Radio Shaek

CUSTOM MANUFACTURED FOR RADIO SHACK, A DIVISION OF TANDY CORPORATION

CONTENTS

1/ Specifications 1
2/ Construction 4
Summary-Block Diagram and Flowchart 4
Printing 6
Line Feed 9
Timing Diagram 11
Timing Chart of Input 14
3/ Measuring Instruments and Tools 15
4/ Maintenance 16
Cleaning 16
Lubricating 16
5/ Disassembly and Reassembly 17
Upper Case 17
Lower Case Block and Mechanism 18
Lower Case Block 21
Control PCB Unit 23
Print Head Unit 24
Line Feed Mechanism 25
Feed Drum and Carrier Unit 27
Gear Train 30
Tractor 32
Platen 33
6/ Troubleshooting 34
Appendix A/ Printed Circuit Board (PCB) Views 42
Appendix B/ Parts List 44
Appendix C/ Schematic Diagram 50

1/ Specifications

General functions

- Double-width characters can be printed by using a special command.
- Graphics pattern printing is possible.
- In graphics mode, repetitive graphics printing is possible by a certain command.
- It is possible to select printing start-position by designating a dot or character address.
- In the same line it is possible to print character, double-width cahracter, and graphics.
- Wrap-around function.
- Underline function

Print modes

- Character print mode
- Double-width character print mode
- Graphics print mode

Control codes

Single-byte codes

- LF (OA)
- CR (OD)
- SUB (1A)
- DC2 (12)
- RS (1E)
- US (1F)
- SI (0F)
- SO (OE)

Print command with a line feed
Print command with a line feed
Print command without a line feed
Indicates graphics print mode
Indicates character print mode
Indicates double-width character print mode
Underline start
Underline stop

Multi-byte codes

- POS (10,n1,n2)

Designates printing start-position in character units.

- ESC POS (1B,10,n1,n2) Designates printing start-position in dot units.
- FS (1C, $\mathrm{n} 1, \mathrm{n} 2)$ Designates repetitive graphics, " $n 1$ " indicates the number of repetitions, while " n 2 " indicates the graphics data to be repeated.

2/ Construction

Summary - Block Diagram and Flowchart

Figure 1 shows the block diagram and Figure 2 is a flowchart showing the sequence of its motion.

Printing

- Printing Mechanism

This Printer is based on a single printing hammer system which is quite different from other impact dot printing systems. The timing of hammer printing depends upon revolution of the rotation detector. This revolution, the rightward movement of the hammer, and the revolution of the platen are synchronized. Character and graphics dots are printed when the relative positions of the hammer head and the platen are encountered. The relationship of the hammer, the platen, and the dot sensor is shown in Figure 3; the relationship of the hammer head, the printed dot, and the signals of the dot sensor is illustrated in Figure 4.

View point from *

Figure 3

Details of part $\mathbb{\circledR}$)

Hammer moves 7.62 mm ($3 / 10$ inches) during printing of 3 characters

Figure 4

- Carrier Unit Movement and Ribbon Feeding

Figure 5 shows rightward movement of the carrier unit and ribbon feeding due to motor revolutions.
Figure 6 describes the carrier unit's return to the home position, activated by the H solenoid.

Figure 5
The ribbon is fed (in the direction of the arrow) when it is caught between the ribbon cam and the ribbon feed board. When the carrier unit returns to the home position, the ribbon is not caught.

When the H solenoid is pulled, the clutch is released and the carrier unit returns to the leftmost home position, forced by the recovery spring.

Carrier unit and print head unit

Figure 6

Pin cnt: A counter for one column (7 dots) of a character pattern.
Pin-reg: A register storing one column (7 d of a character pattern.
Dot SNS: A timing signal for each dot. Pin data reg:

One bit register for a dot to be printed.
Pin drv reg: Decides the width of the output pulse
1 ... $180 \mu \mathrm{~S}$
0 ... $220 \mu \mathrm{~S}$

Figure 7

Line Feed

- Line-Feed Mechanism

Figure 8 shows how the line feed (paper feed) is controlled by the motion of the LF solenoid. The LF solenoid is activated three times for printing characters and two times for printing graphics.
The transmission sequence of the LF solenoid motion is:

When the LF solenoid is inactive, the claw wheel unit is pulled by the LF rope spring. Also, the saw teeth of the LF claw wheel and the saw teeth pushed by the claw wheel spring are engaged.

- Line Feed Flowchart

Figure 9

Timing Diagram

- Initializing motion

Figure 10
When power is applied, P3/4 [No. 4 Terminal of CPU chip (IC No. P3)] accepts the RESET signal. The CPU is reset as long as this signal is LOW (about 3.8 V or less). The CPU is activated as soon as the $\overline{\text { RESET signal }}$ rises from LOW to HIGH.

First, the CPU makes the $\overline{\mathrm{HC}}$ signal go LOW which turns the drivers $\mathrm{ON}(\mathrm{P} 8 / 12,13,14)$. When they are on, the H solenoid is released, which allows the recovery spring to return the print head to the home position. The HOME signal (TP2), which is shaped by the output of the home sensor, is HIGH when the print head is at the home position, and LOW when it is away from the home position. The CPU checks the HOME signal to see whether it is HIGH or LOW. If it is HIGH, the CPU will go to the next rountine after about 66 ms ; if it is LOW, the CPU waits until it becomes HIGH and then about 66 ms later, the CPU will go to the next routine. The next routine is to move the print head twice from the home position to approximately the 20th character column and back to the home position. During both movements, the $\overline{\text { PIN }}$ signal ($\mathrm{P} / / 1$) and the $\overline{\mathrm{LFC}}$ signal (P7/11) are HIGH. During the second movement, the CPU checks and memorizes the timing of the falling edge of the HOME signal relative to the dot signal (TP1). This timing will be used as the criterion for the CPU to decide when to start printing.

During the initializing motion, the BUSY signal (P4/2) stays HIGH. (Refer to Figure 13.) It becomes LOW when approximately 66 ms have passed following the second print head movement (back to the home position). After this movement, the printer can accept data. As shown in Figure 13, the HC signal stays LOW, activating the H solenoid for about 1.3 seconds unless the printer receives data.

- Start of the printing motions

Figure 11

When printing starts, the CPU makes the $\overline{\mathrm{MOT}}(\mathrm{P} 7 / 13)$ and $\overline{\mathrm{HC}}(\mathrm{P} 7 / 3)$ signals go LOW. Lowering of the $\overline{\mathrm{MOT}}$ signal makes the output of driver $\mathrm{P} 8 / 15$ go LOW which turns transistor Q 3 ON . When transistor Q 3 turns ON, current will be supplied to the motor, causing it to rotate. Since the $\overline{\mathrm{HC}}$ signal is also LOW, the H solenoid is activated, which disengages the motor shaft from the head carrier so that the motor can reach a constant speed before any movement of the print head. After approximately 160 ms , the $\overline{\mathrm{HC}}$ signal is raised to a HIGH, which causes the motor shaft and the head carrier to engage, and allows the print head to be driven in a rightward direction. Next, the CPU waits to see if the print head leaves the home position by sampling the HOME signal (TP2). After comfirming that the HOME signal becomes LOW, which means the head carrier has moved out of the home position, the CPU checks the DOT signal (TP1) in order to decide when to start printing. The DOT signal is a shaped output signal from the dot sensor and, as shown in Figure 11, a group of 25 sequential pulses repeated at constant intervals. When the HOME signal goes LOW, the CPU starts to count the number of dot pulses until the DOT signal stays LOW for approximately 0.9 ms . The CPU then uses this counted number to compare with the number stored during initialization in order to decide when to start printing.

WIDTH $220 \mu \mathrm{~s}$: First dot
$180 \mu \mathrm{~s}$: Consecutive dot
Figure 12
The CPU synchronizes the $\overline{\text { PIN }}$ signal to the DOT signal. The $\overline{\text { PIN }}$ signal is for driving the print hammer; when it goes LOW, the driver ($\mathrm{P} 8 / 16$) goes LOW, which turns transistor Q4 ON. When transistor Q4 turns ON, the print hammer activates and prints a dot.

- Recovery motion

Figure 13
After printing a line, the CPU makes the $\overline{\mathrm{MOT}}$ signal go HIGH and the $\overline{\mathrm{HC}}$ signal go LOW. If a recovery motion includes a line feed, the CPU makes the LFC signal (P11/10) go LOW. When this signal is LOW, the output of driver $\mathrm{P} 8 / 10,11$ is LOW which activates the LF solenoid for a line feed of $1 / 18 \mathrm{inch}$. (Refer to Figure 9, the line feed flowchart.) After performing a line feed, the CPU waits until the HOME signal rises to a HIGH . Then after approximately 66 ms , the CPU makes the BUSY signal go LOW. Approximately 1.3 seconds later, the CPU makes the $\overline{\mathrm{HC}}$ signal go HIGH, ending the recovery motion of the head carrier.

Timing Chart of Input

- Parallel input timing chart

DATA 1-8

STROBE

$\overline{\mathrm{ACK}}$

Tb; CHARACTER CODE \qquad 100μ s or more CR/LF/SUB CODE \qquad PRINT+CARRIAGE RETURN
(about 2 seconds max.)
Reference: $C R=(O D), L F=(O A), S U B=(1 A)$
Figure 14

- Serial input timing chart \qquad Baud rate 600 or 1200 bps

- 8-bit mode: 8 -bit data, no parity, one or two stop bits

Figure 15

3/ Measuring Instruments and Tools

The following items are necessary to repair or adjust DMP-100:

- Oscilloscope (used to check the PCB unit).
- Multimeter (VOM).
- Print head adjusting tools

(a) (a) is used to remove the cable guide of the print head.

(b)
(b) is used to drive the head adjusting nut.

If not available, use non-magnetic material tool.

Figure 16

- Tools (screwdriver, tweezers, pliers and nippers).
- Soldering iron (for electronic parts).
- Desoldering tool.

4/ Maintenance

Cleaning

Due to its material, each part has its own proper cleaning liquid and method. Note that if an improper cleaning liquid is used, or the cleaning method is poor, parts may be damaged or may not function properly. Follow the instructions in Table 1 to clean. It is helpful to use a hair drier to dry but, if the cleaning liquid is flammable, take care to keep it away from the hair drier.

Parts	Cleaning Method	Cleaning Oil	Drying Method	Remarks
Metal parts	Brush washing	Benzine or trichloroethylene	Warm air	
Plastic parts of the mechanisms	Brush washing	Benzine	Cool air	- Do not use any oil other than designated one. - Wash quickly, wipe with a cloth and dry rapidly. - Use good, clean oil.
Plastic parts of the enclosure	Do not wash	-	-	Wipe off dirt.
Rubber parts	Do not wash	-	-	Wipe off dirt.
Electrical parts -PCB u., Motor H solenoid u., LF solenoid u., Dot sensor u., -Home sensor u. etc., Print head u., Carrier u.	Do not wash	-	-	Wipe off dirt with a cloth. with benzine or alcohol.
Rope parts -Feed drum u. Head rope (L) u. Claw wheel u.	Do not wash	-	-	- Do not wipe or touch the rope. -Lubricate with oil only.

Lubricating

Use the following lubricants to repair and adjust the DMP-100 (items requiring lubrication are described in the next chapter):
SF-100
J-5
Screwlocking agent

5/ Disassembly and Reassembly

To disassemble the DMP-100, follow the procedures written in each figure, and for reassembly follow the same procedures in reverse order.

Upper Case

Ref. No.	Description	Manufacturer Part Number
$1-1$	Cover (T)	$84611-2002$
S-36	Screw, tapping M3 $\times 16$	$84001-3028$
$1-2$	Case unit, upper (T)	$84611-2001 \mathrm{U}$
$1-3$	Clip, LED	$84501-2049$
$1-4$	Harness, lamp	$84501-5151$

- Confirming the functions

Follow the procedures below to confirm the functions:

1. After applying power, check to see whether or not the power lamp is lit and the printer is initialized.
2. Check whether paper advances properly with LF dial.
3. Is ribbon advancing?
4. Is it possible to set paper properly?
5. Check printed characters (wrong printing, character missing, or smudging).
6. Is printing of the last column possible?
7. Is there any abnormality in character width, height, or space between characters?
8. Is there any dot missing from the upper or lower part of any character?
9. Are printed characters vivid? Is there any dirt caused by the ribbon?
10. Is the spacing of line feed proper?

Lower Case Block and Mechanism

Ref. No.	Description	Manufacturer Part Number
S-36	Screw, tappingM3×16	$84001-3028$
S-45	Screw M4×4	$84001-4008$
W-43	Washer, toothed lock M4	$84003-4003$
$2-3$	Screw, M. stop	$84500-1350$
$2-4$	Lower case block	

Figure 18

1. Before removing $2-3$ and $2-4$ with $2-2$, the carrier unit must be moved to the center. When setting $2-3$ and 2-4, be careful not to catch the lead wires or the recovery spring between 2-3 and 2-4, or to damage them in any way. Do not move the carrier unit directly by hand. By pulling and revolving the clutch on the right side counterclockwise, the carrier unit can be moved to the center.
2. Take care not to damage the flexible cable.

Note: The repair procedures for 2-3 and 2-4 are described beginning with the section entitled "Lower Case Block".

Adjustments for printing

Make the following adjustments after inserting the ribbon cassette and paper.

1. Adjust the position of the dot sensor unit.

Print characters and check the darkness of the upper and the lower parts of the characters. If the darkness is not equal, adjust the position of the dot sensor unit.

(a) ... Character looks good.
(b) ... Upper part is light, move the dot sensor to the right.
(c) ... Lower part is light, move it to the left.

Figure 19
2. Adjust the gaps between the carrier unit and the home sensor unit. Gaps A and B, should be about 0.5 mm , with B smaller than C. The gaps can be adjusted by twisting the oblique line part of the ground plate (L).

Figure 20

Figure 21
3. Adjust the print head unit

By using a print head adjusting tool to tighten the head adjust nut, proper darkness of the printed character can be obtained. If there appears to be smudging, loosen it until smudging disappears. Set the head adjust lever at hole(3). (See Figure 21.)

Note: - Since the print head unit is made of magnetic metal, do not use magnetized tools to adjust it.

- If smudging appears when you receive your printer, loosen the head adjust nut as shown above.
- Confirm the functions (confirm all the items previously described in the section entitled "Upper Case").

Lower Case Block

Ref. No.	Description	Manufacturer Part Number
S-36	Screw, tapping M3 $\times 16$	$84001-3028$
M-20	Splice 35115	$84500-5401$
M-01	Extruded tubing $5 \times 0.25 \times 12$	$84500-5402$
F3	Fuse	$84510-5303$ (USA)
$3-1$	Holder, fuse	$84510-5251$ (USA)
$3-2$	Bush, cord	$84510-2015$ (USA)
$3-3$	A.C. cord set SVT AWG18 KP30	$84510-5352$ (USA)
M-02	Extruded tubing 3×0.25 $\times 12$	$84095-3465$
M-32	Harness, switch (including switch)	$84601-5155$
$3-5$	Switch, power	$84511-5103$
$3-6$	Panel, power	$84501-2006$
S-43	Screw, tapping M4 $\times 8$	$84001-4009$
S-47	Screw M4 $\times 6$	$84001-4007$
N-41	Nut, hexagon M4	$84004-4001$
W-43	Washer, toothed lock M4	$84003-4003$
M-31	Harness, GND	$84095-3325$
M-21	Terminal 171512-5	$84092-2039$
$3-7$	Transformer	$84520-5201$ (USA)
$3-8$	Case unit, lower (T)	$84611-2003 U$ (USA)

Harness diagram (USA)

Figure 22

EXPLODED VIEW (LOWER CASE BLOCK) (USA)

Control PCB (Printed Circuit Board) Unit

When repairing the PCB unit, refer to the schematic diagram (Appendix C), the PCB view (Appendix A), and the timing diagrams (Figures 10-13)

Ref. No.	Description	Manufacturer Part Number
S-35	Screw, tapping M3 $\times 8$	$84001-3026$
$4-1$	Panel, input	$84611-2007$
S-44	Screw, tapping $\mathrm{M} 4 \times 15$	$84001-4006$
S-48	Screw, tapping 4×6	$84001-4011$
$4-2$	Control PCB unit	$84611-5001 \mathrm{U}$
F2	Fuse $(5.2 \times 20 \mathrm{~mm}) 1.5 \mathrm{~A}$	$84091-7256$
F1	Fuse $(5.2 \times 20 \mathrm{~mm}) 1 \mathrm{~A}$	$84091-7248$
$4-3$	Receptacle, PCB	$84501-1320$
$4-4$	Support, PCB	$84600-1321$
N-02	Wire band A KM-85	$84500-5409$

Figure 24

Print Head Unit

Ref. No.	Description	Manufacturer Part Number
E-25	BE-24 ring	$84005-2402$
$5-0$	Spacer, head adjust lever	$84500-1245$
$5-1$	Lever, head adjust	$84500-1242 \mathrm{~A}-01$
$5-2$	Nut, head adjust	$84500-1240-01$
$5-3$	Cable guide	$84500-1246-01$
$5-4$	Spring, head adjust	$84500-1241-01$
$5-5$	Holder, cable	$84500-1248$
$5-6$	Print head unit	$84600-1200$ U
S-31	Screw M3×0.5×6	$84001-3001$
$5-7$	Board unit, head	$84500-1107$ U
$5-8$	Connector, head	$84500-1108$
$5-9$	Plate, spring press	$84600-1167$

1. Use a print head adjusting tool (a) to remove the cable guide from inside.
2. Be sure to get rid of dust, especially iron dust, from $5-5$. Be careful not to hurt the flexible cable.
When reassembling, keep pulling and revolving the clutch counterclockwise to move the carrier unit to the center. (Refer to Figure 25).
3. Barely tighten $5-2$ with the print head adjusting tool (b). E-25, 5-0, and 5-1 should be set after adjusting the print head.

Line Feed Mechanism

Ref. No.	Description	Manufacturer Part Number
$6-1$	Spring, LF rope	$84500-1144-01$
E-40	E-40 Ring	$84005-4001$
$6-1 A$	Spacer, reverse stop	$84500-1142$
$6-2$	Claw, reverse stop	$84500-1141$
$6-3$	Spring, reverse stop	$84500-1140$
S-28	Screw M2.6 $\times 0.45 \times 6$	$84001-2604$
S-31	Screw M3 $\times 0.5 \times 6$	$84001-3001$
$6-4$	Solenoid unit, LF	$84500-1030$ U
E-38	BE-37 Ring	$84005-3702$
$6-5$	Wheel B, LF claw	$84500-1131$
$6-6$	Pin, gear	$84500-1083$
$6-7$	Claw wheel A unit	$84500-1130 U-01$
$6-8$	Spring, claw wheel	$84500-1128-01$
S-32	Screw tapping M3 $\times 8$	$84001-3023$
$6-9$	Stopper, LF claw	$84500-1026$
E-37	E-37 Ring	$84005-3701$
$6-10$	LF dial	$84501-1125$
$6-11$	Spring, dial clutch	$84500-1124$
W-61	Washer, plain small M6	$84003-6001$

* Lubricate SF-100 on the saw teeth of 6-5 and 6-7

 2

1. 6-6 should be in the groove of 6-5.
2. 6-4 and 6-9 adjusting method:

Figure 27

- While pushing down part \mathbb{K} of 6-4, fix 6-4 with S-31 at the position where 6-2 falls from a tooth top of 6-5. The screw $\mathrm{S}-28$ should be set in the direction shown in figure 27.
- While pressing down part $\mathbb{\measuredangle}$ of $6-4$, fix $6-9$ with S-32 at the position where part T of $6-9$ and part T of 6-7 are coupled thereby stopping the revolution of 6-7.
- Confirm line-feed functions by pressing part (K) for at least two complete rotations of 6-5.

Feed Drum and Carrier Unit

Ref. No.	Description	Manufacturer Part Number
S-30	Screw M $3 \times 0.5 \times 4$	84001-3011
W-32	Washer, Plain M3	84003-3005
7-1	Guide, FPC	84501-1196
7-2	Spring, recovery	84501-1194
7-3	Spring, rope	84500-1190
		[84500-1184
7-4	Stopper, Rope (1 set) (different length)	$\{84500-1185$
		84500-1186
7-5	Rope (L) unit, head	84501-1187U-01
E-17	E-17 ring	84005-1701
7-6	Feed drum unit	84501-1183U
7-7	Step, drum spring	84500-1182
7-8	Spring, drum	84500-1181
E-25	BE-24 ring	84005-2402
7-9	Pin, pulley	84500-1004
7-10	Pulley, spring	84500-1012
N-31	Nut, flange M3	84004-3002
7-101	Screw, rope pulley stop	84500-1005-01
7-11	Pulley, rope	84501-1010
N-31	Nut, flange M3	84004-3002
7-12	Pillar, guide	84501-1051
7-12B	Pillar (B), guide	84501-1052
7-12C	Pillar (C), guide	84501-1053
7-13	Damper	84500-1179-01
7-131	Spacer, carrier	84500-1176
7-14	Unit, carrier	84500-1160U-01
E-24	E-24 ring	84005-2401
7-15	Cam, ribbon	84500-1175
7-16	Spring, ribbon cam	84500-1177-01

Exploded View (Feed Drum and Carrier Unit)

Figure 28

Lubrication on 7-10, 7-11 and the shaft of 7-6

Lubricate SF-100 on the groove and the shaft hole of 7-11 rope pulley Lubricate SF-100 on the groove and the shaft hole of 7-10 spring pulley (2 pcs.)

Figure 29

1. The ribbon cam and the bend of the ribbon feed board must be parallel. If they are not parallel, ribbon feeding may function abnormally. In this case, you can either change the ribbon cam or adjust the bend of the ribbon feed board by using pliers to fit the ribbon.

Figure 30
2. When the carrier unit is at the home position, there should be gaps between the home sensor and the carrier unit (refer to Figure 20).
3. Firmly insert a guide pillar into the ground plates R and L, tighten it with $N-31$, and screwlock on top of $\mathrm{N}-31$.
4. Once you have removed the feed drum unit (7-6), you must install a new one. A new one, which has 7 winds of the head rope (R), is fixed by a fixing tool. The fixing tool should be taken off after you have installed the new feed drum unit.'

Figure 31
5. Insert the rope stopper (7-4) into the rope spring (7-3).
6. When fixing the head rope (R) and (L) using $\mathrm{E}-17$, be careful not to harm the rope.
7. Check the following after attaching the recovery spring (7-2).

While manually pulling and revolving the clutch counterclockwise to move the carrier unit to the right end, check the rotation of the rope pulley (7-11), the gaps of the rope stopper (7-4), and the adhered position and status of the feed drum unit (7-6).

Should have room when the carrier unit is at the rightmost end Should have rooms at the home position

Should have
gaps

After pressing the H solenoid to release the clutch (figure 6), check the smooth motion of the carrier unit while returning to the home position. Also check the adhered position and the status of the feed drum unit (7-6) at the home position.

Gear Train

Ref. No.	Description	Manufacturer Part Number
$8-1$	Spring, clutch moving	$84500-1093$
S-31	Screw M3 $\times 0.5 \times 6$	$84001-3001$
$8-2$	Unit, dot sensor	$84500-1100 \mathrm{C}$
E-28	E-28 ring	$84005-2801$
W-44	Washer, plain M4	$84003-4004$
$8-4$	Clutch (B)	$84501-1090$
$8-6$	Spring, clutch	$84500-1088$
$8-7$	Clutch	$84501-1087$
E-37	E-37 ring	$84005-3701$
$8-8$	Gear (B), reduction	$84501-1086$
$8-9$	Pin, gear	$84500-1083$
$8-10$	Detector, rotation	$84611-1085$
E-38	BE-37 ring	$84005-3702$
$8-11$	Gear, platen	$84501-1082$
$8-12$	Pin, gear	$84500-1083$
$8-13$	Gear, reduction	$84500-1081$
S-26	Screw M2.6 $\times 0.45 \times 4$	$84001-2602$
$8-14$	H solenoid	$84500-1016$
S-33	Screw M3 $\times 0.5 \times 5$	$84001-3003$
$8-15$	Motor	$84600-1014$

Exploded View (Gear Train)

Figure 33

1. Methods for setting 8-10 and 8-9:

- Attaching 8-10

When a platen ridge is at the horizontal position, couple 8-10 and 8-13 in the status of a_{3} and a_{4} of 8-10 facing downward as shown in Figure 34.

- Attaching 8-9

After rotating 8-10 to fit the holes of 8-10 and the motor shaft, insert 8-9 using pliers.
2. Insert the M. stop screw (Figure 18) into the rubber leg, and then fix $8-2$ with S-31. Make sure that there are gaps between the grooves of $8-2$ and $8-10$

Figure 34

Tractor

Ref. No.	Description	Manufacturer Part Number
S-37	Screw M3 $\times 0.5 \times 8$	$84001-3021$
$9-1$	Soundproof	$84501-1197$
N-31	Nut, flange M3	$84004-3002$
$9-2$	Pillar, guide	$84501-1051$
$9-3$	Holder (L) unit, paper	$84500-1149 U$
$9-4$	Holder (R) unit, paper	$84500-1147 \mathrm{U}$
E-75	BE-74 ring	$84005-7401$
$9-5$	Bearing, tractor	$84500-1008$
$9-7$	Shaft, tractor	$84501-1068$
$9-8$	Roller, pin feed	$84500-1070$
E-60	Ring, tractor rubber	$84500-1071$
S-38	CE-6 ring	$84005-6001$
$9-10$	Screw M3 $\times 0.5 \times 6$	$84001-3016$

1. Push 9-9 outside as far as it will go and fix with S-32
2. Assemble the two $9-7$'s so that the pins are facing each other.
3. Check to see that the surface of $9-6$, part (\mathbb{D}), is smooth and has no scar.

Platen

Ref. No.	Description	Manufacurer Part Number
S-04	Screw M3 $\times 0.5 \times 6$	$84001-3010$
$10-1$	Cover, upper, platen	$84501-1066$
S-33	Screw M3 $\times 0.5 \times 5$	$84001-3003$
E-42	E-42 ring	$84005-4003$
E-75	BE-74 ring	$84005-7401$
N-31	Nut, flange M3	$84004-3002$
$10-2$	Plate (R), ground	$84500-1001 \mathrm{~A}$
$10-3$	Platen	$84501-1060$
$10-4$	Bearing, platen B	$84500-1007$
$10-5$	Cover, under, platen	$84501-1058$
$10-6$	Guide, paper	$84501-1056$
$10-8$	Board, reinforcement	$84501-1054$

Note In case a platen ridge is broken, it is better to throw the mechanism away than to replace a platen because it takes much time and also a special tool is required to set the both ground plates in parallel position.

6/ Troubleshooting

- The power lamp does not light.

Figure 37

-No initialization.

- The carrier unit does not move with a print command.

- Improper paper feed movement.

- No printing or poor print quality.

Figure 41

- The upper or lower dots of printed characters are missing.

YES

Figure 42

- The upper or lower dots of printed characters are too light.

Figure 43

- Printing is too light.

Refer to "No printing or poor print quality".

- Smudging by ribbon.

Figure 44

Appendix A/ Printed Circuit Board (PCB) Views

Appendix B/ Parts List
 PCB Parts

Model: Bo2 (USA), Bo3 (Europe), B04 (Australia), Bo5 (Canada)

Ref. No.	Description	Model	Radio Shack Part Number	Manufacturer Part Number
	Integrated Ciurcuits			
P-1	IC 74LS374			84090-9636
P-2	IC 74LS373		AMX-5174	84090-9504
P-3	CPU MBL8049-NM162		AMX-5175	84090-9235
(P-3)	IC Socket (40P) DILB40P		AJ-7189	84091-6675
P-4	IC 74LS14			84091-1568
P-5	RAM 2114		AMX-5172	84090-9521
P-6	IC 74LS00			84091-1002
P-7	IC 74LS05			84091-1703
P-8	IC ULN2003AN		AMX-5173	84091-1355-01
P-9	IC 74LS74			84091-1045
P-10	IC 75150		AMX-4650	84090-9610
	Transistors			
Q-1, Q-2	2SC2001		AA2SC2001	84091-2726-01
Q-3~	2SB703		AA2SB703	84091-1908
Q-5				
Q-6	2SB605		AA2SB605	84091-2289-01
Q-7	Voltage Regulator μ A7805UC			84093-5505
Q-8	Voltage Regulator μ A7812UC		AMX-5171	84093-5515
	Capacitors			
C-1	Capacitor Exclusive for oscillator CSC300 30PF		ACF-7345	84091-7680
C-2, C-3	Ceramic 25V $0.001 \mu \mathrm{~F}+/-10 \%$		ACC1020FCP	84091-5016-01
C-4~	Ceramic 16V $0.1 \mu \mathrm{~F}-20 /+80 \%$		ACC104ODCP	84091-5814-01
C-14				
C-15, C-16	Al Electrolytic $50 \mathrm{~V} 1 \mu \mathrm{~F}-10 /+75 \%$			84091-7540-01
C-17	Al Electrolytic $6 \mathrm{~V} 220 \mu \mathrm{~F}-10 /+50 \%$			84091-7558-01
C-18~	Al Electrolytic $50 \mathrm{~V} 47 \mu \mathrm{~F}-10 /+50 \%$			84091-7621-01
C-20				
C-21	Al Electrolytic $16 \mathrm{~V} 2200 \mu \mathrm{~F}-10 /+30 \%$			84091-5776
C-22	Al Electrolytic $\quad 50 \mathrm{~V} \cdot 2200 \mu \mathrm{~F}-10 /+30 \%$			84091-5784
C-23	Ceramic 100V $0.022 \mu \mathrm{~F}-20 /+80 \%$		ACC2230LCP	84091-7647
R-1	Carbon 1/4W 15		AN0074EEB	84091-4028
$\begin{gathered} \text { R-2~ } \\ \text { R-4 } \end{gathered}$	Carbon 1/4W $100 \Omega+/-10 \%$		ANO132EEB	84091-4079
R-5	Carbon 1/4W $300 \Omega+/-10 \%$		ANO158EEB	84091-4532
R-6~	Carbon $1 / 4 \mathrm{~W} 1 \mathrm{~K} \Omega+/-10 \%$		ANO196EEB	84091-4150
R-10				
R-11~	Carbon 1/4W $2.2 \mathrm{~K} \Omega+/-10 \%$		ANO216EEB	84091-4176
R-13				
R-14~	Carbon 1/4W 10K $\Omega+/-10 \%$		ANO281EFD	84091-4231
R-16				
R-17	Carbon 1/2W $220 \Omega+/-10 \%$		ANO149EED	84091-4796
R-18	Carbon 1/2W $330 \Omega+/-10 \%$		ANO159EFD	84091-4737
R-19	Metal oxide Film 1W K Ω +/-5\%		ANO196EGD	84093-5122
R-20	Metal Oxide Film 2W $75 \Omega \quad+/-5 \%$		ANO116EHD	84091-3943

Model: B_{02} (USA), B_{03} (Europe), B_{04} (Australia), B 05 (Canada)

Mechanical Parts

Model: Bo2 (USA), Boз (Europe), Bo4 (Australia), Bo5 (Canada)

Ref. No.	Description	Model	Radio Shack Part Number	Manufacturer Part Number
1-1	Cover (T)		AZ-6659	84611-2002
1-2	Case unit, upper (T)		AZ-6658	84611-2001U
1-3	Clip, LED		AHC-1651	84501-2049
1-4	Harness, lamp		AW-2847	84501-5151
2-2	Screw, M. stop		AHD-1652	84500-1350
F-3	Fuse GDL 1/20.5A	B02, B05	AHF-1242 •	84510-5303
F-3	Fuse EAWK 0.25A	B03, B04		84511-5302
3-1	Holder, fuse FH032	B02, B05	AHF-1243	84510-5251
3-1	Holder, fuse FEB031-1401	B03, B04		84511-5252
3-2	Bush, cord R-5	B02, B05	AHC-1652	84510-2015
3-2	Buch, cord EA-5	B03, B04		84551-2015
3-3	AC cord set SVT AWG18 KP30	B02, B05	AW-2845	84510-5351
3-3	AC cord set GTCE-3 KP-4819D	B03		84092-3914
3-3	AC cord set GTSA-3 KP-550	B04		84092-3922
3-6	Panel, power	B02, B05		84501-2006
3-6	Panel, power E	B03, B04		84501-2008
M-20	Splice 35115		AHC-1646	84500-5401
M-32	Harness, switch (switch included)		AW-2844	84601-5155
M-31	Harness, GND		AW-2846	84520-5121
3-7	Transformer ETP 57E 159H	B02, B05	ATA-0984	84520-5201
3-7	Transforme ETP 570 46E	B03, B04		84521-5204
3-8	Case unit, lower (T)		AZ-6660	84611-2003U
4-1	Panel, input		ART-4287	84611-2007
4-2	PCB unit, control BH-02	B02	AX-9214	84611-5001U
4-2	PCB unit, control BH-03	B03, B04		84612-5001U
4-2	PCB unit, control BH-05	B05		84614-5001U
$\mathrm{N}-02$	Wire band A KM-85			84500-5409
M-01	Extruded tubing $5 \times 0.25 \times 12$			84500-5402
4-3	Receptacle, PCB ES-5			84501-1320
4-4	Support, PCB		AHC-1653	84600-1321
	Seal, ribbon		AHC-1654	84611-2040
	Seal, caution		AHC-1655	84520-2041
	Seal, fuse ($120 \mathrm{~V}, 0.5 \mathrm{~A}$)		AHC-1650	84520-2016
5-0	Spacer, head adjust lever		AHC-1647	84500-1245-01
5-1	Lever, head adjust		ART-4286	84500-1242A-01
5-2	Nut, head adjust		AHD-7255	84500-1240-01
5-3	Guide, cable		AHC-1648	84500-1246-01
5-4	Spring, head adjust		ARB-7564	84500-1241-01
5-5	Holder, cable		AHC-1649	84500-1248
5-6	Print head unit		AH-4494	84600-1200U
5-7	Board unit, head		ART-4285	84500-1107U
5-8	Connector, head HBLB6R-IJ		AJ-6973	84500-1108
5-9	Plate, spring press			84600-1167
6-1	Spring, LF rope		ARB-7118	84500-1144

Model: Bo2 (USA), Bo3 (Europe), B04 (Australia), Bo5 (Canada)

Ref. No.	Description	Model	Radio Shack Part Number	Manufacturer Part Number
6-2	Claw, reverse stop		AHC-0501	84500-1141
6-3	Spring, reverse stop		AHD-1653	84500-1140
6-4	Solenoid unit, LF		AS-9182	84500-1030U
6-5	Claw wheel B, LF		ART-4288	84500-1131
6-6	Pin, gear		AHC-0502	84500-1083
6-7	Claw wheel A unit		ART-4289	84500-1130U
6-8	Spring, claw wheel		ARB-7067	84500-1128
6-9	Stopper, LF claw		ART-3372	84500-1026
6-10	LF dial		AD-5503	84501-1125
6-11	Spring, dial clutch		ARB-7066	84500-1124
7-1	Guide, FPC		AHC-0500	84501-1196
7-2	Spring, recovery		ARB-7063	84501-1194
7-3	Spring, rope		ARB-7064	84500-1190
7-4	Stopper, rope		ART-3367	84500-1184
7-5	Rope (L) unit, head		ART-4296	84501-1187U-01
7-6	Drum unit, feed		ART-4295	84501-1183U
7-7	Step, drum spring		AHC-0487	84500-1182
7-8	Spring, drum		ARB-7060	84500-1181
7-9	Pin, pulley		AHC-0506	84500-1004
7-10	Pulley, spring		ARA-2867	84500-1012
7-11	Pulley, rope		ARA-2868	84501-1010
7-12B	Pillar (B), guide			84501-1052
7-12C	Pillar (C), guide		ART-4291	84501-1053
7-13	Damper		AHC-0505	84500-1179
7-14	Carrier unit		ART-4294	84500-1160U-01
7-15	Cam, ribbon		ART-4301	84500-1175-01
7-16	Spring, ribbon cam		ARB-7566	84500-1177-01
8-1	Spring, clutch moving		ARB-7565	84500-1093
8-2	Dot sensor unit		ART-4299	84500-1100U
8-4	Clutch (B)		ART-4297	84501-1090
8-6	Spring, clutch		ARB-7062	84500-1088
8-7	Clutch		ART-4298	84500-1087
8-8	Gear (B), reduction		ARA-2865	84501-1086
8-10	Detector, rotation		ART-4290	84611-1085
8-11	Gear, platen		ARA-2864	84501-1082
8-13	Gear, reduction		ARA-2863	84500-1081
8-14	H solenoid		AS-9144	84500-1016
8-15	Motor		AM-4692	84600-1014
9-1	Soundproof		ART-3453	84501-1197
9-2	Pillar, guide		ART-3373	84501-1051
9-3	Holder (L) unit, paper		ART-4293	84500-1149U
9-4	Holder (R) unit, paper		ART-4292	84500-1147U
9-5	Bearing, tractor		ART-3371	84500-1008
9-6	Shaft, tractor		ART-3370	84501-1068

Ref. No.	Description	Model	Radio Shack Part Number	Manufacturer Part Number
$\begin{aligned} & \mathrm{E}-28 \\ & \mathrm{E}-37 \\ & \mathrm{E}-40 \\ & \mathrm{E}-42 \\ & \mathrm{E}-25 \\ & \mathrm{E}-38 \\ & \mathrm{E}-75 \\ & \mathrm{E}-60 \end{aligned}$	E-28 RING E-37 RING E-40 RING E-42 RING BE-24 RING BE-37 RING BE-74 RING CE-6 RING BG-10 RING		AHE-0040 AHE-0042 AHE-0043 AHE-0045 AHE-0044	84005-2801 84005-3701 84005-4001 84005-4003 84005-2402 84005-3702 84005-7401 84005-6001 84005-0001
			ξ	

Appendix C/ Schematic Diagram

RADIO SHACK A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102

CANADA: BARRIE, ONTARIO L4M 4W5
TANDY CORPORATION

AUSTRALIA	BELGIUM	U.K.
280-316 VICTORIA ROAD RYDALMERE, N.S.W. 2116	PARC INDUSTRIEL DE NANINNE 5140 N ANINNE	BILSTON ROAD WEDNESBURY WEST MIDLANDS WSIO 7JN

