
TANDY*

GETTING
STARTED

Getting Started with Color BASIC:
© 1984 Tandy Corporation, Fort Worth, Texas 76102 U.S.A.

All Rights Reserved.

Reproduction or use, without express written permission from Tandy Corporation, of any

portion of this manual is prohibited. While reasonable efforts have been taken in the prep-

aration of this manual to assure its accuracy, Tandy Corporation assumes no liability re-

sulting from any errors or omissions in this manual, or from the use of the information

contained herein.

TRS-80 Color BASIC System Software:
© 1984 Tandy Corporation and Microsoft.

All Rights Reserved.

The system software in the Color Computer is retained in a read-only memory (ROM) for-

mat. All portions of this system software, whether in the ROM format or other source

‘code form format, and the ROM circuitry, are copyrighted and are the proprietary and

trade secret information of Tandy Corporation and Microsoft. Use, reproduction, or publi-

cation of any portion of this material without the prior written authorization by Tandy Cor-

poration is strictly prohibited.

10987654321

Welcome, Newcomers!

If you don’t know anything about computers and want us to spare you the
long, technical explanations, relax—this book’s for you!

Using this as your guide, you can enjoy your computer right away. The first
section’s all you need to get going. The rest is frills.

You'll find—especially at first—that this book has you do many games,
songs, and “‘fun’’ programs. If you want to do “practical’’ programs in-
stead, be patient. You'll find plenty of that later. We start you off with the
fun programs because they're the quickest way to feel at ease with the
computer. Once you feel it’s truly an extension of yourself, you can make it
do whatever you want.

So sit down and spend a couple of hours with the computer. Type whatever
you want. Play with it. Make it do something strange. In other words . . .
feel comfortable with it. It can do endless things for you.

... And Hello, Old-Timers!

We haven't forgotten you. If you already know how to program, see your

Quick Reference Card. It summarizes all Color BASIC words. If you want to

learn more about Color BASIC words, use the index of this book to find the

pages that describe them.

To learn what the Color Computer is capable of, read Section IV. It shows

how to program high-resolution graphics and call machine-language

programs.

To Get Started...

Connect your computer by referring to Introducing Your Color Computer 2
or Introducing Your Deluxe Color Computer.

Then power up your computer:

1. Turn on your television set.

2. Select Channel 3 or 4 on the television set.

3. Set the antenna switch to ““COMPUTER.”

4 ~ Turn on the computer. The POWER button is on the left rear of your
keyboard (when you’re facing the front).

This message appears on your screen:

COLOR BASIC ver.
© 1988 TANDY
OK

(v.r. is two numbers specifying which version and release you have.)

If you don’t get this message:

: Turn the computer on and off again.

. Adjust the brightness and contrast on your television set.

: Check all the connections.

If you still don’t get this message, refer to ‘Troubleshooting and Mainte-
nance” in Introducing Your Color Computer 2 or Introducing Your Deluxe
Color Computer.

Once you do get the above message, you’re ready to start.

How Do You Talk to a Computer?

In this book, you'll learn how to talk to your computer. That's all program-

ming is, by the way. Once you learn how to communicate, you'll be able to

get your computer to do whatever you tell it. (Well, almost.)

The computer understands a language called Color BASIC. Color BASIC is

a form of BASIC—Beginners All-purpose Symbolic Instruction Code. There

are lots of computer languages. Color BASIC just happens to be the

language your computer understands.

We'll introduce BASIC words in the order that it’s easiest to learn them.

When you get midway in the book, you may forget what one of the words

means. If this happens, look up the word in your Quick Reference Card.

?

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

CONTENTS

Section | THE BASICS

Meet Your Computer6 00505 c eee ee eee

PRINT SOUND CLS

Your Computer Never Forgets
(... unless you turn it off...) 2.0... eee ee eee

Strings Variables

See How Easy It is?.. 2.2 eee ee eee
NEW INPUT GOTO TURN PRINT, PRINT;
LIST IF/THEN

Count the Beat........ 0.0. e cc eee ee eee
FOR... TO...STEP NEXT

Sing Out the Time.............05 cae eee ees
cts Nested Loops

Decisions, Decisions... 21.0... eee ee eee ee ee

IF/THEN END

Games of Chance0 0c eee eee eee eens

RND PRINT@

School Days «sicseceas ee ieee sews ee gee ew em ema
DATA READ RESTORE INT CLEAR

Arithmetic. 0. e cece eee teen eee

GOSUB RETURN REM

A Gift with Words. ... 0.0.0... cece cece eee nes

LEN LEFT$ RIGHT$ MID$

A: Pop’ Quiz ...isnceseneermwemeue yw twee tne

INKEY$ VAL

More Basics! cncss emamaememe gees wee emerwese

STOP CONT MEM SGN ABS STR$
AND OR

Section I] DRAWING PICTURES

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Color the Screen ... 0...

SET RESET JOYSTK PEEK

Games of Motion.......... 0000 cece eee eee eee

POINT

The Talking-Computer Teacher..............0055
MOTOR AUDIO

Faster Graphics0.0 000 cece eee eee eee
ASCII CHR$

Let's Dance 2.0... teen

13

18

Section III GETTING DOWN TO BUSINESS
Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

TAPING sica cece nee ee ence ene emennes 99

OPEN CLOSE PRINT#-1 INPUT#-1

EOF

Managing Numbers............. 2000002 e eee eee 105
DIM

Managing Words5.- 20 0c eee eee ees 110
LLIST PRINT#-2

SOPING: sce cw anwa we gw eee 28 SR EAM EWE Lal ere mnie 114

Analyzing 2.0... cece cece teens 117
Multidimensional Arrays

Section IV A LITTLE BYTE OF EVERYTHING
Part A

Part B

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |
Appendix J

INDEX

High-Resolution Graphics.......... 0000s eee ee 124

Using Machine-Language Subroutines
with Color BASIC... 0... cc eee eee 141

APPENDIXES
Musical Tones... 0.0... ec cece eee eee 149
BASIC Colors and Graphics Characters........... 150
PRINT@ Screen Locations-.0000: 151

Graphics Screen Locations-..000se es 152
ASCII Character Codes 0. cc eee cece eee 153
Answers to ExerciSeS ... 2... cee eee eee eee eee 155
Subroutines 2.0.0... cece eee 164
Sample Programs 0.0 eee e eee eee eee ees 168
Error MesSageS ... 16... cece eee eee tenes 178
BASIC SUMMALY . «220: ¢eamaeeeweng amie iemswe es 180

cs (oO BEE BOER ERG depen ove mns ME RELER EE Swi mmo un 185

SECTION I

THE BASICS
In this section you'll learn how to program. Before you start, though, put
yourself in the right frame of mind...

Don’t try to do everything the “correct’’ way. Don’t try to understand
everything. Above all, please don’t take our word for anything!

Do have fun with your Color Computer. Try out your own ideas. Prove us
wrong (if you can). Type anything and everything that comes to mind.

Ready? Turn the page and begin.

CHAPTER 1

MEET YOUR COMPUTER

Have you connected and turned on your computer? Are you ready to give
it a first workout?

This chapter and the next introduce you to your computer—the way it
thinks, some of its talents, and even a couple of its quirks. By the time you
reach Chapter 3, you'll be ready to program . . . promise!

Type whatever you want. Then press the key. Don’t worry about
anything but the last line of type on your screen. It says:

OK

OK is the computer's ‘‘prompt.” It’s telling you, “OK, enough foolishness
...as soon as you are ready .. .”’ (It patiently waits for your command.)
You're the master—you tell the computer to do whatever you wish.

Give the computer your first command. Type this exactly as it is below:

PRINT "HI» I’M YOUR COLOR COMPUTER"

When you reach the right side of your screen, keep typing. The last part of
the message appears on the next line.

Now check your line. Did you put the quotation marks where we have
them? If you made a mistake, no problem. Simply press the key and the
last character you typed disappears. Press it again and the next to the last
disappears (... and so on and so on...).

C=
" All letters you type should be
BLACK with a GREEN
BACKGROUND. If they‘re

reversed (green with a black
background), press the

and (Q) (zero) keys at
the same time.

See the blinking light?
Wherever you see it, you can
type something.

Ready? This should be on your screen:

OK

PRINT "HI+ I’M YOUR COLOR COMPUT
ER"

Press the (ENTER) key and watch. Your screen should look like this:

OK
PRINT "HI+ I’M YOUR COLOR COMPUT
ER"

HI+ I’M YOUR COLOR COMPUTER

OK

\ /

Your computer just obeyed you by printing the message you have in
quotes. Have it print another message. Type:

PRINT "2"
Press (ENTER). The computer again obeys you and prints your next
message:

2

Try another one:

PRINT "2 + 2" (ENTER

The computer obeys you by printing:

2 + 2 pa =

You probably expect much more than an electronic mimic .. . maybe
some answers! Give your computer some numbers without the quotation

marks. Type:

PRINT 2 + 2 (ENTER

Much better. This time the computer prints the answer:

4

The quotation marks obviously have a meaning. Experiment with them
some more. Type each of these lines:

PRINT 5+4 (ENTER
PRINT "5+4" (ENTER
PRINT "S+4 EQUALS" 5+4 (ENTER
PRINT 6/2 "IS G/2" (ENTER The computer tito a

" au quotes as a journalist does.
PRINT ae ENTER the number's in quotes, the
PRINT 8/2 (ENTER computer must PRINT it ex-

: tly as it . If it’s not
Any conclusions on what the quotes do? igs ae ee

interpret it by adding, sub-
tracting, multiplying, or di-
viding it.

RULES ON STRINGS v NUMBERS

The computer sees everything you type as strings or numbers. If it’s in (J
quotes, it’s a string. The computer sees it exactly as it is. If it’s not in
quotes, it’s a number. The computer figures it out like a numerical
problem.

A Color Calculator, No Less!

Any arithmetic problem is a snap for the computer. Do some long division.
Type:

PRINT "3862 DIVIDED BY 13.2 15" 3862/13.2 (ENTER

Do a multiplication problem:

PRINT 1589 * 23 (ENTER

Notice that the computer's multiplication sign is an asterisk (*), rather than
the sign you use in math (X). [he computer's so precise that it would get the
X multiplication sign mixed up with the X alphabetical character.

Try a few more problems:

PRINT "iS * 2 =" 15%#2 (ENTER Notice how the computer
PRINT 18 * 18 "IS THE SQUARE OF 18" (ENTER handles parts in quotes v

. PRINT 33.3/22,82 (ENTER parts not in quotes.

Now it’s your turn. Write two command lines that print these two problems
as well as their answers:

157 /13.2 =
95 * 43 =

DO-IT-YOURSELF COMMAND LINES

c=
Actually, there’s no “cor-
rect” command line. For
that matter, there is no cor-
rect way of handling your
computer. There are many
ways of getting it to do what
you want. Relieved? ...
Good!

If you use the “‘correct’’ command lines, this is what the computer prints on

your screen:

157 /13.2=11,8939394
95 * 43 = 4085

Ready for the answers:

PRINT "157 / 13,2 =" 157/13.2
PRINT "95 *# 43 =" 95*43

It Has Its Rules...

By now, the computer has probably printed some funny little messages on
your screen. If it hasn’t, type this line, deliberately misspelling the word
PRINT:

PRIINT "HI" (ENTER

The computer prints:

?SN ERROR

(<s ERROR stands for ‘‘syntax’’ error, This is the computer's way of saying,
“The command ‘PRIINT’ is not in my vocabulary . . .| have no earthly idea
what you want me to do.’’ Any time you get the ?SN error, you probably
made some kind of typographical mistake.

The computer also gives you error messages when it does understand what
you want it to do, but it feels you’re asking it to do something that is

illogical or impossible. For instance, try this:

PRINT 5/@ (ENTER

| The computer prints:

(LY 7/0 ERROR
~

ax
If you don’t get the right col-
ors, refer to the color test in
Introducing Your Color
Computer 2.

10

which means, ‘Don’t ask me to divide by O—that’s impossible!’’

Wyou get an error message you don’t understand, flip to the meee
We've listed all the error messages there and what probably caused them

OT ee

It’s a Show-off Too

So far, all you’ve seen your computer do is silently print on a green screen.
But your color computer enjoys showing off. Type:

CLS(3) (ENTER

Now your screen is a pretty shade of blue with a green stripe at the top.
Your command told the computer to clear the screen and print color
number 3—blue.

But why the green stripe? Whenever the computer prints characters, it must
use a green background, not a blue background. Type some more charac-
ters. The computer uses a green background for them also.

Colors other than green are for printing pictures. You'll learn how to do that
later.

Press to get the OK prompt. Then type:

CLS(7)

Now your screen is magenta (pinkish purple) with a green stripe at the top.

Try some more colors. Use any number from 0 to 8. The Color Computer

has nine colors. Each color has a numeric code.

Type CLS without a number code:

CLS (ENTER

if you don’t use a number code, the computer assumes you simply want a

clear green screen.

Computer Sound Off—One, Two...

Type this:

SOUND 1» 1@@ (ENTER

lf you don’t hear anything, turn up the volume and try again.

What you’re hearing is 6 seconds of the lowest tone the computer can

hum. How about the highest tone? Type:

SOUND 255, 100

OK, so it has a good “‘hum-range” . . . hope you’ re suitably impressed. Try

some other numbers. Hope you like the computer's voice (it’s the only one

it has).

You want to know what the other number is for? (Or maybe you've already
found out.) The second number tells the computer how long to hum the
tone. You can use any number from 1 to 255. Try 1:

SOUND 128+, 1 (ENTER

The computer hums the tone for about 6/100ths of a second. Try 10:

SOUND 128, 19 (ENTER

The computer sounds the tone for 6/10ths of a second. Try variations of
both numbers, but keep in the range of 1 to 255.

BUG: If you see a message
saying MICROSOFT, or if
you see a ¢FC Error message,
you're using a number other
than 0 through 8.

BUG: Again, if you get a ?FC
Error message, you’re using

a number other than 1
through 255.

11

Before You Continue...

Press the GHIFT) and (0) (zero) keys, holding both down at the same time.
Now release them and type some letters. The letters you type should be
reen on a_black background. If they're not, try again, pressing (SHIFT

slightly before (0). Be sure to hold down both keys at the same time and
__ then release them.

\ Now, with the colors ‘‘reversed,”” press (ENTER) and then type this simple
command line: Curious about the reversed

colors? They’re for people
with a printer. The printer " u
prints all “reversed” letters PRINT "HI® (ENTER

in lowercase. The computer gives you a ?SN ERROR. It doesn’t understand the
command.

Press the GHIFT) and (Q) characters again and release them. Type some
letters. 7 a should be back to normal: black with the green background.
Press (ENTER) and type the same command line again. This time it works.

The computer can’t understand any commands you type with reversed

colors. If you ever press GHIFD(@) by mistake and find you're typing with

these reversed colors, press (SHIFN)(O) again to get the colors back to

normal.

Learned in Chapter 1
BASIC WORDS KEYBOARD CONCEPTS

CHARACTERS

PRINT string v numbers

SOUND ENTER error messages

CLS

A refresher like this is at the end of each chapter. It helps you make sure
you didn’t miss anything.

Notes

12

CHAPTER 2

YOUR COMPUTER NEVER
FORGETS

(... unless you turn it
off...)

One skill that makes your computer so powerful is its ““memory.” Have it
“remember” the number 13. Type:

A = 13 (ENTER

Now “‘confuse’’ the computer by typing whatever you want. When you're | pid it get confused? or
done, press (ENTER). See if the computer remembers what A means by _ | forget?
typing:

PRINT A (ENTER

pont remembers that A is 13 as long as you have it on. . .or until Fee ee.

you do tnis. Type: you may be accustomed to
= > using the word LET before

A= 17.2 (ENTER these command lines. The
P a : Color Computer doesn’t let

If you ask it to PRINT A now, it prints 17.2. you die the ward (ET.

This is what happened in your computer’s memory:

YOUR COMPUTER’S MEMORY
A—— 13

tad

You don’t have to use the letter A. You can use any letters from A to Z. In
fact, you can use any two letters from A to Z. Type:

Beil
C2
B

Have it print all the numbers you've asked it to remember. Type:

PRINT A+ B+ C+ BC

If you want the computer to remember a “‘string”’ of letters or numbers, use

a letter with a dollar sign ($). Type:

AS = "TRY TO"
BS = "REMEMBER"
C$ = "THIS» YOU"

BC$ = "GREAT COMPUTER"

To the computer, a dollar Then iype:
sign means a String. PRINT A#+ BS», C#» BC (ENTER

“Computer types” have a name for all the letters you’ve used: “‘vari-

ables.’’ So far, you’ve used these variables:

YOUR COMPUTER’S MEMORY

NUMBERS CHARACTERS

A$— “TRY TO”

B— 15 B$ —> ‘REMEMBER’
C$— “THIS, YOU”
BC$— “GREAT COMPUTER”

Spot-check the above variables to see if the computer remembers the right
information. For instance, to see if BC still contains 25, type:

Try to set the computer to
remember a letter we PRINT BC (ENTER

havent teed yep nat hab Think of variables as little boxes in which you can store information. One
ens? Interesting . . . 7 . : -_

i set of boxes is for strings; the other set’s for numbers. Each box has a label.

As we said before, the com-

puter has its rules and might The Computer Is Fussy About Its Rules
get a little fussy with you if
you don’t play by them.

Do you think the computer accepts these lines?

D = "G6" (ENTER
Z= "THIS 15 STRING DATA" (ENTER £

TM stands for Type Mis-
Match error. It means you , : .
1 es ¥ The computer responds to both above lines with 2TM ERROR. It’s telling

you that you have to play by its rules. tied

14

The rules “ignored’’ by the above lines are:

RULES ON STRING DATA

(1) Any data in quotes is STRING DATA.

(2) You can assign STRING DATA only to variables WITH A $ SIGN.

To make the above lines obey the computer's rules, use a dollar sign with

the D and Z. Type:

D$ = "G" (ENTER
Z% = "THIS 1S STRING DATA" CENTER

The computer now accepts these lines.

How about this line? Do you think the computer accepts it?

D$ = G (ENTER

The above line ignored these rules:

RULES ON NUMERIC DATA

(1) Numbers not in quotes are NUMERIC DATA.

(2) Numeric data can only be assigned to variables WITHOUT A $

SIGN.

Type this, which the computer accepts:

You've now added this to your computer’s memory.

YOUR COMPUTER’S MEMORY

NUMBERS STRINGS

D—6 D$— “6”
Z—~12 Z$—> "THIS IS STRING DATA”

Now do something interesting with what you've asked the computer to
remember. Type:

PRINT D * 2 (ENTER ‘2
The computer remembers
that D = 6:

The computer prints the product of D times 2.

Try this line:

PRINT 2/D

15

16

The computer prints the quotient of Z divided by D.

Would this work?

PRINT DS * 2 (ENTER
Did you try it? This makes the computer print the same ?TM ERROR. It
cannot multiply string data.

Cross out the commands below that the computer rejects:

EXERCISE WITH VARIABLES

F = 22,.9999999
M = "19,2"
DZ$ = "REMEMBER THIS FOR ME"
M$ = 15
Z =F+F

Finished? These are the commands the computer accepts.

F = 22,9999999
DZ$ = "REMEMBER THIS FOR ME"
Z=F+F

RULES ON VARIABLES

You may use any two characters from A to Z for a variable. The first
character must be a letter from A to Z; however, the second may be

either a numeral or a letter. If you want to assign it string data, put a
dollar sign after it. Otherwise, it can hold only numeric data.

Learned in Chapter 2
CONCEPTS

Variables
String v Numeric Variables

Now that you’ve learned how the computer thinks, it will be easy to write
some programs How about a break, though, before going to the next
chapter?

Notes

17

CHAPTER 3

SEE HOW EASY IT IS?

18

Type:

NEW

This erases whatever may be in the computer's “memory.”

Now type this line. Be sure you type the number 10 first—that’s important.

10 PRINT "HI>, 1’M YOUR COLOR COMPUTER" (ENTER

Did you press (ENTER)? Nothing happened, did it? Nothing you can see, that
is. You just typed your first program. Type:

RUN (ENTER

The computer obediently runs your program. Type RUN again and again

to your heart’s content. The computer runs your program any time you

wish, as many times as you wish.

Since this works so well, add another line to the program. Type:

202 PRINT "WHAT IS YOUR NAME?" (ENTER)

Now type:

LIST

Your computer obediently lists your entire program. Your screen should
look exactly like this:

1@ PRINT "HI»+ I’M YOUR COLOR COM

PUTER"
2@ PRINT "WHAT IS YOUR NAME?"

What do you think will happen when you run this? Try it. Type:

RUN (ENTER

The computer prints:

HI+ I’M YOUR COLOR COMPUTER
WHAT 1S YOUR NAME?

Answer the computer's question and then press (ENTER). . . . What? There’s
the ?SN Error again.

When you simply type your name, the computer doesn’t understand what
you mean. In fact, the computer can’t understand anything unless you talk

to it in its own way.

Use a word the computer understands: INPUT. Type this line:

3@ INPUT As (ENTER)

This tells the computer to stop and wait for you to type something, which it
labels as A$. Add one more line to the program:

40 PRINT "HI»>" As& (ENTER

Now list the program again to see if yours looks like mine. Type:

LIST (ENTER

Your program should look like this:

1@ PRINT "HI+ I’M YOUR COLOR COM

PUTER"
2@ PRINT "WHAT IS YOUR NAME?"
30 INPUT A%
4@ PRINT "HI+" A%

Can you guess what will happen when you run it? Try it:

RUN (ENTER

That worked well, didn’t it? This is probably what happened when you ran
the program (depending on what you typed as your name):

HI» I’M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?

? JANE
HI» JANE

RUN the program again using different names:

HI» I‘M YOUR COLOR COMPUTER

WHAT IS YOUR NAME?
? HUGO
HI» HUGO

HI, I’M YOUR COLOR COMPUTER
WHAT IS YOUR NAME?
? 772-36-8228
HI + 722-36-8228

HI>+ I’M YOUR COLOR COMPUTER
WHAT 1S YOUR NAME?
? NONE OF YOUR BUSINESS
HI+ NONE OF YOUR BUSINESS

HI+ I’M YOUR COLOR COMPUTER
WHAT 1S YOUR NAME?
?IGETIT!!
HI+ I GET IT!!

The computer doesn’t care what you call yourself.)

Here’s what Line 30 did to your computer’s memory each time you ran the
program (assuming you gave it the same names we did):

_If you make a mistake after
pressing (ENTER), simply

type the line again.

19

YOUR COMPUTER’S MEMORY

JANE
HUGO
77 2-36-8228
NONE OF YOUR BUSINESS

| GET IT!! qn @)
There’s an easier way to run your program over and over without having to

type the RUN command. Type this line:

5@ GOTO 19

GOOOOO0000N O
O fe)

. O O-

fe) O
OBOCOCOO00O

Now run it. The program runs over and over again without stopping.

GOTO tells the computer to go back to Line 10:

1@ PRINT "“HI> I’M YOUR COLOR COMPUTER"

2Q@ PRINT “WHAT IS YOUR NAME?”

3@ INPUT AS
4@ PRINT “HI+" A&%
3@ GOTO 148

Your program now runs perpetually. Each time it gets to Line 50, it goes

back to Line 10. We call this a “loop.” The only way you can stop this

endless loop is by pressing the (BREAK) key.

Spotlight Your Name

Change Line 50 to give your name the attention it deserves. How do you
To delete a program line, 2 Ci ; : .

type and CENTER the line change a program line? Simply type it again, using the same line number.

number. For example: ype:

50
erases Line 50 from the 5@ GOTO 40

hes This is what the program looks like now:

1@ PRINT “HI+ I’M YOUR COLOR COMPUTER"

20 PRINT "WHAT IS YOUR NAME?"

38 INPUT AS
40 PRINT "HI +" A$%
5@ GOTO 40

ae ay Type RUN and watch what this loop does. When you've seen enough,
We're leaving out the “HI press the (BREAK) key.
part this time.

There’s a big change you can make simply by adding a comma or a

semicolon. Try the comma first. Type Line 40 again, but with a comma at

the end:

40 PRINT AS+

Run the program. The comma seems to print everything in two columns.

Press (BREAK) and try the semicolon. Type:

20

40 PRINT AS%5

and run... You probably won't be able to tell what the program’s doing

until you press GREAK). See how the semicolon crams everything together?

RULES ON PRINT PUNCTUATION

This is what punctuation at the end of a PRINT line makes the
computer do:
1. Acomma makes the computer go to the next column. Use it to print

in columns.
2. Asemicolon makes the computer stay where it is. Use it to ‘“cram’’

what you print together.
3. No punctuation makes the computer go to the next line. Use it to

print in rows.

Color/Sound Demonstration

Want to play with color and sound some more? First, erase memory.

Remember how?

Then enter this program:

10 PRINT "TO MAKE ME CHANGE MY TONE"
20 PRINT "TYPE INA NUMBER FROM i TO 255"

3@ INPUT T
40 SOUND T+» 50
5@ GOTO 19

Run through the program to get a sample of the computer's tones.

BUG: If you get a 2FC Error when you run this program, you used a number

other than 1 through 255. This error, like all errors, will make the computer
stop running the program.

What happens if you change Line 40 to:

40 SOUND 50; T

HINT: Look back in Chapter 1 where we talk about SOUND.

Know the answer? If you make the above change, the computer hums the
same tone each time, but for a different length of time, depending on what
number you use.

DO-IT-YOURSELF PROGRAM

Press (BREAK) first and then erase this program by typing NEW. Now see
if you can write a program, similar to the one above, to make the
computer show a certain color. Remember, there are 9 colors, 0

through 8.

HINT: Line 40 could be: 40 CLS(T).

NEW (ENTER) . . . wish
mine worked that easily!

Remember, if you make a
mistake on one of the lines,
simply type the line again.

In this program we’re using .
T as a variable. However,
we could use any letter.

Notice that Line 30 asks for
T rather than T$. This is
because we want numeric
data rather than string data.

21

Press (GREAK) before typing
the line.

Don’t worry about IF/THEN
right now. We devote a
whole chapter to it later.

ae

22

This is our program:

10
20
308
40
38

PRINT "TO MAKE ME CHANGE MY COLOR"

PRINT "TYPE A NUMBER BETWEEN @ AND 8"

INPUT T
CLS(T)
GOTO 10

Add Polish to the Program

Pressing the BREAK key is a sloppy way to stop the program from running.

have the computer politely ask if you’re ready to end? Change ~

Line 50 in the above program to:
Why not

38 PRINT "DO YOU WANT TO SEE ANOTHER COLOR?"

Then add these lines:

68
70

INPUT R&
IF R$ = "YES" THEN 2@

else and the program ends.

This is what the program looks like now:

PRINT "TO MAKE ME CHANGE COLORS"

PRINT "TYPE A NUMBER BETWEEN @ AND 8"

INPUT T
CLS(T)

PRINT "DO YOU WANT TO'SEE ANOTHER COLOR?"

INPUT R#
IF R$ = "YES" THEN 2

This is what the new lines do:

e Line 50 prints a question.

Line 60 tells the computer to stop and wait for an answer: R$.

Line 70 tells the computer to go back to Line 20 IF (and only if)

your answer (R$) is “yes.”’ If not, the program ends, since it has ©

no more lines.

\
}

Run the program. Type YES and the program keepstunning. Type anything ©

You've covered a lot of ground in this chapter. Hope we're just whetting

your appetite for more.

Don’t worry if you don’t yet understand it perfectly. Just enjoy using your

computer.

BASIC WORDS CONCEPTS KEYBOARD

Characters How to Change and Delete a BREAK

INPUT
GOTO

PRINT,
PRINT;

IF/THEN

Learned in Chapter 3

NEW Program Line

RUN

LIST

Notes

23

CHAPTER 4

COUNT THE BEAT

The logic of this will become
clear later.

GED
Remember to type NEW
(ENTER) before typing a new
program.

24

In this chapter you’ll experiment with computer sound effects. Before

doing this, you need to teach the computer to count.

Type:

10 FORX=17010
20 PRINT "X=" X
30 NEXT X
40 PRINT "I HAVE FINISHED COUNTING"

Run the program.

Run the program a few more times. Each time, replace Line 10 with one of

these lines:

i@ FORX=1TO i900
i@ FORK=S T7015
i@ FORX=-27T702
i@ FORX = 20870 24

Do you see what FOR and NEXT make the computer do? They make it

count. Look at the last program we suggested you try:

10 FORK = 2070 24
(20 PRINT "X =" X

30 NEXT x
40 PRINT "I HAVE FINISHED COUNTING"

Line 10 tells the computer the first number should be 20 and the last

number should be 24. It uses X to label all these numbers.

Line 30 tells the computer to keep going back to Line 10 for the next

number—the NEXT X—until it reaches the last number (number 24).

a

Look at Line 20. Since Line 20 is between the FOR and NEXT lines, the
computer must print the value of X each time it counts:

X= 20
X= 21
K = 22
X= 23
X= 24

Add another line between FOR and NEXT:

15 PRINT"... COUNTING 4..."

and run the program. With each count, your computer runs any lines you
choose to insert between FOR and NEXT.

DO-IT-YOURSELF PROGRAM 4-1

Write a program that makes the computer print your name 10 times.

HINT: The program must count to 10.

DO-IT-YOURSELF PROGRAM 4-2

Write a program to print the multiplication tables for 9 (9*1 through
9*10).

HINT: PRINT 9+X is a perfectly legitimate program line.

DO-IT-YOURSELF PROGRAM 4-3

Write a program that prints the multiplication tables for 9*1 through
925,

HINT: By adding a comma in the PRINT line, you can get all the
problems and results on your screen at once.

Finished? These are our programs:

Program 4-1 Program 4-2
i@ FORX=17010 10 FORX=1T7T0190

2@ PRINT "THOMAS" 20 PRINT "Q#"X"="Q# xX

38 NEXT X 3@ NEXT X

Program 4-3
1@FORX=17025

20 PRINT "G#"K"="QeX ,

3@ NEXT X

25

You may be wondering
about the programs you ran
at the first of this chapter

without using STEP. If you
omit STEP, the computer
assumes you mean STEP 1.

26

Counting by Twos

Now make the computer count somewhat differently. Erase your program

by typing NEW and then type the original program, using a new Line 10:

10 FORX=2ZTO1OSTEP2
20 PRINT "X=" xX
30 NEXT X
40 PRINT "I HAVE FINISHED COUNTING"

2,4, 6,855 =.”

Run the program. Do you see what the STEP 2 does? It makes the computer

count by 2s. Line 10 tells the computer that:

° The first X is 2

° The last X is 10

...AND STEP 2...

° All the Xs between 2 and 10 are two apart. . . that is 2,4, 6,8, and 10.

(STEP 2 tells the computer to add two to get each NEXT X.)

To make the computer count by 3s, make all the Xs three apart. Try this for

Line 10:

i@ FORK =3T701@STEP 3

Run the program. This prints on your screen:

3
6
9

It passes up the last X (number 10) because 9 + 3 = 12. Try a few more
FOR ... STEP lines so you can see more clearly how this works:

>

H
o
u

on

1@ FORX=5 7T05@ STEPS
1@ FORX=10TO 1 STEP-1
1@ FORX=1T7T020@STEP 4

Counting the Sounds

Now that you've taught the computer to count, you can add some sound.

Erase your old program and type this:

1@ FORK =170 255
20 PRINT "TONE " &
3@ SOUND K+ 1
40 NEXT XK

This program makes the computer count from 1 to 255 (by 1s). Each time it
counts a new number, it does what Lines 20 and 30 tell it to do:

Line 20—It prints X, the current count.

Line 30—It sounds X’s tone.

For example:

The first time the computer gets to FOR, in Line 10, it makes X equal
to 1.

Then it goes to Line 20 and prints 1, the value of X.

Then Line 30 has it sound tone #1.

Then it goes back to Line 10 and makes X equal to 2

Etc.

What do you think the computer will do if you make this change to Line 10:

1@ FOR X = 255 TO 1 STEP -1

Did you try it?

PROGRAMMING EXERCISE

Using STEP, change Line 10 so the computer will sound tones
from:

(1) The bottom of its range to the top, humming every tenth note.

(2) The top of its range to the bottom, humming every tenth note.

(3) The middle of its range to the top, humming every fifth note.

10.

10.

10.

Ready for the answers?

1@ FOR X= 170 255 STEP 10
1@ FOR X= 255 701 STEP -10
i@ .FOR X= 12870255 STEP 5

DO-IT-YOURSELF PROGRAM 4-4

Now see if you can write a program that makes the computer hum:

(1) from the bottom of its range to the top, and then
(2) from the top of its range back to the bottom

The answer is in the back of this book.

Don’t type the arrow, of
course. It’s there to help you
understand. _,

Try this: To pause the pro-
gram while it’s running,
press the and @ keys
at the same time. Then press

any key to continue.

27

But Can It Sing?

Yes. Although your computer is slightly off pitch, it can warble out most

songs. The next chapter shows how to teach it some of your favorite songs.

Learned in Chapter 4
BASIC WORDS KEYBOARD CHARACTER

FOR...TO... STEP
NEXT

Notes

CHAPTER 5

SING OUT THE TIME

You're now ready to show your computer how to do two tasks: tell time
and sing (well, as good as the computer can sing). Since both are closely
related—especially to your computer!—we'’ re covering them in the same
chapter.

Start by typing this:

1@ FORZ=i1TO4d60*2
20 NEXT 2
3@ PRINT "I COUNTED TO 920"

Run the program. Be patient and wait a couple of seconds. Two seconds, to
be precise. It takes your computer two seconds to count to 920.

Lines 10 and 20 set a timer pause in your program. By making the
computer count to 920, you keep the computer busy for two seconds.

As you can see, this is groundwork for a stopwatch. Erase the program and
type:

10 PRINT "HOW MANY SECONDS?"

@ INPUT S
3@ FORZ=1 70 460*S

40 NEXT2

5@ PRINTS " SECONDS ARE UP!!!"

Run it. Input the number of seconds you want timed on your stopwatch.

DO-IT-YOURSELF PROGRAM

It would help if the stopwatch could sound some kind of alarm. Add
lines to the end of the program to give it an alarm.

29

Here’s the program we wrote:

i@ PRINT "HOW MANY SECONDS"

28 INPUTS

30 FORZ=1TO460*5

40 NEAT 2

5@ PRINTS " SECONDS ARE UP!!!"

6@ FORT = 120T0 180

This is how computerized 7@ SOUND T» 1
timers work. 80 NEXT T

9@ FORT = 15870140 STEP -1i

108 SOUND T+; 1
110 NEXT T

120 GOTO 5a

Notice the GOTO line at the end of the program. It causes the message to

keep printing and the alarm to keep ringing until you press (BREAK) or

SHIFT)(@).

Counting Within the Time

Before doing more with the clock, have the computer keep count within
the time. This concept will become clear to you shortly.

Type this new program:

10 FORK =1T0O3
20 PRINT "X=" X
3@ FORY=1702

Notice the comma in Line uw
40. Try it without the com- “4 PRINT 9
ma. The comma makes “Y S@ NEXT ¥
= " Y print on the next 6@ NEXT *
column. . .

Run it. This should be on your screen:

x= il
¥ = 1

¥ = ”

Xe2
y = 1

Y=?

X=3
¥ = 1

Ye2

30

Call ita count within a count ora loop within a loop—whatever you prefer.

Programmers call this a ‘‘nested loop.” This is what the program does:

I. It counts X from 1 to 3. Each time it counts X:

A. It prints the value of X

B. It counts Y from 1 to 2. Fach time it counts Y:

1. It prints the value of Y

Whenever you put a loop inside another loop, you must close the inner

loop before closing the outer loop:

Right rong
i®@ FORK=1TO3 1@ FORX=17T03

20 FORY=1702 20 FORY=1T02
38 NEXT Y 30 NEXT xX
40 NEXT K 4® NEXT ¥

Making a Clock

With these tools, you can make the computer do much more. Type this:

10 FORS=@T059

20 PRINTS
y 3@ SOUND 150;2

y 4@ FORT=1 70398

5Q NEXT T

6@ NEXKTS
70 PRINT "i MINUTE IS UP"

Run the program. This is what it does:

It counts the seconds from 0 to 59. Each time it counts one second:

A. It prints the second.

B. It sounds a tone.

C. It pauses long enough for one second to pass.

When it finishes counting all the seconds from 0 to 59, it prints a

message that one minute is up.

31

By adding this line, 120
GOTO 10, the clock will run
perpetually.

Having a tough time with
this program? Skip it for
now. It'll seem easy later.

32

There’s a way to make this program look better. Add this line to clear the
screen:

15 CLS

Now run the program. This time the computer goes through these steps:

I. It counts the seconds from 0 to 59 (Lines 10 and 60). Each time it

counts one second:

A. It clears the screen (Line 15).

B. It prints the second (Line 20).

C. It sounds a tone (Line 30).

D. It pauses long enough for one second to pass (Lines 40 and 50).

ll. | When it finishes counting all the seconds from 0 to 59, it prints a

message that one minute has passed (Line 70).

Using this as groundwork, it’s easy to make a full-fledged clock:

i@ FORH=9@T70 23

2@ FORM=9®TO59

30 FORS=@T059

408 CLS

5@ PRINTH":"M":"S

608 SOUND 150, 2

70 FORT=170375

Cr NEXT T

98 NEXTS

. 190 NEXT M

110 NEXT H

Here’s an outline of what the computer does in this program:

I. It counts the hours from 0 to 23 (Line 10). Each time it counts a new

hour:

A. It counts the minutes from 0 to 59 (Line 20). Each time it counts a

new minute:

1. It counts the seconds from 0 to 59 (Lines 30 and 90). Each

time it counts a new second:

It clears the screen (Line 40).
It prints the hour, minute, and second (Line 50).
It sounds a tone (Line 60).
It pauses long enough for one second to pass (Lines 70
and 80).

2. When it finishes counting all the 59 seconds, it goes back to
Line 20 for the next minute (Line 100).

a
o
o
D

B. When it finishes counting all the 59 minutes, it goes back to Line
10 for the next hour (Line 110).

Il. | When it finishes counting all the hours (0-23), the program ends.

DO-IT-YOURSELF PROGRAM 5-1

Between Lines 90 and 100 you can add some tones that will sound
each minute: Write a program that does this.

DO-IT-YOURSELF PROGRAM 5-2

Write a program that makes your computer show each of its nine
colors for 1 second each.

The answers to both programs are in the back.

For a Computer, It Sings Great!

Now, to teach your computer to sing. . .

Flip to the Appendix. There’s a table, ‘“Musical Tones,’’ that gives the
computer’s tone number for each note in the musical scale. The tone
number, for example, for middle C is 89.

Unfortunately, the computer's tones can’t exactly match most of the notes.
That's why it sings somewhat off key . . . But to those without perfect pitch,
it’s still very close to music.

Type this:

20 SOQUND 125; 8
3@ SOUND 108;8
40 SOUND 89; 8

Run the program. It’s the first three notes of . . . well, you know that. Great
piece!

To get these first three notes to play over again, put a FOR/NEXT loop in the

program:

1@ FORX=iTO02

20 SOUND 125; 8

32 SOUND 108; 8

40 SOUND 89;8

SQ NEXT X

Now run the program again. It’s missing a pause, isn’t it? This is easy

enough to add. Type these lines:

44 FORY=1 70 238
46 NEXT Y

Then run the program again. Now it’s starting to sound like the real thing!

Here’s a program that gets through the first two phrases:

But who said this computer
could make the opera?

33

Are your programs getting
too long to list? Try this: LIST
10-48 (ENTER). Only the first

half of this program will be
listed.

34

THREE BLIND MICE

i@ FORX=17T02
2@ SOUND 125, 8 “Three’”’
30 SOUND 108; 8 “blind’’
4@ SOUND 89> 8 “mice”

fev FOR Y= 170230 (pause)
46 NEXT Y

5@ NEXT XK

6®@ FORX=i17T02
7@ SOUND 147, 8 “See”
8@ SOUND 133; 4 “how’’
98 SOUND 133,4 “they”

ig@@ SOUND 125,8 “run”

110 FOR Y
120 NEXT Y

130 NEX

Finish the song if you like. Or write a better one. A good computer song

= 170230 (pause)

Ww
a“

helps jazz up any program.

CLS

Learned in Chapter 5
BASIC WORD PROGRAMMING CONCEPT

Nested Loops

Notes

CHAPTER 6

DECISIONS, DECISIONS ...

Here’s an easy decision for the computer:

, If you type ‘‘red’’ ... then make the screen red

or

: If you type ‘blue’... then make the screen blue

Easy enough? Then have the computer do it. Type this program:

10 PRINT "DO YOU WANT THE SCREEN RED OR BLUE?"

20 INPUT C%

? 30 IF C$ = "RED" THEN 100 ()

% 40 IF C# = "BLUE" THEN 200 Bonin ep he

y i@@ CLS(4) arrows or the spaces be-
tween program lines. We

5 ne elu just put them in to illustrate

M4 200 CLS(3) the flow of the program.

Run the program a few times. Try both ‘‘red” and “blue” as answers.

This is what the program does:

lf you answer “‘red’’... then...

1. Line 30 sends the computer to Line 100.

2. Line 100 turns your screen red.

3. Line 110 ends the program. (If the computer gets to Line 110, it never

makes it to 200.)

...On the other hand...

if you answer “‘blue”’... then...

i. Line 40 sends the computer to Line 200.

2. Line 200 turns your screen blue.

3. Since Line 200 is the last line in the program, the program ends there.

35

What happens if you answer with something different from “red” or

“blue’? Run the program again. This time, answer “green.”

This makes the screen red. Do you know why?

HINT: If the condition is not true, the computer ignores the THEN part

of the line and proceeds to the next program line.

PROGRAMMING EXERCISE

There's a way to get this program to reject any answer but “red’’ or

“blue.”’ These are the two lines to add. You figure out where they go in

the program:

a _... PRINT “YOU MUST TYPE EITHER RED OR BLUE”

...,GOTO 20

Insert the line numbers.

HINT: The lines must come after the computer has had a chance to test

your answer for “‘red’’ or “blue.”

HINT: The lines must come before the computer makes your screen

“red.”

Answer: The lines need to come after Line 40 and before Line 100:

PRINT "YOU MUST TYPE EITHER RED OR BLUE"

GOTO 20
58
68

DO-IT-YOURSELF PROGRAM 6-1

After the computer turns the screen red or blue, have it go back and ask

you to type “red” or ‘‘blue’’ again.

HINT: You need to change Line 110 and add Line 210.

Here’s a diagram of how we wrote this program.

1@ PRINT "DO YOU WANT THE SCREEN RED OR BLUE?"
20 INPUT C$

30 IF C# = "RED" THEN 100 C4.

ye] 40 IF C$ = "BLUE" THEN 200

rh) 5@ PRINT "YOU MUST TYPE EITHER RED OR BLUE"

62 GOTO 20

100 CLS(4) &&
110 GOTO 10

2700 CLS(3)é—
210 GOTO 10

Trace the path the computer takes through this program. Go from one line

to the next; follow the arrows where indicated. Notice the difference

between the arrows going from the IF/THEN and the GOTO lines.

36

RULES ON IF/THEN AND GOTO

IF/THEN is conditional. The computer ‘‘branches’’ only if the condi-
tion is true.

GOTO is unconditional. The computer always branches.

Although this chapter is short, you’ve learned an important programming
concept. You'll have the computer make decisions all through this book.

Learned in Chapter 6
BASIC WORDS

IF/THEN
END

Notes

CHAPTER 7

GAMES OF CHANCE

To make the computer
pause while running the
program, press the
and keys at the same
time. Press any key to
continue.

38

a)

Thanks to a BASIC word called RND, the computer can play almost any
game of chance.

And even if you don’t want to play computer games, you'll want to learn
two words this chapter introduces: RND and PRINT @. You'll also find in
this chapter some more uses of IF/THEN.

Type this program:

1@ PRINT RND(1®)

Run it. The computer just picked a random number from 1 to 10. Run it
some more times...

It’s as if the computer is drawing a number from 1 to 10 out of a hat. The
number it picks is unpredictable.

Type and run this next program. Press (BREAK) when you satisfy yourself
that the numbers are random.

1@ PRINT RND(1@)3
20@ GOTO 12

To get random numbers from 1 to 100, change Line 10 and run the
program.

1@ PRINT RND(1@0)35 ;

How can you change the program to get random numbers trom | to 255?

The answer is:

1@ PRINT RND(255)5

A Random Show

Just for fun, have the computer compose a song made up of random tones.
Type:

10 T= RND(255)
2@ SOUNDT; 1
30 GOTO 190

Run it. Great music, eh? Press (BREAK) when you've heard enough.

DO-IT-YOURSELF PROGRAM 7-1

Add some lines to make the computer show a random color (1-8) just

before it sounds each random tone.

Here’s our program:

1@ T= RND(255)
14 C= RND(8)
16 CLS(C)
2@ SOUND T; 1
3¢@ GOTO i9

We have a few simple games in this chapter. Feel free to use your imagina-
tion to add interest to them—or invent your own.

Russian Roulette

In this game, a gun has 10 chambers. The computer picks, at random,

which of the 10 chambers has the fatal bullet. Type:

1@ PRINT "CHOOSE YOUR CHAMBER(1-10)"

20 INPUT X R b i to t

30 IF X= RND(1@) THEN 100 SEO ERIE blac entnine
4@ SOUND 200; 1 a new program.

5@ PRINT "--CLICK--"

6@ GOTO1e

100 PRINT "BANG--YOU’RE DEAD"

First, in Line 20, the player inputs X (a number from 1 to 10). Then, the

computer compares X with RND(10) (a random number from 1 to 10).

Then it follows the “arrows”:

. If X is equal to RND(10), the computer goes to Line 100, the ‘dead

routine.”

° If X is not equal to RND(10), the computer “clicks” and goes back to

Line 10, where you get another chance...

Make the dead routine in Line 100 better. Type:
Remember how to list part of

1098 FORT =133 701 S5TEP -5 aprogram? LIST 50-130

112 PRINT " BANGII thin lists the program’s middle

12@ SOUND T+ 1 =
13@ NEXT T Try this when listing a long

i4@ CLS program: At the start of the

listing, press GHIFT) and @).
150 PRINT @ 230, "SORRY+ YOU'RE DEAD" Aol peat ee
i1G@ SOUND 1+ 38 pause. Then press any key to

17@ PRINT @ 39@+ "NEXT VICTIM+ PLEASE" conunue:

Run the program. Here’s what the routine does:

“ines 100-130 make the computer sound descending tones and print

39

Line 140 clears the screen. Since no color is given, the computer makes the

screen green.

Lines 150 and 170 use a new word—PRINT @—to position two messages

on your screen: SORRY, YOU’RE DEAD and NEXT VICTIM, PLEASE.

The grid below shows the 511 positions on your screen. Line 150 prints

SORRY, YOU'RE DEAD at position 230 (224 + 6). Line 170 prints NEXT

VICTIM, PLEASE at position 390 (384 + 6).

(‘CA ZSASE 7B 9 iolizisisisielrierezoeiezeazezszez7Pezan081).
0 |

32

64

%

128

160

192)

224 SORA YOURE DEAD
256

288

320
352

384 NEXT VICTIM. PLEASE

Alb s
“ae

980 :
L. a,

| The grid is in the Appendix,
“PRINT @ Screen Loca-

tions.” Use it to plan your
programs’ screen formats. DO-IT-YOURSELF PROGRAM 7-2

Change this program so that if the player does manage to stay alive for

10 clicks, the computer pronounces the player the winner, printing

this message on the screen:

fog ees 89 4oua2pais}oi6i71919202227324 62728293031).

Qo

HINT: You can use the FOR/NEXT loop, so that the computer can
keep count of the number of clicks.

Our answer is in the Appendix.

Rolling the Dice

This game has the computer roll two dice. To do this, it must come up with

two random numbers. Type:

40

1@ CLS
MED xX = RND(6)

30 Y = RND(6)

40 R=X+Y¥

“
y
e
s

~

5Q@ PRINT @ 2005 X
60 PRINT @214;Y
7®° PRINT @394, "YOU ROLLED A" R

e (32 PRINT @ 454; "DO YOU WANT ANOTHER ROLL?"

92 INPUT A&
100 IFAS = "YES" THEN 128

Run the program.

Line 10 clears the screen.

Line 20 picks a random number from 1 to 6 for one die. Line 30 picks a
random number for the other die.

Line 40 adds the two dice to get the total roll.

Lines 50-70 print the results of the roll.

Line 90 lets you input whether you want another roll. If you answer “‘yes,’”’
the program goes to Line 10 and runs again. Otherwise, since this is the last
line in the program, the program ends.

DO-IT-YOURSELF PROGRAM 7-3

Since you know how to roll dice, it should be easy to write a ‘’Craps”’
program. These are the rules of the game (in its simplest form):

1. The player rolls two dice. If the first roll’s a 2 (‘‘snake eyes’’), a 3
(“cock-eyes”’), or a 12 (“‘boxcars’’), the player loses and the game’s

over.

2. If the first roll’s a 7 or 11 (a natural’), the player wins and the

game’s over.
toll

3. If the first roll’s any other number, it becomes the player's “point.”
The player must keep rolling until either “making the point’ by
getting the same number again to win, or rolling a 7, and losing.

You already know more than enough to write this program. Do it.
Make the computer print it in an attractive format on your screen and -
keep the player informed about what is happening. It may take you a
while to finish, but give it your best. Good luck!

Our answer's in the back.

Learned in Chapter 7
BASIC WORDS

RND
PRINT @

Notes

41

CHAPTER 8

SCHOOL DAYS
Your computer is a natural at teaching. It’s patient, tireless, and never
makes a mistake. Depending on the programmer (you, of course), it also
can be imaginative, consoling, and enthusiastic.

Using RND, have it teach you math. Type:

1g CLS

2@ = RND(15)

3@ Y= RND(15)

Are your programs getting aa PRINT "WHAT IS" X "an ¥ " P

long? If you have a cassette 4s INPUT A
recorder, read your comput- 5@ IF A=X* ¥ THEN 98
er’s introduction manual to
learn how to save your pro- 6@ PRINT "THE ANSWER IS" K#Y

grams on tape. If you have a 72 PRINT "BETTER LUCK NEXT TIME"
Deluxe Color Computer, oa GOTO 100
you can also save programs
in memory. See your intro- 92 PRINT "CORRECT!!!"
duction manual to learn
how. 100 PRINT "PRESS <ENTER®? WHEN READY FOR

ANOTHER"

1@5 INPUT A$
110 GOTO 18

The above program drills you on the multiplication tables, from 1 to 15,
and checks your answers.

Aa Bb Cc Da Ee Ff Gg Hh Ti Jj Kk LI Mm Nn Oo

DO-IT-YOURSELF PROGRAM 8-1

Make the program drill you on addition problems from 1 to 100.

Here are the lines we changed:

20 = RND(10@)
30 Y = RND(i8d)
40 PRINT "WHAT IS" K "+" ¥
45 INPUT A
5Q@ IF A=X+Y THEN 9O
6@ PRINT "THE ANSWER IS" K+ Y¥

Make the program more interesting. Have it keep a running total of all the
correct answers. Type:

15 T=T+i
95 Ce#cC+i
98 PRINT "THAT IS" C "CORRECT OUT OF" T

"ANSWERS"

T is a “counter.” It counts how many questions you’re asked. When you
first start the program, T equals zero. Then each time the computer gets to
Line 15, it adds 1 to T.

Cis also a counter. It counts your correct answers. Since C’s in Line 95, the
computer doesn’t increase C unless your answer's correct.

DO-IT-YOURSELF PROGRAM 8-2

Make the program more fun. Have it do one or more of the following:

1. Call you by name.

2. Reward your correct answer with a sound and light show.

3. Print the problem and messages attractively on your screen. (Use
PRINT @ for this.)

4. Keep a running total of the percentage of correct answers.

5. End the program if you get 10 answers in a row correct.

Use your imagination. We have a program in back that does this all.

First, Build Your Computer’s
Vocabulary...

To build your computer's vocabulary (so that it can build yours!), type and
cun this program:

1@ DATA APPLES» ORANGES» PEARS

20 FORX=1T03
30 READ FS
4Q@ NEXT &

What happened . . . nothing? Nothing that you can see, that is. To see what
+e computer is doing, add this line and run the program:

35 PRINT "F# = 2" FS

Line 30 tells. the computer to:

Look for a DATA line.

2. READ the first item in the list—APPLES.

=)
When you first turn on the
computer, all numeric vari-
ables equal 0. When you
type NEW (ENTER), all
numeric variables also
equal 0.

43

Remember how to make the
computer pause while run-
ning a program? Press

to pause and any
key to get it to continue.

44

3.

4.

Give APPLES an F$ label.

“Cross out’’ APPLES.

The second time the computer gets to Line 30 it is told to do the same:

1.

2.

3.

4.

Look for a DATA line.

READ the first item—this time, it’s ORANGES.

Give ORANGES the F$ label.

“Cross out’’ ORANGES.

When you run the program, this happens in the computer’s memory:
:

Li

h
i
e

YOUR COMPUTER ‘’S MEMORY
F$———> APPLES

ORANGES
PEARS

What if you want the Computer to read the same list again? It’s already

“crossed out” all the data .. . Type:

6@ GOTO 190

Run the program. You get an error: 20D ERROR IN 30. OD means “‘out of

data.’” The computer’s crossed out all the data.

Type this line and run the program:

5@ RESTORE

Now it’s as if the computer never crossed out any data. It reads the same list

again and again.

You can put DATA lines wherever you want in the program. Run each of
these programs. They all work the same.

1@ DATA APPLES ig DATA APPLES» ORANGES

2@ DATA ORANGES 20 DATA PEARS

3@ FORK=i1TO3 30 FORK=17T03

40 READ FS 4@ READ FS

S@ PRINT "FS = i" FS 5@ PRINT "FS = :" FS

6@ NEXT X 6@ NEXT &

7@ DATA PEARS

3@ FORX=i17T03 3@ FORK=17T03

40 READ FS 4@ READ FS

5Q@ PRINT "FS = :" FS 5@ PRINT "F# = :" FS

62 NEXT A 68 NEXT xX

78 DATA APPLES 70 DATA APPLES» ORANGES»

82 DATA ORANGES PEARS

9@ DATA PEARS

Now Have It Build Your Vocabulary

Here are some words and definitions to learn:

Words Definitions

1@ DATA TACITURN:+ HABITUALLY UNTALKATIVE

20 DATALOQUACIOUS: VERY TALKATIVE

30 DATA VOCIFEROUS,» LOUD AND VEHEMENT

4@ DATA TERSE+ CONCISE

5@ DATA EFFUSIVEs DEMONSTRATIVE OR GUSHY

Now get the computer to select one of these words at random. Hmmm. . .

there are ten items. Maybe this works:

6 N=RND(10)
72 FORKX=1TON

82 READ A
92 NEXT xX

100 PRINT "THE RANDOM WORD IS:" AS

Run the program a few times. It doesn’t work quite right. The computer's
just as likely to stop at a definition as at a word.

What the computer really needs to do is pick a random word only from

items 1, 3, 5, 7, or 9. Fortunately, BASIC has a word that helps with this.

Type:

65 IF INT(N/2) = N/2 THENN=N- 1

Now run the program a few times again. This time, it should work.

INT tells the computer to look at only the ‘‘whole part’’ of the number and

gnore the decimal part. For instance, the computer sees INT(3.9) as 3.

Assume N, the random number, is 10. The IF clause in Line 65 does this:

INT(1@/2) = 10/2
INT(S) = 5
5=5

The above is true: 5 does equal 5. Since it’s true, the computer completes

she THEN clause. N is adjusted to equal 9 (10 - 1).

Now assume N, the random number, is 9. The IF clause in Line 65 does

this:

INT(9/2) = 9/2
INT(4,.5) = 4,5
4=4,58

The above is not true: 4 does not equal 4.5. Since it’s not true, the computer

doesn’t complete the THEN clause. N remains 9.

3esides reading a random word, the computer also must read the word's
4efinition. Add these lines to the end of the program:

110 READ BS
i120 PRINT "THE DEFINITIONIS:" BS

45

If you like, add some more
words and definitions by
adding DATA lines.

For variations on this pro-
gram, you might try states
and capitals, cities and
countries, foreign words and
meanings.

46

=

Now run the program a few times.

Have the computer print one random word and definition after the next.
Add this to the start of the program:

5S CLEAR 1090

This reserves plenty of ‘‘string space.’’ Add these lines to the end of the
program:

130 RESTORE
140 GOTO Ge

This lets the computer pick a new random word and its definition from a
“restored” group of data items.

Here’s how the program now looks:

3 CLEAR 100

10 DATA TACITURN» HABITUALLY UNTALKATIVE
2@ DATALOQUACIOUS: VERY TALKATIVE
3@ DATA VOCIFEROWS+ LOUD AND VEHEMENT

40 DATA TERSE>+ CONCISE
5@ DATA EFFUSIVE» DEMONSTRATIVE OR GUSHY

6@ N= RND(10)
65 IF INT(N/2) = N/2 THENN=N - 1
7@ jFORX=1TON

(eo READ A$
90 NEAT K
102 PRINT “A RANDOM WORD IS :" A&

11@ READ BS
120 PRINT "ITS DEFINITION IS :" BS

130 RESTORE

14@ GOTO 6d

DO-IT-YOURSELF PROGRAM 8-3

Want to complete this program? Program it so that the computer:

1. Prints the definition only.

2. Asks you for the word.

3. Compares the word with the correct random word.

4 . Tells you if your answer is correct. If your answer is incorrect, prints

the correct word.

Here’s our program:

°
10
20
30

40
red)
68
65
70
BO
90
110
120
130
140

e150
160
170
18@
190
200

CLEAR 500

DATA TACITURN+ HABITUALLY UNTALKATIVE

DATA LOQUACIOUS» YERY TALKATIVE

DATA VOCIFEROUS» LOUD AND YVEHEMENT
DATA TERSE, CONCISE Feel free to add frills such as

DATA EFFUSIVEs DEMONSTRATIVE OR GUSHY a good-looking screen for-
N = RND(1@) mat or sound.

IF INT(N/2) = N/2 THENN=N-1

FOR X=1TON

READ AS

NEXT X

READ BS

PRINT "WHAT WORD MEANS :" BS

RESTORE

INPUT R#

IF R# = A$ THEN 190

PRINT "WRONG"

PRINT "THE CORRECT WORD IS :" A%

GOTO Gd

PRINT "CORRECT"

GOTO G6@

Learned in Chapter 8
BASIC WORDS

DATA

READ
RESTORE

INT
CLEAR

Notes

47

CHAPTER 9

ARITHMETIC

48

Solving long math problems fast and accurately is a task your computer

does with ease. Before typing long, difficult formulas, though, there’re

some shortcuts you'll want to use.

An easy way to handle complicated math formulas is with “subroutines.”

Type and run this program:

10 PRINT "EXECUTING THE MAIN PROGRAM"

20 GOSUB 500

30 PRINT "NOW BACK IN THE MAIN PROGRAM"

4@ END

500 PRINT "EXECUTING THE SUBROUTINE"

Si@ RETURN

Ax (BY + C) —- D + E(G/W) - F

GOSUB 500 tells the computer to go to the subroutine that starts at Line

500. RETURN tells the computer to return to the BASIC word that im-

mediately follows GOSUB.

Delete Line 40 and see what happens when you run the program.

If you did this, your screen shows this:

EXECUTING THE MAIN PROGRAM
EXECUTING THE SUBROUTINE
NOW BACK IN THE MAIN PROGRAM
EXECUTING THE SUBROUTINE

PRG ERROR IN 518

RG means “RETURN without GOSUB.” Do you see why deleting END in

Line 40 causes this error?

At first, the program runs just as it did before. It goes to the subroutine in

Line 500 and then returns to the PRINT line that immediately follows

GOSUB.

Then, since you deleted END, it goes to the next line—the subroutine in

Line 500. This time, though, it doesn’t know where to return. This is

because it’s merely “dropping” into the subroutine; it is not being sent to

the subroutine by a GOSUB line.

This subroutine raises a number to any power:

1@ INPUT "TYPE A NUMBER'"S N

20 INPUT "TYPE THE POWER YOU WANT IT RAISED

TO"3 P
30 GOSUB 20008

40 PRINT: PRINT N "TO THE POWER OF" P"IS"E

5Q@ GOTO 10

2000 REM FORMULA FOR RAISING A NUMBER TOA

POWER

2010 E=l
2020 FOR;
2030 E=E%*N
2040 NEXT
2050 IF P=@THENE = 1

2060 RETURN

Also introduced in this program are:

. The colon (:), in Line 40. You can combine program lines using the

colon to separate them. Line 40 contains the two lines: PRINT and

PRINT N “TO THE” P ‘POWER IS” E.

. REM, in Line 2000. REM means nothing to the computer. Put REM

lines wherever you want in your program to help you remember

what the program does; they make no difference in the way the

program works. To see for yourself, add these lines and run the

program:

5 REM THIS IS A PECULIAR PROGRAM»:
17 REM WILL THIS LINE CHANGE THE PROGRAM?

45 REM THE NEXT LINE KEEPS THE SUBPROGRAM

SEPARATED

DO-IT-YOURSELF PROGRAM 9-1

Change the above program so that the computer prints a table of

squares (a number to the power of 2) for numbers, say, from 2 to 10.

The answer's in the back.

Give the Computer a Little Help

As math formulas get more complex, your computer needs help under-

standing them. For example, what if you want the computer to solve this

oroblem:

Divide the sum of 13 + 3 by 8

You may want the computer to arrive at the answer this way:

13 + 3/8 = 16/8 = 2

But, instead, the computer arrives at another answer. Type this command

line and see:

PRINT 13 + 3 / 8 (ENTER

=p
See something different —
about INPUT? You can have
the computer print a mes-
sage before waiting for your
input.

PRINT by itself tells the com-
puter to skip a line.

49

f=
An “operation” is a problem
you want the computer to
solve. Here the operations
are addition, subtraction,
multiplication, and division.

50

The computer solves problems logically, using its own rules:

RULES ON ARITHMETIC

The computer solves arithmetic problems in this order:

1. First, it solves any multiplication and division operations.

2. Last, it solves addition and subtraction operations.

3. If there’s a tie (that is, more than one multiplication/division or
addition/subtraction operation), it solves the operations from left to
right.

In the problem above, the computer follows its rules:

. First, it does the division (3/8 = .375)

. Then, it does the addition (13 + .375 = 13.375)

For the computer to solve the problem differently, you need to use paren-

theses. Type this line:

PRINT (13 + 3) / 8 (ENTER

Whenever the computer sees an operation in parentheses, it solves that

operation before solving any others.

COMPUTER MATH EXERCISE

What do you think the computer will print as the answers to each of
these problems?

PRINT 10-(5-1)/2

PRINT 19-S-1/2

PRINT (18-S5-1)/2

PRINT (18-5) -1/2

PRINT 19- (5-1/7 2)

Finished? Type each of the command lines to check your answers.

What if you want the computer to solve this problem?

Divide 10 minus the difference of 5 minus 1 by 2

You're actually asking the computer to do this:

(10-(5-1))/2

When the computer sees a problem with more than one set of parentheses,
though, it solves the inside parentheses and then moves to the outside
parentheses. In other words, it does this:

(10 — (6 — 1))/2

(10 — 4)/2

Le
6/2

L >
—2? 6/2=3

RULES ON PARENTHESES

1. The computer solves operations enclosed in parentheses first, be-
fore solving any others.

2. The computer solves the innermost parentheses first. It then works
its way out.

COMPUTER MATH EXERCISE

Insert parentheses in the problem below so that the computer prints 28
as the answer:

PRINT 30-9-8-7-6

Answer:

PRINT 3@- (9 - (8 - (7 -6)))

Saving Routines

The program below uses two subroutines. It’s for those of you who save by
gutting the same amount of money in the bank each month:

i1@ INPUT "YOUR MONTHLY DEPOSIT"? D
20 INPUT "BANK ’S ANNUAL INTEREST RATE" I

30 I=I/i2* .@l
40 INPUT “NUMBER OF DEPOSITS"$ P

3@ GOSUB 1000
6@ PRINT "YOU WILL HAVE #" FY "IN" P "MONTHS"

70 END

1920 REM COMPOUND MONTHLY INTEREST FORMULA

1@i@ N=ittl
1920 GOSUB 2000
1030 FY=D*((E-1)/17)

1048 RETURN

2000 REM FORMULA FOR RAISING A NUMBER TO A

POWER

2010 Eel
2020 FORX=1TOP

2030 E=E%#N

2@40 NEXT X
2050 IF P= @THENE = 1

206@ RETURN

52

Notice that one subroutine ‘‘calls”’ another. This is fine with the computer

as long as:

° there’s a GOSUB to send the computer to each subroutine, and

° there’s a RETURN at the end of each subroutine.

Turn to the Appendix, ‘Subroutines.’ You'll find useful math subroutines

you can add to your programs.

Learned in Chapter 9
BASIC WORDS BASIC SYMBOLS BASIC CONCEPTS

GOSUB ee
RETURN () Order of operations

REM

Notes

CHAPTER 10

A GIFT WITH WORDS

A great skill of the computer is its gift with words. It can tirelessly twist and

combine words any way you want. With this gift, you can get it to read,

write, and even talk.

Combining Words

Type and run this program:

1@ PRINT “TYPE A SENTENCE"

20 INPUT 5%
30 PRINT “YOUR SENTENCE HAS " LEN(S$) "

CHARACTERS"
4Q@ INPUT "WANT TO TRY ANOTHER?" 5 A&

5@ IF A$ = "YES" THEN 10

Impressed? LEN(S$) computes the length of string $$—your sentence. The

computer counts each character in the sentence, including spaces and

punctuation marks.

Erase the program and run this, which composes a poem (of sorts):

10 At = "A ROSE"
20 Bee" "
30 CH= "IS AROSE"
40 D$=BS+CS
5@ EE = "AND SQ FORTH AND SO ON"
6O Fe =A$+D$+D$+ BS + ES

7@ PRINT FS

Here the plus sign (+) combines strings. For example, D$ (“IS A ROSE’’) is

a combination of B$ + C$.

There are two problems you may encounter when combining strings. Add
the following line and run the program. It shows both problems:

B8@ GS=FS+ FS + FS + FS + FS + FS + FS

When the computer gets to Line 80, it prints the first problem with this line:

20S ERROR IN 80 (‘‘out of string space’’).

Not impressed? Later, we'll
show practical uses of this
unusual skill.

You will not get the OS er-
ror if you have not started
your computer since you

ran the program from
Chapter 8 with the
CLEAR 522 line.

53

On startup, the computer reserves only 200 characters of space for work-

ing with strings. Line 80 asks it to work with 343 characters. To reserve

room for this many characters and more (up to 500), add this line to the

start of the program and run:

5S CLEAR 580

Now when the computer gets to Line 80, it has enough string space, but

prints the second problem with this line: 2LS ERROR IN 80 (“string too

long’).

A string can contain no more than 255 characters. When storing more than

255 characters, you need to put these characters into several strings.

Twisting Words

Now that you can combine strings, try to take a string apart. Type and run

this program:

1@ INPUT "TYPE AWORD"S WS

20 PRINT "THE FIRST LETTER IS: " LEFT# (W+1)

30 PRINT "THE LAST 2 LETTERS ARE : " RIGHTS

(WH 12)
40 GOTO ia

Here’s how the program works:

In Line 10 you input string W$. Assume the string is MACHINE:

" COMPUTER MEMORY
W$—— MACHINE

In Lines 20 and 30, the computer computes the first /eft letter and the last

two right letters of the string:

MACHINE
LEFT$ (WH+1) RIGHTS (W$+2)

Run the program a few more times to see how it works.

Now add this line to the program:

5S CLEAR 500

so that your computer will set aside plenty of space for working with
strings. Run the program again. This time input a sentence rather than a
word.

PROGRAMMING EXERCISE

How would you change Lines 20 and 30 so that the computer will give
you the first 5 letters and the last 6 letters of your string?

20

30

Answers:

20 PRINT "THE FIRST FIVE LETTERS ARE :" LEFT#

(WH 55)

30 PRINT "THE LAST SIX LETTERS ARE :" RIGHTS

(WS G6)

Erase your program and type this one:

10 CLEAR 300
2 INPUT "TYPE A SENTENCE" S$
30 PRINT "TYPE A NUMBER FROM 1 TO " LEN(S$)

40 INPUT XK
5@ PRINT "THE MIDSTRING WILL BEGIN WITH

CHARACTER " XK
6@ PRINT "TYPE A NUMBER FROM 1 TO" LEN(S#) - K

+1
7@ INPUT Y¥
80 PRINT "THE MIDSTRING WILL BE" ¥

"CHARACTERS LONG"
90 PRINT "THIS MIDSTRING IS :" MIDS$(S$+K+¥)

100 GOTO 20a

Run this program a few times to see if you can deduce how MID$ works.

Here’s how the program works:

In Line 20, assume you input HERE IS A STRING:

YOUR COMPUTER ‘’S MEMORY

S$¢—— HERE IS A STRING

in Line 30, the computer first computes the length of S$, which is 16
characters. It then asks you to choose a number from 1 to 16. Assume you
choose 6.

in Line 60, the computer asks you to choose another number from 1 to 12
(16-6+ 1). Assume you choose 4.

YOUR COMPUTER ’S MEMORY

X——+ 6
Y——> 4

in Line 90, the computer gives you a ‘‘mid-string’”’ of $$ that starts at the 6th

character and is four characters long:

1273456789 10 11 12 13 14 15 16
HERE IS A 5 T R I N G

—_—y—

MID$(S$ +6 +4)

For another example of MID, erase the program and run this:

1@ INPUT "TYPE A SENTENCE"S S$
20 INPUT "TYPE A WORD IN THE SENTENCE" W%

3@ L=LEN(WS)
40 FORK =1TOLEN(S$)
5Q@ IF MID#(S#+X+L) = WS THEN 99

60 NEXT xX
70 PRINT "YOUR WORD ISN’T IN THE SENTENCE"

82 END
9@ PRINT W$ "--BEGINS AT CHARACTER NO." X

Remember how to erase a

program? Type:

NEW (ENTER

You can use this kind of
program to sort through in-
formation. For instance, by
separating strings, you could
look through a mailing list
for TEXAS addresses.

55

56

£-2->

Here’s how the program works:

In Line 20, assume you input the word IS for W$. In Line 30, the computer
counts W$’s length: 2 characters.

YOUR COMPUTER’S MEMORY

5$——- HERE IS A STRING

W$——~ 15
L——+2

° oO
In Lines 40-90 (the FOR/NEXT loop), the computer counts each character
in S$, starting with character 1 and ending with character LEN(S$), which
is 16.

Each time the computer counts a new character, it looks at a new mid-
string. Each mid-string starts at character X and is L (2) characters long.

For example, when X equals 1, the computer looks at this mid-string:

1

HERE I$ A STRING

MID#(S#+1+2)

The fourth time through the loop, when X equals 4, the computer looks at
this mid-string:

4

HE Re I$ A 5 TRING

MID$(S$ +452)

When X equals 6, the computer finally finds IS, the mid-string for which it is
searching.

A
W
E

\8

‘
aN)

yy

W
Y

A
A
A
I

S
A
M
A
 2,

A
N
A
M

AY

DO-IT-YOURSELF PROGRAM 10-1

Start with a one-line program:

10 A$ = “CHANGE A SENTENCE.”

Add a line that inserts this to the start of A$:

IT’S EASY TO

Add another line that prints the new sentence:

IT’S EASY TO CHANGE A SENTENCE

This is our program:

1@ AS = "CHANGE A SENTENCE."
20 B= "IT’S EASY TO"
30 CH#=BS+" "+ AS
40 PRINT C4

DO-IT-YOURSELF PROGRAM 10-2

Add to the above program to make it:

* Find the start of this mid-string:

A SENTENCE

* Delete the above mid-string to form this new string:

IT'S EASY TO CHANGE

* Add these words to the end of the new string:

ANYTHING YOU WANT

* Print the newly-formed string:

IT’S EASY TO CHANGE ANYTHING YOU WANT

HINT: To form the string IT’S EASY TO CHANGE, you need to get the
left portion of the string IT’S EASY TO CHANGE A SENTENCE.

Answer:

1@ A = "CHANGE A SENTENCE,"

20 B= "IT’S EASY TO"

30 Cé#=Be+" "+ AS This program is the basis of a
40 PRINT CS “word processing’ pro-

yoo " “ gram—a popular program
o@ f= Le ("A SENTENCE") thal cutswdown typing

6@ FOR X=1TOLEN(CS) expenses,

70 IF MID# (C#+X+¥) = "A SENTENCE" THEN 98

80 NEAT A
BS END
92 D$ = LEFT$ (C+xK - 1)
100 E$ = D$ + "ANYTHING YOU WANT"
110 PRINT ES

DO-IT-YOURSELF CHALLENGER PROGRAM

Write a program that:

* Asks you to input a sentence.

* Asks you to input (1) a phrase within the sentence to delete and (2) a
phrase to replace it.

* Prints the changed sentence.

This may take a while, but you have everything you need to write it.
Our answer's in the back.

57

Learned in Chapter 10

BASIC WORDS BASIC String OPERATOR

LEN +

LEFT$
RIGHT$

MID$

Notes

~ CHAPTER 11

A POP QUIZ
By using a word named INKEY$, you can get the computer to constantly

“watch,” “time,” or “test’” what you're typing. Type and run this program:

1@ As = INKEYS
20 IF A$ <3"" GOTO 50

30 PRINT "YOU PRESSED NOTHING" Remember fiat <= aeans

40 GOTO 1@ “not equal to.’

SQ PRINT "THE KEY YOU PRESSED IS---" A%

. : . a 3 5 ““ is an “empty string’

INKEY$ checks to see if you’re pressing a key. It does this ina splitsecond. | (nothing),

At least the first 20 times it checks, you’ve pressed nothing (“ ”’).

e

Line 10 labels the key you press as A$. Then the computer makes a
decision:

. If A$ equals nothing (“’’), it prints YOU PRESSED NOTHING and

goes back to Line 10 to check the keyboard again.

: If A$ equals something (anything but “’ ’’), the computer goes to Line
50 and prints the key.

Add this line and run the program:

60 GOTO ia

No matter how fast you are, the computer is faster! Erase Line 30 to see

what keys you're pressing.

An Electronic Piano

Look again at ‘‘Musical Tones’ in the Appendix. It lists these as the tones
for middle C through the next higher C:

C- 89 E-125 G - 147 B - 170
D - 108 F - 133 A- 159 C-176

Erase memory and type this program:

i@ = INKEYS
20 IF ag = "" THEN 10
30 IF A#= "A" THEN T = 89
4@ IF A$="S" THEN T = 108
50 IF A#= "D" THENT = 125
6@ IF A#="F" THEN T = 133
7® IF A$ = "G" THENT = 147
B® IF A$ = "H" THENT = 159
90 IF A$= "J" THENT = 170
100 IF A#= "K" THEN T = 176

11@ IF T=@ THEN 108
12@ SOUND T:5
i3@ T=@
14a GOTO 10

/ i

Un,
ey [ann

/

/ /

How would this change the Run it. Well, what are you waiting for? Play a tune. Type any of the keys on

program? the third row down on your keyboard—from A to K.
12@ SOUND T+

60

Why will the program not work right if you use INPUT rather than INKEY$!

Answer: If you use INPUT, the computer waits until you press (ENTER

before it sees what you type. With INKEY$, it sees everything you type.

There’s another way of writing this program using READ and DATA lines.

Do you know how?

This is what we came up with:

1a At = INKEYS
20 FORX=i1708
30 READ BS+T
40 IF At = BS THEN SOUND T:+5

5@ NEX
6@ RESTORE
70 GOTO 10
B® DATAA:+ 89+ 5+ 188
98 DATAD: 125% F133
1@@ DATAG: 147+5H», 159
110 DATA J+ 178+K+ 176

Beat the Computer

Type this program:

1@ k= RND(4)
20 Y= RND(4)
30 PRINT "WHAT IS" kK "+" ¥

40 T=
38 AS = INKEYS

60 T=T+i
70 SOUND 128 +1
88 IF T= 15 THEN 200
90 IF A$ = "" THEN 50
1@0 GOTO 1a

200 CLS(7)
218 SOUND 180, 30
220 PRINT "TOO LATE"

Here’s how the program works:

Lines 10, 20, and 30 have the computer print two random numbers and ask

you for their sum.

Line 40 sets T to O. T is a timer.

Line 50 gives you your first chance to answer the question—in a split
second.

Line 60 adds 1 to T, the timer. T now equals 1. The next time the computer
gets to line 60 it again adds 1 to the timer to make T equal 2. Each time the
computer runs Line 60 it adds 1 to T.

Line 70’s there just to make you nervous.

Line 80 tells the computer you have 15 chances to answer. Once T equals
15, time’s up. The computer insults you with Lines 200, 210, and 220.

Line 90 says if you haven’t answered yet the computer should go back and
give you another chance.

The computer gets to Line 100 only if you do answer. Line 100 sends it
back for another problem.

How can you get the computer to give you three times as much time to

answer each question?

Answer:

By changing this line:

80 IF T= 45 THEN 200

61

Remember the problem of
mixing strings with num-
bers? Chapter 2 will refresh
your memory.

62

cine

Checking Your Answers

How can you get the computer to check to see if your answer is Correct?
Would this work?

190 IF A$=X+ YY THEN 130
110 PRINT "WRONG", X "4" Y "ES" K+ ¥

120 GOTO 1a
13@ PRINT "CORRECT"
148 GOTO 19

If you run this program (and answer on time), you'll get this error message:

7TM ERROR IN 100

That’s because you can’t make a string (A$) equal to a number (X + Y). You
somehow must change A$ to a number.

Change line 100 by typing:

100 IF YVAL(AS) = X + ¥ THEN 130

VAL(A$) converts A$ into its numeric value. If A$ equals the string 5,”’ for

example, VAL(A$) equals the number 5. If VAL(A$) equals the string “C,””
VAL(A$) equals the number 0. (‘C” has no numeric value.)

To make the program more challenging, change these lines:

10 xX =RND(49) +4
20 Y=RND(49) +4
90 BS =BS+ As
100 IF VAL(B#) =X + ¥Y THEN 130

Then add these lines:

45 BS=""
95 IF LEN(B$) <> 2 THEN 58

A Computer Typing Test

Here’s a program that times how fast you type:

i@ CLS
20 INPUT "PRESS <ENTER? WHEN READY TO TYPE

THIS PHRASE": ES
3@ PRINT "NOW IS THE TIME FOR ALL GOOD MEN"

40 T=
o@ A = INKEYS
60 IF A$ = "" THEN 18
70 PRINT AS5
B80 BS =BS + As
9@ IF LEN(B#) = 32 THEN 128
100@ T=T+ti1
11@ GOTO 5e

120 S=T/74
130 M= 5/60
140 R=8/M
150 PRINT
16@ PRINT "YOU TYPED AT--"R"--WDS/MIN"

Line 40 sets T, the timer, to 1.

Line 50 gives you your first chance to type a key (A$). If you're not fast
enough, Line 60 sends the program to Line 100 and adds 1 to the timer.

Line 70 prints the key you typed.

Line 80 forms a string named B$. Each time you type a key (A$), the
program adds this to B$. For example, if the first key you type is ‘“N,’”’ then:

At = sa

and

BS = BS + AS
Bt = mou + Ay

BS = a

lf the next key you type is ““O,” then:

At = He) u

and
BS = BS + AS
BS = uy + OH

BS = "NO"

if the third key you type is “W,”’ then:

Ag = "yy!

and
BS = "NO" + "ape

B$ = "NOW"
When the length of B$ is 32 (the length of NOW IS THE TIME FOR ALL
GOOD MEN), the program assumes you've finished typing the phrase and
goes to Line 120 to compute your words per minute.

Lines 120, 130, and 140 compute your typing speed. They divide T by 74
to get the seconds), S by 60 (to get the minutes). They then divide the eight
words by M to get the words per minute.

‘

Learned in Chapter 11
BASIC WORDS

INKEYS
VAL

=e]
We could have made this
calculation in one line by us-
ing parentheses:

120 R=8/((T/74)/
60)

How abouta variation of this

program—a speed-reading
test?

63

64

Notes

CHAPTER 12

MORE BASICS

Before you're finished with the “‘basics,’’ you need to know a few more
words.

The first is STOP. Type and run this program:

1@ Af=il
20 Az=AtI1
30 STOP
40 A=A#2
3@ STOP
68 GOTO 2

The computer starts running the program. When it gets to Line 30, it prints:

BREAK IN 30

OK

You now can type a command line to see what's happening. For example,

type:

PRINT A

The computer prints 2—A’s value when the program’s at Line 30. Now

type:

CONT

The computer continues the program. When it gets to Line 50, it prints:

BREAK IN 350

Type:

PRINT A

This time the computer prints 4—A’s value at Line 50.

Type CONT again, and the computer breaks again at Line 30. If you have it

again print A, it prints 5—the value of A at Line 30 the second time through

the program.

Inserting STOP lines in your program helps you figure out why it’s not

working the way you expect. When you fix the program, take the STOP

lines out.

For Long Programs...

Clear memory and type:

PRINT MEM (ENTER

The computer prints how much storage space remains in the computer's
memory.

When you’re typing a long program, you will want to have the computer
PRINT MEM from time to time to make sure you’re not running out of
memory.

To save memory, you can
omit spaces in your program

before and after punctuation
marks, operators, and BASIC
words.

ia)
65

66

Type this pr

12
20
30

" 100
S\ 110

200
210

300
310

Run it.

Help with Typing

ogram:

INPUT "TYPE 1+ 2+ OR 3"5 N

ON N GOSUB 100; 200, 300

GOTO 12

PRINT "YOU TYPED 1"

RETURN

PRINT "YOU TYPED 2"

RETURN

PRINT "YOU TYPED 3"

RETURN

ON ...GOSUB in Line 20 works the same as three lines:

18
20
rote a

IF N= i THEN GOSUB 100
IF N = 2 THEN GOSUB 200
IF N = 3 THEN GOSUB 3008

ON ... GOSUB looks at the line number following ON—in this case N.

. If N is 1, the computer goes to the subroutine starting at the first line

number following GOSUB.

° If N is 2, the computer goes to the subroutine starting at the second

line number.

° If Nis 3, the computer goes to the subroutine starting at the third line

number.

What if N is 42 Since there’s no fourth line number, the computer simply

goes to the next line in the program.

Here is a program that uses ON ... GOSUB:

3 OF
1a
20
38
4@
50
68

70
BO
90

12ae
1aia@
1@20

1038

2000
2010
2028

2030

OR P= 170 GOO: NEXT P
CLS: X = RND(1@@): ¥ = RND(10@)
PRINT "(i) ADDITION"
PRINT "(2) SUBTRACTION"
PRINT "(3) MULTIPLICATION"
PRINT "(4) DIVISION"
INPUT "WHICH EXERCISE(1-4)"iR
CLS
ON R GOSUB 1000+ 2000, 3000, 4000
GOTO 5

PRINT "WHAT IS" XK "+" ¥
INPUT A
IF A= + ¥ THEN PRINT "CORRECT" ELSE

PRINT "WRONG"
RETURN

PRINT "WHAT IS" x "-" ¥
INPUT A
IF A = X-Y THEN PRINT "CORRECT" ELSE
PRINT "WRONG"
RETURN

3000
3018
3020

3030

4000
4010
4020

4030

PRINT "WHAT IS" X "*" Y
INPUT A
IF A = X*¥ THEN PRINT "CORRECT" ELSE

PRINT "WRONG"
RETURN

PRINT "WHAT IS" k "/" ¥
INPUT A
IF A= X/¥ THEN PRINT "CORRECT" ELSE

PRINT "WRONG"
RETURN

Notice the word ELSE in Lines 1020, 2020, 3020, and 4020. You can use
ELSE if you want the computer to do something special when the condition
is not true. In Line 1020, if your answer—A—equals X + Y, then the
computer prints CORRECT or else it prints WRONG. , rap ee

Youmay useON .. . GOTO ina similar way as ON . . . GOSUB. The only
difference is that ON GOTO sends the computer to another line number
rather than to a subroutine.

Y, the condition set up in
Line 1020 is not true.

Here’s part of a program using ON... GOTO:

1a
20
38
40
o@
68
65
70

1000
1018

2000
20190

3000
30108

CLS
PRINT @ 134;

PRINT @ 166,
PRINT @ 198,
PRINT @ 354:
INPUT A
CLS

"(1i) CRAZY EIGHTS"

"(2) 300"
"(3) HEARTS"
"WHICH DO YOU WANT TO PLAY"

ON A GOTO 1880+ 2000; 3008

PRINT @ 230+ "CRAZY EIGHTS GAME"

END

PRINT @ 236+ "300 GAME"

END

PRINT @ 235+ "HEARTS GAME"

END

Does the Job Say “AND” or “OR’’?

Anyone who speaks English knows the difference between ‘‘and”’ and

“or’’—even your computer. For example, assume there’s a programming

job opening. The job requires:

A degree in programming
AND

Experience in programming

Erase memory and type:

1a
20
3@
40

PRINT "DO YOU HAVE--"
INPUT "A DEGREE IN PROGRAMMING": D%
INPUT "EXPERIENCE IN PROGRAMMING" ES
IF DS = "YES" AND E$ = "YES" THEN PRINT "YOU
HAVE THE JOB" ELSE PRINT "SORRY +s WE CAN‘T

HIRE YOU"
GOTO i@

67

Run the program. You may answer the questions this way:

DO YOU HAVE --
A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES
SORRY + WE CAN’T HIRE YOU

Now, assume the requirements change so that ‘‘or’’ becomes ‘‘and.”’ The
job now requires:

A degree in programming
OR

Experience in programming

To make this change in the program type:

40 IF DS = "YES" OR E$ = "YES" THEN PRINT

"YOU‘VE GOT THE JOB" ELSE PRINT "SORRY: WE

CAN’T HIRE YOU"

Run the program and see what a difference AND and OR makes:

DO YOU HAVE--
A DEGREE IN PROGRAMMING? NO
EXPERIENCE IN PROGRAMMING? YES

YOU HAVE THE JOB

More Arithmetic

These words can save many program lines:

SGN

SGN tells you whether a number is positive, negative, or zero:

1@ INPUT "TYPE A NUMBER" S &
20 IF SGNCK 1 THEN PRINT "POSITIVE"
3@ IF SGNCXK @ THEN PRINT "ZERO"
40 IF SGNCK -1 THEN PRINT "NEGATIVE"

5@ GOTO 18

W
o
w

ou

Run the program, inputting these numbers:

15 -3@ -.@12 0 .22

ABS

ABS tells you the absolute value of a number (the magnitude of the number
without respect to its sign). Type:

1@ INPUT "TYPE A NUMBER"3 N
20 PRINT "ABSOLUTE VALUE IS" ABS(N)

3@ GOTO 198

Run the program inputting the same numbers as the ones above.

STR$

STR$ converts a number to a string. Example:

1@ INPUT "TYPE A NUMBER" 3 N

20 A$ = STRS(N)
30 PRINT A$ +" IS NOW A STRING"

Exponents Notice the OV (overflow)
: : error at the end. The com-

Type and run this program to see how the computer deals with very large puter can’t handle numbers
numbers: larger than 1E + 38 or smal-

Uw ler than -1E+ 38. (It rounds
10 K=1 off numbers around 1£-38
20 PRINT X35 and -1E-38 to 0.)

30 K=X #10
40 GOTO 20 (

The computer prints very large or very small numbers in ‘exponential
notation.” “One billion’”’ (1,000,000,000), for example, becomes 1E +09, ,] Ortechnically 1*109, which

is 1 times ten to the ninth
which means ‘‘the number 1 followed by nine zeros. power (aleviaato:

If an answer comes out ‘5E-06,”" you must shift the decimal point, which ees
comes after the 5, six places to the left, inserting zeroes as necessary. In our BASIC, that’s 5/10/10/
Technically, this means 5*10-6, or 5 millionths (.000005). 10/10/10/10

Exponential notation is simple once you get used to it. You'll find it an easy
way to keep track of very large or very small numbers without losing the
decimal point.

Congratulations, Programmer!

You've now learned the ‘‘basics’’ and can no doubt write some decent
programs. The rest of the book is extra—to help expand and refine your
skills.

If you want to keep learning, skip to any of these sections:

. To improve your graphics programs, read Section Il, ‘Drawing
Pictures.”’

: To write programs that handle large volumes of information, read
Section III, ‘“Getting Down to Business.”

. To call ‘‘machine-language programs’’ from BASIC and, using
machine language, create high-resolution graphics, read Section IV,
“Bits and Bytes.” You need to already understand machine language
to use this section.

Learned in Chapter 12
BASIC WORDS BASIC SYMBOLS BASIC CONCEPT

STOP SGN AND Exponential
CONT ABS OR notation

MEM STR$

Notes

69

SECTION II

DRAWING PICTURES
This section shows how to write colorful and exciting programs. Here,
you'll put pictures on your screen that move, dance, and even sing songs.

CHAPTER 13

COLOR THE SCREEN

E®
Be sure to type Line 30. We'll
explain why later.

72

Having fun? If so, you’re sure to enjoy the subject of this chapter: computer

graphics.

Since graphic ideas will come to you quickly—and your programs may

end up long—this chapter just shows how to start. While running this

chapter’s programs, you may want to stop and improve or rewrite them.
We hope you do. That's a fast way to learn.

Start by making the screen black. Type:

1@ CLS(@)

Add these two lines and run the program:

20 SET(81+813)
3@ GOTO 30

See the blue dot? It’s at the screen’s top left-hand corner. To put the dot at

the bottom right-hand corner, change Line 20 and run the program:

20 SET(63+31+3)

Want to center the dot? Use this for Line 20:

20 SET(31,+14 +3)

SET tells the computer to set a dot on your screen at the position you
choose:

‘ With the first number, you choose the dot’s horizontal position (a
number from 0 to 63).

. With the second number, you choose the dot’s vertical position (a
number from 0 and 31).

In the Appendix, there’s a screen grid, ‘Graphics Screen Locations.” It
divides your screen into the 64 (0 to 63) horizontal positions and 32 (0 to
31) vertical positions. Use this grid to position dots on your screen.

What about 3, the third number? Try replacing 3 with other numbers. Type
each of these lines and run the program:

2@ SET(31+1454)
20 SET(31+14+1)

Have you decided what this number does? When you use 4, the dot’s red;
with 1, it’s green. The color codes for SET are the same as those for CLS
(codes 0-8). They're listed in your Quick Reference Card.

Now see why the GOTO line is necessary. Delete Line 30 and run the
program:

10 CLS(0)
20 SET(3151451)

Although you can’t see it, a dot is set. But when the program ends, the
computer prints OK on top of the dot.

The GOTO line sets an infinite loop in the program so that it will never end
(that is, unless you press (BREAK)).

Setting Two Dots

To set more than one dot, you need to do more planning. To find out why,

run a few programs. First, run this:

1@ CLS(@)
20 SET(3211413)
30 SET(33+1453)
40 GOTO 408

You should now have two blue dots—side by side—in the middle of your

screen. Change the color of the right dot so you'll have one blue and one

red dot. Type:

30 SET(33+14+4)

Run the program again. This time, both dots are red.

Look again at the ‘Graphics Screen Locations” grid. Note the darker lines

group the dots into “blocks.” Each block contains four dots. For instance,
the block in the middle of the grid contains these four dots:

Horizontal Vertical

Position 32 14

Position 33 14

Position 32 15
Position 33 15

Each dot within a block must either be:

. the same color
or

: black

The above program asks the computer to set two different-colored dots (red

and blue) within the same block. Since the computer can’t set them in
different colors, it sets them both in the second color—red.

Type this and run the program:

30 SET(34+14+4)

The screen positions for SET —
are different than those for
PRINT @). That’s why there
are two grids in the Appen-
dix. Be sure to use “Graphics
Screen Locations” for SET.

73

Since the dot in position 34, 14 is in a different block, the computer can set

the two dots in. different colors.

The Computer’s Face

Using dots, you can draw whatever you want. We'll draw a simple picture
of a computer. First draw the top and the bottom of the head. We'll make it
buff. Type:

5S CLS(@)
1@ FORH=i15 7T0 48
20 SET (H+5%5)
30 SET (H+20%5)
40 NEXTH
58 GOTO 58

Run the program. This is what you see on your screen. (The lines should be

buff rather than white, like we have them.)

Lines 10 and 40 set up a FOR/NEXT loop for H, making the horizontal
positions 15 through 48 for the top and the bottom lines.

Line 20 sets the top line. The horizontal position is 15 through 48, and the
vertical position is 5.

Line 30 sets the bottom line. The horizontal position, again, is 15 through
48, and the vertical position is 20.

To set the left and right sides of the head, type these lines:

|) 9@ FORY=5 TO 208

6@ SET(1S +95)
Notice we've changed Line IO SET(d85U55)
50—the GOTO line.

B@ NEXT V

9¢ GOTO 9a

and run the program.:

We'll make the nose orange. Type:

9% SET(32+13+8)

And the mouth red. Type:

100 FORH = 28 TO 36

110 SET(H+1654)

120 NEXTH

74

And the eyes blue. Type:

130 SET(25+1053)

140 SET(38+10+3)

150 GOTO 150

Run the program. This is what your screen should look like now:

A Blinking Computer

With a few more lines, you can make the computer ‘‘blink.’’ Type:

15@ RESET(38:1@)

Run the program. You now see the same face, except the right eye is
missing. RESET erases the dot in the horizontal position 38 and the vertical

position 10. That's the right eye.

To make the eye blink, simply set and reset it by adding this line:

ig@ GOTO ido

List your program to see if it’s the same as ours.

> CLS(@)
10 FORH=15 T0 48
20 SET(H+5+5)
30 SET(H+20%5)
40 NEXT H

5@ FORYV=5 TO 28
60 SET(15++5)
70 SET(48sV45)
B® NEXT VW

9@ SET(32+13+8)

100 FORH = 2870 36
110 SET(H+16+4)
120 NEXT H

13@ SET(25+10+3)
14@ SET(38+10+3)

15@ RESET(38;:10)
16@ GOTO 14¢@

Run and improve it (if you can).

You don’t need to tell the
computer the color of the
dot to reset (erase) it.

75

Remember always to erase
wour program before typing
2 “new” one.

C=
Be sure to type the semico-
fons at the ends of Lines 20,
30, 40, and 50.

cam)
The second or fourth num-
ber may change also, but not
from 0 to 63.

76

The Bouncing Dot

You may now see how to program pictures that move. This program makes

a ball move down:

5 CLS(@)

1@ FORY=@0TO 31

20 SET(31+Vs3)

3@ RESET(31+V)

40 NEXT V

Each dot that Line 20 sets, Line 30 erases.

To move the ball back up, add these lines:

50 FORY=31TO@ STEP -1

6O@ SET(31+V+3)
70 RESET(31 +)
88 NEXT Y

Add this line to make the ball ‘bounce’:

90 GOTO 19a

Run the program. To slow the dot down (it'll look better), change Lines 30

and 70:

30 IF V > @ THEN RESET(31 +V-1)
70 IF V< 31 THEN RESET(31 +41)

The > sign means the same as it does in math—greater than. The < sign

means less than.

If You Have Joysticks...

If you have joysticks, connect them now by plugging them into the back of

your computer. They fit in only the correct slots, so don’t worry about
plugging them into the wrong places.

Now run this short program to see how joysticks work:

1@ CLS
20 PRINT @@+ JOYSTK(O)5
30 PRINT @S+ JOYSTK(1)5
40 PRINT @1@+ JOYSTK(2)3
5@ PRINT @15% JOYSTK(3)3

62 GOTO 2d

See the four numbers on your screen? They’re the horizontal and verti-
cal positions of the two joysticks’ “floating switches.”

Grasp the right joystick’s floating switch. (The joystick connected to the
RIGHT JOYSTICK jack on the back of the computer.) Keeping it in the
center, move it from left to right. The first number on the screen

changes: to numbers from 0 and 63.

Move the left joystick’s floating switch from left to right. The third number
on the screen changes.

Now move the floating switches up and down, keeping them in the center.
Moving the right joystick up and down changes the second number from 0
to 63. Moving the left joystick up and down changes the fourth number

from 0 to 63.

This is how the computer reads the joysticks’ positions:

LEFT JOYSTICK

0

ee

Rado Sack
LZ\

63

JOYSTK(2) JOYSTK(3)

RIGHT JOYSTICK

0

a —

Radke Shack Cache Fhack
LN ax

3

JOYSTK(O) JOYSTK(1)

JOYSTK(0) and JOYSTK(1) read the right joystick’s positions:

° JOYSTK(O) reads the horizontal (left to right) coordinate.

. JOYSTK(1) reads the vertical (up and down) coordinate.

JOYSTK(2) and JOYSTK(3) read the /eft joystick’s positions:

° JOYSTK(2) reads the horizontal coordinate.

. JOYSTK(3) reads the vertical coordinate.

Whenever you read any of the joysticks, you must read JOYSTK(0). To find

out for yourself, delete Line 50 and run the program. It works almost the

same, except it doesn’t read JOYSTK(3)—the vertical position of your left

joystick.

Delete Line 20 and change Line 60:

68 GOTO 3d

Run the program. Move all the switches around. This time the program

doesn’t work at all. The computer won't read any coordinates unless you
first have it read JOYSTK(O). Type these lines and run the program:

26 A= JOYSTK(@)
68 GOTO 20

77

> = means greater than or
equal to

78

Although the computer’s not printing JOYSTK(O)’s coordinates, it’s still

reading them. Because of this, it’s able to read the other joystick coordi-

nates. Whenever you want to read JOYSTK(1), JOYSTK(2), or JOYSTK(3),

you first need to read JOYSTK(O).

Painting with Joysticks

Type and run this program:

i@ CLS(@)
20 He JOYSTK(@)
3@ We JOYSTK(1)
40 IF VY? 31 THENY = - 32

80 SETCHs+V13)

90 GOTO 20

Use the revolving switch of your right joystick to paint a picture. (Move the

switch slowly so that the computer has time to read its coordinates.)

J

Line 20 reads H—the horizontal position of your right joystick. This can be

a number from 0 to 63.

Line 30 reads V—its vertical position. This can also be a number from 0 to

63. Since the highest vertical position on your screen is 31, Line 40 is

necessary. It makes V always equal a number from 0 to 31.

Line 80 sets a blue dot at H and V.

Line 90 goes back to get the next horizontal and vertical positions of your

joysticks.

This uses only the right joystick. Perhaps you could use the left one for

color. Add these lines and run the program:

5@ C= JOYSTK(2)
6@ IFC 31 THENC=3
7® (IFC 2231 THENC=4
BO SET(H+V+C)

Move your left joystick to the right, and the computer makes C equal to 3;

the dots it sets are red. Move it to the left, and the computer makes C equal

to 4; the dots it sets are blue.

Want to use your joystick buttons? Add these lines to the program:

100 P= PEEK(65280)
110 PRINT P

120 GOTO 100

Now type:

RUN 1008

This tells the computer to run the program starting at Line 100. Your

computer should be printing either 255 or 127 over and over.

PEEK tells the computer to look at a certain spot in its memory to see what
number's there. Line 100 looks at the number in position 65280. As long as

you're not pressing either of the buttons, this spot contains the number 255

or 127.

Press the right button. When you press it, this memory location contains

either the number 126 or 254.

Press the left button. This makes this memory location contain either the

number 125 or 253.

Using this information, you can make the computer do whatever you want
when you press one of the buttons. We'll make it go back to Line 10 and

CLS(0) (clear the screen to black) when you press the right button. Change

Lines 110 and 120:

1i@ IF P
i120 IF P

Delete Line 90 and add this line:

1308 GOTO 28

126 THEN 18
254 THEN 19

i

Run the program and start ‘‘painting.” Press the right button when you

want to clear the screen and start again.

Learned in Chapter 13
BASIC WORDS

SET
RESET

JOYSTK
PEEK

Notes

If you press the buttons
when you’re not running the
program, you'll see
(@ ABCDEFG or HIJKLMNO.

Some of the joysticks will

notread six “blocks” ineach
of the four corners of your
screen.

79

CHAPTER 14

GAMES OF MOTION

80

Ready for video games? Because of a word named POINT, you can
program almost any kind of motion game.

Type these lines. They set orange dots at random horizontal and vertical
positions:

5S CLS(@)
1@ FORX=i1T05
20 SET(RND(64)-1+ RND(30) +i, 8)

308 NEXT X

Add these lines and run the program:

40 FORY=2 70 31
5@ FORH=92@T7T063
60 IF POINT(H»Y) <2 @ THEN GOSUB 100

70 NEXT H
73 NEXT ¥
8@ END
100 PRINT @@+ "LOCATION" H"s" YU "IS SET"

11 RETURN

n
o
u

Line 60 checks each ‘point’ in vertical positions 2-31 and horizontal
positions 0-63.

. If the point equals 0, it’s “off’’ (black).

° If the point equals some other number, it’s “set.” Line 100 prints the
point’s position.

You can also find out what color each point is. Erase memory, and then
type and run this program:

> CLS(8)
i@ C= RND(9) - 1
2@ SET(31+15;C)
30 IF POINT(31,515) = 2 THEN PRINT @ OO;

"LOCATION 31+15 15 YELLOW"

40 IF POINT(31+15) = 3 THEN PRINT @ 480,

"LOCATION 31515 IS BLUE";
5@ FORT = 170 1000: NEXT T

6@ GOTOS

If the point is “set,” it equals one of the 8 color code numbers listed in

Appendix B.

Plotting Through Asteroids

This game uses the right joystick, so be sure it’s connected. (If you don’t
have joysticks, skip to the next chapter.)

Erase memory and type these lines. They create “asteroids.”

3S CLS (@)
1@ FOR X= 1 TO 28
20 SET (RND(G4) -1+ RND (38) +148)

30 NEXT X

Type these lines to create a “planet.”

4@ FORH=54T0 63
5Q@ FORY = 2870 3l
62 SETCH+V¥s3)
70 NEXT VoH

The above lines set blue dots in each of these positions: horizontal 54-63
and vertical 28-31. Note that Line 70 contains two instructions: NEXT V

and NEXT H.

To read the right joystick’s position, type:

1g A= JOYSTK(O)
110 B= JOYSTK(1)
120 B=B/2
130 B= INT(B)

A reads the horizontal coordinates (0-63), and B reads the vertical coordi-

nates (0-63). Since the highest vertical position on your screen is 31, Lines

120 and 130 are necessary.

To set the entire block surrounding the joystick’s position, add these lines:

200 IF INT(A/2) #2 A/2 THENA=A- 1
21@ IF INT(B/2) <> B/2 THEN B=B- 1

220 FORH=ATOAt+I1
230 FORY=BTOB+ 1
240 SET(H+VsG)
25@ NEXT VoH
999 GOTO 18a

Lines 200 and 210 ensure that the first horizontal and vertical dots set are

even numbers, and Lines 220-250 set the entire block.

Run the program. Move your joystick around. The cyan colored line moves
wherever you position the joystick.

Now turn this into a game. Type these lines and run the program:

212 FORH=ATOA+I1
214 FORY=BTOBtI1 H

o
u

81

82

216

218

IF POINT(H+) = 8 THEN SOUND 128+1:
T=T+1
NEXT VoH

Each time you hit an orange point, Line 216:

° Sounds a tone

« Adds 1 to T, a counter

Add these lines and run the program:

235

308
319
1000

1010
1820
1030
1040

IF POINT(H+V) = 3 THEN PRINT @@;}
"CONGRATULATIONS - YOU MADE IT": END

PRINT @ 28+ T
IF T = 18 THEN 1000
FOR X= 1 TO 408
CLS(RND(8))
SOUND RND(255), 1
NEXT
PRINT @ 228, "YOUR SPACESHIP EXPLODED"

Want the rules printed on the screen? Add some more lines:

8a
82
B4
86
88
90
92
94
96

2000
2019
2020
2030
2040
2050
2060
2070

FOR X= 1708
READ AS
PRINT @ @+AS
FOR Y¥ = 170 1500: NEXT Y

NEXT X
R& = INKEY$: IF R$ = "" THEN 9@

FOR H = 4T0O 63
SET(H+@+8): SET(H+1 +8)

NEXT H

DATA YOUR GOAL 1S TO PLOT A COURSE
DATA TO GUIDE YOUR SPACESHIP
DATA THROUGH THE ASTEROIDS
DATA TO THE BLUE PLANET
DATA HIT MORE THAN 18 ASTEROIDS
DATA AND YOUR SPACESHIP EXPLODES! !!
DATA PRESS ANY KEY WHEN YOUR SPACE -
DATA SHIP IS AT TOP LEFT CORNER

Learned in Chapter 14
BASIC WORD

POINT

Notes

CHAPTER 15

THE TALKING-COMPUTER
TEACHER

Who says the computer can’t talk? Its voice, though, sounds strangely like

your own. You can program the computer to ‘‘talk’’ using your own taped

voice. This adds interest and fun to any program.

This chapter requires that you have a tape recorder.

, Unplug the three-pronged cable connecting your tape recorder to

the computer.

° Put in a tape, rewind it, press the PLAY and RECORD buttons, and

talk into the microphone. (Plug in a microphone if your recorder

doesn’t have one built in.) Say whatever you want.

Now type this program:

5 CLs Even if you don’t have a mi-
o hone: hi

1@ INPUT "PRESS <ENTER? TO HEAR THE Dei ee
RECORDING" A&% music or one of your pro-

20 MOTOR ON gram tapes.

3@ AUDIO ON

Na Bb Ce Dd Ee FF Go Hh Ii Jj) Kk LI Mm Nn Oo Pp Qq

. ~

a,

10 4
Before running the program, prepare the recorder:

. Rewind the tape you’ve just recorded.

‘ Connect the recorder to the computer (as shown in your introduction

manual).

. Press the recorder’s PLAY button.

. Turn up your T.V.’s volume.

Run the program. You'll hear your voice over the T.V.

MOTOR ON turns on your cassette recorder. AUDIO ON connects your

recorder’s sound to the T.V. speaker.

83

This program is a little long,
but we think you'll enjoy it.
If you want, you can go on to
the next chapter and come
back to this later.

84

There’s a way of programming your tape recorder to stop, but for now

simply press RESET. It’s on the back right-hand side of your keyboare
(when you're facing it). List your program. It’s still intact.

Add these lines:

35 CLS
40 A = INKEYS
5Q@ PRINT @ 255,» "PRESS <x? TO TURN OFF

RECORDER"
60 IF A$<> "X" THEN 40
70 AUDIO OFF
82 MOTOR OFF

Prepare your tape for playing and run the program.

Line 40 labels whatever key you are pressing or not pressing as A$. When

you press X, the recorder’s audio connection and motor are turned off.

Now you can record the “‘talking-computer teacher.” Here’s the script: |

SCRIPT

“Hi, I’m your talking-computer teacher. The first lesson is math. 1’ll

give you a series of addition problems. Press the ‘W’ key —”

(pause for a few seconds)

“You'll hear that every time you give me a wrong answer. Press the
‘R? key i

(pause for a few seconds)

“That’s how I'll reward you when you answer correctly. | won’t talk

to you again until you give me three correct answers. Press the ‘G’

key to begin.”

(pause for a few seconds)

“Lesson’s over. Press the ‘E’ key to turn off the cassette.”

Finished? Now draw the teacher. Here’s the grid:

Draw the mouth first. Erase memory and type:

3 CLS(@)
200 FORH = 26 T0 35
21@ FORY=167T0 21
220 SET(CH+W+4)
230 NEXT VoH

That's a closed mouth. To make it talk, type:

900 RESET(30+18): RESET(30,19)

510 GOTO 200

Run the program. Now draw the face:

100 FORH

11@ FORY
120 SET(HsVs5)
130 NEXT VoH

16 TO 47 Remember, you can always
47023 press RESET to stop your re-

corder when it is connected
to the computer.

The body:

140 FORH=8@T063 STEP 4

13@ FORY = 2470 31

160 SET(Hs+Vs2)2 SETCH + 19Vs2)
170 SET(CH + 25V57)s SETCH + 3957)
180 NEXT VsH

The eyes:

308 FORY=i8@TO11
310 SET(24+V19): SET(25 +N 13)
320 SET(36+V+3): SET(379V13)
330 NEXT Y
340 PRINT @@+ "THE TALKING COMPUTER TEACHER"

Want to make the eyes blink? Type:

5@5 IF RND(4) = 4 THEN SET(24+1055):

SET(37+180:5)

Run the program. That's the teacher. To get it to talk, add these lines:

400 MOTOR ON

4i@ AUDIO ON
420 A$ = INKEYS
430 IF A$ = "G" THEN MOTOR OFF: END
440 IF A& = "W" THEN MOTOR OFF: GOSUB 2000
450 IF A$ = "R" THEN MOTOR OFF: GOSUB 3000

2000 FORT=1767T089 STEP -10

2010 SOUND Tl
2020 NEXT T
2030 RETURN

3000 FORT = 89 T0176 STEP 18
3018 SOUND Tel
3020 NEXT T
3030 RETURN

Before running the program, prepare your tape for playing. (Rewind the
tape, connect the recorder to the computer, and press PLAY.) Then run the
program.

85

Do what your voice tells you. When you press W, you should heat

descending tones; R gives you ascending tones. G just ends the program.

That’s because you haven’t typed the arithmetic routine yet.

Change Line 430 and add Line 460:

430 IF A$ = "G" THEN MOTOR OFF: GOSUB 100

460 IF A$ = "E" THEN MOTOR OFF: END

Then add the arithmetic routine:

1200 X = RND(10@): Y = RND(100)

1010 PRINT@@, "WHATIS" K "t+" ¥

Notice Line 1015. It sets the 1015 PRINT@ 20," "

PRINT position for what you 1920 INPUTA

type in Line 1020. 1930 IF &=%+ ¥ THEN GOSUB 3000: C=C + 1

1040 IF A<?> + Y THEN GOSUB 2000: PRINT @@»

"WRONG - THE ANSWER IS" K+ ¥

1050 IF C = 3 THEN RETURN

1060 FOR P= 170500: NEXT P

ig70 GOTO 19e%0

Rewind the tape and press PLAY. Run the program.

The talking-computer teacher. Perfect for making arithmetic fun.

Learned in Chapter 15
BASIC WORDS

MOTOR
AUDIO

CHAPTER 16

FASTER GRAPHICS

Up to now, you've used only one method to draw pictures on your screen.
Using SET is easy, but slow and tedious. This chapter shows a faster
method to use—graphic character codes.

Character Codes

Type:

PRINT ASC("A") (ENTER

The computer displays 65—the ‘ASCII’ code for the character A. Type:

PRINT CHR#(65) (ENTER

The computer displays A—the character represented by the ASCII code
number 65.

Look at the list of “ASCII Character Codes”’ in your Quick Reference Card.
Each keyboard character has a code. Test some other characters.

Note that even the “‘nondisplayable” characters—such as G@=)—have a

code. Erase memory, and type this program:

10 CLS(@)
20 H=63
25 SET(H+14+3)
30 AS = INKEYS
4@ IF A$ = CHR#(8) THEN 6A

58 GOTO 38
68 H=H-1
65 IFH# @ THEN END
70 SET(H+14+3)
75 RESET(H+1+14)
B8@ GOTO 38

RUN the program. Press the character. Each time you press it, it
backspaces the blue dot.

Lines 30 and 40 check to see if you’re pressing the key (Code 8).

¢
“ASCII” stands for the Amer-
ican Standard Code for In-
formation Interchange. By
using these standard codes,
your computer can com-
municate with other
computers.

=a)
Need to review INKEY$? See
Chapter 11.

87

If you are pressing G—), Lines 60 and 70 “‘backspace”’ H, the horizontal
coordinate, and set a blue dot. Line 75 then resets (blacks out) the previous-
ly set blue dot.

DO-IT-YOURSELF PROGRAM 16-1

Write some more lines to the program so that you can press GC) to
move the dot forward.

Graphic Character Codes

The ASCII codes in your Quick Reference Card represent only about half
the Color Computer’s ASCII codes. The other half of the codes—Codes

128-255—are for graphic characters.

Type:

PRINT CHR#(C128) (ENTER

The computer displays a black block. Try other graphic codes:

PRINT CHR#(i29) (ENTER

PRINT CHR#(13@) (ENTER
PRINT CHR#(131) (ENTER

The computer displays three blocks with different combinations of green
and black.

Since the green background makes it difficult to see the outline of the
blocks, type this program. It displays the first block against a buff back-

: ground:
_A grid of “PRINT (a Screen
Locations” is in the Appen- i@ CLS(S)

dix. (We explained how to 20 PRINT @ 239+ CHR$(129)35
use it in Chapter 7.) Be sure 30 COTO 3a
to type the semicolon.

Look at “Graphics Screen Locations” in the Appendix. As we explained
earlier, the darker lines divide the grid into blocks. Each block contains 4
dots. These 4 dots can be arranged in 16 ways to form these graphic
characters:

128 129 130 131 132

136 137 138 139 140 141 142 143

135

To display all 16 graphic characters, type and run this program:

1@ CLS(5)
2@ FORC = 12870 143
30 PRINT @@; "PRESS ANY KEY TO CONTINUE" 5

42 PRINT @ 173; C5
5Q@ PRINT @ 240+ CHRS(C) 5
6@ kK = INKEY# : IF K# = "" THEN GO
7@ NEAT C

88 GOTO 18

Line 50 displays the graphic characters for Codes 128-143 at Position 240

on your screen.

Try something a little different. Type:

PRINT CHR$(129 + 1G) (ENTER

The computer displays the graphic character for 129, except the area that

should be green is yellow. Type:

PRINT CHR$(129 + 32) CENTER
PRINT CHR#(129 + 48) (ENTER

PRINT CHR#(129 + 64) (ENTER

These are the numbers you can add to the 16 graphic codes above to create
different colors:

O—green 64—buff
16—yellow 80—cyan
32—blue 96—magenta
48—red 112—orange

To see all the graphic characters in each color, add these lines and run the

program: ,

i5 FORX=0TO07
i7 IF X= 1 THENCLS(1)
40 PRINT @1i70;+;C "+" K# 1G:
5@ PRINT @ 240, CHRS(C +8 * 16)3

75 NEXT &

PROGRAMMING EXERCISE

Write 3 linés to create the characters below. Make the first buff; the

second, magenta; and the third, blue:

Answers:

PRINT CHR#(133 + G4)
PRINT CHR#(137 + 96)
PRINT CHR#(14@ + 32)

Graphic Strings

BASIC treats graphic characters the same as any other characters: as
strings. You can combine and store graphic characters the same way you
combine and store strings.

Know why it’s important to
type a semicolon at the end
of these PRINT (@ lines? Try
it with and without the semi-
colon.

The semicolon makes the
computer stop as soon as it
displays your characters.
Otherwise, it continues to
display its customary green
background tor the rest of
the line.

a)
Notice these numbers are all
multiples of 16. (16 =16*1;
32 = 16*2, 48 — 16*3 |.

112 = 16*7).

If you prefer, you can use the
formula on your Quick
Reference Card. It gives the
same results.

89

ez)
Note the difference: You
“print” graphic characters
using “PRINT @ Screen

Locations” (Appendix B).
You ‘‘set’’ dots using
Graphic Screen Locations
(Appendix C).

90

Erase memory and form two graphic strings. Type:

1@ As = CHR$(129 + 32) + CHR$(131 + 32)

20 BS = CHR#(133 +112) + CHRS$(143 + 112) +

CHR#(i3@+ 112)

You can position these “strings’’ on your screen in the same way you

position any other strings: with PRINT @. Add these lines and run the

program:

3@ CLS(@)
40 PRINT @ 237+ AS3

50 PRINT @ 241; BS3

68 GoTO6e

The computer displays what looks like a blue car and an orange truck at the

center of your screen.

DO-IT-YOURSELF PROGRAM 16-2

Using graphic characters, write a program to create this image in the

center of your screen. Make the chairs yellow and the table orange.

Learned in Chapter 16
BASIC WORDS BASIC CONCEPT

ASCII graphic characters
CHR$

CHAPTER 17

LET’S DANCE

This chapter lets you catch your breath, have some fun, and, at the same

time, review what you've learned. You'll create a ‘‘dancing computer” that

looks, at rest, like this:

|

1 CLEAR 100

Then add these lines to

| | fof ba!
rrrerrrrr)rrrrrfyyTi ttt

Start by typing this line to reserve plenty of string space:

rt)

form the black strings (D$, G$, B$, and BK$), the

buff strings (C$, F$, and A$), and the red string (E$):

ig@ DS =
2@ G$=Ds +
32 BS = GS +
40 BK = BS

o@ C$ =
62 FS=CEe +

70 A= FE +
BO FORK=1
928 ES =E$ +
198 NEXT X

Run the program. Then display all the strings you've formed. For example,

to display BK$, type:

CHR#(128) + CHR#(128)

CHRé(128)
Dé
+B$ + B$+ DS + DS

CHR#(143 + G4)
C$
C$
TO 7?
CHR#(143 + 48)

Ee

PRINT BK <ENTER >?

On your screen, the light
green will be buff; the dark
green, red; and the gray
area, black.

Zp)
B$ is actually 5 characters
long. On your screen it will
line up with the word
PRINT.

D§ is 2 characters; G$ is 3;

BK$ is 19; A$ is 3.

C$ is 1 character long; F$ is
2; ES 15 7.

91

92

Now combine the above strings to form the head (HD$):

The body (BD$):

And three leg positions: L1$, L2$, and L3$:

To do this, add these lines:

110
120
130
14a
150

*

160
1790
18@

1998

HD$ = BS + A$ + BS + BAS + BE + AS + BSE + BKE

FORX=i1TO4
BD = BDS$ +D$+C#+E$ + C$ + DF + BRS

NEAT &
Lig =G$+E$+G$+BK$ + G$+F$ + G$ + FS +

G$

H$
I$
L2$
BKS
L3s
BAS

+
 BK$ + G$+F$+ GS + FS + GS

G$ + GS
H$ + DS
G$+E$+A$+ BKE + G$+ FS + HS + FS +

GH + FS
A$+E$ + G$+ BRS + FS + HS + FS + GS +

I$ + FS

o
u
l

W
o
-
e
o
u

+

Run the program. Then display the five new strings you've formed.

Now add these lines:

3008
318
520
530

1800
10190
1020
1030

2000
3088
4000

Run the program. The computer shows you each location and position you

request.

INPUT "LOCATION (@-243)"5L
INPUT "POSITION (1-3)"5 P

GOSUB 1000
GOTO 50a

CLS(@)
PRINT @L+ HDS + BDS;
ON P GOSUB 2000; 3000, 4000
PRINT @L+ 32 * 6,7 LG$3 : RETURN

LG$=Li¢: RETURN
LG$ = L2% : RETURN
LG$ = L3$: RETURN

Line 1010 prints the head and the body at the location you requested.

Line 1020 sends the program to a subroutine that makes LG$ equal to L1$,

L2$, or L3$ (depending on whether you typed 1, 2, or 3 for the position).

Line 1030 then displays LG$ directly under the head and body (6 columns
below your requested location).

To make the computer dance, change Lines 500 and 510 and add these |

lines:

FOR X=1i1TO1?7
IF X = 1 OR X = 5 THEN RESTORE

5 INPUT "SPEED (1-18)"5 5
READ L» P+ T+ D

SOUND T+ 5 *0D

NEXT X

DATA 137+ 2+ 89+1+ 240,1+133+2

DATA 137+ 3+ 159+1+ 229+ 1+133+2

DATAS+1i+89+1+ 2291111332

DATA S+1+ 147+ 1, 229,1+159.1

DATA 229+ 1+ 1475155+ 1+ 133+1

DATA 229+1+125+ 2+ 5+ 1+ 133+1

DATA 2291, 11+ 147;2

Examples: To display the
head, type PRINT HD
(ENTER). To display the
body, type PRINT BD%
(ENTER).

(eS

Remember READ and DATA
from Chapter 13?

93

94

Run the program and watch the dance. Line 515 reads Lines 5000-5060 to
determine each screen location, leg position, tone, and tone duration.

For example, at first, the “dancing computer” appears at Screen Location
137 with Leg Position 2. It sounds Tone 89 for Tone Duration S+1.

Next the dancing computer appears at Screen Location 240 with Leg
Position 1. It sounds Tone 133 for Tone Duration S*2.

If you're still with us, you no doubt have many of your own ideas. If you
plan to do much graphic programming, you may want to consider upgrad-
ing to Extended Color BASIC.

SECTION Ill

GETTING DOWN
TO BUSINESS
This section deals with information you want to manage. For example, you

may want to manage:

' Checkbook receipts

. Shopping items

. Tax records

. Inventory

. Addresses

. Records, books, or tape collections

In this section, you'll learn how to store, update, sort, and analyze informa-

tion to fit your own needs.

CHAPTER 18

TAPING

Your first and foremost task is to store your information permanently on
cassette tape. This, of course, requires a tape recorder.

Ready to get organized? We'll start with your book collection. Here’s a
small list of books:

1. WORKING
2. CAT'S CRADLE
3. SMALL IS BEAUTIFUL
4. STEPPENWOLF

If you’ve read your introduction manual, you know how to save BASIC
programs on tape. To save information, you need a program that follows

these steps:

STEPS FOR STORING INFORMATION ON TAPE

1. Open communication to the tape recorder so that you can output

(send out) information to a file.

2. Output all information to the tape recorder file.

3. Close communication to the tape recorder.

CHRISTMAS List:

RECORbs:

- Por
- COUNTRY/ WESTERN

Start the program with this line:

1@ OPEN "O", #-i+ "BOOKS"

99

A “file” is a collection of in-
formation—such as book ti-
tles—stored under one
name.

ris Eaapgieetines 8

This ‘‘opens’’ communication to the tape recorder (‘device #-1’’) so that
you can “output” (‘O”’) information. Whatever information you output,
the computer stores on tape in a “‘file’’” named BOOKS.

Now output the information. Type:

15 CLS: PRINT “INPUT YOUR BOOKS--TYPE <XxK>

WHEN FINISHED"
20 INPUT "TITLE"3 T$

30 PRINT #-1+ TS

4@ GOTO is

Line 20 “prints’’ (outputs) your book titles—not to the screen, but to device
- 1, the tape recorder.

Then close communications. Type:

25 IF T# = "KX" THEN 538

5@ CLOSE #-1

The computer then closes communication to the tape recorder.

Add three more lines to the program:

1 CLS
2 PRINT “POSITION TAPE - PRESS PLAY AND

RECORD"
4 INPUT "PRESS ENTER? WHEN READY"? R&

The program should now look like this:

i CLS
2 PRINT "POSITION TAPE--PRESS PLAY AND

RECORD"
4 INPUT "PRESS “ENTER? WHEN READY"S R&

OPEN "O"» #-1+ "BOOKS"
15 CLS: PRINT “INPUT YOUR BOOKS - TYPE ikxX>

WHEN FINISHED"
20 INPUT "TITLE"$ T$
29 IF TS = "KK" THEN 30

PRINT #-1+5 TH
4@ GOTO is

CLOSE #-1

Prepare the recorder.

* Connect the recorder. Your computer's introduction manual shows
how.

. Position a tape in the recorder, and, if necessary, rewind the tape so
you'll have room for recording. (If you’re using a non—Radio Shack
tape, position it past the starting leader.)

. Press the recorder’s RECORD and PLAY buttons so that they are both
down.

Then run the program. As soon as you press (ENTER), the cassette motor

turns on: The computer is opening a “‘file’”’ on tape and naming it BOOKS.

The program then asks for titles. Type:

TITLE? WORKING

TITLE? CAT’S CRADLE (The computer clears the
TITLE? SMALL IS BEAUTIFUL screen after each title.

TITLE? STEPPENWOLF
TITLE? KX

Each time you input a title, the computer prints it in a special place in

memory reserved for the tape recorder. When you finish, the tape recorder

motor turns on: The computer is printing all the titles to the recorder (Line

30) and then closing communication with the recorder (Line 50).

Your book titles are now all saved on tape ina file named BOOKS. To read

them back into memory, use just about the same steps.

STEPS FOR INPUTTING INFORMATION FROM TAPE

1. Open communication to a tape recorder so that you can input
information from a file.

Check to see if you’re at the end of the file.

Input information from the tape recorder file.

Repeat Steps 2 and 3 until you reach the end of the file.

w
R

W
N

Close communication to the tape recorder.

To open communication, type:

6@ CLS: PRINT "REWIND THE RECORDER AND

PRESS PLAY"
7® INPUT "PRESS «ENTER? WHEN READY"’ R&

B® OPEN "I"y #-1+ "BOOKS"

101

Are you wondering what the
-1 means? EOF returns a -1
when you reach the end of
the file.

Be sure to press only the
PLAY button, Not RECORD

Also, be sure to rewind the
tape.

If your computer becomes
“hung up’ communicating
with the tape recorder, you
can regain control by press-
ing the RESET button. It’s on
the back right-hand side of
your keyboard. Then look
for missing or mistyped lines
in your program.

102

This opens communication to the tape recorder—this time, to input in-
formation from the BOOKS file.

To input information, add these lines:

92 INPUT #-1+ BS

100 PRINT BS

Line 90 inputs the first book title (B$) from the BOOKS file stored on tape.
(The variable name you choose makes no difference.) Line 100 displays

this title on your screen.

To check for the end of the file and close the file, add these lines:

85 IF EOF (-1) THEN 120

1108 GOTO 85
120 CLOSE #-1

Line 85 says if you are at the end of this file (in this case, the BOOKS file), go
to 120 and close communication with the tape recorder.

Note that EOF(-1) comes before the INPUT #-1 line. If it’s after INPUT #-1,

you'll get an IE error—‘‘input past the end of the file.”

List this last part of the program by typing LIST 60 - (ENTER). It should look
like this:

6@ CLS: PRINT "REWIND THE RECORDER AND
PRESS PLAY"

70 INPUT "PRESS <ENTER? WHEN READY"$ R#
80 OPEN "I", #-1,) "BOOKS" € Goeacs Commuenicetion
85 IF EOF (-i) THEN i128 wan racergln
90 INPUT #-1+ B&é-dnpats Ate from receroler
100 PRINT Bt
11@ GOTO 85
1270 CLOSE #-14— teats termnmumtation with ALunrdsr

Now run this part of the program. Type:

RUN GO

When you press (ENTER), the recorder’s motor comes on while the com-
puter inputs items from tape. When finished, it displays the four items on
your screen.

An Electronic Card Catalog

Assume you need to change the program so it can also store the books’
authors and subjects:

TITLE AUTHOR SUBJECT
Working Studs Terkel Sociology
Cat’s Cradle Kurt Vonnegut Fiction
Small Is Beautiful E. F. Schumacher Economics
Steppenwolf Hermann Hesse Fiction

Start by changing the “output” part of the program (the first half). Type

these lines:

26 INPUT "AUTHOR'S AS
28 INPUT "SUBJECT: 5%
29 IF AS = "XX" OR S# = "KX" THEN 50

3@ PRINT #-11 T+ A$Ss S$

Then change the “‘input’’ part of the program. Type these lines:

90 INPUT #-1+ BS: AS: SF
1020 PRINT "TITLE :" BS
ig@2 PRINT "AUTHOR :" AS
194 PRINT "SUBJECT :" 5%

Now take advantage of this organization. For example, have the program
print a book list on any given subject. Add these lines:

13@ CLS
140 INPUT "WHICH SUBJECT"; C%

15@ PRINT "REWIND THE TAPE - PRESS PLAY"

160 INPUT "PRESS “ENTER? WHEN READY" E#

172 CLS: PRINT C# “" BOOKS" =: PRINT

180 OPEN "I"y #-1, "BOOKS"
190 IF EOF (-1) THEN 238
200 INPUT #-1+ Bos ASs SS
2i0@ IF S# = C# THEN PRINT B+ AS

220 GOTO 190
230 CLOSE #-1

Run the input part of the program by typing RUN 130 (ENTER). If you choose
“fiction,’’ this happens:

WHICH SUBJECT? FICTION
REWIND THE TAPE - PRESS PLAY
PRESS <ENTER? WHEN READY

FICTION BOOKS:

CAT’S CRADLE KURT VONNEGUT
STEPPENWOLF HERMANN HESSE

103

DO-IT-YOURSELF PROGRAM 18-1

Assume you have these checks:

NO. DATE PAYABLE TO ACCOUNT AMOUNT

101 5/13 Safeway food $52.60

102 5/13 Amoco car 32.70

103. 5/14 Joe’s Cafe food 10.32

104 5/17 American Airlines — vacation 97.50

105 5/19 Holiday Inn vacation 72.30

Write a program that outputs all the checks to tape. Then have it input

them from tape so that you can type one account—such as food—and

the computer will tell you the total amount you've spent on food.

See “Sample Programs’ in the Appendix for examples of how to store data

on tape.

Learned in Chapter 18
BASIC WORDS BASIC CONCEPT

OPEN data files
CLOSE

PRINT #-1

INPUT #-1
EOF

Notes

104

CHAPTER 19

MANAGING NUMBERS

Have you tried to write programs to handie much information? If so, you'll
be glad to know Color BASIC has an easy-to-manage way to keep track of
information.

Assume, for example, you want to write a program that lets you manage
this information:

ELECTION RESULTS

District Votes for Candidate A
1 143

2 215

3 125

4 331

5 442

6 324

7 213

8 115

9 318

10 314

11 223

12 152

13 314

14 92

Up to now, you've used variables to store information in memory. For

example, to store the votes of the first three districts, type:

A = 143 (ENTER

B = 215 (ENTER
C = 125 (ENTER

But there’s a better kind of variable you can use. Type:

4&(i) = 143 (ENTER

A(2) = 215 (ENTER
A(3) = 125 (ENTER

105

You don’t need to study
these programs if you’re an-
xious to move on. We're just

showing some benefits of us-
ing subscripted variables.

Actually, this leaves room
for 15 subscripted items
when you count 0 as a Le
script.

106

Each of the above variables has a “‘subscript’’—(1), (2), and (3). Other than
how they use the subscript, these variables work the same _ any other
variables. To see for yourself, type both of these lines:

PRINT AS Bs C <ENTER>?
PRINT AC(1)5A(2)5 A(3) T ENTER?

Now take a quick look and compare the two programs below. Both work
the same: Program 1 uses ‘‘simple variables’; Program 2 uses “‘subscripted
variables.”

PROGRAM 1

108 DATA143, 215+ 125, 331, 442
20 DATA 324+ 213+115, 318, 314
30 DATA 223+ 152; 314, 92
4@ READ A:B;+C+DsE

5Q@ READF:+ G+H+ Is J
GQ READK;:L+ M+N
7@ INPUT "DISTRICT NO. (1-i14)"

75 IF 2214 THEN 7@
8@ IF Z=1 THEN PRINT A "VOTES"

9@ IF 2=2 THEN PRINT B "VOTES"

hd

"WOTES'
"COTES?

200 IF 3 THEN PRINT
21a IF 14 THEN PRINT

22 GOTO 7@

PROGRAM 2

10 DATA 143, 215,125) 331+ 442
20 DATA 324, 2713+ 115+ 318+ 314
30 DATA 223,152+ 314; 92
4@ DIM AC14)
50 FORX=17T014
60 READ A(X
72 NEX
8@ INPUT "DISTRICT NO(1-14)"i Zz
85 IF Z> 14 THEN 88
92 PRINT A(Z) "VOTES"
ig@ GoTo se

100 IF 2=3 THEN PRINT C "VOTES"
110 IF Z=4 THEN PRINT D "VOTES"
120 IF Z=5 THEN PRINTE "VOTES"
13@ IF Z=G THEN PRINT F "VOTES"
14@ IF Z=7 THEN PRINT G "VOTES"
150 IF 2=8 THEN PRINT H "VOTES"
160 IF Z=9 THEN PRINT I "YOTES"

170 IF Z=10@ THEN PRINT J "VOTES"
18@ IF Z=11 THEN PRINT kK "VOTES"

199 IF 2=12
zZ=1
a=

J
K

THEN PRINT L "VOTES"
M
N

Program 1 is cumbersome to write. Program 2 is short and simple to write.

Enter and run Program 2. Here’s how it works:

Line 40 reserves space for a list of information—called an ‘‘array’’

named A—with 14 subscripted items.

° Lines 50 and 70 set up a loop to count from 1 to 14. Line 60 reads all
14 votes into Array A:

YOUR COMPUTER ’S MEMORY

143 A(8) —~— 115
A(2) — 215 A(9) —— 318
A(3) — 125 A(1a@) — 314
A(4) — 331 AC11) — 22
A(3) —» 442 AC 12) — 152
A(G) —— 324. A(13)—~> 314

2193 A(14) —> 92 Oo?
ine 80 asks you to input a subscript, and Line 90 prints the item you

requested.

Now that you've stored information in an array, it’s easy to manage it. For
instance, you can add these lines, which let you change the information:

92 INPUT "DO YOU WANT TO ADD TO THIS" R&

94 IF R& = "NO" THEN 88
9G INPUT "HOW MANY MORE YOTES"S
97 AlzZ) = AZ) + K
98 PRINT "TOTAL YOTES FOR DISTRICT" 2 "IS

NOW" AZ)

Or you can add these lines to display the information: The name of the array is A.
The X ;

72 INPUT "DO YOU WANT TO SEE ALL THE TOTALS" cee NA SE asi
os of the items.

74 TF S$ = "YES" THEN GOSUB 118
100 GOTO 72
11@ PRINT "DISTRICT": "YOTES"
120 FORX=17014
13@ PRINT K+ ACH)
140 NEXT XK
15@ RETURN

A Second Array

Assume you also want to keep track of a second candidate’s votes—

Candidate B:

ELECTION RESULTS

District Votes for Votes for
Candidate A Candidate B

1 143 678

2 215 514

3 125 430

4 331 475

5 442 302

6 324 520

7 213 613

8 115 694

9 318 420

10 314 518

11 223 370

12 152 4i2

13 314 460

14 92 502

107

GE
This program is a little tough.
Skip it and come back to it
later if it’s slowing you down
too much.

108

To do this, add another array to the program. Call it Array B. The following
program records the votes for Candidate A (Array A) and Candidate B
(Array B):

10 DATA 143) 215; 125, 331, 447 dota fr
20 DATA 324+ 213,114, 318+ 314 aneg A
30 DATA 2231152, 314,92
4® DATA G78: 514+ 430, 475+ 302
50 DATA S520, 6131 G94, 420,518
GO DATA 370) 412+ 460, 502
70 DIMA(14)+B(1d)— sages Asem)
80 FORX=1i7TO14
90 READ A(X) reads Aidala
100 NEXT xX 0
110 FORX=17ToO1id
120 READ B(x) ncads aman Bdata
130 NEXT Xx
14@ INPUT "DISTRICTNO."32
145 IF Z> 14 THEN 140
150 INPUT “CANDIDATE A OR B"3 R$
160 IF R$ = "A" THEN PRINT A(Z)
i170 IF R$ = "B" THEN PRINT B(Z)
18@ GOTO 149

DO-IT-YOURSELF PROGRAM 19-1

Write an inventory program that keeps track of 12 items (numbered
1-12) and the quantity you have of each item.

Deal the Cards

To keep track of 52 ‘‘cards,’’ you need to use an array. Erase your program
and type and run this one:

40 FORK =170 52
5@ C= RND(S2)
98 PRINT C3
190 NEXT XK

The computer deals 52 random “‘cards,’’ but if you look closely, you see
that some of the cards are the same.

To make sure the computer deals each card only once, you can build
another array—Array T—that keeps track of each card dealt. Add these
lines:

S DIM T(S2)
i@ FORX=i17052
20 T(K) = K
3@ NEXT X

The above lines build Array T and put all 52 cards in it: T1) = 1, T(2) = 2,
T(3) = 3... 7(52) = 52.

Then add some lines that “erase’’ each card in Array T after it’s dealt. Type:

60 IF T(C) = @ THEN 58
88 T(C) =9@

Now the computer can’t deal the same random card twice. For example,

assume the computer first deals a two. Line 80 changes T(2)’s value from 2

to 0.

Then assume the computer deals another two. Since T(2) now equals 0,

Line 60 goes back to Line 50 to deal another card.

Run the program. Note how the computer slows down at the end of the

deck. It must try many different cards before it finds one that it hasn’t dealt

yet.

To play a card game, you need to keep track of which cards have been

dealt. You can do this by building another array—Array D. Add these lines,

which store all the cards, in the order they are dealt, in Array D:

7 DIM D(S2)
70 D(X) = T(C)
90 PRINT D(X)5

DO-IT-YOURSELF PROGRAM 19-2

Add lines to the program so that it displays only your ‘“‘hand’’—the first

5 cards dealt.

Learned in Chapter 19
BASIC WORD BASIC CONCEPT

DIM arrays

Notes

109

CHAPTER 2

MANAGING WORDS

The dollar sign’s the only dif-
ference between these sub-
scripted variables and the
ones in the last chapter.

==)

110

In the last chapter, you used arrays to manage numbers. Here, you'll use
arrays to manage words by editing, updating, and printing an entire essay

Start with a simple list of words: a shopping list:

1. EGGS 7. TOMATOES
2. BACON 8. BREAD
3. POTATOES 9. MILK
4. SALT 10. CHEESE
5. SUGAR 11. FISH
6. LETTUCE 12. JUICE

Assign each word to a subscripted variable—this time use a subscripted

string variable. For example, for the first three items, type:

S#(1) = "EGGS" <ENTER?
S$#(2) = "BACON" <ENTER=?
$#(3) = "POTATOES" <ENTER®

To see how the items are stored, type:

PRINT S#(1)+S$(2) +5 S$(3) “ENTER?

Now build a program that reads these words into an array named S$ and
then displays them:

5 DIM $#(12)
i@ DATA EGGS, BACON, POTATOES; SALT
20 DATA SUGAR» LETTUCE, TOMATOES; BREAD
30 DATA MILK» CHEESE, FISH» JUICE
4@ FOR X = 1 TO 12
50 READ S#(x fAtade auay st
62 NEXT ¥
70 PRINT "SHOPPING LIST:"
8@ FOR X = 1 TO 12
90 PRINT X$ S#(X pret Ouag S*
19@ NEXT X

DO-IT-YOURSELF PROGRAM 20-1

Add some lines to the above program so that you can change any item
on this list.

DO-IT YOURSELF PROGRAM 20-2

Here is a program that uses an array to write song lyrics.

5S DIM A$(4)
10 PRINT "TYPE 4 LINES"

20 ‘FOR xX = 1704
30 INPUT AS(K)

40 NEAT XK
5$@ CLS
6@ PRINT "THIS IS YOUR SONG:"

70 PRINT

B® FOR kK = 1704
9@ PRINT Ki " "5 AS(X

100 NEXT X

Add some lines so that you can revise any line.

Writing an Essay
(...A Novel, Term Paper .. .)

Now that you've learned how to use string arrays, it will be easy to write a
program that stores and edits what you type. Type this program:

1 CLEAR 1000
5S DIM A$(50)
1@ PRINT "TYPE A PARAGRAPH"
2 PRINT "PRESS «/3 WHEN FINISHED"

30 X= 1
40 AS = INKEYS
50 IF A% = "" THEN 4@
62 PRINT A$}
70 IF AS = "/" THEN 110
BO AS(X) = AS(X) + AS
90 IF A$ = "." THEN X = X + 1
100 GOTO 4e
11@ CLS
120 PRINT "YOUR PARAGRAPH:"
130 PRINT
14@ FOR Y¥ = i TO XK
15@ PRINT AS(Y)3
16@ NEXT ¥

Want to compose music?
Look up ‘Music Composer’
in the “Sample Programs”
appendix.

Haven’‘t heard of word pro-
cessing? It’s a kind of pro-
gram that lets you type and
store information, make
changes to it, and print it out
on demand.

Gen)

Need a refresher on some of
this? CLEAR is in Chapter &
and INKEY$ is in Chapter 11.

9

111

112

Run the program. To see how each sentence is stored, type these lines:

PRINT A%(1) (ENTER
PRINT A#(2)
PRINT A#(3)

Here’s how the program works:

Line 1 clears plenty of string space.

Line 5 saves room for an array named A$ that may have up to 50 sentences.

Line 30 makes X equal to 1. X will be used to label all the sentences.

Line 40 checks to see which key you are pressing. If it is nothing (‘’ ’’), Line

50 sends the computer back to Line 40.

Line 60 prints the key you pressed.

Line 70 sends the computer to the lines that print your paragraph when you

press the ‘’/”’ key.

Line 80 builds a string and labels it with number X. X is equal to 1 until you

press a period (.). Then Line 80 makes X equal to X + 1.

For example, if the first letter you press is ‘’R,”’

A$(1) EQUALS “‘R’’.

If the second letter you press is ““O’’,

A$(1) EQUALS A$(1) - WHICH IS “R” + “O”
OR
“RO”.

Assume that when A$(1) equals ROSES ARE RED, you press a period. A$(1)

then equals the entire sentence: ROSES ARE RED. The next letter you press

is in A$(2).

Lines 140-160 print your paragraph.

DO-IT-YOURSELF CHALLENGER PROGRAM 20-3

Here’s a tough one (but it can be done!) for those intrigued with word
processing. Change the above program so that you can:

1. Print any sentence

2. Revise any sentence

You may need to review the challenger program in Chapter 12. Our
answer's in the back.

Using the Printer

If you-have a printer, connect it now by plugging it into the jack marked
SERIAL I/O. Turn on the printer and insert paper. The manual that comes

with the printer shows how.

Ready? Type this short program:

10 INPUT AS%
20 PRINT # - 2+ AS

Now type:

LLIST (ENTER

If your program doesn’t list on the printer, be sure the printer is on,
“on-line,” and connected to your keyboard. Then type LLIST <ENTER=
again.

Run the program and watch the printer work. PRINT # - 2, tells the
computer to print, not on the screen, but on device # - 2, which is the
printer. Be sure to type a comma after the -2, or you get a syntax error.

Press the GHIFT) and (Q) (zero) keys simultaneously and release them so
that the letters you type appear in reversed colors on your screen (green
with a black background). You are now in an upper- lowercase mode. The
reversed colored letters are actually lowercase (noncapitalized) letters.

To type a capital letter, use the GHIFT) key as you do with a typewriter. It
appears in regular colors.

Run the program, using the (SHIFT) key so that the word RUN is capital-
ized. Input a sentence with both upper- and lowercase letters. Type:

MY PRINTER PRINTS LOWERCASE LETTERS (ENTER

DO-IT-YOURSELF PROGRAM 20-4

Look at the “Writing an Essay” program earlier in this chapter. Change

Lines 140-160 so that the paragraph prints on the printer rather than

the screen.

Learned in Chapter 20
BASIC WORDS BASIC CONCEPT

LLIST string arrays
PRINT # - 2

Notes

Having trouble getting into
this mode? Read the end of
Chapter 1.

(ee)
All the letters in RUN should
appear in regular (not re-

versed) colors.

Gs

113

CHAPTER 21

SORTING
Any file clerk knows it’s easier to find information that’s sorted alphabeti-

cally. Type this program and run it, until you’re convinced the computer

can alphabetize:

10 INPUT "TYPE TWO WORDS"$ AS, BS

20 IF AS < BS THEN PRINT AS " COMES BEFORE " BS

30 IF AS > BS THEN PRINT A " COMES AFTER " BS

4@ IF A$ = BS THEN PRINT "BOTH WORDS ARE THE

SAME"

50 GOTO ia

With strings, the greater than (>), less than (<), and equal (=) signs have a

new meaning. They tell which of two strings comes before the other in

alphabetical sequence:

< precedes alphabetically
<= precedes or is the same alphabetically
> follows alphabetically
>= follows or is the same alphabetically
= is the same

io aN — = N

ke ail 7

. 4 = = aw
° e = re

—" :

<&E | =" =

ol! ws
° — e e wn

4 _ .

= SS =
e e e e °

Since the computer can alphabetize, it’s easy to write a sorting program.

Type and run this program, which sorts 5 words:

1@ DIM A$(5)
20 FORI=iT7T05
30 INPUT "TYPE AWORD"$ AS(T)

40 NEXT I
50 X=
6 X=X+1 x

S

You can easily make the 70 IF ¥ > 5 THEN GOTO 70

computer alphabetize more 80 IF A$(X)="ZZ" THEN 6O

words by changing the 5 to ve

say, 100, in Lines 10, 20, 70, 90 FORY=17T05
and 90. 100 IF A$(Y) < AS(K) THEN X = ¥

11@ NEXT Y
120 PRINT AS(X)
130 A#(X)="22"
140 GOTO 50

114

To see how the program works, delete Line 120 and add the following
lines. (These lines only show what the program does—they have nothing to
do with sorting.)

120
5 CLS
45 CLS
B5 YEU+i
105 PRINT @ 15+32*(V-1) 5 A$(X)
135 GOSUB 500
500 FORI=1705
510 PRINT @ O+32¥(I-1) sAS(1)5" "4
520 NEXT I
530 RETURN

Run the program. Too fast? Type this line. It slows down the program so
you can see what's happening:

107 FOR T = 1 TO 6@@: NEXT T

Now run the program again. Input these words and watch carefully:

MICHAEL
TRAVIS
DYLAN
ALEXIA
SUSAN

Look at Column 2. See how the first name changes from Michael to Dylan
to Alexia. Next, notice what happens to Alexia in the first column. Alexia
becomes ZZ.

This illustrates how the program sorts the first and second words:

FIRST WORD

MICHAEL MICHAEL MICHAEL MICHAEL MICHAEL MICHAEL
TRAVIS TRAVIS TRAVIS

DYLAN DYLAN DYLAN
ALEXIA ALEXIA ALEXTA
SUSAN SUSAN SUSAN

MICHAEL DYLAN MICHAEL ALEXIA MICHAEL ALEXIA
TRAVIS TRAVIS TRAVIS

DYLAN DYLAN DYLAN
ALEXIA ALEXIA raya
SUSAN SUSAN SUSAN

SECOND WORD

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA
TRAVIS MICHAEL TRAVIS MICHAEL TRAVIS MICHAEL
DYLAN DYLAN DYLAN
22 22 Zz
SUSAN SUSAN SUSAN

MICHAEL ALEXIA MICHAEL ALEXIA MICHAEL ALEXIA
TRAVIS DYLAN TRAVIS DYLAN TRAVIS DYLAN

DYLAN DYLAN Ze
ZZ ee ZZ
SUSAN SUSAN SUSAN

115

116

Here’s how the program works:

Lines 50 and 60 set X’s value. At the start, X is 1.

Then Lines 90-110 compare A$(X)—Michael—with every other name in
Array A$ until a word is reached that precedes Michael—Dylan.

Line 100 then makes A$(X) equal to Dylan’s place in the array: A$(3).

When Dylan is compared with the fourth word—Alexia—A$(X) becomes

A$(4).

When all the words have been compared with one another, Line 120

displays the first sorted word: Alexia. Line 130 changes Alexia’s position—

A$(4)—to ZZ.

At this point, Lines 50 and 60 make X equal 1 again. A$(X)—Michael—is

compared with other names in the array to find the second sorted word.

When Michael’s place in the array becomes ZZ, Line 60 sets X to 2. Then,

A$(X)—which is now Travis—is compared with all the names in the array

to find the next sorted word.

When the array’s values are all changed to ZZ, Line 70 ends the program.

DO-IT-YOURSELF PROGRAM 21-1

Using this sort routine, change the program from the last chapter so

that it alphabetizes your books by title, author, or subject.

This chapter shows a simple way to sort. If you need to sort many items,

you may want to research faster sorting methods (such as the bubble sort).

Learned in Chapter 21
BASIC SYMBOLS

\

I
AV

CHAPTER 22

ANALYZING

If you have more than 4K RAM, you have an easy way to analyze informa-
tion. By giving each item more than one subscript, you can see it through
different dimensions.

Take the voting program from Chapter 19. Here’s the information. (We’re
using only the first three districts to make the program simple.)

We’re only using three dis-
ELECTION POLL tricts to keep it simple.

District ion Votes for We're calling them Candi-

Candidate 1 Candidate 2 dates 1 and 2 this time rather

1 143 678 than Candidates A and B.

2 215 514
3 125 430

In Chapter 19, you stored the above “items’’ (groups of votes) in two
one-dimensional arrays: Arrays A and B. In this chapter, you'll store them
‘in one easy-to-manage two-dimensional array: Array V.

cN

The following program puts the items in Array V.

S DIM V(3+2)
102 DATA 143; G78+ 215+ Sid» 125+ 430
20 FOR D = 1 T0 3
30 FOR C = 170 2
4@ READ YV(D+C)
3@ NEXT C
62 NEXT D

7® INPUT "DISTRICT NO. (1-3)"5 D
80 IF D« 1 OR D = 3 THEN 78
92 INPUT "CANDIDATE NO. (1-2)"5 C
100 IF C «= @ OR C » 2 THEN 9@
110 PRINT V(D+C)
120 GOTO 70

Type and run the program. Notice that each item is labeled by two
subscripts.

117

Here’s how the program works:

Line 5 reserves space in memory for Array V. Each item in Array V can have
two subscripts: the first, no higher than 3; the second, no higher than 2.

Lines 20-60 read all the votes into Array V, giving them each two

subscripts:

. The first subscript is the district (Districts 1-3).

° The second subscript is the candidate (Candidates 1-2).

YOUR COMPUTER ’S MEMORY

YUCL+i)—143 YC1l+2)—>678
W291)—e215 U(2s2)—514
WC 3eLl)—-125 Y(3+2)—-+d38

Remember how to delete For example, 678 is labeled V(1,2). This means 678 is from District 1 and is
lines? 70 Deletes for Candidate 2
Line 70

With all the votes in a two-dimensionai array, it’s simple to analyze

them—in two dimensions. By adding these lines, for example, you can ~
print all the votes in two ways: by district and by candidate.

(Delete Lines 70-120 first.)

70 INPUT "TYPE < 1 » FOR DISTRICT OR

' 2 > FOR CANDIDATE"’ R

B82 IF R ¢< 1 OR R = 2 THEN 78

120 ON R GOSUB 1000; 2000

1108 GOTO 7@

1000 INPUT "DISTRICT NO(1-3)"5 D

1g@i@ IF D «= 1 OR D = 3 THEN 1000

1a@i5 CLS

i920 PRINT @ 132+ "VOTES FROM DISTRICT" D

1030 PRINT

i@4@ FOR C = 1702

1050 PRINT "CANDIDATE" C+

1@60@ PRINT W(D+C)

1070 NEXT C

If you are truly an analytical 1080 RETURN
type, you're going to love
the rest of this chapter. If 2000 INPUT "CANDIDATE NOC(1-2)"5 C

you're definitely NOT that 7010 IF C £ 1 OR C ? 2 THEN 20008
type, skip it! 2015 CLS

118

2020 PRINT @ 132, "VOTES FOR CANDIDATE" C

2030 PRINT
2040 FOR D= i 70 3
2050 PRINT "DISTRICT" D+

2060 PRINT Y(DsC)
2070 NEXT D
2080 RETURN

The Third Dimension

You can continue with as many dimensions as you want. You're limited
only by how much information you can fit into the compuler’s memory.

Add a third dimension to Array V: interest groups. Here’s the information:

VOTES FROM INTEREST GROUP 1
Candidate 1 Candidate 2

District 1 143 678

District 2 215 514
District 3 125 430

VOTES FROM INTEREST GROUP 2

Candidate 1 Candidate 2

District 1 525 54
District 2 318 157
District 3 254 200

VOTES FROM INTEREST GROUP 3

Candidate 1 Candidate 2

District 1 400 119

District 2 124 300

District 3 75 419

To get all this into your computer’s memory, erase your program and type:

S DIM V(3+3+2)
1® DATA 143+ 678+ 215+, 514, 125+ 430
20 DATA 525+ 34+ 318+ 1575 254, 200
30 DATA 400+ 119+ 124, 300,» 75, 419

40 FOR G=i1 70 3
5@ FOR D= 1 T0 3
6@ FOR C =i1T0 2
7@ READ V(GsD»C)
B8@ NEXT C
90 NEXT D
100 NEXT G
110@ INPUT “INTEREST GROUP NO (1-3)"3 G

120 IF G ¢ 1 O0R G } 3 THEN 118
130 INPUT "DISTRICT NO. (1-3)3 D
140 IF D« 1 OR D ? 3 THEN 130
150 INPUT "CANDIDTE NO. (1-2)"5 C
i168 IF C «= 1 O0R C = 2 THEN 158

170 PRINT V(GsD+C)
180 GOTO 118

Run the program and test the subscripts. Lines 40-100 read all the votes

into Array V, giving them each three subscripts:

. The first subscript is the interest group (Interest Groups 1-3).

. The second subscript is the district (Districts 1-3).

. The third subscript is the candidate (Candidates 1-2).

YOUR COMPUTER ’S MEMORY

WClelei)d) 143 YClsl+2)>678

UCLle2e1) 215 Ulir2?s2)~514

YC1+3e1)—~ 125

WC291+1)~% 525

WV(292+1)—~318

UC2Z93+1) 254

U(3+1+1)+ 400

WCB+2+1)—~124

YV(S+3+1)4% 75

YCl+392)> 430
YZ s1ls2)—~ 54
WC29292)—~ 157
Y(213 12) 200
YW(3e1ls2)~119
YV(3r2 12) > 300 ¢
YW(3+392) +419

119

For example, 678 is now labeled V(1,1,2). This means 678 is from Interest

Group 1, is from District 1, and is for Candidate 2.

To take advantage of all three dimensions, delete Lines 110-180 and type:

110 PRINT: PRINT "TYPE <1> FOR GROUP"
12@ PRINT "<2> FOR DISTRICT OR <3> FOR

CANDIDATE"
130 P = 224 : INPUT R
148: ON R GOSUB 1000,2000,3000

150 GOTO 1190

1000 INPUT "“GROUP(1-3)"3 G
101®@ IF Gti OR G33 THEN 1000

1020 CLS
1030 PRINT
1040 PRINT
1050 PRINT

102, "VOTES FROM GROUP" G

i168, "CAND. i"
176, "CAND. 2"

19608 FOR D 1 TO 3
1070 PRINT Py "DIST." D
1080 FOR C 17TO02

f
a

ll
@

u
@

ww

a

1100 PRINT P + 8¥C+ YV(G»DrC)5

1110 NEXT C
1120 P = P + 32
1130 NEXT D
114@ RETURN

2000 INPUT "DISTRICT(1-3)"5 D
2010 IF Déi OR D?3 THEN 2000

2020 CLS
2030 PRINT @ 102, "VOTES FROM DIST." D

2040 PRINT @ 168, "CAND. 1"
2050 PRINT @ 176+ "CAND, 2"
2060 FOR G = i170 3
2070 PRINT @ P» "GROUP" G
2080 FOR C =i1 702

@ 2100 PRINT P + 8#C0+V(GsD1C) 5

2110 NEXT C
2120 P = P+ 32
2130 NEXT G
2140 RETURN

3000 INPUT “CANDIDATE(1-2)"5 C
3010 IF Céi OR C22 THEN 3800

3020 CLS
i@2;, "VOTES FOR CAND." C

168, "DIST. 1"
176, "DIST. 2"
184, "DIST. 3"

3030 PRINT
3040 PRINT
3850 PRINT
3060 PRINT

a
i
u
i
n
i
n
n
n
a

t
w
a

3070 FOR G 1 TO 3
3880 PRINT P+ "GROUP" G
3090 FOR D 1 TO 3
3180 PRINT P + B#D+ Y(GrD1C)5

3110 NEXT D
3120 P = P + 32
3130 NEXT G
3140 RETURN

120

Run the program. You can now get three perspectives on the information.

DO-IT-YOURSELF PROGRAM 22-1

Write a program to deal the cards using a two-dimensional array.
Make the first dimension the card’s suit (1-4) and the second dimen-
sion the card’s value (1-13).

Learned in Chapter 22
BASIC CONCEPT

Multidimensional arrays

Notes

121

SECTION IV

A LITTLE BYTE OF
EVERYTHING

This section is for people who want to access the full power of the Color Computer.
It assumes some knowledge in machine-language programming.

If you’re technical, jump right in! If not, be forewarned. You'll have to be extra
careful typing the sample programs. Then triple-check them against our program
listings before running them. If your program contains typing errors, you'll probably
have to reset the computer to regain control.

The results of your labors will be impressive. Part A shows how to create high-
resolution graphics on your screen. Part B shows how to access the Color Computer
hardware directly by calling machine-language routines.

PART A

HIGH-RESOLUTION
GRAPHICS

CONTENTS OF THIS PART

INTRODUCTION
SAMPLE PROGRAMS (3)
A FEW DEFINITIONS
PREPARING THE COLOR COMPUTER FOR GRAPHICS
PUTTING GRAPHICS TO WORK
TABLES:

DESCRIPTION OF THE GRAPHICS MODES AVAILABLE
DISPLAY MODE SELECTION
VIDEO RAM PAGE SECTION
DETAILED DESCRIPTION OF THE GRAPHICS MODES B

R
W
N
H
-

INTRODUCTION

The Color Computer has many graphics capabilities that you cannot access using
the ordinary statements of Color BASIC. However, with the special memory
functions PEEK and POKE, you can use and experiment with many of these
powerful features. It does take some extra work on your part, but the results can be
impressive. In this part we're going to demonstrate how you activate and use these
graphics features.

Note: In Extended Color BASIC, many of the graphics capabilities are quite simple
to use. That's one of the main attractions of Extended Color BASIC. However, even
if you have Extended BASIC, you may find this part interesting. Some of the graphics
modes described may only be used via the techniques presented in this part.

First, we'll list two Color BASIC programs that demonstrate how to select and use a
graphics mode. The first runs on 4K or 16K RAM systems; the second, on 16K only.
We've also included a general-purpose program that you can modify to select any
graphics mode (it'll be up to you to put the graphics to use).

After you've tried the programs, you'll be ready for an explanation of how they
work. We'll start with a few definitions you'll need. Then we'll go over the steps
required to put the computer into any graphics mode. These steps aren’t meant to
be followed one at a time; they should be put into your BASIC program and then
executed in succession.

Finally, we'll suggest a few ways you can put graphics to work.

SAMPLE PROGRAMS

PROGRAM #1: 64 x 64 GRAPHICS MODE FOR 4K OR 16K RAM SYSTEMS

This program makes Color Computer act like a drawing board with a 64 x 64’grid.
You may choose between two sets of four colors:

Color# Set 0 Set 1
0 Green Buff
1 Yellow Cyan
2 Blue Magenta
3 Red Orange

Type in the program. Be sure to omit all remarks (lines or a portion of a line
beginning with an apostrophe). Also delete all spaces before and after punctua-
tion marks and arithmetic operators (. , ; : + —/*><=). You must have at least

124

Be
cc

le
s

335 bytes (characters) remaining in memory to run the program. You can check this

by having the computer PRINT MEM after the program is typed in. Check the
program carefully. Then run it.

After a few seconds, a block appears in the middle of the screen. You may move the
block, drawing a line in any of four colors; you may switch color sets; and you may
stop the line. Here is a list of the keys that control the drawing board:

Direction of motion:

North (up)
South
West
East
Northwest
Northeast
Southwest
Southeast

ACEBAR) Stops motion

Cl
el

wl
el

U
Gl
ee

ic
)

me
l

Four-Color Set:

Color 1
Color 2
Color 3
Color 0 (background color)
Change to other four-color set

To return to BASIC’s normal text screen, press the RESET button.

PROGRAM #1 LISTING

i@ ‘RESERVE 1K
20 CLEAR 10;+3071
30 ‘SET VIDRAM = 3072
40 FOR I = @ TO G: READ DT: POKE 65478 + I¥2 + DT

@: NEXT
50 DATA Brl1+l+8191090

60 ‘SELECT YDG MODE GiC
70 FOR I = @ TO 2: READ DT: POKE G6S472 + I1¥2 + DT?

@: NEXT
82 DATA 1:+80:0
90 ‘SET UP VIDEO CONTROL REG.
100 POKE GS314d,» 135
1190 ‘CLEAR YVIDRAM
120 FORI = 3072 TO 4095: POKE 1+@: NEXT
130 ‘BEGIN MAIN PROGRAM
140 ‘MP() IS A LIST OF POWERS OF 4
150 ’ TO BE USED BY THE MAPPING FUNCTION
iG6@ DIM MP(3): FORI = @ TO 3: READ MP(I): NEXT

170 DATA 1+4+16+64
i8@ CC = 3: CS = @ ‘CC

SELECT
190 xX = Bl: Y = Oi: XI

AND INCREMENT
200 ‘SET UP KEYBOARD TABLE

COLOR; CS = COLOR SET

@: YI = ® ‘STARTING POINT iT

210 US = "A": DS = CHRS(1@): WS = CHR$(B): ES =
CHR$(9)

220 NWS = "Q": NE$ = "W's SWS = "A": SES = "S"
230 COS = "O": C1$ = "1": C2$ = "2": C3$ = "3"
240 ‘CHECK FOR KEYBOARD CHARACTER
250 A$ = INKEYS
260 IF A% = U® THEN YI = -1: XI = @: GOTO 400
270 IF AS = DS THEN YI = i: XI = @: GOTO 400
280 IF A® = WH THEN XI = -1: YI = @ GOTO 400
290 IF AS = E® THEN XI = i: YI = @: GOTO 400
300 IF A® = NWS THEN XI = -i: YI = -i: GOTO 400
310 IF A% = NE# THEN XI = 1: YI = -1: GOTO 400
20 IF AS = SWS THEN XI = -i: YI = 1: GOTO 400

330 IF AS = SE$ THEN XI = 1: YI = 1: GOTO 400
E 340 ‘CHANGE COLORS IF @-3 WAS PRESSED

125

126

350 IF CO# < = AS AND AS «= = CBS THEN CC = ASC(AS)
- 48: GOTO 400

360 ‘CHANGE COLOR SET IF "/" WAS PRESSED
370 IF A = "/" THEN CS = (NOT CS AND 8) OR (CS AND

NOT 8): POKE 65314+135 + CS: GOTO 400
380 IF AS = CHR#(32) THEN XI = @: YI = ® ‘STOP

DRAWING IF <SPC} WAS PRESSED
390 ‘GET NEW (Xs) POSITION
400 XK = X + KXIs Y = ¥Y + YI: IF X «< @ THEN XK = @
410 IF X = 63 THEN kK = 63
420 IF Y «< @ THEN Y = @
430 IF ¥ » 63 THEN Y = 63
440 ‘’ PLOT THE (X+¥) POINT
450 Mi = INT(X/4): OF = Xi + Y*#iG: BYTE = 3872 + OF

7460 MOD4=INT(X-K1*4):BIT=3-xMOD4
470 3 = MP(BIT)#*CC: K4 = MP(BIT)*3
480 OL = PEEK(BYTE)
490 TE = (255 AND NOT X4) OR (-256 AND K4): NU =

~A

(TE AND OL) OR &
5@0@ POKE BYTE+s NU
51@ GOTO 230

Note for Extended BASIC Users: The 64 x 64 mode is not available in Extended
BASIC; however, this program will get it for you. First, however, make these
changes in the program:

20 CLEAR 1@» 15359
3@ ‘SET VIDRAM = 15360
5@ DATA Brlststr1 ++
120 FOR I = 1536@ TO 16383: POKE I+ @: NEXT
450 Ki = INT(X/4): OF = Ki + Y*¥1G6: BYTE = 1

OF
t

PROGRAM #2: 235 x 192 GRAPHICS FOR 16K RAM SYSTEMS

This program shows the highest resolution available on Color Computer. Because it
requires 6144 bytes of RAM for the graphics screen, it will not run on a 4K RAM
system.

The program draws lines on the screen. You type in (X,Y) coordinates for the starting
and ending points, then the program goes into the graphics mode and draws the
points. You can then press any key, and the program will ask you for another pair of
coordinates.

Type in the program. BE SURE TO OMIT ALL REMARKS (STATEMENTS BEGIN-
NING WITH AN APOSTROPHE). Check the program carefully. Then run it. There
will be a one-minute delay before you see the program begin.

If you interrupt the program while it is in the graphics mode, you will need to reset
the computer to get back in the normal mode.

PROGRAM LISTING

1@ ‘RESERVE GK
28 CLEAR 10,10239
30 ‘SET START AND END OF VIDEO RAM
40 YIDRAM = 1@240:VND = 16383
5@ PSEL = 65478 ‘START OF PAGE SELECT REG.
6@ YDG = 65472 ‘START OF YDG REG.
7®@ VCTRL = 65314 ‘VIDEO CONTROL REG,
82 ‘’X(@) AND ¥(@) WILL BE COORDINATES OF START POINT
92 ‘M$(@) AND M$(1) WILL BE MESSAGES
190 DIM K(1) s¥C1) oM$(1)
11@ ‘PHC) AND VH() CONTAIN HI-RES. BIT PATTERN
120 “PAC) AND YAC) CONTAIN TEXT BIT PATTERN
13@ ‘TWOC() CONTAINS ALIST OF POWERS OF 2
140 DIM PH(G) +PA(G) sVH(C2) sVAC2Z) »TWOC?)
150 FOR I=9@®TOG: READ PH(1):NEXT
160 DATA @rOrl Ori Bd
1708 FOR I=®TOG: READ PA(I): NEXT

180
190
200
219
22
230
240
250
268
270
280
290
300
319
320
3390
340
350
360

370
380
390
400
410

420
430
440
430
460
470
480
490
500
510
520
S2o
53a
348
regen
568

570
388
585
590
680
619
G20
638
640
650
668
6708
68a
698
700
710
720
738
740
7350
768
7708
780
798
800
8190
820

DATA O91 1810181850

FOR I= @TO 2: READ VH(I): NEXT
DATA Ooi srl
FOR Il=@TO2: READ VA(I): NEXT
DATA +050
READ CH ‘HI-RES BIT MASK FOR VID.CTRL. REG.
DATA 240
READ CA ’TEXT BIT MASK FOR VID.CTRL. REG.
DATA @
FOR I = @TO 7: READ TWO(IT): NEXT
DATA 1+214+8516 +32 5645128
GOSUB 880 ‘CLEAR OUT YVIDRAM
‘MAIN PROGRAM
M$(Q@) = "FIRST": M$(1) = "SECOND"
FORI=@TO1
PRINT "ENTER "3 M$(I)5 " X AND Y¥"
PRINT "@£ =X ¢=255,0¢ 2 ¥Y4 5191"
INPUT X(I) + ¥CT)
IF X(I) £ @OR X(1I) * BBS OR ¥Y(I) ¢ @ORYVC(I) 3 191
THEN 340
NEXT
GOSUB G20 ‘GO INTO GRAPHICS
‘DX »DY CONTAIN X+¥ DISPLACEMENTS
'SX +SY CONTAIN DIRECTION OF THE LINE
DX =X(1) - X(@): DY = ¥(1) - ¥(O): SK = SGN(DK): SY
= SGN(DY)
‘USE EQUATION Y = SLOPE *X+B8B
‘SL = SLOPE OF LINE: B = OFFSET FROM X-AXIS
IF DX = @ THEN 550 ‘SPECIAL CASE FOR VERTICAL LINES
SL=DY/DX: B= ¥(@) - SL * K(@)
T=SL*S5L +1: GOSUB 930 ‘GET SOR(T)

KX =i1/T1 * SX “NX IS INCREMENT FOR X
FOR XT=X(@) TO X(1) STEP NX
X= INTCXT + 45)
Y= INT(SL*¥ KT+ B+ .5)
GOSUB 839
NEXT
AS = INKEY$: IF A$ = "" THEN 325
GOSUB 638 ’GO INTO TEXT
GOTO 320 ’GET NEXT PAIR OF POINTS
X= X(@)
FOR Y= ¥(@) TOY(1) STEP SY ‘DRAW VERTICAL LINE
THRU K(@) .
GOSUB 8390
NEXT
IF INKEY$="" THEN 585
GOSUB §3@ : GOTO 328
‘END OF MAIN PROGRAM
‘SUBRTNS TO SELECT GGR AND TEXT
GOSUB 65@ : GOSUB 700 : GOSUB 758 : RETURN
GOSUB 678 : GOSUB 720 : GOSUB 778 : RETURN
‘PAGE-SELECT SUBRTNS
FORI = @TOG: POKE PSEL + I * 2 + PH(1) +@: NEAT

RETURN
FORI =@TOG: POKE PSEL+1%* 2+ PA(I) +0: NEAT
RETURN
‘YDG SELECT SUBRTNS
FORI =@TO 2: POKE YVOG+1* 2+ YHC(I) +8: NEXT
RETURN
FORI = @TO 2: POKE YVDOG+1%* 2+ YAC(T) +@: NEXT
RETURN
‘SUBRTNS TO SET UP VIDEO CONTROL REG,
POKE YCTRL»+ CHOR (PEEK(YCTRL) AND 7)
RETURN
POKE YVCTRL» CA OR (PEEK(YCTRL) AND 7)
RETURN
‘SUBRTN TO CLEAR OUT VIDEO RAM
FOR I = VIDRAM TO YND:POKE I+@: NEXT
RETURN
‘MAPPING FUNCTION

127

128

830 Ki = INT(X/8)
840 OF = X1+Y¥ * 32: BYTE = YVIDRAM + OF

850 MODS = INT(X - X1 * 8)
860 BIT=7- XMOD8
870 VLU = TWO(BIT)
880 OLD = PEEK(BYTE)
890 MASK = VLU OR OLD
900 POKE BYTE »MASK
910 RETURN
920 ‘SOR(X) SUBRTN
930 IFT =@THENT1 = @: RETURN
940 Ti=T*.,.5: T2=2@
950 T3=(T/T1-T1)* +5
960 IF (T3=@) OR (T3 = T2) THEN RETURN

970 Ti=Ti+T3:7T2=2= 73: GOTO 950

Note: This entire program can be duplicated using the LINE statement of Extended

BASIC. However, if you wish to use it for experimentation, It will run without

modification under 16K Extended BASIC.

PROGRAM #3: GENERAL-PURPOSE SUBROUTINES

You may use these subroutines to select any graphics mode (subject to the RAM

limitations of your computer and the requirements of your main program). You

supply the main program to write information onto the graphics screen. You also

provide the correct values for Lines 20 and 40.

Later in this section, we provide hints on designing your main program (Putting

Graphics to Work).

PROGRAM LISTING

190 “RESERVE RAM FOR GRAPHICS
20 “CLEAR STRINGSPACE +» MEMEND
30 “SET START AND END OF VIDEO RAM
4a “UYIDRAM = MEMEND + i: YND = 4095 OR 16383
o@ PSEL = 65478 ‘START OF PAGE SELECT REG,
6@ YDG = G5472 ‘START OF VDG REG.
70 VWCTRL = 65314 ‘VIDEO CONTROL REG.
100 DIM X(1)5 Y¥C1)+ M$(1)
11@ ’PH() AND VHC) CONTAIN THE GRAPHICS BIT PATTERN
120 ‘’PA() AND VAC) CONTAIN THE NORMAL (TEXT) BIT

PATTERN
14@ DIM PH(G)» PA(G)+ YH(C2)+ YVAC2)
150 FOR I=9%®TOG: READ PH(I): NEX
160 ‘DATA X+XsXs+XoX eX ok (PAGE-SELECT BIT PATTERN)
170 FORI=@®TOG: READ PA(I): NEXT ‘READ NORMAL P-5S

BIT PATTERN
18GB DATA G+1+8+8+810+8
19@ FOR I=@TO 2: READ VH(I): NEXT
200 ‘DATA X+X+X (GRAPHICS BIT PATTERN FOR YDG)
210 FORI=@TO 2: READ VA(I): NEXT “NORMAL YDG BIT

PATTERN
22 DATA 018+
230 READ CH ‘GRAPHICS BIT MASK FOR YVID.CTRL. REG,
240 ‘DATA XKX (VIDEO CONTROL VALUE)
250 READ CA ‘TEXT BIT MASK FOR VID.CTRL. REG.
260 DATA®@
290 GOSUB 800 ‘CLEAR OUT VIDRAM
300
310 ‘YOUR MAIN PROGRAM GOES HERE
320 ’
599 ‘END MAIN PROGRAM -:
600 ’
618 ‘SUBRTNS TO SELECT GRAPHICS AND TEXT
620 GOSUB G65@: GOSUB 700: GOSUB 750 : RETURN
630 GOSUB G70: GOSUB 728 : GOSUB 770 : RETURN

640 ‘PAGE-SELECT SUBRTNS
65@ FORI =@TOG: POKE PSEL+I1* 2+ PH(I) +@: NEXT
6G@ RETURN
670 FORI = @TOG: POKE PSEL+1¥* 2+ PA(I) »@: NEXT
682 RETURN
690 ‘VDG SELECT SUBRTNS
700 FORI=@TO2: POKE YDOG+1%* 2+ VYH(I) +0: NEXT
71@ RETURN
720 FORI=@TO2: POKE VDG +142 + VYA(I) +O: NEXT
73@ RETURN
740 ‘SUBRTNS TO SET UP VIDEO CONTROL REG.
750 POKE VCTRL+ CHOR (PEEK(VCTRL) AND 7)
760 RETURN
770 POKE VCTRL+ CA OR (PEEK(VCTRL) AND 7)
780 RETURN
790 ‘SUBRTN TO CLEAR OUT VIDEO RAM
80@ FORI = YVIDRAM TO VND: POKE I+0: NEXT
810 RETURN

A FEW DEFINITIONS

GRAPHICS

Graphics is a video mode of the computer in which you can set or reset blocks or

points called “pixels.” For each pixel, you may choose from 2, 4, or 8 colors,

depending on the particular mode. selected. By setting various combinations of

pixels, you can generate lines, geometric figures, pictures, and so on.

RESOLUTION

The pixel density (how many pixels to a screen) determines the degree of resolu-

tion. Depending on the graphics mode, the screen may contain from 2048 (SET/

RESET) to 49152 (G6R) pixels. The higher the resolution, the finer the lines and the
more detailed the pictures.

To see the importance of resolution, look at these two diagonal lines. The resolution

of Line B is 4 times as fine as that of line A.

Til ia
} 4

ja
e

T
T
T

T
i
l

j
a
e

Line A. Line B.
Low Resolution High Resolution

RAM, BYTES, AND BITS

RAM is divided into individually addressed locations called “bytes.” The addresses

in RAM run from 0 to 4095 or 16383, depending on whether you have a 4K or 16K

RAM system. Each address references one byte.

RAM is “Random Access Memory.” This is the area where your computer stores

programs and data. The computer also uses RAM to store internal values. RAM is

erased when you turn off the computer.

One byte consists of 8 on/off switches called “bits.” Here is one byte:

Bit # 7 65 43 2 1 ~°0

129

130

Suppose you want to set (set to 1) bit 7 in byte #4000, without changing any of the
other bits. You simply OR the current contents of #4000 with the binary value
10000000, which is equivalent to decimal 128:

NB = PEEK (4000) OR 128

Since bit 7 is set in the value 128, bit 7 will always be set as a result of the operation.
The other bits in the result will be the same as those in address #4000.

VIDEO RAM

When you output to the screen, the information is actually stored in a portion of
decimal 0 to 255. (See a math or computer science text for a discussion of binary
numbering.)

PEEK AND POKE

These BASIC words let you examine (PEEK) or change (POKE) the contents of
memory. Just for review, here is the syntax for each command. The syntax is the
way the command should be put together. For an example, with POKE you should
first specify the address, then the value.

PEEK(address)
POKE address, value

PEEK is a function. This means it cannot stand alone in a BASIC program, but must
be used in a statement such as:

OLD = PEEK (BYTE)

OLD will be given the contents of address BYTE.

POKE can stand alone. It stores the value specified in the address specified.

POKE BYTE» NU

The address specified by BYTE will be given the value NU.

BITS AND BOOLEAN ALGEBRA

In the graphics modes, one or two bits may control the color or on/off status of a
pixel. So we need a way to control a single bit or pair of bits without affecting other
bits.

To change one or two bits in a byte requires a form of computer logic called
Boolean algebra. Boolean algebra uses logical operators such as AND, OR, and
NOT. These three are available in Color BASIC.

AND and OR compare two values bit-for-bit; NOT takes value and reverses the
state of each of its bits. Here are table summaries:

AND] 0 | 1 OR| 0 | 1

0} 0] 0 o;o}1 NOTO = 1

1] 0] 1 1/4/14 NOT 1 =0

Here are some examples of Boolean operations on 1-byte binary values:

10101010 01101110
AND 11119000 OR 10001000

10100000 11101119

NOT (10101018) = 819101901

Note:

(1) Inthis discussion, we refer to the individual bits using the numbers
0 through 7, as shown in the diagram.

(2) When a bit has a value of 1, we say it is set’; when it has a value of
O, we say it is “reset.’’ We use these terms in this way throughout
this section.

There are 256 possible on/off combinations for a single byte. The combinations are
often interpreted as binary numbers ranging from O0000000 to 11111111 or
memory. The video display circuitry reads from this “video RAM” in order to
generate the screen display.

Text goes
into RAM

You type:

PRINT "HERE 1S A MESSAGE "> Video
RAM

Computer generates TV
the correct display Screen

Normally, Color BASIC uses the memory area from 1024 to 1535 as video RAM.

There are 512 distinct memory locations, or ‘‘bytes,”” in this-area, enough to hold
512 alphanumeric characters or 2048 SET/RESET pixels.

You can program the Color Computer to use any area of RAM as “video RAM.” This
is desirable when:

A. You want to use high-resolution graphics that require a large video RAM
area,

B. You want to switch back and forth between ‘“‘pages’’ of video RAM.

High resolution requires a larger video RAM area than does normal text. For
example, in the highest resolution mode, G6R, 6144 bytes of memory are required
to store a screenful, or “page,” of information.

This increased video RAM requirement has to be taken from the ‘‘user area’’ at the
top of memory. This limits the space available to your BASIC program. If you have a
4K RAM machine, you are probably limited to using the G1C and GIR graphics
modes, which take only 1024 bytes and leave approximately 1300 bytes for your
BASIC program. If you have a 16K RAM machine, you may use the highest
resolution mode and still have about 8400 bytes available for your BASIC program.

VIDEO DISPLAY GENERATOR (VDG) REGISTER

This consists of three pairs of addresses in RAM that control the graphics mode. (See
Table 1 for a description of the graphics modes available.) These addresses are not
actual bytes in RAM, but are direct links to the VDG circuitry in the computer.

DISPLAY CONTROL REGISTER

This is a single memory location that determines which color set is available; it also
plays a role in selecting the graphics mode. This address is not an actual byte in
RAM, but is a direct link to certain display control circuitry in the computer.

PAGE-SELECT REGISTER

This consists of seven pairs of addresses that determine the start address of video
RAM. Using this register, you can start video RAM on any 512-byte boundary in
RAM. This address is not an actual byte in RAM, but is a direct link to the
page-select circuitry in the Computer.

131

132

PREPARING THE COLOR COMPUTER FOR GRAPHICS

1. CHOOSE WHICH GRAPHICS MODE YOU WANT

Using Table 1, decide which graphics mode you want. To do this, ask yourself the
following questions:

What is the video RAM requirement? Does your computer have enough RAM to
accommodate it? If it does, is there enough room for the program that uses the
graphics mode?

How much resolution do you need? How many colors? There is a trade-off between
colors and resolution.

For example, G1C and G1R both require 1024 bytes for video RAM, but after that
they differ. G1C offers a 64 x 64 pixel density, with 4 colors available for each pixel.
Further, you may select between 2 sets of 4 colors. G1R on the other hand, offers a
128 x 64 pixel density, with 2 colors available for each pixel. You may select
between 2 sets of 2 colors.

Program #1 uses G1C; Program #2, G6R.

2. SELECT A PAGE OF VIDEO RAM FOR GRAPHICS USE

Color BASIC uses addresses 1024-1535 for video RAM. This is sufficient for

alphanumerics and SET/RESET graphics, but not for any of the higher-resolution

graphics modes. For these, you should reserve a sufficiently large area at the top of

RAM. Use the CLEAR statement to do this.

CLEAR stringspace, memend

stringspace is the amount of space you'll require for string information. Use
the smallest number possible that won’t result in an OS error when your
program runs.

memend is the highest address Color BASIC will use. You can use addresses
above memend for your graphics video RAM.

To compute memend, use this formula:

memend = memory size - pagesize

memory size depends on how much RAM is in your system. For 4K systems,
it is 4095; for 16K systems, 16383.

pagesize depends on which graphics mode you are going to use. For 4K
systems, you are probably limited to G1C or G1R; in either mode, pagesize
= 1024. For 16K systems, you may use any mode, even one that uses 6144
bytes.

For example, to use G1C in a 4K system, start your program with this statement:

CLEAR 20, 3071

This assumes you won't need more than 20 bytes for string storage, and it reserves
the highest 1024 bytes for use as video RAM.

In Program #1, see Line 20; in Program #2, Line 20.

3. “CLEAR OUT” YOUR VIDEO RAM

You will probably want to start with a clean video screen. To clear out, store zero in
each byte of video RAM. For example, in a 4K system, you might use these
statements:

FOR I = 3072 to 4095: POKE I+@: NEX

In Program #1, see Line 120; in Program #2, Line 790.

Important Note: Perform Steps 4 and 5, which follow, consecutively,
with no pauses in between. Otherwise, the screen will show what is
often called ‘‘garbage.”’

4. SWITCH IN YOUR VIDEO RAM

Using the page-select register, tell the Color Computer where your ‘‘page”’ of video
RAM starts. A graphics page must start on a 512-byte boundary. To tell Color
Computer where the page starts, use a 7-bit value. (The 8 bit, bit 7, is always 0, so is
not needed by the page-select register.) Table 3 lists the correct values for pages
starting at memend + | (see Step 3).

Table 3 doesn’t list all possible addresses where you might want to start video RAM.
The following procedure lets you calculate the correct value for any valid start
address for video RAM. (Addresses must be on 512-byte boundaries: 0,512,1024,
etc.)

First calculate the video offset in 512-byte ‘‘blocks,’” as follows:

OFFSET = WIDRAM / 512

VIDRAM is the start address of your video RAM (usually memend + 1).

For example, in 4K systems with your video RAM starting at 3072, OFFSET = 3072
/512 = 6.

Then express OFFSET as a 7-bit binary number. For example,

6 decimal = | O 0 0 0 1 1 0 binary

Bit » 6 5 4 3 2 1 0

After finding the correct value, give it to the page-select register.

Remember, this register consists of 7 pairs of addresses. Each pair controls whether
agiven bit in the page-select circuitry is on or off. To RESET a bit (make it equal to 0),
POKE any value into the even-numbered address in the pair; to SET a bit (make it
equal to 1), POKE any value into the odd-numbered address in the pair.

TO RESET, TO SET,
BIT # POKE HERE POKE HERE

0 65478 65479
1 65480 65481
2 65482 65483
3 65484 65485
4 65486 65487
5 65488 65489
6 65490 65491

For example, to switch in the video RAM starting at 3072, give the value 000110 to
the page control circuitry as follows:

POKE G3478 +@ ‘RESET BIT @
POKE GS48i1 +@ ‘SET BIT i
POKE 63483 108 ‘SET BIT 2
POKE 65484 1@ ‘RESET BIT 3
POKE 63486 1@ ‘RESET BIT 4
POKE 65488 +8 ‘RESET BIT 5
POKE 65490 +9 ‘RESET BITS

In Program #1, see Lines 40-50. The formula in Line 40

63478 +1%* 2+ DT

is a shorthand way to poke the appropriate addresses in the page-select register. DT
is the 0/1 value for each of the 7 bits.

In Program #2, Lines 640-670 do the same thing using bit patterns stored in PH()
and PA().

5. SELECT THE DESIRED GRAPHICS MODE

To select a given graphics mode, you must:

A. Set the VDG register

B. Set the control register.

(A) First, look up the 3-bit VDG pattern that selects the graphics mode (see Column
2 in Table 2).

133

134

This is the binary value you must give to the VDG register. Remember, this register
consists of 3 pairs of addresses. Each pair can be used to control whether a given bit
in the VDG circuitry is on or off. To RESET a bit (SET it to zero), POKE any value into
the even-numbered address in the pair; to SET a bit, POKE any value into the
odd-numbered address in the pair.

TO CLEAR, TO SET,
BIT # POKE HERE POKE HERE

0 65472 65473
1 65474 65475
2 65476 65477

For example, to select graphics mode G1C, give the value 001 to the VDG registers
as follows:

POKE 65473 +@ ‘SET BIT @
POKE 65474 +0 ‘RESET BIT 1
POKE 65476 +@ “RESET BIT 2

(B) Now select the control value for the graphics mode you want (see Column 3 of
Table 2). Then store this value in the control register without changing bits 0-3 of
the control register.

For example, to select graphics mode G1C with color set 0.

1. Get temporary result with all bits off except 0, 1, 2. These are not changed.

POKE 65314,» 128 OR (PEEK(65314) AND 7)

2. Turn on bit 7 without changing bits 0, 1, 2.

After you execute Steps 2-5, the computer is in the graphics mode you selected.
The screen should be blank. You can devote the rest of your program to using the
graphics mode.

In Program #1, see Line 100. In Program #2, see Lines 740-770.

PUTTING GRAPHICS TO WORK

After you select the graphics mode, you can control what appears on the screen by
POKEing data into the graphics page you selected. How the data is interpreted
depends on the mode you selected. In some modes, 1 byte may control a sequence
of 8 bits; in others, 1 byte may control a 2 x 6, 2 x 12, etc., “block.”

Table 4 explains how each pixel in a given mode is controlled by a byte or bit. If
you're writing your own main program to use the subroutines in Program #3, you
may want to experiment, storing various values from 0-255 into a single byte in
your page of video RAM.

If you want to get more predictable results, read on...

MAPPING FUNCTIONS

In all graphics modes, the screen is divided into (X,Y) coordinates. Each pixel on the
screen has a unique (X,Y) ‘‘address.””

If you've used SET, RESET, and POINT, then you’re familiar with this coordinate
system. All these statements allow direct reference to (X,Y) coordinates. For exam-
ple, to set the centerpoint on the screen to blue, use:

SET(31+1553)

Using the higher-resolutions graphics modes is a little more difficult. You can’t deal
directly with (X,Y) coordinates; you must translate, or “‘map,’’ the desired (X,Y)
coordinates onto the appropriate byte of video RAM. When 1 byte controls 2 or
more pixels, map the (X,Y) coordinates onto the appropriate bit or bits within a byte.

Table 4 shows how each byte of video RAM controls 1 or more pixels.

As an example, we'll take the 256 x 192 mode, GéR.

In this mode, the first 32 bytes of video RAM control the first row of 256 pixels; the
second 32 bytes control the second row; etc.

Within each row, each byte of video RAM controls a sequence of 8 pixels:

One Byte of Video RAM
seen as 8 bits:

7 6 5 4 3 2 1 0

~—— Eight pixels

Bit 7 controls the leftmost pixel in the sequence; bit 0, the rightmost.

With this in mind, you can construct a series of BASIC operations to map (X,Y) onto
one bit in one byte.

Note: /n the following BASIC statements, we assume the following:

128.)

e« — Y is the Y-coordinate. (For illustration, Y = 96.)

» — VIDRAM is the first address of video RAM. (For illustration, VIDRAM =
10240.)

¢ The expression ‘2 X’’ means ‘’2 to the X power.” (This function is not
available in Color BASIC, but you can simulate it with a table of powers
or 2.)

1. Which byte ‘‘contains’’ the pixel?

OFFSET = INT(XK/8) + Y#32 = 16 + 3072 = 3088
BYTE = VIDRAM = OFFSET = £0240 + 3088 = 13328

2. Which bit in BYTE controls the pixel?

XMOD8 = X - INT(X/8)*8 = 0
BIT = 7 - XMOD8 = 7

3. What 1-byte value will set the pixel? What 1-byte mask will set the pixel
without changing any of the others controlled by the same byte? For
illustration, assume BYTE contains 8.

VLU = 2 ABIT = 128 = binary 10000000
OLD = PEEK(BYTE) = 8 = binary 00001000
MASK = VLU OR OLD = 136 = 100010900
POKE BYTE, MASK

4, What 1-byte value will reset the pixel? What 1-byte mask will reset the
pixel without changing any of the others controlled by the same byte?
For illustration, assume BYTE contains 136.

VLU = 255 - 2 4BIT = 255 - 128 = 127 = binary
@1111111
OLD = PEEK(BYTE) = binary 10001000 = 136
MASK = VLU AND OLD = binary 00001000 = 8
POKE BYTE» MASK

* X is the X-coordinate. (For illustration, X

The mapping just described is used in Program #2. See Lines 820-910. Another
mapping (64 x 64, G1C) is used in Program #1, Lines 440-500.

135

136

TABLE 1. DESCRIPTION OF THE GRAPHICS MODES AVAILABLE

Number of Video RAM
Mode (1) Resolution Colors (2) Req. (Bytes)

SG6 64 x 48 8 512

SG8 64 x 64 8 2048

$G12 64 x 96 8 3072

$G24 64 x 192 8 6144

GIC 64 x 64 4 1024

GIR 128 x 64 2 1024

G2C 128 x 96 4 2048

G2R 128 x 96 2 1536

G3C 128 x 96 4 3072

G3R 128 x 192 2 3072

G6C 128 x 128 4 6144

G6R 256 x 192 2 6144

Note:

(1) The mode names are abbreviations. Read ‘‘SG6” as ‘’semigraphics six”’;

read “G1C’ as ‘graphics one with color’; read ‘‘G1R” as “graphics one

with resolution’; and so on. In all “semigraphics’’ modes, you have 8

colors at once. In all “with color’ modes, you have 4 colors at once. In
all “with resolution” modes, you have 2 colors at once.

(2) In the 4-color modes, you may select between two sets of 4 colors each.
In the 2-color modes, you may select between 2 sets of 2 colors each. The

color-set select bit (bit 3 of the video control register) determines which
set is used. See Table 2 for more details on selecting the color set.

TABLE 2. DISPLAY MODE SELECTION

Video Control
Register Value Data

VDG Register With Color Set* Bits*
Mode Three-Bit Pattern 0/1 7/6

SG6 000 16 /24 1/X

SG8 010 0 /0 1/X

$G12 100 0 /0 1/X

$G24 110° 0 /0 X/X

GIC ~ 001 128/136 X/X

GIR 001 144/152 X/X

G2C 010 160 / 168 X/X

G2R 011 176/184 X/X

G3C 100 192 / 200 X/X

G3R -101 ~ 208 / 216 X/X

G6C 110 224/232 X/X
G6R 110 240 / 248 X/X

“xX” indicates ‘Don’t care.”

TABLE 3. VIDEO RAM PAGE SELECTION

Page Select
VIDRAM Register

Bit Pattern

Size (Bytes) Start Address 6543210

4k 512 3584 0000111
R 1024 3072 0000110

M 1536 2560 0000101

512 15872 0011111
16K . 1024 15360 0011110

R 1536 14848 : 0011101

A 2048 14336 0011100

M 3072 13312 0011010

6144 : 10240 0010100

137

TABLE 4. DETAILED DESCRIPTION OF THE GRAPHICS MODES
U
T
X

| x
[Poo]

7]
t

m
e
t

e6usQ
1

1
tt

P
T
X

|X
Pal

o
f
a
]

4
a
l
s

w
e
n
a

e
t

quouoe. feideg 1 sevig croc cautery cog
|

lAlx[x[o[9)"o]
ata

me 00
1

9x
onpoid

puke
;sassa,

@alnoesui
uuinjoo

xis Seuinbas
apow

Z1-sa1ydesBiwas
ayy

||
X

| xX
|"[7/°O]'d

| 70]
+

Gy
al

96x
¥9

pea
ee

‘
i

o
bl

x
X
T
X

P
A
L
A
]

ofZo]}
4

a
l
a

MOHWPA
L
O

0
1

1
é

1
zi

+
“vwaHH

0
0
0
1

.
x
{
x
}
]
'
T
]
%
O
]

'of
fof

4
A145

W
O
R
N
:

X
E

0

40109
09

19
79

>
a
b
u

1
4

ot
ot

ewabew
O

4
|

|
ek:

aT
a[x[x

[off]
4

a
4

‘
w
a
o
o
 3 t

‘
M
o
w
a
w

A
e
d
s
i
p
 jo

salkq
gpoz

Saunbes
y

“yO01q
|

{71]
1]

X
| x

[9D]
9420]

4
4

v9Xx
v9

e
I

Dawg
b
b
o
u
l

x
x

x
z

&
seonpoid

u
e

sSessalppe,
Saunpesucs

x
x

f
a
l
a
l
o
t
l
o
l
o
l
s

a
l
y

Pe
ie

9
i

Q
i

-SoiydesBiwsas
2!

U
L
U
N
|
O
O

INO}
SeuINbas

a
p
o
U
!

B-So!y
IS

OUL
x
T
x
t
a
l
a
l
s
l
a
l
a
h
n

a
l
y

w
u
n

o
e

e
k

weg
x

xX
xX

0
40109

0D
19

270
4

rs
a6uBO

1
I

t
ewebew

O
|

‘
‘

w
a
.

oO
‘

'
‘
A
o
w
e
w

Aejdsip ye
,

wg
0

0
1

seitq
21g

sauinba,
4

‘sjiq
Bururewes

om)
ay)

Aq
has

a
weg

Xx
X

"0
x

joey
PAaUIWB}JAP

S$}
JO]OD

‘syed
jenb~a

xis
Oyu!

Papiaip
=

.
a
l
y

8px
PO

e
g

peu
L
T

;
x

$1
aj6ue}9e1

jop
erjam)

Aq
JOP

JyBIe
ayy

:eoUe
[>]

f
a
f
a

[
n
[
4
]
°
]

‘9]
a
t

e
o

}
-J9yIP

Buimoyjo)
ay)

Y
M

apow
p-Sorydes6iwes

1
°

used
|

0
L

0
ay)

0}
ue|IWIS

si
apOwW

g-soiydesBIWaS
ayL

a
t
e

ar
;

w
e
g

x
xX

(o)
40109

0D
15

"7

abuso
1

4
4

4
“
A
o
w
e
w

euebew
O

1
1

4.
Aejdsip

jo
sayAq

215
Sesinba,

y
“syiq

ea1y)
Aq

ued
1

O
4

4

wep
OC

ou
00

1 ¢
Buipuod

31109.
Aq. B

a
u
s

uewa|a
Zex

v9
peg

pau
1

?
3

\
x

x
RIED

DOA
ey}

uO
y1q

Bulpuodsau
;

T
-19}8P S} Wed

yoRe
jo

aoueUIWN)
ay,

“Swed
jenba

[
a
[
4
[
5
[
5
[
f
'
9
[
%
o
]

1]
auo

a
g
o

048
4NO

OV!
papiaip

si
(S}OP

Z}
Aq

sJOp
jybIa)

9/6
moneA

|
0

0
|

-ub}O9s
B

YOIYM
Ul

JOYeIaUaD
.saydesb

asse09.,
u
e

0
0

0
1

jBusajyul
ue

Sesn
aspow

p
-
s
o
i
y
d
e
s
b
i
w
a
s

aul
w
e
g

Xx
x

X
O

40109
09

19
79

41
G
=

1: 6
B
C
9
S
P
E
Z
I
O
/

="
+
.8%$

s|
|

6
#
.
I
d
S
—

el’
Z
A
X
M
A
N
L
S
H
O
d

O
N
)

@Pp02
OSH

-
a
i

org
—

e
e

h
F

W
P
I
L
H
D
A
B
A
I
D
S
Y

™
‘siaeseys

op
uanes

Aq
jop

[
I

|
|

I
l

[
i
]

o]
Z

|

9
1
x
z
e

@ay
Burmoyo)

ey)
Sure}UOD

YoIyM
J30)eJ9U6

sa|ORJeYo
-

4
—

z
ypeig

ueasD
peg)

1
0

|Busaju!
ue

Sasn
s
p
o
w

/eusejus
J
V
A
W
w
N
U
e
Y
O
y
y

ayL
'

1
SIOPB

o
r
g

uaaD}
0

Lt
sMoY

x
s
u
W
N

4@p10)
no16y98,

20109)
9

aneenline
(s)ovkg

weg
neeq

ed
109]

49p10g | punoiB¥IG
4g

s
o
e
 y>

ig
|

438
4
O
1
0
9

u
o
n
j
o
s
e
y

s0j0D
v
i
v
a

SapoW
So!ydesy

ay} Jo UONdoSaq
pal!eyaq

“py a1qeL

138

‘juawaje
aunjoid

auo
wna

b
eid

|
[5]

515]
5
]

7
FIEIG

96x
8zt

we a
x

Sayoads
serdq

jo sed
auo

yum
ui

Wve
Aeid

|[°oT ‘9
[°a[‘9

[9] ‘3 [9]
9]

*af'al
‘alsa

3e
10:09

owes
“SIP

JO
SalAq

ZZ0€
SESN

apow
DE-saiyde/H

ay,
,

|
wees

t)

‘juawaja
we

¥y eu0
sous

‘
@imoid

auo
seyioeds

yIq
au

Y
o
I
y
M
 ul

Wy
Aeid

[a]
s
f
a
f
a
[
a
y
a
y
a
y
s
]

f
p
[
s
f
a
l
a
[
a
y
a
—
a
y
o
]

96xe21
$e

siojoo
ewes|

-SIp
0

s
a
y
q

g
S

Sesn
a
p
o
w

Y
Z
-
s
a
I
y
d
e
/
D

ay)

ueel5
0

ung
'

“juawale
aunjoid

‘sii
oe

8u0
sayioads

sug
jo red

auo
yorum

ut
wwe

Aeid
|
[
5
]
 ‘9

[0
'9]

5]
9
]
 "a

| 9]
{e3['3

[73
[*a]

voxezi
mE

mica
bues|

-SIp
40

SavAq
S
p
o
?

S
S
N

a
p
o
w

D
z
-
s
a
y
d
e
/
D

ay)
usel5

0

w
g

1

!
voxe2t

me
kil

Oo}
x

:
ainjod

auo
seyoeds

i: auo
yom

ui
wy

Aeid
|(>

Par
a
l
a
t
a
[
a
l
s
l
 sl

(al
s
f
o
[
o
p
a
y
s
[
s
]
 4]

ro)
y

“SIP
JO SelAq

pZ01
SasN

apow
Yy1-So1yde/D

ayy
fev yta}

weer
2

0

abueIQ
|

iy
ewuebew

0
L

ung
ued

4
0

t
.

0
j
u
a
W
a
j
a

aunjoid
:

Ms
x99

ung
0

x
2uo

seyioads
sug

jo sed
euo

YoIUM
us Wd

Aed
[Po['a}°o]

‘aff
‘o[°o[

‘3]
[°a]‘a]

3]
3]

w9
peut

i
-SIP

JO S@VAq
pZOL

SESN
apow

D1 -so1ydesH
auL

ong
0

‘
3

U
8
e
I
5
)

Ml
t

ueHD
0

)
40109

0
9
1
9

a
a

x]
x

|°O]'o]2o]
4

“
r
a
y
 x

1 x
f°

ofa]
4

U
a

x
TX

[90
'of2o]

4
“
T
A
L

X
EX
f
o
 tof

2o]
4

«i
"
U
s
a

x
EX

[Po]
toffo}

a
“Mowau

|
late

ty
fiylen]

, |
Aeidsip

jo
sayXq

p
p
g

sasnbas
y

“yooIg
zixz

||
PX]

x
JOO]

"ol
b

B®
s
a
o
n
p
o
i
d

pue
;
s
a
s
s
a
i
p
p
e

a
a
n
n
o
a
s
u
o
s

u
w
n

|}
x

|
x

[
9
9
/
4

{%9
fg

[2g]
1

c
o

a
an

TE
-|09

aAjaMy
SauINb|)

a
p
o
w

p
Z
-
S
a
1
y
d
e
s
B
i
w
a
s

ay)
x

x
t
a
l
a
l
o
l
o
l
o
l
s

e
w
a
s
e
w

0
\

.

u
:

xix
{a

afl
‘ofeal

a
m
e
e
e
 bk

KP
x

Py
A
o
l

o1
4a}

4b
261%

9
weig

o
u

E
‘

°
'

x
x

XEX
PT

Ya}toltay
4

mole
1

0
0

4
font

5
fe

u
a

0
0
0

t
S
e
a
r
e
l
s

weg
X

X
X

O
40109

09
19

Z9
*1

NeVeg
S
M
O
Y

X
SUWIN}OD

| e
p
s
0
g

| p
u
n
o
s
B
y
I
e
g

i
e
p
e
n
i
g

9
13as

s
y
u
a
w
w
o
9

(s)ovig
neq

a

118
| 40109

u
o
n
n
j
o
s
e
y

40}0D,
w
i
v
a

(
p
a
n
u
j
u
o
d
)

s
a
p
o
w

so!ydes5

ayy
jo

u
o
N
d
i
9
s
a
g

payieiag
“y

a1qey

139

718
‘0960

‘OPPO
‘OZPO

O
H
O

Be
COPO

X3H
Ie

Buipe}s
sassasope

aannoesuod-UWN|OD,

quewala
48

t
einioxd

au0
seyoeds

na
auo

youm
ut w

v

Aeid
[TAT

TATa
[
A
t
a
l
a

T
a
l
a

Taiataray)
—

ze:xese
os persdeel

*
-SIP

JO
Sa\kq

ppLg
Sesn

apow
Yyg-sa1ydes5

aul
uaa

.
s

0
i

“yuawaja
emoid

une
‘

auo
sayioads

syiq
jo

sed
e
u

yorum
ul

Wy
Aeid

|
[°o!

‘a1
°o[‘9][°oT

‘a
[O/

‘91
S
c
c
i
c

261xgz1
Q.au0

soudeip}
-SIP

JO
SaxAq

py1g
Sasn

a
p
o
w

p
r
i
o
n

n
te)

euL
|

I
+

+
3
/
3
1
3

i
"31

«
uaa19

SB
S10}09

e
W
e
S

0

d
d

v
a
t
e
d

GiGi
GlGlalalta

we
u
o

saiydes
'

Sunjoid
BuO

Sayidads
jig

GUO
YOIUM

Ul
Wy

Aeid
7]

ey]
©

z
W
A
l
A
y
p
s
A
y

bia
|

261
X8Z4

-SIP
JO Sa1kq

ZZ0€
Sasn

epow
Lesonjcers)

auL
f
a
f
a
j
a
j
a
t
a
y

a
r
y
a

a
n
n
e
a
l

uselp
Se siojo0

owes}
0

40/09
e
e
u

(
e
e
e

sad

te)
SMOY

X SUUUNIOD | 1ep10g
| punosByoRg

‘
i
e
e
e

a

. 138
;

u
o
n
n
j
o
s
e
y

40109
v
i
v
a

(
p
a
n
u
y
u
0
d
)

s
a
p
o
w

soiydesy

ayy
yo

u
o
N
d
9
s
a
q

pay!ejaq
“py

a1qeL

140

PART B

| USING
MACHINE-LANGUAGE
SUBROUTINES WITH

COLOR BASIC
In this part we describe how to call a machine-language subroutine from a BASIC
program, and we list certain ROM subroutines that you may find useful.

“Machine-language”’ (ML) is the low-level language used internally by your com-
puter. It consists of microprocessor instructions. Machine-language subroutines are
useful for special applications because they can do things very fast.

Writing such routines requires familiarity with assembly-language programming
and with the microprocessor’s instruction set. For more information, see Basic
Microprocessors and the 6800, Ron Bishop, Hayden Book Company, 1979.

In this section, we take a step-by-step approach to using ML subroutines, as follows:

1. Protecting Memory
2. Storing the ML Subroutine in RAM
3. Telling BASIC Where the Subroutine Is
4. Calling the Subroutine
5. Returning to BASIC

As we go along, we'll present a BASIC program that performs all 5 operations. You
may type in the BASIC program lines as they are given, but don’t try to run the
program until you've read this entire section.

Our ML subroutine is simple. It gets a character from the keyboard. The character is
returned as an ASCII code rather than as a string.

The subroutine has a few features not available with INKEY$ or INPUT. First, it will
return any key code, including the one for @REAK). Second, it will let you key in

control codes A-Z (CTRL-A through CTRL-Z). To key in a control character, press
Ch), release it, then press any key from (A) to (Z). The control codes generated
range from 1 to 26. ;

Upon return from the subroutine, the USR reference is “replaced” with a character

code.

We'll call the subroutine “GETKEY.” For a listing of the ML subroutine, see the end

of this section.

STEP 1. PROTECTING MEMORY

With the CLEAR statement, you can reserve a section of RAM for storing your ML

subroutine. The first CLEAR parameter sets the string space, and the second sets the
memory protection address. For example:

1@ CLEAR 25, 4050

sets the string space to 25 bytes and reserves memory addresses from 4051 to the

end of RAM (see the Memory Map). Your ML program may then safely be stored in
this area.

STEP 2. STORING THE MACHINE LANGUAGE SUBROUTINE IN RAM

You may load ML programs from tape via CLOADM, or you can POKE them into

RAM. In our example, we store the individual codes in DATA statements, then read
and POKE each code into the correct RAM location. The numbers in the DATA
statements are derived from the ML subroutine listed later in this section.

20 FORI=i17028
30 READ B: POKE 4050+1;8
40 NEXT I

141

142

5@ DATA173+159+ 160; 0
6@ DATA 39+ 250+ 129+ 10, 38,12
70 DATA173+ 159+ 160, 0+ 395 250
75 DATA 129+ 65» 4552
82 DATA128+ 64+ 31+ 1375 79
9@ DATA126, 180, 244

STEP 3. TELLING BASIC WHERE THE SUBROUTINE IS.

Before you can use the subroutine, you have to tell your Color Computer where it

starts. Do so by POKEing the 2-byte address into RAM locations 275-276. The most

significant byte (MSB) goes first, then the least significant byte (LSB).

Our ML will start at decimal 4051, so:

Decimal 4051 = Hexadecimal OF D3 =
Decimal 15(MSB), Decimal 211 (LSB)

Here’s the program line to accomplish this:

1@@ POKE 275,15: POKE 27G» 211

STEP 4. CALLING THE SUBROUTINE

At the correct point in your program, insert a USR function reference:

110 A= USR(®) _

In our example, 0 is a ‘‘dummy argument.” It won't be used by the ML subroutine.

When this statement is encountered, BASIC calls the ML subroutine.

Note: On entry to the subroutine, you can get the USR argument (the 0 in this case)

by calling a ROM subroutine, INTCNV. which returns with the integer value in the
D register. The address of INTCNV is hexadecimal B3ED.

STEP 5. RETURNING TO BASIC

If you do not want to return any values to the BASIC program, end the subroutine

with an RTS instruction. If you want to return a 2-byte integer value, load the integer
into register D in MSB-LSB sequence, then end the subroutine by calling a special

ROM subroutine, GIVABF. The address of GIVABF is hexadecimal B4F4.

After an RTS, the USR-reference in your BASIC program returns the original dummy

argument. After a call to GIVABF, the USR-reference in your BASIC program returns

the value you loaded into the D register.

THE BASIC PROGRAM

The following program gets the object code into RAM and then uses the subroutine
to get keyboard input. Type it in carefully; then run it.

Each time you press a key, control returns to BASIC with the ASCII code for that key.
Try pressing (BREAK). You'll get the code for (BREAK) 3. The BASIC program ends
when you press (ENTER) or “D : .

To get any of the codes 1-26, press (), release it, then press a key from (A) to Z).

1@ CLEAR 25, 405¢@ ‘RESERVE MEMORY

is CLS
2Q@ FOR I = 1 TO 28 "STORE EACH BYTE GF OBJECT

CODE
3@ READ B: POKE 40508 + I+ B
40 NEXT I
45 ‘HERE IS THE OBJECT CODE
5@ DATA 173+ 159+ 160; @
60 DATA 39+ 250+ 129+ 10+ 38; 12
70 DATA 173+ 159+ 160+ @+ 39s 250
75 DATA 129+; GS; 45+ 2
8@ DATA 128+ Gd4s Bi+ 137s 79
9@ DATA 126+ 188, 244
99 ‘TELL BASIC WHERE THE ROUTINE I5
100 POKE 275+ 15: POKE 276, 211

112 A = USR(@®) ‘CALL THE SUBROUTINE AND GIVE
RESULT TO A

115 IF A = 13 THEN END
120 PRINT "CODE ="5 A
13@ GOTO ii@

Note to Customers with 16K RAM
You may change Lines 10 and 30:

1@ CLEAR 25, 16350
30 READ B: POKE 16350 + I> B

For a variation in the program, change Line 120 to:

120 PRINT CHR#(A): ‘DISPLAY THE CHARACTER

Most control keys (GQ) followed by a key (A) — CZ)) will have no effect when they
are printed. But try control—H (backspace).

ML SUBROUTINE LISTING

Note: Don’t type this in. It is here for those who want to understand how the ML
subroutine works.

Hexadecimal Source Code Comments
Object Code
AD OF A® @B LOOPI JSR (POLCAT) POLL FOR A KEY

27 FA BEQ LOOPt 3IF NONE» RETRY
Bi OA CMPA #10 iCTRL KEY (DN

ARW)?
26 OC BNE OUT iNO» SO EXIT
AD 9F A® @®@ LOOP2 JSR (POLCAT) #YES, SO GET

NEXT KEY
27 FA BEQ LOOP2 $IF NONE» RETRY
Bi 20 CMPA #65 31S IT A - 2?
2D 02 BLT OUT $IF < Ay EXIT
Ba 40 SUBA #64 ;CONVERT TO

; CTRL A/Z
iF 89 OUT TFR AB 3GET RETURN

BYTE READY
aF CLRA ;ZERO MSB
7E B4 Fd JMP GIVABF $RETURN VALUE

. TO BASIC
POLCAT EQU 40968
GIVABF EQU 46324

Note: “Source code” is not meaningful to the computer. It is a set of Memory aids

and symbols we use for convenience. The source code must be translated or

“assembled” into object code, which the computer understands. In the listing

above, the object code is given in hexadecimal form. We converted it to decimal
numbers for our BASIC program.

ROM SUBROUTINES AVAILABLE FOR USE FROM BASIC

Color BASIC ROM contains many subroutines that can be called by a machine-

language program; many of these can be called by a Color BASIC program via the

USR function. Each subroutine is described in the following format:

NAME — Entry address
Operation Pertormed
Entry Condition
Exit Condition

Note: The subroutine NAME is only for reference. Your Color Computer does not

recognize it. The entry address is given in hexadecimal form; you must use an

indirect jump to this address. Entry and Exit Conditions are given for machine-
language programs.

BLKIN = (A006)
Reads a Block from Cassette

143

144

Entry Conditions

casei must be on and in bit sync (see CSRDON). CBMFAD contains the buffer
address.

Exit Conditions
BLKTYP, which is located at 7C, contains the block type:

0 = Fle Header
1 = Data

FF = End of File
BLKLEN, located at 7D, contains the number of data bytes in the block (0-255).
Z* = 1,A = CSRERR = 0 (if no errors).
Z = 0,A = CSRERR = 1 (if a checksum error occurs).

= 0,A = CSRERR = 2 (if a memory error occurs).
(Note: CSRERR = 81)
Unless a memory error occurs, X = CBUFAD + BLKLEN. Ifa memory error occurs,
X points to beyond the bad address. Interrupts are masked. U and Y are preserved,
all other modified.
*Z is a flag in the Condition Code (CC) register.

BLKOUT = [A008]
Writes a Block to Cassette
Entry Conditions
The tape should be up to speed and a leader of hex 55x should have been written if
this first block to be written after a motor-on.
CBUFAD, located at 7E, contains the buffer address.
BLKTYP, located at 7C, contains the block type.
BLKLEN, located at 7D, contains the number of data bytes.

Exit Conditions
Interrupts are masked.
X = CBUFAD + BLKLEN.
All registers are modified.

WRTLDR = [A00C]
Turns the Cassette On and Writes a Leader
Entry Conditions
None

Exit Conditions
None

CHROUT = [A002]
Outputs a Character to Device .
CCHROUT outputs a character to the device specified by the contents of 6F
(DEVNUM).

DEVNUM — 2 (printer)
DEVNUM = 0 (screen)
Entry Conditions
On entry, the character to be output is in A.

W
l

Exit Conditions
All registers except CC are preserved.

CSRDON =[A004]

Starts Cassette
CSRDON starts the cassette and gets into bit sync for reading.

Entry Conditions
None

Exit Conditions
FIRQ and IRO are masked. U and Y are preserved. All others are modified.

JOYIN = (AOOA)
Samples Joystick Pots
JOYIN samples all four joystick pots and stores their values in POTVAL through
POTVAL + 3.

Left Joystick
Up/Down 15D

Right/Left 15C

Right Joystick
Up/Down 15B
RightLeft 15A

For Up/Down, the minimum value = UP.

For Right/Left, the minimum value = LEFT.

Entry Conditions

None

Exit Conditions
Y is preserved. All others are modified.

POLCAT = (A000)
Polls Keyboard for a Character

Entry Conditions
None

Exit Conditions
Z = 1,A = 0 (if no key seen).
Z = 0,A = key code (if key is seen).
B and X are preserved. All others are modified.

" MEMORY CONTENTS

This table shows the contents of the Color Computer’s memory. The first column
shows the memory address in decimal notation; the second, in hexadecimal
notation.

Decimal Hex Memory Contents .
0-105 0-69 Direct page RAM (can be used by machine lan-

guage programs)
112-255 70-FF Direct page RAM (cannot be used by machine lan-

guage programs using any of BASIC’s subroutines)

256-273 100-111 Internal Use (Interrupt Vector’s)

274-276 112-114 USRJMP - Jump to BASIC’s USR routine

277-281 115-119 Can be used by machine language programs
282 11A Keyboard Alpha lock — O = not locked, FF =

locked
283-284 11B-11C Keyboard delay constant
285-337 11D-151 Can be used by machine language programs
338-345 152-159 Keyboard rollover table
346-349 15A-15D Joystick pot values
350-1023 15E-3FF Internal Use
1024-1535 400-5FF Video Memory

1536-4095 600-OF FF Program and Variable Storage (4K RAM)
1536-16383 600-3FFF Program and variable storage (16K RAM)
16384-32767 4000-7FF Not Used
32768-40959 8000-9FFF Extended Color BASIC

40960-49151 AQOO-BFFF COLOR BASIC (8K ROM)
49152-65279 COOO-FEFF Program Pak Memory

65280-65535 FFOO-FFFF = Input/Output

145

APPENDIXES

APPENDIX A

Musical Tones

Your computer can come fairly close to matching (although it can’t ex-
actly match) the musical tones shown below. You may use either the
piano keyboard or the musical staff to determine the numeric code that
represents the note you want.

If you’re using the piano keyboard, the numeric code for each key is di-
rectly over the key. For example, the numeric code for middle C is 89.

If you’re using the musical staff, the numeric code for each note is be-
low the note. For example, the numeric code for

is 108.
4

J it
2 if Ly T= } 1

it am am —| I J t if

Z t a PT i I i t
oe | ,

2 eS tf & 8¢e8s8e ©£ $88 8 gegsgere Fits 2 Fee = ¢Ffe2e

MIDDLE
Cc D i3 F G A B Cc D E

If the note is a flat, select the numeric code immediately preceding the

note. For example:

If the note is a sharp, select the numeric code immediately following the

note. For example:

—
is 117.

is 99.

Chapter 5 shows how to program the computer to play a song.

f
u
j
g

TT
T?

w
o
e

TT
T?

TT
T?

t
u
p
i
i
y

T
T
T
?

J
u
t
t
i
o

T
T
T
T
T
®

J
i
u
t
i
g

+ +
4

P)

23
2

23
4

23
6

23
7

23
8

23
9

24
1

24
2

24
3

24
4

i~ =} A xr Om & o - @ wn a =
- os Sanaa Nn 5

2 ag AA SW a Naa Aw NON

149

150

APPENDIX B

BASIC Colors and Graphics Characters

These are the codes for the colors you can create on your screen.

BASIC COLORS

0 — black (absence of color) 5 — buff

1 — green 6 — cyan

2 — yellow 7 — magenta

3 — blue 8 — orange

4—red

When using SET, color 0 will leave a dot’s color unchanged.

GRAPHICS CHARACTERS

These are the codes for the Color Computer’s graphics characters. To

produce them, use CHR$ with the character’s code. For example,

PRINT CHR$ (129) produces character 129.

128 129 130 131 132 133 134 135

oe
136 137 138 139 140 141 142 143

To print all these graphics characters, type and run this program:

To create these characters in one of the colors below, add the appropri-

ate number to the code. For example, PRINT CHR$ (129 + 16) pro-

duces character 129, except the green area is yellow.

+ 16 — yellow + 64 — buff +96 — magenta

+32 — blue +80 — cyan +112 — orange

+48 — red

Chapter 16 explains how to use graphics characters.

APPENDIX C

PRINT @ SCREEN LOCATIONS

151

APPENDIX D

GRAPHICS SCREEN LOCATIONS

152

APPENDIX E

ASCII Character Codes

These are the ASCII codes for each of the characters on your keyboard.
The first column is the character; the second is the code in decimal no-
tation; and the third converts the code to a hexadecimal (16-based

number).

CHARACTER DECIMAL HEXADECIMAL

CODE CODE

32 20
! 33 21

“ 34 22

35 23

$ 36 24
% 37 25

& 38 26

’ 39 27

(40 28

) 41 29

* 42 2A

+ 43 2B

, 44 2C

- . 45 2D

’ 46 2E

/ 47 2F

0) 48 30

] 49 31

2 50 32

3 51 33

4 52 34

5 53 35

6 54 36

7 55 37

8 56 38

9 57 39

j 58 3A

; 59 3B

< 60 3C

= 61 3D

> 62 3E

2 63 3F

@ 64 40

A 65 41

B 66 42

C 67 43

D 68 44

E 69 45

F 70 46

G 71 47

H 72 48

| 73 49

153

154

CHARACTER DECIMAL HEXADECIMAL
CODE CODE

J 74 4A
K 75 4B
L 76 AC
M 77 4D
N 78 4E
O 79 4F
P. 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
V 86 56
Ww 87 57
X 88 58
Y 89 59
Z 90 5A

Cy 94 5E
q)* 10 OA
=* 8 O8
oe 9 09

BREAK 03 03
CLEAR 12 re
ENTER 13 OD

*If shifted, the codes for these characters are as follows: (CLEAR) is 92
(hex 5C); CA) is 95 (hex 5F); GD) is 91 (hex 5B); is 21 (hex 15):
and is 93 (hex 5D).

Lowercase Codes

These are the ASCII codes for lowercase letters. You can produce these
characters by pressing the (SHIFT) and (Q) keys simultaneously to get
into an upper- lowercase mode. The lowercase letters will appear on
your screen in reversed colors (green with a black background).

CHARACTER DECIMAL HEXADECIMAL
CODE CODE

a 97 61

b 98 62
Cc 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
j 106 6A
k 107 6B
| 108 6C

CHARACTER DECIMAL
CODE

m 109
n 110

fo) 111

p 112
q 113
r 114
S 115
t 116
u 117
Vv 118

w 119
x 120
y 121
zZ 122

APPENDIX F

Answers to Exercises

Do-it-Yourself Program 4-4

Sounding tones from bottom of range to top and back to bottom:

1@
20
38
40
38
68

FOR X = 1 TO 255
SOUND X +l
NEXT xX
FOR X = 255 TO 1 STEP -1

SOUND X +1
NEXT X

Do-It-Yourself Program 5-1

Lines added to clock program:

92
94
95
37
38
99

FOR T:= 208 TO 210 STEP 5

SOUND T +l
NEXT T
FOR T = 218 TO 280 STEP -5

SOUND Tl
NEXT T

Do-It-Yourself Program 5-2

Program that shows 9 colors for one second each:

108 FOR C = @TO08
20 CLS(C)
3@ FOR x = 1 TO 460

4@ NEXT
9@ NEXT C

HEXADECIMAL
CODE

6D
6E
6F
70
71
72
73

74
75
76
77
78
79
7A

155

Do-It-Yourself Program 7-1

Russian Roulette:

5 FOR N= 170 1a

10 PRINT "CHOOSE YOUR CHAMBER(1-1@)"

20 INPUT &
30 IF X = RND(1@) THEN 100
4@ SOUND 200; i
50 PRINT "--CLICK--"

6@ NEXT N

65 CLS
70 PRINT @ 230+ "CONGRATULATIONS!!!"
80 PRINT @ 265, “YOU MANAGED"
9@ PRINT @ 296, "TO STAY ALIVE"

95 END
100 FOR T = 133 TO 1 STEP -5
11@ PRINT "BANG!I!!!!"

120 SOUND T+ li
138 NEXT T
14@ CLS

150 PRINT @ 230, "SORRY» YOU’RE DEAD"

16@ SOUND 1» 58

170 PRINT @ 290» "NEXT VICTIM PLEASE"

Do-It-Yourself Program 7-2

Craps game:

10 CLS
20 A = RND(G)
30 B = RND(6)
4@R=A+B
5@ PRINT @ 280; A
6@ PRINT @ 214,» B
70 PRINT @ 394, "YOU ROLLED A" R

B88 IF R 2 THEN 68d
92 IF R 3 THEN GOO
100 IF R 12 THEN GOO
110 IF R 7 THEN 509
120 IF R 11 THEN 500
130 FOR X = 1 TO 800

140 NEXT
15@ CLS
16@ PRINT @ 195, "ROLL ANOTHER" R "AND YOU

WIN"
170 PRINT @ 262, “ROLL A 7 AND YOU LOSE"
180 PRINT @ 420, "PRESS <ENTER? WHEN READY"

185 PRINT @ 456,» "FOR YOUR NEXT ROLL"

190 INPUT A%
200 K = RND(G)
21@ Y = RND(6)
220 Z=K + ¥
225 CLS
230 PRINT @ 200% kK

i
o
u
o
u

156

240
250

PRINT @ 214; ¥
PRINT @ 394, "YOU ROLLED A" 2

268
270
280
500
518
o15
320
3308
540
680
610
615

620
630

IF Z = R THEN 500
IF Z = 7 THEN GOO

GOTO 18@
FOR KX = 1 TO 1000
NEXT x
CLS
PRINT @ 230+ "YOU’RE THE WINNER"
PRINT @ 294+ "CONGRATULATIONS!!!"
GOTO 630

FOR K = 1 TO 1000
NEXT XK
CLS

PRINT @ 264, "SORRY:+ YOU LOSE"
PRINT @ 458% "GAME’S OVER"

Do-it-Yourself Program 8-1

Test Your Arithmetic

5.C
6 P
8 I

99

LS
RINT @ 230+ "YOUR NAME" S$
NPUT N&

CLS
T+i
RND (100)

Y = RND(100)
PRINT @ 228% "WHAT IS" K "+" Y¥5

INPUT A
IF A = X + ¥ THEN 82
PRINT @ 326, "THE ANSWER IS" kK + Y
PRINT @ 385, "BETTER LUCK NEXT TIME+" N&

GOTO 100
CLS(7)
FOR M=i1T04
SOUND 175% 1
SOUND 200, 1

se

x
4

Io
uo

uw

NEXT M
CLS
PRINT @ 232+ "CORRECT+»" NS "III"

C=C#i
PRINT @ 299% "THAT IS"
PRINT @ 322, C “OUT OF" T “CORRECT

ANSWERS"
PRINT @ 362, C/T#10@0 "% CORRECT"

100 PRINT @ 420, "PRESS <ENTER? WHEN READY"
102 PRINT @ 458+ "FOR ANOTHER"

105
110

INPUT A
GOTO i@

Do-It-Yourself Program 9-1

Table of squares:

3 CLS
7 PRINT @ 38, "TABLE OF SQUARES"

157

158

8 PRINT
1@P=2
2@ FOR N = 2 TO 18
25 GOSUB 2000
3@ PRINT N "#" N "=" Ey

40 NEXT N
3@ END
2000 REM FORMULA FOR RAISING A NUMBER TO A

POWER
20i0@ E=1
2020 FOR X 1 TO P
2030 E N = —E *

2048 NEXT X

2050 IF P = @ THEN E = 1

2060 RETURN

Do-It-Yourself Program 10-1

Challenger Program:

1@ PRINT "TYPE A SENTENCE :"
15 INPUT S%
2@ PRINT "TYPE A PHRASE TO DELETE"

23 INPUT DS
25 L = LEN(D$)
30 PRINT "TYPE A REPLACEMENT PHRASE"

35 INPUT R&
40 FOR K = 1 TO LEN(S$)
S@ IF MID#(S#+X+L) = DS THEN 199
6@ NEXT XK
7@ PRINT DS "-- IS NOT IN YOUR SENTENCE"

88 GOTO 20
190 E = X - 1 + LEN(D$)
110 NSS = LEFT$(S$sK-1) + R& +

RIGHT$(S$+s+LEN(S%) - E)
120 PRINT "NEW SENTENCE IS :"
130 PRINT NSS

Do-It-Yourself Program 11-1

Computer typing test:

108 CLS

20 INPUT "PRESS <ENTER? WHEN READY
THIS PHRASE": ES

30 PRINT "NOW IS THE TIME FOR ALL GOOD MEN"

40 7T=1
38 AS = INKEYS
60 IF A$ = " " THEN 188
70 PRINT A$;
808 BS = BS + AS
92 IF LEN(B$) = 32 THEN 120
100 T=T+1
11@ GOTO 50
120 5 = T/74
130 M = S/60

TO TYPE

140 R = 8/M
142 FOR k = 1 TO 32
144 IF MID$("NOW IS THE TIME FOR ALL GOOD

MEN" sXo1) £2 MID$(BSsXs1) THEN E = E+ 1

146 NEXT
150 PRINT
16@ PRINT "YOU TYPED AT--" R "--WDS/MIN"
170 PRINT "WITH" E "ERRORS"

Do-It-Yourself Program 16-1

Forward spacing dot:

10
20
20

38
4@
43

38
68
65
70
73
BO

CLS(@)
H = 63
SET(H+14+3)
A$ = INKEYS
IF A# = CHR#(8) THEN GO
IF A® = CHR#(9) THEN 100

GOTO 30
H =H - 1
IF H = @ THEN H=@: GOTO 30
SET(H+14+3)
RESET(H + i+ 14)
GOTO 30

100 H=H+ i
110 IF H + 63 THEN H=63: GOTO 38
120 SET(H+14+s3)
13@ RESET(H-1;14)
14@ GOTO 38

Do-It-Yourself Program 16-2

Table and chairs:

10

20

38
4@
30
68

LC CHR¢(139 + 16) + CHR#(13@ + 16)
TAS CHR#(142 + 112) + CHR#(1id@ + i112) +

CHRS(1di + 112)
RC# = CHR#(129 + 16) + CHR#(135 + 16)

CLS(@)
PRINT @ 236+ LCOS + TAS + RC#3
GOTO 6@

o
u

Do-It-Yourself Program 18-1:

Checkbook program:

5 CLS: PRINT "POSITION TAFE - PRESS PLAY AND

RECORD"
7 INPUT "PRESS ENTER? WHEN READY"$s RS
10 OPEN "O"y+ #-1+ "CHECKS"
15 CLS: PRINT “INPUT CHECKS - PRESS «XxX? WHEN

FINISHED"
20 INPUT "NUMBER 2": NS
2o IF N# = "XX" THEN 9@
38 INPUT "DATE :"5 D¢

159

160

40
38
608
70
8d

908
92
95

INPUT "PAYABLE TO :"5 P%
INPUT "ACCOUNT :"i S$

INPUT "AMOUNT :#"35 A

PRINT #-1+ N#+ D&» PS» S$ A

GOTO 15

CLOSE #-1

CLS: T= @

INPUT "WHICH ACCOUNT" BS
10@ PRINT "REWIND TAPE - PRESS PLAY"
11@ INPUT "PRESS <ENTER?> WHEN READY" R&

120 OPEN "I"» #-1» "CHECKS"
130 IF EQF(-1) THEN 170
14@ INPUT #-1+ N$+ D&» PS» SH A
150 IF B& = S$ THEN T=T+A

16@ GOTO 130
170 CLOSE #-1
18@ PRINT "TOTAL SPENT ON -" BSy "IS $" T

Do-It-Yourself Program 19-1

Inventory program:

10
20
308
40
38
68
70
73
BO
90

DATA 33, 12+ 425 13% 15,5 23
DATA 255 30+ 33+ 27+ 145 8

DIM I(12)
FOR X = i170 12
READ I(K
NEXT X
INPUT "ITEM NO."5 N
IF N > 12 THEN 78
PRINT “INVENTORY FOR ITEM" N "IS" ICN)

GOTO 78

Do-It-Yourself Program 19-2

Dealing a hand:

5 DIM T(S2)
7 DIM D(S2)
10
20
308
34
36
40
30
608
70
73
BO

FOR X = 1 TO S32
T(K) = X
NEXT
CLS
PRINT @ 101+ "4.4. DEALING THE CARDS"
FOR X = 1 TO S2
C = RND(S2)
IF T(C) = @ THEN 30

D(K) = C
SOUND 128; 1
T(C) = @

100 NEXT X
11@ CLS
120 PRINT @ 187+ "YOUR HAND"
130 PRINT @ 167; " "

140 FOR X = 1705
150 PRINT D(X)3

16@ NEXT

Do-It-Yourself Program 20-1

Lines that change items:

11@ INPUT "WHICH ITEM NO. DO YOU WANT TO

CHANGE"$ N
115 IF N > 12 THEN 1190
120 INPUT "WHAT IS THE REPLACEMENT ITEM"

S$(N)
130 GOTO 8d

The appendix has a sample program that adds and deletes items from
this list.

Do-It-Yourself Program 20-2

Lines that change the song lyrics:

11@ PRINT
12@ INPUT "WHICH LINE DO YOU WANT TO

REVYISE"S L
125 IF L } 4 THEN 120
13@ PRINT "TYPE THE REPLACEMENT LINE"
14@ INPUT AS(L)
158 GOTO 5a

Do-It-Yourself Program 20-3

Word processor challenger:

1 CLEAR 1000
5 DIM AS$(50)

7 CLS
12 PRINT "TYPE A PARAGRAPH"

1G :

20 PRINT "PRESS </> WHEN FINISHED"

3@ xX =1
4@ AS = INKEY$
52 IF AS = "" THEN 4@
6@ PRINT AS35
70 IF A# = "/" THEN 185
BO AS(X) = AS(X) + AS
90 IF A$ = ""," OR AS = "?" OR AS = "!" THEN X

=X +1
100 GOTO 40
185 PRINT: PRINT
110 INPUT "(1) PRINT OR (2) REVISE": R

120 CLS
130 ON R GOSUB 1000; 2000

148 GOTO 1@5

161

162

1

1

1

1
1
2 é
> 2
>
kn

2 ro
2 2

° va
> 2

2

2
2 «i

2 2
> z
2 <
> Zz
2 2

? “

2

? Zz
4
“

”
a

0200 REM PRINT PARAGRAPH

@1@ FOR ¥ = 1 TO K-
@20 PRINT AS(Y)3
230 NEXT ¥ -
040 RETURN ;
@20 REM REVISE PARAGRAPH
@1@ FOR Y = 170 K-1
@20 PRINT ¥Y "--" AS(Y)

030 NEXT Y¥
@402 INPUT "SENTENCE NUMBER TO REVISE"; §&
045 IF S§ > K-1 OR S < 1 THEN 2040

@5@ PRINT A&(5S)
O60 PRINT "TYPE PHRASE TO DELETE"

0270 INPUT D&
0808 L = LEN(D$)
090 PRINT "TYPE A REPLACEMENT PHRASE"
100 INPUT R& .
11@ FOR 2 = 1 TO LEN(AS$(S))
120 IF MID$(A$(S)»Z+L) = DS THEN 2168

1308 NEXT 2
140 PRINT D$ "-- IS NOT IN YOUR SENTENCE"

15¢@ GOTO 2069
160 E=2- 1 + LEN(D$)
170 A$(S) = LEFT#$(A$(5) +2-1) + R& + RIGHT

$(A$(S) »sLEN(A$(S))-E)

188 RETURN

Do-It-Yourself Program 20-4

Printing on the printer:

1 S@ PRINT #-2% AS(Y) 5

Do-It-Yourself Program 21-1

Alphabetizing book collection:

1

hl

CLS: CLEAR 1000: DIM T#(100)» AS(100)>
S$(100) + M$(100) + Z(108)
PRINT "POSITION TAPE -- PRESS PLAY AND
RECORD"
INPUT "PRESS <ENTER> WHEN READY"$ R&
REM
REM QUTPUT TO TAPE
OPEN "QO", #-1+ "BOOKS"
CLS: PRINT "INPUT YOUR BOOKS -- TYPE <XX>
WHEN FINISHED"
INPUT "TITLE"$ TS
IF T$ = "XX" THEN 59
INPUT "AUTHOR"$ AS

28 INPUT "SUBJECT"$ S$
30 PRINT #-1+ T#+ AS» S&

4@ GOTO 15
5@ CLOSE #-1
6@ CLS: PRINT "REWIND THE RECORDER AND PRESS

PLAY"
7@ INPUT "PRESS <ENTER? WHEN READY"$ R$

74 REM
76 REM INPUT FROM TAPE

78 Bei
82 OPEN "I"»5 #-1+ "BOOKS"
85 IF EQF(-1) THEN 120
90 INPUT #-1,+, T#$(B)» AS(B)» S#(B)

95 B=B+i1
11@ GOTO 85
120 CLOSE #-1
490 PRINT
500 INPUT "SORT BY (1) TITLE (2) AUTHOR OR

(3) SUBJECT"S A ‘

5108 IF A> 3 O0ORA¢ 1 THEN 5008
520 ON A GOSUB 1000, 2000, 3000

538 GOSUB 4000
54@ PRINT
550 FOR X = 170 B-1l
560 PRINT "TITLE :" T#(2(XK))
570 PRINT "AUTHOR: " AS(Z(K))
580 PRINT “SUBJECT :" S#(Z(K))

390 NEXT
G@@ PRINT : GOTO 50@
B@@ REM
900 REM BUILD M# ARRAY
1000 FOR XK = 1 TO B-1
1210 M$(X) = TH(X)

1020 NEXT K
10930 RETURN
2000 FOR K = 1
2010 M$(X) = ABCK
2020 NEXT &
2030 RETURN
3000 FOR XK =
3010 M$(K) =
3020 NEXT &
3030 RETURN
3900 REM
4000 REM SORT ROUTINE

4005 T= 1
4010 xX =@
4020 K =k +1
4030 IF K >» B-1 THEN RETURN
4040 IF M$(X) = "ZZ" THEN 40208

405@ FOR Y = 1 TO B-i
4060 IF M$(¥) «< M$(X) THEN K = ¥

4@65 2(T) = K
4080 NEXT ¥
4085 T=T+1
4090 M$(K) = "Zz"
410@ GOTO 4010

1 TO B-1
S$ CK

163

Do-It-Yourself Program 22-1

Deal two-dimensional cards:

10 DIM S#(4)+ N#$(13),» T(4+13)

2@ DATA SPADES: HEARTS» DIAMONDS, CLUBS

3@ FOR K = 1T04

40 READ S#(X)

3@ NEXT X

6@ DATA ACE? 2+ 3+ 4+ 35+ G+ 7+ B+ Ge 10% JACK?

QUEEN» KING

7@ FOR X = 17013

8@ READ N#(X)

92 NEXT XK

100 FOR S 1704

11@ FOR N 17013

120 T(S»N) = (S-1) #13 +N

130 NEXT N+S

140 FOR X = 1705

15@ S$ = RND(4): N

160 IF T(S »N) = @

1708 T(S+N) = @

18@ PRINT N#(N) "-" S#(S)45

19@ NEXT X

= RND(13)
THEN 15@

APPENDIX G

Subroutines

These subroutines let you run programs that require advanced math
functions not directly available in Color BASIC.

Each subroutine listing has a set of instructions in the margin. Study
them closely. You'll see that some subroutines require other subroutines
for internal calculations. You must enter these ‘auxiliary subroutines”’
when the instructions call for them.

Note: Subroutines are not as accurate as Color BASIC’s math oper-

ators and functions. This is because:

* The subroutines contain many chain calculations, which tend to
magnify the small error of individual operations.

* The subroutines are only approximations of the functions they
replace.

In general, the subroutines are accurate to 5 or 6 decimal places
over much of their allowable range, with a decrease in accuracy
as the input approaches the upper or lower limits for input values.

Square Root

Computes: SWR(X), xX

Input: X, must be greater than or equal to zero
Output: Y

164

Also uses: WZ internally
Other subroutines required: None
How to call: GOSUB 30030

30000
30019
30020
388308
300408
30050
38060
30070
38080
38090

END
REM *SQUARE ROOT* INPUT X+ OUTPUT Y
REM ALSO USES W& 2 INTERNALLY
IF X = @ THEN Y = @: RETURN

IF X > @ THEN 30060
PRINT "ROOT OF NEGATIVE NUMBER?": STOP
Y+tX *# 6.3: 220
Wo= (K/Y-Y) # 45
IF (W=@) + (W=2Z) THEN RETURN
Y=Yt+twW: Z=W: GOTO 30070

Exponentiation

Computes: X Y (X to the Y power)
input: X, Y. If X is less than zero, Y must be an odd integer
Output: P
Also uses: E, L, A, B, C internally. Value of X is changed.
Other subroutines required: Log and Exponential
How to call: 30120

38000
30100

30119
301290

30130

301408

30150

END
REM *EXPONENTIATION® INPUT K+¥5 OUTPUT
P

REM ALSO USES Esl sA+B+C INTERNALLY

P=i1: E=@: IF Y=@ THEN RETURN
IF (X£@)ANDCINT(CY)=¥) THEN P=i-
2EY+GH#INTCY/2) 2 K=-X
IF X22@ THEN GOSUB 30190: X=Y#L: GOSUB

30250
P=P*E: RETURN

Logarithms (Natural and Common)

Computes: LOG(X) base e, and LOG(X) base 10
Input: X greater than or equal to zero
Output: L is natural log (base e), X is common log (base 10)

Also uses: A, B, C internally. Value of X is changed.
Other subroutines required: None
How to call: GOSUB 30190

30088
30170

30175

30180
30190

30195
30200
30205
30210

END
REM *NATURAL & COMMON LOG:INPUT K+

OUTPUT Lox
REM OUTPUT L IS NATURAL LOG» OUTPUT &

IS COMMON LOG
REM ALSO USES A»B»C INTERNALLY
E=@: IF X#@ THEN PRINT “LOG UNDEFINED

AT"s X: STOP
A=i: Bee: C=.5
IF K==A THEN K=C#¥X: E=E+A: GOTO 30200
IF X£C THEN KX=B*xX: E=E-A: GOTO 302085
X= (X=-.787107)/ (K+, 7871807): LEK#xX

165

30215

30220
30225

Exponential

L=(((.598979*#L+,961471)*L+2,88539)
¥#X+E-,93)%,693147
IF ABS(L)*1E-G THEN L=@
K=L*¥,4342945: RETURN

Computes: EXP (X) (e to the X power)
Input: X
Output: E
Also uses: L,A internally. Value of X is changed.
Other subroutines required: None
How to call: GOSUB 30250

30080
30240
30245
30250
30255
38260
30265

302708
30275
30280

30285

Tangent

END
REM *EXPONENTIAL*® INPUT X+ OUTPUT E
REM ALSO USES L+A INTERNALLY
L=INT(1.4427*xX)+1: IF Lii27 THEN 30265
IF X?@ THEN PRINT "OVERFLOW": STOP
E=@: RETURN
E=,693147*L-xX: A=1.32988E-3-
1,4131G6E-4*E
A=((A*E-8,3013GE-3)*E+4,16574E-2)*E
E=(((A-.166G665)#E+,5)#E-1)*#E+1: A=2
IF Le=@ THEN A=.5: L=-L: IF L=@ THEN
RETURN
FOR X=1 TO L: E=A*E: NEXT XK: RETURN

Computes: TAN(X)
Input: X in degrees
Output: Y
Other subroutines required: Cosine
How to call: GOSUB 30310

30800
30300

303108

30320

30330

Cosine

END
REM *TANGENT#® INPUT X IN DEGREES:
OUTPUT Y
IF ABS(SIN((9@-K)/57,.29577951)) <1E-7
THEN PRINT "UNDEFINED": STOP
Y=SIN(XK/37,.29577951)/SINC(98-K) /

97+29577951)
RETURN

Computes: COS(X)
Input: X in degrees
Output: Y
Other subroutines required: None
How to call: GOSUB 30360

38000
38350

166

END
REM *COSINE* INPUT X IN DEGREES»

OUTPUT Y

303690 Y=SIN((9@-X)/57,29577951)

30365 RETURN

Arc Cosine

Computes: Arccos(S), angle whose cosine is S
Input: S$, O0<= S<=1
Output: Y in degrees, W is in radians
Also uses: X,Z internally
Other subroutines required: ArcSine
How to call: GOSUB 30500

3BB0O
38500
30510
30520

Arc Sine

END
REM *ARCCOS* INPUT S»+ OUTPUT Yow
REM Y IS IN DEGREES» WIS IN RADIANS
GOSUB 30550: Y=90-Y: W=1.,57079G-W:

RETURN

Computes: ArcSin(S), angle whose sine is S
Input: S, 0<= $<=1
Output: Y in degrees, W in radians
Also uses: X,Y internally
Other subroutines required: None
How to call: 30550

30088
30530

30535
30540
30550

38560

30565

38570
30580

30600
30610

30620
30625
38638

Arc Tangent

END

REM *ARCSIN SUBROUTINE#® INPUT S+

OUTPUT Yow

REM Y IS IN DEGREES; WIS IN RADIANS

REM ALSO USES VARIABLES X+Z INTERNALLY

X=S: IF ABS(S)#=.707107 THEN 30610

K=1i-S#S: IF X£@ THEN PRINT Si"I1S QUT OF

RANGE": STOP

IF X=@ THEN W=90/57.29577951: GOTO

38630

WeX/2: Z=0

Y=(X/W-W)/2: IF (ABS(Y)2£,1E-

B)AND(Y=Z) THEN X=W: GOTO 306190

W=W+¥: Z=Y¥: GOTO 308580

VEXtKEKXEX/G+KEKEXEKEK HE, OD7SFKEKEXER

¥X*#¥K#X*#d, AG42B6E-2

WH YtX RM EX EX EX EK EKEXEXHES, OSIBIIDAE-2

IF ABS(S)2.78@7107 THEN W=1.570796-W

Y=W*57,.29577951: RETURN

Computes: ATN(X), angle whose tangent is X
Input: X
Output: C in degrees, A in radians
Also uses: B,T internally. Value of X is changed.
Other subroutines required: None

167

How to call: GOSUB 30690

300008 END

30660 REM *ARCTANGENT* INPUT X+ OUTPUT CsA

30670 REM C IS IN DEGREES. AIS IN RADIANS

30680 REM ALSO USES B+T INTERNALLY
30690 T=SGN(X): X=ABS(K): C=O
30700 IF X>1i THEN C=1s K=1/%

38718 A-K*¥K
3072@ B-((2,86623E-3*A-1.G1G57E-2)*At

+Z909G6E-2)*A

30730 B=((((B-7,5289E-2) #A+,1086563) #A-

+142089)#A+,.199936)*A
30740 A=((B-,.333332) *A+1)*xK
30750 IF C=i THEN A=1.570796-A

30760 A=T#A: C=A*57.29577951: RETURN

APPENDIX H

Sample Programs

Space Guns

1@ CLEAR 10008
20 FOR Y = @7T01
32 C = (¥+i)*16
40 S$(¥) = CHR$(131+C)+CHRS(139+C)+CHRS

(13@+C)
50 S2$(¥) = CHR#(128+C)+CHR$(136+C)

68 NEXT Y
100 FOR Y = @ TO l
105 C = JOYSTK(®@)
110 ACY) = JOYSTK(O+Y*2)
120 B(Y) = JOYSTK(1+(Y*#2))
130 IF ACY) = 39 THEN ACY) = 59
140 BCY) = INT(B(Y)/4) * 4
150 L(Y) = B(Y) * 8 + INT(ACY)/2)
160 IF L(Y) == 48@ THEN L(Y) = L(Y) - 32

170 NEXT Y¥
18@ CLS(@)
199 FOR Y = @TOl
200 PRINT @ L(Y)» S8(¥)35
210 PRINT @L(Y)+325 SES(Y)3

220 NEXT Y¥
500 P = PEEK(G5280)
510 IF P = 125 OR P = 253 THEN GOSUB 1000

930 GOTO 188
800 REM
902 REM FIRE GUN ROUTINE
10900 Yi = INT(B(1)/2)4+1
1@ig@ Hi = A(1) +2
1@20 IF A(1) = A(@) THEN 1182

168

1830
1040
1050
1060
1070
1080
1090
1100

FOR H =
IF POINT(CHsV1)

Hi + 3 TO G3
2 THEN SOUND 100,2

SET(CHsVi +4)
IF H <=

NEXT H
RETURN
FOR H =

Hi + 4 THEN 1080

RESET (H-2% V1)

Hi TO 4 STEP. -1

1110 IF H =

1130 SET(H-4+V1i +4)
114@ IF H b= Hi - 2 THEN 1160
1150 RESET(H-2+V1)
116@ NEXT H
1170 RETURN

Bouncing Ball

3S CLEAR 12
8 INPUT "BACKGROUND COLOR(1-8)

Hi THEN 1168
1120 IF POINT(H-4s¥1)=2 THEN SOUND 100;2

9 CLS(C)

1@ K=13: Y=13

15 XM = 20: YM = 15

400 F=0

410 kT = K: YT =Y

420 % = Kk + XM: Y = ¥

430 TX = ki TY = ¥

440 GOSUB 19000

450 X = TX: Y= TY:

455 H = INTCKT/2) #2:

46@ SET(CH+VsC):

462 SET(CH »V+1+C):

470 RESET(K +)

480 GOTO 4090

499 REM

100@ REM CHECK BOUNDARIES

1010 IF TX + 63 THEN Tx

1920 IF TX = @ THEN

1030 IF TY } 31 THEN TY

19@40 IF TY = @ THEN TY

1999 RETURN

Blackjack

°o REM BUILD ARRAYS

7 DIM S#(5) + N$(13)+ D(S2)+ P(S)+ CCS)
10 DATA 16+ 32,5 48, 96» i
20 DATA *ACE##+» *TWOx*, *#THREE* +s *FOUR*»

KX¥*, SEVEN*,s EIGHT#+ *NINE*s

¥TEN*#s #JACK# + QUEEN*s *KING#
READ S: S&#(x

#FIVE#s *S

3@ FOR X= 170 5:
CHR#(143+5): NEX

40 FOR X = 170 13:
Ww
A

435 CLS(6)

INT(YT/2) #2
SET(CH+1 +50)

SET(H+1 +V+15C)

READ N&: N&CXK Né: NEXT

169

170

T=@: CT =9
OR X = 1 TO 5S: P(X) = Ot CCX) = Or NEXT
OR X = 1 TO 52: D(X) = X: NEXT X
OR X = 1 TO 5S: GOSUB 1000: P(X) = Z: NEXT

OR X = 1 TO 3: GOSUB 1000: C(X) = Z: NEXT

EM
EM PRINT PLAYER’S HAND

= 287
OR M= 170 2: C = P(M): GOSUB 500: PT =
T +7: NEXT
FOR M= 1703: S = 5: GOSUB 2000: NEXT
REM
REM PRINT COMPUTER ’S HAND
L= 10
S$ = 5: GOSUB 290900
C = C(2): GOSUB 588: CT = CT +T
PRINT @ 8+ "COMPUTER’S HAND" 5
PRINT @ 267+ "YOUR HAND" 5

L = 269: kK = 3
PRINT @ 230, “ANOTHER CARD(Y/N)?" 5
R$=INKEY$: IF R=" " THEN 218

IF R$ = "N" THEN 255
C = P(K): GOSUB 580
PT = PT + T

27 FOR XK = i7TOK
IF PT = 21 AND (P(X)-1)/13 = INT(C(P(K)-

1)/13) THEN PT = PT - 18

NEXT XK
IF PT >» 21 THEN PRINT @ 488% "YOU
BUSTED!!! "4s: GOTO 400
K = K + 1: IF K <6 THEN 2@5

L=19
C = C(1): GOSUB 500: CT = CT +T
IF PT ==CT THEN 380
PRINT @ 484+ "CONGRATULATIONS WINNER! "5

GOTO 399
PRINT @ 487+ “TOUGH LUCK, KID"S

REM
PRINT @ 238+ “ANOTHER GAMEC(CY/N)?"5

R$=INKEY$: IF R#=" " THEN 419
IF R$ = "Y" THEN 45 ELSE END

IF N = i THEN T = li
GOSUB 4000: GOSUB 2000
GOSUB 3000: RETURN
REM
REM DEAL THE CARDS
Z = RND(S2)
IF D(Z) = @ THEN 1000

D(Z) = @
RETURN

REM
REM PRINT THE SUITS

Liek
FOR X = 1706
Li=Li+ 32

2020 FOR Y = 1
2030 PRINT @ Li

TO 5
+ (¥-1)5 S8(5)5

2040 NEXT YoX
2045 Li=@:L=L+6
2050 RETURN
2900 REM
3000 REM PRINT THE NUMBERS
3005 Li=L-6
3010 FOR X = 1iTO6G
3020 Li = Li + 32
3030 PRINT @ Lit2+ MIDS(NS(N) + Xe 1)5
3840 NEXT XK
3045 Li = @
3050 RETURN
3900 REM
4000 REM COMPUTE NUMBER AND SUIT
4005 S = INT((C-1)/13)+1

4010 N = C-(S#13-13)
4015 REM COMPUTE POINT VALUE
4020 IF N= 11 OR N = 12 OR N = 13 THEN T

ELSE T=N
4030 IF N = 1 THEN T = 11
4040 RETURN

Kaleidoscope

1% CLS@

2@ X=RND(32)-1

3@ Y=RND(16)-1

402 =RND(9)-1
5@ GOSUBS@
6@ GOTO02Z0
308
100
1190
120
130
140

150
160
170
180
190

IFZ=@ OR RND(7)=3THENIS@
SET(31-Xs16+¥ +2
SET(31-X 115-92)
SET(32+xK s16+Y +2)
SET(32+K 915-92)
RETURN
RESET(31-K+16+Y)
RESET(31-X»15-Y)
RESET(32+x% +16+Y)
RESET(32+xX115-Y)
RETURN

Electronic Dice

4 CLEAR 2000
&S ELS(3)
6 DIM DBS(G)
8 DIM DF(21)+ P(G) +, D$(G)
1@ REM FACES IF DIE
20 FOR X = 170 21
3@ READ DF(X
40 NEXT &

10

171

5@ DATA 39

GQ DATA 14, G4

7@ DATA 14+ 39, G4

82 DATA 14, 20, 58, 64

92 DATA 14, 20, 39+ 58+ 64

120 DATA 14+ 20, 3G, 42; 58+ G4

105 FOR kK = 1707

110 REM

120 REM PLACE IN ARRAY DF

13@ FOR X = 1706

14@ READ P(X

15@ NEXT x

16@ DATA 1+ 2+ 4+ 7+ 1i»s 16

165 REM
170 REM BUILD DIE STRING
175 FOR x = 1706
180 M = P(X)
185 FOR ¥Y = i TO 7
199 FOR Z=i1 7011
192 IF (¥-1)*11+2Z <> DF(M) THEN 200

194 D$(xX) = D$(X) + CHR#$(128)

i96M=M+1
197 IF M 22 THEN M = @
198 IF M xX THEN M = @
199 GOTO 238
200 D$(X) = D$(X) + CHR#$(143+96)

230 NEXT 2
240 FOR 2 =
20@ D$é(K) =
260 NEXT 2
270 NEXT Ys &
480 REM
490 REM ROLL DICE
500 FOR T = 1 70 18
510 A=RND(G): B = RND(6)
320 PRINT @ 35+ D$(A)3

530 PRINT @ 273, D$(B) 3
S40 NEXT T
55@ PRINT @ 113+ "PRESS ANY KEY"S
56@ PRINT @ 145% "FOR NEXT ROLL"
570 K$=INKEYS: IF KS=" " THEN 378

280 GOTO 3a0

TO 3i-il @
D#(X) + CHR$(143+32)

Play Back Your Tune

5 DIM A(25)+ S$#$(13)+ B(2ZO0): Y=l

1@ FOR X = 1 TO 25: READ ACK): NERT &

20 DATA 89+ 99+ 108+ 1175 125

3@ DATA 133+ 140, 147+ 153, 159

4@ DATA 165» 170» 176, 180, 185

5@ DATA 189» 193+ 197+ 200, 204

60 207, 210+ 213, 216+ 218

7@ FOR X = 1 70 13: READ S3$(K): NEXT &

BO DATA ArW+SsEreDoF eT + Go¥ sHoUrtok

9@ CLS

172

92 PRINT @ 167+ "COMPOSE YOUR SONG"
94 PRINT @ 227% "USE KEYS ON 2ND & 3RD ROWS"
96 PRINT @ 292+ "PRESS “X32 WHEN FINISHED"
100 P$ = INKEY$
110 IF P# = " " THEN 100
115 FOR x 17013
120 IF P$ £2 S$(K) THEN 158
13@ SOUND ACK) 5
140 BCY) = &
i145 Y¥=¥ +1
130 NEXT xX

Wt

iG@ IF P$@ => "K" THEN 100
165 CLS
170 PRINT 202+ "SONG PLABACK" @
174 PRINT @ 2645 "WHICH KEY(1-11)"5
176 INPUT K
180 FOR xX =
190 SOUND A
200 NEXT XK
210 GOTO 165

1 7TO ¥-1
(BOCK) +K) + 5

Learn That Tune

10 DIM M(S@)+ T(B8)
2@ FOR B=i1T708
30 READ T(B)
40 NEXT B
30K = 1
62 M(X) = RND(8)
70 FOR ¥Y = 1 TO
B@ CLS(M(Y))
9@ PRINT @ 239% M(Y)3$
100 SOUND T(M(Y))> 8
110 NEXT ¥
120 CLS
13@ PRINT @ 231+ "PLAY BACK THE TUNE"

140 FOR ¥Y = 1 7TO

15@T=1
160 K$ = INKEY
178 T=T+i
180 IF T + 158 THEN 318
i908 IF K$ = " " THEN i168

200 K = YVALCKS)
210 IF K <» M(Y) THEN 318
22@ CLS(K)
230 PRINT @ 239) K3
240 SOUND T(K)+ 3

20@ NEXT ¥
260 X¥ =X + 1
270 CLS: PRINT @ 230+ "LISTEN TO NEXT TUNE" 5

280 FOR T = 1 TO 500: NEXT T
290 CLS: PRINT @ 230+ "LISTEN TO NEXT TUNE"

302 GOTO 6@
31@ CLS(0)
320 PRINT @ 235+ "YOU LOSE";

173

330 SOUND i» 25
340 DATA 89+ 108) 125+ 133+ 147, 159, 1704

176

Inventory Shopping List

5 CLEAR 2000: DIM S#(100)

1@ REM INYENTORY/SHOPPING LIST

20 CLS
30 PRINT @ 71+ "DO YOU WANT TO--"
4@ PRINT @ 134+ "(1) INPUT ITEMS"
5Q@ PRINT @ 166, "(2) REPLACE ITEMS"
60 PRINT @ 198, "(3) ADD TO THE LIST"
70 PRINT @ 230, "(4) DELETE ITEMS"
8@ PRINT @ 262+ "(5) PRINT ALL ITEMS"

90 PRINT @ 294, "(G) SAVE ITEMS ON TAPE"

100 PRINT @ 326+ "(7) LOAD ITEMS FROM TAPE"

110 PRINT @ 395% "(1-7)"5

128 INPUT M
i30 IF M« @ ORM = 7 THEN 18

140 ON M GOSUB 1900, 2000; 1020, 3000, 4000)

174

SOOO, GABA
158 GOTO 18
900 REM
1000 REM INPUT/ADD ITEMS

1910 Y = 1
1020 CLS: PRINT @ 8+ “INPUT/ADD ITEMS"
1030 PRINT @ 34» "PRESS <ENTER? WHEN

FINISHED"
1040 PRINT: PRINT "ITEM" 5
1945 INPUT S#(¥)
1@50 IF S#(¥) = " " THEN RETURN

1060 Y = ¥ + 1
1070 GOTO i940
1902 REM
2000 REM REPLACE ITEMS
2003 N = @
2010 CLS: PRINT @ 9» "REPLACE ITEMS"

2030 PRINT: INPUT “ITEM NO. TO REPLACE"S

20 PRINT @ 34+ "PRESS <ENTER? WHEN

FINISHED"

2040 IF N = @ THEN RETURN
2050 INPUT "REPLACEMENT ITEM"$ S#(N)

2060 GOTO 2000
2900 REM
3000 REM DELETE ITEMS
3005 N = 6
301@ CLS: PRINT @ 9+ “DELETE ITEMS"

22 PRINT @ 34+ "PRESS <ENTER? WHEN

FINISHED"
3030 PRINT: INPUT "ITEM TO DELETE"; N

3035 IF N } ¥Y-1 THEN 3803¢
3040 IF N = @ THEN RETURN

3050 FOR
3068 S$(xK)

N TO Y-2
S$(xX+1)

N

3078 NEXT XK
30808 S#(xX) ="

30908 Y = Y-1
3180 GOTO 3002

3900 REM
4200 REM PRINT ITEMS
4010 FOR X = 1 TO ¥Y-1 STEP 15

4020 FOR Z = X TO *=+ia

4030 PRINT 23 S$(Z
4040 NEXT 2
4050 INPUT "PRESS <ENTER? TO CONTINUE": C4

4@68 NEXT &
4078 RETURN

490@ REM
5800 REM SAVE ITEMS ON TAPE

5210 CLS: PRINT @ i35+ “SAVE ITEMS ON TAPE"

5020 PRINT @ 234; “FOSITION TAPE"
5030 PRINT @ 294, "PRESS PLAY AND RECORD"

5040 PRINT @ 388; “PRESS <ENTER?® WHEN READY"

5050 INPUT R&
5060 OPEN "O"»y #-i+ "LIST"

5078 FOR X = 1 TO Y-1i
S080 PRINT #-1+ SS(x

5898 NEXT &
5i@@ CLOSE #-1: RETURN

5900 REM
6200 REM LOAD ITEMS FROM TAPE

60i@ CLS: PRINT @ 136+ “LOAD ITEMS FROM TAPE"

6020 PRINT @ 235, “REWIND TAPE"
6030 PRINT @ 300, “PRESS PLAY"

GQ40 PRINT @ 388, "PRESS <ENTER® WHEN READY"

6850 INPUT R$
6060 OPEN "I"+ #-1+ "LIST"

6870 Y = 1
6080 IF EOQF(-1) THEN 6128
GQ9@ INPUT #-1+ S#(Y)
6895 PRINT S#(¥)
Giddy =Y¥Y til
611@ GOTO 68@8e
6120 CLOSE #-i: RETURN

Bar Graph

10
20

30
40
38
68
70
Ba
9@

DIM A(S1+3+2)+ AS(S)

DATA UTILITIES» PERSONNEL» SUPPLIES»

RENT» TRAVEL
FOR X = 1705
READ AS$(X%
CLS
PRINT @ 139% "EXPENSES"

PRINT @ 175 - INT(LEN(AS$(X))/2) + AS(X)

PRINT ;

FOR Y = 1703
1@0 PRINT "DEPT" ¥
110 INPUT "BUDGETED"$ ACK +Ys1)

175

120 INPUT "ACTUAL"S ACKrY +2)

130 NEXT Y
14@ NEXT &
15@ CLS
160 PRINT @ 133, “WOULD YOU LIKE TO SEE"

170 L = 203
180 FOR xX = 1705
190 PRINT @ Ls Ki AS CK
200 L=LbL+ 3e
21@ NEXT X
220 PRINT @ 460, "(1-5)"
230 INPUT
235 C(1)=0:0(2)=0:LC0(1)=8:L0(2)=0

240 FOR Y = 170 3
250 C(i) = ACK+¥e1)4+C(1)
260 C(2) = ACKs¥+2) + CCE)

270 NEXT ¥
280 IF C(2) = C(1) THEN 3190
29@ LO(1)=30: LO(2)=INT(C(2)/0(1)*30)

300 GOTO 328
310 LO(2)=30: LCO(1)=INT(C(1)/0(2)*30)

320 P = 129
330 CLS(@)
340 PRINT @ li» "EXPENSES" 3

35@ PRINT @ 47 - INT(LEN(A$(X))/2) 5 ASCK)S

360 PRINT @ 97+ "BUDGETED"
370 PRINT @ 257+ "ACTUAL" 3
380 PRINT @ 448, CHR$(159)+CHRS$(159) 3

390 PRINT @ 451+ "DEPT 1i"5
400 PRINT @ 459+ CHR#$(175)+CHR$(175)5

410 PRINT @ 462+ "DEPT 2"5
420 PRINT @ 470+ CHR$(191)+CHRS(191) 5
43@ PRINT @ 473, "DEPT 3"3
440 PRINT @ 480, “PRESS ANY KEY TO CONTINUE"

4508 FORM = i170 2
46@ FORN=i1T02@
47@ Pl = P+ 32
480 FOR Y = 1703
490 D(Y) = INTCACK s¥oM)/C(1)*#LOC1))
500 FOR 0 = i 70 D(Y)
510 PRINT @ Pls CHR$(143+1G6*Y) 5

s2@ Pl = Pl + 1

590 K$ = INKEY$: IF K$=" " THEN 3590

600 GOTO 158

Speed Reading

10 REM SPEED READING
20 CLS: PRINT @ 32+ "HOW MANY WORDS PER

MINUTE"

176

38 I
40 F

NPUT
OR xX

"DO YOU READ"$ WPM

= 170 23
6@ READ A# : PRINT @ 256% A$
70 FOR ¥Y = 1 TO (360/WPM) * 468 : NEXT Y

8a Rk EM Y LOOP SETS LINES/MIN

9@ NEXT * : END
100
110
120

130
140
150
160
170
18a
1990
200
210
220
230
240
250
260
270
280
290
300
310
320

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

Music Composer

SCARLETT OHARA WAS NOT BEAUTIFUL

BUT MEN SELDOM REALIZED IT WHEN
CAUGHT BY HER OWN CHARM AS THE
TARLETON TWINS WERE. IN HER FACE
WERE TOO SHARPLY BLENDED
THE DELICATE FEATURES OF HER
"MOTHER+ & COAST ARISTOCRAT OF"
"FRENCH DESCENT» AND THE HEAWY"
ONES OF HER FLORID IRISH FATHER
"BUT IT WAS AN ARRESTING FACE+"
"POINTED OF CHIN: SQUARE OF JAW"
HER EYES WERE PALE GREEN
"WITHOUT A TOUCH OF HAZEL +"
STARRED WITH BRISTLY BLACK
LASHES AND SLIGHTLY TILTED
"THE ENDS+ ABOVE THEM+s HER THICK"
"BLACK BROWS SLANTED UPWARDS +"
CUTTING A STARTLING OBLIQUE LINE
IN HER MAGNOLIA-WHITE SKIN--THAT
"SKIN SO PRIZED BY SOUTHERN WOMEN"
AND SO CAREFULLY GUARDED WITH
"BONNETS» YEILS+s AND MITTENS"

AGAINST HOT GEORGIA SUNS

1@ INPUT "LENGTH(1-10)"3 M

20 M = M*4
3@ INPUT "TEMPO (1-4)"35 Ti
40 IF Ti = 4 THEN GO
52 7T = Ti : GOTO 7@

68 T= 8
70 FOR K = 1 TO M¥&
82 GOSUB 1900
98 B - RND(3) * T
100 SOUND P+ B
11@ CLS(S)
128 NEXT K ;
130 IF RND(1@) ==8 THEN 150

14@ SOUND 125, 1G6*T

143 END
15@ SOUND 9@,+ i16*T

160 END
1000 KX = RND(100)

1@i0 IF X <= 20 AND X <=25 THEN P = 90:5 =

1020 IF X > 2@ AND X <=25 THEN P = 100: 5 =

1930 IF % = 25 AND X <= 4@ THEN P = 125 : 5

1040 IF X > 40 AND X ¢= 55 THEN P = 133: 5

1050 IF X > 55 AND X «= 75 THEN P = 147: 5 n
a
e
 w
o

—

PJ

177

178

1960 IF X > 75 AND X <= 85 THEN P = 159: 5 = 6
1070 IF X > 85 AND X <= 95 THEN P = 176: 5 = 7

1080 IF X > 95 THEN P = 58 : S = 8

1098 RETURN

Memory Test

This program uses an array to test both yours and your computer's
memory:

5S DIM A(7)

1@ PRINT "MEMORIZE THESE NUMBERS"

15 PRINT "YOU HAVE 18 SECONDS"

2®@ FOR X = 1707

3@ ACK) = RND(100)

4@ PRINT A(X)

5Q@ NEXT X

6@ FOR X = 1 TO 460 *# 10 : NEXT &

78 CLS
80 FOR X = 170 7
9@ PRINT "WHAT WAS NUMBER" x

/0

AO

BS

CN

DD

DN

DS

100 INPUT R
110 IF A(X) = R THEN PRINT "CORRECT" ELSE

PRINT "WRONG - IT WAS" ACK)

120 NEXT &

APPENDIX I

Error Messages

Division by zero. You asked the computer to divide a num-
ber by 0, which is impossible.

Attempt to open a data file that is already open.

Bad subscript. The subscripts in an array are out of range.
Use DIM to dimension the array. For example, if you have
A(12) in your program, without a preceding DIM line that
dimensions array A for 12 or more elements, you will get
this error.

Can’t continue. You are using the CONT command and are
at the end of the program.

Attempt to redimension an array. You’ can dimension an array
only once. For example, you cannot have DIM A(12) and
DIM A(50) in the same program.

Device number error. You can use only three devices with
OPEN, CLOSE, PRINT, or INPUT: 0, -1, or -2. If you use an-
other number, you'll get this error.

Direct statement. The data file contains a direct statement.
This can be a result of loading a program with no line
numbers.

FC

FD

FM

NO

OD

OM

OS

OV

RG

SN

ST

™

Illegal Function Call. You used a parameter (number) with a
BASIC word that is out of range. For example, SOUND
(260,260) or CLS(10) causes this error. Also RIGHT$(S$,20),
when S$ contains only 10 characters, causes the error. Other
examples are a negative subscript, such as A(-1), or a USR
call before the address has been poked in.

Bad file data. You printed data to a file or input data from a
file, using the wrong kind of variable for the corresponding
data. For example, INPUT #-1,A, when the data in the file is

a string, causes this error.

Bad file mode. You attempted to INPUT data from a file
OPEN for OUTPUT (O), or PRINT data into a file OPEN for

INPUT (I).
Illegal direct statement. You can use INPUT only as a pro-
gram line, not a command line.

Input past end of file. Use EOF to check to see when you've
reached the end of the file. When you have, close it.

Input/Output error. Often this is caused by trying to input a
program or a data file from a bad tape.

String too long. A string may be a maximum of 255
characters.

NEXT without FOR. NEXT is being used without a matching
FOR statement. This error also occurs when you have the
NEXT lines reversed in a nested loop.

File not open. You cannot input or output data to a file until
you have opened it.

Out of data. A READ was executed with insufficient data for
it to READ. A DATA statement may have been left out of the
program.

Out of memory. All available memory has been used or

reserved.

Out of string space. There is not enough space in memory to

do your string operations. Use CLEAR at the beginning of
your program to reserve more string space.

Overflow. The number is too large for the computer to

handle.

RETURN without GOSUB. A RETURN line is in your pro-
gram with no matching GOSUB.

Syntax error, This could result from a misspelled command,

incorrect punctuation, open parenthesis, or an illegal charac-
ter. Type the program line or command again.

String formula too complex. A string operation was too com-
plex to handle. Break up the operation into shorter steps.

Type Mismatch. This occurs when you try to assign numeric

data to a string variable (A$ =3) or string data to a numeric

variable (A = ‘’DATA”’).

179

180

UL Undefined line. You have a GOTO, GOSUB, or other
branching line in the program asking the computer to go to
a nonexistent line number.

APPENDIX J

BASIC Summary

Statements

BASIC statements are commands that tell your computer to do some ac-

tion, such as printing a message on the screen. Use BASIC statements as

lines in your program.

AUDIO Connects or disconnects cassette output to TV speaker.

CLEAR n,h_ Reserves rn bytes of string storage space. Erases variables. h

specifies highest BASIC address.

CLOAD Loads specified program file from cassette. If you do not

specify filename, the first file encountered is loaded. Filename can
be a maximum of 8 characters.

CLOADM Loads machine-language program from cassette. You may
specify an offset address to add to the loading address.

CLOSE#dev Closes access to specified file. If you do not specify de-
vice, all open files are closed.

CLS c Clears display to specified color c. If you do not specify color,
green is displayed.

CONT Continues program execution after you have pressed (BREAK
or used the STOP statement.

CSAVE Saves program on cassette (program name can be a maximum
of 8 characters). If you specify A, program is saved in ASCII
format.

DATA Stores data in your program. Use READ to assign data to

variables.

DIM Dimensions one or more arrays.

END Ends program.

EXEC (address) Transfers control to machine-language programs at
specified address. If you omit address, control is transferred to ad-
dress set in last CLOADM.

FOR...TO STEP/NEXT Creates a loop in program that the computer
must repeat from the first number to the last number you specify.
Use STEP to specify how much to increment the number each
time through the loop. If you omit STEP the computer uses 1.

GOSUB Calls a subroutine beginning at specified line number.

GOTO Jumps to specified line number.

IF test THEN ... action 1 ELSE action 2 Performs a test. If it is true,
the computer executes action 1. If it is false, then the computer
executes action 2.

INPUT Causes the computer to stop and await input from the
keyboard.

INPUT#-1 Inputs data from cassette.

LIST Lists (displays) specified line(s) or entire program on screen.

LLIST Lists specified program line(s) or entire program to printer.

MOTOR Turns cassette ON or OFF

NEW Erases everything in memory.

ON...GOSUB_ Multiway branch to call specified subroutines.

ON...GOTO Multiway branch to specified lines.

OPEN m,#dev,f Opens specified file (7) for data transmission (m) to
specified device (dev). m may be | (Input) or O (Output). dev may
be #0 (screen or keyboard), #-1 (cassette), or #-2 (printer).

POKE location, value Puts value (0-255) into specified memory

location.

PRINT Prints (displays) specified message or number on TV screen.

PRINT # dey, data list Prints data list to specified buffer. (See OPEN.)
To separate items within data list, use either commas or

semicolons.

PRINT #-1 Writes data to cassette.

PRINT #-2. Prints an item or list of items on the printer.

PRINT TAB. Moves the cursor to specified column position.

PRINT @ scr pos Prints specified message at specified text screen

location.

READ Reads the next item in DATA line and assigns it to specified
variable.

REM Allows insertion of comment in program line. The computer ig-

nores everything after REM.

RESET (X, Y) Resets a point.

RESTORE Sets the computer’s pointer back to first item on. the first

DATA line.

RETURN Returns the computer from subroutine to the BASIC word fol-

lowing GOSUB.

RUN = Executes a program.

SET (X,Y¥,C) Sets a dot at specified text screen position.

SKIPF Skips to next program on cassette tape or to end of specified
program.

SOUND tone, duration Sounds specified tone for specified duration.

STOP Stops execution of a program.

181

182

Functions

BASIC functions are built-in subroutines that perform some kinid of
computation on data, such as computing the absolute value of a num-
ber. Use BASIC functions as data within your program lines.

ABS (numeric) Computes absolute value:

ASC (str) Returns ASCII code of first character of specified string.

CHR$ (code) Returns character for ASCII, control, or graphics code.

EOF (dev) Returns FALSE = 0 if there is more data; TRUE = —1 if

end of file has been read.

INKEY$ Checks the keyboard and returns the key being pressed (if
any).

INT (numeric) Converts a number to an integer.

JOYSTK (jf) Returns the horizontal or vertical coordinate (j) of the right
or left joystick:
0 = horizontal, right joystick
1 = vertical, right joystick
2 = horizontal, left joystick
3 = vertical, left joystick

LEFT$ (str, length) Returns left portion (length characters) of a string.

LEN (str) Returns the length of a string.

MEM_ Finds the amount of free memory.

MID$ (str,pos,length) Returns a substring of another string starting at
pos. If you omit length, the entire string right of position is

returned.

PEEK (mem loc) Returns the contents of a specified memory location.

POINT (S,Y) Tests whether specified graphics cell is on or off. x (hori-
zontal) = 0-63; y (vertical) =0-31. The value returned is —1 if the
cell is in a text character mode; 0 if it is off; or the color code if it

is on. See CLS for color codes.

RIGHTS (strlength) Returns right portion of string.

RND(n) Generates a “random’’ number between 1 and n if n > 1, or
between 0 and 1 ifn = 0.

SGN (numeric) Returns sign of specified numeric expression:
—1=negative; O=0; + 1=positive.

SIN (numeric) Returns sine of angle given in radians.

STR$ (numeric) Converts a numeric expression to a string.

USR (numeric) Calls user’s machine-language subroutine starting at
the address 275,276 (MSB,LSB).

VAL (str) Converts a string to a number.

Operators

BASIC operators perform some kind of operation on data, such as add-

ing two numbers.

Unary negative, positive
Multiplication, division
Addition and concatenation, subtraction
Relational tests

183

INDEX

$ See strings
; See print punctuation

, See print punctuation

20
@ 11

7/0 ERROR 10

?7LS ERROR 354

20S ERROR 53
?SN ERROR 10
?TM ERROR 14

ABS 68

alphabetizing See sorting
analyzing 117
AND 67

answers to exercises 155

arrays 105
arrays, multidimensional 117

ASC 87
ASCII See ASC and character codes
Asteroids, program 81
AUDIO 83
BASIC Summary 180

black on green 11
Blinking Computer, program = 75
BLKIN 143
BLKOUT 144

Boolean algebra 130
Boolean operators AND, OR, NOT 130
Card Dealing, program 121
character codes

listing 153
use of 87

CHR$ See character codes
CHROUT 144
CLEAR 54, 132, 141

CLOADM_ 141
CLOSE 100

CLS 10
color codes

reference 150
use of 10

concatenate (+) 53
CONT 65
correcting See error

Craps, program 41
Dancing Computer, program 91

data
sorting 114
storing on tape 99

Deal the Cards, program 108
deleting, program line 20
Display Control Register 131
Display Mode Selection, table 136
division (/) 9
Do-It-Yourself Programs See answers to exercises

Drawing Board, program 124

E notation 69
Electronic Piano, program 59

END 35

error

messages 178
program line 20
typographical error

exponents 69

FOR 24
functions, BASIC 182

games 38
general-purpose subroutines
GETKEY 141
GIVABF 142

GOSUB 48

graphics
character codes 88, 150
strings 89
modes 124

modes, table 136

a
/

graphics screen location

grid 152
use of 73

green on black 12
IF 35
information See data
INKEY$ 59
INPUT 19

joysticks 76
JOYSTK 76

LEFT$ 54

LEN 53
LIST 18
LLIST 113
loops 30-39
machine-language subroutines
mapping functions 134
MEM 65

memory 13

MID$ 55
mistake, correcting 7

MOTOR 83
multiplication («) 9
musical tones

reference 149

use of 33
nested loop 31
NEXT 24

numbers 9

numeric data 15
numeric, arrays 105

ON GOSUB_ 66
ON...GOTO 67

OPEN 99
OR 67
Page-Select Register 131
Painting, program 78

parentheses, rules on

PEEK 124, 130
pixel 129
plus (+), addition 53
POINT 80
POKE 124, 130, 141
PRINT 8

51

128

141

185

PRINT @ locations

grid 277
use of 40

PRINT punctuation, rules 21
PRINT #-1 100

PRINT #-2) 112
printer, use of 112

prompt 7

RESET 75
resolution 129
RESTORE 44
RETURN 48
reversed colors 11
reversed colors, GHIFD(O) 113
RIGHT$ 54
RND 38
Rolling the Dice, program 40
ROM subroutines 143
RUN 18
Russian Roulette, program 39

sample programs 168

SET 72
SGN 68
singing 33
sorting 114
SOUND 11, 27
statements, BASIC 180

STEP 26
STOP °65
STR$ 68
STRING DATA 15
string, arrays 110
string(s) 9, 14
subroutines

descriptions 48
ROM routines 143
general purpose 128

subscripted variables 105
Talking-Computer Teacher, program
taping 99
technical information 123-45
THEN 35
Three Blind Mice, program 34

tone 11
Typing Test, program 62

USR 142
variables 19-22
variables, subscripted 105
VDG 131
Video Display Generator Register
VIDEO RAM_ 130
VIDEO RAM Page Selection, table
Vocabulary, program 43
Voting Tabulation, program 105
Word Processing, program 112
Writing an Essay, program 111

WRTLDR_ 144

186

83

131

137

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A. CANADA
FORT WORTH, TEXAS 76102 BARRIE, ONTARIO, L4M4W5

PRINTED IN KOR

9A4 ‘ 811015320A

