

For your own protection, we urge you to record the serial number of this unit in the
space provided. You will find the serial number on the back panel of the unit.

Serial Number

Vi

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND
SOFTWARE PURCHASED FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL
STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZED LOCATIONS

USA LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this computer hardware purchased (the “Equipment”), and any
copies of software included with the Equipment or licensed se garately (the “Software'") meets the specifications,
capacity, capabilities, versatility, and other requirements of CUST

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon
purchase of the Equipment. RADIO SHACK warrants to the original GUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. This warranty is only applicable
to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer
centers, retail stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is
void if the Equipment or Software has been subjected to improper or abnorma! use. If a manufacturing defect is
discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack
Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a participating Radio Shack
dealer for repair, along with a copy of the sales document or lease agreement, The original CUSTOMER'S sole and
exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or
refund of the purchase price, at RADIO SHACK'S election and sole. expense. RADIO SHACK has no obligation to
replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
except as provided in this paragraph. Software is licensed on an “'AS [S" basis, without warranty. The original
CUSTOMER'S exclusive- remedy, in-the event of a Software manufacturing defect, is its repair or replacement
within thirty (30} calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN iTS DURATION
TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER
OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY “EQUIPMENT' OR “SOFTWARE" SOLD, LEASED,
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS 'OR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE “EQUIPMENT” OR “SOFTWARE.” IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PR(]FITS OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTH:IPATED USE OF THE “EQUIPMENT’’ OR "‘SOFTWAI
NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR “EQUIPMENT” OR “SOFTWARE" INVOLVED.

B gAfDIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or

oftware.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two ?2) years after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document for the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequentiai damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exciusive, paid-up license to use the TANDY Software on one computer,

subject to the following provisions:

A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to
CUSTOMER, but not title to the Software.

C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled
to be for use on a multiuser or network system, or one copy of this software is purchased for each node or
terminal on which Software is to be used simultaneously

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer
a\smgt as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the

oftware.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of ome computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S awn use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions of this Software License shall also be
applicable to third parties receiving copies of the Software from CUSTOMER.

G. Al copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to sither a
sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shal} inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may

have other rights which vary from state to state. 4/87

SERVICE POLICY

Radio Shack’'s nationwide network
of service facilities provides quick,
convenient, and reliable repair
services for all of its computer
products, in most instances.
Warranty service will be performed
in accordance with Radio Shack'’s
Limited Warranty. Non-warranty
service will be provided at
reasonable parts and labor costs.

6 86

The FCC Wants You to Know

This-equipment generates and uses radio frequency energy. If not installed and used properly,
that is in strict accordance with the manufacturer’s instructions, it may cause interference to
radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing device
in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed
to provide reasonable protection against such interference in a residential installation.
However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is encouraged to try to correct the in-
terference by one or more of the following measures:

« Reorient the receiving anterina

« Relocate the computer with respect to the receiver

« Move the computer away from the receiver

« Plug the computer into a different outlet so that computer and receiver are on different
branch circuits.

Warnin
This equipment has been certified to comply with thgmits for a Class B computing device,
pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/ouput
devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached to
this computer. Operation with non-certified peripherals is likely to result in interference to
radio and TV reception.

2/86

TANDY Disk Extended Color
BASIC System Software:
© 1987, Tandy Corporation and Microsoft.
All rights reserved.

The system software in the disk system is retained in a read-only memory (ROM)
format. All portions of this system software, whether in the ROM format or other
source code format, and the ROM circuitry, are copyrighted and are the proprietary
and trade secret information of Tandy Corporation and Microsoft. Use, reproduc-
tion, or publication of any portion of this material, without the prior written
authorization by Tandy Corporation, is strictly prohibited.

Color Computer Disk System Owner’'s Manual:
© 1987, Tandy Corporation,
Fort Worth, Texas 76102, U.S.A.
All rights reserved. ’

Reproduction or use, without express written permission from Tandy Corporation,
of any portion of this manual, is prohibited. While reasonable efforts have been taken
in the preparation of the manual to assure its accuracy, Tandy Corporation assumes
no liability resulting from any errors in or omissions from this manual or from the
use of the information obtained herein.

Tandy, Radio Shack, and Color Computer are registered trademarks of Tandy
Corporation.

Safeway is a registered trademark of Safeway Stores, Inc.

10987654321

COLOR COMPUTER
DISK SYSTEM

" A DISK IS FASTER

A disk is one means of storing information with your computer. It is far superior
to cassette tape, the other alternative,

A disk is especially designed to file your information so that the computer can
immediately get the information you want. For you, this means that storing and
retrieving information, which takes a long time on tape, now can be done quick-
ly -and efficiently.

ABOUT THIS BOOK

This book describes how to read and write on a disk, using any of the Color
Computers: the original Color Computer, the Color Computer 2, or the Color
Computer 3. When we wrote it, we had three different groups of people in mind.

The first group includes all you accomplished Radio Shack programmers. We
are referring, of course, to those of you who learned to program by reading the
BASIC manual that came with your computer. You'll find Parts 1 and 2 of this

book another enjoyable experience. If you're especially ambitious, you'll also en-
joy Part 3.

How about those of you who have never programmed and intend to use appli-
cation programs written by Radio Shack or someone else? You're the second
group. Read Chapter 1, “To Get Started.” Then, if you're interested in and want
to take full advantage of your disk system, go on to Part 1, “The Disk.” You
don’t need to know anything about programming to understand that part.

If you don't belong to either of these two groups, you probably already know
how to program disk systems. Read Chapter 1 first to find out how to connect
your system. Then, go straight to Appendix H, “Disk BASIC Summary.” Every-
thing is summarized there with chapter references, for the things you want to
read more about.

Contents

Chapter 1

To Get Startedcenvevviiiiiriiircn e

The Disk

Chapter 2
Chapter 3
Chapter 4

Meet YOUr DisK....c..coovvivinirenirininiininnni e
A Garbled Diskcoeevnvirenirirnirii e
You're the BOSS........covvviiniiiiiiiiiiiniriirn e e

The Disk Program

Chapter 5
Chapter 6

Chapter 7

One Thing at @ TIMec.ccevvrrirrcirieeiin

{Sequential Access to a File)

Changing It All Around..........c....ooo e,

(Updating a Sequential Access File)

A More Direct Approachcccceviniiiniiiinnnnnnnn,

{Direct Access to a File)

3] The Refined Disk Program

Chapter 8
Chapter 9
Chapter 10

Chapter 11

How Much Can One Disk Hold?ccovvenne,

{What the Computer Writes in a Disk File)

Trimming the Fat Out of Direct Accesscccevinn.

{(Formatting a Direct Access File)

Shuffling Disk Filescccccciriniiiniiniinnnn,

(Merging Programs, Using File Buffers)

Technical Information............cccovvviiiiiinniiinceaneenns

{Disk Structure and Machine-Language)

. 73

Contents

(4] Appendices

Appendix A
Appendix B
Appendix C
Appendix D
Appendix. £
Appendix F
Appendix G
Appendix H
Appendix |

Programming Exercise AnSWers...............ccccccveeernnas 127
Chapter Checkpoint ANSWers................coceinnveeinnnnnn, 133
Sample Programs..............cccovciirvennniennniennn, 139
ASCII Character Codesccouverveererueresieensinennns 165
Memory Maps...........cocccviimricn v m
Specifications...........cccceveiiiin e . 177
Error MeSsagesccccvvreieiiiierererererenennneseereneeenens 179
Disk BASIC Summary.............ccccviriiviiicinnennenienann,s 185
Adding a Secondary Disk Drive Kitee.... 199
... 203

=
=

To Get Started

Before you install your disk system, you need to connect your Color Computer

to the TV. If you haven't done that yet, refer to the introduction manual for your
computer.

A. Connect Your Disk System

Your disk system is easy to connect. Do it before you turn on your computer,
by plugging in three parts:

® The disk interface cartridge
e The disk drive cable
® The disk drive power cord

To Get Started

1. Insert the disk interface into the cartridge port on the tight side of your com-
puter. Use firm pressure, and be sure the interface cartridge is fully in place.

Chapter 1

2 Connect the disk cable to the disk interface. Be sure that the TOP side of
connector is facing up.

3. Plug the power cord, located at the rear of your disk drive housing, into a
standard household electrical outlet.

Your disk drive system can consist of one or two drives. The lower drive is referred
to as Drive O, and the upper drive is referred to as Drive 1. If you have only
one drive in your system, your Radio Shack Computer Center service technician
can install a second drive.

To Get Started

B. Power It Up

Because your disk system has several parts, you need to turn on several buttons
to power up the entire system:

1. Turn on your television set.
2. Select Channel 3 or 4 on your computer’'s channel select switch.
3. Set the antenna switch on the TV to COMPUTER.

4. Turn on the computer. The power button is on the back of the computer,
near the left side.

5. Turn on the disk drives. The power button is on the back of the drive.

If all the buttons are properly set, the following message appears on your screen.
(The message varies depending on the computer you have.)

DISK EXTENDED COLOR BASIC v.r.
COPR. 1982, 1986 BY TANDY
UNDER LICENSE FROM MICROSOFT
AND MICROWARE SYSTEMS CORP.

(vr. consists of two numbers that specify which version and release of Disk Ex-
tended Color BASIC you have.)

If the message does not appear, turn off the computer, and check the connec-
tions. Then, power up the computer again.

C. Insert a Disk

After powering up the system, you can insert a disk. If you plan to go through
Part 1, use the blank, unformatted disk that comes with your disk system. Other-
wise, you can insert your application program disk. Insert the disk in Drive O as
ilustrated.

Chapter 1

1. Open the drive door.
2. Position the disk with the label up, as illustrated.
3. Gently insert the disk until it stops.

4. Turn the drive latch clockwise until it stops in a vertical position.

"When you are ready to remove the disk, turn the drive latch counterclockwise
until it stops in a horizontal position. Then, remove the disk by pulling it toward you.

Now that your system is connected and powered up, you're ready to begin. Be-
gin what? Well, if you want to know how to take full advantage of your disk
system, we'd like you to read Part 1. You'll find a lot of helpful information there.

If you're in a hurry to run your application program, that's O.K., too. But please
read these guidelines first. We want your disks to last a long time.

¢ When storing your disks, keep them in their protective envelopes. Store them
upright in a file.

e Never turn the system on or off with a disk in a drive.

¢ Keep disks away from magnetic fields (transformers, AC motors, magnets,
TVs, radios, and so on).

7o Get Started

Handle disks by the jacket only. Don't touch any exposed surfaces, even to
dust them.,

Keep disks out of direct sunlight and away from heat.
* Avoid contamination of disks with cigarette ashes, dust, or other particles.

Use a felt-tipped pen only to write on the disk label.

D. Replacing the Power Fuse

The power fuse, located on the back panel, protects the unit from voltage sur-
ges or other abnormal operating conditions. If the disk drive does not operate
and you do not hear the fan motor rotating, check the fuse. If it is blown, replace
it with another fuse of the same size and amperage. Use a screwdriver to loose
the fuse holder.

Part 1
THE DISK

A disk is like a filing system. Everything on it is organized.

This makes disks easy to work with. In this part, we describe how
your computer organizes everything on your disk, and tell how you
can take advantage of this organization.

We invite all of you to read this section. You don't need to know
anything about computers to understand it.

° [

| DISK DIRECTORY

"l

Meet Your Disk
A Look Inside the Disk

Although your disk looks like a phonograph record, it is really more like a multi-
tude of tiny magnets. One disk can hold more than a million magnetic charges.
1,290,240 of them are for your information. That's what we mean when we
say a disk can hold 1,290,240 bits (or 161,280 bytes) of information. (There
are eight bits in a byte.)

Some of these bits are magnetically charged, and some aren’t. The pattern
formed by these magnetic charges is important. it-forms a code that the com-
puter can read.

With more than a million of these bits on a disk, you can appreciate how your
computer must organize them in order to find anything. It does this by building
a massive disk filing system. First, it creates the file “cabinets” by dividing your
disk into tracks. Then it puts “drawers” in the cabinets by dividing each track

Meet Your Disk

into secrors. Then—the computer isn't finished yet—it divides each sector into
bytes and each byte into bits.

After creating the filing system, the computer puts a master directory on the
disk. In this directory, it keeps an index of the location of all the information on
the disk. Whenever it wants to find something—a program, a mailing list, your
letters—the computer uses the directory to find the tracks and sectors on which
the information is stored. It can then go directly to that spot.

This filing system is, of course, what makes the disk system so powerful. You
can quickly find anything stored on your disk.

Putting the filing system on your disk is called formatting the disk. The last thing

you did in Chapter 1 was insert an unformatted disk. Before you use the disk,
you must format it into tracks and sectors.

Formatting a Disk

How do you format a disk? Well..why not just tell your computer to do it?

You have already powered up your system and inserted an unformatted disk.
Be sure the drive latch is down.

Now, type any letters and press the key so that:
0K

is the last line on your screen. (0K means “OK, I'm ready to do something. ")
Now, tell the computer what you want it to do. Type:

DSKINI®

and press the key.

10

Chapter 2

Your computer might display 7SN ERROR. If so, don't let this bother you. This
error message means you typed the command incorrectly. Type it again.

Whenever anything goes wrong, the computer lets you know immediately with
an error message. This way, you can correct the error right away. If you get any
error message other than SN, look up the message in Appendix G. Appendix
G lists all the error messages and what to do about them.

After typing DSKINI® , You hear some noises from your disk drive,
and the disk’s red light comes on. Sounds promising...

After about 40 seconds, your computer prints OK on the screen. It is finished
formatting the disk. You can now store your information.

Remember that you cannot store anything on an unformatted disk. Whenever
you get a new, unformatted disk, you need to format it before you use it.

Later on, you might forget whether a disk is formatted. A quick way to find out
is to check the directory. (See “Checking the Master Directory,” at the end of
this chapter.) If you get an error message, the disk is not formatted.

If you have two disk drives, you can format a disk in Drive 1 by substituting
1 for O in your instruction to the computer. For example, type
DSKINII to format a disk in Drive 1.

Putting a File on Your Disk

A disk file can contain any kind of information: a program, a mailing list, an essay,
some checks, and so on. We'll make your first file contain a BASIC program,
since it's the simplest thing to store,

11

Meet Your Disk

If you don’t know how to program in BASIC, type this program anyway. Type
each line exactly as shown below. Press the key after typing each line.

10 PRINT ""STORE ME IN A DISK FILE"
20 PRINT "AND YOU'LL NEVER LOSE ME' (ENTER)

Finished? Now that the program is in your computer’'s memory, you can put
it on a disk. To do this, consider the program to be a file, and name the file
SIMPLE/PRO. (All files have a name.) To store the file, type:

SAVE "SIMPLE/PRO"

Once you press the key, your disk drive’s red light comes on, and the
drive whirs some. Your computer is:

1. Finding a place on the disk to store SIMPLE/PRO.
2. Telling the directory where SIMPLE/PRO is stored.
3. Storing SIMPLE/PRO on your disk.

e way it stores

At this point, we must warn you about something. Do not remove your disk
while you see the red light on. This confuses the computer. It might distort the
contents, not only of the file you are presently storing, but of other things stored
on the disk.)

When your computer finishes storing SIMPLE/PRO, it displays the 0K message
on your screen.

12

Chapier 2

Memory vs. Disk Storage

To those of you new to computers, we would like to expound a little on com-
puter memory. If you already know what memory is, skip to the next section,
“lLoading a File from Disk.”

Whenever you type a BASIC program line and press , the computer
automatically puts the line in its memory. Once the line is in memory, you can
do things with it. For example, type:

RUN (ENTER)

Your computer displays:

STORE ME IN ADISK FILE
AND YOU'LL NEVER LOSE ME

To list the program as you have it above, type:
LIST

Memory is where the computer keeps track of everything you tell it. Once you
put your information in its memory, the computer can print the information, re-
arrange it, combine it, or do many other things with the information.

Later, you can put other things, such as a mailing list, in memory. To do this,
you need to write or purchase a program written especially for that application.
This application program causes the computer to put the information you type
into memory.

The most important thing to remember about memory is that turning off your
computer erases it. Once memory is erased, there's no way to recover it. The
only way to keep a permanent copy of what you type is to store it on a disk
(or tape).

13

Meet Your Disk

Loading a File from Disk

Type NEW to erase everything in your computer’s memory. To be sure
that everything is erased, you can type one or both of these commands:

RUN
LIST (ENTER)

Although NEW erased the program from memory, the file SIMPLE/PRO is still
safely stored on your disk. You can put SIMPLE/PRO back into memory whenever
you wish by /oading it from disk. To do this, type:

LOAD "SIMPLE/PRO"
Again, you hear the disk drive working. The computer is:

1. Reading the directory to find where SIMPLE/PRO is stored.
2. Going to that location on the disk, and reading the contents of SIMPLE/PRO.
3. Putting SIMPLE/PRO into memory.

You can now type one or both of these commands to Verify that SIMPLE/PRO
is in memory:

LIST
RUN

Starting OS-9

Although the Color Computer disk system is complete with its own built-in disk
operating system, it is also capable of operating under other systems.

0S-9 is a flexible and sophisticated system that you can use with the your com-
puter. With OS-9 Level Two, your Color Computer 3 has the capability of using
40 tracks and both sides of the disk. This capability allows over twice as much
storage space on the same diskette. You execute OS-9 with a special command,
DOS. If you have the OS-9 system diskette, load and execute the system by
placing the diskette in Drive O and typing:

DOS

14

Chapter 2

After a moment, the words 0S—-9 BOOT appear in the center of the screen.
Soon the OS-9 copyright screen appears, and you are in the OS-9 operating
system. For further information on starting the system, refer to your OS-8 manuals.

Some 0S-9 application programs can be loaded and executed in the same man-
ner as the 0S-9 system disk.

More about Memory vs. Disk Storage

If you're still a little fuzzy about what's in memory and what's on your disk,
try this exercise. You just loaded a program called SIMPLE/PRO into memory,
right? Change it by typing:

20 PRINT "WITH THIS CHANGE'' (ENTER)

15

Meet Your Disk

List the program again to see that the computer has registered the changed
Line 20 in its memory:

10 PRINT "STORE ME IN A DISK FILE"
20 PRINT "WITH THIS CHANGE"

Store the program in a different file by typing:
SAVE "CHANGE"

You have two disk files now: SIMPLE/PRO and CHANGE. What do you think
each of them contains? Try loading and then listing both.

The CHANGE file contains the changed program:

10 PRINT ""STORE ME IN A DISK FILE"
20 PRINT "WITH THIS CHANGE"

However, SIMPLE/PRO still contains the old program:

10 PRINT "STORE ME IN A DISK FILE"
20 PRINT "AND YOU'LL NEVER LOSE ME"

The only way to change a disk file is by... Well, you answer it. How can you
make the file SIMPLE/PRO contain:

10 PRINT "CHANGED FILE"

16

Chapter 2

Answer:
Type:
NEW
10 PRINT "CHANGED FILE" (ENTER)
SAVE "SIMPLE/PRO" (ENTER)
Filenames

You have already used one filename: SIMPLE/PRO. If you did our memory vs.
disk storage exercise, you also used a second filename: CHANGE.

We gave the filename SIMPLE an extension, PRO. You must give everything you
store a name. The extension is up to you. It's optional.

Do you wonder what names you can give your files? Anything you want, as
long as you follow these rules:

¢ The name can have no more than eight characters. (No blank spaces are
allowed.)

» If you give the name an extension, the extension can have no more than three
characters.

e There must be a slash (/) or a period (.) between the name and the extension.

Fair enough? Good.

17

Meet Your Disk

Filenames When You Have Two Drives

ff you have two disk drives, you can add the drive number to your filename.
Remember, the drive numbers are O (the lower drive) and 1 (the upper drive).

LOAD "SIMPLE/PRO:1"
loads SIMPLE/PRO from the disk in Drive 1. Or

SAVE "CHANGE : 1'* (ENTER)

stores CHANGE on the disk in Drive 1. If you don't include a drive number, the
computer assumes you want it to use Drive O.

Checking the Master Directory

As stated earlier, a disk has a master directory that the computer can use to
find out what's on the disk. If the computer can use the directory, you can use

it, too. Type DIR

The computer displays information about all the files stored on your disk. If the
only files you stored so far are SIMPLE/PRO and CHANGE, the computer dis-
plays this:

SIMPLE PRO o B 1
CHANGE BAS o B 1

The first and second columns list the filename. The first contains the name and
the second contains the extension. Notice that even though you did not assign
CHANGE an extension when you stored it, the computer assigned it the exten-
sion BAS.

The computer prefers that all filenames have an extension. If you do not give
a file an extension when you store it, the computer automatically assigns the
file one of these extensions:

18

Chapter 2

BAS if the file is a BASIC program
DAT if the file contains data {such as names and numbers)
BIN if the file is a machine-language program

The last three columns contain information that is primarily for the use of tech-
nical programmers. Interested? Then, read on.

The third column lists the type of file:

a BASIC program

data created by a BASIC program

data created by a machine-language program

a source program created by an editor/assembler

wnN =20
o

The fourth column lists the format the file is stored in:

A
B

ASCI format
binary format

Il

We explain the meaning of these formats in Chapter 10.

The fifth column shows how many granules each file consumes.
SIMPLE/PRO and CHANGE/BAS consume one granule each. {The computer uses
granules to allocate file space on a disk. A disk contains 68 granules with 2,304
bytes per granule.)

If you have a disk inserted and formatted in Drive 1, you can check its directory
also. For instance, typing DIR1 displays the directory of the disk in
Drive 1.

19

Meet Your Disk

Impressed? Wait until you see how fast you can save and load long programs.
But before you get too involved, please read the next chapter. it helps ensure
that your experience with your disk system is smooth and enjoyable.

20

A Garbled Disk

With more than a million magnetic charges on a disk, you can see why it is
so delicate. Any small particle such as a piece of dust or a cigarette ash could
distort its contents. A scratch could ruin it. That's why we suggest that you keep
the disk in its envelope when you’re not using it, preferably upright in a dust-
free container, and that you use only a felt-tipped pen when labeling it.

To help protect the disk, we encase most of it in a black plastic cover. However,
as you can see, we aren’t able to cover the entire disk. The middle section and
two other small areas are exposed so that the computer can read and write

to the disk. Be careful not to touch the exposed areas, not even to dust them.
They scratch easily.

Since the disk is made of magnetic charges, putting it next to another magnetic
device, such as your television set, could rearrange its magnetic code.

21

A Garbled Disk

Your information would be lost. Heat and sunlight could have the same effect.
The same goes for turning your computer on or off while the disk is in its drive.

One more thing: if you're in the middle of running a disk program, and need
to switch disks, we recommend that you type the following command before
switching disks:

UNLOAD

This command tells the computer to put the closing information on the disk in
Drive 0. If you don't type this command, the computer might put this informa-
tion on the wrong disk, and garble the contents of both disks.

Back It Up

Jo help protect the information on your disks, we've included a command called
BACKUP. BACKUP enables you to make a duplicate, or backup, of any of your
disks by copying the contents of one disk to another. '

We suggest you regularly make a backup copy of any disk that contains impor-
tant programs or data. By doing this, you don't have to worry about losing the
information.

Also, since a disk can actually get worn out from too much use, it's a good
idea to make a backup copy of an old disk on a new, unused disk. Then, if the
computer begins having problems reading and writing to the disk, you can use
your backup copy.

Want to make a backup copy? Get your two disks ready:

* Your source disk is the disk you want to duplicate. Use any disk that has files

stored on it. If you're just getting started, use the disk that you worked with
in Chapter 2.

22

Chapter 3

e Your destination disk is the disk that you want to be your duplicate. Use a
blank disk or, if you've been using your disk system for a while, use any disk
that contains files you don’t need anymore.

If your destination disk is blank, you must first format it. Remember how?
Insert it in your disk drive, turn the latch, and type DSKINI®)

Now, make the backup. The procedure you follow depends on whether you have
one disk drive or two.

Backup With One Disk Drive

If you have only one disk drive, it takes about five minutes to make a backup copy.

Insert your source disk in your disk drive, and turn the drive latch down. Type
DIR to see which files you will be copying.

Now, start the backup procedure. Type:
BACKUP @
After reading a portion of your source disk, the computer displays:

INSERT DESTINATION DISKETTE AND PRESS
ENTER

Remove the source disk, and insert the destination disk. Turn the drive latch.
Then press . The computer writes on the destination disk. Then, the
screen displays:

INSERT SOURCE DISKETTE AND PRESS ENTER

23

A Garbled Disk

The computer requests that you continue switching disks until it finishes copy-
ing everything from your source disk. During this process, be sure you insert
the correct disk and insert it properly. When finished, the computer displays the
OK message on your screen.

To be sure BACKUP worked, insert your destination disk and type DIR

Backup With Two Disk Drives

If you have two disk drives, you can back up a disk in about two minutes.

Insert your source disk in Drive O (the lower drive) and your destination disk in
Drive 1 (the upper drive). Then type:

BACKUP 0 TO 1
The computer backs up the contents of the disk in Drive O to the disk in Drive

1. After finishing, it displays the OK message. You can check to be sure BACK-
UP worked., Type DIR1 .

You can use the two drives in reverse, if you want. For instance:
BACKUP 1 TO @

backs up the contents of the disk in Drive 1 to the one in Drive 0.

If You have Problems During Backup

If you get an error message while backing up a disk, it's probably because you
inserted the disk incorrectly.or because there is something wrong with the disk.
At the end of this chapter, we discuss error messages to help you determine
the problem. If you have a bad disk, try BACKUP with another disk.

After determining the problem, press the reset button to get out of BACKUP
Then, start the BACKUP procedure again.

24

Chapter 3

“Write Protect” It

Write protecting is one more way to protect your disk files. Let's assume you
have a disk that contains some valuable information — such as a good program
you don’t plan to change. You plan to read its contents daily, by loading the
program into memory. Yet, you never plan to write (store information) on it.

By folding a little gummed label over the disk’s write-protect notch, you enable
the computer to read the disk but not write on it. Any gummed label works.
One comes with your new, unformatted disk.

Salvage It

We mentioned earlier that a disk doesn't last forever. Before you throw away
an old disk, though, see if you can salvage it. You might be able to do this by
formatting the disk again as if it were a blank disk.

Although reformatting might salvage the disk, it does not salvage the contents
of the disk. Reformatting the disk erases everything on the disk. However, it also
saves you the expense of purchasing a new disk.

25

A Garbled Disk

If you get an |0 error while trying to reformat a disk, the disk has probably reached
its limit (See “When Things Go Wrong,” at the end of this chapter.) If you have
a bulk-eraser, try bulk-erasing the disk and reformatting it. Otherwise, throw away
the disk and use another.

Verify It

The computer writes data on your disk at a very fast speed. In almost all cases,
it does this flawiessly.

There might be times when you want to be certain that there are no flaws in
what the computer is writing. if so, you can turn on the computer’s VERIFY
command. To do this, type:

VERIFY ON

Now, the computer notifies you, whenever it is writing on a disk, if there are
any flaws in what it is writing. The only catch is that it takes twice as long for
the computer to write.

For example, if you use the VERIFY command when you make a backup of your
disk, the computer takes twice as long, but notifies you if there is a flaw in the
backup.

This VERIFY command remains on until you turn it off. To turn it off, type:

VERIFY OFF

26

Chapter 3

When Things Go Wrong

Whenever you make a mistake, your computer tries to notify you immediately
and tell you what kind of error you made.

You have probably already made an SN ERROR. if you haven't, type
DIIR , deliberately misspelling DIR.

SN means Syntax error. It's the computer’s way of telling you that DI IR doesn't
make sense. The word is not in its vocabulary. An SN error usually
means you made a typographical error.

Here are some other error messages you're likely to get with your disk system:

AE — You are trying to rename a file to a filename that already ex-
ists. (RENAME is discussed in the next chapter.)

DF — The disk you are trying to store your file on is full. Use another
disk.

DN — You are using a drive number higher than 1. You also get this
error if you do not specify a drive number when using DSKIN
or BACKUP. If you have only one drive, specify Drive O with
these two commands (DSKINI® or BACKUP @)

FN — You used an unacceptable format to name your file. Chapter
2 explains which filenames the computer accepts.

FS — There is something wrong with your disk file. See the 10 error
description for instructions on what to do.

/0 — Technically, this means you asked the computer 1o divide a
number by O, which is impossible. However, you might aiso
get this error if you don’t enclose a filename in quotation marks.

10 — The computer is having trouble inputting information from or
outputting information to the disk.

1. Be sure that there is a disk inserted properly in the indi-
cated drive and that the drive door is closed.

27

A Garbled Disk

2. If you still get this error, there might be something wrong
with your disk. Try reinserting the disk first. Then, try
reformatting it or using a different disk. (Remember that
reformatting a disk erases its contents.)

3. If you still get this error, you probably have a problem with
the computer system itself. Call your nearest Radio Shack
Computer Center.

NE — The computer can't find the disk file you want. Check the disk’s
directory to see if the file is there. If you have two disk drives,
you might not have included the appropriate drive number in
the filename. If you are using COPY, KILL, or RENAME (dis-
cussed in the next chapter), you might have left off the
extension.

TM — Technically, this error is caused by a program that mixes strings
with numbers. However, you might get this error if you don't
enclose a filename in quotation marks.

VF —You get this error only when you have the VERIFY command
on and are writing to a disk. The computer is informing you
that there is a flaw in what it wrote. See the 10 error descrip-
tion for instructions on what to do.

WP —You are trying to store information on a disk that is write pro-
tected. Either remove the label from the write-protect notch,
or use a different disk. If your disk is not write protected, then
there is an input/output problem. See the 10 error description
for instructions on what to do about this.

All other errors you might get are errors in the program you are using. If you
did not write the program, and you get one of these errors, you need to contact
the people who wrote it. If you did write it, check Appendix G, where you find
an explanation of all the error messages.

Caring for your disk might seem a little awkward at first. It should. You’ve spent
a lot of time using paper to store information, and now you're dealing with a
different medium.

28

Chapter 3

After a while, though, protecting your disk from dust and magnetic devices will
seem as natural to you as protecting your papers from a strong gust of wind.
And once you get used to caring for your disks, you aren't likely to go back
to pencils and paper again.

29

You’re the Boss

Thanks to your disk filing system, you are able to command the computer to
do a lot of very helpful things. For example, you can copy a file to the same
disk or to another disk. So that you have a disk on which to try out the COPY
command, use DSKIN! to format another disk as instructed in Chapter 2.

31

You're the Boss

Now, replace the original diskette in Drive 0, and type:

10 PRINT "THIS IS A FILE"
SAVE "ORIGINAL/NAM'" (ENTER)

You have just created and saved a file named ORIGINAL/NAM. To see this, use
DIR to examine the disk’s directory.

Making One-Drive Copies

You can copy ORIGINAL/NAM to either the same disk or a new disk, using only
one drive. To make a copy on the same disk, type:

COPY "ORIGINAL/NAM" TO "NEW/NAM" (ENTER

Your disk drive turns on and runs while the computer copies ORIGINAL/NAM
to a new file named NEW/NAM. Again, use the DIR command to examine the
directory to see that it now includes both files,

You can also copy files from one disk to another in the same drive. You must
have a second formatted disk before you can do this. To copy ORIGINAL/NAM
from one disk to another, using the same name for both files, type:

COPY "ORIGINAL/NAM"
After the disk drive runs for a few moments, the screen displays:

INSERT DESTINATION DISKETTE AND
PRESS .ENTER.

Remove your original disk, and replace it with the disk on which you wish to
copy the file. Then, press(ENTER). Use D IR to confirm that the computer has
placed the file on the new diskette.

If a file is large, you might be requested to reinsert the original disk and
press one or more times. After each time, you replace it with the des-
tination disk, as instructed by the screen display. When finished, reinsert the origi-
nal disk in your drive,

.32

Chapter 4

Making Two-Drive Copies
Copying files between two disks is much easier if you have two drives. Be sure

that the disk containing ORIGINAL/NAM is in Drive O and that your newly for-
matted disk in Drive 1. Type:

COPY "ORIGINAL/NAM:@'" TO "ANY/NAM:1"

After the disk drives stop and the cursor returns to the screen, you can check
your copies by using DIR.

You can also copy a program to another disk, using the same filename. In addi-
tion, you can copy from Drive 1 to Drive 0. To try this, type:

COPY "ANY/NAM:1" TO "ANY/NAM: @' (ENTER)

Your disk filing system also allows you to rename disk files. To change the name
of ORIGINAL/NAM to FIRST/INAM, type.

RENAME "ORIGINAL/NAM" TO "FIRST/NAM' (ENTER)

Check your directory again. If you like, load and list HRST/NAM. The program
file has simply been renamed. Everything else is the same.

RENAME is easy to use, but there is one thing you need to remember. Save
a file without an extension; then, try to rename it. Type:

10 PRINT "FILE NUMBER TWO'* (ENTER) -
SAVE "AFILE"
RENAME "AFILE'" TO "BFILE' (ENTER)

The computer displays an NE error. This means the computer can't find the file.

‘Whenever you rename a file, you must type the complete name of the file so
that the computer can find it. This includes the name and the extension. As
discussed in Chapter 2, whenever you save a file the computer ensures that
it has an extension. If you don't assign one, the computer does.

33

You're the Boss

You can check the directory to find out the extension of AFILE. Then, rename
the file. Type:

RENAME "AFILE/BAS'" TO "BFILE/BAS' (ENTER)

When you rename a program file, be sure that your new filename has an exten-
sion. In other words, don't type RENAME "AFILE/BAS" TO
UBFILE" . The computer would rename the file, however BFILE
doesn’t have an extension. This causes a problem when you try to load BFILE,
because all files you load must have an extension.

This might seem to conflict with what we said above. You can save AFILE without
assigning it an extension because the computer automatically assigns it one when
it saves it. RENAME works differently. The computer doesn’t automatically as-
sign an extension to a program you rename.

Multi-Disk Drives

You can rename a file on a drive other than Drive O by typing the appropriate
drive number. Insert a formatted disk in Drive 1 (if it isn't already inserted). Store
a file on it:

10 PRINT ""ACCOUNTING' (ENTER)
SAVE "OLDACC/DAT:1" (ENTER)

34

Chapter 4

Then, rename the file:

RENAME ""OLDACC/DAT:1'" TO "NEWACC/DAT:1"

Almost out of Disk Space?

Sooner or later, you'll want to know how much space you have left on your
disk. Type:

PRINT FREE(®)
The computer displays the number of available granules remaining on your disk.
There are 68 granules in all. If the computer tells you that you have only one
granule free, do one of the following: start using another disk, or remove some

of your disk files (using the KILL command).

“Killing” a disk file does exactly what the name implies. For example, if you put
CHANGE on your disk in Chapter 2, type:

KILL "CHANGE/BAS' (ENTER)

Check your directory and the amount of free space on your disk. CHANGE/BAS
is no longer on your disk. The space it occupied is now free for new files.

35

You're the Boss

Notice, we had to include CHANGE's extension, BAS, in order to remove the
file. The computer insists you type the complete filename as one extra precau-
tion. We don't want you to delete a file you don’t want destroyed.

Multi-Disk Drives

You can also use FREE and KILL on Drive 1, as you can RENAME, by typing
the drive number. Examples:

PRINT FREE(1)
tells you how much free space is on the disk in Drive 1.

KILL '""NEWACC/DAT:1"
deletes NEWACC/DAT from the disk in Drive 1.
There is also a command that changes the drive number the computer goes
to if you do not specify one. Until now, this was Drive 0. For example, if you
type SAVE "ANYTHING/EX" , the computer assumes you want
to use Drive 0. It then saves the program on the disk in Drive O.
To change this assumption, you can type:

DRIVE 1

This makes the computer assume you want it to use Drive 1, unless you tell
it otherwise.

36

Chapter 4

§

After you change the drive assumption, or default, the computer responds differ-
ently to the same command. Now, if you type SAVE "ANYTHING/EX"
(ENTER), the computer stores ANYTHING/EX on the disk in Drive 1. You now
need to type SAVE "ANYTHING/EX: 0" if you want to save the
program on the disk in Drive O.

Congratulations. You are now a bonafide disk system operator. You should now
have a good understanding of how your disk system works and how to take
full advantage of it.

37

Part 2

THE DISK
PROGRAM

Storing a BASIC program is easy. You only need to use the SAVE
command. Storing data takes a little more effort. You need a program.

Some of you might prefer to buy a ready-made program. However,
if you want more control and are willing to invest a little time, you
can write your own.

In this part, we show you how to write a BASIC program that stores
data on disk. We assume you already know some BASIC. If you don't,
study the BASIC manual that came with your computer. It gives you
all the background you need.

39

—_—

F——3
P
—_—

—
—

One Thing at a Time

(Sequential Access to a File)

A tape is simple. There's only one way to put data on or read data from a tape.
A disk is more complex and has several ways to file your data.

In this chapter and the next, we show how\to write a program that stores data
in a sequential access disk file. This is the simplest type of file to create, and
it is actually very similar to a tape file. In Chapter 7, we introduce direct access,
an alternate type of disk file.

In showing how to store things on disk, we frequently use the words disk file
and disk directory. We discussed these concepts in Chapter 2, but we'll sum-
marize them now.

41

One Thing at a Time

Everything you store on disk must go in a disk file and be assigned a filename.
Your computer indexes the location of the disk file in the disk’s directory. For
example, if you want to store the names of your friends, you can put them in
a disk file named FRIENDS. Your disk’s directory then indexes where, on the
disk, FRIENDS is stored.

There is, of course, a good reason for all of this. Using the disk filing system, -
the computer is able to immediately find any file on the disk.

Writing a Disk File

Let's assume you want to write your checks on the disk:

CHECKS

DR. HORN
SAFEWAY

FIRST CHRISTIAN
OFFICE SUPPLY

We start with a short, simple program that writes the first check, DR. HORN,
on the disk. Insert a formatted disk in your disk drive. {If you have two disk drives,
use Drive 0.)

Then type:

10 OPEN o', #1, "CHECKS/DAT"
20 WRITE #1, '"DR. HORN"
30 CLOSE #1

Run the program. You hear the motor of the disk drive and see the red light.
The computer is doing several tasks.

42

Chapter 5

First, it opens communication to the disk so you can send your checks to it.
Then, it finds an empty location in which to store the checks, and notes the
beginning location of that disk file in the directory.

All of this happens in Line 10. Notice the meaning of O, #1, and CHECKS/DAT:

e The #1 refers to a special buffer area in memory called Buffer # 1. This buffer
communicates with the disk drive. Line 10 opens the buffer. (if you've been
using tape, you might remember that Buffer # —1 communicates with the
tape recorder.)

e The O is the letter O, not a zero. It stands for output. It tells the computer
that Buffer #1 will be sending data to the disk.

¢ CHECKS/DAT is the name of the disk file. The disk’s directory uses this name
1o index the file's beginning and ending locations.

In Line 20, the computer sends the words DR. HORN to Buffer #1, which writes
the words on the disk.

Then, in Line 30, the computer closes communication with Buffer # 1. In doing
this, it:

1. Sends all the data remaining in Buffer #1 to the disk file.
2. Notes in the disk’s directory where CHECKS/DAT ends.

It is important that you close communication with Buffer #1. Why? Well, let’s
leave Buffer #1 open. Delete Line 30 and run the program several times.

43

One Thing at a Time

The program appears to work the same every time you run it. This is because
every time you run (or load) a program, the computer automatically closes com-
munication with any buffers left open.

Now, let’s assume you switch disks and run or load a program. The computer
automatically closes communication with Buffer # 1. In doing this, it sends out
its closing information to the new disk, thinking it's the old one. This very possi-
bly garbles the contents of both_disks.

Now that we've warned you of the importance of Line 30, re-insert this line in
your program and run it again. This is what the program writes on your disk:

To verify that the computer does this, you can check the disk’s directory. Type
DIR :

Because this program sends your data out to the disk file, we call it an output
program.

44

Chapter 5

Reading the Disk File

To get the computer to read this data from the disk back into memory, you need
an input program. Erase the output program you now have in memory by typing
NEW(ENTER). Then, type and run this input program:

100 OPEN "I', #1, "CHECKS/DAT"
110 INPUT #1, AS

120 PRINT AS$

130 CLOSE #1

This program is actually just the reverse of the output program.

Line 100 again opens communication to Buffer # 1. This time, we use the letter
| {for input) in Line 100. The computer goes to the disk’s directory to find where
to start inputting the file named CHECKS/DAT.

In Line 110, the computer inputs the first data item from the disk file named
CHECKS/DAT, and labels it A$. Line 120 prints (displays) A$.

Finally, Line 130 closes communication to Buffer #1. In doing this, the com-
puter inputs any data remaining in the buffer.

45

One Thing at a Time

One Check at a Time

At this point, you have used an output program and an input program. Now,
combine them into one program. Type:

10 OPEN "O'", #1, "CHECKS/DAT"
20 WRITE #1, "DR. HORN"

30 CLOSE #1

100 OPEN "I'', #1, "CHECKS/DAT"
110 INPUT #1, AS

120 PRINT AS$

130 CLOSE #1

Add these lines, and run the program:
25 WRITE #1, "SAFEWAY"

115 INPUT #1, BS
120 PRINT A$, BS$

46

Chapter 5

Lines 10-30 output two checks into your disk file:

Lines 100-130 input them. Try to input more than two checks. Change Lines
115 and 120:

115 PRINT A$
120 GOTO 1190

and run the program. The computer prints:
?1E ERROR IN 1190

The computer is notifying you that you are asking it to input more checks than
are in the file. Technically, the I E error means you've attempted to input past
the end of the file.

The IE error makes things difficult when you want to input all the data, but you
don't know how much is in the file. We showed you this error so you would
appreciate our new word, EOF. Type:

105 IF EOF(1) = -1 THEN 130
120 GOTO 105

and run the program. EOF checks to see if you've reached the end of the buffer.
If you have reached it, EOF(1) equals —1. If you haven't, EOF equais O.

When you add Line 105 to the program, the computer checks to see if you've
reached the end before inputting the next check. If you have, Line 130 closes
communication to the file.

47

One Thing at a Time

Details...

So far, CHECKS/DAT has been easy to handle but not very useful. You would
probably like to add details, such as:;

CHECKS
PAYABLE TO AMOUNT EXPENSE
DR.HORN 45.78 MEDICAL
SAFETY 22.50 FOOD
FIRST CHRISTIAN 20.00 CONTRIB.
OFFICE SUPPLY 13.67 BUSINESS

Change Lines 25 and 115, and add some lines by typing:

25 WRITE #1, 45.78
27 WRITE #1, "MEDICAL"
110 INPUT #1, A$, B, C$
115 PRINT A$, B, C$

List the program. This is the way it should look now:

10 OPEN 0", #1, "CHECKS/DAT"
20 WRITE #1, "DR. HORN"

25 WRITE #1, 45.78

27 WRITE #1, "MEDICAL"

30 CLOSE #1 '
100 OPEN "'I", #1, "CHECKS/DAT"
105 IF EOF(1) = -1 THEN 139
110 INPUT #1, AS$, B, C$

115 PRINT A$, B, C$

120 GOTO 105

130 CLOSE #1

Now run the program.

48

Chapter 5

A Good, Tight Program

What if you need to store a long list of checks? You can continue to plod along
with this program, but it soon becomes unbearable.

However, the following is a tight program that asks you to input all your data
when you run the program. The program prompts you for the data, stores the
data on disk, and reads it back into memory.

Type NEW to erase memory. Then type:

5CLS

19 OPEN "O'", #1, "CHECKS/DAT"

20 INPUT ""CHECK PAYABLE TO :"; A$

30 IF A$S ="' THEN 8¢

49 INPUT "AMOUNT : $"; B

50 INPUT "EXPENSE :"; C$

60 WRITE #1, A$, B, C$

70 GOTO 20

80 CLOSE #1

90 CLS

100 PRINT "YOUR CHECKS ARE STORED ON DISK"
110 INPUT "PRESS <ENTER> TO READ THEM"; AS$
120 OPEN "I', #1, "CHECKS/DAT"

130 IF EOF(1) = -1 THEN 170

1490 INPUT #1, AS, B, C$

150 PRINT AS$; B; C$

160 GOTO 130

170 CLOSE #1

49

One Thing at a Time

Run the program. Input any checks. When you want to quit, simply press
(ENTER)in answer to the CHECK PAYABLE TO: prompt. The following ex-
ample shows the prompts and some possible responses to them.

CHECK PAYABLE TO :? GOODY BANK (ENTER)
AMOUNT :$? 230.97

EXPENSE :? CAR

CHECK PAYABLE TO :?

YOUR CHECKS ARE STORED ON DISK
PRESS <ENTER> TO READ THEM?
GOODY BANK 230.97

CAR

The answers to the programming exercises are in Appendix A.

50

Changing It All

Around
(Updating a Sequential Access File)

Everything you put on or take off a disk goes through a spot in memory called
a buffer. When we told you how to put data on tape in your Extended Color
BASIC manual, we didn't talk about these buffers. We didn’t need to. Only one
buffer Buffer # —1, communicates with the tape recorder.

With your disk system, you can use up to 15 buffers. This means you can have
up to 15 spots in memory to communicate with 15 different disk files at the
same time.

51

Changing It All Around

There is a particular reason for bringing up the subject of multiple buffers now.
We want to demonstrate how to change some of the data in your file. To change
data, it is very helpful to use two buffers.

Type this program:

10 OPEN "O'', #1, "ANIMALS/DAT"
20 WRITE #1, "HORSE"

30 WRITE #1, ""COuW"

49 CLOSE #1

Run it. Now, let’s assume you want to change COW to GIRAFFE. First, you need
to read the data items into memory with an input program. Erase memory by
typing NEW (ENTER). Then, type:

5CLS :

10 OPEN "I", #1, "ANIMALS/DAT"
20 IF EOF(1) = -1 THEN 1190

30 INPUT #1, AS

40 PRINT "DATA ITEM :'" AS$

100 GOTO 20

119 CLOSE #1

Then you need to add lines that let you change one of these data items and
store the change in the disk file. Type:

50 PRINT @ 451, "PRESS <ENTER> IF NO

CHANGE";

60 PRINT @ 263, "CHANGE :";
70 INPUT X$

80 IF X$ ="" THEN X$ = AS$

90 WRITE #1, X$

b2

Chapter 6

Run the program. As soon as the computer gets to Line 90, it prints:
?FM ERROR IN 90

List the program. Line 10 opens Buffer #1 to input data. Line 90, however, is
attempting to output data to Buffer #1. The computer won't output data to
a buffer opened for input.

This is where the additional buffer becomes handy. To output your changed data
to the disk, you can open another buffer, this time for output. Add these lines:

15 OPEN "O', #2, "NEW/DAT"
90 WRITE #2, X$

95 CLS

120 CLOSE #2

Run the program. Change COW to GIRAFFE. This is the way the entire program
looks:

5 CLS

10 OPEN ""I', #1, "ANIMALS/DAT"
15 OPEN "0, #2, "NEW/DAT"

20 IF EOF(1) = -1 THEN 110

30 INPUT #1, AS

40 PRINT "DATA ITEM :'" A$

50 PRINT @ 451, "PRESS <ENTER> IF NO
CHANGE";

60 PRINT @ 263, "CHANGE :";

70 INPUT X$

80 IF X$ = "" THEN X$ = A$

90 WRITE #2, X$

95 CLS

100 GOTO 20

110 CLOSE #1

120 CLOSE #2

Line 10 opens communication to Buffer #1 for input from a disk file named
ANIMALS/DAT. Line 15 opens communication to Buffer # 2 for output to a disk
file named NEW/DAT.

53

Changing It All Around

Line 30 inputs A$ from Buffer #1. Line 70 allows you to input X$, which replaces

AS. If you input X$, Line 90 outputs it. Line 90 outputs X$ to Buffer # 2, which,
in turn, writes X$ to NEW/DAT.

Line 110 closes communication to Buffer #1, and Line 120 closes communica-
tion to Buffer #2.

Now you have two files. ANIMALS/DAT contains the old data, and NEW/DAT
contains the new. Add these lines to the program:

130 KILL "ANIMALS/DAT"
140 RENAME "NEW/DAT'" TO "ANIMALS/DAT"

Run the program. The computer deletes ANIMALS/DAT from the disk. Then it
renames NEW/DAT to ANIMALS/DAT—in effect, updating ANIMALS/DAT. (Note:
If you think you might want to use the renaming program again later, save it
on disk now.) Now, you can check the updated contents of ANIMALS/DAT. To
do so, type NEW(ENTER); then, type and run the following program. (If you want
to keep the last program, save it on disk.)

10 OPEN "I*, #1, "ANIMALS/DAT"
20 IF EOF(1) = -1 THEN 60

30 INPUT #1, AS

4O PRINT AS

5¢ GOTO 20

60 CLOSE #1

54

Chapter 6

To see if you understand about updating files, try these exercises:

The next exercise is a program many of you might want, a mailing list program.
Start with these lines which let you input the names, addresses, and phone num-
bers of your club members:

89 OPEN "O', #1, "MEMBERS/DAT"
90 GOSUB 43¢

100
110
120
430

440
450
460
470
480

IF N$="" THEN CLOSE#1:END
WRITE #1, N$, AS, P$

GOTO 90

CLS: PRINT "PRESS <ENTER> WHEN
FINISHED'" :PRINT

INPUT ""NAME OF MEMBER:';N$

IF N$=""" THEN 480

INPUT "ADDRESS :"; A$

INPUT "PHONE NUMBER :'; P$
RETURN

Now finish the program by solving this programming exercise. It is difficult, but
we think you can do it. Remember, no one's watching. If you get bogged down,
refer to the answer in Appendix A for help.

55

Changing It All Around

Alll of this works quite well on a small scale, but how does it work in a large
file? What if you have 500 members in your MEMBERS/DAT file, and you want
to change only the address of the 453rd member?

The process is still the same. You have to input each of the 500 members from
one file, and then output them all to another file. All of this just to change one
record. There must be an easier way!

The easier way is called the direct access method of programming. It makes
your files easier and faster to update, but in many cases it takes up more space
on your disk. The choice is yours. We discuss direct access in the next chapter.

b6

DisK FILE

STORAGE AREA
NO ADMITARCE WiTHOOT Numaer

INFORMATION

A More Direct
Approach

(Direct Access to a File)

Until now, we haven’t been concerned with the format in which the computer
stores the data that you put on a disk. We have simply shown how to put the

data there.

A More Direct Approach

begirmny

\W;M?g/DAT "

\M o "WAMES/DAT

What if you want to change J. DOE to ELLIOTT HOBBS? You cannot ask the
computer to go directly to J. DOE. The computer does not know where J. DOE is.

All the files created so far are sequential access. To find a particular item in a
sequential access file, the computer must start at the beginning and search
through each item. it can’t go directly to the item. In short, a sequential access
file does not take full advantage of your disk’s filing system.

Using the Disk Filing System

In Chapter 2, we talk about how formatting your disk creates this filing system.
In our analogy, the file cabinets are the disk tracks and the file drawers are the
disk sectors. You can use tracks and sectors to immediately find any item you
want.

58

Chapter 7

To do this, you can divide your file into parts called records. You can then write
a program that stores each record in a sector and lets you put data in the records.
Here is how such a disk file looks: ’

W of- “MAMES/DAT "

Record 1

Record 2

Record 3

Record 4 |

/
erd. of 'NAMES/DAT ”

Because each record has the same length (the length of a sector), the com-
puter can go directly to J. DOE. All it has to do is count to the second record.

We call this direct access. By direct access, we mean you can directly access
any record you want in the file.

A direct access file has one shortcoming. Because each record is the size of
one sector, it is 266 bytes long—large enough to hold 256 characters.

This means that the preceding drawing is a little misleading. If we illustrated all
the empty space in each record, the records would be nearly ten times as long.

59

A More Direct Approach

If you're a beginner, all this empty space probably won't bother you. An empty
disk can hold up to 612 records. Later, when you become more comfortable
with programming, you might want to pack more records into a disk file. You
can then progress to Chapter 9, where we demonstrate how to make smaller
records.

Putting a Record on Disk

Enough theory! Let's put a record in a disk file. Since it is a direct access file,
we don't have to start with the first record. We can start with the second. Erase
memory and type:

10 OPEN "D", #1, "NAMES/DAT"
20 WRITE #1, 'J. DOE"

30 PUT #1, 2

40 CLOSE #1

The program looks familiar, except for the word PUT in Line 30 and the D in
Line 10. We'll talk about that in detail later.

Now, add some lines so that the computer reads this record back into its main
memory. Type:

34 GET #1, 2
36 INPUT #1, AS
38 PRINT AS

Note that Line 34 uses another new word, GET. Hmmm...any ideas? Look at
the entire program:

10 OPEN "D'", #1, "NAMES/DAT"
20 WRITE #1, "J. DOE"

30 PUT #1, 2

34 GET #1, 2

36 INPUT #1, AS

38 PRINT AS

40 CLOSE #1

60

Chapter 7

Run it. You hear the now-familiar sound from your disk drive. The computer is
writing J. DOE in the disk file and then reading it back into memory. Here's how.

Line 10 opens Buffer #1, which communicates with a disk file named
NAMES/DAT.

Communication is being opened for D. The D stands for direct access. With
direct access, unlike with sequential access, you don’t have to specify whether

you're opening communication for dutput or input. The D suffices for both.

Line 20 writes J. DOE to Buffer #1. Since this program is open for direct ac-
cess, J. DOE remains in Buffer #1 until the program sends it elsewhere.

Line 30 does just that. It puts the contents of Buffer #1 into the disk file as
Record 2: -

L

“NAMES/pAT "
4

Record 1

Record 2 /1

and
“/VAMOfS /DAT "

61

A More Direct Approach

At this point, J. DOE is no longer in Buffer #1. It is in Record 2 of the disk file.

Line 34 gets Record 2, and reads it back into Buffer #1. Now J. DOE is in both
the disk file and Buffer #1.

Line 36 inputs the record from Buffer #1 into main memory, and labels it A$.
Now, J. DOE is in both the disk file and main memory. It is no longer in Buffer #1.

With J. DOE in main memory, Line 38 can print it. -

Notice that the drawing shows only two records in the file. Get Record 4. Type:

34 GET #1, &

Run the program. The computer displays an 1E (input past the end of the file)

error. This is because the last record the program put in the file was Record
2. Hence, Record 2 became the end of the file,

To put more records in the file, add these lines. Then, run the program:

31 WRITE #1, "BILL SMITH"
32 PUT #1, 4

62

Chapter 7

Now, your NAMES/DAT file has these four records:

s

“NAMES/DAT "

Record 2

Record 3

endb
‘Wanggg/oﬂ "

63

A More Direct Approach

Dealing With Garbage

You have not yet put anything in Record 1. Ask the computer to get Record
1, and see what happens. Type this; then, run the program again:

34 GET #1, 1

Because the computer didn’t put anything in Record 1, Record 1 contains
whatever garbage is already there,

When you ask the computer to get and input, it either gets the garbage or gives
you an OS (out of string space) error. The 0S error means that the garbage
consumes more than 200 bytes (characters).

Because your empty records contain garbage until you fill them with something,
it's a good idea to put some kind of data in all of them in advance. Erase memory,
and type this program:

10 OPEN "D'', #1, "NAMES/DAT"
20 FORX=1T010

30 WRITE #1, '""NO NAME"

40 PUT #1, X

50 NEXT X

60 CLOSE #1

Run it. This program sets up a disk file named NAMES/DAT, which has ten
records. Each record contains NO NAME:

o

£ “WAMES JDAT

Record 1

64

Chapter 7

Record 4

Record 5

Record 6

Record 7

Record 8

Record 10
ndl

“A/AMZ@ /DAT”

65

A More Direct Approach

Now, erase memory and type this:

10
20
30
Lo
50
60
70

80

90

OPEN "D', #1, "NAMES/DAT"

CLS : INPUT "RECORD NO. (1-10)"; R
IF R>10 THEN 29

IF R<1 THEN 139

GET #1, R

INPUT #1, AS

PRINT A$: PRINT "-- IS THE NAME

IN RECORD'R

PRINT =z LINE INPUT "TYPE NEW NAME OR

PRESS <ENTER> '"; A$
IF A$ = """ THEN 20

100 WRITE #1, AS
110 PUT #1, R
120 GOTO 20

130 CLOSE #1

Run the program. See how all your records initially contain NO NAME. Then,
you can change the data in any of the records at will, as many times as you
want. To end the program, input @ in response to the RECORD NO . prompt.

Reading All Records

At this point, you might like the computer to print all the records in your
NAMES/DAT file, with their appropriate record numbers. Save your program, if
you want. Erase memory by typing NEW(ENTER). Then, type and run:

5CLS
10 OPEN "D', #1, "NAMES/DAT"

20
30
Lo
50
60
0
80
90

R =1

GET #1, R

INPUT #1, AS

PRINT A$ ""=- IS IN RECORD" R
IFR=10 THEN 90

R=R+1

GOTO 30

CLOSE #1

66

Chapter 7

Line 20 makes R equal to 1. In the next lines, the computer gets, inputs, and
prints (displays) Record 1.

Line 70 then makes R equal to 2, and the whole process is repeated with Record
2. When R equals 10, the last record in the file, the program ends.

There are many occasions when you don’t know the last record number in the
file. Change Line 60 and run the program:

60 IF R = LOF(1) THEN 990

LOF looks at the file with which Buffer #1 (the number in parentheses) is com-
municating. It tells the computer the last record number in that file.

More Power to a Record

So far, we put only one field of data in each record. We can make the file more
organized by subdividing each record into several fields.

Erase memory. Then, type and run this program:

10 OPEN "D", #1, "BUGS/DAT"

20 WRITE #1, "FLIES", 1000000, "HAIRY"
30 PUT #1, 2

34 GET #1, 2

36 INPUT #1, D$, N, TS

38 PRINT D$, N, T$

49 CLOSE #1

67

A More Direct Approach

Line 20 writes three fields of data into Buffer #1. Then, Line SO puts the entire
contents of Buffer #1 (all three fields) into Record 2 of the file BUGS/DAT.

W

\\BL(G /DAT ”

Record 1

Record 2

Lena,

"BUGS/paT

Line 34 gets everything in Record 2, and reads it into Buffer #1. Then, Line
36 inputs all three fields of data from Buffer #1, and labels them as DS, N,
and T$.
Try substituting this for Line 36:

36 INPUT #1, D$

Run the program. Since this line asks the computer to input only the first field
of data in Buffer #1, the computer inputs only FLIES.

68

Chapter 7

69

Part 3

THE REFINED
DISK
PROGRAM

After writing disk programs for a while, you might want to make them
more efficient. Perhaps you'll want to put more data on the disk.
You might also want to economize on memory space or use some
extra buffer space.

At that time, we invite you to read this section. The subject matter
is more advanced and technical. Once you finish it, though, you'll
have all the information you need to write the best possible disk
programs.

71

161,280 161,280

How Much
Can One Disk Hold?

(What the Computer Writes in a Disk File)

Your disk is divided into thousands of equal-sized units. Each unit is a byte. Each

byte can hold one character. Thus, the word STRAW consumes five bytes of
disk space.

An empty disk contains 161,280 bytes. The directory takes up 4,608 of these
bytes, leaving you with 156,672 bytes for your disk files.

73

How Much Can One Disk Hold?

Does this mean you can use the entire 156,672 bytes for data? Possibly. There
are two factors that determine the answer to this question.

The first factor has to do with the way the computer allocates space for a disk
file. It stores a file in clusters. (We call them granules.) Each granule contains
2,304 bytes.

Because of this, all of your disk files contain a mulitiple of 2,304 bytes. If your
file contains 2,305 bytes of data, for example, the computer allocates two gran-
ules for it, or 4,608 bytes (2,304 x 2).

The computer allocates file space in this manner because it's the most efficient
way to create a file. It is very tricky to change this and is something that only
very technical people would want to do. (See Chapter 11, “Technical Informa-
tion,” for additional information.)

The second factor that affects the amount of data that you can put in a disk
file is your program. Some disk programs are very efficient. Others put a lot of
overhead and empty space in the file.

The next two chapters compare eight different types of programs. Each pro-
gram stores the same two records in a disk file named OFFICE/DAT. One record
contains the data 5, PEN. The other contains the data 16, PAPER. The amount
of overhead and empty space that each program puts in OFFICE/DAT varies
greatly.

74

Chapter 8

Writing on the Disk

Program 1 uses WRITE to put the data on the disk. Type and run it:

There is an easy way to see the data that Lines 20 and 30 wrote on your disk.
Type the two lines as they are above, but this time leave off the program line
number and the #1. Leaving off the #1 prevents the computer from writing
the data on your disk (via Buffer #1}. The computer writes it on your screen
instead. Type:

WRITE 5, "PEN"
WRITE =16, "PAPER"

Look carefully at what the computer writes. Every blank space and punctuation
mark counts.

Notice the way the computer writes the two strings (PEN and PAPER). it puts
quotation marks around them. It writes the numbers (5 and —16) differently.
If a number is negative, the computer puts a minus sign in front of it. If a num-
ber is positive, the computer puts a blank space in front of it.

There are two characters you typed that the computer didn't write on the screen.
These are the two characters you typed at the end of the WRITE lines.
The computer skipped down to the next line instead:

5, "PEN"
0K

-16, "PAPER"
oK

75

How Much Can One Disk Hold?

When writing on the disk, the computer does write each character. The
following illustration shows what Program 1 writes on your disk. (Asterisks
represent the characters):

Count the characters. (Note: Each blank space, comma, quotation
mark, character, and minus sign counts as one character, as does each
letter and numeral.) You should come up with 21 characters. Did you remember
the blank space preceding the number 57 Program 1 puts 21 bytes in OFFICE/DAT.

Since the computer allocates file space in clusters, OFFICE/DAT actually con-
sumes one granule of disk space, or 2,304 bytes. However, for the purpose of
comparison, we'll look only at the 21 bytes that Program 1 puts in OFFICE/DAT.

76

Chapter 8

A Disk-Eye View

To input OFFICE/DAT, type and run this INPUT program. (Erase memory first.)

The program inputs your data items. However, it does not input the quotation
marks, commas, and blank spaces that are interspersed with your data.

To see what Program 1 actually wrote on your disk, you can use a LINE INPUT
program. First, save the INPUT program you now have in memory. (You use it
later.)

Now, change the INPUT program to a LINE INPUT program. Delete Line 50
and change Lines 40 and 60 by typing the following lines:

49 LINE INPUT #1, LS
50
60 PRINT "DATA LINE :" LS

Run the program. Line 40 inputs an entire ling, rather than one single data item,

from the disk file. This line includes everything up to the character —
punctuation marks, spaces, and all.

In the OFFICE/DAT file, the first line contains 5, PEN. Line 40 labels this line as
L$, and Line 60 prints the line on your screen.

77

How Much Can One Disk Hold?

The program then inputs and prints —16, PAPER — the second and final line
in the file.

You can easily alter this program so that it counts the number of bytes in the
file. Add these lines, and run the program.

25 PRINT "THIS FILE CONTAINS :"
27 PRINT: PRINT: PRINT: PRINT
57 M$ = LS+ ""xn

60 PRINT M$;

65 L = LEN(MS$) + L

90 PRINT @ 394, L "BYTES"

Line 57 adds an asterisk to each line. This asterisk represents the charac-
ter. Line 65 then counts the number of characters in each line,

This is the entire LINE INPUT program:

Save the program. It will be useful in comparing the data that Programs 2, 3,
and 4 put in your disk file.

78

Chapter 8

Print — For a Change

So far, we use only WRITE to put data in a disk file. If you've used other forms
of BASIC, you might be accustomed to using PRINT rather than WRITE.

The Color Computer disk system allows you to use either PRINT or WRITE.
However, in some cases, PRINT can be more tricky to use than WRITE. If you're
not used to it, you might want to skip to Program 4.
Are you still with us? Delete your old OFFICE/DAT file by typing:

KILL "OFFICE/DAT"

Now, erase memory, and type and run Program 2. Then run the INPUT or the
LINE INPUT program, if you like.

Here's Program 2:

Lines 20 and 30 print your data to Buffer #1, which, as you know, is one of
the 15 buffers that will send your data to the disk file. To see what Program
2 prints, type:

PRINT 5, "PEN"
PRINT -16, "PAPER"

Notice that the computer does not enclose the strings, PEN and PAPER, in quo-
tation marks, as WRITE does. This is important to know and is discussed later.

79

How Much Can One Disk Hold?

Now, look at the blank spaces. Start with the first one, the one before the 5.
This space means the same thing it did with WRITE. It indicates that 5 is a
positive number.

Now for the other blank spaces... Whenever the computer prints a number, it

prints one trailing blank space after it. This explains the first blank space after
the b and the —16.

How about all the additional spaces? They are caused by the commas. Using
a comma in a PRINT line causes the computer to print your data in columns,

inserting spaces between the columns.

The computer prints every one of these blank spaces in your disk file:

—ndl of “OFFICE/DAT *

Count the characters. Program 2 puts 42 bytes into OFFICE/DAT.

80

Chapter 8

Printing Less

You might feel that all the blank spaces that PRINT inserts in your disk file are
a waste of space. They are. The way to get around this waste is to use semicolons.
Semicolons in a PRINT line compress your data. Type:

PRINT 5; "PEN"
PRINT -16; "PAPER"

You can compress your data on the disk in the same manner. Erase memory
and delete your old OFFICE/DAT file. Then, type and run this program:

This is what Program 3 prints on your disk. (Use the LINE INPUT program to
test this, if you'd like):

“OFFIg&é‘// PAT "

¢

Very efficient. The data takes only 17 bytes. There are only three blank spaces
in this disk file. There is a space before the b (to indicate that it is positive) and
spaces after b and — 16 (to indicate that they are numbers). There are no blank
spaces around the strings.

OFFICE S DAT

81

How Much Can One Disk Hold?

The Tricky Part

Certain types of PRINT lines can be tricky. (We did caution you, didn't we?) Type:

PRINT "PEN'"; "PAPER"
PRINT "JONES, MARY"
PRINT "PEN", 5

Theline PRINT #1, ""PEN'; "PAPER"" (in your disk program) would print
this in your disk file:

W _endd,
T

82

Chapter 8

The computer reads PENPAPER back into memory as one item. (Reason: there
is not a delimiter — a comma, quotation mark, or space — to separate PEN
from PAPER.)

The line PRINT #1, ""JONES, MARY" prints this in your disk file:

S
\ A

The computer reads JONES, MARY back as two items: JONES and MARY.
{Reason: The computer interprets the comma as a delimiter.)

The line PRINT #1, "PEN", 5, prints this in your disk file:

S anale
nd of fle

The computer reads PEN 5
{with all the blank spaces) back into memory as one item. (Reason: although
the computer normally interprets a blank space as a delimiter, it does not inter-
pret the space this way if the space follows a string and precedes a number.

83

How Much Can One Disk Hold?

An Attractive Disk File

PRINT USING is another command you can substitute for WRITE. Type:
PRINT USING "% ASHHHR HH"; "PEN", 5

PRINT USING "% %S+HH HH; "PAPER", -16

You can get the computer to print these same images on your disk with the
following program. Delete OFFICE/DAT, and erase memory. Then, type and run:

84

Chapter 8

The program prints the following in your disk file:

Segrringy of gl

Now, the data is in an attractive print format. You can input and print it using
a simple LINE INPUT program. Erase memory. Then, type and run:

190 OPEN "I', #1, "OFFICE/DAT"
20 IF EOF(1) = -1 THEN 60

30 LINE INPUT #1, AS

40 PRINT AS

50 GOTO 29

60 CLOSE #1

All the files created in this chapter are sequential access. The next chapter com-
pares four more programs, which put the same data in direct access files.

85

How Much Can One Disk Hold?

86

—
—

llmm

Trimming the Fat
Out of Direct Access

(Formatting a Direct Access File)

Direct access files often contain a lot of empty space. For example, the first pro-
gram in this chapter is very similar to Program 1 from the last chapter. The WRITE
lines are identical. However, because Program 5 uses direct access, it puts 512

bytes in OFFICE/DAT.

87

Trimming the Fat Out of Direct Access

A direct access program puts your data inside records. Each record is 256 bytes

long. Program 5 puts two records in the OFFICE/DAT file. Therefore, the file con-
sumes 2% 2586, or 512 bytes:

J(xjymc?/ of “OFFICE /DAT "'

88

Chapier 9

Record 1

89

Trimming the Fat Out of Direct Access

Record 2

nd
. omce/%r"

This obviously wastes a massive amount of space. Notice what the computer
actually writes in each record:

5, "PEN"x
-16, "PAPER"*

This is the same as what Program 1 wrote. Count the bytes. There are nine
bytes in the first record and 12 in the second. You need to know this for the
next program.

90

Chapter 9

Trimming the Fat

Program 6 is the same as Program b, except that we inserted the number 12
at the end of Line 10. This number tells the computer to make each record 12
bytes long:

and cuts the file down immensely:

gy

/ ‘OFF/CE/D/-)T"

Record 1

Record 2

end of
“OFF ICE/DAT ~

9

Trimming the Fat Out of Direct Access

In a direct access file, all records must be the same length. (We explained why
in Chapter 7.) If you don't tell the computer how long to make the records, it
makes them 256 bytes long.

In Program 6, we make each record 12 bytes long, the size of the largest record.
Type and run Program 6, if you like. (Be sure to erase memory and delete your
old OFFICE/DAT file first.) After running Program 6 you can use the following
program to input the file:

92

Chapter 9

Efficiency, Efficiency...

We can get even more efficient. Our next direct access program consumes only
16 bytes. Erase memory, delete the old OFFICE/DAT file, and type and run Pro-
gram 7.

This program contains two words (FIELD and LSET) that we talk about later.
Run the program and save it. Then, erase memory and use the following pro-
gram to input the file.

93

Trimming the Fat Out of Direct Access

By using FIELD and LSET, Program 7 works the same as any direct access pro-
gram. The difference is in what FIELD and LSET put in each record:

LTt

Record 1

Record 2 \
and

“OFFICE/DAT

Here's how Program 7 works:

Line 20 tells the computer to divide each record into two fields. The first field
is A$ and the second is B$. These two fields are the same size in every record.
A$ is always three bytes long, and B$ is always five bytes long.

Once the program establishes the size of the fields, it can put data in each field.
The first data item is 5. The word LSET sets the character 5 as far left as possi-
ble in the AS$ field. Because the character 5 consumes only one byte, and because
there are three bytes in the AS$ field, there are two empty spaces following the 5.

In looking at Line 30, notice that you had to convert the number 5 to a string
{by putting quotation marks around it). You cannot use LSET on numeric data.
You must convert the data beforehand.

Line 40 left-justifies the word PEN in the BS field. This leaves two empty spaces
at the end of BS, since PEN uses only three bytes.

Line 60 puts all this data in Record 1. Then, the program repeats the entire process
for Record 2.

94

Chapter 9

Now, look at the Fielded INPUT program. Notice the FIELD line. Run the pro-
gram without Line 20, and see what happens. Type:

20
RUN

Without a FIELD line, the computer does not know' where the two fields are.
Whenever you input FIELDed records, use a FIELD line in your input program.

Re-insert Line 20, and save the Fielded INPUT program. Can you guess what
the computer does if you try to left-justify a long string, such as 123456789,
into one of the fields? Load Program 7, change Line 30 as follows, and run the
program:

30 LSET A$ = "123456789"
Now, load and run the Fielded INPUT program.

A$ is only three bytes long. Therefore, the computer left-justifies only the first
three bytes of 123456789. It chops off the remaining characters:

Segisriy

“OFFICE /DAT "

Record 1

Record 2 \

L
“OFFICE / DAT ©

96

Trimming the Fat Out of Direct Access

More on this later... Before going on to the next program, try writing your own
fielded program:

96

Chapter 9

A Number is a Number,...

Let’s assume you put several numbers in your disk file. Every number might be
a different length:

—b.237632 31 673285

However, it is very important that the computer doesn’t chop off any of the digits.
Doing so might change the number’s value entirely.

The word MKNS$ solves this problem:

97

Trimming the Fat Out of Direct Access

The only differences between this program and Program 7 are in Lines 10, 20,
30, and 60. This is what the program stores in your disk file:

Ldeatneu
"oj:F/cs/gﬁroﬁ

s Y5

Record 1

| " 7 5_
R‘mﬁ/’ : 'T Coda almr/é
Lrol of~
“OFFICE/DAT *

MKNS converts a number to a coded string. Regardless of how long the num-
ber is, MKN$ always converts it to a string that is five bytes long.

For example, change Line 30 to LSET a number with more than five digits:

30 LSET A$ = MKN$(123456789)

98

Chapter 9

Erase memory, and delete OFFICE/DAT. Type and run the program. This is what
it stores in your disk file:

— 5=
Coole A /23456787

/—\5_5 t
Caale,zfa@‘/é

U
OFFICE/DAT "’
“To read this program, you need to decode the string. Load the Fielded INPUT

program, and make these changes to it:

19 OPEN "D', #1, "OFFICE/DAT", 10
20 FIELD #1, 5 AS A$, 5 AS B$
50 PRINT "RECORD" R ":"; CVN(A$); BS

Run it. CVN (in Line 50) decodes A$ to the number it represents.

99

Trimming the Fat Out of Direct Access

100

Shuffling Disk Files

(Merging Programs, Using File Buffers)

Because storing and retrieving disk files is so easy, you probébly want to use
files as much as you can. In this chapter, we talk about some special ways you
can use them.

Merging Program Files

With the first method, you can build a program out of related program modules
saved on disk. You can then merge any of these modules with a program you
have in memory.

101

Shuffling Disk Files

Type and save these two related programs:

10 REM AGE CONVERSION TO MONTHS
2ON=N=*12

30 AS = STRB(N) + ' MONTHS"
SAVE "MONTHS/AGE", A

10 REM AGE CONVERSION TO WEEKS
20 N=N=*52

30 A% = STRS(N) + ' WEEKS"
SAVE "WEEKS/AGE", A

Be sure to type the A when you save these programs. {We explain why later.)
Erase memory. Now, put the following program in memory:

5 INPUT "TYPE YOUR AGE"; N
49 PRINT "YOU HAVE LIVED" A$

Combine it with the MONTHS/AGE program you saved. Type:
MERGE "MONTHS/AGE"

List the program that is now in memory by typing L1 ST (ENTER). It now looks
like this:

5 INPUT "TYPE YOUR AGE"; N

10 REM AGE CONVERSION TO MONTHS
20N = N % 12

30 A$ = STRS(N) + " MONTHS"

40 PRINT "YOU HAVE LIVED" AS

Notice that the line numbers are the same as they were in the individual programs.

Now, merge WEEKS/AGE with the program in memory. To do this, type: MERGE
""WEEKS/AGE'(ENTER). Then, list the merged program.

Notice that Lines 10, 20, and 30 of the program you had in memory are replaced
by Lines 10, 20, and 30 of the WEEKS/AGE program.

102

Chapter 10

The line numbers tell the computer how to merge the two programs. When there
is a conflict of line numbers (for example, when there are two Line 10's), the
line from the disk file prevails.

Now, we get technical (for those of you who are interested). What the com-
puter normally writes in your disk file is the ASCIl code for each character of
data. For example, it writes the word AT with two codes: the ASCIl code for
A (65) and the ASCIl code for T (84). (The ASCII codes are all listed in Appen-
dix D.)

However, when it saves a program, the computer writes the BASIC words differ-
ently. To save space, it compresses each BASIC word into a 1- or 2-byte binary
code, often referred as a token.

You can’t merge a file that contains binary code. This is why we had you type
the A when you saved the two previous programs. The A tells the computer
to write the ASCIl code for each BASIC word, rather than the binary code.

By checking the directory, you can see if the data in your files is in ASCIl or
binary code. If there is an A in the fourth column, all the data is in ASCIl. A
B indicates that some words are in binary.

Using More Buffer Space

When you start up your disk system, it sets aside two buffers in memory for
disk communication. You can use either or both for reading from or writing to
a disk file.

Until now, those were all we used—Buffers #1 and # 2. But, as we said earlier,
you can use as many as 15 disk buffer areas.

To use more than two buffers, you must first reserve space in memory for the
buffers. To do this, use the word FILES. For example, typing FILES 3
reserves three buffers.

103

Shuffling Disk Files

Making use of all these buffers greatly simplifies your programs. For example,
assume you own a computer school. To organize it, you first put all your stu-
dents in a file named COMPUTER/SCH.

Erase memory. Then, type and run:

10 OPEN 0", #1, "COMPUTER/SCH"
20 FORX =1T0 6

30 READ AS

49 PRINT #1, AS

50 NEXT X

60 CLOSE #1

7® DATA JON, SCOTT, CAROLYN

80 DATA DONNA, BILL, BOB

Now, you can write a program to assign the students to either a BASIC or an
assembly-language class. Erase memory, and type the following program:

104

Chapter 10

Run the program. After assigning all students to a class, you can use the follow-
ing program to print a class roster. Erase memory. Then, type and run.

The Class Assignment program has three buffers open at the same time. Be-
cause of this, you are able to communicate with three disk files at the same time.

Line 10 reserves memory for these three buffers. Lines 20-40 open the three
buffers. Then, Line 60 inputs a student from COMPUTER/SCH into Buffer # 3.

Line 100 writes the name of the student to either Buffer #1 (BASIC/CLS) or
Buffer #2 (ASSEMBLY/CLS).

When all the students from Buffer #3 (COMPUTER/SCH) are input, Line 50
sends the computer to Lines 150-170, which close the three buffers.

105

Shuffling Disk Files

Crowding the Buffer

There is yet another use for FILES. Erase memory. Then, type and run this
program:

10 CLEAR 400

20 FILES 1,400

30 A$ = "NORMALLY, YOU WILL NOT BE ABLE TO
PUT ALL OF THESE SENTENCES IN A DISK
FILE AT THE SAME TIME."

40 B$ = "THIS IS BECAUSE, WITHOUT USING
FILES, YOU WILL ONLY HAVE A TOTAL OF
256 BYTES OF BUFFER SPACE."

50 C$ ="INTHIS PROGRAM, WE'VE RESERVED
400 BYTES OF BUFFER SPACE." :

60 D$ = "THIS WAY YOU CAN SEND ALL OF THESE
SENTENCES TO THE BUFFER AT THE SAME
TIME."

70 E$ = "WHICH WILL OUTPUT THEM ALL TO THE
DISK FILE AT ONCE."

806 OPEN "O'', #1, "WORD/DAT"

90 WRITE #1, A$, B$, C$, D$, ES$

100 CLOSE #1

Want to input the above paragraph? Add the following lines, and run the pro-
gram agian;

200 OPEN "I", #1, "WORD/DAT"
210 INPUT #1, A$, B$, C$, DS, ES
220 CLS

230 PRINT A$; B$; C$; D$; ES
240 CLOSE #1

Note: You can make the buffer as large as you want.

106

Chapter 10

107

Technical Information
(Disk Structure and Machine-Language)

In this chapter, we discuss the technical operations that go on behind the scenes.
You don’t need this information when you are programming in BASIC. In fact,
you won't even be aware of the operations as they occur.

However, if you plan to write machine-language disk programs, or if you are simply
interested in knowing all you can, you definitely want to read this chapter. It be-
gins by describing how the computer organizes all the bytes on the disk. Then,
it shows how to access them through machine-language programming and other
advanced techniques.

109

Technical Information

What a Disk Contains

When you power up the computer, it organizes the bytes on the disk into tracks
and sectors. Some of the bytes control the system. Most are for data.

Tracks

The computer organizes the disk into 35 tracks, numbered 0-34. Each track con-
tains approximately 6,250 bytes. Of these, 6,084 are divided into sectors; the
remaining bytes are for system controls.

Bytes Contents .

0-31 System controls
32-6116 Sectors
6116-6249 System controls

110

Chapter 11

Sectors

Each track contains 18 sectors, numbered 1-18. Each sector contains 338 bytes.
Of these, 256 are for data. The remaining bytes are for system controls.

Bytes
0-bb
56-311
312-337

Contents
System controls
Data

System controls

The hexadecimal contents of the system control bytes are:

Bytes
0-7
8-10
1

12

13

14

15
16-17
18-39
40-51
52-54
55

312-313
314-337

Hexadecimal Contents
00

F5

FE

Track number

00

Sector number

01

Cyclic redundancy check (CRC)
4E

00

Fb

FB

Cyclic redundancy check (CRC)
4F

111

Technical Information

How the Data is Organized

Each track contains 4,608 bytes that the computer can use for data:

18 sectors per track
x 2b6 data bytes per sector

4,608 data bytes per track

The data bytes in the 17th track contain the disk’s directory. The data bytes in
the remaining 34 tracks are for disk files:

Track Contents of Track’s Data Bytes
0-16 Disk files

17 Disk directory

18-34 Disk files

Disk Files

The computer divides the 34 tracks for disk files into 68 granules. Since each
track contains two granules, one granule is 2,304 bytes long:

9 sectors in 1/2 track
x 256 data bytes per sector

2,304 bytes in a granule

The computer uses granules to allocate space for disk files in 2,304;byte clusters.
Thus, if a file contains 4,700 bytes, the computer- allocates three granules (6,912
bytes) of disk space for it.

112

Chapter 11

The location of the 68 granules, numbered 0-67, is as follows:

Track O, Sectors 1-9 Granule O
Track O, Sectors 10-18 Granule 1
Track 1, Sectors 1-9 Granule 2

| |

| |

| |

\] \
Track 16, Sectors 10-18 Granule 33
Track 17, Sectors 1-18 Directory
Track 18, Sectors 1-8 Granule 34

| |

| |

| |

v v
Track 34, Sectors 10-18 Granule 67

Disk Directory

The directory track (Track 17) contains a file allocation table and directory en-
tries. The sectors on this track that contain this information are:

Sector Contents
2 File allocation table
3-11 Directory entries

The remaining sectors in the directory track are for future use.

113

Technical Information

Directory Entries

The nine sectors of the directory that contain directory entries (Sectors 3-11) hold
as many as 72 entries. Each entry is 32 bytes long and contains:

Bytes
0-7

8-10
"

12

13

14-15

16-31

Contents

Filename, left-justified, blank-filled.
If Byte 0 = O, the file no longer exists, and
the entry is available
If Byte O = FF (hexadecimal), the entry (and
all following entries) are not being used.
Filename extension, left-justified, blank-filled.
File type

O = BASIC program

= BASIC data file
2 = Machine-language program
3 = Text editor source file

ASCII flag
0 = the file is in binary format
FF (hexadecimal) = the file is
in ASCII format

The number of the first granule in the file
{0-67).

The number of bytes in use in the last sector
of the file.

Reserved for future use.

114

Chapter 11

File Allocation Table

Sector 2 of the directory contains a file allocation table for each of the 68 gran-
ules on the disk. This information is located in the first 68 bytes of the sector.
The remaining bytes contain zeroes:

Bytes Contents
0-67 Granule information
68-255 Zeroes

Each of the first 68 bytes corresponds with a granule. For example, Byte 16 cor-
responds with Granule 15.

These bytes contain a hexadecimal value of FF, 0-43, or CO-C9:

Value Meaning
FF The corresponding granule is free. It is not
part of a disk file.

00-43 The corresponding granule is part of a disk
file. The value, converted to decimal, points to
the next granule in the file. For example, if the
value in a byte is OA, the next granule in the
file is Granule 10.

C0-C8 The corresponding granule is the last granule
in the file. The value contained in Bits 0-5 of
this byte tells how many of the sectors in the
granule are part of the disk file. (Bits 6 and 7
both equal 1.} '

1156

Technical Information

Skip Factor

The computer transfers data to and from the disk one sector at a time. Between
each sector read or write, it does some processing.

The disk does not stop while the computer does processing. It spins continuously.

For example, the computer might read Sector 1 first. By the time it finishes this,
the disk might have spun to Sector 6.

To allow for this time differential, the computer sets a skip factor of four when
it formats the disk. This notes on the disk that the computer skips four physical
sectors between each logical sector:

PHYSICAL LOGICAL
SECTOR SECTOR
1 1
2 12
3 5
4 16
5 9
6 2
7 13
8 6
9 17
10 10
11 3
12 14
13 7
14 18
15 11
16 4
17 15
18 8

116

Chapter 11

Thus, after reading Sector 1, the computer skips Physical Sectors 2, 3, 4, and
5. The second sector it reads is Physical Sector 6 (or logical Sector 2).

A skip factor of 4 is the optimum setting for BASIC loads and saves. However,
if you're not using BASIC, you might be able to use a faster skip factor. For
example:

DSKINIO®, 3

tells the computer to skip three physical sectors between each logical sector.

Machine-Language Disk Programming

The disk system contains a machine-language routine called DSKCON, which
you can call for all disk input/output operations. To call this routine, you write
instructions to the Color Computer’s 6809 microprocessor.

For the procedures to use in accessing a machine-language subroutine, see ““Us-
ing Machine-Languages Subroutines” in the BASIC manual that came with your
computer. See TRS-80 Color Computer Assembly Language Programming, by
William Bardon Jr. for the specific 6809 instructions.

117

Technical Information

Information on DSKCON

A pointer to DSKCON's entry address is stored in locations CO04 and CO05
(hexadecimal). You can call it with this assembly-language instruction:

JSR [$C004]

DSKCON's parameters are located in six memory locations, organized as follows:

DCOPC RMB 1
DCDRV RMB 1
DCTRK RMB 1
DSEC RMB 1
DCBPT RMB 2
DCSTA RMB 1

The pointer to the address of the first, DCOPC, is contained in locations CO06
and COO07 (hexadecimal). You can use the first five memory locations to pass
paraméters to DSKCON. DSKCON returns a status byte to the sixth location,
DCSTA.

These are the parameters you can pass to the first five memory locations:

DCOPC — operation code
0 = Restore head to Track O

1 = No operation
2 = Read sector
3 = Wirite sector

DCDRV — drive number (0-3)
DCTRK — track number {0-34)
DCSEC — sector number (1-18)

DCBPT — buffer pointer (the address of a 256-byte buffer)
For a “read sector” operation, the data is returned in
the buffer. For a “write sector” operation, the data in
the buffer is written on the disk.

118

Chapter 117

This is the meaning of the status byte that the DSKCON routine returns to loca-

tion DCSTA:

DCSTA — status
A value of 1 in Bit 7 = Drive not ready
A value of 1 in Bit 6 = Write protect
A value of 1 in Bit 5 = Write fault

A value of 1 in Bit 4 = Seek error or record not found
A value of 1 in Bit 3 = CRC error
A value of 1 in Bit 2 = Lost data

If all the bits contain O, no error occurred. (See the disk service manual
for further details on the error bits.)

After returning from DSKCON, you can turn off the drive motor by putting the
value of O in the memory location FF40 (hex).

Sample Programs Using DSKCON

The following program uses DSKCON to restore the head to Track O:

LDX

CLR
LDA

STA
JSR
LDA
STA
TST
BNE
RTS
LDA
STA
RTS

$C006

o X
#1

1,X
[$C004]
#3090
$FF4O
6,X
ERRORS

#$45
$41D

SET X AS A POINTER TO THE
PARAMETERS

DCOPC =0 FOR RESTORE
DCDRV =1 TO SELECT DRIVE
ONE

CALL DSKCON
TURN OFF THE DRIVE MOTOR

CHECK FOR ERRORS
GO REPORT THE ERRORS

"E'" FOR ERROR
TOP RIGHT OF THE DISPLAY

119

Technical Information

This program uses DSKCON to read Track 3, Sector 17 of Drive O into memory
Locations 3800-38FF:

LDX

LDA
STA
CLR
LDA
STA
LDA
STA
LDU

STU
JSR
LDA
STA
TST
BNE
RTS
LDA
STA
RTS

$Co006

6,X
ERRORS

H845
$410D

SET X AS A POINTER TO THE
PARAMETERS
DCOPC =2 FOR READ A SECTOR

SELECT DRIVE @
SELECT TRACK 3

SELECT SECTOR 17

DCBPT=3800 (HEX) FOR
STORING DATA

CALL DSKCON
TURN OFF THE DRIVE MOTOR

CHECK FOR ERRORS
GO REPORT THE ERRORS

""E'" FOR ERROR '
TOP RIGHT OF THE DIPSLAY

You can- write a similar program to write to a sector by setting DCOPC to 3 in-

stead of 2.

Saving a Machine-Language Program

You can use the SAVEM command to store a machine-language program on
disk. You need to specify where in memory the program resides (the starting
and ending addresses of the program.) You also need to specify the address

at which the program should be executed. Use the hexadecimal numbers for
all these addresses.

120

Chapter 11

For example, assume you have a machine-language program that resides in
Addresses 5000-bFFF of memory. The address at which it should be executed
is BOOA. You store this program on disk by typing:

SAVEM ""PROG/MAC', &H5000, &H5FFF, &H500A

To load the program back into memory, use the LOADM command:

LOADM "PROG/MAC"

The preceding command loads PROG/MAC back into Locations 5000-6FFF. The
computer begins executing the program at Location 500A.

If you want to load the program into a different memory location, specify an
offset address to add to the program’s loading address. For example, typing:

LOADM "PROG/MAC", &H1000
loads PROG/MAC into Locations 6000-6FFF. The computer begins executing the
program at Address 600A.
Special Input/Output Commands
BASIC offers two special inputfoutput commands. These commands transfer data
directly to and from a particular sector. To do this, they bypass the entire disk’s

filing system.

The first command, DSKI$, inputs the data from the sector you specify. This
is its format:

DSKI$ drive number, track, sector, string variablel, string variable2

121

Technical Information

The first 128 bytes of the sector are input into string variable]. The second 128
bytes are input into string variable2. For example:

CLEAR 260 (ENTER)
DSKI$ @0, 17, 1, A$, B$ (ENTER)

inputs the contents of Sector 1, Track 17 of the disk in Drive O. It inputs the
first 128 bytes into A$ and the second 128 bytes into BS$. After typing this com-
mand, you can display the contents of this sector by typing:

PRINT AS; BS$

Since DSKIS$ reads any sector on the disk, it is the only BASIC command that
can read the directory sector. The following sample program uses DSKI$ to search
the directory for filenames with the extension DAT:

5 CLEAR 1000

10 FOR X=3 T0 11

20 DSKI$ ©,17,X,A$,B$

30 C$ =A% + LEFT$(B$,127)
490 NAMS(0) = LEFT$(CS$,8)
50 EXT$(®) = MID$(CS$,9,3)
60 FORN=1TO7

70 NAMS(N) = MID$(C$,N*x32+1,8)
80 EXTS(N) = MID$(CS,9+N*32,3)
99 NEXTN

100 FORN=0 TO 7

110 IF EXTS(N) = "DAT'" AND :
LEFTS(NAMS(N) ,1)<>CHR$(®) THEN PRINT
NAMS (N)

120 NEXT N

130 NEXT X

122

Chapter 11

The second command, DSKOS$, outputs data directly to the sector you specify.
Since it bypasses the disk filing system, it outputs data without opening a file
and listing its location in the directory. For this reason, you need to be careful:

* Do not write data on the directory sectors unless you no longer plan to use
the directory.

* Do not write data on other sectors that contain data you wish to keep.
The format of DSKOS$ is:
DSKO$ drive number, track, sector, string1, string2

String1 goes in the first 128 bytes of the sector. String2 goes in the next 128
bytes. For example:

DSKO$ @, 1, 3, "FIRST STRING", "SECOND
STRING' (ENTER)

outputs data to Sector 3, Track 1, on the disk in Drive O. The string FIRST STRING
goes in the first 128 bytes of the sector. The string SECOND STRING goes in
the second 128 bytes.

When you use DSKO$ to write data on a diskette, neither the directory nor
the file allocation table is updated to reflect the entry. If you write to a sector
that is not currently allocated, later file operations might overwrite the data.
You can update the directory and file allocation table using DSKO$, but such
a process is difficult and might make your diskette unusable. If you wish to at-
tempt writing to the directory and/or the file aliocation table, always do so using
a backup diskette. This way, if you make an error, you do not destroy important
data. See “File Allocation Table,” earlier in this chapter, for information on the
directory and file allocation table.

123

Part 4
APPENDICES

Appendix A

Programming Exercise
Answers

Programming Exercise 5-1

5CLS

19 PRINT: PRINT "CHECKS FOR CAR EXPENSES"
20 OPEN "I'", #1, "CHECKS"

30 IF EOF(1) = -1 THEN 100

49 INPUT #1, A$, B, C$

50 IF C$ = "CAR" THEN 70

60
70
80
90

GOTO 990

PRINT: PRINT "CHECK PAYABLE TO:";A$
PRINT "AMOUNT:";B

GOTO 30

100 CLOSE #1

Programming Exercise 6-1

10
20
30
4o

OPEN **I', #1, "ANIMALS/DAT"
OPEN "'O', #2, "NEW/DAT"

IF EOF(1) = -1 THEN 70

INPUT #1, AS

50 WRITE #2, A%

69 GOTO 30

70 CLOSE #1

80 CLS

90 PRINT "PRESS <ENTER> WHEN FINISHED"
190 PRINT: PRINT "NEW ANIMAL...';

110 INPUT AS$

120 IF A$ ="" THEN 150

130 WRITE #2, AS

140 GOTO 8¢

150 CLOSE #2
160 KILL ""ANIMALS/DAT
170 RENAME "NEW/DAT" TO "ANIMALS/DAT"

127

Programming Exercise Answers

Programming Exercise 6-2

19 OPEN "I, #1, "ANIMALS/DAT"

20 OPEN "O'', #2, "NEW/DAT"

30 IF EOF(1) = -1 THEN 10¢

35 CLS

40 INPUT #1, AS$ _
50 PRINT: PRINT: PRINT "THIS ANIMAL IS A '";A$
60 INPUT "DELETE IT (YES/NO)...'"; R$
70 IF R$= "YES" THEN 90

80 WRITE #2, AS$

90 GOTO 3¢

100 CLOSE #1

110 CLOSE #2

120 KILL "ANIMALS/DAT"

130 RENAME ""NEW/DAT" TO "ANIMALS/DAT"

Programming Exercise 6-3

10 CLS: PRINT " —— DO YOU WISH TO —-":PRINT
20 PRINT " (1) STORE A NEW FILE"

30 PRINT " (2) SEE THE FILE"

49 PRINT " (3) END":PRINT

50 INPUT "ENTER120R3... ": Q1

60 ON Q1 GOTO 80, 130, 420

70 GOTO 10 '

80 OPEN "O", #1, "MEMBERS/DAT"
90 GOSUB 439

100 IF N$="'" THEN CLOSE #1: GOTO 10
110 WRITE #1, N$, AS, P$

120 GOTO 90

130 OPEN "I", #1, "MEMBERS/DAT"
140 OPEN "O'', #2, "TEMP/DAT"
150 CLS

160 IF EOF(1) = -1 THEN 320

170 INPUT #1, N$, AS, P$

180 PRINT: PRINT ""NAME :'" N$
190 PRINT "ADDRESS :"A$

200 PRINT "TELEPHONE:"P$

128

Appendix A

205

210
220
230
240
250
260
2790
28¢
290
3g0
306
310
320

330
340
350
360
370
380
390
Loo
410
L20
430

440
450
460
470
480

PRINT: INPUT "CHANGE THIS FILE (YES/NO)...";
Q2%
IF Q2% = "NO' THEN 300

PRINT: PRINT '"DO YOU WISH TO:"
PRINT "1) CHANGE THE ADDRESS?"
PRINT ""2) DELETE THE MEMBER?"

PRINT "3) GO ON TO THE NEXT MEMBER?"
INPUT N

ON N GOTO 290, 160, 300

GOTO 230 _

INPUT "INPUT NEW ADDRESS'; A$
WRITE #2, N$, A$, PS$.

cLS

GOTO 16¢

PRINT: INPUT ""ADD NEW MEMBER (YES/NO)...";
Q3$

IF Q3$=""NO" THEN 380

GOSUB 430

IF N$ = """ THEN 380

WRITE #2, N$, A$, PS$

GOTO 340

CLOSE #1, #2

KILL ""MEMBERS/DAT"

RENAME "TEMP/DAT' TO '"MEMBERS/DAT"
GOTO 10

END

CLS: PRINT "PRESS <ENTER> WHEN FINISHED" :
PRINT

INPUT ""NAME OF MEMBER:";N$

IF N$="" THEN 480

INPUT ""ADDRESS : ';A$

INPUT "PHONE NUMBER :"; P$

RETURN

Programming Exercise 7-1

19 OPEN "D', #1, "NAMES/DAT"
20 WRITE #1, "J. DOE"
39 PUT #1, 2

129

Programming Exercise Answers

31 WRITE #1, "BILL SMITH"
32 PUT #1, 3

34 GET #1, 3

36 INPUT #1, AS

38 PRINT AS

40 CLOSE #1

Programming Exercise 7-2

Using the proposed line produces an FD Bad File Data error in Line 36. The
first field in Record 2 is FLIES, a string. Line 36 inputs it into N, a numeric variable.

Programming Exercise 7-3

19 OPEN D", #1, "NAMES/DAT"
20 GOTO 70 '

30 FORX=1T010

40 PRINT: PRINT "RECORD "X

50 GOSUB 229

60 NEXT X

70 INPUT "WHICH RECORD(1-10)"; X
80 IF X> 10 THEN 70

99 IF X <1 THEN END

100 GET #1, X

110 INPUT #1, N$, A, C$, S$, Z2$
120 PRINT: PRINT "RECORD" X

130 PRINT N$

140 PRINT * . AS
150 PRINT "; C$
160 PRINT ¢ ;8%
170 PRINT " ": 7%

180 INPUT DO YOU WANT TO CHANGE THIS'"; R$
190 IF R$ = "YES" THEN GOSUB 2290

200 GOTO 7¢

210 CLOSE #1: END

220 INPUT ""NAME :'"; NS

230 INPUT "ADDRESS :'"; A$

240 INPUT "CITY :"; C$

250 INPUT "STATE :'"; S$

130

Appendix A

260
270
280
290

INPUT "Z1IP :'; Z%

WRITE #1, N$, A$, C$, S$, Z%
PUT #1, X

RETURN

Programming Exercise 9-1

10 OPEN "D'', #1, "MAIL/DAT", 57

20 FIELD #1, 15 AS LASTS$, 10 AS FIRSTS, 15 AS
ADDRESSS, 10 AS CITYS$, 2 AS STATES, 5 AS ZIP$

30 R=R + 1

49 CLS

50 INPUT "LAST NAME"; L$

60 INPUT "FIRST NAME"; F$

70 INPUT "ADDRESS"; A%

89 INPUT "CITY'"; C$

90 INPUT "STATE'"; S$

100
110
120
130
140
150
160
179
180
190
200
210

INPUT "Z1IP CODE"; Z$
LSET LASTS = L$

LSET FIRSTS = F$
LSET ADDRESSS = AS
LSET CITYS = C$

LSET STATES = S§$
LSET ZIP$ = Z$

PUT #1, R

PRINT

INPUT ""MORE DATACY/N)"; ANS
IF AN$ = "Y' THEN 3¢
CLOSE #1

Programming Exercise 9-2

10 OPEN "D", #1, "MAIL/DAT", 57

20 FIELD #1, 15 AS LASTS, 10 AS FIRSTS, 15 AS
ADDRESSS, 10 AS CITY$, 2 AS STATES, 5 AS ZIP$

3 R=R+1

49 CLS

50 GET #1, R

60 PRINT LASTS "," FIRSTS

131

Programming Exercise Answers

70 PRINT ADDRESS$

80 PRINT CITYS$ "," STATES

90 PRINT ZIP$

100 PRINT

110 IF LOF(1)=R THEN 140

120 INPUT "PRESS <ENTER> FOR NEXT NAME'"; E$
130 GOTO 30

140 CLOSE #1

Programming Exercise 9-3

19 OPEN "D, #1, "POP", 15

20 FIELD #1, 10 AS COUNTRY$, 5 AS POP$
30 R=R +1

49 CLS

50 INPUT "COUNTRY'"; C$

60 INPUT "POPULATION'"; P

70 LSET COUNTRY$ = C$

80 LSET POP$ = MKN$(P)

85 PUT #1, R

9® PRINT

100 INPUT "MORE DATACY/N)'"; ANS
110 IF ANS$ = "Y' THEN 30

120 CLOSE #1

Programming Exercise 9-4

19 OPEN "D', #1, "POP", 15

20 FIELD #1, 10 AS COUNTRYS$, 5 AS POP$
30 R=R +1

49 GET #1, R

568 PRINT COUNTRYS$, CVN (POPS$)

60 IF LOF(1)<>R THEN 30

70 CLOSE #1

132

Appendix B

Chapter Checkpoint Answers

Chapter 2

1.

Unless the disk is formatted, there is no way to locate any given area on
the disk.

The disk directory is an index of the names, locations, and types of all the
files on the disk.

A disk file is a defined block of information stored on the disk, under a unique
filename.

Information stored in memory is only there temporarily. It is destroyed when
the computer is turned off or if you execute a NEW, LOAD, DISKINI, BACK-
UP or COPY command. {We discuss BACKUP and COPY in the next
appendices.) Information stored on disk will be there permanently. It isnt
destroyed when you turn off the computer or clear memory. Don't leave
a disk in the drive when you turn the computer off. (We explain why in Chap-
ter 3.)

The only way to change the contents of a disk file is to store different infor-
mation under the same filename.

Chapter 3

1.

Turning the computer on or off while the disk is in its drive might damage
information on the disk.

Use only felt tip pens to write on the disk’s label. Hard point pens and pen-
cils can damage the disk and garble the information on it.

Error messages tell you that something is wrong with either the program
you are running or the last command that you used.

133

Chapter Checkpoint Answers

Wirite protecting is a way of protecting your disks from alteration. It is done
by putting a gummed label over the write-protect notch. You can read from
a write-protected disk, but you can’t write fo it.

On a one-drive system, insert the source disk into the drive and type
BACKUP®(ENTER). The computer asks you to insert the destination disk
and press(ENTER). This procedure is repeated until the computer displays
OK. On a multi-drive system, type the BACKUP command, specifying the
drive numbers of the source disk and the destination disk. For example,
BACKUP @ TO 1 backs up the source disk (in Drive 0) to the destination
disk {in Drive 1).

Chapter 4

1.

You can rename a file by using the RENAME command. For example,
RENAME OLDFILE/NAM TO NEWFILE/NAM renames OLD-
FILE/NAM to NEWFILE/NAM. You must specify the extension with both file-
names so that the computer can find the files.

You can find out how much space you have remaining on the disk by typ-
ing PRINT FREE (@) (EnTER). This tells you the number of granules left
on the disk in Drive O. If you are running out of granules, you might want
to delete a few files or switch to another disk.

Unless you specify otherwise, the computer uses Drive O. You can change
the "assumed drive” by typing DRIVE 1 (ENTER), which enables you to
access Drive 1 without having to specify the number in your command.
(Now, you can use either DIR or DIR1 to display the directory of the disk
in Drive 1.)

Chapter 5

1.

Buffer #1 is a temporary storage area for information going between the
disk and memory. :

A disk file must be opened before any information can go between the disk
and memory.

134

Appendix B

3. A disk file must be closed so that the information still in the buffer ends
up where it is supposed to. Also, if you don't close a file, you can't reopen
it. All files must be closed before you switch disks.

4. A file opened for input allows information to go from the disk file into the
memory of the computer. A file opened for output allows information to
go from memory to the disk file.

Chapter 6

1. You can only open a sequential access file for input or output—not both.
You can't output to a file opened for input; nor can you input from a file
opened for output.

2. No. You must close the file and then reopen it for input.

Chapter 7

1. Records are equal-sized divisions of your disk file in which you can put your
data. Since each record is the same size, the computer can use records
to access your data directly.

2. Fields are divisions of records.

3. In a sequential access file, the only locations the computer knows are the
beginning and ending of the file. In a direct access file, the computer can
determine the location of each record.

4. Since each record of a direct access file has a known location, the com-
puter can access a record without going through the preceding parts of
the file, as it must do with sequential access files.

Chapter 8

1.

The minimum size of a disk file is 2,304 bytes (one granule). It can be no
smaller because the computer allocates disk space in granules.

135

Chapter Checkpoint Answers

2. The computer first writes the number’s sign (a minus sign if the number
is negative or a blank space if it is positive). Then, the computer writes the
number itself. Immediately following the number, it writes one trailing blank
space.

3. When you use WRITE, the computer puts quotation marks around strings.

4. INPUT inputs only the data items listed. LINE INPUT inputs everything up
to the character.

5. A comma causes the computer to space over o the next print column be-
fore printing another data item.

6. A semicolon causes the computer to print the data items immediately next
to each other.

7. When you use PRINT, the computer prints strings without enclosing them
in guotation marks.

Chapter 9

1. The computer sets the record length to 256 bytes.

2. The data must be in a field of a specified length so that the computer can
left-justify it in that field. This length is assigned in the FIELD line.

3. MKNS$ converts a number to a string that is five bytes long. ‘

Chapter 10

1. Type an A at the end of your SAVE command if you plan to merge the pro-
gram with a program in memory.

2. The line in the program saved on disk prevails.

3. The computer reserves two buffers when you power up.

136

Appendix B

4. The computer reserves 256 bytes of buffer space when you power up.

5. FILES 3, 3000 gets the computer to reserve three buffers with a total
of 3000 bytes of buffer space.

137

Appendix C

Sample Programs

Sample Program # 1/ Balancing Your Checkbook

This program creates a master disk file that contains all your checks and deposits
for the entire year. You can print out the transactions by the month or the year.
If you want to use your printer, change the appropriate PRINT lines to PRINT
#—2

10
20 '
30
Lo '
50 '
60 '
70!
80 '
90 '
100
110
120
130
140
150
160
17¢
180
190
200
210
220
2390
240

Checkbook Program

This program provides a record of your
checks, deposits, and balances. The checks
can be labeled with an account number to show
to what expense they paid, such as medical,
rent, food. The program uses direct
addressing; each file is 40 bytes lLong and

formatted as follows: 8 bytes for data,

' 4 bytes for check or deposit slip number,
' 20 bytes for payee, 3 bytes for account

' nhumber, and 5 bytes for amount. If your

' computer has enough memory, you can change
' the value of the statement in Line 150 to
'allow for more than 50 checks.

CLEAR 1000

DIM CHK$(50)

CLS

PRINT @ 107, "SELECTION:"

PRINT @ 162,'"1) ADD CHECKS TO YOUR FILE"
PRINT @ 194,'2) LIST YOUR CHECKS, DEPOSITS."
PRINT @ 229,"AND BALANCES

PRINT @ 258,'"3) END JOB"

PRINT @ 392, "(PRESS 1 20R 3)"

250 ANS=INKEY$

260

IF ANS="" THEN 250

270 ON VAL(ANS) GOSUB 300,670,1040

2890

GOTO 189

139

Sample Programs

290 !

300 ' This subroutine inputs the data

319 '

320 OPEN D', #1, "CHECKS/DAT", 40

330 FIELD #1, 8 AS DATES, 4 AS CHNOS, 20 AS PDTOS$,
3 AS ACNOS$, 5 AS AMTS

340 REC = LOF(1)
350 REC = REC + 1
360 CLS

370 PRINT @ 64, '"CHECK OR DEPOSIT(C/D)"
380 AN$ = INKEYS$

390 IF ANS = ""D" THEN 420

400 IF ANS = "C'" THEN 4809

419 GOTO 389

420 INPUT "DEPOSIT DATE (MM/DD/YY)'"; D$
430 INPUT "DEPOSIT SLIP NUMBER (NNNN)'; C$
440 P = "

450 INPUT "ACCOUNT NUMBER (NNN)''; AS
460 INPUT "AMOUNT OF DEPOSIT"; AMT

470 GOTO 540

480 INPUT "CHECK DATE (MM/DD/YY)'; D$
490 INPUT "CHECK NUMBER (NNNN)'"; C$

500 INPUT "PAID TO"; P$

510 INPUT "ACCOUNT NUMBER (NNN)'"; A$
520 INPUT ""AMOUNT OF CHECK'"; AMT

530 AMT = -AMT

540 LSET DATES$ = D$
550 LSET CHNOS =C$
569 LSET PDTO$ = P$
570 LSET ACNOS$ = A%

580 LSET AMTS = MKNS (AMT)

590 PUT #1, REC

600 PRINT @ 320, '"MORE INPUT(Y/N)"
610 ANS = INKEY$

620 IF ANS = ""N'"" THEN 659

630 IF ANS$ = "Y' THEN 350

640 GOTO 619

650 CLOSE #1

669 RETURN

140

Appendix C

670
680
690
700

710
720
730
740
750
760
770

780
790
800
810
820

830
840
850
860
870
880

890
900

910
920

930

940
950

' This subroutine balances the checkbook and
' outputs the results.

OPEN "D', #1, "CHECKS/DAT'", 40

FIELD #1, 8 AS DATE$, 4 AS CHNOS, 20 AS PDTOS,
3 AS ACNOS$, 5 AS AMTS

CLS

PRINT @ 160, "DO YOU WANT A LISTING FOR A"
PRINT @ 192, '""MONTH OR FOR THE WHOLE YEAR?"
PRINT @ 224, "PRESS <Y> OR <M> ";

A$=INKEY$

IF A$S="Y" OR A$="M" THEN 770 ELSE 750

IF A3 = "M" THEN PRINT @ 224, "WHAT

MONTH(MM) *'; : INPUT MNS$

BAL=0
FOR REC =1 TO LOF(1)
GET #1, REC

BAL = BAL + CVN(AMTS)

IF A$ = ""M" AND LEFT$(DATES$,2) <> MN$ THEN
1010

CLS

IF PDTOS$ = "THEN 92¢

PRINT @ 64, "DATE OF CHECK:":PRINT @ 84, DATES
PRINT "CHECK NUMBER:":PRINT @ 116,CHNO$
PRINT "PAID TO:":PRINT @ 148,PDTOS$

PRINT @ 160, "ACCOUNT NUMBER:":PRINT @ 180,
ACNOS$

PRINT ""AMOUNT OF CHECK:":PRINT @ 211, USING
"SSHHH . HA";-CVN(AMTS) :

PRINT "BALANCE:":PRINT @243, USING
"SSHHEH . HH"; BAL

GOTO 960

PRINT: PRINT: PRINT "DATE OF DEPOSIT:": PRINT
o 85,DATES

PRINT ""DEPOSIT SLIP NUMBER:":PRINT @
117,CHNOS

PRINT ""ACCOUNT NUMBER:":PRINT @ 149, ACNOS
PRINT "AMOUNT OF DEPOSIT:": PRINT @ 180,
USING "SSHHEH . ##": BAL

141

Sample Programs

960 PRINT @ 288, "PRESS <ENTER> FOR NEXT RECORD OR
<R> TO RETURN TO "SELECTIONS'"

970 AN$ = INKEYS

980 IF AN$ = CHR$(13) THEN 1019

990 IF AN$ = "R' THEN 1020

1000 GOTO 970

1010 NEXT REC

1020 CLOSE #1

1030 RETURN

1040 ' This subroutine terminates the program

1050 CLOSE

1060 END

Sample Program #2/Sorting Your Checks

This subroutine can be especially helpful at tax time. It takes the checks file you
created in Sample Program #1, and sorts the checks by account number. Want
to know exactly how much you spent on medical bills (or business expenses,
contributions, and so on)? This program lets you know right away. Change or
add to Sample Program #1:

230 PRINT @ 258, "3) SORT YOUR CHECKS BY"

232 PRINT & 293, ""ACCOUNT NUMBER"

234 PRINT @ 322, "4) END JOB"

240 PRINT @ 392, "(PRESS 1 23 OR 4)"

270 ON VAL(ANS) GOSUB 310, 690, 1080, 1560
1060 °* :
1070 '

1080 ' This subroutine sorts the checks, from
1090 * smallest account number to largest
1100 ' account number, using a bubble sort.
1110 ' Each check is handled as one data string.
1120 '

11309 OPEN D", #1, "CHECKS/DAT", 40

1140 FIELD #1, 40 AS INFO$

1150 FOR I =1 TO LOF(1)

1160 GET #1, 1

1170 CHK$(I) = INFO$

142

Appendix C

1180
1190
1200
1210

1220
1230
1240
1250
1260
1270
1286
1290
1300
1310
1320

1330
1340

1350
1360

1380
1390

1400
1410

1420
1430
1440
1450

1460
1470

NEXT I
CNT =0
FORI =1T0 LOF(1) -1

IF MID$S(CHK$(I),33,3) <=
MID$(CHK$(I+1),33,3) THEN 1260
TEMP$ = CHK$ (1)
CHK$(I)=CHK$(I+1)

CHK$(I+1) = TEMP$

CNT =1

NEXT I

IF CNT =1 THEN 1190

CLS

PRINT @ 194, "WHAT ACCOUNT NUMBER(NNN/ALL)"

INPUT ANS

FORI =1T0 LOF(1)

IF AN$ <> "ALL' AND ANS <>
MID$(CHK$(I),33,3) THEN 1510

CLS

PRINT @ 66, "ACCOUNT NUMBER:":PRINT @
85,MID$(CHK$(I),33,3)"

IF MIDS(CHKS$(I),13,20)=" "THEN 1410
PRINT @ 98, "DATE OF CHECK:"PRINT @ 117,
LEFT$(CHKS$(I),8)

PRINT @ 162, "PAID TO:":PRINT @ 181,
MID$(CHK$(I),13,20)

PRINT @ 194, "AMOUNT OF CHECK:'":PRINT @ 212,
USING "SS### . ##"; —~CYUN(RIGHT$(CHKS$(I),5)
GOTO 1440

PRINT @ 98, "DATE OF DEPOSIT:"PRINT @

117 ,LEFT$(CHKS$(I),8)

PRINT @ 1390, "DEPOSIT NUMBER:'":PRINT @
149 ,MID$ (CHKS$(I),9,4)

PRINT @ 162, ""AMOUNT OF DEPOSIT:":PRINT @
180, USING "SSHHHA . H#HH";
CYNC(RIGHT$(CHKS$(I),5)

PRINT @ 290, "(PRESS <ENTER> TO SEE NEXT"
PRINT @ 322, "RECORD OR <R> TO RETURN TO"
PRINT @ 354, "'SELECTIONS')"

A2% = INKEYS$

143

Sample Programs

1480
1490
1500
1510
1520
1539
15490
1550
1560
1570

IF A2% = "R" THEN 152¢

IF A2% = CH$(13) THEN 1519
GOTO 1479

NEXT I

CLOSE #1

RETURN

'terminate progranm
L}

END

Sample Program # 3 /Membership List

Want to store the names and telephone numbers of all your club members?
This program puts them all in a disk file in alphabetical order. Add a few lines
to it, and it can store their addresses and phone numbers also.

10 °*
20’
30 '
4o !
50!
60 '
70"
80 '
90 '
120 °
110!
120 '
130 '

Create list and alphabetize.

The object of this program is to create a file
of alphabetically arranged names and phone
numbers. The names and numbers are first
input into an array, ARRAY$(I), then put into
alphabetical order, and finally put into a
disk file called NAMES/NOS. The file is 35
bytes long, all of it allotted to one

variable, INFO$. When you add to it,

it will automatically be alphabetized.

You can use it with the Search a

List program (Sample Program #4).

140 CLEAR 1050
150 DIM ARRAYS$(30)
160 OPEN D', #1, ""NAMES/NOS", 35
170 FIELD #1, 35 AS INFO$
t

180
190 '
200 '
210

First the file is checked to see if there are
any records currently init.

144

Appendix C

220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380

3990
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
560

IF LOF(1) = @ THEN I=1:G0TO 319

FOR I=1 TO LOF(I)

GET #1, 1

ARRAY$(I) = INFOS

NEXT I

)

' The new names and numbers are input and then
' concatenated into 1 string, ARRAYS$(I)
L}

CLS

PRINT @ 64

INPUT "LAST NAME'";L$

INPUT "FIRST NAME'';F$

INPUT "MIDDLE INITIAL";M$

INPUT ""AREA CODE'';AS$

INPUT "PHONE NUMBER";P$

ARRAYS(I) = LEFTS(LS+" ,"+F$+" "4MG+ 1,
24)+AS+PS"

PRINT @ 288, '""MORE DATA (Y/N)?'"

ANS = INKEYS$

IF AN$ = "Y' THEN I=I+1 :GO0TO 319

IF AN$ = "N' THEN 479

GOTO 400

' ARRAY$(I) is put in alphabetical order.
)

FORJ=1TOI

FOR K=J TO I

IF ARRAY$(J) < ARRAY$(K) THEN 53¢

TEMPS$ = ARRAYS$ (J)

ARRAY$ (J) =ARRAYS$ (K)

ARRAY$(K) = TEMPS

NEXT K

NEXT J

' The List is transferred into NAMES/NOS.

FOR N=1 T0 I
LSET INFO$ = ARRAYS(ND

145

Sample Programs

600 PUT #1 ,N
610 NEXT N
629 CLOSE #1
630 END

Sample Program #4 / Search for a Name

Since the file you created in Sample Program # 3 is already in alphabetical or-
der, you can immediately find the name you want. This program shows how.

10
20
30
40
50
60
70
80
90

Search a List

(NOTE: This program requires that a file
called NAMES/NOS exist. See Sample

Program #3.) This program searches that
file. It is adirect access file called
NAMES/NOS, is 35 bytes long and is formatted
as follows: 24 bytes for name, 3 bytes

for area code, 8 bytes for phone number.

100 ' It uses interactive searching.
110!

120
130
140
150
155
160
170
180
190
200
210
220
230

OPEN "D', #1, "NAMES/NOS',b35

FIELD #1, 24 AS NAMES,3 AS AREA$,8 AS PHONES
CLS

PRINT @ 99, "ENTER NAME IN THIS FORM:"
PRINT " JENKINS,FRED A."

PRINT : LINE INPUT NM$

" Initialization of variables
N1$ = NM$

IF LEN(NM$) < 24 THEN 800

IF LENC(NMS$) > 24 THEN 82¢
FIRST =1

240 MID = INT(C(LOF(1)+1)/2)

250
260

LAST = LOF (1)
CNT =0

270 '

146

Appendix C

280
290
300
310
320
330
340
350
360
370
380
399
L0
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660

* Program checks Last record first because
it won't be checked in the regular search
[]

GET #1,LAST

IF NAME$ = NM$ THEN 45¢

L]
' Program compares NM$ with NAME$ from record
' MID until NM$ is found or enough records
''are seen to show that it isn't in the file

L

GET #1,MID

IF CNT > (LOF(1)+1)>/2 THEN 710
IF NAME$ < NM$ THEN 570

IF NAMES > NM$ THEN 640

' When NM$ is found, it is printed out
L

CLS

PRINT @ 104 ,NAMES

PRINT @ 136," (""; AREAS$;")"; PHONES
PRINT @ 195,PRESS <ENTER> TO CONTINUE."
PRINT @ 227 ,"ELSE PRESS <¢> TO QUIT"
ANS = INKEYS$

IF AN$ = "@¢'" THEN CLOSE #1:END

IF AN = CHR$(13) THEN 1409

GOTO 500

' Subprogram for when NAME$ < NM$
L

FIRST = MID

MID = (MID+LAST) /2

CNT = CNT+1

GOTO 389

' Subprogram for when NAME$ > NM$

LAST = MID
MID = (MID+FIRST)/2
CNT = CNT+1

147

Sample Programs

679 GOTO 380

680 '

690 ' Subprogram for when NM$ is not found
700 '

710 CLS

720 PRINT @ 100,N1$;" NOT FOUND

730 PRINT @& 132, "TO TRY AGAIN PRESS <ENTER>"
740 AN$ = INKEYS

750 IF AN$ = """ THEN 740

760 GOTO 140

770 '

780 ' Subprogram for modifying NM$ to a 24-byte
790 ' string

800 NM$ = NM$+m

810 GOTO 219

820 NM$ = LEFT$(NM$,24)
830 GOTO 220

Sample Program # 5/ Update the List

Update anything you want in the file you created in Sample Program # 3.
You can do it easily with this program.

19
20

' Edit Your Names file
8
30 ' This program edits the NAMES/NOS file
]
]
]

40 ' from Sample Program #3.

50 ' It canretain a record, change a variable
6% ' in that record, or delete the record.

70 °

80 CLS

90 PRINT @ 106, "SELECTIONS:"

100 PRINT @ 168,1) EDIT RECORD"
110 PRINT @ 200,'2) DELETE RECORD"
120 PRINT @ 232,"3) END JOB"

130 PRINT @ 298,"PRESS(1 2 OR 3) "
140 AN$ = INKEYS$

150 IF ANS='""" THEN 140

148

Appendix C

160
170
180
190
200
210
220
230
240
250
260
279
280
290
300
310
320
330
340
350
360
370
380

390
400
410
420
430
440
450
460
479
480
490
500
510
520
530

ON VAL(ANS$) GOSUB 189,590,859

GOTO 80

OPEN "D'',#1,"NAMES.NOS",35

FIELD #1,24 AS NAME$,3 AS AREA$, 8 AS PHONES
FOR I=1 TO LOF(1)

GET #1,1

CLS

PRINT @ 68,""RECORD NUMBER:'"; I

PRINT @ 100, "NAME: '""NAMES$

PRINT @ 132, "AREA CODE :'";AREAS

PRINT & 164, "PHONE NUMBER; '"; PHONES
PRINT @ 228,"EDIT THIS RECORD? (Y/N)"
AN$ = INKEYS

IF ANS$ = "Y' THEN 320

IF ANS = "N'" THEN 560

GOTO 289

PRINT @ 260, "EDIT NAME? (Y/N)"
ANS=INKEY$

IF AN$ = "N'" THEN NM$ = NAME$:GOTO 400
IF AN$ = ""Y" THEN 379

GOTO 3390

LINE INPUT ' NEW NAME " ;NM$

IF LEN(NM$) < 24 THEN NM$ = NM$+'" ":GOTO 3890
ELSE 390

IF LENCNM$) > 24 THEN NM$ = LEFTS(NMS$,24)
PRINT @ 292,"EDIT AREA CODE? (Y/N)"
ANS$ = INKEYS

IF AN$ = "Y' THEN 450 .
IF AN$ = "N'" THEN A$ = AREAS$: GOTO 460
GOTO 410

INPUT " NEW AREA CODE";A$

PRINT @ 324, "EDIT PHONE NUMBER? (Y/N)"
AN$ = INKEY$

IF AN$ = "Y' THEN 510

IF AN$ = "N'" THEN P$ = PHONES$: GOTO 5290
GOTO 4790

INPUT,' NEW PHONE NUMBER';P$

LSET NAME$ = NM$

LSET AREAS = AS

149

Sample Programs

540 LSET PHONES = P$

550 PUT #1,1

560 NEXT I

570 CLOSE #1

580 GOTO 900

590 OPEN "D'',#1,'""NAMES/NOS",35

600 FIELD #1,24 AS NAMES$,3 AS AREA$, 8 AS PHONES

610 OPEN "D" ,#2,"TEMP/FIL",35

620 FIELD "#2,24 AS TNAMES,3 AS TAREA$,8 AS
TPHONES

630 FOR I=1TO LOF(1)

640 GET #1,1

650 CLS

660 PRINT @ 68,"RECORD #"; I

679 PRINT @ 100, "NAME: '";NAMES$

680 PRINT @ 132, "AREA CODE: ";AREAS

690 PRINT @ 164, "PHONE NUMBER: '; PHONES$

700 PRINT @ 228, "DELETE THIS RECORD? (Y/N)"

710 AN$S = INKEYS

720 IF AN$ = "Y' THEN 800

730 IF ANS$ = "N' THEN 750

740 GOTO 710

750 LSET TNAMES$ = NAMES

760 LSET TAREA$ = AREAS

770 LSET TPHONES = PHONES

780 J=J+1

790 PUT #2,4

800 NEXT I

810 CLOSE

820 KILL "NAMES/NOS"

830 RENAME "TEMP/FIL" TO '""NAMES/NOS"

840 RETURN

850 END

900 DIM ARRAYS$(30)

910 OPEN"D",#1,"NAMES/NOS",35

920 FIELD #1, 35 AS INFO$

93¢ OPEN"D'",#2,"TEMP/FIL",35

940 FIELD #2, 35 AS NEWS

95¢ FOR I=1TOLOF(1)

1560

Appendix C

960 GET #1,1

970 ARRAYS(I)=INFO$

980 NEXT I

99® FOR J=1 TO LOF (1)

1000 FOR K=J TO LOF (1) :
1010 IF ARRAY$(J)<ARRAY$(K) THEN 1059
1020 TEMP$=ARRAYS$(J)

1030 ARRAY$ (J)=ARRAYS$ (K)

1040 ARRAYS(K)=TEMP$

1050 NEXT K

1060 LSET NEWS=ARRAYS$ (J)

1070 PUT #2, J

1080 NEXT J

1090 GOTO 810

Sample Program # 6/ Grading Tests
This program is ideal for teachers. It creates several disk files of students and
their test scores. You can then immediately find averages and the standard devi-

ation for the entire class or for each student.

10 ' Test program

20"
30 ' This program inputs several files —- a names
Lo ' file and several test files. You can access

)
)
50 ' the files and process the test scores to
60 ' find averages and standard deviations.
L
]
[]

70 ' The files are sequential access.
8¢

9¢

100 ' Main module of progranm

110 °

120 DIM NAME$(30) ,GRADE(6,30)

139 CLS

140 PRINT @ 107 ,"SELECTIONS"

150 PRINT @ 164,"1) CREATE A ‘NAMES' FILE"
160 PRINT @ 196,"2) ADD A NEW TEST FILE"
1709 PRINT @ 228,'"3) PROCESS SCORES"

161

Sample Programs

1890
190
200
210
220
2390
240
250
260
279
280
290
300
310
320

330
360
370
380
390
4oo
410
420
439
440
450
460
470
480
499
500
510
520
530
540
550
560

PRINT @ 260,'"4) END"

PRINT @ 331, "1,2,3 OR 4"
AN$S=INKEY$

IF AN$="" THEN 22¢

ON VAL(ANS) GOSUB 290,430,640,1430
GOTO 130

1

' This subroutine builds a NAMES fi le.

)

OPEN "O'",#1,"NAME/FIL"

CLS

PRINT @ 96,"ENTER NAME OF STUDENT "

LINE INPUT NAMES

WRITE #1,NAMES

PRINT @ 196,"(PRESS <ENTER> TO ENTER":PRINT @
228,"ANOTHER NAME, PRESS <Q@>"PRINT a 260,"TO
QuUIT)H"

ANS=INKEY$

IF ANS="" THEN 339

IF AN$<>'"Q" THEN 300

CLOSE #1

RETURN

' This subroutine builds test fi les.
)

CLS

PRINT a2 64

INPUT ""NUMBER OF NEW TEST FILE";TF$
IF TF$ ="" THEN 459

TF$ = "TEST" + TF$

OPEN "I" #1,"NAME/FIL"

OPEN "O'",#2,TF$%

IF EOF(1) THEN 560

INPUT #1,NAMES

PRINT "NAME:'""NAMES$

INPUT "SCORE'";SCORE

WRITE #2,SCORE

GOTO 500

CLOSE #1,#2

162

Appendix C

579
580
590
600
619
620
630

RETURN

This subroutine inputs the NAMES file and
the desired test files, processes them
either onaclass basis or an individual
basis, and then prints out the results.

640 OPEN "I" #1,"NAME/FIL"

650
660
670
6890
690
700
710
720
730
740
7590
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

IF EOF(1) = -1 THEN 690

Y=Y +1

INPUT #1,NAMES(Y)

GOTO 659

YEND = Y

CLOSE #1

CLS

PRINT @ 96

INPUT " HOW MANY TESTS ARE THERE'";N
FOR X=1 TO N

TF$ = "TEST" + RIGHTS(STR$(X),1)
OPEN "I",#1,TF$

FOR Y=1 TO YEND

INPUT #1,GRADE(X,Y)

NEXT Y

CLOSE #1

NEXT X

CLS

PRINT @ 130,"INDIVIDUAL TOTALS OR CLASS"
INPUT " TOTALSC(CI/C)";ANS

IF AN$ = "I" THEN 900

IF AN$ = "C'" THEN 1139

'This part processes thescoresby the student.
[

FOR Y=1 TO YEND

CLS

PRINT @ 105,NAMES (Y)

PRINT @ 137,"SCORES:"

STUTOT = ¢

FOR X=1 TO N

163

Sample Programs

960 PRINT TAB(10) GRADE (X,Y)

970 STUTOT = STUTOT + GRADE(X,Y)

980 NEXT X

990 AVEC(Y) = STUTOT / N

1000 NUM = ¢

1010 FOR X=1 TON

1020 NUM = (AVE(CY) - GRADE(X,Y)) 2 + NUM
1030 NEXT X

1049 SD = SQR(NUM / N)

1045 FMS$=""2"+STRINGS(5,32)+"%H## . H##u"

1050 PRINT USING FM$;""AVERAGE:";AVE(Y)
1055 FM$="%"+STRINGE(17,32)+"%## . HH"
1060 PRINT USING FM$;""STANDARD DEVIATION:';SD
1070 PRINT ""PRESS <ENTER> TO SEE NEXT NAME"
1080 AN$ = INKEY$

1090 IF AN$ = CHR$(13) THEN 1100 ELSE 1089
1100 NEXT Y

1110 CLS

1120 PRINT @ 105, ""NO MORE NAMES"

1130 GOTO 1350

11409 !

1150 ' This portion processes the scores by the
1160 ' test number for the whole class.
1170

17180 INPUT " WHICH TEST NUMBER"; X

1190 CLS

1200 PRINT @ 4, "DATA FOR TEST NUMBER ''; X
1210 PRINT "NAME'"; TAB(25)'"SCORE" :
1220 TTOT = ¢

1230 FOR ¥Y=1T0 YEND

1240 TTOT = TTOT + GRADE(X,Y)

1250 PRINT TAB(1) NAME$(Y);TAB(ZS)GRADE(X,Y)
1260 NEXT Y

1270 AVE = TTOT / YEND

1289 NUM = ¢

1299 FOR Y=1 TO YEND

1300 NUM = NUM (AVE - GRADE(X,Y)?2

1310 NEXT Y

1320 SD = SQR(NUM / (YEND - 1))

n=<iaun

1564

Appendix C

1325

FM$=""%"+STRINGS (16,32)+"%RALHH . HH"

1330 PRINT:PRINT USING FM$; ""AVERAGE FOR TEST

B Xt AVE

1335 FM$="%"+STRINGS (17 ,32) +""%## . ##"

1340 PRINT USING FM$;""STANDARD DEVIATION: ";SD
1350 PRINT:PRINT ' PRESS <ENTER> FOR MORE"
1360 PRINT " PROCESSING, <@> TO QUIT"

1370 ANS = INKEYS$

1380 IF ANS
1390 IF ANS

CHR$(13) THEN 820
"Q'" THEN 1400 ELSE 1370

1400 RETURN

1410 !

1420 ' This subroutine terminates the program.
1430 '

1440 END

Sample Program # 7 / Create-a-Game

The following four programs display three settings: a house and two rooms. Each
setting is stored on disk as a program file.

10 * "DISPLAY/BAS"

20 '

30 " This program shows how you can

49 ' access another program from your main
50 ' program. It uses amain programcalled
60 ' DISPLAY/BAS and three graphics programs
70 ' called HOUSE/BAS, FOYER/BAS, and

80 ' STAIRS/BAS. (Naturally, they must be on disk
99 ' before you can run this program.)

100 '

119 CLS

120 PRINT @ 106, "SELECTIONS:"

130
140
150
160
170

PRINT @ 170, "1) HOUSE"
PRINT @ 202, "2) FOYER"
PRINT @ 234, "3) STAIRS"
PRINT @ 266, '"4) END JOB"
PRINT @ 330, '"1,2,3, OR 4"

165

Sample Programs

180 AN$ = INKEYS$

190 IF AN$ = "" THEN 180
200 IF AN$ = "4" THEN 250
210 CLS

220 PRINT @ 98,''TO RETURN FROM THIS SELECTION"
230 PRINT @ 130,"PRESS ANY KEY"

240 FOR I=1 TO 40:NEXT I

250 ON VAL(ANS) GOTO 260,270,280,290

260 LOAD ""HOUSE/BAS",R

270 LOAD "FOYER/BAS'",R

280 LOAD "STAIRS/BAS",R

290 END

10
20
39
Lo
50
690
70

80
99

' "HOUSE/BAS"

PMODE 3,1

PCLS

SCREEN 1,0

DRAW ""BM66,108;D48;R32;U48;L32"

DRAW '"BM66,68,R132;BM46,96,R132;MB50,156;
R128"

DRAW '"BM50,96;D60;BM178,96,;D60;BM206,88;
D5¢"

DRAW "BM@,136;R50;BM206,136;R50"

100 LINE (46,96)-(66,68),PSET
110 LINE €(178,96)-(198,68),PSET
120 LINE €(198,68)-(206,88),PSET
130 LINE (174,156)~-(206,136) ,PSET
140 CIRCLE (92,130),5,0

150 PAINT (0,0),3,4

160 PAINT (0,149),1,4

180 PAINT (55,105),2,4

190 PAINT (194,96),2,4

200 PAINT (82,128),3,4

210 AN$ = INKEY$

220 IF ANS$ = "' THEN 210

230 LOAD "DISPLAY/BAS",R

156

Appendix C

19 ' "FOYER/BAS"

20!

39 PMODE 3,1

40 PCLS

50 SCREEN 1,0

60 DRAW "BM104,60;D92;R48;U92;L48"

70 DRAW "BM&44 ,20;R168;D132;L132;BL4;L12;BL4;
L16;BM44,102;U82"

80 DRAW ""BM220,60;D100;BM244,58;D126"

90 DRAW "BM42,102;D38;RB;U38;L8"

100 DRAW "BM16,148;D40;R4;Ub0"

110 DRAW '"BM64,148;0408;L4;Ub40"

120 DRAW "BM80,124;D40;L4;U36"

130 CIRCLE (144,108) ,4

140 CIRCLE (238,117),4

150 CIRCLE (45,140),15,4,.3,0,.7

160 CIRCLE (45,140),15,4,.3,.95,1

170 CIRCLE (53,136),4

180 LINE (0,192)-(16,176) ,PSET

199 LINE (20,172)-(44,152) ,PSET

200 LINE (256,192)-(212,152),PSET

210 PAINT (28,8),3,4

220 LINE (9,0)-(44,20) ,PSET

230 LINE (256,9)-(212,20) ,PSET

249 LINE (220,60)-(244,59) ,PSET

250 LINE (16,148)-(44,124) ,PSET

260 LINE (16,148)-(64,148) ,PSET

270 LINE (64,148)-(80,124) ,PSET

280 LINE (80,124)-(52,124),PSET

296 PAINT (10,10 ,3,4

300 PAINT (60,32),3,4

310 PAINT (240,20),3,4

320 PAINT (128,64),2,4

330 PAINT (228,70),2,4

340 PAINT (62,156),4,4

350 PAINT (78,150) ,4,4

360 PAINT (18,156),4,4

370 PAINT (68,128),1,4

380 PAINT (128,156),2,4

167

Sample Programs

390 PAINT (40,140) ,4,4
40O PAINT (48,120),2,4
410 CIRCLE (46,98),5,2,2
420 ANS = INKEY$

430 IF ANS = """ THEN 420
449 LOAD "DISPLAY/BAS",R

10 ' "STAIRS/BAS"

20!

30 PCLS

49 PMODE 3,1

50 SCREEN 1,0

60 DRAW ""BM60 ,20;R140;D120;L40;U32;L4;D52;R4;
U20;BM160,160;L128;U150"

70 DRAW ""BM4,62;D130;BM28,166;U102;BM144,148;
R12"

80 DRAW "BM4©® ,72;D24;R36;U24;L36;BM44,76;D16;
R28;U16;L28"

90 LINE (32,12)-(92,12),PSET

100 LINE (92,12)-(100,20),PSET

110 LINE (0,0)-(60,20) ,PSET

120 LINE (200,20)~-(225,9) ,PSET

130 LINE (200,140)-(255,192),PSET

140 LINE (9,192)~-(32,160) ,PSET

150 LINE (4,62)-(28,64) ,PSET

160 PAINT (120,4),2,4

170 PAINT (20,20),2,4

180 PAINT (230,20 ,2,4

190 PAINT (120,40),2,4

200 PAINT (60,16),3,4

219 PAINT (20,64),3,4

220 PAINT (158,124) ,4,4

230 PAINT (42,74) ,4,4

240 LINE (28,8)-(144,148),PSET

250 LINE (64,12)-(156,122) ,PSET

269 LINE (68,12)-(156,116) ,PSET

270 DRAW "BM144,148:U38"

280 FOR I=90 TO 9

290 DRAW "BM-8,28;U38"

1568

Appendix C

300 NEXT I

319 DRAW '"BM56,40,U28,31,U18;MB40,22;U10"
320 PAINT (56,84),2,4

330 CIRCLE (56,86),10,3,.4,0,.5
340 LINE (51,86)-(63,86),PSET

350 DRAW "BM56,84;L4;E7;D8"

360 FOR I=1TO 32

370 CIRCLE (120,176) ,1*2,1/4,.25
380 NEXT I

382 DRAW ""BM232,176;U100;R21;D100"
383 CIRCLE (232,180),15,4,1,.5,0
384 CIRCLE (232,178),6,4,2,.55,.1
385 CIRCLE (232,890),15,4,1,0,.5
386 CIRCLE (232,82),6,4,2,.1,.55
390 ANS = INKEYS

400 IF ANS = "" THEN 390

410 LOAD '"DISPLAY/BAS",R

Sample Program # 8 /Budgeting

This program organizes your finances and prints out a journal on your printer.
You need a line printer with a line length of at least 80 characters to run it.

10 ' BUDGET PROGRAM

20 '

390 ' This program builds three direct access

40 ' files: a listing of a balanced budget; a

5¢0 ' listing of transactions, and a Listing of the
60 ' updated budget. It allows for carryover from
70 ' the previous period's budget. You can print
80 ' out a list of the budget, expenses, and

90 ' balances. As written, this program requires

100 ' aprinter. With slight modification, it
119 ' can be used without a printer.

120 °

130
1409
1590

Main module program

159

Sample Programs

160 CLS

170 PRINT @ 106, "SELECTIONS:"

180 PRINT @ 165, '""1) BUILD BUDGET"

199 PRINT @ 197, "2) UPDATE AN ACCOUNT

200 PRINT @ 229, "3) PRINT OUT A JOURNAL"

21® PRINT @ 261, "4) END JOB"

220 PRINT @ 329, "1,2,3, OR 47"

230 ANS=INKEYS

240 IF ANS$="" THEN 2390

250 ON VAL(ANS) GOSUB 360,910,1410,1940

260 GOTO 160

279 !

280 ' This subroutine builds the Budget file

290 ' (called BUDGET/ORT), and builds or updates

300 ' the file BUDGET/UPD. It lets you input the

310 ' start date and the amount you have to
]
[}
)

320 ' divide among accounts. Tentative amounts
330 ' are entered for each account and a running
340 ' balance advises you of the amount left.
350!

3609 OPEN "D",#1, "BUDGET/ORG",5
370 OPEN "D",#2, "BUDGET/UPD",5
380 FIELD #1,5 AS OAMTS

390 FIELD #2,5 AS UPDAMTS

4Lpo GOSUB 1789

410 IF LOF(2) = ® THEN 470

420 FORI=1TO9

430 GET #2,1

449 AMT(I) =CVNC(UPDAMTS)

450 PTOT=PTOT + AMT(I)

460 NEXT I

479 CLS

480 PRINT @ 130, "DATE(MM/DD/YY) "
499 PRINT @ 96

500 INPUT "DATE(MM/DD/YY):":DATES
510 PRINT & 162, ""PROJECTED INCOME FROM :"
52¢ INPUT " SALARY:";SAL

539 INPUT " OTHER:'";OTHER

160

Appendix C

5409 BTOT=SAL + OTHER

550 CLS

560 PRINT @ 9, "CURRENT BUDGET"

570 PRINT " acct# description balance"

580 SUMBUD = ¢

599 FOR I=1TO0 9

600 PRINT USING "HHERHL K % %
BuH# #H-"; ACNOCI) ;"™ *;DESCS(I);AMT(I)

610 SUMBUD = SUMBUD + AMT(I)

620 NEXT I :

630 PRINT @ 86,USING "SHHHH H#H-";AMT (1)

649 PRINT @ 387,USING "% LESHHHY .
##"; "remaining money: ":BTOT - (SUMBUD -
PTOP)

650 PRINT & 451, "ENTER ACCT# OF ITEM TO BE"

660 INPUT ' CHANGED (900 TO QUIT)'" ;AN

670 IF AN =0 THEN 750

680 CLS

690 N =AN/ 100

700 PRINT @ 195,ACNO (N)

710 PRINT & 138,DESCH(N)

720 PRINT @ 170,"$"; AMT(N)

730 PRINT :INPUT " NEW AMOUNT'; AMT(N)

740 GOTO 550

750 DATE = VALC(LEFTS(DATES$,2) + MIDS(DATES,4,2)
+ RIGHT$(DATES,2))

760 LSET OAMT$ = MKN$(DATE)

770 PUT #1,1

780 FOR I=1T0 9

790 LSET OAMTS$ = MKN$S(AMT(I))

800 LSET UPDAMTS = MKN$ (AMT(I))

810 PUT #1,1+1

820 PUT #2,1

830 NEXT I

840 CLOSE

859 RETURN

860 '

870 ' This subroutine builds a transaction file

880 ' called TFILE/DAT that contains any updates

161

Sample Programs

890 ' to the budget, and updates BUDGET/UPD

900 '

910 OPEN "D, #1,"BUDGET/UPD",5

920 OPEN "D'" ,#2,"TFILE/DAT",36

930 FIELD #1,5 AS UPDAMTS

940 FIELD #2,3 AS ACONS$,8 AS DATES$,20 AS DESCS$,5
AS TAMTS

950 FOR I=1T0 9

960 GET #1,1

979 AMT(I) = CYNCUPDAMTS)
980 NEXT I

990 GOSUB 1780

1000 CLS

1010 SUMBUD =¢
1020 PRINT @ 9;"CURRENT BUDGET"
1030 PRINT " acct$ description balance'
1040 FOR I=1T0 9
1050 PRINT USING "HHHKHYL % %
LHEHH HH-";ACNOCI) ;" ";DESCS(I);AMT(I)
1060 SUMBUD = SUMBUD - AMT (I)

1070 NEXT I
1080 PRINT @ 86,USING "SHHHH . #H-"; AMT (1)
1090 PRINT @ 387 ,USING "% ASSHEH . HH,;

""total balance:";SUMBUD
1100 PRINT @ 451,"ENTER ACCT# OF ITEM TO BE
1110 INPUT " UPDATED (000 TO QUIT)'" ;AN
1120 IF AN = @ THEN 1319
113¢ ¢LS
1148 K = AN / 100
1150 PRINT & 95, AN
11606 PRINT DESC$(N)
1170 PRINT USING "% %$ SHER , H#Hitr;
"CURRENT BALANCE"; AMT (N)
1180 PRINT: INPUT "DATE(MM/DD/YY)";DT$
1190 PRINT "DESCRIPTION OF TRANSACTION:"
1200 INPUT DSS$
1210 PRINT ""AMOUNT OF TRANSACTION:"
1220 PRINT "(NEGATIVE NUMBER FOR A CREDIT)™
12390 INPUT TRANS

162

Appendix C

1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1359
1360
1370
1380
1390
1400
1410
1420
1430
1440

1450
1460
1470
1480
1490
1500
1510

1520
1530
1540
1550
1560

1570

AMT (N) = AMT(N) -TRANS
LSET ACNO$ = RIGHTS(STR$(AN) .3)

LSET DATES$ = DT$

LSET DESC$ = DS$

LSET TAMTS$ = MKNS(TRANS)
PUT #2, LOF (2)+1

GOTO 1000

FOR I+1 TO 9

LSET UPDAMTS$ = MKN$ (AMT (1))

PUT #1,1

NEXT I

CLOSE

RETURN

L

' This subroutine prints out a Listing of
' the budget, transactions, and balances.
1

OPEN "D', #1, "BUDGET/ORG",5

FIELD #1,5 AS AMTS

OPEN "D",#2, "TFILE/DAT",36

FIELD #2, 3 AS TACNOS, 8 AS TDATES, 20 AS
TRDESCS, 5 AS TMTS

GOSUB 1789

CLS

PRINT $ 172, "PRINTING"

GET #1,1

DATES = STRE(CVN(AMTS)) ,
IF LENC(DATES$) < 6 THEN DATES = ' " + DATES

DATES$ = LEFT$(DATES$,2) + '"/'" + MID$,DATES,
3,2) +"/" + RIGHT$(DATES, 2)

PRINT #-2, TAB(30)"BUDGET FOR THE PERIOD"
PRINT #-2, TAB(31) "STARTING '";DATES
PRINT #-2,PRINT #-2

PRINT #-2,TAB(28) "ACCOUNT OR"

PRINT #-2,TAB(10)""ACCOUNT";TAB(27)
"“"TRANSACTION"

PRINT #-2,TAB(10)"NUMBER'"; TAB(20)"DATE";

TAB(27) "DESCRIPTION";TAB(47)
"TRANSACTION'"; TAB(61)"BALANCE"

163

Sample Programs

1580
1590
1600
1610

1620
1630
1640
1659
1660
1670
1680
1690

1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1859
1860
1870
1889
1890
1900
1910
1920
1930
1949

FOR I=2 TO LOF (1)

GET #1,1

PRINT #-2

PRINT #-2,TAB(10)ACNO(I-1);TAB(17)DATE$;
TAB(27)DESCS$(I-1);TAB(61)CVN;AMTS
BAL=CVN(AMTS$)

IF LOF(2)<1 THEN 1710

FOR J=1 TO LOF(2)

GET #2,J

IF ACNO(I-1) <> VALC(TACNOS$)THEN 1700
BAL=BAL-CVN(TMTS$)

IF CYNCTMT$) < @ THEN CR$="CR'" ELSE CR$=""
PRINT #-2,TAB(17)TDATE$;TAB(27)TRDESC$;
TAB(47)ABS(CVN(TMT$));CR$:TAB(61)BAL
NEXT J

NEXT I

CLOSE

RETURN

]

' This subroutine sets values of account

' numbers, ACNO(I) and account descriptors,
' DESC$(I).

FOR I=1T0 9

ACNOC(CI) = I*x 100

NEXT I

DESC$(1) = "FOOD"

DESC$(2) = “RENT"

DESC$(3) = "CAR"

DESC$(4) = "UTILITIES"
DESC$(5) = "INSURANCE"
DESC$(6) = "TAXES"
DESC$(7) = "CLOTHING"
DESC$(8) = "ENTERTAINMENT"
DESC$(9) = "MISCELLANEOUS"
RETURN

L

' The program terminates here.
L}

END

164

Appendix D

ASCII Character Codes

The following is a list of ASCIl codes for the characters on your keyboe]rd. The
first column contains the character. The second lists the code in decimal nota-
tion. The third converts the code to a hexadecimal (base 16) number.

DECIMAL HEXADECIMAL
CHARACTER CODE CODE
space bar 32 20
! 33 21
" 34 22
35 23
$ 36 24
% 37 25
& - 38 26
' 39 27
40 28
41 29
* 42 2A
+ 43 2B
, 44 2C
- 45 2D
. 46 2E
/ 47 2F
0 48 30
1 49 31
2 50 32
3 51 33
4 b2 34
5 53 35

165

ASCIl Character Codes

DECIMAL HEXADECIMAL
CHARACTER CODE CODE

6 54 36
7 55 37
8 56 38
9 57 39
: 58 3A
; 59 3B
< 60 3C
= 61 3D
> 62 3E
? 63 3F
@ 64 40
A 65 41
B 66 42
C 67 43
D 63 44
E 69 45
F 70 46
G 71 47
H 72 48
[73 49
J 74 4A
K 75 4B
L 76 4C
M 77 4D
N 78 4E
0 79 4F
P 80 50
Q 81 51
R 82 52
S 83 53
T 84 54
U 85 55
v 86 56
W 87 57

166

Appendix D
DECIMAL HEXADECIMAL
CHARACTER CODE CODE
X 88 58
Y 89 59
Z 90 BA
* 94 5E
* 10 ‘ 0A
(&)= 8 08
=)+ 9 09
03 03
12 0C
13 oD

* In shift mode, the codes for these characters are as follows: is 92
(hex BbC); is 95 (hex BF); is91 (hex BB); & is 21 thex 15); and
=) is 93 (hex bD). Refer to the following table.

167

ASCIl Character Codes

The following characters are not on your keyboard but can be displayed by
“printing” the associated code. In BASIC you can type:

PRINT CHRS$ (code)

code represents a character’s associated code.

DECIMAL HEXADECIMAL
CHARACTER CODE CODE
[91 58
\ 92 5C
] 93 5D
1 94 BE
- 95 BF
@ 96 60
| 123 78
N 124 7C
o 125 7D
B 126 7E
| 127 7F

* For the Color Computer 3, different characters are displayed between the low-
resolution text screen (WIDTH 32) and high-resolution text screen (WIDTH
40 & WIDTH 80) modes.

168

Appendix D

Lower-Case Codes

These are the ASCIl codes for lower-case letters. You can produce these
characters by pressing the and @ keys simultaneously to get into an
upper-/lower-case mode. With the Color Computer and Color Computer 2, lower-
case letters appear on the screen as upper-case letters in reverse type (green
type on a black background). This is also the means of display used on a Color
Computer 3 in WIDTH 32 mode. On a Color Computer 3 in WIDTH 40 or WIDTH
80, true lower-case letters can be displayed.

DECIMAL HEXADECIMAL
CHARACTER CODE CODE
a 97 61
b 98 62
o 99 63
d 100 64
e 101 65
f 102 66
g 103 67
h 104 68
i 105 69
i 106 BA
k 107 6B
| 108 6C
m 109 6D
n 10 6E
0 m 6F
p 12 70
q 13 71
r 14 72
s 15 73
t 16 74
u 17 75
v 118 76
w 19 77
X 120 78
Y 121 79
z 122 7A

169

Appendix E

Memory Maps

For the Color Computer and Color

Computer 2
DECIMAL HEX CONTENTS DESCRIPTION
0-2565 0000-00FF | System Direct
Page RAM
256-1023 0100-0O3FF | Extended Page
RAM
1024-1535 | 0400-05FF | Video Text
Memory
1636-2440 |0600-0988 | Additional This is used
‘ System RAM exclusively by Disk
BASIC.
2441-top of | 0989-top of | These Random Access Memory
RAM RAM locations are allocated dynamically
and contain the following:
top of RAM |top of RAM | 1. Random Total buffer space
is 16383 is 3FFF for File Buffer | for random access
for 16K 16K Area files. On startup,
systems, systems, 256 bytes are
32767 for | 7FFF for reserved for this.
32K 32K This value can be
systems systems reset by the FILES
statement.
2. File Control | Control data on
Blocks each user buffer. On
{FCBs) startup, 843 bytes
are reserved for this.
This value can be
reset by the FILES
statement. (number
of buffers set by
FILES + 1) x 281
bytes.

171

Memory Maps

DECIMAL

HEX

CONTENTS

DESCRIPTION

3. Graphics
Video
Memory

Space reserved for
graphics video pages.
On startup 6144
bytes, or four pages,
are reserved for this.
This value can be
reset by the PCLEAR
statement: number
of pages reserved by
PCLEAR x 1,536
bytes per page.
(Note: All pages
must start at a
256-byte page
boundary, a memory
location divisible by
256.)

4. BASIC
Program
Storage

5. BASIC
Variable
Storage

6. Stack

Space reserved for
BASIC programs and
variables. On startup,
6455 bytes (16K
systems) or 22,839
bytes (32K systems)
are reserved for this.
The value can be
reset by different
settings of random
file buffers, FCBs,
graphics video
memory string space
or user memory.

172

Appendix E

DECIMAL HEX CONTENTS DESCRIPTION
7. String Total space for string
Space data. On startup, 200
bytes are reserved,
but this value can be
reset by the CLEAR
statement.
8. User Total space for user
Memory machine-language
routines. No space is
reserved for this on
startup, but you can
use the CLEAR
statement to reserve
some.
32768-40959| 8000-9FFF | Extended Color | Read Only Memory
BASIC ROM
40960-49151 | AOOO-BFFF | Color BASIC Read Only Memory
ROM
49152-57343 | COO0-DFFF | Color Disk Read Only Memory
BASIC ROM
57344-65279| EOOO-FEFF | Unused
65280-65535| FFOO-FFFF | Input/Output

173

Memory Maps

For the Color Computer 3

DECIMAL HEX CONTENTS DESCRIPTION
458752- 70000- System Direct
459007 700FF Page RAM
459008- 70100- Extended Page
459775 703FF RAM
459776- 70400- Video Text
460287 705FF Memory
460288- 70600- Additional This is used
461192 70988 System RAM | exclusively by Disk

BASIC.

461193-top |70989-top | These Random Access Memory
of RAM of RAM locations are allocated dynamically

and contain the following:

1. Random Total buffer space
File Buffer for random access
Area files. On startup,

256 bytes are
reserved for this.
This value can be
reset by the FILES
statement.

2. File Control | Control data on
Blocks each user buffer. On
(FCBs) startup, 843 bytes

are reserved for this.
This value can be
reset by the FILES
statement: (number
of buffers set by
FILES + 1) x 281
bytes.

174

Appendix E

DECIMAL HEX CONTENTS DESCRIPTION

3. Graphics Space reserved for
Video graphics video pages.
Memory On startup, 6144

bytes, or four pages,
are reserved for this.
This value can be
reset by the PCLEAR
statement: number
of pages reserved by
PCLEAR x 1,636
bytes per page.
(Note: All pages
must start at a
256-byte page
boundary, a memory
location divisible by
256.)

4. BASIC Space reserved for
Program BASIC programs and
Storage variables. On startup,

5. BASIC 6455 bytes are
Variable reserved for this.
Storage The value can be

reset by different

6. Stack

settings of random
file buffers, FCBs,
graphics video
memory string space
Or user memory.

175

Memory Maps

DECIMAL HEX CONTENTS DESCRIPTION
7. String Total space for string
Space data. On startup, 200
bytes are reserved,
but this value can be
reset by the CLEAR
. statement.
8. User Total space for user
Memory machine-language
routines. No space is
reserved for this on
startup, but you can
use the CLEAR
statement to reserve
some.
491520- 78000- Extended Color | Read Only Memory
49971 79FFF BASIC ROM
499712- 7A000- Color BASIC Read Only Memory
507903 7BFFF ROM
507904- 7C000- Color Disk Read Only Memory
516095 7DFFF BASIC RCM
516096- 7ECQO- Super Extended BASIC
523775 7FDFF
523776- 7FEQO- Secondary Vector
524031 7FEFF
524032- 7FFO0- Input/Output
524287 7FFFF

176

Appendix F

Specifications

Type of Disks

Disk Organization
(Formatted Disk)

Operating Temperature

BTU/H

Memory Capacity
Unformatted

Soft Sector
(/0O Sector/Track)

Data Transmission Speed

Access Time
Track to Track

Average
Settling Time

Number of Indexes

Disk Controller

51/a-inch floppy diskettes
Radio Shack Cat. No. 26-305,
26-405 (package of three),

or 26-406 (package of ten)

*Double-sided
Double-density

40 tracks {80 tracks, if both
sides are used)

18 sectors per track

256 data bytes per sector
Directory on Track 17 (Disk
Extended Basic)

55 to 85 degrees Fahrenheit
12.8 to 29.4 degrees Celsius

90

500 kilobytes per disk
6.2 kilobytes per track
322 kilobytes per disk
4.6 kilobytes per track

250 kilobits per second

6 m/sec.
100 m/sec.
15 m/sec.

1
WD1773

Note: Double-sided, double-density diskettes can be used under 0S-9 Level
Two operation. We recommend Radio Shack Cat. No. 26-411 (package of
three) or 26-412 (package of ten).

* When using 0S-9.

177

Appendix G

Error Messages

Error No.

10

AE

AO

BR

BS

CN

DD

DF

33

27

28

Description

Division by zero. You asked the computer to divide a number by
0, which is impossible. You might also get this error message if
you do not enclose a filename in quotation marks.

File already exists. You are trying to rename or copy a file to a
filename that already exists.

Attempt to open a data file that is already open.

Bad record number. You have used an impossible record number
in your PUT or GET line. The number is either too low (less than
1) or too high (higher than the maximum number of records the
computer can fit on the disk). Use a different record number in
the PUT or GET ling, or assign a smaller record length in the OPEN
line.

Bad subscript. The subscripts in an array are out of range. Use
DIM to dimension the array. For example, if you have A(12} in your
program, without a preceding DIM line that dimensions array A for
12 or more elements, you get this error.

Can't continue. If you use the command CONT, and you are at
the end of the program, you get this error.

Attempt to redimension an array. An array can be dimensioned
only once. For example, you cannot have DIM A{12) and DIM A(50)
in the same program.

Disk full. The disk you are trying to store your file on is full. Use
another disk.

179

Error Messages

Error No.

DN

DS

ER

FC

FD

FM

FN

37

31

Description

Drive number or device number error.

Drive number error. You are using a drive number higher than 3.
You also get this error if you do not specify a drive number when
using DSKINI or BACKUP: If you have only one drive, specify Drive
0 with these two commands (DSKINI® or BACKUP @)

Device number error. You are using more buffers than the com-
puter has reserved. Use FILES to reserve more. You might also get
this error if you use a non-existing buffer number (such as Buffer
— 3) or omit the buffer (such as FIELD 1 AS A$ rather than
FIELD #1, 1 AS AS).

Direct statement. There is a direct statement in the data file. This
could be caused if you load a program that has no line numbers.

Write or input past end of record (direct access only). You are
attempting to put more data in the record than the record can hold
or trying to input more data than it contains.

llegal function call. This error happens when a number that you
use with a BASIC word is out of range. For example, SOUND
(260,260) and CLS (10) cause this error. Using RIGHT$
(S$, 20) when there are only ten characters in S$ would also
cause it. Other examples include using a negative subscript, such
as A(=1), or using a USR call before defining the address.

Bad file data. This error occurs when you print data to a file or
input data from the file, using the wrong type of variable for the
corresponding data. For example, using INPUT #1, A, when
the data in the file is a string, causes this error.

Bad file mode. You have specified the wrong file mode (O, |, or
D) in your OPEN line. For example, you are attempting to get a record
from a file opened for input using | (instead of D), or you are trying
to write data to a file opened for output.

Bad filename. You used an unacceptable format to name your file.

180

Appendix G

Error No.

FO

FS

*HP

*HR

34

32

Description

Field overflow. The field length is longer than the record length.

Bad file structure. There is something wrong with your disk file.
Either the data was written incorrectly or the directory track on the
disk is bad. See the IO error description for instructions.

llegal direct statement. You can use INPUT only as a line in the
program, not as a command line.

Input past end of file. Use EOF or LOF to check to see when you
reach the end of the file. When you do, close the file.

High-resolution print error. This error occurs if you attempt to ex-
ecute a high-resolution text function on a low-resolution text screen
or to execute a low-resolution text function on a high-resolution text
screen.

High-resolution graphics error. This error occurs if you attempt to
execute a high-resolution graphics statement without first setting
up a high-resolution screen, using the HSCREEN statement.

Input/Output error. The computer is having trouble inputting or out-
putting information.

(1) Be sure that a disk is properly inserted in the indicated drive
and that the drive latch is closed.

(2) If you still get this error, there might be something wrong
with your disk. Try re-inserting the disk. If this fails, reformat
the disk or use different one. (Remember that reformatting
a disk erases its contents.)

(3) If you still get this error, you probably have a problem with,
the computer system itself. Call a Radio Shack Computer
Center.

This error can also be caused by input/output problems with another
device, such as a tape recorder.

* Color Computer 3 only.

181

Error Messages

Error No.

LS

NE

NF

NO

OB

oD

oM

0S

ov

RG

SE

SN

26

29

35

Description

String too long. A String can contain a maximum of 255 characters.

The computer can't find the disk file you want. Check the disk’s
directory to see if the file is there. If you have two disk drives, you
might not have included the appropriate drive number in the file-
name. If you are using COPY, KILL, or RENAME, you might have
left off the extension.

NEXT without FOR. NEXT is being used without a matching FOR
statement. This error also occurs when you have the NEXT lines
reversed in a nested loop.

File not open. You cannot transfer data to or from a unopened file,
Out of buffer space. Use FILES to reserve more space.

Out of data. You executed a read with insufficient data for the com-
puter to read. Perhaps you left out a DATA statement.

Out of memory. All available memory is used or reserved.

Out of string space. There is not enough space in memory to do
your string operations. Use CLEAR at the beginning of your pro-
gram to reserve more string space.

Overflow. The number is too large for the computer to handle,

RETURN without GOSUB. A RETURN line in your program has
no matching GOSUB.

Set to non-fielded string. The field in which you are attempting
to left- or right-justify data has not yet been fielded. Check the FIELD
line.

Syntax error. This error can result from a misspelled command,
incorrect punctuation, an unmatched open parenthesis, or an ille-
gal character. Retype the program line or command.

182

Appendix G

Error No. Description

ST String formula too complex. A string operation is too complex for
the computer to handle. Break the operation into shorter steps.

™ Type mismatch. This error occurs when you try to assign numeric
data to a string variable (A$ = 3) or string data to a numeric
variable (A = '""DATA"). This can also occur if you do not en-
close a filename in quotation marks.

UL Undefined line. In the program, you have a GOTO, GOSUB, or other
branching line that asks the computer to go to a nonexisting line
number.

VF 36 Verification. You only get this error when you have the VERIFY com-
mand on and are writing to a disk. The computer is informing you
that there is a flaw in what it wrote. See the 10 error description
for instructions.

WP 30 Write-protected. You are trying to store information on a disk that
is write-protected. Either remove the label from the write-protect
notch, or use a different disk. If your disk is not write-protected,
then there is an input/output problem. See the |0 error description
for instructions.

183

Appendix H

Disk BASIC Summary

This appendix contains a summary of the BASIC commands you can use with
your Color Computer. In addition to these Disk BASIC commands, you can con-
tinue to use the Extended BASIC commands, which are built into your computer.

Beside each BASIC word is the chapter to which you can refer for more infor-
mation.

The first line of each command’s description gives the format to use in typing
the command. The italicized words represent parameters, variables that you
replace with specific values when you enter.the command.

These are the meanings of some of the parameters:

filename
All information stored on a disk must have a filename. The filenarme should be
in this format: '
namefextension: drive number
The name is mandatory. It can have 1-8 characters.
The extension is optional. It can have 1-3 characters.
The drive number is optional. If you do not use it when opening a disk
file, the computer uses Drive O (or the drive that you specify in the DRIVE
command).

number
This can be a number (such as 1 or 5.3), a numeric variable (such as A or BL),

a numeric function (such as ABS(3)), or a numeric operation (such as 5+3 or
A-7).

string

This can be a series of characters (such as “B” or “STRING"), a string variable
(such as A$ or BL$), a string function (such as LEFT$(S$, 5)), or a string opera-
tion (such as “M"”+AS$).

data
This can be number or string.

186

Disk BASIC Summary

CHAPTER BASIC WORD

Chapter 3 BACKUP source drive TO destination drive
Duplicates the contents of the disk in the source drive to
the disk in the destination drive. If you have only one drive,
specify it as the source drive, the computer prompts you
to switch disks as it makes the backup copy. Executing this
command erases memory.
BACKUP 0 TO 1 BACKUP @

Chapter b CLOSE #buffer,...
Closes communication to the buffers specified. (See OPEN
for information buffer numbers). If you omit the buffer, the
computer closes all open files.
CLOSE #1 CLOSE #1, #2

Chapter 4 COPY “filenamel” TO “filenarne2”
Copies the contents of filenamel to filename2. Each
filenarme must include an extension. {See the filename in-
formation at the beginning of this appendix.) Executing this
command erases memory.
COPY "FILE/BAS" TO "NEWFILE/BAS"
COPY "ORG/DAT:®" TO "ORG/DAT:1"

Chapter 9 CVN(string variable)

Converts a b-byte coded string (created by MKN$) back to
the number it represents.

X=CVN(AS)

186

Appendix H

CHAPTER BASIC WORD

Chapter 2 DIR drive number
Displays a directory of the disk in the drive you specify. If
you omit drive number, the computer uses Drive 0. {(Unless
you use the DRIVE command to change this default drive.)
This is a typical directory display:
MYPROG BAS oB3
YOURPROG BAS A1
HERDATA DAT 1A5
USPROG BIN 2B?2
The first column contains the name of the file. The second
column contains its extension. The third gives the file type
(O = BASIC program, 1 = BASIC data file, 2 = machine-
language fils, 3 = editor source file). The fourth column tells
the format in which the file is stored (A = ASCI,
B = binary). The fifth column contains the length of the filg,
in granules.
DIR® DIR

Chapter 2 DOS v
With the 0S-9 system diskette in Drive 0, the DOS com-
mand boots the 0S-9 operating system.
DOS

Chapter 4 DRIVE drive number

Changes the drive default to the drive you specify. If you
do not use the DRIVE command, the computer uses Drive O.

DRIVE 1

187

Disk BASIC Summary

CHAPTER

BASIC WORD

Chapter 11

Chapter 2

Chapter 11

Chapter b

DSKI$ drive, number, track, sector, string variablel, string
variable2

Inputs data from a certain sector within a certain track on
the disk in the specified drive. The first 128 bytes of data
are input into string variablel, the second 128 bytes into
string variable2.

DSKI$ 9, 12, 3, M$, N3

DSKINI drive number
Formats a disk in the drive you specify. Ex: ~uting this com-
mand erases memory.

DSKINI® DSKINI1

DSKO$ drive number, track, sector, stringl, stringZ2

Writes string data on the sector, track, and drive number
you specify. string? is written to the first 128 bytes of the
sector; string2 is written to the second 128 bytes. Used im-
properly, this command can garble the contents of the disk.

DSKO$ ®, 2, 1, "FIRST DATA', "SECOND
DATA"

EOF(buffer)

Returns a value of O if there is more data to read in the buffer
and a value of —1 if there is no more data in it. (See OPEN
for the buffer numbers.)

IF EOF(1) = -1 THEN CLOSE #1

188

Appendix H

CHAPTER BASIC WORD

Chapter 9 FIELD #buffer, field size AS field name,...
Organizes the space within a direct access buffer into fields.
(See OPEN for the buffer numbers.) You specify the size and
name of each field.
FIELD #1, 10 AS A$, 12 AS B$, 5 AS C$

Chapter 10 FILES number of buffers, size
Tells the computer how many buffers to reserve in memory,
and the total number of bytes to reserve for these buffers
(size). f you do not use FILES, the computer reserves
enough memory space for two buffers (Buffers 1 and 2),
and reserves a total of 266 bytes for those buffers.
FILES 1, 1000 FILES 5

Chapter 4 FREE (drive number)
Returns the number of free granules on the disk in the drive
you specify.
PRINT FREE(®)

Chapter 7 GET #buffer, record number

Gets the next record or the record you specify, and puts it
in the buffer. (See OPEN for information on buffer numbers).

GET #1, 5 GET #2, 3

189

Disk BASIC Summary

CHAPTER

BASIC WORD

Chapter 5

Chapter 4

Chapter 8

Chapter 2

INPUT #buffer, variable name....

Inputs data from the buffer you specify and assigns each
data item in the buffer to the variable name you specify. (See
OPEN for information on buffer numbers.)

INPUT #1, AS, BS

KILL “filename”

Deletes the filename you specify from the disk directory. (See
the filename information at the beginning of this appendix.)
You must include the extension with the filename.

KILL "FILE/BAS" KILL "FILE/DAT:1"

LINE INPUT #buffer, data

Inputs a line (all the data up to the character) from
the buffer you specify. (See OPEN for information on buffer
numbers).

LINE INPUT #1, X$

LOAD “filename”, R

Loads the BASIC program file you specify into memory from
a disk. If you include the R, the computer runs the program
immediately after loading it. If your filename does not have
an extension, the computer assumes that the extension is
BAS. (See the filename information at the beginning of this
appendix.) Executing this command erases memory.

LOAD "PROGRAM'", R

LOAD "ACCTS/BAS:1"

190

Appendix H

CHAPTER

BASIC WORD

Chapter 11

Chapter 7

Chapter 9

LOADM “filename”, offset address

Loads a machine-language program file from disk. You can specify
an offset address 1o add to the program’s loading address. If your
filename does not have an extension, the computer assumes that
the extension is BIN. (See the filename information at the begin-
ning of this appendix.)

LOADM "PROG/BIN', 3522

LOC(buffer)
Returns the current record number of the buffer you speci-
fy. (See OPEN for information on buffer numbers.)

PRINT LOC(1)

LOF(buffer)
Returns the highest numbered record of the buffer you
specify. (See OPEN for information on buffer numbers.)

FORR =1 TO0 LOF(1)

LSET field name = data

Left-justifies the data within the field you specify. If the data
is larger than the field, the computer truncates (chops off)
characters on the right side.

LSET A$ = "BANANAS" LSETB$ =T$

191

Disk BASIC Summary

CHAPTER

BASIC WORD

Chapter 10

Chapter 9

Chapter 5

MERGE “filename”, R

Loads a program file from disk, and merges it with the ex-
isting program in memory. If you include R, the computer
immediately runs the program after merging it. (See the file-
name information at the beginning of this appendix.) To
merge a program file, you must first save it with the A (ASCII)
option.

MERGE '"SUB/BAS" MERGE "NEW", R

MKN$(number)
Converts the specified number to a 5-byte coded string, for
storage in a formatted disk file.

LSET B$ = MKN$(53678910)

OPEN “mode” # buffer, filename, record length
Opens a place in memory, called a buffer, which transfers
data to and from a device.

The communication modes and the types of data transfer
they allow are as follows:

Mode Allows
! Data input from a sequential access file.
0 Data output to a sequential access file.
D Data transfer to or from a direct access file.

192

Appendix H
CHAPTER BASIC WORD
The buffers are:
Buffer Communicates With
-2 The printer.
=1 The tape recorder.
0 The screen or printer. (It is not necessary to
open this buffer.)
1-15 The disk drive(s).
The filename must be in the format described at the begin-
ning of this appenidx. If you do not give the filename an
extension, the computer gives it the extension DAT.
If you are opening communication to a direct access file,
you can also specify the record length. If you do not, the
computer makes the record length 256 bytes.
OPEN "D', #1, "FILE", 15
OPEN "I'', #2, "CHGE/DAT"
Chapter 8 PRINT # buffer, data list

Prints the data to the buffer. (See OPEN for information on
buffer numbers.) You can use a comma or a semicolon to
separate each item in the data /ist.

PRINT #1, "DATA"

193

Disk BASIC Summary

CHAPTER

BASIC WORD

Chapter 8

PRINT #buffer, USING formar; data list

Prints data to the buffer using the formar you specify. The
format is a string that specifies either a format for numeri-
cal data or a format for string data.

The commands that you can use in a format for numerical

data are:

Command Function

#

AAAA

Holds a space for one digit.

Prints a decimal point.

Prints a comma immediately preceding every
third digit (counting to the left from the decimal
point).

Fills leading spaces with &sterisks.

Prints a leading dollar sign.

Prints a floating dollar sign.

Prints the sign of the number. To print the sign
in front of the number, place the plus sign at
the beginning of the format string. To print the
sign following the number, place the plus sign
at the end of the format string.

Prints the number in exponential format.
Prints a minus sign after the number, if the
number is negative. Place the minus sign at the
right end of the format string.

PRINT #1, USING "##.#"; 53.76

PRINT #2, USING "H##HSHH . HH-"; ~3.678

194

Appendix H

CHAPTER

BASIC WORD

Chepter 7

Chapter 4

The commands that you can use in a format for string data
are:

Command Function

! Prints the first character of the string.

%spaces% Sets the field for the string. The length of the
field is the number of spaces plus 2.

PRINT #1, USING "!'; "WHITE"

PRINT #1, USING "% %''; "YELLOW"

See the BASIC manual that came with your computer for
more information on the formats.

PUT #buffer, record number

Assigns a record number to the data in the buffer. If you
do not specify a record number, the computer assigns it to
the current record. (See OPEN for information on buffer
numbers.)

PUT #2, 3 PUT #1, &4
RENAME “old filename” TO “new filename”
Renames a disk file. You must specify the extension of both

filenames.

RENAME "MFILE/DAT:1" TO"BFILE/DAT:1"

195

Disk BASIC Summary

CHAPTER BASIC WORD

Chapter 9 RSET field name = data
Right-justifies the data within the field you specify. If the data
is larger than the field, the computer truncates (chops off)
characters on the right side.
RSET M$ = "SOAP"

Chapter 2 RUN “filename”, R
Loads filename from disk, and runs it. If you include R, all
open files remain open. (See the format for filenames at the
beginning of this appendix.)
RUN "FILE" RUN "PROG/BAS", R

Chapter 2 SAVE “filename”, A
Saves filename on disk. If you do not give filename an ex-
tension, the computer gives it the extension BAS. By using
the A option, you save your program in ASCII format. (See
the format for filenames at the beginning of this appendix.)
SAVE "PROG/BAS" SAVE "TEST:1", A

Chapter 1 SAVEM “filename”, first address, last address, execution

address

Saves filename, a machine-language program residing in the
memory location that begins at first address and ends at
last address. You also specify the address at which the pro-
gram is to be executed. If you do not give filename an
extension, the computer gives it the extension BIN. (See the
format for filenames at the beginning of this appendix.)

SAVEM "FILE/BIN:1'", &H5200, &H5800,
&H5300

196

Appendix H

CHAPTER

BASIC WORD

Chapter 3

Chapter 3

Chapter 5

UNLOAD drive number

Closes any open files in the drive you specify. if you don’t
specify a drive number, the computer uses Drive O {(or the
drive number you specified with DRIVE).

UNLOAD ¢ UNLOAD

VERIFY ON

VERIFY OFF

Turns the verify function on or off. When VERIFY is on, the
computer verifies all disk writes.

WRITE # buffer, data list
Writes the data to the buffer you specify. (See OPEN for
information on buffer numbers.) Use a comma to separate
each item in the data list.

WRITE #1, A$, BS$, C

197

Appendix 1

Adding a Secondary
Disk Drive Kit
(Cat. No. 26-3135)

The disk drive kit consists of the following parts:

The disk drive

The fan motor assembly

The fan (with two smali screws)
Six small screws

Be sure the disk drive in this kit matches your primary drive. Pay special atten-
tion to the drive light and door latch. They should be positioned the same as
those in the primary drive. If they do not match, see your Radio Shack dealer.

Installation

The following information is provided for technicians only. The Secondary Disk
Drive Kit is not intended for installation by the average user. We urge you to
have this installation made by one of our technicians at your local Radio Shack
Computer Center. {Doing so not only ensures expert installation, but also en-
ables the technicians to quickly ensure that all the eguipment is functioning
properly.)

If, however, you do decide to install the kit yourself, foliow these steps precisely.

Warnings:

* Turn off all equipment. Turn off the computer and primary disk drive, and
disconnect the power cord from the back of the computer. If the computer
is on, you might damage the central processing unit, as well as your secon-
dary disk drive.

¢ To avoid possible static charge buildup, touch a metal object to ¢iround your-
self before you begin.

® Be sure to unplug the power cord from the disk drive before removing the case.

199

Adding a Secondary Disk Drive Kit

Head Carriage ® Do not remove the protect sheet
inserted into the disk drive until you
finish installation and begin using the
drive.

¢ Be sure not to touch the head carri-
age assembly during installation.

1. Loosen the four screws that fasten
the cover, and pull the cover up to
detach it.

2. Remove the dummy panel by un-
fastening a screw and a nut from
each side of the chassis.

3. Carefully place the secondary flop-
py disk drive on the primary floppy
disk drive, being sure both drives
face the same direction.

200

Appendix |

4. Connect the interface connector
and the power supply. Be sure to
route the power supply lead from
behind the interface connector.

b, Attach the secondary floppy disk
drive, using the four screws (dished-
head screw M3 X 8) included with
the kit.

6. Loosen the two small screws affixed
in the fan.

7. Affix the fan to the shaft of the
motor. Be sure to leave a gap of 2.5
to 3.0 mm between the fan and the
motor.

201

Adding a Secondary Disk Drive Kit

8. Apply screwlock to the threads of
the screws you loosened in Step 6,
and tighten them.

Tighten screws

9. Connect the connector B of the fan
assembly to the connector B that
runs from power supply PCB as-
sembly.

These connectors can be easily dis-
connected by pushing down lever
on the connector Band pulling out
the connector & .

10. Mount the fan assembly on the
secondary drive by using the ac-
cessory two screws, as illustrated.
Be sure that the fan motor rotates
without making contact with other
parts.

11. Replace the cover, and fasten it with
the four screws you loosened earlier.

202

Index

ASCII 19, 103, 114, 165-169

BACKUP 22, 23, 24, 186

binary 19, 103

bits 9, 10, 43, 110

buffer 43-45, 51, 103-107, 186, 188-195, 197
bytes 9, 10, 43, 73, 74, 109-116

CLOSE 43-45, 60, 186
connections 1-3

COPY 32, 33, 186
CRC M

CVN 99, 186

DCBPT 118
DCDRV 118
DCOPC 118
DCSEC 118
DCSTA 118, 119
DCTRK 118
decimal code 165-168
destination disk 23, 24
DIR 18, 19, 187
direct access file 57-69, 87-100
direct input 92
directory 18-20, 41-42, 112, 113-115
directory entries 114
disk
care 5-6, 21-29
formatting 9-11
inserting 4-5
salvaging 25-26
disk drive 3, 10-12
disk system 1, 109-123
drive number 18, 187
DSKCON 118-120

203

Index

DSKIs 121, 122, 188
DSKINI 10, 11, 23, 188
DSKOs$ 122, 188

EOF 47, 188
error messages 27-29, 179-183

FIELD 94, 95, 189

fielded input 93, 95, 96
file allocation table 115
filename 17, 114, 1856
filename extension 114, 1856
file number 185

files 1, 12, 112, 113

FILES 103-107, 189
FORMAT 10, 11

FREE 191

GET 80, 62, 64, 189
granule 112, 113, 115

hexadecimal 110

INPUT 45, 46, 48, 66-67, 77-78, 190
input/output commands, special 121-123
interface 2, 3

KILL 35, 36, 190

LINE INPUT 77, 78, 190
LIST 13, 14

LOAD 14, 192

LOADM 120, 121, 191
LOC 193

LOF 67, 68, 191

logical sector 116, 117
LSET 93-95, 191

204

Index

machine-language 109, 117
memory 13-17

MERGE 101-103, 192
MKNs$ 97, 98, 192
multiple-disk drives 33, 34

NEW 14
numerical formats 97-99

OPEN 42-45, 60, 61, 192
OUTPUT 43-47

physical sector 116, 117
PRINT 79-83, 90, 193

PRINT FREE 35, 36

PRINT USING 84-85, 194-195
PUT 60-62, 64, 195

READ 104

records 58-69
RENAME 33-35, 195
reset 24

RMB 118

RSET 198

RUN 13, 14, 196

SAVE 12, 32, 196
SAVEM 120-121, 196
sector 10, 110, 1M1, 13, 114
sequential access file 51-66
skip factor 116
source disk 23, 24
specifications 177
startup 4
storing on disk
a BASIC program 11-13
a data file 42-69
a machine-language program 120
a machine-language routine 117-120

205

Index

string 121123
string format 97-99
system controls 110

technical information 109-123
tracks 110-113

UNLOAD 22, 197
VERIFY 26, 197

WRITE 42-44, 60, 67, 75, 76, 197
write protect 25

206

	Tandy Color Computer Disk System Programming Manual
	About This Book
	Contents
	To Get Started
	The Disk
	Meet Your Disk
	A Garbled Disk
	You're The Boss

	The Disk Program
	One Thing at a Time
	Changing It All Around
	A More Direct Approach

	The Refined Disk Program
	How Much Can One Disk Hold?
	Trimming the Fat Out of Direct Access
	Shuffling Disk Files
	Technical Information

	Appenddices
	Programming Exercise Answers
	Chapter Checkpoint Answers
	Sample Programs
	ASCII Character Codes
	Memory Maps
	Specifications
	Error Messages
	Disk BASIC Summary
	Adding a Secondary Disk Drive Kit

	Index

