:,13:8)

1@@ FORH=28T0 36
11@ SET(H:16:+4)
120 NEXTH

130 SET(25:10,3)
149 SET(38:+1@.:3)

150 RESET(38:10)
16e GOTO 140

Run and improve it (if you can).

You don't need to tell the
computer the color of the
dot to reset (erase) it.

75

f=member always to erase
vour program before typing
2 “new” one.

=

Be sure to type the semico-
lons at the ends of Lines 20,
30, 40, and 50.

=)

The second or fourth num-
ber may change also, but not
from O to 63.

76

The Bouncing Dot

You may now see how to program pictures that move. This program makes
a ball move down:

5 CLS(®2)

18 FORV=0T0 31
20 BET(31:U43)
3@ RESET(31.:V)
40 NEXT VY

Each dot that Line 20 sets, Line 30 erases.
To move the ball back up, add these lines:

5¢ FORWY=231T0®STEP -1
6@ SET(31,V,3)

70 RESET(31,4)

80 NEXT UV

Add this line to make the ball “bounce’’:
9@ GOTO 1@

Run the program. To slow the dot down (it’ll ook better), change Lines 30
and 70:

3¢ IFV »@ THEN RESET(31,V-1)
7@ IF V< 31 THEN RESET(31V+1)

The > sign means the same as it does in math—greater than. The < sign
means less than.

If You Have Joysticks . . .

If you have joysticks, connect them now by plugging them into the back of
your computer. They fit in only the correct slots, so don’t worry about
plugging them into the wrong places.

Now run this short program to see how joysticks work:

18 CLS

20 PRINTE @, JOYSTK(Q)
30 PRINTE@S, JOYSTK(1)3
49 PRINTE@ 10 JOYSTK(Z) 3
5S¢ PRINT@ 15, JOYSTK(3) i
69 GOTO 2@

See the four numbers on your screen? They’re the horizontal and verti-
cal positions of the two joysticks’ ““floating switches.”

Grasp the right joystick’s floating switch. (The joystick connected to the
RIGHT JOYSTICK jack on the back of the computer.) Keeping it in the
center, move it from left to right. The first number on the screen
changes: to numbers from 0 and 63.

Move the left joystick’s floating switch from left to right. The third number
on the screen changes.

Now move the floating switches up and down, keeping them in the center.
Moving the right joystick up and down changes the second number from 0
to 63. Moving the left joystick up and down changes the fourth number

from O to 63.
This is how the computer reads the joysticks’ positions:

LEFT JOYSTICK

0
==
Bacho Fack
7N

63
JOYSTK(2) JOYSTK(3)

RIGHT JOYSTICK
0
[~

Foach
VA

63
JOYSTK(0) JOYSTK(1)

JOYSTK(0) and JOYSTK(1) read the right joystick’s positions:

. JOYSTK(0) reads the horizontal (left to right) coordinate.
. JOYSTK(1) reads the vertical (up and down) coordinate.
JOYSTK(2) and JOYSTK(3) read the left joystick’s positions:

. JOYSTK(2) reads the horizontal coordinate.

. JOYSTK(3) reads the vertical coordinate.

Whenever you read any of the joysticks, you must read JOYSTK(0). To find
out for yourself, delete Line 50 and run the program. It works almost the
same, except it doesn’t read JOYSTK(3)—the vertical position of your left
joystick.

Delete Line 20 and change Line 60:
B¢ GOTO 30

Run the program. Move all the switches around. This time the program
doesn’t work at all. The computer won't read any coordinates unless you
first have it read JOYSTK(0). Type these lines and run the program:

20 A= JOYSTK(D)
60 GOTO 2@

77

> = means greater than or
equal to

78

Although the computer’s not printing JOYSTK(0)'s coordinates, it's still
reading them. Because of this, it’s able to read the other joystick coordi-
nates. Whenever you want to read JOYSTK(1), JOYSTK(2), or JOYSTK(3),
you first need to read JOYSTK(O).

Painting with Joysticks

Type and run this program:

16 CLS(2)
20 H = JOYSTK(2)

30 V= JOYSTK(1)

49 IF WV > 31 THEN W = U - 32
8@ SET(H:V:3)

99 GOTO 2@

Use the revolving switch of your right joystick to paint a picture. (Move the
switch slowly so that the computer has time to read its coordinates.)

4

Line 20 reads H—the horizontal position of your right joystick. This can be
a number from 0 to 63.

Line 30 reads V—its vertical position. This can also be a number from 0 to
63. Since the highest vertical position on your screen is 31, Line 40 is
necessary. It makes V always equal a number from 0 to 31.

Line 80 sets a blue dot at H and V.

Line 90 goes back to get the next horizontal and vertical positions of your
joysticks.

This uses only the right joystick. Perhaps you could use the left one for
color. Add these lines and run the program:

5@ C = JOYSTK(Z)

6@ IFC+« 31 THENC =3
70 IFC >»=31THENC =4
88 SET(HV,C)

Move your left joystick to the right, and the computer makes C equal to 3;
the dots it sets are red. Move it to the left, and the computer makes C equal
to 4; the dots it sets are blue.

Want to use your joystick buttons? Add these lines to the program:

10@ P = PEEK(B5280)
118 PRINTP
120 GOTO 100
Now type:
RUN 100

This tells the computer to run the program starting at Line 100. Your
computer should be printing either 255 or 127 over and over.

PEEK tells the computer to look at a certain spot in its memory to see what
number’s there. Line 100 looks at the number in position 65280. As long as
you're not pressing either of the buttons, this spot contains the number 255
or 127.

Press the right button. When you press it, this memory location contains
either the number 126 or 254.

Press the left button. This makes this memory location contain either the
number 125 or 253.

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We'll make it go back to Line 10 and
CLS(0) (clear the screen to black) when you press the right button. Change
Lines 110 and 120:

118 IFP
12¢ IFP

Delete Line 90 and add this line:
130 COTO 20

i

126 THEN 10
254 THEN 1@

Run the program and start ““painting.”” Press the right button when you
want to clear the screen and start again.

Learned in Chapter 13
BASIC WORDS

SET
RESET
JOYSTK
PEEK

Notes

If you press the buttons
when you're not running the
program, you'll see
(@ ABCDEFG or HIIKLMNO.

Some of the joysticks will
notread six “blocks’’ in each

of the four corners of your

screen.

79

CHAPTER 14

GAMES OF MOTION

80

Ready for video games? Because of a word named POINT, you can
program almost any kind of motion game.

Type these lines. They set orange dots at random horizontal and vertical
positions:

5 CLS5(2)

18 FORX=1T0S3

20 SET(RND(B4)-1, RND(30) + 1, 8)
30 NEXT X '

Add these lines and run the program:

a9 FOR WV =270 31

50 FORH=@TO0G3

6@ IF POINT(H,Y) <> @ THEN GOSUB 100

70 NEXTH

75 NEXT WV

8@ END

100 PRINT @ @, "LOCATION"H"," U "I5 GET"
110 RETURN

non

Line 60 checks each “point” in vertical positions 2-31 and horizontal
positions 0-63.

. If the point equals 0, it's “off" (black).

. If the point equals some other number, it’s ““set.” Line 100 prints the
point’s position.

You can also find out what color each point is. Erase memory, and then
type and run this program:

3 CLS(2)

18 C=RND(9) -1

20 GSET(31:+15.C)

30 IF POINT(31,15) = 2 THEN PRINT @ @,
"LOCATION 31415 IS YELLOW" 3

49 IF POINT(31+15) = 3 THEN PRINT @ 48¢,
"LOCATION 31,15 IS BLUE":

5¢ FORT=1T01000: NEXTT

B0 GOTOS

If the point is “‘set,”” it equals one of the 8 color code numbers listed in
Appendix B.

Plotting Through Asteroids

This game uses the right joystick, so be sure it's connected. (If you don't
have joysticks, skip to the next chapter.)

Erase memory and type these lines. They create “asteroids.”

5 CLS (@)

18 FOR X =1T0 200

20 SET (RND(G4) -1+ RND (32) + 1.:8)
30 NEXT X

Type these lines to create a “‘planet.”

4¢ FORH=354T0G3
50 FOR VY =28T031
B@ SET(H:V:3)

70 NEXT UsH

The above lines set blue dots in each of these positions: horizontal 54-63
and vertical 28-31. Note that Line 70 contains two instructions: NEXT V
and NEXT H.

To read the right joystick’s position, type:

100 A = JDYSTK(Q)
11 B = JOYSTK (1)
120 B=B/Z

13@ B = INT(B)

A reads the horizontal coordinates (0-63), and B reads the vertical coordi-
nates (0-63). Since the highest vertical position on your screen is 31, Lines
120 and 130 are necessary.

To set the entire block surrounding the joystick’s position, add these lines:

200 IF INT(A/2) <+ A/2 THENA
21@¢ IF INT(B/2) <+»B/2 THENB
220 FORH=ATOA+1

230 FORWV=BTOB +1

249 SET(H:V,6)

250 NEXT VUsH

998 GOTO 10@®°

Lines 200 and 210 ensure that the first horizontal and vertical dots set are
even numbers, and Lines 220-250 set the entire block.

A-1
B-1

non

Run the program. Move your joystick around. The cyan colored line moves
wherever you position the joystick.

Now turn this into a game. Type these lines and run the program:

212 FORH=ATOA+1
214 FORW=BTOB+ 1

81

82

216

218

IF POINT(H,U) = 8 THEN SOUND 1281
T=T+1
NEXT U sH

Each time you hit an orange point, Line 216:

. Sounds a tone

Adds 1 to T, a counter

Add these lines and run the program:

235

300

310

1000
1010
1020
1030
104¢

IF POINT(HV) = 3 THEN PRINT @ @
"CONGRATULATIONS - YOU MADE IT": END
PRINT @ 28 T

IFT » 1@ THEN 1000

FOR X =1T0D 40

CLS(RND(8))

SOUND RND(253)» 1

NEXT X

PRINT @ 228, "YOUR SPACESHIP EXPLODED"

Want the rules printed on the screen? Add some more lines:

80
82
84
86
88
=1
g2
94
96

2000
2010
2020
2030
2040
2050
20692
2070

FOR X=1T08

READ A%

PRINT @ @ +A%

FOR Y =1 T0O 1500: NEXT Y

NEXT X

Ré = INKEY$: IF R$ = "" THEN 80
FORH=4T0OG3

SET(H:@,8): SET(H»1,:8)

NEXT H

DATA YDOUR GOAL I8 TO PLOT A COURSE
DATA TO GUIDE YOUR SPACESHIP

DATA THROUGH THE ASTEROIDS

DATA TO THE BLUE PLANET

DATA HIT MORE THAN 10 ASTEROIDS
DATA AND YOUR SPACESHIP EXPLODES! 1!
DATA PRESS ANY KEY WHEN YOUR SPACE-
DATA SHIP IS AT TOP LEFT CORNER

Learned in Chapter 14
BASIC WORD
POINT

Notes

CHAPTER 15

THE TALKING-COMPUTER
TEACHER

Who says the computer can't talk? Its voice, though, sounds strangely like
your own. You can program the computer to “talk” using your own taped
voice. This adds interest and fun to any program.

This chapter requires that you have a tape recorder.

. Unplug the three-pronged cable connecting your tape recorder to
the computer.

. Put in a tape, rewind it, press the PLAY and RECORD buttons, and
talk into the microphone. (Plug in a microphone if your recorder
doesn’t have one built in.) Say whatever you want.

Now type this program:

5 CLS Even if you don’t have a mi-
5 e hi
10 INPUT "PRESS <ENTER> TO HEAR THE Sslisng ¥ Loy

RECORDING" 3§ A% music or one of your pro-
20 MOTOR ON gram tapes.

3¢ AUDIDON : J l

Mo Bb Cc D4 Ee FF Gg Hh Ii Jy Kk LI Mm Nn Oo PpQq

, =

Before running the program, prepare the recorder:

. Rewind the tape you've just recorded.

. Connect the recorder to the computer (as shown in your introduction
manual).

. Press the recorder’s PLAY button.
. Turn up your T.V.'s volume.
Run the program. You'll hear your voice over the T.V.

MOTOR ON turns on your cassette recorder. AUDIO ON connects your
recorder’s sound to the T.V. speaker.

This program is a little long,
but we think you’ll enjoy it.
If you want, you can go on to
the next chapter and come
back to this later.

84

There’s a way of programming your tape recorder to stop, but for now
simply press RESET. It's on the back right-hand side of your keyboare
(when you're facing it). List your program. It’s still intact.

Add these lines:

33 CLS

49 A% = INKEY%$

5¢ PRINT @ 255, "PRESS «X» TO TURN OFF
RECORDER"

6@ IF A%« "X" THEN 40

70 AUDID OFF

80 MOTOR OFF

Prepare your tape for playing and run the program.

Line 40 labels whatever key you are pressing or not pressing as A$. When
you press X, the recorder’s audio connection and motor are turned off.

Now you can record the “talking-computer teacher.”” Here’s the script:

SCRIPT

“Hi, I'm your talking-computer teacher. The first lesson is math. I'll
give you a series of addition problems. Press the ‘W’ key —"

(pause for a few seconds)
“You'll hear that every time you give me a wrong answer. Press the
1R/ key —Il

(pause for a few seconds)

“That's how I'll reward you when you answer correctly. | won't talk
to you again until you give me three correct answers. Press the ‘G’
key to begin.”

(pause for a few seconds)

“Lesson’s over. Press the ‘E’ key to turn off the cassette.”

Finished? Now draw the teacher. Here's the grid:

Draw the mouth first. Erase memory and type:

5 CL&(2)
200 FORH=2BTD 353
219 FOR VYV =16TO0 21

220 SET(H:W,4)
230 NEXT VH

That's a closed mouth. To make it talk, type:

S0® RESET(30:18): RESET(30,19)
510 GOTO 200

Run the program. Now draw the face:

100 FORH
118 FOR VY
120 SET(H»V,3)
13@ NEXT VsH

168 TO 47 Remember, you can always
47T0 23 press RESET to stop your re-
corder when it is connected
to the computer.

The body:
149 FORH=@ TO B3 STEP 4
15¢ FOR WV =24 T0 31

160 SET(HV2): SET(H + 1,U2)
170 SET(H+ 2,V,:7): SET(H + 3:U,7)
180 NEXT VU,H

The eyes:

300 FORV=10TO0 11

3190 SET(Z4,V:3): SET(Z25:V+3)

320 SET(3B:W:3): SET(37:V:3)

330 NEXT U

349 PRINTE@ @, "THE TALKING COMPUTER TEACHER"

Want to make the eyes blink? Type:

S05 IF RND(4) = 4 THEN SET(244+10,3):
SET(37:10,:3)

Run the program. That's the teacher. To get it to talk, add these lines:

499 MOTOR ON
419 AUDIO ON
420 A% = INKEY$

43¢ IF A% = "G" THEN MOTOR OFF: END
449 IF A% = "W" THEN MOTOR OFF: GOSUB 2009
45¢ IF A% = "R" THEN MOTOR OFF: GOSUB 3000

2000 FORT =176 T0 89 STEP -10
201@® SOUND T .1

2020 NEXTT

2030 RETURN

3009 FORT=897T0 176 STEP 1@
3010 SOUND Tl

3020 NEXTT

3032@ RETURN

Before running the program, prepare your tape for playing. (Rewind the
tape, connect the recorder to the computer, and press PLAY.) Then run the
program.

85

Do what your voice tells you. When you press W, you should hear
descending tones; R gives you ascending tones. G just ends the program.
That's because you haven’t typed the arithmetic routine yet.

Change Line 430 and add Line 460:

439 IF A% = "G" THEN MOTOR OFF: GOSUB 10090
460 IF A% = "E" THEN MOTOR OFF: END

Then add the arithmetic routine:

1000 ¥ =RND(1@@): Y = RND(100)
1019 PRINT @@, "WHAT IS" X "+" Y

Notice Line 1015. It sets the 1015 PRINTE 20, " "

PRINT position for what you 1029 INPUT A
type in Line 1020. 1030 IF A =X+ Y THEN GOSUB 30@0: C=C + 1

1049 IF A <> ¥ + Y THEN GOSUB 200@: PRINT @ @

"WRONG - THE ANSWER IS8" X + ¥
19590 IF C =3 THEN RETURN
1060 FORP=1T0S@0: NEXT P
1¢e7¢ GOTO 1000

Rewind the tape and press PLAY. Run the program.

The talking-computer teacher. Perfect for making arithmetic fun.

Learned in Chapter 15
BASIC WORDS

MOTOR
AUDIO

CHAPTER 16

FASTER GRAPHICS

Up to now, you've used only one method to draw pictures on your screen.
Using SET is easy, but slow and tedious. This chapter shows a faster
method to use—graphic character codes.

Character Codes

Type:
PRINT ASC("A") (ENTER
The computer displays 65—the ““/ASCII"”” code for the character A. Type:

PRINT CHR$(E63) (ENTER

The computer displays A—the character represented by the ASCII code
number 65.

Look at the list of “ASCII Character Codes’’ in your Quick Reference Card.
Each keyboard character has a code. Test some other characters.

Note that even the “‘nondisplayable” characters—such as (==—have a
code. Erase memory, and type this program:

10 CLS(2)

20 H=63

25 BET(H:14,3)

30 A% = INKEY$

49 IF A% = CHR$(B) THEN B@
50 GOTO 30

6@ H=H-1

65 IFH+< @ THEN END
7¢ SET(H:14,3)

75 RESET(H+ 1.14)
80 GOTO 3@

RUN the program. Press the character. Each time you press it, it
backspaces the blue dot.

Lines 30 and 40 check to see if you're pressing the key (Code 8).

¢

“ASCII’ stands for the Amer-
ican Standard Code for In-
formation Interchange. By
using these standard codes,
your computer can com-
municate with other
computers.

&)

Need to review INKEY$? See
Chapter 11.

87

If you are pressing (=), Lines 60 and 70 “‘backspace” H, the horizontal
coordinate, and set a blue dot. Line 75 then resets (blacks out) the previous-
ly set blue dot.

DO-IT-YOURSELF PROGRAM 16-1

Write some more lines to the program so that you can press == to
move the dot forward.

Graphic Character Codes

The ASCII codes in your Quick Reference Card represent only about half
the Color Computer’s ASCII codes. The other half of the codes—Codes
128-255—are for graphic characters.

Type:
PRINT CHR%('128) (ENTER
The computer displays a black block. Try other graphic codes:

PRINT CHR$ (129) (ENTER
PRINT CHR$(13@) (ENTER
PRINT CHR%(131) (ENTER

The computer displays three blocks with different combinations of green
and black.

Since the green background makes it difficult to see the outline of the
blocks, type this program. It displays the first block against a buff back-

: ground:
A grid of “PRINT (« Screen
Locations” is in the Appen- i@ CLS(3)
dix. (We explained how to 20 PRINT @ 239+ CHR$(128) 53
use it in Chaple(7.) Be sure 23 CGOTO 30
to type the semicolon.

Look at “Graphics Screen Locations’” in the Appendix. As we explained
earlier, the darker lines divide the grid into blocks. Each block contains 4
dots. These 4 dots can be arranged in 16 ways to form these graphic
characters:

128 129 130

131 132

136 137

138 139 140 141 142 143

135

To display all 16 graphic characters, type and run this program:

1¢ ECLB{S)

Z0 FORC= 12870 143

30 PRINT @@+ "PRESS ANY KEY TO CONTINUE" 3
49 PRINT @ 173+ Cs

5@ PRINT @ 240 CHR$(C) 3

B@® K% = INKEY$: IF K$ = "" THEN G@

78 NEXTC

g GOTO 1@

Line 50 displays the graphic characters for Codes 128-143 at Position 240
on your screen.

Try something a little different. Type:
PRINT CHR$(129 + 16) (ENTER

The computer displays the graphic character for 129, except the area that
should be green is yellow. Type:

PRINT CHR$ (129 + 32) (ENTER

PRINT CHR% (129 + 48) (ENTER
PRINT CHR$ (129 + B4) (ENTER

These are the numbers you can add to the 16 graphic codes above to create
different colors:

0O—green 64—buff
16—vyellow 80—cyan
32—blue 96—magenta
48—red 112—orange

To see all the graphic characters in each color, add these lines and run the
program:

15 FORKX=0T07
17 IF X =1THENCLS(1)

49 PRINT @ 170, C "+" X * 1B
50 PRINT @ 240, CHR$(C + X * 16) 3
75 NEXT X

PROGRAMMING EXERCISE

Write 3 linés to create the characters below. Make the first buff; the
second, magenta; and the third, blue:

Answers:

PRINT CHR$ (133 + G4d)
PRINT CHR$ (137 + 8G6)
PRINT CHR%(14@ + 32)

Graphic Strings

BASIC treats graphic characters the same as any other characters: as
strings. You can combine and store graphic characters the same way you
combine and store strings.

Know why it's important to
type a semicolon at the end
of these PRINT (« lines? Try
it with and without the semi-
colon.

The semicolon makes the
computer stop as soon as it
displays your characters.
Otherwise, it continues to
display its customary green
background for the rest of
the line.

&)

Notice these numbers are all
multiples of 16. (16 = 16*1;
32 = 16*2;48 = 16*3 ...
112 = 16*7).

If you prefer, you can use the
formula on your Quick
Reference Card. It gives the
same results.

89

=)

Note the difference: You
“print”’ graphic characters
using ““PRINT (@ Screen
Locations’’ (Appendix B).
You ‘‘set’’ dots using
Graphic Screen Locations
(Appendix C).

90

Erase memory and form two graphic strings. Type:
19 A% = CHR$(129 + 32) + CHR$(131 + 32)
2?0 B% =CHR$(133+ 112) + CHR$ (143 + 112) +
CHR$ (132 + 112)

You can position these “‘strings’ on your screen in the same way you
position any other strings: with PRINT @. Add these lines and run the

program:
30 CLS(®)
49 PRINT @ 237+ A%3
50 PRINT @ 241, B%j
B0 GOTO GO

The computer displays what looks like a blue car and an orange truck at the
center of your screen.

DO-IT-YOURSELF PROGRAM 16-2

Using graphic characters, write a program to create this image in the
center of your screen. Make the chairs yellow and the table orange.

Learned in Chapter 16

BASIC WORDS BASIC CONCEPT
ASCII graphic characters
CHR$

CHAPTER 17

LET’S DANCE

This chapter lets you catch your breath, have some fun, and, at the same
time, review what you've learned. You'll create a ““dancing computer” that

looks, at rest, like this:
|

1

|F

A R R

Start by typing this line to reserve plenty of string space:
i CLEAR 100@

Then add these lines to form the black strings (D$, G$, B$, and BK$), the
buff strings (C$, F$, and A$), and the red string (E$):

1@ D% = CHR$(128) + CHR$(1Z8)
2¢ G$ =D% + CHR$(128)

30 B%=0G%+D%

49 BK$ =B% +B% +Bs +D$ +D%
5¢ C% =CHR$(143 + G4)

6@ F$=Cs+C%

79 A% =F% +C3

B@ FORX=1T0O7

99 E$ = E$ + CHR$(143 + 48)
1900 NEXT X

Run the program. Then display all the strings you've formed. For example,

to display BK$, type:

=

PRINT BRK$ <ENTER>

On your screen, the light
green will be buff; the dark
green, red; and the gray
area, black.

Sy

B$ is actually 5 characters
long. On your screen it will
line up with the word
PRINT.

D$ is 2 characters; G$ is 3;
BKS$ is 19; A% is 3.

C$ is 1 character long; F$ is
2: ESiis 7.

91

92

Now combine the above strings to form the head (HD$):

The body (BD$):

And three leg positions: L1$, L2$, and L3$%:

To do this, add these lines:

110
120
130
14
150

-

160
17@
180

190

HD$ = B$ + A% + B% + BK$ + B + A% + B$ + BK$
FOR X=1TO0 4

BD$ = BD$ + D$ + C$ + E$ + C$ + D% + BK$%
NEXT X

Li1$ =G$ +E$ + G$ + BK$ + G + F$ + G + F& +
G$ +BK$ + G$ +F$ + G + F$ + G%

H$ = G$ + G
I$ =H%$ + D%
L2?% =G$ +E$ + A% + BK$ + G + F$ + HE + F$ +
BRe + G + F$
L3s = A +E$ + G + BKs + F$ + HE + F$ + G +
BRe + I¢ + F%

o+
no+ ou

+

Run the program. Then display the five new strings you've formed.

Now add these lines:

SO0
510
520
530

looo
1010
1020
1030

2000
3000
4000

INPUT "LOCATION (@-243)"5 L
INPUT "POSITION (1-3)"35 P
GOSUB 1000

GOTO 500

CLS(2)

PRINT @ L+ HD% + BD% 3

ON P GOSUB 2000, 3000 4000
PRINT @L + 32 * B LG$%5 : RETURN

LG$=L1%: RETURN
LG% = L2% : RETURN
LG% = L3% : RETURN

Run the program. The computer shows you each location and position you

request.

Line 1010 prints the head and the body at the location you requested.

Line 1020 sends the program to a subroutine that makes LG$ equal to L1$,
L2$, or L3$ (depending on whether you typed 1, 2, or 3 for the position).
Line 1030 then displays LG$ directly under the head and body (6 columns
below your requested location).

To make the computer dance, change Lines 500 and 510 and add these

lines:

S00
510

FOR X =1T017
IF X =10RX=5THEN RESTORE

5 INPUT "SPEED (1-1@)"35 85

READLs P+ T+ D

SOUND T+ 5 %D

NEXT X

DATA 137, 2+89 1 2404+ 14+ 133+ 2
DATA 137+ 34+ 159 1, 229, 1, 133 2
DATA S 1+ 89 1y 229, 1, 1334 2
DATA S 14+ 1474+ 1,3 229 14159, 1
DATA 229, 14+ 147+ 135+ 15 133+ 1
DATA 229, 14+ 12542334+ 14+ 133+ 1
DATA 229 14+ 147+ 2

Examples: To display the
head, type PRINT HD%
(ENTER. To display the
body, type PRINT BD$%
(ENTER.

&)

Remember READ and DATA
from Chapter 13?

93

94

Run the program and watch the dance. Line 515 reads Lines 5000-5060 to
determine each screen location, leg position, tone, and tone duration.

For example, at first, the “‘dancing computer’” appears at Screen Location
137 with Leg Position 2. It sounds Tone 89 for Tone Duration S+1.

Next the dancing computer appears at Screen Location 240 with Leg
Position 1. It sounds Tone 133 for Tone Duration $*2.

If you're still with us, you no doubt have many of your own ideas. If you
plan to do much graphic programming, you may want to consider upgrad-
ing to Extended Color BASIC.

SECTION 11i

GETTING DOWN
TO BUSINESS

This section deals with information you want to manage. For example, you
may want to manage:

. Checkbook receipts
Shopping items

Tax records

. Inventory
. Addresses
. Records, books, or tape collections

In this section, you’ll learn how to store, update, sort, and analyze informa-
tion to fit your own needs.

CHAPTER 18
TAPING

Your first and foremost task is to store your information permanently on
cassette tape. This, of course, requires a tape recorder.

Ready to get organized? We’'ll start with your book collection. Here’s a
small list of books:

1. WORKING

2. CAT'S CRADLE

3. SMALL IS BEAUTIFUL
4. STEPPENWOLF

If you've read your introduction manual, you know how to save BASIC
programs on tape. To save information, you need a program that follows
these steps:

STEPS FOR STORING INFORMATION ON TAPE

1. Open communication to the tape recorder so that you can output
(send out) information to a file.

2. Output all information to the tape recorder file.

3. Close communication to the tape recorder.

CHRISTMAS LiST:
‘RELANVE

RECORDS:

BOOKS:
*FICTION
* NON-FICTioN

Start the program with this line:
1@ OPEN "0O", #-1, "BOOKS"

99

A “file” is a collection of in-
formation—such as book ti-
tles—stored under one
name.

PRpieaeh W7

Prints Litle ¥o haconclt . - 30

Cloats Compmiinicatrer
Wi, Aater clor

100

This “‘opens’” communication to the tape recorder (‘“device #-1"') so that
you can “output’” (“O") information. Whatever information you output,
the computer stores on tape in a “file’”” named BOOKS.

Now output the information. Type:

15 CLS: PRINT "INPUT YOUR BOOKS--TYPE <XX>
WHEN FINISHED"
20 INPUT "TITLE"3 T%

39 PRINT #-1, T$%
49 GOTO 15

Line 20 “prints”’ (outputs) your book titles—not to the screen, but to device
- 1, the tape recorder.

Then close communications. Type:

25 IF T$ = "XX" THEN 50
50 CLOSE #-1

The computer then closes communication to the tape recorder.

Add three more lines to the program:

1 CLS

2 PRINT "PDSITION TAPE - PRESS PLAY AND
RECORD"

4 INPUT "PRESS <ENTER:» WHEN READY"3i R$%

The program should now look like this:

1 CLS

2 PRINT "POSITION TAPE--PRESS PLAY AND
RECORD"

4 INPUT "PRESS <ENTER:*> WHEN READY"3i R%
OPEN "O" s #-1, "BODOKS"

15 CLS: PRINT "INPUT YOUR BOOKS - TYPE <XX3:
WHEN FINISHED"

20 INPUT "TITLE"S T%

25 IF T$¢ = "XX" THEN 5@

PRINT #-1, T$
49 GOTO 15
—»50@ CLOSE #-1

Prepare the recorder.

. Connect the recorder. Your computer’s introduction manual shows

how.

. Position a tape in the recorder, and, if necessary, rewind the tape so
you'll have room for recording. (If you're using a non—Radio Shack

tape, position it past the starting leader.)

. Press the recorder’s RECORD and PLAY buttons so that they are both

down.

Then run the program. As soon as you press (ENTER), the cassette motor
turns on: The computer is opening a “file’” on tape and naming it BOOKS.

The program then asks for titles. Type:

TITLEY WORKING

TITLE? CAT’S CRADLE
TITLE? SMALL IS BEAUTIFUL
TITLE? STEPPENWOLF
TITLE? KX

Each time you input a title, the computer prints it in a special place in
memory reserved for the tape recorder. When you finish, the tape recorder
motor turns on: The computer is printing all the titles to the recorder (Line
30) and then closing communication with the recorder (Line 50).

Your book titles are now all saved on tape in a file named BOOKS. To read

them back into memory, use just about the same steps.

information from a file.
Check to see if you're at the end of the file.

Input information from the tape recorder file.

vos W

Close communication to the tape recorder.

STEPS FOR INPUTTING INFORMATION FROM TAPE

1. Open communication to a tape recorder so that you can input

Repeat Steps 2 and 3 until you reach the end of the file.

To open communication, type:

6@ CLS: PRINT "REWIND THE RECORDER

PRESS PLAY"

7@ INPUT "PRESS <ENTER*» WHEN READY"S3

8@ OPEN "I", #-1, "BOOKS"

G

The computer clears the

screen after each title.

101

Are you wondering what the
-1 means? EOF returns a -1
when you reach the end of

the file.

Be sure to press only the
PLAY button, Not RECORD
Also, be sure to rewind the
tape.

If your computer becomes
“hung up”’ communicating
with the tape recorder, you
can regain control by press-
ing the RESET button. It’s on
the back right-hand side of
your keyboard. Then look
for missing or mistyped lines
in your program.

102

This opens communication to the tape recorder—this time, to input in-
formation from the BOOKS file.

To input information, add these lines:

90 INPUT #-1, B%
109 PRINT B$%

Line 90 inputs the first book title (B$) from the BOOKS file stored on tape.
(The variable name you choose makes no difference.) Line 100 displays
this title on your screen.

To check for the end of the file and close the file, add these lines:

85 IF EOF (-1) THEN 12@
119 GOTD 85
12¢ CLOSE =-1

Line 85 says if you are at the end of this file (in this case, the BOOKS file), go
to 120 and close communication with the tape recorder.

Note that EOF(-1) comes before the INPUT #-1 line. If it's after INPUT #-1,
you’ll get an IE error—"input past the end of the file.”

List this last part of the program by typing LIST 60 - (ENTER). It should look
like this:

6@ CLS: PRINT "REWIND THE RECORDER AND
PRESS PLAY"

7@ INPUT "PRESS <ENTER> WHEN READY"3 R$

80 OPEN "I", #-1, "BOOKS" ¢ Opuu (ompumicetion

85 IF EOF (-1) THEN 120 win racerder

90 INPUT #-1, B$é—J»putsAéda.fwvam

1@ PRINT Bs$

11 GOTO 85 . ‘

12¢ CLOSE #-lé—‘umwwlm w Mh Alcesdin

Now run this part of the program. Type:
RUN G0

When you press (ENTER), the recorder’s motor comes on while the com-
puter inputs items from tape. When finished, it displays the four items on
your screen.

An Electronic Card Catalog

Assume you need to change the program so it can also store the books’
authors and subjects:

TITLE AUTHOR SUBJECT
Working Studs Terkel Sociology
Cat’s Cradle Kurt Vonnegut Fiction
Small Is Beautiful E. F. Schumacher Economics
Steppenwolf Hermann Hesse Fiction

Start by changing the “output”” part of the program (the first half). Type
these lines:

Then

26 INPUT "AUTHOR"3 A%

28 INPUT "SUBJECT: 5%

29 IF A% = "XX" OR 8% = "XX" THEN 5@
3¢ PRINT #-1, T$s A% 5%

change the ““input’’ part of the program. Type these lines:

9@ INPUT #-1, B%s A%, 5%
10@ PRINT "TITLE :" B%
182 PRINT "AUTHOR :" A%
194 PRINT "SUBJECT :" 5%

Now take advantage of this organization. For exampte, have the program
print a book list on any given subject. Add these lines:

13¢ CLS

1490 INPUT "WHICH SUBJECT"3: C%

15@ PRINT "REWIND THE TAPE - PRESS PLAY"
160 INPUT "PRESS <ENTER> WHEN READY"3 E%
170 CLS: PRINT C% " BOOKS" : PRINT

180 OPEN "I", #-1, "BOOKS"

1990 IF EOF (-1) THEN Z30

2909 INPUT #-1, B$, A%, &%

21@ IF S% = C$ THEN PRINT B%$. A%

220 GOTO 190

230 CLOSE =-1

Run the input part of the program by typing RUN 130 (ENTER. If you choose
“fiction,”” this happens:

WHICH SUBJECT? FICTION
REWIND THE TAPE - PRESS PLAY
PRESS <ENTER* WHEN READY

FICTION BOOKS:

CAT’S CRADLE KURT UONNEGUT
STEPPENWOLF HERMANN HESSE

103

DO-IT-YOURSELF PROGRAM 18-1

Assume you have these checks:

NO. DATE PAYABLE TO ACCOUNT AMOUNT
101 5/13 Safeway food $52.60
102 5/13 Amoco car 32.70
103 5/14 Joe's Cafe food 10.32
104 517 American Airlines vacation 97.50
105 5/19 Holiday Inn vacation 72.30

Write a program that outputs all the checks to tape. Then have it input
them from tape so that you can type one account—such as food—and
the computer will tell you the total amount you've spent on food.

See “Sample Programs”’ in the Appendix for examples of how to store data

on tape.
Learned in Chapter 18
BASIC WORDS BASIC CONCEPT
OPEN data files
CLOSE
PRINT #-1
INPUT #-1
EOF
Notes

104

CHAPTER 19

MANAGING NUMBERS

Have you tried to write programs to handie much information? If so, you'll
be glad to know Color BASIC has an easy-to-manage way to keep track of
information.

Assume, for example, you want to write a program that lets you manage
this information:

ELECTION RESULTS

District Votes for Candidate A

1 143
215

3 125
4 331
5 4472
6 324
7 213
8 115
9 318
10 314
11 223
12 152
13 314
14 92

Up to now, you've used variables to store information in memory. For
example, to store the votes of the first three districts, type:

A = 143 (ENTER
B =215
C = 125 (ENTER

But there’s a better kind of variable you can use. Type:

A(1) = 143 (ENTER
A(2) = 215 (ENTER
A(3) = 125 (ENTER

105

Each of the above variables has a ““subscript’—(1), (2), and (3). Other than
how they use the subscript, these variables work the same as any other
variables. To see for yourself, type both of these lines:

PRINT A3 B3 C <“ENTER>
PRINT AC1)3 AC2)35 A(3) <“ENTER>

Now take a quick look and compare the two programs below. Both work
the same: Program 1 uses ““simple variables’’; Program 2 uses "subscripted
variables.”

PROGRAM 1

1@ DATA 143, 215, 125, 331, 442
20 DATA 324,213,115, 318, 314
3@ DATA 2234+ 152, 314, 92

446 READA:B+»Cs D E

50 READF+GsHs» I J

6@ READKsLsMsN

7@ INPUT "DISTRICT NO. (1-14)"

4

You don’t need to study 75 IF Z2:14 THEN 70
s prograims e = 0l B® IF Z=1 THEN PRINT A "VOTES"
xious to move on. We're just 9@ IF Z=7 THEN PRINT B "YOTES"

showing some benefits of us-

ing subscripted variables. THEN PRINT C "VOTES"

iee IF

"UOTES'
TUATESY

200 IF 3 THEN PRINT
219 IF 4 THEN PRINT
22 GOTO 70

PROGRAM 2

19 DATA 143, 215, 125, 331, 442
20 DATA 324,213,115, 318, 314
39 DATA 223, 152, 314, 92

49 DIMAC14)

50 FORMX=1T0O14

60 READ A(X

7% NEX

80 INPUT "DISTRICTNO(1-14)"5Z
85 IF Z > 14 THEN 8@

899 PRINT A(Z) "UOTES™"

199 GOTO 80

Z=3
11@ IF Z=4 THEN PRINT D "VOTES"
12¢ IF Z2=5 THEN PRINT E "YOTES"
13¢ IF Z2=6 THEN PRINT F "UOTES"
14¢ IF 2=7 THEN PRINT G "VOTES"
159 IF Z2=8 THEN PRINT H "VOTES"
160 IF Z2=9 THEN PRINT I "VOTES"
17¢ IF 2=10 THEN PRINT J "VOTES"
180 IF Z2=11 THEN PRINT K "VOTES"
1990 IF 2=12 '

£=1

Z=1

J
K
THEN PRINT L "UOTES'
M
N

Program 1 is cumbersome to write. Program 2 is short and simple to write.

Actually, this leaves room
for 15 subscripted items

:‘é’:ﬁ)’: yBu Coum 0 s a S0, Line 40 reserves space for a list of information—called an ““array”
; named A—with 14 subscripted items.

Enter and run Program 2. Here’s how it works:

106

. Lines 50 and 70 set up a loop to count from 1 to 14. Line 60 reads all
14 votes into Array A:

¥YOUR COMPUTER 'S MEMORY

143 A(B) — 115
A(Z) — 215 A(9) — 318
A(3) — 125 ACle) — 314
Al4) — 331 AC1l) — 22
A(3) — 442 A(L2) — 152

A(B) — 324 A(13)— 314 o
213 A(1d4) — 92 (b

ine 80 asks you to input a subscript, and Line 90 prints the item you
requested.

Now that you've stored information in an array, it's easy to manage it. For
instance, you can add these lines, which let you change the information:

92 INPUT "DO YOU WANT TO ADD TO THIS" 3 R$
894 IFR%$ = "NO" THEN B0

96 INPUT "HOW MANY MORE VOTES" 3 X

97 A(Z) = A(Z) + X

98 PRINY "TOTAL VOTES FOR DISTRICT" 2 "I8
NOW"™ ACZ)

Or you can add these lines to display the information: The name of the array is A.
The X or Z i .
72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS" ; ,e,-ﬁ,s,Oofhesj,”bs’f,,-'st"f,'}ff:;

o4 of the items.

74 IF 8% = "YEE" THEN GOSUB 112
1@ GOTO 72

11¢ PRINT "DISTRICT" . "VOTES"
120 FOR X =1T0 14

13@ PRINT X+ ACK)

149 NEXT X

150 RETURN

A Second Array

Assume you also want to keep track of a second candidate’s votes—

Candidate B:
ELECTION RESULTS
District Votes for Votes for
Candidate A Candidate B
1 143 678
2 215 514
3 125 430
4 331 475
5 442 302
6 324 520
7 213 613
8 115 694
9 318 420
10 314 518
11 223 370
12 152 472
13 314 460
14 92 502

107

()

This program is a little tough.
Skip it and come back to it
later if it’s slowing you down
too much.

108

To do this, add another array to the program. Call it Array B. The following
program records the votes for Candidate A (Array A) and Candidate B
(Array B):

10 DATA 143, 215, 125, 331, 442 dd’&ﬁ“'
70 DATA 324,213, 114, 318, 314 amaA
30 DATA 223, 152, 314, 92

40 DATAB78, 514, 430, 475, 302
5¢ DATASZ0,B13, 694, 420, 518
6@ DATA 370,412, 460, 502
70 DIMA(14) s B(14)=— Saved Asom)

B0 FORMX=1TO 14

90 READ A (X Jnads A dada
100 NEXT X ﬂ

110 FORX =170 14

120 READ B (¥ Ava.da amaﬂ’Bdﬂ-’a-
130 NEXT ¥

149 INPUT "DISTRICT NO."3 Z

145 IF Z > 14 THEN 140

15@ INPUT "CANDIDATE A OR B"} R$

16@ IF R$ = "A" THEN PRINT A(Z)

170 IF R$ = "B" THEN PRINT B(Z)

180 GOTO 140

DO-IT-YOURSELF PROGRAM 19-1

Write an inventory program that keeps track of 12 items (numbered
1-12) and the quantity you have of each item.

Deal the Cards

To keep track of 52 ““cards,”” you need to use an array. Erase your program
and type and run this one:

49 FOR X =1T0S32
50 C =RND(3Z)

90 PRINTC:

100 NEXT X

The computer deals 52 random “‘cards,”” but if you look closely, you see
that some of the cards are the same.

To make sure the computer deals each card only once, you can build
another array—Array T—that keeps track of each card dealt. Add these
lines:

5 DIMTI(32)

18 FOR X =1T7T0352
20 T(X) =X

30 NEXT X

The above lines build Array T and put all 52 cards init: T(1) = 1, T(2) = 2,
T3) = 3...T(52) = 52.
Then add some lines that ““erase’’ each card in Array T after it's dealt. Type:

6@ IF T(C) =@ THEN 50
80 T(C) =20

Now the computer can’t deal the same random card twice. For example,
assume the computer first deals a two. Line 80 changes T(2)’s value from 2
to 0.

Then assume the computer deals another two. Since T(2) now equals 0,
Line 60 goes back to Line 50 to deal another card.

Run the program. Note how the computer slows down at the end of the
deck. It must try many different cards before it finds one that it hasn’t dealt
yet.

To play a card game, you need to keep track of which cards have been
dealt. You can do this by building another array—Array D. Add these lines,
which store all the cards, in the order they are dealt, in Array D:

7 DIMD(32)
70 D(X) =T(C)
9@ PRINTD(X)3

DO-IT-YOURSELF PROGRAM 19-2

Add lines to the program so that it displays only your “hand”’—the first
5 cards dealt.

Learned in Chapter 19
BASIC WORD BASIC CONCEPT
DIM arrays

Notes

109

CHAPTER 20

MANAGING WORDS

The dollar sign’s the only dif-
ference between these sub-
scripted variables and the
ones in the last chapter.

&=

110

In the last chapter, you used arrays to manage numbers. Here, you'll use
arrays to manage words by editing, updating, and printing an entire essay-

Start with a simple list of words: a shopping list:

1. EGGS 7. TOMATOES
2. BACON 8. BREAD

3. POTATOES 9. MILK

4. SALT 10. CHEESE

5. SUGAR 11. FISH

6. LETTUCE 12. JUICE

Assign each word to a subscripted variable—this time use a subscripted
string variable. For example, for the first three items, type:

84(1) = "EGGS" <ENTER:
84$(2) = "BACON" <ENTERZ>
S$(3) = "POTATOES" <ENTER>

To see how the items are stored, type:
PRINT S$(1) s+ S$(2) s 5%$(3) “ENTER=>

Now build a program that reads these words into an array named S$ and
then displays them:

5 DIM S$(12)
10 DATA EGGS, BACON, POTATOES, SALT

20 DATA SUGAR, LETTUCE, TOMATOES, BREAD
30 DATA MILK, CHEESE, FISH,» JUICE

40 FOR ¥ = 1 TO 12 :

50 READ 5% (¥ }MOJA WAﬁS’t'
B0 NEXT %

70 PRINT "SHOPPING LIST:"

B0 FOR ¥ = 1 TO 12

0 - FRINT Zil SR ‘}P/u"d WS”‘

100 NEXT X

L XK

DO-IT-YOURSELF PROGRAM 20-1

Add some lines to the above program so that you can change any item
on this list.

DO-IT YOURSELF PROGRAM 20-2
Here is a program that uses an array to write song lyrics.

5 DIM As(4)

1@ PRINT "TYPE 4 LINES"
20 FOR X =1 70 4

30 INPUT A$(X)

40 NEXT X

5@ CLS

6@ PRINT "THIS IS YOUR SONG:"
70 PRINT

80 FOR X =1 T0 4

9@ PRINT X§ " "3 A$(X

10@ NEXT X

Add some lines so that you can revise any line.

Writing an Essay
(... A Novel, Term Paper...)

Now that you've learned how to use string arrays, it will be easy to write a
program that stores and edits what you type. Type this program:

1 CLEAR 1000

5 DIM A%(5@)

1@ PRINT "TYPE A PARAGRAPH"

2 PRINT "PRESS «/: WHEN FINISHED"

30 X = 1

40 A% = INKEY$

5¢ IF A$ = "" THEN 40

6@ PRINT A%$;

70 IF A$ = "/" THEN 110

B0 A%(X) = A$(X) + A%

90 IF A% = "." THEN X = X + 1
100 GOTO 40

110 CLS

120 PRINT "YOUR PARAGRAPH:"
130 PRINT

149 FOR ¥ = 1 TO X
150 PRINT A$(Y)3
16@ NEXT Y

Want to compose music?
Look up ““Music Composer’’
in the ““Sample Programs”
appendix.

Haven't heard of word pro-
cessing? It's a kind of pro-
gram that lets you type and
store information, make
changes to it, and print it out
on demand.

&

Need a refresher on some of
this? CLEAR is in Chapter 8
and INKEY$ isin Chapter 11.

&)

111

112

Run the program. To see how each sentence is stored, type these lines:

PRINT A% (1) (ENTER
PRINT A$(2)
PRINT A%$(3)

Here’s how the program works:
Line 1 clears plenty of string space.

Line 5 saves room for an array named A$ that may have up to 50 sentences.

Line 30 makes X equal to 1. X will be used to label all the sentences.

Line 40 checks to see which key you are pressing. If it is nothing (“ ”’), Line
50 sends the computer back to Line 40.

Line 60 prints the key you pressed.

Line 70 sends the computer to the lines that print your paragraph when you
press the /"’ key.

Line 80 builds a string and labels it with number X. X is equal to 1 until you
press a period (.). Then Line 80 makes X equal to X + 1.

For example, if the first letter you press is “R,”
A$(1) EQUALS “R".
If the second letter you press is “O”,

A$(1) EQUALS A$(1) - WHICH IS “R” + “O"”
OR
IIRO!I.

Assume that when A$(1) equals ROSES ARE RED, you press a period. A$(1)
then equals the entire sentence: ROSES ARE RED. The next letter you press
is in A$(2).

Lines 140—160 print your paragraph.

DO-IT-YOURSELF CHALLENGER PROGRAM 20-3

Here's a tough one (but it can be done!) for those intrigued with word
processing. Change the above program so that you can:

1. Print any sentence
2. Revise any sentence

You may need to review the challenger program in Chapter 12. Our
answer’s in the back.

Using the Printer

If you have a printer, connect it now by plugging it into the jack marked
SERIAL I/O. Turn on the printer and insert paper. The manual that comes
with the printer shows how.

Ready? Type this short program:

10 INPUT A%
20 PRINT # - 2, A%

Now type:
LLIST (ENTER
If your program doesn’t list on the printer, be sure the printer is on,
“on-line,”” and connected to your keyboard. Thentype LLIST <ENTER *
again. .
Run the program and watch the printer work. PRINT # - 2, tells the
computer to print, not on the screen, but on device # - 2, which is the
printer. Be sure to type a comma after the -2, or you get a syntax error. R R

Press the SHIFD and (@) (zero) keys simultaneously and release them so ?/,5 mOd?’? Read the end of
that the letters you type appear in reversed colors on your screen (green apel b

with a black background). You are now in an upper- lowercase mode. The <:—")

reversed colored letters are actually lowercase (noncapitalized) letters.

To type a capital letter, use the (SHIFT) key as you do with a typewriter. It All the letters in RUN should

appears in regular colors. appear in regular (not re-
versed) colors.

Run the program, using the (SHIFT) key so that the word RUN is capital- :] ’

ized. Input a sentence with both upper- and lowercase letters. Type:
MY PRINTER PRINTS LOWERCASE LETTERS (ENTER

DO-IT-YOURSELF PROGRAM 20-4

Look at the “Writing an Essay”’ program earlier in this chapter. Change
Lines 140-160 so that the paragraph prints on the printer rather than
the screen.

Learned in Chapter 20
BASIC WORDS BASIC CONCEPT

LLIST string arrays
PRINT # - 2

Notes

113

CHAPTER 21

SORTING

()

You can easily make the
computer alphabetize more
words by changing the 5 to
say, 100, in Lines 10, 20, 70,
and 90.

114

Any file clerk knows it’s easier to find information that's sorted alphabeti-
cally. Type this program and run it, until you're convinced the computer
can alphabetize:

INPUT "TYPE TWO WORDS" i A%, B%

IF A%$ < B$ THEN PRINT A$ " COMES BEFORE " B$%
IF A%$ > B$ THEN PRINT A% " COMES AFTER " B%
IF A% = B$ THEN PRINT "BOTH WORDS ARE THE
SAME"

GOTO 12

With strings, the greater than (>), less than (<), and equal (=) signs have a
new meaning. They tell which of two strings comes before the other in
alphabetical sequence:

< precedes alphabetically
<= precedes or is the same alphabetically
> follows alphabetically
>=follows or is the same alphabetically
= is the same
“\ L
=) =
- '[E% >
»
' 4 g — -
— ‘ =
= ‘ El |_.; o
o |~ ~F
° — , . ° u
=7 - g
- Eecpe)
= / p——4) LS4 | _—

Since the computer can alphabetize, it's easy to write a sorting program.
Type and run this program, which sorts 5 words:

10
20

DIMA%(S)
FORI=1T0S5
INPUT "TYPE A WORD" 3 A% (1)
NEXT I
X=0
K=X+1
IF X » 5 THEN GOTO 7@
IF A%$(X)="ZZ" THEN 62
FORY =1TO0OS
IF AS(Y) <« A$(X) THEN X = Y

NEXT ¥
PRINT A% (X
As(X)="Z2"
GOTO 5@

To see how the program works, delete Line 120 and add the following
lines. (These lines only show what the program does—they have nothing to
do with sorting.)

120

3 CLS

45 CLS

g5 UVU=VU+1

105 PRINT @ 15+32%(V-1) s A% (X)

135 GOSUB 500

500 FORI=1TOS

51@ PRINT @ @+3Z2%(I-1)A%(I) 3" B
520 NEXTI

532 RETURN

Run the program. Too fast? Type this line. It slows down the program so
you can see what’s happening:

107 FORT=1TOGO@: NEXTT
Now run the program again. Input these words and watch carefully:

MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

Look at Column 2. See how the first name changes from Michael to Dylan
to Alexia. Next, notice what happens to Alexia in the first column. Alexia
becomes ZZ.

This illustrates how the program sorts the first and second words:

FIRST WORD
MICHAEL MICHAEL MICHAEL MICHAEL MICHAEL MICHAEL

TRAVIS TRAVIS TRAVIS

DYLAN DYLAN DYLAN

ALEXIA ALEXIA ALEXIA

SUSAN SUSAN SUSAN

MICHAEL DYLAN MICHAEL ALEXIA MICHAEL ALEXIA
TRAVIS TRAVIS TRAVIS

DYLAN DYLAN DYLAN

ALEXIA ALEXIA ZZ

SUSAN SUSAN SUSAN

SECOND WORD

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA
TRAVIS MICHAEL TRAVIS MICHAEL TRAVIS MICHAEL
DYLAN DYLAN DYLAN

22 2 Z2Z

SUSAN SUSAN SUSAN

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA
TRAVIS DYLAN TRAVIS DYLAN TRAVIS DYLAN
DYLAN DYLAN ZZ

ZZ 22 ZZ

SUSAN SUSAN SUSAN

115

116

Here’s how the program works:
Lines 50 and 60 set X’s value. At the start, X is 1.

Then Lines 90—110 compare A$(X)—Michael—with every other name in
Array A$ until a word is reached that precedes Michael—Dylan.

Line 100 then makes A$(X) equal to Dylan’s place in the array: A$(3).
When Dylan is compared with the fourth word—Alexia—A$(X) becomes
A$(4).

When all the words have been compared with one another, Line 120
displays the first sorted word: Alexia. Line 130 changes Alexia’s position—
A$(4)—to ZZ.

At this point, Lines 50 and 60 make X equal 1 again. A$(X)—Michael—is
compared with other names in the array to find the second sorted word.

When Michael’s place in the array becomes ZZ, Line 60 sets X to 2. Then,
A$(X)—which is now Travis—is compared with all the names in the array
to find the next sorted word.

When the array’s values are all changed to ZZ, Line 70 ends the program.

DO-IT-YOURSELF PROGRAM 21-1

Using this sort routine, change the program from the last chapter so
that it alphabetizes your books by title, author, or subject.

This chapter shows a simple way to sort. If you need to sort many items,
you may want to research faster sorting methods (such as the bubble sort).

Learned in Chapter 21
BASIC SYMBOLS

5
AV

CHAPTER 22
ANALYZING

If you have more than 4K RAM, you have an easy way to analyze informa-
tion. By giving each item more than one subscript, you can see it through
different dimensions.

Take the voting program from Chapter 19. Here’s the information. (We're
using only the first three districts to make the program simple.)

ELECTION POLL

District Votes for Votes for
Candidate 1 Candidate 2
1 143 678
2 215 514
3 125 430

In Chapter 19, you stored the above “items’ (groups of votes) in two
one-dimensional arrays: Arrays A and B. In this chapter, you'll store them
in one easy-to-manage two-dimensional array: Array V.

D\

The following program puts the items in Array V.
3 DIM V(3:2)

1@ DATA 143, G678+ 215 514, 125, 430
20 FOR D = 1 TO 3

30 FOR C =1 TO Z

49 READ V(D.:C)

3@ NEXT C

6@ NEXT D

70 INPUT "DISTRICT NO. (1-3)"35 D

82 IF D 1 OR D *» 3 THEN 7@

99 INPUT "CANDIDATE NO. (1-2)"35 C
iee IF C @ OR C > 2 THEN 90

116 PRINT W(D,C)
120 GOTOD 70

Type and run the program. Notice that each item is labeled by two
subscripts.

We’re only using three dis-
tricts to keep it simple.

We're calling them Candi-
dates 1 and 2 this time rather
than Candidates A and B.

&b

117

Remember how to delete
lines? 70 (ENTER) Deletes
Line 70.

If you are truly an analytical
type, you're going to love
the rest of this chapter. If
you're definitely NOT that
type, skip it!

118

Here’s how the program works:

Line 5 reserves space in memory for Array V. Each item in Array V can have
two subscripts: the first, no higher than 3; the second, no higher than 2.

Lines 20—-60 read all the votes into Array V, giving them each two
subscripts:

. The first subscript is the district (Districts 1-3).
. The second subscript is the candidate (Candidates 1-2).
YOUR COMPUTER S MEMDRY
Ul ,1)—143 U(1,2)—678

V(241)—2135 U(242)—514

Y(3,1)—123 Y(34+2)—430

Forexample, 678 is labeled V(1,2). This means 678 is from District 1 andis
for Candidate 2.

With all the votes in a two-dimensionai array, it's simple to analyze
them—in two dimensions. By adding these lines, for example, you can
print all the votes in two ways: by district and by candidate.

(Delete Lines 70-120 first.)

70 INPUT "TY¥PE <« 1 » FOR DISTRICT OR
. 2 » FOR CANDIDATE"F R

89 IF R « 1 OR R *» 2 THEN 7@

190 ON R GOSUB 1000, 2000

119 GOTO 7@

1909 INPUT "DISTRICT NO(1-3)"3 D

igte IF D < 1 OR D 3 THEN 100¢

1215 CLS

10290 PRINT @ 132, "WOTES FROM DISTRICT" D
1838 PRINT

140 FOR C = 1 TO Z

1@5¢ PRINT "CANDIDATE" C.

186@ PRINT W(D,C)

1078 NEXT C

1080@ RETURN

2000 INPUT "CANDIDATE NOC1-2)"3 C

2e1o IF C 1 OrR C 2 THEN ZQoo

2015 CLS

29020 PRINT @ 132, "VYOTES FOR CANDIDATE" C
203@ PRINT

2049 FOR D = 1 TO 3

2050 PRINT "DISTRICT" D
2060 PRINT W(D,C)

2070 NEXT D

208® RETURN

The Third Dimension

You can continue with as many dimensions as you want. You're limited
only by how much information you can fit into the computer’s memory.

Add a third dimension to Array V: interest groups. Here’s the information:

VOTES FROM INTEREST GROUP 1

Candidate 1 Candidate 2
District 1 143 678
District 2 215 514
District 3 125 430
VOTES FROM INTEREST GROUP 2
Candidate 1 Candidate 2
District 1 525 54
District 2 318 157
District 3 254 200
VOTES FROM INTEREST GROUP 3
Candidate 1 Candidate 2
District 1 400 119
District 2 124 300
District 3 75 419

To get all thjs into your computer’s memory, erase your program and type:

S DIM Y(3:3:2)

18 DATA 143, 678+ 215, 514, 125, 430
20 DATA 525, 54, 3184 157, 254, 200
3¢ DATA 400, 119, 124, 300, 75, 418

49 FOR G = 1 TO 3
5S¢ FOR D =1 TO 3
6@ FOR C = 1 TO Z

7% READ V(G,D,C)

8@ NEXT C

90 NEXT D

10@ NEXT G

11 INPUT "INTEREST GROUP NO (1-3)"3 G
1206 IF G < 1 OR G > 3 THEN 110
130 INPUT "DISTRICT NO. (1-3)i D
140 IF D < 1 OR D > 3 THEN 130
150 INPUT "CANDIDTE NO. (1-2)"35 C
160 IF C < 1 OR C » 2 THEN 150
178 PRINT U(G,D,C)

180 GOTO 11@

Run the program and test the subscripts. Lines 40-100 read all the votes
into Array V, giving them each three subscripts:

. The first subscript is the interest group (Interest Groups 1-3).
. The second subscript is the district (Districts 1-3).

. The third subscript is the candidate (Candidates 1-2).
YOUR COMPUTER S MEMORY

U(ls14+1) 143 U(14+142)—=0678
U(142+1) 215 U(142,2)=514

W(1:3+1)—=125 W(14+3+2)>430
V(2,1,1)—+3525 Y(2,142)=354
U(24+2,1)—-318 V(24242)= 137
U(2+3:1) 254 U(2493:2)—+ 200
U(3:1+1)—>4d00 V(3:1,2)—+119

V(342,2)—300
V(3:3+2)—418

V(342:1)—=124
W(3:3:1)>70

For example, 678 is now labeled V(1,1,2). This means 678 is from Interest
Group 1, is from District 1, and is for Candidate 2.

To take advantage of all three dimensions, delete Lines 110-180 and type:

110 PRINT: PRINT "TYPE <1> FOR GROUP"

12¢ PRINT "<2> FOR DISTRICT OR <3> FOR
CANDIDATE"

130 P = 224 : INPUT R

1490- ON R GOSUB 1000,2000,3000

150 GOTO 110

1i9@@ INPUT "GROUP(1-3)"3i G
191@ IF G<1 OR G>3 THEN 10090
1920 CLS
10390 PRINT
1049 PRINT
1050 PRINT

192, "VDOTES FROM GROUP" G
168+ "CAND. 1"
176+ "CAND. 2"

1060 FOR D 1 T0 3
1070 PRINT Py "DIST." D
1988 FOR C 1 70 2

I m®mlEEE

110 PRINT P + 8%C»y V(G,DHC) 3
11186 NEXT C

1126 P = P + 32

1130 NEXT D

1149 RETURN

2000 INPUT "DISTRICT(1-3)"3i D
2019 IF D<1 OR D>3 THEN Z000
2020 CLS

2039 PRINT @ 102, "VYOTES FROM DIST." D
2040 PRINT @ 168, "CAND. 1"
2050 PRINT @ 176+ "CAND., 2"
2060 FOR G = 1 TO 3 '
2070 PRINT @ P, "GROUP" G
2080 FOR C = 1 7O 2
@

2100 PRINT P + B*C,V(G,DsC) 3
2118 NEXT C

2128 P = P + 32

2130 NEXT G

2140 RETURN

3000 INPUT "CANDIDATE(1-2)"35 C
3919 IF C<1 OR C:Z THEN 3000
3020 CLS

12, "VOTES FOR CAND." C
168+ "DIST. 1"
1764 "DIST. 2"
184, "DIST., 3"

3030 PRINT
3040 PRINT
3050 PRINT
3060 PRINT

M1 mI R[RE@

3070 FOR G 1 TO 3

3080 PRINT Py "GROUP" G

30890 FOR D 1 70 3

3100 PRINT P + B#Ds V(GsDC) 3

3110 NEXT D
3120 P = P + 32
3130 NEXT G
3140 RETURN

120

Run the program. You can now get three perspectives on the information.

DO-IT-YOURSELF PROGRAM 22-1

Write a program to deal the cards using a two-dimensional array.
Make the first dimension the card’s suit (1-4) and the second dimen-
sion the card’s value (1-13).

Learned in Chapter 22
BASIC CONCEPT

Multidimensional arrays

Notes

121

SECTION IV

A LITTLE BYTE OF
EVERYTHING

This section is for people who wantto access the full power of the Color Computer.
It assumes some knowledge in machine-language programming.

If you're technical, jump right in! If not, be forewarned. You'll have to be extra
careful typing the sample programs. Then triple-check them against our program
listings before running them. If your program contains typing errors, you'll probably
have to reset the computer to regain control.

The results of your labors will be impressive. Part A shows how to create high-
resolution graphics on your screen. Part B shows how to access the Color Computer
hardware directly by calling machine-language routines.

PART A

HIGH-RESOLUTION
GRAPHICS

CONTENTS OF THIS PART

INTRODUCTION

SAMPLE PROGRAMS (3)

A FEW DEFINITIONS

PREPARING THE COLOR COMPUTER FOR GRAPHICS
PUTTING GRAPHICS TO WORK

TABLES:
DESCRIPTION OF THE GRAPHICS MODES AVAILABLE
DISPLAY MODE SELECTION
VIDEO RAM PAGE SECTION
DETAILED DESCRIPTION OF THE GRAPHICS MODES

HwWhN =

INTRODUCTION

The Color Computer has many graphics capabilities that you cannot access using
the ordinary statements of Color BASIC. However, with the special memory
functions PEEK and POKE, you can use and experiment with many of these
powerful features. It does take some extra work on your part, but the results can be
impressive. In this part we're going to demonstrate how you activate and use these
graphics features.

Note: In Extended Color BASIC, many of the graphics capabilities are quite simple
to use. That's one of the main attractions of Extended Color BASIC. However, even
if you have Extended BASIC, you may find this part interesting. Some of the graphics
modes described may only be used via the techniques presented in this part.

First, we'll list two Color BASIC programs that demonstrate how to select and use a
graphics mode. The first runs on 4K or 16K RAM systems; the second, on 16K only.
We've also included a general-purpose program that you can modify to select any
graphics mode (it'll be up to you to put the graphics to use).

After you've tried the programs, you'll be ready for an explanation of how they
work. We'll start with a few definitions you'll need. Then we'll go over the steps
required to put the computer into any graphics mode. These steps aren’t meant to
be followed one at a time; they should be put into your BASIC program and then
executed in succession.

Finally, we'll suggest a few ways you can put graphics to work.

SAMPLE PROGRAMS

PROGRAM #1: 64 x 64 GRAPHICS MODE FOR 4K OR 16K RAM SYSTEMS

This program makes Color Computer act like a drawing board with a 64 x 64 grid.
You may choose between two sets of four colors:

Color# Set 0 Set 1
0 Green Buff
1 Yellow Cyan
2 Blue Magenta
3 Red Orange

Type in the program. Be sure to omit all remarks (lines or a portion of a line
beginning with an apostrophe). Also delete all spaces before and after punctua-
tion marks and arithmetic operators (., ; : + —/*><=). You must have at least

124

335 bytes (characters) remaining in memory to run the program. You can check this

by having the computer
program carefully. Then

PRINT MEM after the program is typed in. Check the
run it.

After a few seconds, a block appears in the middle of the screer. You may move the
block, drawing a line in any of four colors; you may switch color sets; and you may
stop the line. Here is a list of the keys that control the drawing board:

teeuwslUes

BAR

SCCle

Direction of motion:

North (up)
South

West

East
Northwest
Northeast
Southwest
Southeast
Stops motion

Four-Color Set:

Color 1

Color 2

Color 3

Color 0 (background color)
Change to other four-color set

To return to BASIC’s normal text screen, press the RESET button.

18 'RESERVE 1K

20 CLEAR 1@:307

39 ‘SET VIDRAM

49 FOR I = @ TO
@: NEXT

50 DATA ©0,1,1,0

PROGRAM #1 LISTING

1
= 3072
G: READ DT: POKE 65478 + I*Z + DT

1D 400

60 ‘SELECT VDG MODE GIC

70 FOR I = @ TO
@: NEXT
80 DATA 1:0:0

2: READ DT: POKE BS547Z + I*2 + DT»

99 ‘SET UP VIDEO CONTROL REG.

10 POKE 63314,
11@ ‘CLEAR VIDR
126 FORI = 307Z
130 ‘BEGIN MAIN
149 ‘MPC) I8 A
15@¢ ' TO0 BE US
166 DIM MP(3):
170 DATA 1.4416
186 CC = 3: CS
SELECT
19¢ X = 31: Y =
AND INCREME
200 ‘SET UP KEY

210 U$ = "A": D
CHR$(9)

220 NW$ = "Q";:

230 CO% = "@":

249 'CHECK FOR
250 A% = INKEYS$

260 IF A% = U$
270 IF A% = D%
280 IF A% = W%
290 IF A% = ES
300 IF A% = NW$
310 IF A% = NE$
20 IF A% = SW%
330 IF A% = SE%
34 ‘CHANGE COL

135
AM

TO 4095: POKE I.,0: NEXT
PROGRAM

LIST OF POWERS OF 4
ED BY THE MAPPING FUNCTION
FORI = @ TO 3: READ MP(I): NEXT

164

= ¢ ‘CC = COLORs CS = COLOR SET

31: I = @: YI = @ ‘STARTING POINT
NT

BOARD TABLE

$ = CHR$(10): W$ = CHR$(8): E$ =
NE$ = "W": SW$ = "A": SE$ = "§"
Ci$ = "i": C2% = "2"; C3% = 3"

KEYBOARD CHARACTER

THEN ¥I = -1: XI = @: GOTO 400
THEN ¥I = 1: XI = @: GOTO 400
THEN XI = -1: ¥YI = @ GOTO 400
THEN XI = 1: ¥I = @: GOTO 400
THEN XI = -1: YI = -1: GOTO 4e9
THEN XI = 1: ¥I = -1: GOTO 400
THEN XI = -1: YI = 1: GOTO 409
THEN ¥I = 1: ¥I = 1: GOTO 400

ORS IF ©-3 WAS PRESSED

125

126

350 IF CO0% < = A% AND A% < = C3% THEN CC = ASC(A%$)
- 48: GOTO 400
360 ‘CHANGE COLOR SET IF "/" WAS PRESSED

370 IF A% = "/" THEN CS = (NOT CS AND 8) OR (CS AND
NOT 8): POKE B5314,+135 + CS: GOTO 400
380 IF A% = CHR$(32) THEN XI = @: YI = @ ‘STOP

DRAWING IF <8PC:> WAS PRESSED
399 ‘GET NEW (X,Y) POSITION
400 ¥ = X + XI: Y = ¥ + YI: IF X < @ THEN X = 0
419 IF ¥ * B3 THEN X = B3
429 IF Y < @ THEN Y = @
43¢ IF Y » B3 THEN ¥ = B3

a4 ¢ PLOT THE (X¥) POINT

459 X1 = INT(X/4): OF = X1 + Y#1B: BYTE = 3072 + OF
7 46@ MODA=INT(X-X1%4):BIT=3-xXMOD4

4790 X3 = MP(BIT)*CC: X4 = MP(BIT)*3

489 O0OL = PEEK(BYTE)

499 TE = (255 AND NOT X4) OR (-256 AND X4): NU =

RN

(TE AND OL) OR X
50® POKE BYTE.» NU
51@ GOTD 230

Note for Extended BASIC Users: The 64 x 64 mode is not available in Extended
BASIC; however, this program will get it for you. First, however, make these
changes in the program:

20 CLEAR 10, 135359

30 ‘SET WIDRAM = 153G@

50 DATA @s1+14+14+1,0,40

120 FOR I = 1536® TO 1638B3: POKE Is @: NEXT

459 X1 = INT(X/4): DF = X1 + Y#*1B6: BYTE = 1
OF

¢

PROGRAM #2: 235 x 192 GRAPHICS FOR 16K RAM SYSTEMS

This program shows the highest resolution available on Color Computer. Because it
requires 6144 bytes of RAM for the graphics screen, it will not run on a 4K RAM
system.

The program draws lines on the screen. You type in (X,Y) coordinates for the starting
and ‘ending points, then the program goes into the graphics mode and draws the
points. You can then press any key, and the program will ask you for another pair of
coordinates.

Type in the program. BE SURE TO OMIT ALL REMARKS (STATEMENTS BEGIN-
NING WITH AN APOSTROPHE). Check the program carefully. Then run it. There
will be a one-minute delay before you see the program begin.

If you interrupt the program while it is in the graphics mode, you will need to reset
the computer to get back in the normal mode.

PROGRAM LISTING

18 ‘RESERVE BK

20 CLEAR 10,10238

30 ‘SET START AND END OF VIDEO RAM

49 UVIDRAM = 1024@:VND = 16383

5¢ PSEL = 65478 ‘START OF PAGE SELECT REG.

6@ VDG = 65472 'START OF UDG REG.

70 WYCTRL = 65314 'VIDEO CONTROL REG.,

8@ ‘X(@) AND Y(@) WILL BE COORDINATES OF START POINT
99 'M$(@) AND M$(1) WILL BE MESSAGES

100 DIMX(1) ¥ (1) sM$(1)

11@ ‘PHC) AND WH() CONTAIN HI-RES, BIT PATTERN
120 “PAC) AND VA() CONTAIN TEXT BIT PATTERN
13@ 'TWOC) CONTAINS ALIST OF POWERS OF 2

148 DIMPH(G) +PA(B) +UH(Z) »VA(Z) »TWOC(T)

150 FORI =@ TOGB: READ PH(I) :NEXT

160 DATA@+@4+1:+04+14+0,0

170 FORI =9 TOG: READ PA(I): NEXT

180
190
200
210
22

230
240
250
260
270
280
290
300
310
320
330
340
350
36@

370
380
390
a0@
410

420
430

440

4590
4Go
470
a8e
490
500
510
520
525
530
540
550
560

370
580
585
590
6o
610
G20
630
Gde
G5@
GG®
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820

DATA @11 4+0+0+0:0:0
FORI =0 TD 2: READ VH(I): NEX
DATA @141
FORI=0TD 2: READ VA(I): NEXT
DATA @400
READ CH ‘HI-RES BIT MASK FOR VID.CTRL. REG.
DATA 240
READ CA ‘TEXT BIT MASK FOR VID.CTRL. REG.,
DATA @
FOR I =@ TO 7: READ TWO(I): NEXT
DATA 1+2+44+8,+16+32:64,128
GOSUB 89® ‘CLEAR OUT VIDRAM
‘MAIN PROGRAM
M&(@) = "FIRST": M$(1) = "SECOND"
FORI =@ TO 1
PRINT "ENTER "§ M$(I)35 " X AND Y"
PRINT "@ < = ¥ < =255,0+ =Y < =191"
INPUT X(I) s ¥Y(I)
IF ¥(I) < @0OR X(I) *» 255 0R Y(I) < @0RY(I) > 191
THEN 34@
NEXT
GOSUB 629 ‘GO INTO GRAPHICS
‘DX +DY CONTAIN XY DISPLACEMENTS
‘S¥+8Y CONTAIN DIRECTION OF THE LINE
Moz (1) - X(@): DY =¥(1) - ¥(@): 8X = SGN(DX): SY
= SGN(DY)
‘USE EQUATION Y = SLOPE * X + B
‘SL = SLOPE OF LINE: B = OFFSET FROM X-AXIS
IF DX = @ THEN 550 ‘SPECIAL CASE FOR VERTICAL LINES
SL =DY/DX: B =Y¥(0) - 5L * X(0)
T=56L#*SL+ 1: GOSUB 930 'GET SQR(T)
NX¥ =1/T1 % S¥ ‘NX IS5 INCREMENT FOR X
FOR XT=X(@) TO X(1) STEP NX
¥ = INT(XT + +.5)
Y = INT(SL #* XT +B + .5)
GOSUB 830
NEXT
A% = INKEY$: IF A$ = "" THEN 325
GOSUB 630 ‘GO INTO TEXT
GOTO 320 ‘GET NEXT PAIR OF POINTS
Ho= %)
FORY = Y(@) TOY(1) STEP SY ‘DRAW VERTICAL LINE
THRU X (@) .
GOSUB 830
NEXT
IF INKEY$="" THEN 585
GOSUB 530 : GOTO 320
‘END OF MAIN PROGRAM
‘SUBRTNS TO SELECT GGR AND TEXT
GOSUB 659 : GOSUB 79® : GOSUB 750 : RETURN
GOSUB 67@ : GOSUB 720 : GOSUB 77@ : RETURN
"PAGE-SELECT SUBRTNS
FORI = @ TOG: POKE PSEL + I *# 2 + PH(I) »@: NEXT
RETURN
FORI = @ TOG: POKE PSEL + I # 2 + PA(I) +@: NEXT
RETURN
‘UDG SELECT SUBRTNS
FORI =@ TO 2: POKEUWDG + I * 2 + UH(L) +@: NEXT
RETURN
FORI =@ TO Z2: POKE UDG + I * 2 + UA(I) »@: NEXT
RETURN
‘SUBRTNS TO SET UP VIDEO CONTROL REG,
POKE VCTRL + CH OR (PEEK(YCTRL) AND 7)
RETURN
POKE WCTRL » CA OR (PEEK(VCTRL) AND 7)
RETURN
'SUBRTN TO CLEAR OUT VIDED RAM
FOR I = VIDRAM TO UND:POKE I :@: NEXT
RETURN
‘MAPPING FUNCTION

127

128

830 X1 = INT(X/8)

840 OF = ¥1 + Y % 32: BYTE = VIDRAM + OF
850 XMODB = INT(X - X1 % 8)

860 BIT =7 - XMODB

870 VLU =TWO(BIT)

880 OLD = PEEK(BYTE)

89@ MASK = VLU OR OLD
909 POKE BYTE sMASK
919 RETURN

920 ‘SQR(X) SUBRTN
930 IF T+« =@ THENT1 = @: RETURN
940 T1=T#* ,5:T2=20
95¢ T3 =(T/T1-T1)
96® IF (T3 =@) OR (T3
970 T1=T1+T3:T2Z-=

+ 5
= T2) THEN RETURN
T3: GOTO 950

Note: This entire program can be duplicated using the LINE statement of Extended
BASIC. However, if you wish to use it for experimentation, it will run without
modification under 16K Extended BASIC.

PROGRAM #3: GENERAL-PURPOSE SUBROUTINES

You may use these subroutines to select any graphics mode (subject to the RAM
limitations of your computer and the requirements of your main program). You
supply the main program to write information onto the graphics screen. You also
provide the correct values for Lines 20 and 40.

Later in this section, we provide hints on designing your main program (Putting
Graphics to Work).

PROGRAM LISTING

10 'RESERVE RAM FOR GRAPHICS

20 'CLEAR STRINGSPACE » MEMEND

30 ‘SET START AND END OF VIDED RAM

40 ‘UIDRAM = MEMEND + 1: UND = 4995 OR 16383

o0 PSEL = 65478 ‘START OF PAGE SELECT REG.

6o UDG = 65472 'START OF VDG REG.

70 UCTRL = 65314 'VIDEO CONTROL REG.

100 DIM X(1), ¥Y(1) M$(1)

11@ ‘PH() AND VH() CONTAIN THE GRAPHICS BIT PATTERN

120 ‘PA() AND YA() CONTAIN THE NORMAL (TEXT) BIT
PATTERN

149 DIMPH(G) s PA(G) » UH(Z2) » VA(Z)

150 FORI =@ TO6G: READ PH(I): NEXT

1B@ ‘DATA XX oX 43X sX+¥ s (PAGE-SELECT BIT PATTERN)

170 FOR I =@ TOG: READ PA(I): NEXT ‘READ NORMAL P-5
BIT PATTERN

180 DATAD@+1:0,:0,0,040

190 FORI =@ T0 2: READ VH(I): NEXT

20 'DATA XXX (GRAPHICS BIT PATTERN FOR VDG)

21 FORI =9 70 2: READ VA(I): NEXT “NORMAL VDGBIT
PATTERN

22 DATA 04+ 4+0

230 READ CH ‘GRAPHICS BIT MASK FOR VID.CTRL. REG,

240 ‘DATA XXX (VIDEO CONTROL WALUE)

2?59 READCA ‘TEXTBIT MASK FOR VID.CTRL. REG.

260 DATA @

299 GOSUB 809 '‘CLEAR OUT VIDRAM

300

310 ‘YOUR MAIN PROGRAM GOES HERE
3z0

599 ‘END MAIN PROGRAM .

oo

61@ ‘SUBRTNS TO SELECT GRAPHICS AND TEXT
620® GOSUB G5¢ : GOSUB 70@ : GOSUB 75@ : RETURN
63® GOSUB G7@ : GOSUB 720 : GOSUB 77@ : RETURN

G40 ‘PAGE-SELECT SUBRTNS
650 FORI =@ TOG: POKE PSEL + I * 2 + PH(I) »@: NEXT
B6@ RETURN

670 FORI =@ TOG: POKE PSEL + I % 2 + PA(I) s@: NEXT
680 RETURN

9% ‘UDG SELECT SUBRTNS

700 FORI =@ TO2: POKEUDG + I % 2 + UH(I) ,@: NEXT
71@ RETURN

720 FORI =@ TO2: POKEUDG + I % 2 + UA(CI) »@: NEXT
73@ RETURN

742 ‘SUBRTNS TO SET UP VIDED CONTROL REG.

750 POKE VCTRL » CH OR (PEEK (UCTRL) AND 7)

76@ RETURN

770 POKE VCTRL + CA OR (PEEK (VCTRL) AND 7)

780 RETURN . '

790 ‘SUBRTN TO CLEAR OUT VIDEO RAM

800 FORI = VIDRAM TO UND: POKE I+@: NEXT

81@ RETURN

A FEW DEFINITIONS

GRAPHICS

Graphics is a video mode of the computer in which you can set or reset blocks or
points called ““pixels.”” For each pixel, you may choose from 2, 4, or 8 colors,
depending on the particular mode. selected. By setting various combinations of
pixels, you can generate lines, geometric figures, pictures, and so on.

RESOLUTION

The pixel density (how many pixels to a screen) determines the degree of resolu-
tion. Depending on the graphics mode, the screen may contain from 2048 (SET/
RESET) to 49152 (G6R) pixels. The higher the resolution, the finer the lines and the
more detailed the pictures.

To see the importance of resolution, look at these two diagonal lines. The resolution
of Line B is 4 times as fine as that of line A.

111 1

-

11

111
111

Line A. Line B.
Low Resolution High Resolution

RAM, BYTES, AND BITS

RAM is divided into individually addressed locations called ““bytes.” The addresses
in RAM run from 0 to 4095 or 16383, depending on whether you have a 4K or 16K
RAM system. Each address references one byte.

RAM is ““Random Access Memory.”” This is the area where your computer stores
programs and data. The computer also uses RAM to store internal values. RAM is
erased when you turn off the computer.

One byte consists of 8 on/off switches called “bits.” Here is one byte:

Bit # 7 65 4 3 2 10

129

130

Suppose you want to set (set to 1) bit 7 in byte #4000, without changing any of the
other bits. You simply OR the current contents of #4000 with the binary value
10000000, which is equivalent to decimal 128:

NB = PEEK(4000) OR 128

Since bit 7 is setin the value 128, bit 7 will always be set as a result of the operation.
The other bits in the result will be the same as those in address #4000.

VIDEO RAM

When you output to the screen, the information is actually stored in a portion of
decimal 0 to 255. (See a math or computer science text for a discussion of binary
numbering.)

PEEK AND POKE

These BASIC words let you examine (PEEK) or change (POKE) the contents of
memory. Just for review, here is the syntax for each command. The syntax is the
way the command should be put together. For an example, with POKE you should
first specify the address, then the value.

PEEK(address)
POKE address, value

PEEK is a function. This means it cannot stand alone in a BASIC program, but must
be used in a statement such as:

OLD = PEEK (BYTE)

OLD will be given the contents of address BYTE.

POKE can stand alone. It stores the value specified in the address specified.
POKE BYTE » NU

The address specified by BYTE will be given the value NU.

BITS AND BOOLEAN ALGEBRA

In the graphics modes, one or two bits may control the color or on/off status of a
pixel. So we need a way to control a single bit or pair of bits without affecting other
bits.

To change one or two bits in a byte requires a form of computer logic called
Boolean algebra. Boolean algebra uses logical operators such as AND, OR, and
NOT. These three are available in Color BASIC.

AND and OR compare two values bit-for-bit; NOT takes value and reverses the
state of each of its bits. Here are table summaries:

AND| 0 | 1 OR| 0 | 1
0j]01]0 0|0 |1 NOTO = 1
1 0|1 1 1 1 NOT1 =0

Here are some examples of Boolean operations on 1-byte binary values:

10101010 21101110
AND 11110000 OR 10021000
10100000 11101110

NOT (1010101@) = 01010101

Note:

(1) Inthis discussion, we refer to the individual bits using the numbers
0 through 7, as shown in the diagram.

(2) When abithasavalueof 1, wesay itis “set”’; when it has a value of
0, we say it is ““reset.”” We use these terms in this way throughout
this section.

There are 256 possible on/off combinations for a single byte. The combinations are
often interpreted as binary numbers ranging from 00000000 to 11111111 or
memory. The video display circuitry reads from this “video RAM" in order to
generate the screen display.

Text goes
into RAM
You type:
PRINT "HERE IS A MESSAGE "—> Video
RAM
Computer generates TV
the correct display Screen

Normally, Color BASIC uses the memory area from 1024 to 1535 as video RAM.
There are 512 distinct memory locations, or “’bytes,” in this-ared, enough to hold
512 alphanumeric characters or 2048 SET/RESET pixels.

You can program the Color Computer to use any area of RAM as “'video RAM.”’ This
is desirable when:

A. You want to use high-resolution graphics that require a large video RAM
area.

B. You want to switch back and forth between “‘pages”” of video RAM.

High resolution requires a larger video RAM area than does normal text. For
example, in the highest resolution mode, G6R, 6144 bytes of memory are required
to store a screenful, or “‘page,” of information.

This increased video RAM requirement has to be taken from the “‘user area” at the
top of memory. This limits the space available to your BASIC program. If you have a
4K RAM machine, you are probably limited to using the G1C and G1R graphics
modes, which take only 1024 bytes and leave approximately 1300 bytes for your
BASIC program. If you have a 16K RAM machine, you may use the highest
resolution mode and still have about 8400 bytes available for your BASIC program.

VIDEO DISPLAY GENERATOR (VDG) REGISTER

This consists of three pairs of addresses in RAM that control the graphics mode. (See
Table 1 for a description of the graphics modes available.) These addresses are not
actual bytes in RAM, but are direct links to the VDG circuitry in the computer.

DISPLAY CONTROL REGISTER

This is a single memory location that determines which color set is available; it also
plays a role in selecting the graphics mode. This address is not an actual byte in
RAM, but is a direct link to certain display control circuitry in the computer.

PAGE-SELECT REGISTER

This consists of seven pairs of addresses that determine the start address of video
RAM. Using this register, you can start video RAM on any 512-byte boundary in
RAM. This address is not an actual byte in RAM, but is a direct link to the
page-select circuitry in the Computer.

131

132

PREPARING THE COLOR COMPUTER FOR GRAPHICS
1. CHOOSE WHICH GRAPHICS MODE YOU WANT
Using Table 1, decide which graphics mode you want. To do this, ask yourself the
following questions:

What is the video RAM requirement? Does your computer have enough RAM to
accommodate it? If it does, is there enough room for the program that uses the
graphics mode?

How much resolution do you need? How many colors? There is a trade-off between
colors and resolution.

For example, G1C and G1R both require 1024 bytes for video RAM, but after that
they differ. G1C offers a 64 x 64 pixel density, with 4 colors available for each pixel.
Further, you may select between 2 sets of 4 colors. G1R on the other hand, offers a
128 x 64 pixel density, with 2 colors available for each pixel. You may select
between 2 sets of 2 colors.

Program #1 uses G1C; Program #2, G6R.

2. SELECT A PAGE OF VIDEO RAM FOR GRAPHICS USE

Color BASIC uses addresses 1024-1535 for video RAM. This is sufficient for
alphanumerics and SET/RESET graphics, but not for any of the higher-resolution
graphics modes. For these, you should reserve a sufficiently large area at the top of
RAM. Use the CLEAR statement to do this.

CLEAR stringspace, memend

stringspace is the amount of space you'll require for string information. Use
the smallest number possible that won't result in an OS error when your
program runs.

memend is the highest address Color BASIC will use. You can use addresses
above memend for your graphics video RAM.

To compute memend, use this formula:
memend = memory size - pagesize

memory size depends on how much RAM is in your system. For 4K systems,
it is 4095; for 16K systems, 16383.

pagesize depends on which graphics mode you are going to use. For 4K
systems, you are probably limited to G1C or G1R; in either mode, pagesize
= 1024. For 16K systems, you may use any mode, even one that uses 6144
bytes.

For example, to use G1C in a 4K system, start your program with this statement:
CLEAR 20, 3071

This assumes you won't need more than 20 bytes for string storage, and it reserves
the highest 1024 bytes for use as video RAM.

In Program #1, see Line 20; in Program #2, Line 20.

3. “CLEAR OUT” YOUR VIDEO RAM

You will probably want to start with a clean video screen. To clear out, store zero in
each byte of video RAM. For example, in a 4K system, you might use these
statements:

FOR I = 3072 to 40895: POKE I:0: NEX
In Program #1, see Line 120; in Program #2, Line 790.

Important Note: Perform Steps 4 and 5, which follow, consecutively,
with no pauses in between. Otherwise, the screen will show what is
often called “‘garbage.”

4. SWITCH IN YOUR VIDEO RAM

Using the page-select register, tell the Color Computer where your “/page’’ of video
RAM starts. A graphics page must start on a 512-byte boundary. To tell Color
Computer where the page starts, use a 7-bit value. (The 8 bit, bit 7, is always 0, so is
not needed by the page-select register.) Table 3 lists the correct values for pages
starting at memend + | (see Step 3).

Table 3 doesn’t list all possible addresses where you might want to start video RAM.
The following procedure lets you calculate the correct value for any valid start
address for video RAM. (Addresses must be on 512-byte boundaries: 0,512,1024,
etc.)

First calculate the video offset in 512-byte “’blocks,” as follows:
OFFSET = VIDRAM / 512
VIDRAM is the start address of your video RAM (usually memend + 1).

Forexample, in 4K systems with your video RAM starting at 3072, OFFSET = 3072
/512 = 6.

Then express OFFSET as a 7-bit binary number. For example,

6 decimal = 0 0 0 0 1 1 0 binary

Bit #» 6 5 4 3 2 1 0

After finding the correct value, give it to the page-select register.

Remember, this register consists of 7 pairs of addresses. Each pair controls whether
agiven bitin the page-select circuitry is on or off. To RESET a bit (make itequal to 0),
POKE any value into the even-numbered address in the pair; to SET a bit (make it
equal to 1), POKE any value into the odd-numbered address in the pair.

TO RESET, TO SET,
BIT # POKE HERE POKE HERE
0 65478 65479
1 65480 65481
2 65482 65483
3 65484 65485
4 65486 65487
5 65488 65489
6 65490 65491

For example, to switch in the video RAM starting at 3072, give the value 000110 to
the page control circuitry as follows:

POKE 6354780 ‘'RESET BIT @
POKE 654810 'SETBIT 1

POKE 654830 “SET BIT Z

POKE 65484,0 ‘RESET BIT 3
POKE 654860 ‘RESET BIT 4
POKE 654880 ‘RESET BIT 5
POKE G549¢,0 ‘RESET BIT G

In Program #1, see Lines 40-50. The formula in Line 40
65478+ 1 * 2 + DT

is a shorthand way to poke the appropriate addresses in the page-select register. DT
is the 0/1 value for each of the 7 bits.

In Program #2, Lines 640-670 do the same thing using bit patterns stored in PH()
and PA().

5. SELECT THE DESIRED GRAPHICS MODE

To select a given graphics mode, you must:
A. Set the VDG register
B. Set the control register.

(A) First, look up the 3-bit VDG pattern that selects the graphics mode (see €olumn
2 in Table 2).

133

134

This is the binary value you must give to the VDG register. Remember, this register
consists of 3 pairs of addresses. Each pair can be used to control whether a given bit
in the VDG circuitry ison or off. To RESET a bit (SET it to zero), POKE any value into
the even-numbered address in the pair; to SET a bit, POKE any value into the
odd-numbered address in the pair.

TO CLEAR, TO SET,
BIT # POKE HERE POKE HERE
0 65472 65473
1 65474 65475
2 65476 65477

For example, to select graphics mode G1C, give the value 001 to the VDG registers
as follows:

POKE 654730 ‘SET BIT @
POKE 6547440 ‘RESETBIT 1
POKE 654760 ‘RESET BIT 2

(B) Now select the control value for the graphics mode you want (see Column 3 of
Table 2). Then store this value in the control register without changing bits 0-3 of
the control register.

For example, to select graphics mode G1C with color set 0.

1. Get temporary result with all bits off except 0, 1, 2. These are not changed.
POKE 65314, 128 OR (PEEK(B5314) AND 7)

2. Turn on bit 7 without changing bits 0, 1, 2.

After you execute Steps 2—5, the computer is in the graphics mode you selected.
The screen should be blank. You can devote the rest of your program to using the
graphics mode.

In Program #1, see Line 100. In Program #2, see Lines 740-770.

PUTTING GRAPHICS TO WORK

After you select the graphics mode, you can control what appears on the screen by
POKEing data into the graphics page you selected. How the data is interpreted
depends on the mode you selected. In some modes, 1 byte may control a sequence
of 8 bits; in others, 1 byte may control a 2 x 6, 2 x 12, etc., “’block.”

Table 4 explains how each pixel in a given mode is controlled by a byte or bit. If
you’re writing your own main program to use the subroutines in Program #3, you
may want to experiment, storing various values from 0-255 into a single byte in
your page of video RAM.

If you want to get more predictable results, read on . . .

MAPPING FUNCTIONS
In all graphics modes, the screen is divided into (X,Y) coordinates. Each pixel on the
screen has a unique (X,Y) “address.”

If you've used SET, RESET, and POINT, then you're familiar with this coordinate
system. All these statements allow direct reference to (X,Y) coordinates. For exam-
ple, to set the centerpoint on the screen to blue, use:

SET(31,15:+3)

Using the higher-resolutions graphics modes is a little more difficult. You can’t deal
directly with (X,Y) coordinates; you must translate, or “map,”’ the desired (X,Y)
coordinates onto the appropriate byte of video RAM. When 1 byte controls 2 or
more pixels, map the (X,Y) coordinates onto the appropriate bit or bits within a byte.

Table 4 shows how each byte of video RAM controls 1 or more pixels.

As an example, we'll take the 256 x 192 mode, G6R.

In this mode, the first 32 bytes of video RAM control the first row of 256 pixels; the
second 32 bytes control the second row; etc.

Within each row, each byte of video RAM controls a sequence of 8 pixels:

One Byte of Video RAM
seen as 8 bits:

7 6 5 4 3 2 1 0

<— Eight pixels

Bit 7 controls the leftmost pixel in the sequence; bit 0, the rightmost.

With this in mind, you can construct a series of BASIC operations to map (X,Y) onto
one bit in one byte.

Note: In the following BASIC statements, we assume the following:
* X is the X-coordinate. (For illustration, X = 128.)
e Y is the Y-coordinate. (For illustration, Y = 96.)

» VIDRAM is the first address of video RAM. (For illustration, VIDRAM =
10240.)

* The expression ‘2 X"’ means ‘'2 to the X power.” (This function is not
available in Color BASIC, but you can simulate it with a table of powers
or2)

1. Which byte “contains’’ the pixel?

OFFSET = INT(X/8) + Y*32 = 16 + 3072 = 3088
BYTE = VIDRAM = OFFSET = 0240 + 3088 = 13328

2. Which bit in BYTE controls the pixel?

XMODB = X - INT(X/8)%8 =20
BIT=7 - XMODB = 7

3. What 1-byte value will set the pixel? What 1-byte mask will set the pixel
without changing any of the others controlled by the same byte? For
illustration, assume BYTE contains 8.

ULU =2 ABIT =128 = binary 10000000
OLD = PEEK(BYTE) =8 = binarv 00001000
MASK = ULU OR OLD = 136 = 10001000
POKE BYTE » MASK

4. What 1-byte value will reset the pixel? What 1-byte mask will reset the
pixel without changing any of the others controlled by the same byte?
For illustration, assume BYTE contains 136.

ULU = 255 - 2 dBIT = 255 - 128 = 127 = binary

B —

. e e e S T

01111111
OLD = PEEK(BYTE) = binary 10001000 = 136
MASK = VLU AND OLD = binary 00001000 = 8 |

POKE BYTE » MASK

The mapping just described is used in Program #2. See Lines 820-910. Another
mapping (64 x 64, G1C) is used in Program #1, Lines 440-500.

135

136

TABLE 1. DESCRIPTION OF THE GRAPHICS MODES AVAILABLE

Number of Video RAM
Mode (1) Resolution Colors (2) Req. (Bytes)
SG6 64 x 48 8 512
SG8 64 x 64 8 2048
SG12 64 x 96 8 3072
SG24 64 x 192 8 6144
G1C 64 x 64 4 1024
GI1R 128 x 64 2 1024
G2C 128 x 96 4 2048
G2R 128 x 96 2 1536
G3C 128 x 96 4 3072
G3R 128 x 192 2 3072
G6C 128 x 128 4 6144
G6R 256 x 192 2 6144
Note:

(1) The mode names are abbreviations. Read ‘“SG6"’ as “’semigraphics six”’;
read “G1C" as “graphics one with color”’; read “G1R" as “‘graphics one
with resolution”’; and so on. In all “semigraphics’” modes, you have 8
colors at once. In all “with color’” modes, you have 4 colors at once. In
all ““with resolution” modes, you have 2 colors at once.

(2) In the 4-color modes, you may select between two sets of 4 colors each.
In the 2-color modes, you may select between 2 sets of 2 colors each. The
color-set select bit (bit 3 of the video control register) determines which
set is used. See Table 2 for more details on selecting the color set.

TABLE 2. DISPLAY MODE SELECTION

Video Control
Register Value Data
VDG Register With Color Set* Bits*
Mode Three-Bit Pattern 0/1 7/6
SG6 000 16 /24 1/X
SG8 010 0 /0 1/X
SG12 100 0 /0 1/X
SG24 110 0 /0 X/ X
G1C - 001 128/ 136 X/ X
GI1R 001 144 /152 X/ X
G2C 010 160/ 168 X/ X
G2R 011 176/ 184 X/X
G3C 100 192 /200 X/ X
G3R 101 : " 208/216 X/ X
G6C 110 ' 224 /232 X/ X
G6R 110 240/ 248 X/ X

“X" indicates ““Don’t care.”

TABLE 3. VIDEO RAM PAGE SELECTION

Page Select

VIDRAM Register

Bit Pattern
Size (Bytes) Start Address 6543210
4K 512 3584 0000111
2 1024 3072 0000110
M 1536 2560 0000101
512 15872 0011111
16K | 1024 15360 0011110
R 1536 14848 . 0011101
A 2048 14336 0011100
M 3072 13312 0011010
6144 : 10240 0010100

137

TABLE 4. DETAILED DESCRIPTION OF THE GRAPHICS MODES

"M x [x[%0['D]%]| oq]vq obuelo | 1 4 |
x| x[D]'0]%] DG u.cwmw_uo (I
-Aowaw Aeidsip Jo sajAq g20€ saunbai j) “yo0|q P N . L b0t
9XZ B S80nposd PuE 'S8ssaippe eAlNJBsUOd i e B e ~o : i g o 0 L ot
uwnjod xis sasinbai apow 4 -soydesbiwes ayy || X [X [T 1% |00 1 BB 96X ¥9 e Mhm w ” w ” X X
X[x[M][%]'0]%]| Ay MOIBA L O O |
. x|x[*1]*1[%0l9]%] + 1G] yesl9 0. 0 o 1
el X X X 0
40103 02 13 20 X
sbuei0 L 1 | |
ewebey 0 1 1 |
S(Aalx[x [o]%o] BIE] weddy L 0 1
g 0 0 L |
‘Aiowsw Aedsip Jo salAq g0Z sainbaiyy woig | (M1 X [X [®2['0(%*0]|) 0= v9xXv9 neig pay L 1 0 1| X X
X2 © $8onpoid pue . $8SSaIppe SAINIBSUOD x| x|a[a[oaa] B 8ng 0 1 0 1
uwn|od 1oy salinba. apow g-solydesbiuas ey - MOIIBA L 0 O |
X[x["]"[%]'0]%0]!] useIH 0 0 0
el X X X 0
40103 0D 1D 20 X1
sbuesg | | 1.
ewabey 0 1 1
] ng L 0 1 |
‘Aiowsw Aeidsip jo W
salAq ZI§ sannbal 3 'sig buiurewss om) ayy »n 9 1% ._w_h_m m m - H,_
paulwielap si 10j0) ‘sued jenba xis ojul papiAp < a5 8y xv9 »oeig X
s1 8|bue)das |op BAjaMI AqQ 10p 1ybie 8y) :8ous m: NER [n][" [%o] _o_ pey | | |
-18ip BuIMO||0) ay) Ym apow p-saydesbiwes (A anig 0 | 1
8y} 0} JejiwIS S| dpow 9-saiydesBiwas ay] usain | 0 ' 0
usa1n 0 0 1
welg X X 0
40103 02 12 n
8bueip | 4 1
‘Aowew ewabey 0 L 1 1|
Ae|dsip jo salAg 215 sainbal i 'suq @31y Aq weiy L 0 L
nﬂucmw\wuew_.m—“_cmm %M.w“_E: w_ m,o %_Wu >wn; ww.msn wg 0 0 1 |
Y| iq Buipu] uiw R ewaa 26X b9 soeig PeH I L 0 |
-18}9p i Led yoee Jo eoueunun) ay) ‘sued jenbe (AlaA]5 Pals] i auo n:..m 0 1L 0 | X X
inoj OJul papIAIp S (siop 2} AQ s10p wzm_£ 8|6 MOIBA L 0 0 |
-UBj0aJ B YoIym Ui Jojesauab saydelb asieod,, usel® 0 0 0 I
|BUJBU| UB S8SN 8pow p-soydesbiwas ay| Weig X X X 0
10109 02 12 22 X1
6 =:'68.9G¥E€2L0/ ="+ .%%% S| | 5
#.1dS— ¢['JZAXMANLSHOJONW | 2PO211DSY TV N i abueip woeig| 1 i
MNFIHO 43008V 1 SIe0IBYD 10p usAes Aq 10p _ _ _ _ _ _ _»_o_ pi g si0p Z1 g1xze ¥oeig abuesp| o
@Ay Bumoyjo) 8yl Sureluod yaiym ojesauab sajoeleyd 1 o uesin weg| 1
|BUIIUI UB SBSN SPOW [euIelu| JLawnueyd)y 8y . ' | Ssiopg *weig »eig usain| o 0
10109
i (s)ovkg meg lsieg S$MOY X SuUWN|0) | Jepiog | punoiBxyorg v 9 138
JmeD, L8 10100
uo|njosey 10409 viva

sapoW sajydesn ay; jo uondussaq pajielaa 'y 2iqel

138

ung 3
‘Juswale ainjod auo 2 8uo s
sanioads seifq jo ied auo yaym U Wyy Aeid _oo_ ‘2 _onL 9[% M,o [oo] ,0~ EEEE 96x 82t se sioj00 eweg| X
-SIP 0 S81AQ 2£0€ S8sn apow Jg-saydess) ey .| ueeig 0
‘lusweya e W 8uo sowdesy !
a1moid 8uo seioads 1q auo yoiym ul Wy Aeid | [T [[[A]R]4] RERRRREE 96x821 se si000 oweg| X
-SIp JO S@JAQ 9ESL SasN apow yZ-soydes) ay) ueeI9 0
wng t
‘Juawale asnjoid Jeuo e
8U0 sayads suq o i1ed auo yaym ut Wyl Aeid | [S5] 5] 0[]0] [=]'3]E]43) voxazi Se si0j00 oweg| X
-SIp J0 S81AQ 8Y0Z S9SN apow HZ-sowdesn ayy usesn 0
] 1
: vox8zL e ¥am 9 1 «x '
e1maid 8uo seyads 1q auo yam ui Wyl Aed ([T T[4 (B[[a[][][]0][]) v
-SIP JO S8IAQ Y201 SasN 8pow Y -sowydesd) ay) usesn .ﬁuw h 0
abuesy | 3
ewebewy 0 1
ung ueky | 0 L
: g8 0 0
Juswaje aimaid - ; = > Y9X b9 L X
20 sayoeds suq jo 1red auo LDILM Ut IV Ked BEEERRBRE BBER rrvE— T
-SIP JO S8IAQ $20L S8sN 8pow J(-sondesd ayy — su_.__hm m m "
uaa !
ueas9 0 0
J0100 03 12
| x [x[°0]'0|%0] ¢+ |
“Ax [x [0]'0[%0] S Ea)
._1_ n_l_ X X OU _U «U i lT_ m-A
"M x [x{%]'0[%0]] i
i "1 x | % [%9]'0[% L
‘Aowsw | 7T YERE
Aeydsip Jo salAq ppLg saunbas 1 ¥oolq gixg ||| X 2 9| ~o '
®© S80npoid pue ;s8ssaippe aanndasuod uwn | x [x [q]vqeg g AT
-102 8A|8M} S8JINb8) apow p2-soiydelbiwas ay | X x ™15 % a5 ewoBe 0 1 1 1 -
weA L 0 Lt
g x| x [7 {935 el S B
XXM 2in]1 261 x99 xoeig pey L L 0 | X X
g NI ang 0 L O I
X[x18]%|'a]%] MOIBA L O O |
[Py iy) useI) 0 0 0 I
Lt el bl 5 TR I e X X X 0
10103 02 13 22 M
[[L20 ¢} $SMOY X Suwnjo) |Jepiog | punoibyoeg .-.oa.“.-_”w 9 135
sjuawwo) (s)eiig meq i 118 | J0n
uonnjosey 10100 viva

(panunuo)) sapow saiydein ay; jo uondudsaq pajielaq ‘v alqel

139

718 °09%0 '0v¥0 "02¥0 '00¥0 8i8 0OYO X3IH 18 buiels sasseIope 8AINDESUOD-UWNIOD),

wewsa|e wne g
21Ma1d 8U0 $81,1980S 11 BUO YIYM Ul u<m eid ([T Ta]5T" M BIEIGH G qTAalaimiainiaq, 261 X952 m%“w_ww_wﬂmw X
-S1p O S3IAQ ppL9 SASN BPOW H9-SONYURID) BYL usaIn 0
;
‘Juewale aimoid nne '
auo saipads syiq Jo Jied BUO YIIYM Ul QSH_ Aed E,o ?o_ _UTU [*a _ao ‘0l ‘3]'314}43| 261 xgel w%mc_w_ww_:oﬂhw. X
-SIP JO S8IAQ p1 9 SASN apowr Dg-SoNYaRIS) By L usain 0
5 ung !
\uawala - . U0 soydeIn
2.njo1d 8U0 say10ads Jig BUO YIIYM Ut WyY Aeid TP (0 > P bl e e N i i R R T e T 261 X821 4 X
-SIp O S3JAQ 220€ SISN BPOW mm.mo.:_uﬂo ayy [afafal o _ bt Tl oI SRisglozewes 0
40100
neeq SMOY X SuwWN|0) | Jepiog | punoiBxoe 9
sjuawWos (s)oihg mmg 8 sewwewd| g e
uopnnjosey 10100 viva

(Panujuod) sapon soiydess ay) jo uondudsaq pajielaq ‘v aiqel

140

PART B

' USING
MACHINE-LANGUAGE
SUBROUTINES WITH

COLOR BASIC

In this part we describe how to call a machine-language subroutine from a BASIC
program, and we list certain ROM subroutines that you may find useful.

“Machine-language’” (ML) is the low-level language used internally by your com-
puter. It consists of microprocessor instructions. Machine-language subroutines are
useful for special applications because they can do things very fast.

Writing such routines requ-ires familiarity with assembly-language programming
and with the microprocessor’s instruction set. For more information, see Basic
Microprocessors and the 6800, Ron Bishop, Hayden Book Company, 1979.

In this section, we take a step-by-step approach to using ML subroutines, as follows:

1. Protecting Memory

2. Storing the ML Subroutine in RAM

3. Telling BASIC Where the Subroutine Is
4. Calling the Subroutine

5. Returning to BASIC

As we go along, we'll present a BASIC program that performs all 5 operations. You
may type in the BASIC program lines as they are given, but don’t try to run the
program until you've read this entire section.

Our ML subroutine is simple. It gets a character from the keyboard. The character is
returned as an ASCII code rather than as a string.

The subroutine has a few features not available with INKEY$ or INPUT. First, it will
return any key code, including the one for (BREAK). Second, it will let you key in
control codes A-Z (CTRL-A through CTRL-Z). To key in a control character, press
@D, release it, then press any key from (&) to (Z). The control codes generated
range from 1 to 26.)

Upon return from the subroutine, the USR reference is “‘replaced” with a character
code.

We'll call the subroutine “GETKEY.”” For a listing of the ML subroutine, see the end
of this section.

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of RAM for storing your ML
subroutine. The first CLEAR parameter sets the string space, and the second sets the
memory protection address. For example:

1@ CLEAR Z5, 4030

sets the string space to 25 bytes and reserves memory addresses from 4051 to the
end of RAM (see the Memory Map). Your ML program may then safely be stored in
this area.

STEP 2. STORING THE MACHINE LANCUAGE SUBROUTINE IN RAM

You may load ML programs from tape via CLOADM, or you can POKE them into
RAM. In our example, we store the individual codes in DATA statements, then read
and POKE each code into the correct RAM location. The numbers in the DATA
statements are derived from the ML subroutine listed later in this section.

20 FORI=1T028

30 READB: POKE 4050 + 1, B
49 NEXT I

141

142

50 DATA 173 159+ 160+ @

6@ DATA 39, 250, 129, 10, 38, 12
7% DATA 173, 159, 160, @+ 39, 259
75 DATA 129, B5, 45 2

8@ DATA 128,64, 31,1374+ 79

99 DATA 125G, 180, 244

STEP 3. TELLING BASIC WHERE THE SUBROUTINE IS

Before you can use the subroutine, you have to tell your Color Computer where it
starts. Do so by POKEing the 2-byte address into RAM locations 275-276. The most
significant byte (MSB) goes first, then the least significant byte (LSB).

Our ML will start at decimal 4051, so:

Decimal 4051 = Hexadecimal OF D3 =
Decimal 15(MSB), Decimal 211 (LSB)

Here’s the program line to accomplish this:
199¢ POKE 275, 15: POKE 276 211

STEP 4. CALLING THE SUBROUTINE
At the correct point in your program, insert a USR function reference:
110 A= USR(®) o
In our example, 0 is a ““dummy argument.” It won’t be used by the ML subroutine.
When this statement is encountered, BASIC calls the ML subroutine.

Note: On entry to the subroutine, you can get the USR argument (the 0 in this case)
by calling a ROM subroutine, INTCNV, which returns with the integer value in the
D register. The address of INTCNV is hexadecimal B3ED.

STEP 5. RETURNING TO BASIC

If you do not want to return any values to the BASIC program, end the subroutine
with an RTS instruction. If you want to return a 2-byte integer value, load the integer
into register D in MSB-LSB sequence, then end the subroutine by calling a special
ROM subroutine, GIVABF. The address of GIVABF is hexadecimal B4F4.

After an RTS, the USR-reference in your BASIC program returns the original dummy
argument. After a call to GIVABF, the USR-reference in your BASIC program returns
the value you loaded into the D register.

THE BASIC PROGRAM
The following program gets the object code into RAM and then uses the subroutine
to get keyboard input. Type it in carefully; then run it.

Each time you press a key, control returns to BASIC with the ASCIl code for that key.
Try pressing BREAK). You'll get the code for (BREAK) 3. The BASIC program ends
when you press (ENTER) or {%D . :

To get any of the codes 1-26, press (1), release it, then press a key from (A) to (Z2).
18 CLEAR 25 495® 'RESERVE MEMORY

15 ELS ;

20 FOR I = 1 TO 28 "STORE EACH BYTE CGF OBJECT
CODE

30 READ B: POKE 4050 + I B

49 NEXT I

45 ‘HERE IS5 THE OBJECT CODE

5¢ DATA 173+ 159, 162, 0

B® DATA 39, 250, 129, 10+ 3B, 12
7¢ DATA 173+ 159, 162, @+ 39, 250
75 DATA 129, GBS+ 45, Z

B¢ DATA 128 B4 31+ 1
90 DATA 126G+ 182, Z44
99 ‘TELL BASIC WHERE THE ROUTINE IS
199 POKE 275, 15: POKE 276, Z11

37y 78

118 A = USR(®) ‘CALL THE SUBROUTINE AND GIVE
RESULT TO A

115 IF A = 13 THEN END

12¢ PRINT "CODE ="3 A

13¢ GOTO 11@

Note to Customers with 16K RAM
You may change Lines 10 and 30:

1@ CLEAR 25, 1B6350
30 READ B: POKE 1635¢ + I, B

For a variation in the program, change Line 120 to:
120 PRINT CHR%(A) 3 ‘DISPLAY THE CHARACTER

Most control keys () followed by a key (A) — (ZD) will have no effect when they
are printed. But try control—H (backspace).

ML SUBROUTINE LISTING

Note: Don't type this in. It is here for those who want to understand how the ML
subroutine works.

Hexadecimal Source Code Comments
Object Code
AD 9F A® @@ LOOPL1 JSR (POLCAT) sPOLL FOR A KEY

27 FA BEQ LOOP1 iIF NONE, RETRY

81 0A CMPA #10 JCTRL KEY (DN
ARW) 7

26 oC BNE OUT iNO, SO EXIT

AD 9F A® @@ LOOP2 JSR (POLCAT) 3YES. SO GET
NEXT KEY

27 FA BEQ LOOPZ iIF NONE, RETRY

B1 Z0 CMPA #B5 iI1S IT A - Z7

2D @2 BLT OUT PIF < Ay EXIT

80 40 SUBA #B4 iCONVERT TO

) CTRL A/Z

1F 89 OUT TFR AsB JGET RETURN
BYTE READY

4F CLRA JZERD MSB

7E B4 F4 JMP GIVABF FRETURN UALUE
TO BASIC

POLCAT EQU 409G
GIVABF EQU 46324

Note: ““Source code’” is not meaningful to the computer. It is a set of memory aids
and symbols we use for convenience. The source code must be translated or
“assembled”’ into object code, which the computer understands. In the listing
above, the object code is given in hexadecimal form. We converted it to decimal
numbers for our BASIC program.

ROM SUBROUTINES AVAILABLE FOR USE FROM BASIC

Color BASIC ROM contains many subroutines that can be called by a machine-
language program; many of these can be called by a Color BASIC program via the
USR function. Each subroutine is described in the following format:

NAME — Entry address
Operation Pertormed
Entry Condition

Exit Condition

Note: The subroutine NAME is only for reference. Your Color Computer does not
recognize it. The entry address is given in hexadecimal form; you must use an
indirect jump to this address. Entry and Exit Conditions are given for machine-
language programs.

BLKIN = (A006)

Reads a Block from Cassette

143

144

Entry Conditions

Cc?cs!sette must be on and in bit sync (see CSRDON). CBMFAD contains the buffer
address.

Exit Conditions
BLKTYP, which is located at 7C, contains the block type:

0 = Fle Header
1 = Data
FF = End of File

BLKLEN, located at 7D, contains the number of data bytes in the block (0-255).
Z* = 1,A = CSRERR = 0 (if no errors).

Z = 0,A = CSRERR = 1 (if a checksum error occurs).

Z = 0,A = CSRERR = 2 (if a memory error occurs).

(Note: CSRERR = 81)

Unless a memory error occurs, X = CBUFAD + BLKLEN. If a memory error occurs,
X points to beyond the bad address. Interrupts are masked. U and Y are preserved,
all other modified.

*Z is a flag in the Condition Code (CC) register.

BLKOUT = [A008]

Writes a Block to Cassette

Entry Conditions

The tape should be up to speed and a leader of hex 55x should have been written if
this first block to be written after a motor-on.

CBUFAD, located at 7E, contains the buffer address.

BLKTYP, located at 7C, contains the block type.

BLKLEN, located at 7D, contains the number of data bytes.

Exit Conditions

Interrupts are masked.

X = CBUFAD + BLKLEN.
All registers are modified.

WRTLDR = [A00C]

Turns the Cassette On and Writes a Leader
Entry Conditions

None

Exit Conditions

None

CHROUT = [A002]

Outputs a Character to Device .

CCHROUT outputs a character to the device specified by the contents of 6F
(DEVNUM).

DEVNUM = -2 (printer)

DEVNUM = 0 (screen)

Entry Conditions

On entry, the character to be output is in A.

Exit Conditions
All registers except CC are preserved.

CSRDON =[A004]
Starts Cassette
CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All others are modified.

JOYIN = (A00A)

Samples Joystick Pots

JOYIN samples all four joystick pots and stores their values in POTVAL through
POTVAL + 3.

Left Joystick
Up/Down 15D
Right/Left 15C

Right Joystick
Up/Down 15B
Right/Left 15A

For Up/Down, the minimum value = UP.
For Right/Left, the minimum value = LEFT.

Entry Conditions
None

Exit Conditions
Y is preserved. All others are modified.

POLCAT = (A000)
Polls Keyboard for a Character

Entry Conditions

None

Exit Conditions

Z =1,A = 0 (if no key seen).

Z = 0, A = key code (if key is seen).

B and X are preserved. All others are modified.

" MEMORY CONTENTS

This table shows the contents of the Color Computer’s memory. The first column
shows the memory address in decimal notation; the second, in hexadecimal

notation.

Decimal Hex Memory Contents .

0-105 0-69 Direct page RAM (can be used by machine lan-
guage programs)

112-255 70-FF Direct page RAM (cannot be used by machine lan-
guage programs using any of BASIC’s subroutines)

256-273 100-111 Internal Use (Interrupt Vector’s)

274-276 112-114 USRJMP - Jump to BASIC’s USR routine

277-281 115-119 Can be used by machine language programs

282 11A Keyboard Alpha lock — O = not locked, FF =
locked

283-284 11B-11C Keyboard delay constant

285-337 11D-151 Can be used by machine language programs

338-345 152-159 Keyboard rollover table

346-349 15A-15D Joystick pot values

350-1023 15E-3FF Internal Use

1024-1535 400-5FF Video Memory

1536-4095 600-0OFFF Program and Variable Storage (4K RAM)

1536-16383 600-3FFF Program and variable storage (16K RAM)
16384-32767 4000-7FF Not Used

32768-40959 8000-9FFF Extended Color BASIC

40960-49151 A000-BFFF COLOR BASIC (8K ROM)

49152-65279 COO0O-FEFF Program Pak Memory

65280-65535 FFOO-FFFF Input/Output

145

APPENDIXES

APPENDIX A

Musical Tones

Your computer can come fairly close to matching (although it can’t ex-
actly match) the musical tones shown below. You may use either the
piano keyboard or the musical staff to determine the numeric code that
represents the note you want.

If you're using the piano keyboard, the numeric code for each key is di-
rectly over the key. For example, the numeric code for middle C is 89.

If you're using the musical staff, the numeric code for each note is be-
low the note. For example, the numeric code for

is 108.
:
' Co— —— — ——}
[} 1 1 7] P | 1
= - 4 I | B | T | I 1 1 1
7 1 T B A4 Bu 1 1 I L
J ¢ 1 !
2 g8 &~ & 8 ¢35 3888 £ 38338
g 388 885388l £ 2838

MIDDLE

C D E F G A B C D E

If the note is a flat, select the numeric code immediately preceding the
note. For example:

is 99.

If the note is a sharp, select the numeric code immediately following the
note. For example:

=—

is 117.

Chapter 5 shows how to program the computer to play a song.

I
ITTe
1L
rrm
ITTTe
Lptd gt
TTTTe
18 I O
TTrTm

g

-

218
221

223
225

227
229
231

232
234

236
237
238
239
24

242
243
244

149

150

APPENDIX B

BASIC Colors and Graphics Characters

These are the codes for the colors you can create on your screen.

BASIC COLORS

0 — black (absence of color) 5 — buff

1 — green 6 — cyan

2 — yellow 7 — magenta

3 — blue 8 — orange
4 —red

When using SET, color 0 will leave a dot’s color unchanged.

GRAPHICS CHARACTERS

These are the codes for the Cotor Computer’s graphics characters. To
produce them, use CHR$ with the character’s code. For example,
PRINT CHR$ (129) produces character 129.

128 129 130

131 132 133 134 138

136 137 138 139 140 141 142 149

To print all these graphics characters, type and run this program:

To create these characters in one of the colors below, add the appropri-
ate number to the code. For example, PRINT CHR$ (129 + 16) pro-
duces character 129, except the green area is yellow.

+16 — yellow + 64 — bulff +96 — magenta
+32 — blue +80 — cyan +112 — orange
+48 — red

Chapter 16 explains how to use graphics characters.

APPENDIX C

PRINT @ SCREEN LOCATIONS

151

APPENDIX D

GRAPHICS SCREEN LOCATIONS

152

APPENDIX E

ASCII Character Codes

These are the ASCII codes for each of the characters on your keyboard.
The first column is the character; the second is the code in decimal no-
tation; and the third converts the code to a hexadecimal (16-based

number).
CHARACTER DECIMAL HEXADECIMAL
CODE CODE

SPACEBAR 32 20
! 33 21
@ 34 22
35 23
$ 36 24
% 37 25
& 38 26
! 39 27
(40 28
) 41 29
® 42 2A
+ 43 2B
, 44 2C
- 45 2D
. 46 2E
i 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
74 55 37
8 56 38
9 57 39
s 58 3A
2 59 3B
& 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
G 67 43
D 68 44
E 69 45
F 70 46
G 71 47
H 72 48
| 73 49

153

154

CHARACTER DECIMAL HEXADECIMAL

CODE CODE

J 74 4A

K 75 4B

L 76 4C

M 77 4D

N 78 4E

O 79 4F

P 80 50

Q 81 51

R 82 52

S 83 53

T 84 54

U 85 55

\ 86 56

W 87 57

X 88 58

Y 89 ‘59

Z 90 5A
() 94 5E
g* 10 OA
[8 08
(==)* 9 09
BREAK 03 , 03
CLEAR 12 0C
ENTER 13 oD

*If shifted, the codes for these characters are as foilows: (CLEAR) is 92
(hex 5C); (&) is 95 (hex 5F); (XD is 91 (hex 5B); is 21 (hex 15);
and is 93 (hex 5D). .

Lowercase Codes

These are the ASCII codes for lowercase letters. You can produce these
characters by pressing the (SHIFT) and (@) keys simultaneously to get
into an upper- lowercase mode. The lowercase letters will appear on
your screen in reversed colors (green with a black background).

CHARACTER DECIMAL HEXADECIMAL
CODE CODE
a 97 61
b 98 62
C 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
| 108 6C

CHARACTER

N<Xg<gc™®» TOTO 3 3

DECIMAL
CODE

109
110
111
112
113
114
115
116
7
118
119
120
121
122

HEXADECIMAL
CODE

6D
6E
6F
70
al
72
73
74
75
76
77
78
79
7A

APPENDIX F

Answers to Exercises

Do-it-Yourself Program 4-4

Sounding tones from bottom of range to top and back to bottom:

1@ FOR ¥ =1 TO 255

20 SOUND X1
3@ NEXT X
a9 FOR X =
S0 SOUND X1
B@ NEXT X

Do-It-Yourself Program 5-1

255 TO 1 STEP -1

Lines added to clock program:

92 FOR T-= 200 TO 210 STEP ©
94 SOUND T 1

95 NEXT T

97 FOR T = 219 TO 200 STEP -5
98 SOUND Ts1

99 NEXT T

Do-It-Yourself Program 5-2

Program that shows 9 colors for one second each:

18 FOR C = @ TO 8
20 CLS(C)

30 FOR X = 1 TO 4G6@
4@ NEXT X

S0 NEXT C

155

156

Do-It-Yourself Program 7-1

Russian Roulette:

S FORN=1T0 1@
"CHOOSE

10
20
30

PRINT
INPUT X

¥YOUR CHAMBER(1-12)"

IF ¥ = RND(1@) THEN 109
49 SOUND Zeod s 1
5¢ PRINT "--CLICK--"

"CONGRATULATIONS! I
"¥Y0OU MANAGED"
“TO STAY ALIVE"

FOR T = 133 TO 1 STEP -5

6@ NEXT N

65 CLS

79 PRINT @ 230
80 PRINT B 265
90 PRINT @ 2861
95 END

100

119 PRINT "BANG! ! 1TY
120 SOUND Ty 1
130 NEXT T

149 CLS

150 PRINT @ 230,
16@ SOUND 1, 5@
170 PRINT @ 290,

Do-It-Yourself Program 7-2

Craps game:

10
20
30
49
S0
6@
70
80
990
100

110 IF R

120
130
140
150
160

170
180
185
190
200
210
220
225
230
249
250

0
e
wm

RND (B)
RND(B)
A+ B

o
nonon

R

PRINT @ 200, A
PRINT @ 214, B
"¥Y0U ROLLED A" R
2 THEN Go@
3 THEN G0@®
12 THEN Go@
7 THEN S00
11 THEN 5090

PRINT @ 394

IF R

IF R
IF R

IF R

"SORRY» YOU'RE DEAD"

"NEXT VICTIM PLEASE"

FOR X = 1 TO 800

NEXT X

CLS

PRINT @ 193,
WIN"

PRINT @ 262
PRINT @ 420,
PRINT @ 456
INPUT A%

X = RND(B)

Y RND (B)

Z K+ Y
CLS

PRINT @ 200,
PRINT B 214,
PRINT @ 394,

"ROLL ANODTHER" R "AND YOU

"ROLL A 7 AND YOU LOSE"
"PRESS <ENTER> WHEN READY"
"FOR YOUR NEXT ROLL"

3
it

A
1

"YOU ROLLED A" Z

260
270
280
500
510
515
520
530
sS40
600
6190
615
620
630

IF 2 = R THEN 500

IF 2 = 7 THEN G@@

GOTO 189

FOR X = 1 TO 1000

NEXT X

CLS

PRINT @ 230+ "YOU'RE THE WINNER"

PRINT @ 294, "CONGRATULATIONS! ™
GOTO 639

FOR X = 1 TO 1000

NEXT X

CLS

PRINT @ 264, "SORRY s YOU LOSE"

PRINT @ 458 "GAME'S OVER"

Do-It-Yourself Program 8-1

Test Your Arithmetic

5C
6 P
8 1
10
15
20
30
a0
45
50
60
70
80
82
83
84
85
86
87
90
95
97
98

98

LS

RINT @ 238, "YOUR NAME" 3

NPUT N

CLS

T+1

RND(100)

¥ = RND(100)

PRINT @ 228, "WHAT IS" X "+" Y3
INPUT A

IF A =X+ Y THEN B2

PRINT @ 326+ "THE ANSWER IS" X + V¥
PRINT @ 385, "BETTER LUCK NEXT TIME:" N%

~z
> -
onon

GOTO 109
CLS(7)
FOR M =1T0 4

SOUND 175+ 1
SOUND Z@e ., 1

NEXT M

CLS

PRINT @ 232 "CORRECT »" Ng "1 11"
C=C+1

PRINT @ 2994 "THAT IS"

PRINT @ 322, C "OUT OF" T "CORRECT
ANSWERS™"
PRINT @ 362, C/T*100 "% CORRECT"

100 PRINT @ 420 "PRESS <ENTER:> WHEN READY"
182 PRINT @ 458+ "FOR ANOTHER"

105
110

INPUT A%
GOTOD 1@

Do-It-Yourself Program 9-1

Table of squares:

3 CLS
7 PRINT @ 38, "TABLE OF SQUARES"

157

158

8 PRINT

1o p=2

20 FOR N = 2 TO 10

25 GOSUB Zeeo

30 PRINT N "#" N "=" E,

49 NEXT N

5@ END

2000 REM FORMULA FOR RAISING A NUMBER TO A

POWER

2010 E =

2020 F
2030 E
2040 N
2050 1
2060 R

Do-It-Yourself Program 10-1

Challenger Program:

10
15
20
23
25
30
35
4@
50
60
70
80

PRINT "TYPE A SENTENCE :"

INPUT S%

PRINT "TYPE A PHRASE TO DELETE"
INPUT D%

L = LEN(D$%$)

PRINT "TYPE A REPLACEMENT PHRASE"
INPUT R%

FOR X = 1 TO LEN(S%)

IF MID$(S% X L) = D% THEN 100

NEXT X

PRINT D$ "-- IS NDT IN YOUR SENTENCE"
GOTO Z@

100 E = X - 1 + LEN(D%)
110 NS% = LEFT$(S%:X-1) + R$ +

RIGHT$(S%$:LEN(S5%) - E)

120 PRINT "NEW SENTENCE IS5 :"
130 PRINT NS%

Do-It-Yourself Program 11-1

Computer typing test:

10
20

30
a0
S0
60O
70
80
90

CLS

INPUT "PRESS <“ENTER>* WHEN READY TO TYPE
THIS PHRASE" 3 E%

PRINT "NOW IS THE TIME FOR ALL GDOD MEN"
T=1

A% = INKEY®%

IF A% = " " THEN 100

PRINT A%;

B = Bs + A%

IF LEN(B%) = 3Z THEN 1Z@

100 T =T + 1
119 GOTO 50

120 S
130 M

T/74
S/6@

n n

140 R = 8/M

142 FOR X = 1 TO 32

144 IF MID$("NOW IS THE TIME FOR ALL GOOD
MEN" sX»1) <> MID$(B%,Xs1) THENE = E + 1

146 NEXT X

15@ PRINT

160 PRINT "YOU TYPED AT--" R "--WDS/MIN"

170 PRINT "WITH" E "ERRORS"

Do-It-Yourself Program 16-1
Forward spacing dot:

190 CLS(2)

20 H = B3

25 SET(H»14,3)

30 A% = INKEY$%$

49 IF A% = CHR$(B) THEN G®
45 IF A% = CHR$(9) THEN 100
50 GOTOD 30

B@ H=H-1

BS IF H < @ THEN H=0@: GOTOD 390
70 SET(H14:3)

73 RESET(H + 1, 14)

80 GOTO 30

100 H = H + 1

11@ IF H » B3 THEN H=63: GOTO 39
120 SET(H+14,3)

130 RESET(H-1:14)

149 GOTO 32

Do-It-Yourself Program 16-2
Table and chairs:

10 LC#% CHR#(139 + 1B6) + CHR$(13@ + 16)

20 TA% CHR$ (142 + 112) + CHR$(142 + 112) +
CHR$(141 + 112)

30 RC$ = CHR$(1Z9 + 16) + CHR$(135 + 16}

490 CLS(@)

S0 PRINT @ 236+ LC% + TA% + RC%:

6@ GOTO G@

ion

Do-It-Yourself Program 18-1:
Checkbook program:

5 CLS: PRINT "POSITION TAFE - PRESS PLAY AND
RECORD"

7 INPUT "PRESS “ENTER> WHEN READY": R%

19 OPEN "0O" s #-1, "CHECKE"

15 CLS: PRINT "INPUT CHECKS - PRESS <H¥: WHEN

FINISHED"
20 INPUT "NUMBER "1 N%
25 IF N% = "MX" THEN 3@

30 INPUT "DATE :"3 D%

159

160

490
S0
60
70
80
g0
92
a5

INPUT "PAYABLE TO :"3 P%
INPUT "ACCOUNT :"1i 5%

INPUT "AMOUNT :%"3 A

PRINT #-1, N$, D%+ P$,» 5% A
GOTO 15

CLOSE #-1

CLS: T =@

INPUT "WHICH ACCOUNT" 3 B%

100 PRINT "REWIND TAPE - PRESS PLAY"

11® INPUT "PRESS <ENTER> WHEN READY"3i R%
120 OPEN "I", #-1, "CHECKS"

130 IF EOF(-1) THEN 17@

140 INPUT #-1, N%$, D$,» P$,s 5%+ A

150 IF B$ = 8% THEN T =T + A

160 GOTO 1390

170 CLOSE #-1

18@ PRINT "TOTAL SPENT ON -" B%, "IS $" T

Do-It-Yourself Program 19-1

Inventory program:

10
20
30
4
50
60
70
73
80
990

DATA 33, 12, 42, 134+ 154 23
DATA 25, 30, 33 27 14, B
DIM I(12)

FOR X = 1 TO 12

READ I (X

NEXT X

INPUT "ITEM NO."35 N

IF N » 12 THEN 70
PRINT "INVENTORY FOR ITEM" N "IS" I(N)
GOTO 7@

Do-It-Yourself Program 19-2

Dealing a hand:

5 DIM T(32)
7 DIM D(32)

10
20
30
34
36
49
50
60
70
75
80

FOR X =1 TO 32
T(X) = X

NEXT X

CLS

PRINT @ 101+ ".,.. DEALING THE CARDS"
FOR X = 1 TO SZ

C = RND(32)

IF T(C) = @ THEN 5@
D(X) =C

SOUND 128, 1

T(C) = @

100 NEXT X

11@ CLS

120 PRINT @ 107, "YOUR HAND"
130 PRINT @ 167 " "

140 FOR X =1 TO 5
150 PRINT D(X)3
16@ NEXT X

Do-It-Yourself Program 20-1
Lines that change items:

11@ INPUT "WHICH ITEM NO. DO YOU WANT TO
CHANGE" 3 N

115 IF N > 12 THEN 110

120 INPUT "WHAT IS THE REPLACEMENT ITEM"3
S$(N)

130 GOTO 8@

The appendix has a sample program that adds and deletes items from
this list.

Do-It-Yourself Program 20-2

Lines that change the song lyrics:

11@ PRINT
120 INPUT "WHICH LINE DO YOU WANT TO
REVISE" 3§ L

125 IF L » 4 THEN 120

130 PRINT "TYPE THE REPLACEMENT LINE"
1490 INPUT A$(L)

159 GOTO 5@

Do-It-Yourself Program 20-3
Word processor challenger:

1 CLEAR 1000
5 DIM A%(50)

7 GLS

1@ PRINT "TYPE A PARAGRAPH"

16 :

2@ PRINT "PRESS </> WHEN FINISHED"
30 X = 1

4% A% = INKEY$%

5¢ IF A% = "" THEN 49

6@ PRINT A%$3
7@ IF A% = "/" THEN 1@5

BO A$(X) = AS(X) + AS

90 IF A% = "," OR A$ = "?" OR A$ = "1" THEN X
= X+ 1

100 GOTO 4@

185 PRINT: PRINT

119 INPUT "(1) PRINT OR (2) REVISE"§ R
120 CLS

139 ON R GOSUB 1000, 2000

149 GOTO 1@5

161

162

1
1
1
1
1
2
¥t
~
=
I3
e
2
&
2
il
2
it
e
Z
~
s
2
]
o
2
s
2
Z
2
Z
[
Z
)
&
)
b
2
[
Z

bl
“

bl
<

2@ REM PRINT PARAGRAPH
@19 FOR Y = 1 TO X-1
@Z@ PRINT A%(Y) 3

P30 NEXT Y

249 RETURN :
P00 REM REVISE PARAGRAPH
@10 FOR ¥ = 1 TO X-1

@20 PRINT ¥ "--" A%(Y)

@30 NEXT Y

@49 INPUT "SENTENCE NUMBER TO REVISE"3 S

@45 IF S » X-1 OR S8 <« 1 THEN 20490

@5@ PRINT A%(S)

@60 PRINT "TYPE PHRASE TO DELETE"

@70 INPUT D%

80 L = LEN(D%)

P99 PRINT "TYPE A REPLACEMENT PHRASE"

129 INPUT R% ’

112 FOR 2 = 1 TO LEN(A$(5))

120 IF MID$(A%(S)»Z2+L) = D% THEN Z1G@

130 NEXT Z

149 PRINT D$ "-- IS5 NOT IN YOUR SENTENCE"

150 GOTOD 2060

160 E = Z - 1 + LEN(D$%)

170 A$(S) = LEFT$(A%$(S)+2-1) + R$ + RIGHT
$(A$(S)LEN(A%$(S))-E)

189 RETURN

Do-It-Yourself Program 20-4

Printing on the printer:

1

S5O PRINT #-2 A®(Y) 3

Do-It-Yourself Program 21-1

Alphabetizing book collection:

1

il
o

== 0o
S

o~

25

CLS: CLEAR 1000: DIM T$(102), A$(100)
S$(100) M$(100) » Z(100)
PRINT "POSITION TAPE -- PRESS PLAY AND
RECORD"
INPUT "PRESS <ENTER> WHEN READY"; R%
REM
REM OUTPUT TO TAPE
OPEN "0O" #-1, "BOOKS"
CLS: PRINT "INPUT YOUR BOOKS -- TYPE <XX3>
WHEN FINISHED"
INPUT "TITLE"} T$
IF T$ = "XX" THEN 50
INPUT "AUTHOR"; A%

28 INPUT "SUBJECT"3 S%

30 PRINT #-1, T$,» A%y 5%

4@ GOTO 15

59 CLOSE #-1

B@ CLS: PRINT "REWIND THE RECORDER AND PRESS

PLAY"
7@ INPUT "PRESS <ENTER» WHEN READY" i R$
74 REM
76 REM INPUT FROM TAPE
78 B = 1

8@ OPEN "I", #-1, "BOOKS"

85 IF EOF(-1) THEN 120

99 INPUT #-1, T$(B)s» A%(B)» S%(B)

95 B =8B + 1

110 GOTO 85

129 CLOSE #-1

490 PRINT

509 INPUT "SORT BY (1) TITLE (Z2) AUTHOR OR
(3) BUBJECT"i A '

510 IF A > 3 0R A < 1 THEN 500

520 ON A GOSUB 1000, 2000, 3000

530 GOSUB 4000

54@ PRINT

550 FOR X =1 T0 B-1

560 PRINT "TITLE " T$(Z(X))

570 PRINT "AUTHOR: " AS(Z(X))

580 PRINT "SUBJECT :" S$(Z(X))

590 NEXT X

G@@ PRINT : GOTO 500

800 REM

900 REM BUILD M$%$ ARRAY

1000 FOR X 1 70 B-1

1010 Ms(X) T (X)

1020 NEXT X

103@ RETURN

2000 FOR X

2010 M$ (X

2020 NEXT X

2030 RETURN

3000 FOR X =

3010 Me(X) =

3020 NEXT X

3030 RETURN

3909 REM

4000 REM SORT ROUTINE

40035 T 1

a1 0

4920 X X+ 1

4930 IF ¥ » B-1 THEN RETURN

4949 IF M$(X) = "ZZ" THEN 4020

4059 FOR ¥ =1 TO B-1

APGO IF Ms(Y) < M$(X) THEN X = ¥

4065 Z(T) = X

4280 NEXT Y

4985 7T =T + 1

4090 Me(X) = "ZZ"

4100 GOTO 4010

1
A% (X

TO B-1
)

1 70 B-1
S ()

~-
~~

<

163

164

Do-It-You
Deal two-

19
20
30
a0
50
60

70

80

99

100
110
120
130
140
150
160
170
180
190

These sub

rself Program 22-1
dimensional cards:

DIM S$(4) sy N$(13) s T(4,13)

DATA SPADES s HEARTSy» DIAMONDS s CLUBS

FOR X =1 T0 4

READ S$(X)

NEXT X

DATA ACE» 24y 3+ 4y S+ B+ 7+ 8B+ 9 10 JACK
QUEEN) KING

FOR X =1 TO 13

READ N$ (X)

NEXT X

FOR S =1 T0 4

FOR N =1T0D 13

T(SsN) = (5-1) *# 13 + N
NEXT NS

FOR X =1 TO 52

S = RND(4): N = RND(13)
IF T(SsN) = @ THEN 150
T(SsN) = @

PRINT N$(N) "-" S$(S),
NEXT X

APPENDIX G

Subroutines

routines let you run programs that require advanced math

functions-not directly available in Color BASIC.

Each subroutine listing has a set of instructions in the margin. Study
them closely. You'll see that some subroutines require other subroutines

for interna
when the i

| calculations. You must enter these “‘auxiliary subroutines’”
nstructions call for them.

Note: Subroutines are not as accurate as Color BASIC's math oper-

ators

and functions. This is because:

* The subroutines contain many chain calculations, which tend to
magnify the small error of individual operations.

» The subroutines are only approximations of the functions they

rep

In ge
over

lace.

neral, the subroutines are accurate to 5 or 6 decimal places
much of their allowable range, with a decrease in accuracy

as the input approaches the upper or lower limits for input values.

Square Root

Computes:

SWR(X), X

Input: X, must be greater than or equal to zero

Output: Y

Also uses: WZ internally
Other subroutines required: None
How to call: GOSUB 30030

30000 END

30010 REM *SQUARE ROOT* INPUT X OUTPUT Y
3002® REM ALSO USES W & Z INTERNALLY

30030 IF X = @ THEN ¥ = @: RETURN

30040 IF X > @ THEN 300G9o

30050 PRINT "ROOT OF NEGATIVE NUMBERT": STOP
30060 Y + X % ,5: Z=0

30070 W = (X/Y-Y) % .5

30080 IF (W=0) + (W=Z) THEN RETURN

30090 Y = Y + W Z = W: GOTO 30070

Exponentiation

Computes: X Y (X to the Y power)

input: X, Y. If X is less than zero, Y must be an odd integer
Output: P

Also uses: E, L, A, B, C internally. Value of X is changed.
Other subroutines required: Log and Exponential

How to call: 30120

30000 END

30100 REM *EXPONENTIATION* INPUT X,¥3i OUTPUT
P

30110 REM ALSOD USES EsL+A+B+C INTERNALLY

3012@ P=1: E=0: IF Y=0 THEN RETURN

30130 IF (X<@)ANDCINT(Y)=Y) THEN P=1-
2 +A*INT(Y/2): K=-X

30149 IF X< »® THEN GOSUB 3019@: X=Y=*L: GOSUB
302590

3015@ P=P*E: RETURN

Logarithms (Natural and Common)

Computes: LOG(X) base e, and LOG(X) base 10

Input: X greater than or equal to zero

Output: L is natural log (base e), X is common log (base 10)
Also uses: A, B, C internally. Value of X is changed.

Other subroutines required: None

How to call: GOSUB 30190

30000 END

30170 REM *NATURAL & COMMON LOG:INPUT X
OUTPUT L X

30175 REM OUTPUT L IS NATURAL LOG: OUTPUT X
IS COMMON LOG

32180 REM ALSO USES AB»C INTERNALLY

30190 E=0: IF X<@® THEN PRINT "LOG UNDEFINED
AT" 3§ X: STOP

301895 A=1: B=2: C=.5

30200 IF X:==A THEN X=C*X: E=E+A: GOTO 30200

30205 IF X<C THEN X=B#*X: E=E-A: GOTO 30205

30210 X=(X-.707107)/(X+.707107): L=K*X

165

30215

30220
30225

Exponential

L=(((,598979*L+,961471)*L+2.,88539)
*X+E-.5)%,693147

IF ABS(L)<1E-B THEN L=0
K=L%,4342945: RETURN

Computes: EXP (X) (e to the X power)

Input: X
Output: E

Also uses: L,A internally. Value of X is changed.
Other subroutines required: None
How to call: GOSUB 30250

30000
30249
308245
30250
30255
30260
30265

30270
30275
302890

30285

Tangent

END

REM *EXPONENTIAL* INPUT X OUTPUT E
REM ALSO USES LsA INTERNALLY
L=INT(1.4427%X)+1: IF L<127 THEN 302635
IF X»@® THEN PRINT "OUERFLOW": STOP
E=0: RETURN

E=,693147*%L-X: A=1,32988BE-3-
1.41316E-4*E
A=((A*E-B8,3013GE-3)*E+4,16574E-2) *E
E=(((A-,1B66GB5)*E+,5)*E-1)*E+1: A=Z
IF L<=0 THEN A=,5: L=-L: IF L=0 THEN
RETURN

FOR X=1 TO L: E=A*E: NEXT X: RETURN

Computes: TAN(X)
Input: X in degrees

Output: Y

Other subroutines required: Cosine
How to call: GOSUB 30310

30000
30300

30310
30320
30330

Cosine

END

REM #*TANGENT#* INPUT X IN DEGREES:
OUTPUT Y

IF ABS(SIN((90-X)/57.,29577951)) <1E-7
THEN PRINT "UNDEFINED": STOP
¥Y=8IN(X/537,29577951)/8INC(30-X) /
57.,29577951)

RETURN

Computes: COS(X)
Input: X in degrees

Output: Y

Other subroutines required: None
How to call: GOSUB 30360

30000
30350

166

END
REM #COSINE#* INPUT X IN DEGREES
DUTPUT ¥

3036@ Y=SIN((90-X)/57.28577951)
30365 RETURN

Arc Cosine

Computes: Arccos(S), angle whose cosine is S
Input: S, 0<=5<=1

Output: Y in degrees, W is in radians

Also uses: X,Z internally

Other subroutines required: ArcSine

How to call: GOSUB 30500

3000@ END

30500 REM *ARCCOS* INPUT S OUTPUT Y sM

30510 REM ¥ IS IN DEGREES:s W IS IN RADIANS

30520 GOSUB 3@550: Y=90-Y: W=1,570796-MW:
RETURN

Arc Sine

Computes: ArcSin(S), angle whose sine is S
Input: S, 0<=5<=1

Output: Y in degrees, W in radians

Also uses: X,Y internally

Other subroutines required: None

How to call: 30550

30000 END

30530 REM *ARCSIN SUBROUTINE* INPUT S5
DUTPUT Y s+

39535 REM Y IS IN DEGREES: W IS IN RADIANS

30540 REM ALSD USES WARIABLES X2 INTERNALLY

3055@ ¥=8: IF ABS(S5)<=,707107 THEN 30G1@

30560 X=1-5%5: IF ¥<@® THEN PRINT S3i"IS OUT OF
RANGE": STOP

30565 IF ¥=0 THEN W=90/57.295778951: GOTO
30630

30370 W=X/2: Z2=0

30580 Y=(X/W-W)/2: IF (ABS(Y)<.1E-
BYAND(Y=Z) THEN X=W: GOTO 30610

30600 W=W+Y: Z=Y: GOTD 32580

BPB1D Y=X+X*X*¥ N/ BHHHHH RN w1 %, D75 +H*H*H*X
H¥H*H %4, 464286E-2

30620 WY +X®M e e Y® M *H*H*3,038194E-2

30625 IF ABS(S) >, 707137 THEN W=1,5707896-W

30630 Y=W*37,29577951: RETURN

Arc Tangent

Computes: ATN(X), angle whose tangent is X
Input: X

QOutput: C in degrees, A in radians

Also uses: B,T internally. Value of X is changed.
Other subroutines required: None

167

168

How to call: GOSUB 30690

Space Guns

3000® END

30660 REM *ARCTANGENT* INPUT X, OUTPUT CHA

39679 REM C IS IN DEGREES. A IS IN RADIANS

30680 REM ALSO USES BT INTERNALLY

30690 T=SGN(X): X=ABS(X): C=0

3070@ IF X>1 THEN C=1: X=1/X

30710 A-K*X

30720 B-((2,8B623E-3*A-1.61657E-2) *A+ \
+29096BE-2) *A

30730 B=((((B-7,528B9E-2) %A+, 106563) *A-
+142089)*A+,199936) *A

30740 A=((B-,333332)*%A+1)*X

3075@ IF C=1 THEN A=1.570796-A

30760 A=T*A: C=A*57,29577951: RETURN

APPENDIX H

Sample Programs

10 CLEAR 10090
20 FOR ¥ = @0 TO 1

30 C = (¥Y+1)*16 |
49 S$(Y) = CHR$(131+C)+CHR$(139+C)+CHR$%
(130+C)
50 S2%(Y) = CHR$(128+C)+CHR$(136+C)
6@ NEXT Y

100 FOR ¥ = @ TO 1

105 C = JOYSTK(Q)

110 ACY) = JOYSTRK(Q+Y*2)
120 B(Y) = JOYSTR(1+(Y*Z))

130 IF A(Y) » 39 THEN A(Y) = 38

140 B(Y) = INT(B(Y)/4) * 4

150 L(Y) = B(Y) * B + INT(A(Y)/2)

16@ IF L(Y) »= 48B® THEN L(Y) = L(Y) - 3Z
170 NEXT Y

180 CLS(@)

190 FOR ¥ = @ TO 1

200 PRINT @ L(Y) s S%(Y) 3

210 PRINT B L(Y)+32y S2%(Y) 3
220 NEXT Y

500 P = PEEK(G5280)

519 IF P = 125 OR P = 253 THEN GOSUB 1@0¢
530 GOTO 100

800 REM

900 REM FIRE GUN ROUTINE
1002 W1 = INT(B(1)/2)+1

1812 H1 = A(L) + 2

1020 IF A(Ll) » A(@) THEN 1100

1030 FOR H = H1 + 3 TO G3

1040 IF PODINT(HsY1) = 2 THEN SOUND 10@,2
1250 SET(HV1,4)

1060 IF H <= H1 + 4 THEN 1289

19790 RESET (H-24+ V1)

1080 NEXT H

1999 RETURN

1100 FOR H = H1 TO 4 STEP -1

1119 IF H = H1 THEN 116¢@

1120 IF POINT(H-4,V1)=2 THEN SOUND 100.2
1130 SET(H-4,V1.,4)

1140 IF H *= H1 - 2 THEN 11iG@

115@ RESET(H-2 V1)

1160 NEXT H

1170 RETURN

Bouncing Ball

5 CLEAR 12

8 INPUT "BACKGROUND COLORC(1-8)"3
8 CLS(EC)

10 ¥=13: ¥=13

15 XM = 2@: YM = 15

o]

400 F=0
410 XT = Xz YT = Y
420 % = X + XM: Y = Y + YM

430 THX = X2 TY = ¥: Tl = XM: T2 = ¥M
449 GOSUB 1000

450 X = TH: ¥ = T¥: XM = T1l: ¥YM = T2
455 H = INT(XT/2)%2: V = INT(YT/2)*Z2
46@ SET(HsV,sC): SET(H+1,U,4C)

462 SET(HV+1,4C): SET(H+1,V+14C)

479 RESET (X Y)

489 GOTO 409

499 REM

1009 REM CHECK BOUNDARIES

1919 IF TX » B3 THEN TX = 63: T1 = -T1
1020 IF TX < @ THEN TX = @: T1 = -T1
1830 IF TY » 31 THEN TY = 31: TZ = -TZ
1040 IF TY « @ THEN TY = @: T2 = -T2
1299 RETURN

Blackjack

5 REM BUILD ARRAYS

7 DIM S$(5) s N$(13), D(B2)s P(3) s C(3)

1 DATA 16 32, 48, 96 1

20 DATA *ACE*%, *TWO*%*, *THREE*,» *FOUR*
*¥FIVE#, *SIX**, SEVEN*, EIGHT*, *NINE%*,
TEN%, * JACK*, QUEEN*, *KING*

30 FOR X = 1 TO 5: READ 5: S%(X) =
CHR$(143+8): NEXT X

40 FOR X = 1 TO 13: READ N#$: N$(X) = N&: NEXT

45 CLS(B)

169

46 PT = @: CT = @

47 FOR X = 1 TO 5: P(X) = @: C(X) = @: NEXT

S@ FOR X = 1 TO 52: D(X) = Xz NEXT X

G@ FOR ¥ = 1 TO S: GOSUB 10@@: P(X) = Z: NEXT

7@ FOR ¥ = 1 TO 3: GOSUB 1@@@: C(X) = Z: NEXT

72 REM

75 REM PRINT PLAYER’S HAND

80 L = 257

99 FOR M = 1 TO Z2: C = P(M): GOSUB 5¢@: PT =
PT 4 Tg NEXT

100 FOR M = 1 TO 3: § = 5: GOSUB Z0@@: NEXT

102 REM

105 REM PRINT COMPUTER ‘S HAND

110 L = 10

12¢ S = 5: GOSUB Z000

130 C = C(2): GOSUB S@@: CT = CT + T

150 PRINT @ 8+ "COMPUTER’S HAND" 3

160 PRINT @ 267+ "YOUR HAND"3

200 L = 269: K = 3

205 PRINT @ 230 "ANOTHER CARD(Y/N)7?" 3

210 R$=INKEY$: IF R$=" " THEN 210

220 IF R$ = "N" THEN Z35

230 C = P(K): GOSUB 500

249 PT = PT + T

242 FOR X = 1 TO K

244 IF PT > 21 AND (P(X)-1)/13 = INT((P(X)-
1)/13) THEN PT = PT - 10

246 NEXT X

247 IF PT » 21 THEN PRINT @ 488, "YOU

BUSTED!!!"5: GOTO 400
250 K = K + 1: IF K <6 THEN 2@5
255 L=10

260 C = C(1): GOSUB 5@0: CT = CT + T

36@ IF PT <=CT THEN 380

37¢ PRINT @ 484 "CONGRATULATIONS WINNER!"3
375 GOTO 399

389 PRINT @ 487+ "TOUGH LUCK s KID" 3

390 REM
499 PRINT @ 230 "ANOTHER GAME(Y/N)7?"3
419 Re=INKEY$: IF R&=" " THEN 410

42¢ IF R$ = "Y" THEN 45 ELSE END
432 IF N =1 THEN T = 11

S00 GOSUB 40e@: GOSUB 2000
510 GOSUB 320@: RETURN

900 REM

1000 REM DEAL THE CARDS
1005 Z = RND(32)

1910 IF D(Z) = @ THEN 1000
1020 D(Z) = @

1038 RETURN

1900 REM

2000 REM PRINT THE SUITS
2005 L1 = L

2010 FOR X = 1 TO G

2015 L1 = L1 + 32

170

2020 FOR Y =1
2030 PRINT @ L1

T0 5
+ (Y-1)s 8%(8)3

2040 NEXT Y s¥
2045 L1 = @: L =L + B

2050 RETURN

2900 REM

3000 REM PRINT THE NUMBERS

3005 L1 = L - B

3010 FOR ¥ = 1 TO G

3020 L1 = L1 + 32

3030 PRINT @ L1+2, MID$(N$(N) s X» 1)3
3040 NEXT ¥

3045 L1 = @

3050 RETURN

3900 REM

4900 REM COMPUTE NUMBER AND SUIT
4005 S = INT((C-1)/13)+1

4010 N = C-(S*13-13)

4915 REM COMPUTE POINT VALUE

4020 IF N

403@¢ IF N

11 OR N =12 OR N =13 THEN T

1 THEN T = 11

4949 RETURN

Kaleidoscope

10
20
30
a0
50
14
g9¢@

100
110
120
130

CLS®

X=RND(3Z)-1
Y=RND(16) -1
Z=RND(9) -1
GOsuB9Y

GOTOZ0

IFZ=0 OR RND(7)=3THEN15@
SET(31-X16+Y +2)
SET(31-Xs15-Y,2)
SET(32+X16+Y +2)
SET(32+X+15-Y +Z)

149 RETURN

150 RESET(31-X4+16+Y)
160 RESET(31-X4+13-Y)
17@ RESET(32+X16+Y)

180
190

RESET(32+X+15-Y)
RETURN

Electronic Dice

4 CLEAR 2000

5 CLB(3)

6 DIM DB$(G)

8 DIM DF(21) s P(B)» D%(B)
10 REM FACES IF DIE
20 FOR X = 1 TO 21

30 READ DF (X

4@ NEXT X

10

171

S® DATA 39

6@ DATA 14 G4

79 DATA 144+ 39, G4

80 DATA 14, 20, 58 B4

99 DATA 14, 20, 39, 58 B4
190 DATA 14, 20, 36y 42+ 5B+ G4
165 FOR X = 1 TO 7

119% REM

120 REM PLACE IN ARRAY DF
130 FOR X = 1 TO 6

14® READ P (X

150 NEXT X

160 DATA 14+ 2+ ds 7+ 11 16

165 REM

170 REM BUILD DIE STRING
175 FOR X = 1 TO 6

180 M = P(X)

185 FOR ¥ =1 TO 7

19@¢ FOR 2 = 1 T0O 11

192 IF (¥Y-1)*11+2Z <> DF(M) THEN 200
194 D$(X) = D$(X) + CHR$(128)

196 M = M + 1

197 IF M 22 THEN M = @

198 IF M ¥ THEN M = @

199 GOTO 230

200 D$(X) = D$(X) + CHR$(143+96)
230 NEXT Z
249 FOR Z
250 D$ (X
260 NEXT Z
270 NEXT ¥ X

480 REM

490 REM ROLL DICE

500 FOR T =1 T0 10

510 A=RND(B): B = RND(B)

520 PRINT @ 35 D$(A);

530 PRINT @ 273 D$(B) 3

5S40 NEXT T

55@ PRINT @ 113+ "PRESS ANY KEY"3
S6@ PRINT @ 145 "FOR NEXT ROLL"S
570 K$=INKEY$: IF Ké=" " THEN 570
58@ GOTO 500

TO0 31-11

=0
= D$(X) + CHR$(143+32)

Play Back Your Tune

S DIM A(25) sy S%(13) sy B(Z22Q): Y=1

19 FOR X = 1 TO 25: READ A(X): NEXT X
20 DATA B89, 99, 108y 117 125

30 DATA 133 140, 1474 153, 159

49 DATA 165, 170 176, 18@, 185

50 DATA 189 193 197 200, 204

6O 207 210+ 213 216+ 218

70 FOR X = 1 TO 13: READ 3%(X): NEXT X
B0 DATA AsW+SHEsDsF+T+GsY sH U »J K

99 CLS

172

92 PRINT @ 167, "COMPOSE YDUR SONG"

94 PRINT @ 227 "USE KEYS ON ZND & 3RD ROWS"
96 PRINT @ 2892 "PRESS «<X* WHEN FINISHED"

100 P$ = INKEY%

11@ IF P$ = " " THEN 100
115 FOR X 1 T7TO 13

120 IF P$ <> S%(X) THEN 130
132 SOUND A(X) s 5

140 B(Y) = X

145 Y = ¥ + 1

150 NEXT X

1

160 IF P$ <> "X" THEN 100
165 CLS
170 PRINT 2024+ "SONG PLABACK"

@
174 PRINT @ 264 "WHICH KEY(1-11)"3
176 INPUT K

189 FOR X =

190 SOUND A

200 NEXT X

219 GOTO 165

1 TD ¥-1
(B(X)Y+K) s+ 3

Learn That Tune

19 DIM M(3@)» T(B)
20 FOR B =1 TO 8

3@ READ T(B)

49 NEXT B

50 X =1

6@ M(X) = RND(8)

70 FOR ¥ = 1 TO X

8@ CLS(M(Y))

99 PRINT B 239 M(Y) 3
199 SOUND T(M(Y))» 8
119 NEXT Y

120 CLS

130 PRINT @ 231 "PLAY BACK THE TUNE"}

1d4@ FOR ¥ = 1 TO X

1507 =1

160 K$ = INKEY

170 T =T + 1

180 IF T » 15@ THEN 312
199 IF K$ = " " THEN 162
200 K = VAL(K%$)

2190 IF K <% M(Y) THEN 310
220 CLBIK)

230 PRINT B 239 K3

249 SOUND T(K)+ 3

250 NEXT Y

260 X = X + 1

270 CLS: PRINT @ 230 "LISTEN TO NEXT TUNE"3

280 FOR T = 1 TO 500: NEXT T

290 CLS: PRINT @ 230 "LISTEN TO NEXT TUNE"3

302 GOTO G©
310 CLS(2)
320 PRINT @ 235 "YOU LOSE";

173

330 SOUND 1, 25
349 DATA 89, 108, 125, 133, 147, 159, 170
176

Inventory Shopping List
S CLEAR 20@@: DIM 5%(100)

19 REM INVENTORY/SHOPPING LIST

20 CLS

30 PRINT @ 71 "DO YOU WANT TO--"

49 PRINT @ 134, "(1) INPUT ITEMS"

5¢ PRINT @ 166 "(2) REPLACE ITEMS"

B® PRINT @ 198, "(3) ADD TO THE LIST"

7% PRINT @ 230 "(4) DELETE ITEMS"

B® PRINT @ 262+ "(5) PRINT ALL ITEMS"

99 PRINT @ 294, "(6) S5AVE ITEMS ON TAPE"
100 PRINT @ 326 "(7) LOAD ITEMS FROM TAPE"
119 PRINT @ 385 "(1-7)"3

120 INPUT M
130 IF M < @ OR M » 7 THEN 1@
149 ON M GOSUB 1000, 2000 1020, 3000, 4000,

SQ00 s GOOD
150 GOTO 10
900 REM
1000 REM INPUT/ADD ITEMS
1010 ¥ =1

102¢ CLS: PRINT @ 8, "INPUT/ADD ITEMS"

1930 PRINT @ 34y "PRESS <ENTER:> WHEN
FINISHED"

1049 PRINT: PRINT "ITEM" Y3

1045 INPUT S&%(Y)

1050 IF S$(¥) = " " THEN RETURN

1060 ¥ = ¥ + 1

197@ GOTO 104¢

190@ REM

2000 REM REPLACE ITEMS

2005 N = @

2010 CLS: PRINT 8 9, "REPLACE ITEMS"

2020 PRINT @ 34 "PRESS <ENTER: WHEN
FINISHED"

2039 PRINT: INPUT "ITEM NO. TO REPLACE"3 N

2049 IF N = @ THEN RETURN

2050 INPUT "REPLACEMENT ITEM" i S$(N)

206¢ GOTOD zZoo@

2900 REM

3000 REM DELETE ITEMS

3005 N = 0

3910 CLS: PRINT @ 9+ "DELETE ITEMS"

3029 PRINT @ 34+ "PRESS <ENTER:> WHEN

FINISHED"
303% PRINT: INPUT "ITEM TO DELETE": N
3035 IF N » ¥-1 THEN 3030
3040 IF N = @ THEN RETURN
3050 FOR X = N TO ¥-2
30G@ S$(X) = 5% (X+1)

174

3070 NEXT X
3080 S%(X) = " "
30890 Y = ¥-1
3100 GOTO 300¢

38900 REM

4209 REM PRINT ITEMS
4019 FOR X = 1 TO ¥-1 STEP 15
4920 FOR 2 = X TO ¥=14

4930 PRINT Z3§ Ss(Z

4040 NEXT Z

4050 INPUT "PRESS <ENTER> TO CONTINUE"3 C%
4060 NEXT X

4@7® RETURN

4900 REM

S000 REM SAVE ITEMS ON TAPE

5019 CLS: PRINT 135, "SAVE ITEMS ON TAPE"
S@29 PRINT @ 234, "FOSITION TAPE"

5030 PRINT @ 294, "FRESS PLAY AND RECORD"
5040 PRINT @ 388 "FRESS <{ENTER:> WHEN READY"
5050 INPUT R%

S@G60 OPEN "O"s #-14s "LIST"

5070 FOR X =1 70 ¥-1

508% PRINT #-14 S3(X

5090 NEXT X

5109 CLOSE #-1: RETURN

5900 REM

G00@ REM LOAD ITEMS FROM TAPE

610 CLS: PRINT @ 136, "LOAD ITEMS FROM TAPE"

B@ZQ® PRINT @ 235, "REWIND TAPE"

B@3® PRINT @ 300, "PRESS PLAY"
G@4@ PRINT @ 388, "PRESS <ENTER:» WHEN READY"
B@5S® INPUT R$%

G@6@ OPEN "I", #-1, "LIST"
6070 Y = 1

6@8@ IF EOF(-1) THEN G12@
BQ9@ INPUT #-14 S$(Y)

@95 PRINT S$(Y)

Biod ¥ = ¥ + 1

G11o GOTO G@BY

612@ CLOSE #-1: RETURN

Bar Graph

10
20

30
4
S0
GO
70
=1
99

DIM A(S+3,2) » A%(5)
DATA UTILITIES, PERSONNEL, SUPPLIES,
RENT» TRAVEL

FOR X = 1 TO 5

READ A% (X

CLS

PRINT @ 139, "EXPENSES"

PRINT @ 175 - INT(LEN(A$(X))/2) ASTXO
PRINT :

FOR ¥ = 1 TO 3

199 PRINT "DEPT" ¥
110 INPUT "BUDGETED"§ ACX,Ys1)

175

176

120 INPUT "
130 NEXT ¥
140 NEXT X
150 CLS

ACTUAL"S ACX Y »2)

160 PRINT @ 133 "WOULD YOU LIKE TO SEE"

1790 L = 203
180 FOR X =
199 PRINT @
200 L = L +
210 NEXT X

220 PRINT @
230 INPUT X

1 70 5
Ly X3 AS(X
32

a6d ., "(1-3)"

235 C(1)=0:C(2)=0:LC(1)=0:LC(2)=0

249 FOR Y =
259 C(1)
260 C(2)
270 NEXT 3
280 IF C(2)

-

1 70 3
ACKY +12+C (1)
ACKY 22) + C(2)

» C(1) THEN 319

290 LC(1)=3@: LC(2)=INT(C(2)/C(1)*30)
309 GOTO 320
310 LC(2)=30@: LC(1)=INT(C(1)/C(2)*30)

TO CONTINUE" S

320 P = 128

330 CLS(@)

349 PRINT @ 11+ "EXPENSES";

350 PRINT @ 47 - INT(LEN(AS(X))/2) s AS(X) S
369 PRINT @ 97, "BUDGETED" 3

370 PRINT @ 257 "ACTUAL" 3

380 PRINT @ 448, CHR$(159)+CHR$(159) 3
39¢ PRINT @ 451, "DEPT 1"3

4@@ PRINT @ 459, CHR$(175)+CHR$(173) 3
419 PRINT @ 462, "DEPT 2"3

423 PRINT @ 470 CHR$(191)+CHR$(191) 3
439 PRINT @ 473, "DEPT 3"3

449 PRINT @ 480, "PRESS ANY KEY

459 FOR M = 1 TO 2

469 FOR N = 1 TO 2

47¢ P1 = P + 32

489 FOR ¥ =1 T0 3

490 DY) = INT(ACK Y M) /CCL1)*LC(1))
509 FOR 0 = 1 TO D(Y)

5190 PRINT @ Pl CHR$(143+16%Y) 3

S52¢ P1 = P1 + 1

530 NEXT O
5S40 NEXT ¥
SSO P =P +
560 NEX
570 P =

580 NEX

590 K$ = IN

Speed Reading

190 REM
20 CLS: PRI
MINUTE"

KEY$: IF K&=" " THEN 390
609 GOTO 150

SPEED READING

NT @ 32 "HOW MANY WORDS PER

30 1
a0 F

NPUT
OR X

“DO YOU READ" 3§ WPNM
=1 T0O 23

6@ READ A% : PRINT @ 256 A%
70 FOR Y = 1 TO (3G@/WPM) * 4B@ : NEXT Y

80 R
90 N
100
112
120
130
149
150
160
17@
182
190
200
210
220
230
249
250
260
270
280
290
300
310
320

EM

Y LOOP SETS LINES/MIN

EXT X : END

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Music Composer
190 INPUT "LENGTH(1-1@)"3% M

SCARLETT OHARA WAS NOT BEAUTIFUL
BUT MEN SELDOM REALIZED IT WHEN
CAUGHT BY HER OWN CHARM AS THE
TARLETON TWINS WERE. IN HER FACE
WERE TOO SHARPLY BLENDED

THE DELICATE FEATURES OF HER
"MOTHER» A COAST ARISTOCRAT OF"
"FRENCH DESCENT» AND THE HEAUY"
ONES OF HER FLORID IRISH FATHER
"BUT IT WAS AN ARRESTING FACE:"
"POINTED OF CHIN: SQUARE OF JAW"
HER EYES WERE PALE GREEN
"WITHOUT A TOUCH OF HAZEL »"
STARRED WITH BRISTLY BLACK
LASHES AND SLIGHTLY TILTED

"THE ENDSs ABOVE THEMs HER THICK"
"BLACK BROWS SLANTED UPWARDS "
CUTTING A STARTLING OBLIGQUE LINE
IN HER MAGNOLIA-WHITE SKIN--THAT

"SKIN S0 PRIZED BY SOUTHERN WOMEN"

AND S0 CAREFULLY GUARDED WITH
"BONNETS s VEILSs AND MITTENS"
AGAINST HOT GEORGIA SUNSB

20 M = M*d

39 INPUT "TEMPO (1-4)"3 T1
49 IF T1 = 4 THEN G

50 T = T1 : GOTO 7@

B0 T = 8

70 FOR K = 1 TO M*B

80 GOSUB 1009
90 B - RND(3) * T
100 SOUND P+ B

119 CLS(S)

120 NEXT K

130 IF RND(1@) <=8 THEN 130

14@ SOUND 125, 1B6*T

143 END

150 SOUND 90 1G6*T

160 END

1000 X = RND(100)

1010 IF ¥ <= 20 AND X <=25 THEN P = 9¢ : § =
1020 IF ¥ > 2@ AND ¥ <=25 THEN P = 100 : § =
1930 IF X » 25 AND X <= 40 THEN P = 125 : §
1040 IF ¥ » 4@ AND ¥ <= 55 THEN P = 133 : §
1050 IF ¥ » 55 AND ¥ <= 75 THEN P = 147 : §

nonou

—

3

S I |

177

178

1060 IF X > 75 AND X <= 85 THEN P = 159 : 8§ = B
1070 IF %X > 85 AND X <= 95 THEN P = 176 : § = 7
1080 IF X » 95 THEN P = 58 : § = 8

1090 RETURN

Memory Test
This program uses an array to test both yours and your computer’s
memory:
S DIM A(7)
1@ PRINT "MEMORIZE THESE NUMBERS"
15 PRINT "YOU HAVE 1@ SECONDS"
20 FOR X =1 70 7
3@ A(X) = RND(100)
49 PRINT A(X)
50 NEXT X
BO® FOR X = 1 TD 460 % 10 : NEXT X
79 CLS
80 FOR X = 1 TOD 7
90 PRINT "WHAT WAS NUMBER" X

/0

AO
BS

CN

DD

DN

DS

100 INPUT R
119 IF A(X) = R THEN PRINT "CORRECT" ELSE

PRINT "WRONG - IT WAS" A(X)

120 NEXT X

APPENDIX |

Error Messages

Division by zero. You asked the computer to divide a num-
ber by 0, which is impossible.

Attempt to open a data file that is already open.

Bad subscript. The subscripts in an array are out of range.
Use DIM to dimension the array. For example, if you have
A(12) in your program, without a preceding DIM line that
dimensions array A for 12 or more elements, you will get
this error.

Can’t continue. You are using the CONT command and are
at the end of the program.

Attempt to redimension an array. You' can dimension an array
only once. For example, you cannot have DIM A(12) and
DIM A(50) in the same program.

Device number error. You can use only three devices with
OPEN, CLOSE, PRINT, or INPUT: 0, -1, or -2. If you use an-
other number, you'll get this error.

Direct statement. The data file contains a direct statement.
This can be a result of loading a program with no line
numbers.

FC

FD

FM

LS

NF

NO

OD

oM

(ON

oV

RG

SN

ST

™

lllegal Function Call. You used a parameter (number) with a
BASIC word that is out of range. For example, SOUND
(260,260) or CLS(10) causes this error. Also RIGHT$(S$,20),
when S$ contains only 10 characters, causes the error. Other
examples are a negative subscript, such as A(-1), or a USR
call before the address has been poked in.

Bad file data. You printed data to a file or input data from a
file, using the wrong kind of variable for the corresponding
data. For example, INPUT #-1,A, when the data in the file is
a string, causes this error.

Bad file mode. You attempted to INPUT data from a file
OPEN for OQUTPUT (O), or PRINT data into a file OPEN for
INPUT (D).

Illegal direct statement. You can use INPUT only as a pro-
gram line, not a command line.

Input past end of file. Use EOF to check to see when you've
reached the end of the file. When you have, close it.

Input/Output error. Often this is caused by trying to input a
program or a data file from a bad tape.

String too long. A string may be a maximum of 255
characters.

NEXT without FOR. NEXT is being used without a matching
FOR statement. This error also occurs when you have the
NEXT lines reversed in a nested loop.

File not open. You cannot input or output data to a file until
you have opened it.

Out of data. A READ was executed with insufficient data for
it to READ. A DATA statement may have been left out of the
program.

Out of memory. All available memory has been used or
reserved.

Out of string space. There is not enough space in memory to
do your string operations. Use CLEAR at the beginning of
your program to reserve more string space.

Overflow. The number is too large for the computer to
handle.

RETURN without GOSUB. A RETURN line is in your pro-
gram with no matching GOSUB.

Syntax error. This could result from a misspelled command,
incorrect punctuation, open parenthesis, or an illegal charac-
ter. Type the program line or command again.

String formula too complex. A string operation was too com-
plex to handle. Break up the operation into shorter steps.

Type Mismatch. This occurs when you try to assign numeric
data to a string variable (A$=3) or string data to a numeric
variable (A =""DATA").

179

180

UL Undefined line. You have a GOTO, GOSUB, or other
branching line in the program asking the computer to go to
a nonexistent line number.

APPENDIX]
BASIC Summary

Statements

BASIC statements are commands that tell your computer to do some ac-
tion, such as printing a message on the screen. Use BASIC statements as
lines in your program.

AUDIO Connects or disconnects cassette output to TV speaker.

CLEAR n,h Reserves n bytes of string storage space. Erases variables. h
specifies highest BASIC address.

CLOAD Loads specified program file from cassette. If you do not
specify filename, the first file encountered is loaded. Filename can
be a maximum of 8 characters.

CLOADM Loads machine-language program from cassette. You may
specify an offset address to add to the loading address.

CLOSE#dev Closes access to specified file. If you do not specify de-
vice, all open files are closed.

CLS ¢ Clears display to specified color c. If you do not specify color,
green is displayed.

CONT Continues program execution after you have pressed (BREAK
or used the STOP statement.

CSAVE Saves program on cassette (program name can be a maximum
of 8 characters). If you specify A, program is saved in ASCII
format.

DATA Stores data in your program. Use READ to assign data to
variables.

DIM Dimensions one or more arrays.
END Ends program.

EXEC (address) Transfers control to machine-language programs at
specified address. If you omit address, control is transferred to ad-
dress set in last CLOADM.

FOR...TO STEP/NEXT Creates a loop in program that the computer
must repeat from the first number to the last number you specify.
Use STEP to specify how much to increment the number each
time through the loop. If you omit STEP, the computer uses 1.

GOSUB Calls a subroutine beginning at specified line number.
GOTO Jumps to specified line number.

IF test THEN ... action 1 ELSE action 2 Performs a test. If it is true,
the computer executes action 1_If it is false, then the computer
executes action 2.

INPUT Causes the computer to stop and await input from the
keyboard.

INPUT#-1 Inputs data from cassette.

LIST Lists (displays) specified linels) or entire program on screen.
LLIST Lists specified program line(s) or entire program to printer.
MOTOR Turns cassette ON or OFE

NEW Erases everything in memory.

ON...GOSUB Multiway branch to call specified subroutines.
ON...GOTO Multiway branch to specified lines.

OPEN m,#dev,f Opens specified file (f) for data transmission (m) to
specified device (dev). m may be | (Input) or O (Output). dev may
be #0 (screen or keyboard), #-1 (cassette), or #-2 (printer).

POKE location, value Puts value (0-255) into specified memory
location.

PRINT Prints (displays) specified message or number on TV screen.

PRINT # dev, data list Prints data list to specified buffer. (See OPEN.)
To separate items within data list, use either commas or
semicolons.

PRINT #-1 Writes data to cassette.
PRINT #-2 Prints an item or list of items on the printer.
PRINT TAB Moves the cursor to specified column position.

PRINT @ scr pos Prints specified message at specified text screen
location.

READ Reads the next item in DATA line and assigns it to specified
variable.

REM Allows insertion of comment in program line. The computer ig-
nores everything after REM.

RESET (X, ¥) Resets a point.

RESTORE Sets the computer’s pointer back to first item on the first
DATA line.

RETURN Returns the computer from subroutine to the BASIC word fol-
lowing GOSUB.

RUN Executes a program.
SET (X,Y,C) Sets a dot at specified text screen position.

SKIPF Skips to next program on cassette tape or to end of specified
program.

SOUND tone, duration Sounds specified tone for specified duration.

STOP Stops execution of a program.

181

182

Funétions

BASIC functions are built-in subroutines that perform some kinid of
computation on data, such as computing the absolute value of a num-
ber. Use BASIC functions as data within your program lines.

ABS (numeric) Computes absolute value:
ASC (str) Returns ASCII code of first character of specified string.
CHRS$ (code) Returns character for ASCII, control, or graphics code.

EOF (dev) Returns FALSE = O if there is more data; TRUE = -1 if
end of file has been read.

INKEY$ Checks the keyboard and returns the key being pressed (if
any).

INT (numeric) Converts a number to an integer.

JOYSTK (j) Returns the horizontal or vertical coordinate (j) of the right
or left joystick:

0 = horizontal, right joystick
1 = vertical, right joystick

2 = horizontal, left joystick
3 = vertical, left joystick

LEFT$ (str, length) Returns left portion (length characters) of a string.
LEN (str) Returns the length of a string.
MEM Finds the amount of free memory.

MID$ (strpos,length) Returns a substring of another string starting at
pos. If you omit length, the entire string right of position is
returned.

PEEK (mem loc) Returns the contents of a specified memory location.

POINT (S,Y) Tests whether specified graphics cell is on or off. x (hori-
zontal)=0-63; y (vertical)=0-31. The value returned is —1 if the
cell is in a text character mode; O if it is off; or the color code if it
is on. See CLS for color codes.

RIGHTS$ (str,length) Returns right portion of string.

RND(n) Generates a ““‘random’’ number between 1 and n if n > 1, or
between 0 and 1 if n = 0.

SGN (numeric) Returns sign of specified numeric expression:
—1=negative; 0=0; +1=positive.

SIN (numeric) Returns sine of angle given in radians.
STR$ (numeric) Converts a humeric expression to a string.

USR (numeric) Calls user’s machine-language subroutine starting at
the address 275,276 (MSB,LSB).

VAL (str) Converts a string to a number.

Operators

BASIC operators perform some kind of operation on data, such as add-

ing two numbers.

-+

*’/

+/'_

& B e i B S
NOT

AND

OR

Unary negative, positive

Multiplication, division

Addition and concatenation, subtraction
Relational tests

183

INDEX

$ See strings
; See print punctuation
, See print punctuation
20
@ 11
?/0 ERROR 10
LS ERROR 54
?0S ERROR 53
2SN ERROR 10
¢TM ERROR 14
ABS 68
alphabetizing See sorting
analyzing 117
AND 67
answers to exercises 155
arrays 105
arrays, multidimensional 117
ASC 87
ASCII See ASC and character codes
Asteroids, program 81
AUDIO 83
BASIC Summary 180
black on green 11
Blinking Computer, program 75
BLKIN 143
BLKOUT 144
Boolean algebra 130
Boolean operators AND, OR, NOT 130
Card Dealing, program 121
character codes
listing 153
use of 87
CHR$ See character codes
CHROUT 144
CLEAR 54,132, 141
CLOADM 141
CLOSE 100
CLS 10
color codes
reference 150
use of 10
concatenate (+) 53
CONT 65
correcting See error
Craps, program 41
Dancing Computer, program 91
data
sorting 114
storing on tape 99
Deal the Cards, program 108
deleting, program line = 20
Display Control Register 131
Display Mode Selection, table 136
division (/) 9
Do-lt-Yourself Programs See answers to exercises
Drawing Board, program 124
E notation 69
Electronic Piano, program 59
END 35

error

messages 178
program line 20
typographical error
exponents 69

FOR 24

functions, BASIC 182
games 38

general-purpose subroutines

GETKEY 141
GIVABF 142
GOSUB 48
graphics

character codes 88, 150

strings 89
modes 124
modes, table 136

7

graphics screen location

grid 152

use of 73
green on black 12
IF 35
information See data
INKEY$ 59
INPUT 19
joysticks 76
JOYSTK 76
LEFT$ 54

LEN 53

LIST 18

LLIST 113

loops 30-39

machine-language subroutines

mapping functions 134

MEM 65

memory 13

MID$ 55

mistake, correcting 7
MOTOR 83
multiplication (x) 9
musical tones
reference 149
use of 33
nested loop 31
NEXT 24

numbers 9
numeric data 15
numeric, arrays 105
ON GOSUB 66
ON...GOTO 67
OPEN 99

OR 67

Page-Select Register 131

Painting, program 78
parentheses, rules on
PEEK 124, 130

pixel 129

plus (+), addition 53
POINT 80

POKE 124, 130, 141
PRINT 8

51

128

141

185

PRINT (@ locations

grid 277

use of 40
PRINT punctuation, rules 21
PRINT #-1 100
PRINT #-2 112
printer, use of 112
prompt 7
RESET 75
resolution 129
RESTORE 44
RETURN 48
reversed colors 11
reversed colors, SHIFD(0) 113
RIGHTS 54
RND 38
Rolling the Dice, program 40
ROM subroutines 143
RUN 18
Russian Roulette, program 39
sample programs 168
SET 72
SGN 68
singing 33
sorting 114
SOUND 11, 27
statements, BASIC 180
STEP 26
STOP 65
STR$ 68
STRING DATA 15
string, arrays 110
string(s) 9, 14
subroutines

descriptions 48

ROM routines 143

general purpose 128
subscripted variables 105
Talking-Computer Teacher, program
taping 99
technical information 123-45
THEN 35
Three Blind Mice, program 34
tone 11
Typing Test, program 62
USR 142
variables 19-22
variables, subscripted 105
VDG 131
Video Display Generator Register
VIDEO RAM 130
VIDEO RAM Page Selection, table
Vocabulary, program 43
Voting Tabulation, program 105
Word Processing, program 112
Writing an Essay, program 111
WRTLDR 144

186

83

131

137

" RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A. CANADA
FORT WORTH, TEXAS 76102 BARRIE, ONTARIO, L4M4WS5

PRINTED IN KOF
9A4 ’ 811015320 A

