Using
AWK
with O5-Y

RN

ColorSy.stemss %&
P.O. Bax 540 R

Castle H NC 28429 : -
910 67506 (ack C Sessons

Qualdiy 05-9 Soffvware tor the Color Compulter 3
and the MM grom MS

Using AWK with OS-9

by Zack C Ses’sions

ColorSystems

Copyright 1993

Overview

Chapter 1

Overview

In the February, 1992 issue of The 68xxx Machines 1 ,
in his column Bob van der Poel talks about solving a
complex problem with a few standard OS-9 commands
along with a tool which does not come with OS-9 but is
readily available. I was pleasantly surprised to see that
Bob was talking about gawk. In my last semester of
college I was required to get more "intimate" with awk for
a course in software engineering. During that course I
discovered a version of awk for the OS-9/68000 operating
system and immediately saw its potential as a powerful
tool for OS-9. Thus the justification to prepare this
document.

First a little background. The awk programming
language first came into being in 1977, being the
brainchild of Alfred V. Aho, , and Peter J. Weinberger
Brian W. Kernighan, all of Bell Labs. Knowing this, it is
now obvious how ‘;‘he authors thought of awk as the name
of the language. The authors saw the power, yet
shortcomings of the UNIX utilities grep, fgrep and sed.
They adopted a goal of developing a pattern-scanning
language that would understand fields, one with patterns
to match fields and actions to manipulate them.

The current version of awk was released in 1985, and
is documented in a book by Aho, Kernighan agld
Weinberger called The AWK Programming Language
This version as implemented on most UNIX systems is

1. Chatham House Company, Jim DeStafeno, Editor

2. Hint: Look at their last names, only!
3. Addison-Wesley Publishing, ISBN 0-201-07981-X

Copyright 1993, ColorSystems Page :

Overview

Page 2

called nawk for new awk, and the original 1977 version of
awk remains as just awk. Nawk is a superset of awk.

The Free Software Foundation, as expected, released
their version of awk called GNU AWK, or GAWK in
1986. As of this printing, the most recent version is V2,11,
It supports all of the features and functio(ps of awk as
described in the aforemented book. For your
convenience a disk is included with the publication which
contains the 0S-9/68000 version of GNU AWK V2.11.
Please read the license agreement in the file Copying in
the GNU directory on the disk. Installation instructions
are in Appendix A.

This publication uses example awk programs quite
frequently. Again for your convenience all awk programs
depicted in this publication are on the disk in the AWK
directory.

If you've never heard of awk, you're probably asking
yourself about now, Just what the heck is awk and what can
it do? From here on out, [will refer to awk as awk but all
programming examples will use the command required
for OS-9, gawk, I will also be using the dollar sign ($) to
indicate the Shell prompt in the example commands.

Awk is a very intelligent file processor. It can process
several files with a single invocation. A typical awk
command would look like:

$ gawk ’awk program’ [file(s)]
If no files are listed, awk will read its input from the

Standard Input path, making it perfect for receiving its
data from a pipe, as you will see later. If more than one

4. [have found a few situations where gawk does not fully
Junction as described in the book, but nothing major.

Overview

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

file is listed, all files are processed, but only one at a time,
from left to right.

If the awk programisa multi line program, or you
plan to use it often, you would want to create the awk
program in a separate file and invoke the gawk command:

S gawk ~f awk.program [file(s)]

Where awk.program is the filename of the awk
program file.

The key part of either format is the awk program.
That is where all of the intelligence is at. An awk program
Is one or more awk program statements. Each statement
has two parts, a pattern match, and an action. Both parts
are optional, but one has to be there., So, the structure of a
awk program statement would be:

[pattern] | {action}]

The square brackets indicate each part is optional,
and actually, if omitted there is a default value for each of
them. The action portion of an awk program statement is
distinguished by being surrounded by curly braces. Each
awk program statement in an awk program is applied to
each record in the standard input file stream.

What this means is that the pattern is applied to the
input record. If the pattern evaluates as true then the awk
statement’s action portion is executed. As you might
expect, the syntax of a pattern contains only pattern
matching types of commands and the action portion
contains what might be referred to as executable code.

If an awk program statement has no pattern then the
default pattern is applied to all records in the input
stream. The default pattern is:

/*/

Page

Overview

Page 4

This regular expression will match all input records.
This means that if a pattern is not specified then the
action is applied to all records in the input stream.

If an awk program statement has no action then the
default action is performed if the pattern ever evaluates
true. The default action is:

{ print }

This action says to print the entire input record
exactly as it was read in.

Here is a simple awk program:
{ print }

This awk program displays each record read to the
Standard Output path. Since awk sends its output to the
Standard Output path, it is perfect for piping into a child
process. Here, there was no pattern, thus the default
pattern all records was used.

Awk does some pre-processing of the records read
from the input stream before passing the data to the awk
program, in fact this is one of awk’s most impressive and
useful features. Each record is parsed and the fields are
identified. Each field in the input is a string of characters
which does not contain a blank. So the following line of
data:

Kathy 4.00 10

Has three fields. The first field is a string and contains
the value "Kathy". The second field is a numeric field and
contains the value 4.00. The third field is also a numeric
field and contains the value 10.

If an input line contains the string "ABC DEF"
(note the three spaces between the ABC and the DEF.) then
the first field would contain "ABC" and the second field

Overvie

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

would contain the value "DEF". The three spaces are
essentially ignored by the field variables. In fact all
characters which clagsify as white space are treated the
same way by default.

How does the awk programmer utilize the values of
these fields in an awk program? Within the definition of
the AWK Programming Language is a specification for a
set of builtin variables.

One group of these builtin variables are used to
reference the values of the fields in the current input
record. The format for a field variable is $n where n is the
field number. In the above record, $1 would contain the
character string "Kathy", $2 would contain the number
4.00, and $3 would contain the number 10.

Awk determines if the field is alphabetic or numeric.
If a field contains a valid numeric value then it is a
numeric field. Anything else is a string field.

There is another builtin variable name you can use to
reference the entire input line. Variable $0 refers to the
original input record, including all white space characters
which may have been ignored in the assignment of the
field values. In this record, variable $0 would contain the
character string, "Kathy 4.00 10". For the example
above the wvariable $0 would contain the string
"ABC DEF".

The n portion of the field variable can be a variable
itself. For example, the following awk program will print
each field of each record in a separate line:

5. Using some of awk’s special builtin variables, we can
make use of certain white space characters for a useful
purpose, as we'll see later.

Page .

Overview

Page 6

{ for (i = 1; i <= NF; ++i)
print $§i
}

Note again that the field’s variable names start with 1.

$1 is the first field, $0 is not. $0 is the entire current
input record. I'll talk about what NF is a little later.

You might also notice the similarity of awk action
statements to C programming statements. That was no
accident. It should also make it obvious that experiance
with C programming will give one an edge at learning how
to program awk actions. But that experience can also lead
to potential problems. I have seen at least one
implementation of awk which does not allow the following
instruction in an action:

{
for (i = 1; i <= NF; ++i)
print $i
}

Notice the subtle difference? The first line contains
only the first opening brace of the awk program. This is
common coding style for most C programmers but as I
have found out, can lead to problems with awk. It took
quite a while to identify this as the reason the awk
program was not working!

There are also afew other special builtin variables.

NR contains the number of the current input record. Since
an END pattern’s action is executed after all input data has
been processed, in an END pattern’s action the builtin
variable NR contains the number of records read from the

input.

NF is the number of fields in the current record. So,
the variable $NF would represent the last field in the
current input record. There are several other builtin
variables, all of which are beyond the scope of this article.
The awk programmer can also use user defined variables

Overview’

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

simply by referencing them, as Iused the variable i in the
action example above. The data type, string or numeric, is
determined by the context. Arrays of numbers and strings
are also supported.

All user defined variables also are automatically given
an initial value the very first time they are referenced in
an awk program statement. The initial value for numeric
variables is 0, and for string variables ". Datatype is
interpeted from the context it is used in.

The scope of variables is also important to realize.
Simply put all variables are global, that is they are known
in all patterns and all actions in the entire awk program,
including possible BEGIN and END patterns. There is one
anomoly. Parameters to user defined functions which I'll
discuss later are passed by value for integer and string
variables. Thus, while in the context of a user defined
function the function is operating on a copy of the
parameter and cannot affect the value of the global
variable. Arrays are not copied, though, and can be
modified in user defined functions.

The pattern portion is a little more difficult to fully
understand, especially the regular expressions, unless you
are familiar with the concepts of regular expressions a la
UNIX. The pattern may be any one of the following:

The string BEGIN.
The string END.

An expression.

A regular expression.
A compound pattern.
A pattern range.

SNE DN

In this overview I'll touch on the first three. In alater
chapter I'll go over the more complex patterns.

BEGIN and END are special patterns. They indicate
that their associated actions (it is of little use to have a
BEGIN or END with no action!), are only performed at

Page 7

Overview

Page 8

special times. The BEGIN action is always processed
before any data has been read. The END action is always
processed after all data has been processed.

A pattern which is in the format of an expressionis a
comparison between two expressions. All standard
comparision operators used in the C Programming
language are recognized, <>, <=>, ==, != =_ plus
two others, ~ means is matched by, and !~ means is not
matched by. I'll talk about these last two later. A typical
expression for a pattern would be:

$§2 <= §3

The pattern would be true if the value of field
variable $2 is less than or equal to the value of field $3.
For each record in the input stream that the pattern is
true, the pattern’s associated action is executed. Since the
default action is { print }, if the above pattern were
the entire awk program, then for each record which the
pattern were true, the entire record would be written to
standard output. Since expressions are allowed in the two
items to compare, the following is a valid expression
pattern:

$1 / 2 <= $4 * §5

In this case, field 1is divided by a constant 2. That
value is compared to the product of the values of fields 4
and 5, and the pattern is true if it is less than or equal.

A pattern can also be what is called a string matching
pattern. In most cases, this is usually in the form is a single
regular expression. To signify that a pattern is a regular
expression, it must be enclosed in slashes. Here’s an
example of a simple regular expression:

/Mary/

In this case, the pattern is true for any record which
contains the substring "Mary", and thus the pattern’s

Overviev,

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

associated action would be performed. This is the simplest
form of a regular expression. They can get quite
complicated. A thorough treatment of regular expressions
is beyond the scope of this publication. Any book on the
UNIX Programming Environment will discuss regular
expressions in depth. Even though, I will offer a few more
examples of regular expressions in the chapter on patterns
which do get a little more complicated.

The other part of an awk program statement is the
action. An action consists of one or more valid awk action
statements. These look much like C programming
statements, and indeed, some are identical and function
the same. Perhaps the most common action of most awk
action clauses is to output something with either a print or
a printf function. printf works exactly like the C function
does. This print command:

print $1,$2,8$3
would work like it were the following printf statement:
printf("%s %s %s\n",$1,8$2,$3)

With the simple print statement the fields are
automatically separated by a space. This example assumes
that the three fields are all strings. awk is smart enough to
know the difference. Note that the print also does an
implied new line at the end of its data. Other action
statements awk actions can have are if (with optional
else), while, for, do while, break, continue, next and exit
statements.

We'll revisit actions in a later chapter.

Page 9

Patterns and Regular Expressions Patterns and Regular Expressions

Chapter 2

Patterns and Regular Expressions

So far, I've touched on awk’s command line syntax,
what an awk program is and what it’s basic structure is.
We learned that each awk program statement has two
parts, a pattern and an action. We also discussed a couple
of different types of patterns. We talked about the special
patterns BEGIN and END, about expressions as patterns,
and simple regular expressions.

In this chapter, we’ll first talk about some of the more
complex pattern types and later we’ll get into a more
detailed discussion of regular expressions. Since the topic
of this chapter is patterns, I will not be specifying any
actions in any of the examples. Just keep it in the back of
your head that if an awk statement consists of just the
pattern and has no action, it still has an action, the default
action. One more time, that action is:

{ print }

The first of the more complex patterns I will discuss
are known as Compound Patterns. These are expressions
which combine other expressions with logical ANDs, ORs,
and NOTs. For example, you can have:

$1 == "Mary" && $3 > 100

Again, standard C operators are used, &&, || and !
for and, or and not respectively. In this case, the pattern is
true for any record where the first field contains exactly
the string value "Mary" and the third field is greater than
100, when considered as a numeric variable. This reminds
me of something I glossed over earlier. Let me digress on
that for a second.

Page 10 Copyright 1993, ColorSystems Copyright 1993, ColorSystems Page 11

Jatterns and Regular Expressions

Page 12

While a field which contains a pure numeric value is
considered as a numeric field, it can be referenced in the
context of a string variable. When used so, the value of the
variable is converted to a string variable before the value
of the variable is referenced. This is also true with
alphanumeric variables, in fact. That is, a string variable
refernenced in a numeric context, it’s ASCII values are
converted to an numeric value. The effect is analogous to
an atoi() or an atof() function call in C.

Let me finish this digression by commenting that it
should be obvious that variables are referenced more
efficiently in the context of which the are defined as. This
can make quite a difference when processing large data
files as awk is an interpeted language.

Range Patterns are two patterns separated Dby
commas. The range pattern is true for all records starting
with a record for which the first pattern is true and then
continuing sequentially through the file up and including a
record, if found, for which the second pattern is true. If
the first pattern is never true, no records will be
processed. If the first pattern is ever true, and the second
pattern is then never true, all records starting with the one
which matched the first pattern through to the end of the
input are processed by the range pattern’s associated
action. Each of the two patterns may be of any of the
different types of patterns. For example:

/Blfred/, /Karen/

This is two regular expressions as the first and second
pattern. In this case, the first record found which contains
the substring "Alfred" and all records after it up to and
including a record, if found, which contains the substring
"Karen" are processed by the patterns’ associated action.

Another example of a valid range pattern is:
NR > 3, NR > 10

This shows that the two a parts of a range pattern can

Patterns and Regular Expressions

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

. : 6
be expressions as well as regular expressions.

In this case the 4th through the 10th record are all
processed by the patterns’ action. I had to think about this
one for a second. Remember, after the first pattern is true
all records are processed UNTIL the second pattern is
TRUE AND the input record which made the second
pattern true is processed. Here’s something similar:

$3 > 100, $3 < 200

In this case, if a record is found which has its third
field greater than 100 then that record and all subsequent
records will be processed by the action, until a record is
come upon which has the third field less than 200. That
record will be processed, too, but none after it. This one
deserves a second thought also, but I'll let you handle that.
Another interesting use for a range pattern would be this:

$1 == "Mary", SNF == 0

In this case, the first record found to have the first
field equal to the character string "Mary" and all records
after that will be processed until a record is found whose
LAST field contains a value of zero. That will be also
processed, but none after. Note that using the NF variable
to denote the last field in a record, a file with variable
numbers of fields in the records would be no problem.

A range pattern may not be part of another pattern.

Last time I talked about simple regular expressions.
Let’s get back into them. The type of pattern which
contains a regular expression is called a string matching
pattern. A pattern can contain more than one regular
expression. It will contain either a single regular

6. Remember the difference between an expression and a
regular expression?

Page 13

2atterns and Regular Expressions

Page 14

expression, or a regular expression used in conjunction
with an expression. To indicate a regular expression, itis
surrounded by slashes. This string matching pattern must
fit one of the following three general formats:

/regexp/

Matches with the current input line if the pattern
matching rules applicable to the regexp are met.

expression ~ /regexp/

Matches if the string value of expression meets the
pattern matching rules applicable to the regexp.

expression !~ /regexp/

Matches if the string value of the expression does not
meet the pattern matching rules applicable to the
regexp.

Any expression may be used in place of /regexp/ in

the context of ~ and ! ~. Note that the first format can be
expressed as a valid form of the second format, that is:

$0 ~ /regexp/
Here’s some examples of string matching patterns.
$4 ~ /Mary/
This is an example of type 2 above. In this case, field

#4 of the input record must contain the substring "Mary"
for the pattern to be true. Consider the following:

$§1 ~ $3

In this case the /regexp/ in the second format is
replaced by an expression, in this case, the field variable
$3. This can only be done in the context of ~ and ! ~. The
! operator is use as a not modifier. Here is an example of

Patterns and Regular Expressions

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

its use:
$5 !~ /Phil/

This pattern would be true for all records which did
not contain the substring "Phil". But, we have really only
touched on what came come between the slashes for a
regular expression. So far, all examples with regular
expressions contained only a character string. There are
many special characters called metacharacters which can
be used to indicate special processing.

For example, the "~" character matches the beginning of a
string and the "$" character matches the end of the string.
These metacharacters may appear alone or in
combination in a pattern. Consider the string matching
pattern:

$1 ~ /~Chicago$/

In this case, the regular expression says to match with
a string which starts with the C, and ends with the o, and
has an hicag in between. So, only records whose first field
is the string "Chicago" (not just contains the substring) will
match and the pattern be true. The "*" character matches
any size string of any characters, and the "2?" character
matches zero or one occurances of the previous character.
Example:

$2 ~ /~2%/

This pattern would be true for all records in which the
second field begins with the character "Z" (UPPERCASE
Z), followed by zero or more of any character. Consider
this example:

$4 ~ /ing$/

This pattern would be true for all records whose
fourth field ends with the substring "ing". Here’s another:

Page 15

>atterns and Regular Expressions

>age 16

$5 ~ /A?/

This pattern would be true for any record whose fifth
field contained either the value "A" or "AA". The last
metacharacter I will discuss is the [] pair. The []
contains one or more individually considered characters in
it. It can also specify a range. For the pattern to be true,
the string must match only the characters listed within the
[1’s. For example:

$1 ~ /~[ABC]/

This pattern is true for all records whose first field
starts with one of the characters, "A", "B", or "C", and is
followed by zero or more of any characters. Note that the
comparison is very case sensitive! Here’s an example of a
range:

$2 ~ /~[a-zA-2Z]/

This pattern is true for all records which has a second
field which has as its first character a letter, upper or
lower case. It may have zero or more characters after the
initial letter. Be careful when using combinations of
metacharacters! Consider the following example:

$2 ~ /~[a-zA-Z]*/

Now, at first glance, you might think that this does the
same thing as the previous pattern. Uh, uh, it doesn’t!! In
fact, it will match on field two no matter what field two
contains! You see, the first metacharacter is the dual
character range which matches only a single character.
Let’s say that the range does match the first character.
Then, no matter what is next, the "*" metacharacter will
match it. But, let’s say that the range does not match.
Then no matter what is next the "*" metacharacter will
match it! So, this pattern matches anything, which nullifies
the reason to even attempt the first character verification.
So, use the "*" metacharacter carefully!!

Patterns and Regular Expressions

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

Multiple ranges may also be specified. For example:
$2 ~ /~[0-9][A-2Z]S/

In this case, only records in which the second field
starts with a numeric character and ends with an upper
case alphabetic character.

Page 17

\ctions

Page 18

Copyright 1993, ColorSystems

Actions

Chapter 3

Actions

Awk would be a very dull language if all it could do is
output the entire record of every record which is selected
by a pattern! The action part of an awk statement is a very
powerful tool, with it you can have the equivalent of an
entire C program associated with each pattern in an awk
program. There are 18 different awk action statements.
Here is a brief description of each of them:

1. break

This statement does the same thing as it doesina C
program, it exits the current for () or while () loop.

2. continue
This statement also does the same thing as it does in a
C program, it transfers to the end of the loop and
performs any end of loop processing.

3. delete array-expression

This is something unique to awk. It is used to delete an
entry in an array.

4. do statement while (expression)
This is another awk action statment which is identical
to it’'s C counterpart. The statement is performed as
long as the expression is true, that is, it evaluates to a
non-zero or a non-null value.

5. exit [expression]

This statement functions as the C programming

Copyright 1993, ColorSystems Page 19

Actions

language equivalent does, passing the value of the
expression back to the caller. The specifics of the exit
statement in an awk program is that:

1. If it occurs in an END pattern’s action, the awk
program is terminated and the expression is
returned to the Shell.

2. If it occurs in any other action in an awk program it
has the same effect as signalling an end of the input

file stream. If there is an END pattern, its action will
be performed.

4. expression
This allows for various arithmetic and string operations.
5. if (expression) statement] [else statement2]
This awk action statement also performs just as its C
programming language counterpart. If the expression is
evaluated as true then the first starement! 1is performed.
Otherwise the statement2 associated with the else (if
present) is performed.

0. input-output expression

These statements allow for wvarious input-output
operations. Here are the various awk IO statements:

1. close (expression)
Closes a pipe or file denoted by expression.
2. getline

This is an all purpose statement to get input from a
file, a variable or from the standard input stream.

3. print

Page 20 Copyright 1993, ColorSystems

Action:

Copyright 1993, ColorSystems

This is one of awk’s output statements. It allows the
awk programmer to make simple awk programs
when fancy output editting is not required.

4, printf

This statement works just as the C programming
language counterpart does.

5. system(command line)

This statement also works just like its C counterpart.

7. for (expressionl; expression2; expression3)
statement

This is another awk action statement which performs
the same as its C programming language counterpart.
expressionl is performed once, then the statement is
performed repetatively as long as expression2 evaluates
as true. It is re-evaluated each time through before
performing the statement. expression3 is performed
after the statement is performed each time statement is
performed.

8. for (variable in array) statement

Now this one has no C programming language
counterpart. It is quite unique to awk action
statements. The variable is assigned each successive
index value in the array and the statement is performed.
The value of the items in the array can be accessed in
the statement with the syntax array [variable).

9. next

Here is another awk action statement unique to awk. It
is similar to the exit statement in that it affects the
outer loop of the awk program which is reading the

Page 21

\ctions

input and parsing the awk program patterns and
actions. Any time a next statement is performed, the
next input record is read and parsed and control is
passed back to the first awk program statement in the
awk program.

10. return [expression]

This awk action statement functions identical its C
programming language counterpart. The exception is
that in an awk program, the only place a return
statement can appear is in a user defined function. I'll
get into user defined functions later.

11. while (expression) statement

This is another awk action statement which functions
identical to its C programming language counterpart.
The statement is performed as long as the expression is
evaluated as true.

12. { statements }

This structure is also permitted in the C programming
language. It gives the programmer to utilize several
awk action statements where only one is supported.

That is all of the awk action statements. At this time I
want to go over the builtin functions since they are
primarily used in actions. They are not restricted to just
actions, though, they can be used in patterns as we will see
later. There are two basic types of functions, string and
arithmetic. In the following description of builtin functions
s and ¢ represent strings, r is a regular expression and i and
n are integers.

String Functions
1. gsub(r,s,t)

This function performs a global substitute of s for each

Page 22 Copyright 1993, ColorSystems

Actions

Copyright 1993, ColorSystems

substring found in ¢ which are matched by r, character
for character with case sensitivity. It returns the
number of substitutions which were made. The entire
record, field $0, is used if ¢ is omitted.

NOTE

If the character & appears in the replacement
string s then it is replaced by the matched
string, \ & yields a literal ampersand.

. index(s,t)

This function returns the position in s where ¢ appears.
If it doesn’t appear, a zero is returned.

. length(s)

This function computes and returns the length in
characters of the string s.

. match(s,r)

This is the same function as index() except the
starting point in r and the number of characters in s
which are matched are determined by the builtin
variables, RSTART and RLENGTH respectively.

. split(s,a,fs)

This is a special function which is unique to awk. It is
used to split up the index values for an element in an
associative array. I'll go over associative arrays in a
later chapter. Formally what happens is that the array
index value s is splitup into the string array a using the
character fs as the field separator character. If fs is
omitted then the builtin variable FS is used.

6. sprintf (fint, expr-list)

Page 23

Actions

Actions
: 6. rand
This returns the expr-list formatted according to fint. 0
Returns a pseudo-random number greater than 0 and
7. sub(r,s,t) less than 1.

This function works just like th.e gsub() function
described above except the substitution is performed
only for the first match. Also, the note associated with
gsub () also applies to this function.

7. sin(x)
Returns the sine of an angle x expressed as radians.

8. sqrt(x
8. substr(s,i, n) are)

This returns a string which has the length of # which is Returns the quare root of the value in .
a substring starting at position 7 in the string s. If the
length n is omitted, the suffix of the string s starting at
position i is returned. Use this

9. srand (x)
function to seed the random number

generator. If no value for x is specified, the the time of

Arithmetic Functions day will be used.

1. atan(y,x) That covers the building blocks of the awk

This function returns the arctangent in radians ofy /x programming language. Now how do we put them all

. - ° together to produce useful awk programs? The answer lies
in the range of - pi to pi. ahead!

2. cos(x)

This function returns the cosine of the angle x in
radians.

3. exp(x)

Returns the exponential function of e g
4. int(x)

Returns the value of x truncated to an integer.
5. log(x)

Returns the natural logarithm of the value x.

2age 24 Copyright 1993, ColorSysterms Copyright 1993, ColorSystems Page 25

Writing AWK Program:

¥riting AWK Programs

Chapter 4
Writing AWK Programs

In this chapter, I will concentrate on pure awk
programming. I will use several example programs and
also show how an awk program can be improved upon. In
using awk programs as all of the examples, I will also be
introducing other features and capabilities of awk which I
have not previously touched on.

Since awk’s real claim to fame is file processing, we’ll
need a few data files to play with. These are on the disk
which is included with this publication in the AWK
directory. To refresh your memory, here is the data
contained in the two files we will be using in the examples.

$ list parts.dat

Pl nut red 12 london
P2 bolt green 17 paris
P3 screw blue 17 rome
P4 screw red 14 london
P5 cam blue 12 paris
pP6 cog red 19 london

$ list emp.dat

Beth 4.00 0

Dan 3.75 0

Kathy 4.00 10
Mark 5.00 20
Mary 5.50 22
Susie 4.25 18
$

Program 1

Let’s say we want to know how many times the

character "o" appears in the file parts.dat. Consider the
following awk program:

i Page 2
Page 26 Copyright 1993, ColorSystems Copyright 1993, ColorSystems age

Writing AWK Programs

$ list P.4.1
{ for (i = 1; i <= length($0); ++1i)
if (substr($0,i,1) == "o")
++total

}
END { print "There were", total, "o’s." }

If this awk program were used to process the parts.dat
file, the output would look like:

$ gawk -f P.4.1 parts.dat
There were 9 0’s.

This program introduces the builtin functions, of
which both length() and substr() are members of. Both of
these normally operate on string variables. Others operate
only on numeric variables. In either case, if a variable is
the wrong default type, its value is first converted to the
appropriate value.

Program 2

Consider the standard word counting utility we. When
run against the parts.dat file, its output would be:

$ wc parts.dat
6 30 131 parts.dat

Let’s see how hard this is to do with awk. Take a look:

$ list P.4.2
{ nc += length($0) + 1
nw += NF

}
END { printf("%7d%7d%74 %s\n" , NR,nw,nc,FILENAME) }

There are two awk program lines in the awk program.
The first program line does not have any pattern part, thus
the action is applied to every record in the standard input
stream. The second program line has a special pattern, the

Page 28 Copyright 1993, ColorSystems

Writing AWK Program

keyword END, which means its action is performed just
once, and only after all input records have been processed.

This produces output identical to the we command
above. Note how I use the += additive operator, ala C.
For those untrained in C the following two action
statements are identical in effect:

nw += NF
nw = nw + NF

Also, remember that awk always initializes variables
the first time they are referenced, thus the variables nc
and nw are initialized to zero when the first record is
processed. Remember also that NF is a builtin variable
which contains the number of fields in the current input
record.

Note also that the length of the entire record does not
include the newline character at the end of every text
record. That is why a 1 is added to the character count
variable nc with each record processed.

Notice that the syntax of the printf() function is
identical to the function of the same name in the C
Programming Language. Also, a new builtin variable is
being used, FILENAME. As you might expect, it contains
the name of the file being processed.

Program 3

Consider the file parts.dat, it has one record for each
part which is carried n each city of a multi location parts
dealer. Let’s say we want to know the number of parts in
each of the cities. Take a look at the following awk
program:

Copyright 1993, ColorSystems Page 2

Writing AWK Programs

$ list P.4.3
{ totl$5] += 34 2
END { for (city in tot)
printf("City %s has %d total parts.\n",city,totlcity])
>

Here’s what happens when we run it against the
parts.dat file:

$ gawk -f P.4.3 parts.dat

City rome has 17 total parts.
City london has 45 total parts.
City paris has 29 total parts.

This program introduces an entirely new concept for
awk programs. This concept is known as the "associative
array”, and is one of awk’s most powerful tools. Here, the
subscript for the array tot[] is the name of the city, a
character string. Since there is no pattern, each input
record is processed by the action. The number of parts in
the city rome are accumulated in the array variable
tot["rome"].

Once all of the input records have been processed, we
can dump out the totals in the END action. To access
elements in an associative array, the awk programmer
uses a special form of the for() loop,
for (item in array), where array is a previously
defined associative array, and item will be a variable
which will be assigned the value of each index in the array,
one at a time. Thus, the variable item will be a character
string variable. The value of each element in the array can
be either numeric or alphabetic, in our example they are
numeric.

Think of the C code it would be required to perform
such a feat!

NOTE
Awk processes all arrays as associative arrays,
that is, even if the index of an array is numeric,

Page 30 Copyright 1993, ColorSystems

Writing AWK Programs

the same awk internal processing code, the code
which processes associative arrays. will process all
references to members of that array.

Program 4

For our last awk program in this chapter, lets look at
that parts file. Let’s say that we want to know how many
parts of each color are at each city. Consider this awk
program:

$ List P44
{ totall$5,83] += $4
END { for (idx in total) {
split(idx,x, SUBSEP)
printf("There %s %d %s partZ%s in %s.\n",
(totallidxl == 1 7 "is" : "are"),totallidx]1,x[2],
(totallidxl == 1 72 ""* @ "s") x[1D
>
X

Here’s what happens when it’s run:

$ gawk -f P.4.4 parts.dat

There are 17 green parts in paris.
There are 17 blue parts in rome.
There are 12 blue parts in paris.
There are 45 red parts in london.

This awk program again uses an associative array, and
in this case, it is a two dimensional array. First dimension

is the city name, and the second dimension is the part

color. The value of the elements in the array is the total
number of those parts.

Apparently, awk actually processes the multiple
indexed array by simply concatenating the two indices
together into a single character string where the two
values are separated by a special separator character. One
argument for this is that to reference the index values
separately in a subsequent for() loop, the awk

Copyright 1993, ColorSystems Page 31

Writing AWK Programs

Writing AWK Programs

Page 32

programmer must split up the values by using a new
builtin function, split (). Also used is another builtin
variable SUBSEP. This variable contains the default
character used to separate subscript values for an
associative array.

Notice also, that awk supports a powerful C
expression, the conditional expression.

Extra!

Lastly in this chapter, I'll present a "real world"
example. Let’s say | have a directory tree of many files in
several directories. I realize that all of the files have
public write access and I do not want that. I want to
remove public access from the files. I could do the
following:

$ dir -sur ! attr -z -npw

But this would change the access mask of all of the
subdirectory files in the tree! I did not want to do that!
Consider the following awk program:

$4 i~ /~d/ { print $§7 }

OK, for any input record in which the fourth field
starts with a lower case d, that record is ignored. If the
fourth field starts with anything else, the the seventh field
of the record is written to the standard output path. What
good is that? Well consider the following OSK command:

$ dir -sure

0.0 92/12/27 1200 d-ewrewr 2E 64 DIRY
0.0 92/12/27 1150 —--w--wr 4 10476 filel
0.0 92/12/27 1210 —==W~-wr 3A 1004 DIR1/file2

The s option tells dir not to sort the output, this
makes the command run faster and sorted output is not
really needed for our ultimate purpose. The u option
means the output is unformatted, basically this means no

Copyright 1993, ColorSystems Copvright 1993. ColorSvstems

header information, just one record of output per file. The
r option tells dir to do a recursive search. You’ll notice for
files in the listing, the full path name is displayed for files
below the current level. The e option asks for a full, or
entire, directory listing.

Now, notice that field 4 is the attributes mask. For
directory files, this mask will always have a "d" in the first
position. Conversely, all files which are not directory files
will have a dash ("-") in that position. Now, notice that the
file name is the seventh field in the display. Now that awk
program is starting to make sense! What if I entered the
following command:

$ dir -sure ! gawk '$4 !~ /Ad/ {print $7}' ! attr -z -npw
Just what the doctor ordered!

Notice also that the same effect could be produced
with either of the following awk programs:

2.$4 ~ /~-/ {print §7}
3. substr($4,1,1) == "-" {print §7}
4, substr($4,1,1) != "d" {print $7}

Now, given the fact that the same function can be
performed with several different awk programs, which
formi would be the most efficient? Well, it should be
obvious that the first and second form which use the
regular expression would be almost identical in efficiency,
as the only difference is the direction of the comparison.
The same holds true with the two forms which use the
SUBSTR () builtin function.

To find out which of the two basic forms was the more
efficient and to verify my assumptions above, I prepared a
test file which contained a total of 2268 lines, 2225 were
non-directory files and the remaining 43 were directory
files. Here are the timing results:

Page 33

Nriting AWK Programs

Advanced Programming

Page 34

1. 35 seconds
2. 35.5 seconds
3. 38 seconds
4, 38 seconds

As one can see, my assumption as to the closeness of
the two groups which were similar held true, even more so
for the SUBSTR() form. We see also that, even though
the improvement is small, the form which uses the regular
expression was almost 9% faster. Granted, in my example
a difference of three seconds is not all that much, but let’s
say you had a file with 100,000 records in it! Your savings
in processing time would be 2.5 minutes!

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

Chapter 5

Advanced Programming

In this chapter we’ll get a little more advanced in our
programming examples. We will do this while
concentrating on text processing with awk. Awk is a pretty
nice text file processor for certain needs.

For our first example this time let’s revisit an awk
program from the previous article on awk programming,
the wc lookalike awk program. Our awk program could
emulate wc just fine, but only for one file at a time. wcis
capable of working on several files with the same
command, and providing an overall total. For example
look at the following command and its output:

$ wc parts.dat emp.dat

6 30 131 parts.dat
6 18 112 emp.dat
12 48 243 total

Remember, the parts.dat and emp.dat file were
defined in the previous chapter.

Now, what do we need to do to the awk program from
last time to get it to be able to do this? As it is, when used
with the same two files, it produces the following results:

$ gawk -f P.4.2 parts.dat emp.dat
12 48 243 emp.dat

It gives the right overall total, but doesn’t give the
totals for the individual files, and the filename displayed
for the total is the name of the second (really the last) file
to be processed. Consider the following modification:

Page 3§

dvanced Programming

'age 36

$ Llist P.5.1

name ‘= FILENAME { disp(O)

name == FILENAME { nc += length($0) + 1
nw += NF
nr = FNR

END { disp()
if (numfiles > 1)
printf("%7d%7d%7d total\n",gt_nr,gt_nw,gt_nc)
3
function disp (dummy) {
if (NR > 1) {
gt_nr += nr
gt_nw += nw
gt_nc += nc
printf("%7d%7d%7d %s\n",nr,nw,nc,name)
nw =nc =0
++numfiles
>
name = FILENAME

With this awk program, we are introduced to many
new topics. First of all, this is the first awk program in my
series which has more than one statement, other than a
BEGIN or END. In this case, we have two awk statements,
each with unique explicit patterns.

Notice that the NR builtin variable is not used in this
version as it was in the previous version. This is because in
this version, we want to handle multiple files. If multiple
files are specified, the builtin variable NR takes on a more
refined definition. It’s formal definition is input record
number since beginning. There is another builtin variable
FNR, used here whose formal definition is input record
number in current file. Also realize that the formal
definition for FILENAME is name of current input file. The
meaning of the term current file should be obvious in the
context of processing a list of files.

This awk program also introduces the concept of user

Advanced Programming .

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

defined functions. In this case a function used to display
the totals for the previous file is used since the code for it
is needed in two separate actions in the awk program, the
second pattern statement, and the END statement. Note,
that even though no argument is passed in either call to
disp(), it is defined with a single argument which I called
dummy.

According to The AWK Programming Language, a
function with a null argument list is perfectly valid. But
there appears to be a bug in the GNU version of AWK. It
will correctly process a call to a function with a null
argument list, but it does not appear to be able to declare
a function with a null parameter list. Therefore, the
function disp has a single argument declared which is
never used.

Now, let’s get down to something a little more
complex, shall we? Let’s say, for example, you have a text
file which is the output of a text formatting utility. This
document file could have lines that are specially
formatted with centered, filled and adjusted lines such as:

These Lines are Lines
Which Have Been Centered
For Emphasis

Other lines would have a certain amount of
spaces at the beginning of the line to give
the text an even left margin. There are also
embedded spaces between some words so that
we can also get an even right hand margin
also, as this paragraph demonstrates.

Notice that the last line in a paragraph is not filled
out to the right border. The first line of each paragraph
may or may not be indented more than the other lines in
the paragraph. There are also blank lines inserted in the
text so that when printed on a printer, each page’s text
appears at the same location as all pages do.

Page 37

\dvanced Programming

Advanced Programming

Now, lets say that you do not have the original file

. . list P.5.
which was the input to the text formatter, and you want to > list P.5.2

Page 38

regain that file from the formatted file. Well, if it is a large { lfiés‘zf: ”i'_—')oi
file, several minutes in an editor will fix it for you. Or you flag N 1:
can fix it in a few seconds with the editor and then with else !
the help of the following awk program. flag = 0;
First thing to do is to prepare the file with an editor. ilse {
Lines which are centered as the above lines only need to if (flag == 1) {

be left justified on column 1, like so:

These Lines are Lines
Which Have Been Centered
For Emphasis

To signal that lines are centered lines and should not
be automatically filled, we edit the file an insert a line
before them and a line after them, both lines having a
single character, a percent sign (%). For example, the
above lines would be:

These Lines are Lines
Which Have Been Centered
For Emphasis

o\®

Next thing to do is to remove the extra lines which
form page breaks. If they occur in the middle of a
paragraph, be sure to remove them all. If the occurin
between two paragraphs, then be sure to leave a blank
line between them. Once this is done, the file is then
ready to be processed by this awk program:

Copyright 1993, ColorSystems

for (i = 1; i <= NF; ++i) {
printf("%s",$i);
if (i < NF)
printf(" ");
}
printf("\n");
}
else {
if (length($0) == 0) {
if (length(rec) > 0) {
printf("%s\n",rec);
rec = "";
}
printf("\n");
}
for (i = 1; i <= NF; ++i) {
if ((length(rec) + length($i)) > 50)
printf("%s\n",rec);
rec = "":
}
if (length(rec) > 0)
rec = rec " ";
rec = rec $i;

END { if (length(rec) > 0)

print rec

}

Copyright 1993, ColorSystems

{

Page 39

«dvanced Programming

>age 40

The preceeding example text after being process
. . ‘ Xt ¢ edb
this AWK program would appear as: 7 g

These Lines are Lines
Which Have Been Centered
For Emphasis

Other lines would have a certain amount of spaces
at the beginning of the line to give the text an
even left margin. There are alsc embedded spaces
between some words so that we can also get an even
right hand margin also, as this paragraph
demonstrates.

Notice that all extraneous spaces between words have
been eliminated, there being but a single space between
words. Words have been moved up from lines to fill out
lines to a maximum of 49 characters. Of course, you can
modity the constant 50 to whatever value you are
shooting for. To use this awk program one would enter
the following command:

$ gawk -f P.5.2 input.file >output.file

~ Let’s analyze the awk program. First thing we notice
is that there is no BEGIN pattern but there is an END
pattern. In fact most of the awk program consists of but a
single action with no pattern match at all. This means that
this action will be applied to each record in the input file.
And the action itself resembles a small C program.

The first thing the program does is to see if we need
to turn on or off the word fill flag variable which is named
flag. So, if the input record is nothing but a % character
then the value of the flag is checked. The first time this is
done (for the first input record), the value of flag is
automatlcally initialized to zero. So, it is changed to 1. If
the value is 1, it is changed back to zero. Also, if this
_rec.or_d was a flag record, it is not processed further, that
Is, 1t 1s not written to the standard output.

Advanced Programmin:z

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

If the input record is not a fill flagrecord, itis then
parsed. The method of the parse depends on the state of
the variable flag. If it is a 1, then no word fill is performed.
Each field is written to the output, with a single space
being output after each one except the last. After the last
field is written out, a newline is written out. Now, one may
ask, why not just write out field $0. That wouldn’t work
since field $0 is the entire input line, which includes the
extra spaces at the beginning of the line and the possible
character(s) between some of the words. When awk
parses an input line and sets the values of the field
variables, preceeding and successive white space is
ignored. It is this technique of parsing by awk which this
program takes advantage of.

Let us now look at how lines are filled when the fill
flag has the value of zero. First thing to do s see if we
have a paragraph break. This is signalled by a line which
has no characters. It actually has a single character, a
newline character, but this is not counted in the length of
the input record. If it is a paragraph break, we must then
check the length of the variable rec which is being used
to build output lines. If it is more than zero, we it is the
last line of a paragraph and needs to be written out, along
with a newline character. The variable is also set back to a
null value. If there is anything or not in rec, we still need
to write out a newline.

The next for () loop could have been done in an else
clause of the preceeding if () but if the length of field $0
is zero then NF is also zero, so the for () loop will not be
executed anyway if field $0 has a length of zero. If the
input record does have any fields, ie, in this case words,
then we process each of the fields one by one.

In the field processing loop, the first thing we need to
do is check the length of the output variable, rec. If it’s
length would exceed 50 characters if the current field were
concatenated to it, then the value is output to the standard
output and its value is reset back to a null value. Note that
the first time rec is ever referenced itis initialized to a

Page -1

Advanced Programming

dage 42

null value.

Whether or not the value of rec was written out, we
now process the current field. If the length of rec at this
time is more than zero, then it contains at least one word,
but is too short for a full line. This means we need to
concatenate a space on the end of it before be
concatenate the current field to the end of it.

The END pattern is required to handle the situation of
some value being in rec after all input record have been
processed.

Parﬁng Thoughts,

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

Chapter 6

Parting Thoughts

This is as deep as I want to get with regular
expressions. I'll end this time with a quickie awk program
which may help to illustrate a technique. You want to
know how many total bytes are used by the files in the
current directory. Consider the command:

$ dir -eu ! gawk '{ tot += $6 } END { print "Total bytes", tot }'

While the actual use of this command is a waste of
time if you have a copy of the Is command which can
supply file size totals, it illustrates how you can interpet
system function displays by awk programs. In this case, the

.6th field, the size in bytes, is summed to the variable tot.

At the end of file, the total is displayed.

This example also shows an arithmetic expression I
haven’t mentioned, ie, the use of the "+=" arithmetic
operator. As you might expect, all C type arithmetic
expressions are supported in awk programs, including the
auto pre or post increment.

Now, at the risk of making Bob mad at me, I am going
to analyze his awk programming skills using his February,
1992 article as a guide. His first awk program is a simple
one,

$§1 ~ /bsr/ { print $2 }

What Bob is doing here is one step in a series of
commands. In this step all he wants to do is to parse an
assmebler source listing and find all of the subroutine
references. If it is a subroutine call, then the first field of
the record will contain "bsr" for Branch to Subroutine. The

Page 43

Parting Thoughts

Page 44

second field will contain the name of the subroutine.

Well, nothing I can say about that. Short, sweet and
functional. But looking ahead I see that this awk program
is intended to be run on several different files by means of
a cfp procedure and since it’s short, it is being run
supplied on the command line itself. In a UNIX
environment, that is fine, but on the MM/1 using gawk,
there is something to consider. Each time you run a
command like:

$ gawk ‘/BAsia/ { print $3,84*$5 }’ countries

there will be a file created in the /dd/TMP directory
which contains the awk program. Each time is is run, a
separate file is created, even if the awk program being
executed over and over and over is exactly the same
program. So, every so often, you need to clear out the
/dd/TMP directory. So, in Bob’s procedure, for this
reason, I would have extracted the awk program for both
gawk commands out into an external file and use the -f
option.

Next program, I got afew observations. Bob uses a
BEGIN pattern merely to initialize a variable to 0. Since
all variables are given an initial value the very first time
they are ever referenced, and if they are used in the
context of a numerical expression, they assume the value
0. So, the BEGIN pattern and its action are redundant and
not needed. I can’t really improve on the rest of the
second awk program.

I' will finish up this chapter with an awk success story
which strengthens Bob’s premise in his article, that is to
use the tools you have. I had just downloaded several files
and I wanted to set the attributes of the files to public
read/write. These files were the only files in the directory
which were created on that date, but there were other files
in the same directory I didn’t want to mess with. So,
consider the following command:

Parting Thought

Copyright 1993, ColorSystems Copyright 1993, ColorSystems

$ dir -e ! gawk '$2 == "92/03/11" { print $7 }' ! attr -z -pr -pw

Actually, that is not how I first did it. My first attempt
was even cruder:

$ dir -e ! grep 92/03/11 ! gawk '{ print $7 }' ! attr -z -pr -pw

Actually, if grep is already in memory, the second
version would probably run faster, um, nope, I was
thinking we would save a lot by having grep do the pattern
matching, but gawk will still parse the entire record before
even processing the pattern, in this case, process all
records. But, the overhead of creating the fourth process
needs to be considered also. It was pretty to watch in a
procs display in another window!

We have seen now the text processing power of awk,
and even more complex operations can be performed
using the substr () function. I hope that this publication
on the awk programming language has helped you to get a
good start with awk!

Page 45

Installing GAWK

Appendix A
Installing GAWK

GNU AWK consists basically of just the executable
binary file, gawk. It is located in the CMDS directory on
the disk included with this publication. Be sure to read the
copyright and license notice of the Free Software
Foundation. It is the file Copying in the GNU directory.
The program files used as examples in this publication
and the data files to run them with are in the AWK
directory. .You may copy them anywhere you wish. That
directory also has a few extra awk programs in it not used
as examples in this publication.

Full documentation and sources for gawk are
available from the Free Software Foundation. See the
aforementioned license file. But I would personally
recommend getting a copy of the book I mentioned in
Chapter One, since it is the definitive reference on the
Awk Programming Language written by the authors of
AWK itself. .

Just copy the gawk program binary file to whichever
CMDS directory you wish to put it in and be sure the
execution permissions are set for your system, ie, you may
or may not want to set the public execution attribute. You
will also need to create a directory in the root of your /dd
device called TMP. This also implies that you have to
have a /dd device. For most OS-9 users, this is equivalent
to their primary hard disk device, usually /h0. This
directory is used to store "temporary" source files when
you invoke the gawk command and the AWK program is
part of the command line enclosed in single quotes, €g,

$ gawk ’'{print $1}’ foo.bar
After a command like this finishes, you will find a new

file in the /dd/tmp directory called gawkxxxxxx, Where the
XXX i some unique number. Probably due to an

Copyright 1993, ColorSystems Page 47

Installing GAWK

AWK Limitations

Page 48

oversite of the programmer who ported GNU AWK to
0S-9, gawk leaves these files after they are used, they are
not deleted, so periodically you will need to manually
delete them.

There is also an environment variable which you may
choose to use. Whenever you run gawk using the -f
command line option, eg,

$ gawk -f prog.awk foo.bar

gawk normally looks for the AWK program file, prog.awk
in this example, in your current data directory. If you have
the environment variable AWKPATH defined to a valid
directory, that directory will be searched for the AWK
program file. This environment variable can set with the
setenv command, eg,

$ setenv AWKPATH /hl/usr/zack/awk

In a timesharing environment, this command is
normally done in the user’s .login file. Also, remember
that environment variable names are case sensitive, and
AWKPATH must be in UPPERCASE. A minor
annoyance with this technique, however, is if the
AWKPATH environment variable is set, gawk will want
ALL awk programs you reference in that directory. If you
want to run an AWK program which is located in some
other directory, but still want to have the AWKPATH
environment variable defined, you must force gawk to
look elsewhere for the AWK program file. You can either
specify a full path for the program file, eg,

$ gawk -f /dd/usr/zack/prog.awk foo.bar
or, you can specify a relative path, eg,
$ gawk -f ./prog.awk foo.bar

In this case, the current data directory is searched for
the AWK program file.

Copvright 1993, ColorSystems Copyright 1993, ColorSystems

Appendix B
AWK Limitations

Awk does have some limitations. The following table
is the formal definition of the limitations of awk as
described in The AWK Programming Language. It may or
may not reflect the actual Ilimitations of ~ the
implementation of awk you may be using. I have not
verified that gawk matches these limitations.

100 fields

3000 characters per input record
3000 characters per output record
1024 characters per field

3000 characters per printf() field

400 characters maximum literal string
15 open files

1 pipe

double precision floating point

Page 49

	Cover
	Using AWK with OS-9
	Chapter 1. Overview
	Chapter 2. Patterns and Regular Expressions
	Chapter 3. Actions
	Chapter 4. Writing AWK Programs
	Chapter 5. Advanced Programming
	Chapter 6. Parting Thoughts
	Appendix A. Installing GAWK
	Appendix B. AWK Limitations

