


SCULPTOR REFERENCE MANUAL

THE SCULPTOR SOFTWARE DEVELOPMENT SYSTEM

Fourth Edition issued March 1986
Incorporating October 1986 Revision

Copyright {(C) 1986 by
Microprocessor Developments Limited

ISBN O 94777002X

Published by
Microprocessor Developments Ltd.
3 Canfield Piace
London NW6 3BT
England

SCULPTOR Reference Manual 10/86 page i



TRADEMARK ACKNOWLEDGEMENTS

MS-DOS and MS-NET are trademarks of Microsoft Corp.
Netware is a trademark of Novell Inc.

0S9is a trademark of Microware Corp.

PC-DOS and PC-NET are trademarks of International Business Machines
Corp.

Quix is a trademark of Imtec Computers Ltd.

Ultrix and VMS are trademarks of Digital Equipment Corp.
SCULPTOR is a trademark of Microprocessor Developments Ltd.
UniFLEX is a trademark of Technical Systems Consultants Inc.
Unixis a trademark of AT & T Bell Laboratories

Xenix is a trademark of Microsoft Corp.

page ii 10/86 SCULPTOR Reference Manual



PREFACE

The SCULPTOR documentation is supplied in two separate manuals:

B An Introduction to SCULPTOR
B The SCULPTOR Reference Manual

First time users of SCULPTOR are recommended to read the Introduction
Manual first until sufficiently confident to attempt to write simple
systems. The Reference Manual can then be used to provide details of all
the programs and features of SCULPTOR, and will continue to provide an

insight into more powerful technigues.

These manuals refer to Version 1.14 of SCULPTOR.

SCULPTOR Reference Manual 3/86 page iii



HISTORICAL NOTE

The name of this package was formerly SAGE and has been changed to
SCULPTOR in order to avoid confusion with other software products. For
the convenience of existing users, program names have not been
altered, which is why the screen form interpreter is called sage and the
report generator is called sagerep.

page iv 3/86 SCULPTOR Reference Manual



CONTENTS

Chapter 1 An Overview of SCULPTOR

1.1 General Description........................ 1-2
1.2 Documentation Conventions................................ 1-3
1.3 Program SUIte..........ooooii 1-4
1.4 SCULPTORKeyedFiles....................................... 1-b
1.5 VDU (CRT) Parameter Files.................................. 1-6
1.6 Printer ParameterFiles...................................... 1-6
1.7 CreatingaSCULPTOR System...................ooo 1-7
1.8 File Integrity Checks............ooooi 1-8
Chapter 2 Description of Record Layouts (describe)
2.1 |Introductiontodescribe............... ... 2-2
2.2 Syntax and Options (describe)............................. 2-3
2.3 FieldNames. ... 2-5
2.4 FieldHeadings........coooo i 2-6
2.5 Field Type & Size.......... 2-7
2.6 Field Formats... .. ... 2-9
2.7 Validation............. . 2-12
2.8 describe Program Examples............................. 2-14

Chapter 3 Screen Form Programs (sage)

3.1 Introductiontosage......................................... 3-2
3.2 sage Program Structure...................................... 3-3
3.3 sage Box Definitions.......................................... 3-b
3.4 sage Options... ... 3-7
3.5 sage Expressions and Operators............................ 3-9
3.6 TheKey=Clause...................ooii i 3-12
3.7 Trap Clauses. ... 3-13
3.8 BoxUListsand Field Lists...............oo 3-14
3.9 sage Declarations...................................... 3-16
3.10sage Commands. ..o 3-26
3.11 Compiling and Running a sage Program................... 3-80
SCULPTOR Reference Manual 10/86 page v

Contents



CONTENTS

(cont.) PAGE

Chapter 4 Report Programs (sagerep)

4.1 Introductionto sagerep.................................... 4-2
4.2 sagerep Program Structure................coococoiiiinl. 4-6
4.3 sagerep FormatDefinitions................................... 4-8
4.4 sagerep Expressionsand Operators........................ 4-9
4.5 sagerep Declarations...........................o . 4-12
4.6 sagerep Commands.................... i 4-38
4.7 Compiling and Running a sagerep Program.............. 4-84

Chapter 5  Utility Programs

5.1 Keyed File Utilities............................................. b-2
5.2 ReformattingaKeyedFile....................... 5-7
5.3 Language Configuration...................o 5-9
5.4 Menu System. ... ... 5-10
5.5 PrintaScreenForm.. ... 5-13
5.6 Automatic Screen Form Program Generation............ b-14
5.7 Automatic Report Program Generation.................... 5-16
5.8 SetUp VDU (CRT)ParameterFiles.......................... 5-18
5.9 SetUp Printer Parameter Files............................... 5-27
BA0QUErY ... 5-30
APPENDICES
A Implementation Differences................................. A-1
B Reserved Words..................... B-1
INDEX
page vi 10/86 SCULPTOR Reference Manual

Contents {cont.}



o \:ai: 3 An Overview of
SCULPTOR

This chapter provides a summary overview of the major SCULPTOR
features. The chapter is divided into eight sections.

Section Page
1.7 General Description. ... .. 1-2
1.2  Documentation Conventions. ... 1-3
1.3 The SCULPTOR Program Suite...............cooo 1-4
1.4 SCULPTORKeyedFiles.............. ... . . . ... 1-5
1.5 VDU (CRT) Parameter Files.... ... ... ... 1-6
1.6 Printer Parameter Files. ... 1-6
1.7 Creatinga SCULPTOR Systemn. ... ... ... 1-7
1.8  File Integrity CheckS..........o oo 1-8
SCULPTOR Reference Manual 3/86 page 1-1

1. An Qverview of SCULPTOR



1.1 GENERAL DESCRIPTION

SCULPTOR comprises a suite of programs designed to enable the rapid
development of sophisticated software for a wide variety of applications.
At the heart of the SCULPTOR system is a powerful and flexible keyed file
technigue which provides for very fast retrieval, insertion and deletion of
information. Records may be accessed randomly or in ascending key
sequence and there are powerful search commands for use when the
exact key to a record is not known. The indexing technique (known as a
B-tree) keeps the index permanently sorted — it never requires re-
structuring. The SCULPTOR Development Menu enables you to select
the required program quickly and easily.

Data processing in SCULPTOR is accomplished through two purpose-
designed high level languages, one for interactive work through a VDU
(CRT) terminal (sage} and one for report generation {sagerep). Both
languages are also suitable for general update programs and contain
powerful, high level commands which take care of most normal
programming chores, leaving the programmer free to concentrate on the
application itseif. Since there is a rich set of operators and commands in
each language, total flexibility is retained.

A comprehensive set of support programs makes the development and
maintenance of a complete software project both quick and easy. There
are utilities to describe the structure of files, to create a nested menu
system and to check the integrity of the file system and repair it if
necessary, although the indexing technigue has proved to be extremely
robust and file damage is only likely to occur through power or hardware
failure.

Further utilities exist to define the parameters for terminal and printer
characteristics so that programs run without modification on different
terminals and different printers. A special program is provided to
configure the system to a different language or different date format. The
two programs sg and rg take the ease of use and speed of SCULPTOR a
stage further by crzating automatically a Screen Form or Report program
from a selected record description file. The Query program enables
information tc be retrieved and reports to be produced from any
SCULPTOR file and one associated cross-reference file.

page 1-2 3/86 SCULPTOCR Reference Manua)
1.1 General Description



The interactive screen form program (sage) can alsoc accept its input
from a text file, and the output from the report generator program
(sagerep) can be redirected to a text file, allowing communication with
software written in other languages.

SCULPTOR is ideal for a wide variety of business applications: any
system involving retrieval from and updating of large data files, cross-
referenced to one another, is particularly suitable. Full data processing
including all normal arithmetic calculation is handled efficiently by
SCULPTOR, although it is not recommended for complex scientific or
mathematical operations.

1.2 DOCUMENTATION CONVENTIONS

Throughout this manual, the following conventions are used in syntax
descriptions and examples:

1) ltems to be replaced by an appropriate value are enclosed in angle
brackets "< >"".

2) Optional items are enclosed in square brackets “'[1'".

3) Anellipsis’’..."" indicates that the preceding item may be repeated as
many times as you wish.

4) Alistof items enclosed in braces *'{}'" and separated by slashes *'/"’,
indicates a choice of items, one of which is to be selected.

5) Since SCULPTOR runs with several different operating systems,
standard english words have been used in examples that require
operating system commands. The function of the required command
will be obvious. For example, on Unix the commands copy, rename
and delete are cp, mv and rm respectively.

6) Other words and punctuation characters are to be included as
shown.

SCULPTOR Reference Manual 3/86 page 1-3
1.2 Documentation Conventions



1.3 THE SCULPTOR PROGRAM SUITE

Twenty main programs are provided in the SCULPTOR Development
System. They are:

cf Compiler for sage programs.

cr Compiler for sagerep programs.
decprinter Decode printer parameters.

decvdu Decode VDU (CRT) parameters.
describe Describe record structures.

kfcheck Keyed file integrity check.

kfcopy Keyed file copy.

kfdet Display keyed file details.

kfri Rebuild keyed file index.

Ict Language configuration program.
menu Menu interpreter.

newkf Initialise a new keyed file.

reformat Reformat a keyed file.

rg Automatic report program generator.
sage Screen form interpreter.

sageform Print screen form for documentation.
sagerep Report generator.

setprinter Setup printer parameters.

setvdu Setup VDU (CRT) parameters.

sg Automatic screen program generator.

In addition, a query system is supplied, consisting of a sage language
program and some supporting programs.

The SCULPTOR Run-time System contains the above programs less cf,
cr, describe, rg, sageform and sg.

NOTE: Under the MS-DOS and PC-DOS operating systems, program
names are limited to 8 characters. On these systems, the programs
decprinter and setprinter are named decprint and setprint.

page 1-4 10/86 SCULPTOR Reference Manual
1.3 Sculptor Program Suite



1.4 SCULPTOR KEYED FILES

A SCULPTOR keyed file is kept as two separate disk files, one containing
data records and the other an index. All data, including key information,
is held in the data file, which means that if the index is lost or damaged it
can be rebuilt from an intact data file. The program describe is used to
specify the record layout of a keyed file and alternative record layouts are
also permitted.

Each keyed file has one physical key which may be logically interpreted
as several separate data items. There are commands to search the index
on part of the key. The index is a multi-level tree which is re-organised
every time a record is inserted or deleted. The technique used is very fast
and means that the index is permanently up to date The file grows
automatically as new records are inserted and it is not necessary to pre-
declare the file size. To avoid unnecessary growth, the space released by
deletions is re-used when new records are inserted.

The main data file is created with a filename specified by the
programmer. The index file has the same name plus a .k extension. Itis
important to ensure that the correct generation data file and index file are
always kept together.

The only restrictions for a SCULPTOR keyed file are:

1) There must be at least one key field.
2) The total record length must be at least 3 bytes.
3} The total key length must not exceed 160 bytes.

SCULPTOR Reference Manual 3/86 page 1-5
1.4 SCULPTOR Kevyed Files



1.5 VDU (CRT) PARAMETER FILES

The SCULPTOR system requires a parameter file for each type of VDU
terminal being used. Several such parameter files are supplied with the
system and new ones may be created with the program setvdu. See
section 5.8.

The purpose of these parameter files is to make programs independent of
the terminals being used. Almost any terminal with cursor positioning
and a ‘clear screen’ command may be used, although SCULPTOR is
more effective if protected fields are available. Almost all modern
terminals are suitable and different types of terminal may be used on the
same system.

Refer to the installation instructions for information on installing VDU
parameter files.

1.6 PRINTER PARAMETER FILES

The report generator requires a parameter file to describe the printer
being used and the current paper size. Several such parameter files are
supplied with the system and new ones may be created with the program
setprinter. See section 5.9.

The purpose of these parameter file is to make programs independent of
the printer being used and to make it easy to use special features such as
double-width characters, underlining and compressed print. If the report
requests a feature that is not supported by the printer in use, the report
generator ignores the request but still prints the report.

Refer to the installation instructions for information on installing printer
parameter files.

page 1-6 3/86 SCULPTOR Reference Manual
1.5 & 1.6 VDU and Printer Parameter Files



1.7 CREATING A SCULPTOR SYSTEM

The general procedure for creating a SCULPTOR system is as follows.

1)

Use the program describe to define the record layouts for each file
required. Up to eight alternative record layouts may be described for
a file but good design technique should avoid too much use of this
facility. describe creates descriptor files, identified by a .d extension,
which are then used by the compilers and some of the utilities.

Create new keyed files using the program newkf, which reads the
descriptor files, calculates the required key and record lengths and
initialises the new keyed files.

Write the required screen form programs in the sage language.
These are ordinary text files so you may use any text editor available
on your system. The files must have a .f extension on the filename
and are compiled using the compiler ¢f (compile form). Standard file
update programs may be created with sg — the automatic screen
program generator. The compiled programs are placed in files with
the same name stem as the source code but with a .g extension.
These files are required by sage itself and must reside in the working
directory orin alocal ‘bin’ directory unless a full pathname is supplied
on the sage command line.

Write the required report programs in the sagerep language. These
are ordinary text files and may be created with any available text
editor. The files must have a .r extension on the filename and are
compiled using the compiler cr (compile report). Simple, single file
report programs may be created with rg — the automatic report
program generator. The compiled programs are placed in files with
the same name stem as the source code but with a .q extension.
These files are required by sagerep itself and must reside either in the
working directory orin a local ‘bin’ directory unless a full pathname is
supplied on the sagerep command line.

If you subsequently alter a file’s record layout by deleting fields or
inserting new ones, or by changing the size or type of any field, then
the file must either be re-initialised or reformatted and all programs
which reference that file must be recompiled. Failing to do so can
corrupt existing data in the file. See section 5.2.

SCULPTOR Reference Manual 3/86 page 1-7
1.7 Creating a SCULPTOR System



1.8 FILE INTEGRITY CHECKS

The SCULPTOR keyed file system is very robust and has been thoroughly
tested over several years. However, the multi-level tree index can be
corrupted if an update routine is interrupted by power or hardware failure
or by uncontrolled task termination when the system is incorrectly shut
down. The update routines ignore all normal software interrupts.

A utility program called kfcheck is provided which checks the integrity of
keyed files. It should be run as part of the start up procedure every time
the system is switched on, or if the system is permanently on, it should be
run once each day. If damage is discovered, the utility kfri is normally
able to repair it, although prolonged use of a damaged file can lead to
serious loss of data.

See section 5.1 for details on running kfcheck.

page 1-8 3/86 SCULPTOR Reference Manual
1.8 File Integrity Checks



o410 DESCRIPTION OF

RECORD LAYQUTS
(describe)

This chapter explains the program describe which is used to define the
record layout for a SCULPTOR keyed file. The chapter is divided into eight

sections.

Section Page
2.1 Introductiontodescribe................. ... 2-2
2.2  Syntax and Options (describe)................................. 2-3
2.3 Field Names.. ... 2-b
2.4 Feld Headings...........o 2-6
2.5 Field Type and Size............. 2-7
2.6 FieldFormats. . ... ... 2-9
2.7 Nalidation ... 2-12
2.8 describe Program Examples... ... .. 2-14
SCULPTOR Reference Manual 3/86 page 2-1

2. Description of Record Layouts



2.1 INTRODUCTION TO DESCRIBE

The describe program is used to define the record layout for a
SCULPTOR keyed file. The program creates a text file of the record
descriptions which has the same file name as its corresponding data file,
but with a .d extension. The associated index file will also have the same
name, but with a .k extension. The descriptor file is used by the compiler
programs and by some of the utility programs.

Arecord layoutis described in terms of data items called fields. Each field
may have a name, heading, type&size, print format and validation tist. A
field’s name must uniquely identify it. There are two sets of fields in each
record — key fields and data fields. Index entries are composed by
concatenating the data values from the key fields in the order in which
they are defined. Record data is composed by concatenating the data
values of both the key fields and the data fields.

Alternative record layouts may be described for the same keyed file. The
descriptor files for each of these alternatives must be given unigue
names, each alternative record layout being defined in a separate call to
describe.

When describing alternative record layouts, itis permissible to give a field
the same name as a field on the main record or other alternative record,
but it only makes sense to do this if the fields are identical and occupy the
same byte positions in both records. The compilers will issue a warning
and select only one of the field descriptions. You may prefer to avoid the
warning messages by using unigue field names throughout.

If describe is used to alter an existing descriptor file then all programs that
reference that file must be recompiled to incorporate the changes. If
fields are deleted, new fields inserted or if the size of an existing field is
altered, then recompilation is essential to avoid file corruption, and the
existing keyed file must either be re-initialised or reformatted. See section
5.2.

page 2-2 3/86 SCULPTOR Reference Manual
2.1 Introduction to describe



2.2 SYNTAX AND OPTIONS (describe)

describe <filename >

A descriptor file always has a .d extension but this does not have to be
typed on the command line. If the file does not already exist then the
following appears on the screen:

For each field enter:
name,heading,type&size,format;validation
Type h for help.

KEY FIELDS
1:

The order in which key fields are described is crucial, since index
sequential access depends upon the content of the key. Keys are sorted
by direct byte comparison, which means that if the sequential access
order is important, you should not include numeric fields which may
contain negative values, or any floating point fields (r8 and m8)

An alternative record layout must have an identical key length to the main
record and it is recommended that the key structure is also identical. If
you choose to have a different key structure, ensure that the byte string
value of a main record key cannot be the same as that of an alternative
record key.

When all key fields have been described, pressing RETURN displays the
prompt for data fields. Record length will be the sum of the sizes of the
key fields and the data fields. It is advisable to describe alternative record
layouts such that they have the same length as the main record, by
including filler fields as necessary, but the system will not complain if
they are shorter.

When all data fields have been entered or if describe is used on an
existing descriptor file, the following options are displayed on the screen:

List,Change,Delete,Insert, Abandon,Save,Help:

Select the required option by typing its initial letter and RETURN. The
options are explained on page 2-4.

SCULPTOR Reference Manua! 3/86 page 2-3
2.2 Syntax and Options (describe)



List

Change

Delete

Insert

Abandon

Save

Help

Lists the descriptions of all fields.

Prompts for the number of the field to be changed and
displays its current description. A new description may then
be typed. Pressing RETURN alone retains the existing
description.

Prompts for the number of the field to be deleted. You may
go back to the option list by pressing RETURN only. When a
field is deleted, all following fields are immediately
renumbered. Therefore it is best to work in descending field
number order when deleting several fields in one go.

Prompts for the field number after which insertion is to
begin. If you specify the last numbered key field then the
prompt Key or data? is issued; type k or d as appropriate.
To insert at the beginning, enter field number 0. You may
now insert as many fields as you wish. Press the RETURN
key to redisplay the option list. Note that all fields following
the ones that you insert will be renumbered.

Exits from describe without saving the current entries or
amendments. The prompt Abandon (y/n)? is issued to
confirm this intention. Type y or n and RETURN.

Exits from describe and saves the descriptors.
Displays a short description of the syntax with an

explanation of field types. This option may also be invoked
by entering h RETURN instead of a field name.

describe has an option to list the information stored in descriptor files. lts
output may then be redirected to a file or piped to a printer and used in
documentation. With this option, multiple filenames are permitted on the
command line. Example:

describe -1 +.d | spooler

page 2-4

386 SCULPTOR Reference Manual
2.2 Syntax and Options {cont )



2.3 FIELD NAMES

Field names may contain alphabetic characters {upper and lower case),
the numerals O through 9 and the underscore character, but the first
character may not be a numeral. SCULPTOR keywords may not be used
as field names. (Refer to Appendix B for a list of reserved words.)

Each name must be unique and, although it is possible to use the same
field name in different descriptor files, confusion will occur in any
program which references both those files. The compilers issue a
warning message when identical field names are encountered and select
only one field description. To avoid possible duplication it is advisable to

use a file identifying prefix on all field names.

Example field names from a sales ledger file.

sl_name
sl_accno
sl_amount
sl_date

lllegal fieldnames:
Tstiname

p-item
vat@15%

The following names are reserved for special variables:

arg
date
day
lines_left
month
pageno
scriine
systime
task
time
tstat
ttyno
year

{Must not start with a numeral)
{Hyphen not permitted)
{llegal characters @ and %)

SCULPTOR Reference Manual
2.3 Field Names

page 2-5



2.4 FIELD HEADINGS

Field headings are used to identify boxes on the sage screen form and for

column headings on reports. There is no restriction on the characters

that may be used in headings, subject to the following special cases:

1) A null heading, indicated by two consecutive commas, causes the
field name to be used as the heading.

2) A single space implies a blank heading.

3) If the heading is to contain commas or semi-colons then it must be
enclosed in quotation marks (""" or "'). If the heading is to contain
quotation marks then it must be enclosed in the other type of
qguotation mark.

The field heading specified with describe may be overridden in a sage or
sagerep program.

Examples:

c_name,Name,

c_addr1,Address,

c_addr?2, ,

c_status,,

c_code,”’0O=Exempt,1 =Inclusive,2 = Exclusive’’,

page 2-6 3/86 SCULPTOR Reference Manual
2.4 Field Headings



2.5 FIELD TYPE AND SIZE

Field type&size is specified by a single alphanumeric character indicating
the field type together with a number which indicates the size in bytes,
e.ga20is an alphanumeric field of 20 bytes and mé& is a money field of 4
bytes. A data field may also be dimensioned by enclosing the number of
occurrences required in parentheses after the type and size, e.g. d4{10).
See the scroll command in sage and sagerep for details on indexing a
dimensioned field. Key fields may not be dimensioned.

Type Size
a 0 to 2b6b
d 4
1,2 o0r4
1
2
4
m 4 or 8
4
8
r 8

Description

Alphanumeric field which may contain any
character.

Date field stored internally as a day number
{starting 1/1/0001).

Integer stored in binary.
Range according 10 size:

O to 255
-32,767 10 +32,767
-2,147,483,647 t0 +2,147,483,647

Money with a main currency unit equal to 100 of
its subsidiary unit (e.g. Sterling and Dollars).
Stored internally as an integer in the lower unit.
Range according 10 size:

-21,474,836.47 t0 +21,474 836 .47
Floating point giving up to 15 digits in the lower
currency unit.

Floating point {real) number.

* For historical reasons and to retain upward compatability, the range of
values that may be stored in 4-byte integers on 6809 Uniflex systems
is-1,073,741,823 to +1,073,741,823.

SCULPTOR Reference Manual

2.5 Field Type & Size

3/86 page 2-7



DATE FIELDS

Since date fields are stored as day numbers, adding or subtracting an
integer value from a date adjusts its value by that number of days.
Dividing a date by 7 and taking the remainder (use the % operator) gives
the day of the week (0 = Sunday). Dates are input and displayed in
standard formats, e.g. 31/12/84 or 31/12/1984, the input routines
adding 1900 to any two-digit year. The language configuration program
Icf may be used to define the required standard date format {refer to
Section b . 3).

MONEY FIELDS

Money fields are stored in the lower currency unit which helps to avoid
rounding errors, mé4 fields being stored in long integers and m8 fields in
floating point. Whenever a value is stored into an m8 field, Sculptor adds
0.b (halfpenny or half cent) and then stores the ‘floor’ value, thus
removing any fractional portion. This operation is not performed on r8
fields.

page 2-8 3/86 SCULPTOR Reference Manual
2.5 Field Type & Size (cont.)



2.6 FIELD FORMATS

A format may be attached to a field and is used to determine the precise
way in which the field is printed and displayed. Ii no format is specified, a
standard default is applied to suit the field's type and size. Any format
specified with describe may be overridden in a sage or sagerep
program. A format specification which includes commas or semicolons
must be enclosed in quotation marks.

ALPHANUMERIC FIELDS

Data is normally output precisely as input, the number of characters
equalling the field size. The following special format characters modify
the input or output:

Suppress echo of input characters (sage).
Force typed input into lower case.

Force typed input into upper case.

Remove leading spaces on printing (sagerep).
Remove trailing spaces on printing (sagerep).

—“ w cc — o

DATE FIELDS

Date formats may use the characters d, m and y to designate day, month
and year respectively. The year portion may be two or four digits or may
be omitted altogether. However, it is generally better to omit date
formats and allow the default value set in the sage and sagerep
programs to take effect. By doing this, the program becomes
independent of date format and may be run without recompilation in
other countries. If this option is taken, itis wise to design screen forms on
the assumption that dates require space for a four-digit year. The default
format set in sage and sagerep may be altered with the language
configuration program lcf. Example date formats:

dd-mm-yy

mm/dd/yyyy

dd.mm.yy

“yy,mm,dd”’

“dd;mm;yy”

dd mm vy

dd/mm {(Valid for printing but not for input)

SCULPTOR Reference Manual 3/86 page 2-9
2.6 Field Formats



NUMERIC FIELDS
The output width exactly equals the number of characters in the format

specification. The following format characters have special meaning,
other characters in the format are output unchanged.
# Designates a digit position where leading zeros are to be space filled.
» Designates a digit position where leading zeros are to be “*’ filled.
0 Designates a digit position where leading zeros are to be printed.
Designates a comma to group significant digits.
Designates position of decimal point.
A format is processed from its right hand end. Once digit selection has
started (first #, + or O), the first non-special character terminates the
numeric part of the format. If the last digit designator was #, all further

characters in the format are now floated right and leading spaces are
used to make up the required width.

Examples:

# Single digit.

HEHiE #E Two decimal places.

"HE  BER Comma printed if number exceeds 999.
000000 Number printed with leading zeros.

REE rEE wm o Number printed with leading asterisks.

S HEH, HEH H#E Floating dollar sign.

H OREHE HEH Floating pound sign (note the space).

LIt BAAAHARE Floating ‘Lit" for Italian Lire.

page 2-10 3/86 SCULPTOR Reference Manual

2.6 Field Formats {cont.}



DEFAULT FORMATS
If no format is specified for a field, then a default is applied as follows:

Field type&size Default format
d4 That set with Icf.
il #ith
i2 #i###
i4 Hit#in##
m4 HEHRBHE  HE
m8 Hitdi#is  #4
r8 HUBHHAR  HH

There is also a default date format set in the compilers ¢f and cr and in
describe itself. The only purpose of the date format in these programs is
to indicate how date constants are to be interpreted in program code and
in validation lists.

EXTENDED ALPHANUMERIC FORMATS

The format definition on an alphanumeric field can be extended to apply
to assignments to that field as well as to inputs. Thisis done by usinga +
character in the format definition. The + should follow any standard
format characters used. For example, the format character | causes all
input to the field to be folded to lower case, but allows upper case
assignments. Using the format I+ causes both inputs and assignments
to be folded to lower case.

Optionally, the + can be followed by a numeric format which overrides
the default used when numeric data is assigned to the field. If the data
being assigned is to be formatted as either money or date, then either d
for date or m for money must precede the + sign. The d means that the
value being assigned is a day number, and the m means that the value
has two implied decimal places.

Examples:

temp ukey,,a5,us+

ltemp anumber,,al2," + ###, ### , ### " (numeric)

temp amoney,,a9," " m+ #H##HH . #1" {money)

ltemp adate,,a8,"d + dd/mm/yy" {use this date format)
temp ddate,,a8,d + (use default date format)

SCULPTOR Reference Manual 10/86 page 2-11
2.6 Field Formats (cont.}



2.7 VALIDATION

Input data is always automatically validated according to field type and
size. Further validation may be defined by attaching a validation list to a
field description. Cross-field validation is possible by programmed testing
of data inputs using the command language.

AUTOMATIC VALIDATION

Integer Fields
Only integers within the range appropriate to the field size are accepted.

Money Fields

For m4 fields, amounts must be either whole numbers or fractions with
exactly two digits following the decimal point. Note that although m8
fields are not validated to exactly two decimal places, they will be
rounded to that precision. If greater precision is required with money
values then r8 fields must be used.

Date Fields

Day, month and year must be input in the order specified in the date
format, but most punctuation characters are accepted as separators
regardless of the one used in the actual format. If a two digit year is input
then 1900 is added. Input dates are fully checked with proper
consideration for leap years, although a correction for the loss of several
days back in the eighteenth century is not made.

page 2-12 3/86 SCULPTOR Reference Manual
2.7 Validation



VALIDATION LISTS

In addition to automatic validation, it is possible to attach a validation list
to a field descriptor. The list may consist of individual values and ranges
of values, items in the list being separated by commas with ranges
indicated by hyphens. sage then accepts data for that field only if the
value is included in the list. Validation lists are not checked by sagerep.

It is frequently convenient to include no input as a valid value in a
validation list. This may be done with two consecutive commas.

Alphanumeric data is validated by comparing the input text for equality
with single items in the validation list and on a greater than and less than
basis against a range. Although input data is padded with spaces to fill
the length of the field, these are ignored for comparison purposes, so
care must be exercised with alphanumeric validation lists. For example, if
a two byte field is to begin with a letter in the range Ato M, itisinsufficient
to validate the field A-M since MB will be considered invalid. Specifying
AA-MZ overcomes this problem. Examples:

Alphanumeric fields:

!!y/n
MR, MRS, MISS,MS,DR
A-M, X, Z

Numeric fields:
0-100
,,0,100-999
11-19,21-29,31-39
-500--100,100-500

Money fields:
,,0-9999.99
1-9999999

Date fields:

L, 111/80-31/12/99
1/5/1980-27/8/1982

SCULPTOR Reference Manual 3/86 page 2-13
2.7 Validation (cont.)



2.8 DESCRIBE PROGRAM EXAMPLES

A SIMPLE STOCK FILE:

KEY FIELDS
1:st_Stock Code,i2, ####

DATA FIELDS
2:st_desc,Description,a20
3:st_supp,Supplier Code,a9
4:st_cost,Cost Price,m4," #### . #4';0-1999.99
5:st_sale,Sale Price,m4," ###4# . ##':0-2999.99
6:st_stklev,Stock Level,i4," ###, #4# , ##4"
7:st_deldat,Delivery Date,d4(3)
8:st_ordgty, Order Quantity,i2(3)
9:st_cat,Category,al;A,B,C,D,E
10:st_rol,Reorder Level,i2
11:st_eoq,Economic Order Qty.,i2

A SIMPLE NAME AND ADDRESS FILE:

KEY FIELDS
l:na_sur,Surname,a20,u
2:na fname,First Name,al2,u

page 2-14 3/86 SCULPTOR Reference Manual
2.8 describe Program Examples



VNI Ecl  SCREEN FORM
PROGRAMS (SAGE)

This chapter explains the use of the sage program to generate Screen
Form programs. The chapteris divided into eleven sections. Sections 3.1
to 3.8 explain the overall structure and main features of sage; Sections
3.9 and 3.10 explain all the Declarations and Commands; Section 3.11
explains compilation and running of sage programs.

Section Page
3.1 Introduction tO SAGe.........cooiiiii 3-2
3.2 sage Program Structure...................... . 3-3
3.3 sage Box Definitions..............o 3-b
3.4 sage OpPtioNS. ... 3-7
3.5 sage Expressions and Operators..................................... 3-9
3.6 Thekey= Clause............. i 3-12
3.7 Trap Clauses. ..o 3-13
3.8 sageBox ListsandField Lists......................................... 3-14
3.9 sage Declarations................. . 3-15
3.10 sage CommandsS.. ... 3-26
3.11 Compiling and Running a sage Program........................... 3-80
SCULPTOR Reference Manual 10/86 page 3-1

3. Screen Forms Programs (sage)



3.1 INTRODUCTION TO SAGE

sage itself is an interpreter which means that its actions are controlled by
a code which it interprets as it runs. This code is produced by passing
source code programs through a compiler called ¢f (compile form}.

The sage language is designed primarily for processing data interactively
on a screen form, although a sage program can be written to function
without operator intervention. The data being processed may be stored
in several different keyed files.

The general principle of operation is that a screen form is defined
containing boxes in which data may be input and displayed. Beneath this
form is a menu line which presents the operator with a choice of actions.
When an option is selected, the appropriate routine in the sage program
is entered. When the routine terminates, the operator is again able to
select an option.

The sage language elements are specifically designed for the screen
based processing of keyed data files. There are many very powerful
commands, making it possible to write a sophisticated program quickly
and easily. Most of the hard work associated with placing a form on the
screen, inputting valid data, displaying formatted data and file
manipulation is handled automatically by sage. Although the sage
language has many sensible default actions, the programmer is free to
override them.

The following sequence shows how sage is used in a simple SCULPTOR
application:

1) Use the describe program to define record layout (i.e. the logical
structure of the file).

2) Use the newkf program to create the new (empty) data file and the
index file {i.e. the physical structure of the file).

3) Inany available text editor, write your source code program using the
sage language declarations and commands.

page 3-2 3/86 SCULPTOR Reference Manual
3.1 Introduction to sage



4) Run the cf program to compile the source code file into an object
program.

5) Run the new sage program.

Note: Steps 3 and 4 can be performed automatically using the sg
program to create a standard screen form program. Refer to Chapter b
for details of the sg program.

3.2 SAGE PROGRAM STRUCTURE

A sage program is written as a text file using a standard editor. The
language is line-oriented and the compiler recognises six different line
types:

1) The first physical line in the program, regardless of its leading
character, is taken as the title line. When the program is run, the text
on the title line is displayed centralised on the top line of the screen.
The title line must be present but it may blank.

2} Lines commencing with a full stop """ are comment lines and are
ignored by the compiler. Completely blank lines are also ignored by
the compiler {except for the title line).

3) Lines commencing with an exclamation mark 1"’

is normal to place these after the title line.

are declarations. It

i I

4) Lines commencing with a plus sign '+’ are box definitions and

should follow the declarations.
b} Lines commencing with an asterisk "+ " introduce an option and are
followed by the program statements for that option.

6) Other lines are program statements. If the first word on the line is not
a field name or SCULPTOR keyword then itis taken to be a line label.
Multiple statements, separated by colons, may be placed on the
same line.

Program statements may extend over more than one physical line by
terminating each line thatis to be continued with a backslash “"\"". This s
particularly useful when several statements are to be controlled by an if
... then command.

SCULPTOR Reference Manual 3/86 page 3-3
3.2 sage Program Structure



A typical sage program has the following structure:
< program title line >
< declarations >
< box definitions >
< initialisation statements>

< option title line>
< option statements >

< option title line >
< option statements >

< subroutines>

Note that a set of statements may be placed before the first option title.
These statements are given control after the screen form has been
displayed but before the option prompt is first issued. In effect they
behave as an automatically selected first option and must terminate in
the same way as a normal option (end, exit, etc.}. This set of initialisation
statements is optional and may be omitted altogether.

Subroutines do not have to be grouped at the end of the program.
Subject to the flow of logic being correctly controlled by end statements
and by programmed branches, the code for a subroutine may be
anywhere in the program. For example, it can be more convenient to
place a subroutine immediately after the logic for a particular option.

page 3-4 3/86 SCULPTOR Reference Manual
3.2 Program Structure (cont.)



3.3 SAGE BOX DEFINITIONS

All fields in the program for which values are to be input or displayed must
be given a box definition:

+ < field name>,[<heading>], <row>, <col> [, <format> |

The field name may be from a declared keyed file (see !file and !record)
or be a temporary variable (see Itemp) and defines the field whose value
is input and displayed in that box.

If the row number is not equal to the row number in a !'scroll declaration,
a box is created on the screen, the first character position within the box
being at the specified row and column number (counting from 1). The
box is bracketed by the default box delimiters (normally “’[1""} unless a
'box declaration is included in the program to specify alternative box
delimiters. The default box delimiters may be altered by using the
fanguage configuration program lcf.

If a heading is included in the box definition then it is displayed to the left
of the box. If no heading is included (two consecutive commas} then the
heading defined when the field was described is used. A blank heading
may be obtained by leaving a single space between the commas.

If the row number equals the row number in a !scroll declaration then a
column of boxes is created on the screen. In this case the first box in the
column is on row + 1 and the heading is displayed centrally over the
column on the specified row. The number of boxes below the heading
equals the depth defined in the !Iscroll declaration. Note that all scroll
area box declarations must be consecutive.

In the case of alphanumeric fields, the box width equals the field width. In
the case of any other field type, the box width eguals the number of
characters in the format specification. If no format is included then the
one defined when the field was described is used. If none was defined
there, then a default applies {see section 2.6).

Because input and display of a range of fields proceeds in box definition
order, itis normally sensible for the boxes to be defined in logical order of
screen position. However, screen boxes can be defined in any order.

SCULPTOR Reference Manual 3/86 page 3-5
3.3 sage Box Definitions



If a box declaration is given to a field of zero length, i.e. an a0 field, then
no box is displayed, but its heading is still displayed. This exception is
useful for the purpose of creating sub-titles on the screen form. Because
there is still an imaginary box on the screen, the column co-ordinate must
be chosen carefully — it should be 3 greater than the end column of the
text to be displayed.

When designing a screen form the top row may be used but care must be
taken not to interfere with the title. Remember to keep at least the bottom
three rows free of boxes — the minumum requirement for the menu line,
option prompt line and messages.

EXAMPLES:

+ date, Today's date, 2,70
+st_code,,5,20

+st_desc, ,5,40

+ cat,"M = Material, L. = Leather”,7,50,u
+value,,9,40, ##i### . ##

f=1find n =next i = insert a=amend d = delete e = exit
Which option do you require?

page 3-6 3/86 SCULPTOR Reference Manual
3.3 sage Box Definitions {cont.}



3.4 SAGE OPTIONS

A sage program usually includes a number of options from which the
operator is invited to choose. Each option has an associated section of
program statements. An option is introduced in the program by an option
title line:

*» < code > = <description >

The code may be any one or two printable characters. The number of
options in a sage program should be fairly small (normally not more than
6) and the description of each should be brief since the option title lines
are merged into a single menu line which is displayed on the screen.

Following an option title line are the program statements to be obeyed
when that option is selected. When sage requires the operator to select
an option, it displays an option prompt beneath the menu line and awaits
aresponse. The reply is validated and then the appropriate section of the
program is given control. A typical menu line and prompt might look like
this:

f={ind n = next i = insert a = amend d = delete e = exit
Which option do you require?

The processing of a selected option continues until terminated in one of
the following ways:

1) An end statement is encountered. This returns control to the option
prompt.

2) An exit statement is encountered which terminates the program
completely.

3) An untrapped error condition occurs. This causes a suitable error
message to be displayed and then returns control to the option
prompt.

4) The operator cancels the option during an input operation. This also
returns control to the option prompt. The cancel feature may be
turned off — see the command cancel.

SCULPTOR Reference Manual 3186 page 3-7
3.4 sage Options



If the first character of an option code is * then that option is not included
in the menu line displayed on the screen but the option may still be
selected by the user. For example:

To call such an option, the leading

++d = delete

R

must be typed. In the above

example the = delete is clearly superfluous as it will never be displayed,
but it effectively serves as a program comment.

NOTES

1)

2)

DON'T forget to include an option to exit from the program. This is
the only safe way out of sage.

The program statements for each option must terminate with an end
command. If there is no end command for an option, statement
execution can continue through an option title line into the logic for
the following option.

When checking option codes, sage folds all characters to the same
case. Consequently, the operator may respond to the option prompt
in either upper or lower case.

Itis possible to create a sage program which has no options, all logic
being in initialisation  statements. Ensure that such programs
terminate with an exit command at the proper place.

page 3-8 3/86 SCULPTOR Reference Manual

3.4 sage Options (cont.)



3.5 . SAGE EXPRESSIONS AND OPERATORS

sage supports a comprehensive set of arithmetic and relational
operators. These may be used to form expressions involving keyed file

fields, temporary variables and constants.

Precedence

Operators have precedence as set out below, but sub- expressions may
be enclosed in parentheses to force a particular order of evaluation. The
listed below. The operators grouped together
and the groups are listed in descending order of

available operators are
have equal precedence
precedence.

Group 1:
Group 2:

/
%

Group 4:

ANV AV A

oo
E

Negate (unary minus)

Multiply

Divide

Remainder {after integer division)

String concatenation (with trailing spaces
stripped from left operand)

Add

Subtract

String concatenation {with trailing spaces
retained from left operand)

Equal to

LLess than

Greater than

LLess than or equal to
Greater than or equal to
Not equal to

Contains

Begins with

SCULPTOR Reference Manual

3/86 page 3-9

3.5 sage Expressions and Operators



Group b:

and Logical "and’
Group 6:
or Logical ‘or

The operators ¢t and bw apply to alphanumeric data only. ¢t yields true if
the right operand is a sub-string of the left operand. bw vyields true if the
left operand begins with the right operand. Examples:

it “*Smithson’’ bw ""Smith”’ (
if “Smithson’’ bw ‘‘son’’ (false)
if "ABCDEF"" ¢t "'CD"’ {
if "ABCDEF'" ¢t "'BD"’ (

Relational expressions are most commonly used with the if command,
but it is also permissible to have a relational expression as part of an
assignment statement; its value is 1 if true or O if false.

CONSTANTS

Numeric and alphanumeric constants may be freely included in
expressions. Numeric constants may be integer or floating point and
positive or negative; a numeric constant is floating point if it includes a
decimal point. Alphanumeric constants, sometimes called strings, must

""today’s’”’

1141

alphanumeric)
null string)

be enclosed in either single or double quotation marks (" or "*"")
Examples:
123 (integer)
-b0 {integer)
34.451 {floating point)
100.0 (floating point)
‘Thursday’ {alphanumeric)
{
(

page 3-10 3/86 SCULPTOR Reference Manual
3.5 sage Expressions and Operators (cont.}



FIELD TYPE CONVERSION

Expressions may include fields of different types. Each operation
examines the types of its two operands and if they differ, an automatic
type conversion is performed according to the following rules:

1) If either operand is floating point then the other operand is converted
to floating point and the result is floating point.

2) Otherwise, if either operand is integer then the other operand is
converted to integer and the result is integer.

3) An operation is only alphanumeric if both its operands are
alphanumeric.

In the following expression, the two division calculations will be
evaluated first, without type conversion, the result of the integer division
will then be converted to floating point for the multiplication and finally
the product converted to alphanumeric for the assignment:

alpha = (intl / int2) « (reall / real2)

All internal integer arithmetic is performed with long integers to minimise
the possibilty of overflow in an intermediate result.

Arithmetic may be freely performed on dates which are treated as day
numbers, counting 1/1/0001 as day 1. Useful operations on dates are
addition and subtraction of a number of days and taking the remainder
after division by 7 (% 7) to get the day of the week {0 = Sunday).

When operating on money fields remember that their data value is in the
LOWER currency unit, e.g. pence or cents.

When calculating ratios or percentages using integer variables the result
will be integer.

i.e.
real = intl / int2 * 100
will not give the required answer. Instead, use:

real = (100.00 * intl) / int2

SCULPTOR Reference Manual 10/86 page 3-11
3.5 sage Expressions and Operators (cont.}



3.6 THE KEY= CLAUSE

Commands which read records according to a supplied key value have
an optional key = clause. If the clause is omitted, then data from the file’s
natural key fields is used to construct the key. The natural key fields are
those defined in the main record layout.

The purpose of the key = clause is to simplify the program when the
required key data is being supplied from other than the natural key fields,
e.g. from fields on another file or from temporary variables.

If the key = clause is present then a key is constructed from the named
fields. These should normally have the same type and size as their
counterparts in the natural key. If they do not, the following rules apply:

1) If the number of fields named in the clause is less than or equal to the
number of natural key fields, then each named field is assumed to
supply data of correct type for the corresponding natural key, i.e. no
type conversion takes place, but excess bytes are discarded and
insufficient bytes are made up with nulls or spaces according to the
field type of the natural key.

2} Ifthe number of fields named in the clause is greater than the number
of natural key fields, then the data from the named fields is
concatenated to form a key. If the result exceeds the key length then
the excess bytes are discarded. If the result is less than the key
length, the remaining bytes are set to spaces.

Since the file access commands always construct keys according to the
main record layout, considerable care must be exercised when reading
records which have a different key structure to the main record. Bearing
in mind the fact that the alternative record layout simply overlaps the
main record layout, the recommended method is to assign values to the
key fields named in the alternative record layout and to omit the key =
clause.

page 3-12 3/86 SCULPTOR Reference Manual
3.6 The Key = Clause



3.7 TRAP CLAUSES

Whenever sage encounters an exception condition, it applies an
appropriate default action. For example, if no record is located in a read
command, the error No such record is displayed and control is returned
to the option prompt.

Traps enable the programmer to specify an alternative action if the
default is not suitable. All trap clauses have the general syntax:

<trap code> = <label >

The trap code identifies the condition being trapped and the label
specifies the program line to be given control if the exception condition
occurs. A trap clause forms part of the command line to which it relates
and the allowed traps for a particular command are specified in the
syntax of the command.

Available traps are listed below. They are explained in more detail in the
descriptions of the commands which accept them.

Trap Code Meaning

bs Backspace past first box
eoi End of input
ni No input
no ‘no’ reply 1o ‘prompt’
nrs No record selected
nsr No such record
re Record exists
riu Record in use
yes ‘ves’ reply to ‘prompt’
SCULPTOR Reference Manual 3/86 page 3-13

3.7 Trap Clauses



3.8 SAGE BOX LISTS AND FIELD LISTS

BOX LISTS

Several commands require a box list. This is a list of box names,
separated by commas and may also include ranges of boxes, indicated
by hyphens. A range implies all the boxes defined in the program
between {and including) the named boxes, in order of definition. A box is
defined by a line commencing with *' + "' (see section 3.3).

Examples:
1) input name,addrl-addr4,cat

2) clear t_date-t_amount

FIELD LISTS

A field list is a list of field names separated by commas; ranges are not
permitted. Each field name may be from any file or alternative record
layout declared in the program or may be a temporary variable.

Example:
read ord key = ordno,lineno

page 3-14 3i86 SCULPTOR Reference Manual
3.8 sage Box Lists and Field Lists



3.9 SAGE DECLARATIONS

This section describes the declaration statements available in the sage
language. They are listed on the pages indicated below.

Declaration Statement Page
DO .. 3-16
Yefile . 3-17
depth .. 3-18
ile 3-19
Trecord . ... 3-20
Iscroll .. .. 3-21
emp . 3-22
Ywidth 3-25
SCULPTOR Reference Manual 2/86 page 3-15

3.9 sage Declarations



'box

Define non-standard box delimiters.
SYNTAX:

'box < delimiting characters >
DESCRIPTION:
This optional statement defines non-standard characters to enclose the
screen form boxes. If one character is specified then it is used both to
open and close each box. If two characters are specified, the first

characteris used to open boxes and the second character is used to close
boxes.

When no 'box statement is included in the program, sage uses default
characters, normally "‘[1'", but the default may be altered using the
language configuration program lef.

The box delimiting characters may be set to spaces by enclosing a space
in quotation marks.

EXAMPLES:
1) lbox <>
2) box :

3) Ibox ™ "

page 3-16 3/86 SCULPTOR Reference Manual
3.9 sage Declarations — lbox



Icfile

Declare a file which is initially closed.
SYNTAX:

Icfile <«file identifier> [ < pathname>]
DESCRIPTION:

Declares a Sculptor keyed file which is closed when the program starts.
See Ifile for declaring files which are initially open. The file identifier may
be alphanumeric or just numeric and is used to refer to the file in
subsequent file access commands. The pathname may be omitted if the
file identifier is also the filename. The file identifier must not be a reserved
word.

The file must exist when the program is run {see the program newkf for
creating new files) and its descriptor file must exist when the program is
compiled (see the program describe). sage will look for the file in the
current working directory unless a full pathname is supplied. Both the
data file and its associated index file (.k extension) must exist in the same
directory.

It is important to note that sage temporarily opens each !cfile when it
loads the program. If it has already opened the maximum number of files
permitted by the operating system then the program will abort. For this
reason, lcfile declarations should precede !file declarations.

The maximum number of files that may be declared in one program using
Icfile and !file is 16.

EXAMPLES:

I} Ictile control

2) Ictile supp suppliers

3) Ictfile cont /usr/common/control

SCULPTOR Reference Manual 3/86 page 3-17

3 9 sage Declarations — !cfile



Idepth

Define screen depth.
SYNTAX:

ldepth <integer>
DESCRIPTION:
This optional statement defines the screen depth (number of lines)
required. If no !depth statement is present, a default of 24 lines is
assumed.
The only effect of this statement is to cause sage to reconfigure the
screen to a larger or smaller number of lines in cases where the terminal
supports such a feature.

EXAMPLE:

ldepth 16

page 3-18 3/86 SCULPTOR Reference Manual
3.9 sage Declarations — !depth



Ifile

Declare a file which is initially open.
SYNTAX:

lfile <file identifier> [<pathname>]
DESCRIPTION:

Declares a Sculptor keyed file which is open when the program starts.
See Icfile for declaring files which are initially closed. The file identifier
may be alphanumeric or just numeric and is used to refer to the file in
subseguent file access commands. The pathname may be omitted if the
file identifier is also the filename. The file identifier must not be a reserved
word.

The file must exist when the program is run (see the program newkf for
creating new files) and its descriptor file must exist when the program is
compiled (see the program describe). sage will look for the file in the
current working directory unless a full pathname is supplied. Both the
data file and its associated index file {.k extension) must exist in the same
directory.

If there are no commands in the program which can update the file and if
the record locking mechanism of the operating system permits, then the
file is opened in read-only mode, otherwise itis opened in update mode.

The maximum number of files that may be declared in one program using
Ifile and !cfile is 16. The maximum number of files that may be open at
the same time, and hence the maximum number of file declarations,
varies according to the operating system butis normally not less than six.
See Appendix A (Implementation Differences) for details of your
particular system.

EXAMPLES:

1) lfile stock

2) lfile cust customers

3) Ifile tax /usr/john/income_tax

SCULPTOR Reference Manual 3/86 page 3-19

3.9 sage Declarations - lfile



Irecord

Declare an alternative record layout.
SYNTAX:

lrecord <t{ile identifier > < pathname>
DESCRIPTION:

This command is used to declare an alternative record layout for the file
referred to by the file identifier (previously declared in a Hfile statement).
The pathname identifies an alternative descriptor file created with the
program describe. Both sets of fieldnames may be referred to in
subsequent program statements. Up to eight lrecord statements may be
associated with each file.

Alternative record layouts must have the same key length as the main
record and it is recommended that the key structure is also identical to
avoid ambiguity. If a different key structure is used, do not use the
Irecord key fields in a key= clause, since sage will build the key
assuming that these fields are supplying values for the main key fields.
Instead, assign values to the alternative key fields, which overlay the
main key fields in the record buffer, and omit the key = clause.

Note that the clear command (with no arguments) initialises each file's
record buffer according to the main record layout (i.e. the !file
declaration}. Since alphanumeric fields are initialised to spaces and
numeric fields to nulls, this can be important.

Alternative record layouts are useful not only for completely different
record types contained in the same file, e.g. a control file, but also for
redefining the structure of individual fields to enable access to their
component parts.

EXAMPLE:

ltile control

lrecord control controll
lrecord control control2
lrecord control control3

page 3-20 3i86 SCULPTOR Reference Manual
3.9 sage Declarations — !record



Iscroll

Define a scroll area.
SYNTAX:

!scroll <heading line>, <depth>
DESCRIPTION:

Defines an area on the screen in which data is displayed in columns. The
scroll area may be used to simultaneously display the wvalues in
subscripted fields or to display data from more than one record at a time;
for example from a transactions file. Only one scroll area may be defined
in a program.

The heading line indicates the screen line on which the field headings are
to be displayed as column headings. The depth parameter specifies the
number of boxes required in each column. A box is included in the scroll
area by giving it a line co-ordinate equal to the heading line in the !scroll
statement.

Note that a box whose line co-ordinate exceeds the heading line but is
within heading line + depth, displays as a single box, so the scroll area
need not reserve the whole width of the screen.

The line within the scroll area on which data is displayed is controlied by
the special variable scrline, whose value is maintained with the scroll
command. If the value in scrline exceeds the depth of the scroll area,
then a wrap around takes effect automatically.
EXAMPLE:

Iscroll 10,5

(5 rows under headings at line 10)

SCULPTOR Reference Manual 3/86 page 3-21
3.9 sage Declarations — !scroll



Itemp

Declare a temporary field.
SYNTAX:

temp <name >,[ <heading >], < type&size > [( < dimension > )]
[, <lormat>)

DESCRIPTION:

Declares a temporary field for use within the program. The syntax is
similar to that used with the program describe, to which reference
should be made for full details, except that no validation list is permitted.

A temporary field may be subscripted, in which case the element
accessed is determined by the current value of the special variable
scrline. If scrline exceeds the field's dimension then a wrap around takes
effect.

Once defined, temporary fields may be treated in the program in the
same way as keyfile fields, but note the special treatment of temporary
fields by the clear command.

A temporary field may be declared with a type&size of a0, i.e. an
alphanumeric field of zero length. If a box is defined for the field, the box
itself is suppressed, but the heading appears to the left of the box's
imaginary position and is a convenient way of displaying static textual
information on the screen.

EXAMPLES:

1) ltemp total, Total, m4

2) ltemp bf,Brought forward,a0

3) ltemp cat,Category,a2(10)

4) ltemp status,,il

page 3-22 10/86 SCULPTOR Reference Manual

3.9 sage Declarations — ltemp



itemp (cont.)

SPECIAL TEMPORARY FIELDS

Certain special variables, some of which are operating system
dependent, may be referenced by defining them as temporary fields.
These are:

ltemp arg,,a0
Command line arguments.

temp date,[<heading>],d4
The system date.

'temp scrline,[ < heading>],i2
See the command scroll.

ltemp systime, [ < heading >],i4
System time in seconds.

temp task,[<heading>],a5
The current task’ number.

ltemp time,[ < heading>],m4
The current time: hours.mins.

ltemp tstat,[ < heading >],il
Child task termination status.

ltemp ttyno,[<heading>],i2
tty port number.

ltemp day,[<heading>],il
Day for encdate/decdate commands.

ltemp month,[<heading>],il
Month for encdate/decdate commands.

ltemp year,[<heading>], i2
Year for encdate/decdate commands.

ltemp vduname, [ <heading>],al2
Name of vdu in use (from parameter file).

SCULPTOR Reference Manual 10/86 page 3-23
3.9 sage Declarations — !temp (cont.)



Itemp (cont.)

arg returns a command line argument. Whenever it is referenced, the
particular argument returned depends on the current scroll line number.
For example, if the command line is:

sage cust abc

then sage is returned if the scroll line number is 1, cust is returned if it is
2, and abc is returned if it is 3. Reference to a non-existent argument
returns a null string. The values in arg cannot be altered. See scroll for
information on setting the scroll line number.

date returns the system date and is updated each time it is referenced, so
that programs running over midnight can still access the correct date.
However, if a value is stored into the field date, then automatic updating
stops.

scrline returns the current scroll line number. Its value cannot be altered
by direct assignment (see scroll).

systime returns the system time in seconds. Its value cannot be altered
by direct assignment. Since its base value is somewhat arbitrary,
systime should only be used to calculate time differences.

time returns the time of day and is updated each time it is referenced.
Note the use of a money field as a convenient way of presenting hours
and minutes.

task returns the current task number on multi-tasking operating systems.

tstat returns the termination code of the last child task {(see the exec
command).

ttyno returns the port number (or other unigue number) on multi-user
systems. On single-user systems it returns zero.

Note: On systems such as Unix System V which support cluster
controllers, there is no port number as such. On these systems, ttyno
returns a unigue number based on the major and minor device numbers.

day, month and year are used by the commands decdate and encdate.

page 3-24 10/86 SCULPTOR Reference Manual
3.9 sage Declarations — !temp (cont.)



width

Define screen width.
SYNTAX:

lwidth <integer>
DESCRIPTION:
This optional statement defines the screen width {(number of columns)
required. If no lwidth statement is present, a default of 80 columns is
assumed.
The only effect of this statement is t0 cause sage to reconfigure the
screen to a larger or smaller number of columns in cases where the
terminai supports such a feature.

EXAMPLE:

lwidth 132

SCULPTOR Reference Manual 3/86 page 3-25
3.9 sage Declarations — lwidth



3.10 SAGE COMMANDS

This section describes the command language from which sage program
statements are constructed. The commands are listed on the pages
indicated below.

Command Page
A 3-28
AUROCT 3-29
cancel ... 3-30
chain . 3-31
check ... . 3-32
Ol 3-33
clearbuf .. .. . 3-34
ClOS e . 3-35
decdate ... ... 3-36
delete .. ... 3-37
display.. ... 3-38
encdate . ... ... 3-39
N . 3-40
(-] 4 o] 3-41
EXEC, @XCCU . ... .. 3-42
OXHt . 3-43
I . 3-44
getstr .. 3-46
gosub. ... 3-47
GO0 ... 3-48
highlight ... 3-49
if...then...else. ... ... 3-60
IMPUt 3-51
[ L= o S 3-b3
INEEITUPES .. . 3-54
=Y SR 3-bb
MAtCh 3-b6
INESSAQR .. ... ot 3-57
NEWT O 3-b8
DYOXE 3-b9

{cont.)
page 3-26 10/86 SCULPTQOR Reference Manual

3.10 sage Commands



SAGE COMMANDS (CONT.)

Command Page
nextkey ... .. 3-60
ODBI 3-61
PAUSE ... 3-62
PrESEIVE ... ... ... ... . 3-63
PPV L 3-64
PrOMPL .. 3-65
read ... . 3-66
readkey ... ... . 3-67
POLUIN ... 3-68
rewind. .. 3-69
scroll .. 3-70
SetSIr .. 3-72
sleep . ... 3-73
testkey .. ... 3-74
UnlOCK . ... 3-76
wakeup ... 3-77
WO . 3-78
VAU . 3-79
SCULPTOR Reference Manual 10/86 page 3-27

3.10 sage Commands (cont.)



at

Position the cursor.
SYNTAX:

at <row>,<col>
DESCRIPTION:

Positions the cursor to the specified row and column. One use for this
command is just prior to an exec command, to cause the output from the
called program to appear at a particular place on the screen. Another use
is in conjunction with the vdu command to make special use of the
features of the terminal.

If the at command precedes a message command in a multiple
statement line, the message is displayed at the current cursor location
instead of the bottom left hand corner of the screen.

EXAMPLES:

1) at 1,1
exec "sagerep stocklist qume | lpr”

2) at 5,20: message “This is at row 5 column 20"

3) at 20,1: vdu 52

page 3-28 10/86 SCULPTOR Reference Manual
3.10 sage Commands — at



-autocr

Enable or disable automatic RETURN on input.
SYNTAX:

autocr {on/of]
DESCRIPTION:
If autocr is off, all input into the screen boxes must be completed by
using the RETURN key. If autocr is on, typing the last character in the
screen box completes the input and the RETURN key is not required,
although it can still be used to complete input to a screen box before the
last character position is reached.
By default, autocr is off.

EXAMPLE:

autocr on

SCULPTOR Reference Manual 10/86 page 3-29
3.10 sage Commands — autocr



cancel

Enable or disable the cancel option.
SYNTAX:

cancel {on/off}
DESCRIPTION:

If cancel is on, the operator can abort any input operation and return to
the option prompt by pressing the CANCEL key (defined in the VDU
parameter file). If cancel is off, the CANCEL key is ignored.

The default state of cancel is on. It should be turned off if a related series
of inputs and file updates is taking place which is to be completed without
interruption.

EXAMPLE:

This example shows a series of inputs and writes to a file during which
cancel is turned off.

cancel off
scroll 1

IL1 input item - gty eoi=IL2
insert ordlines key = ordno,scrline
scroll: goto IL1

IL2 prompt “All items entered” no=IL1
cancel on

page 3-30 3/86 SCULPTOR Reference Manual
3.10 sage Commands — cancel



chain

Chain new program.
SYNTAX:

chain <text expression>
DESCRIPTION:

Terminates sage and replaces it with a new program. The text expression
may be a string constant, an alphanumeric field or a concatenation of
several such items and specifies the program to be called and its
arguments. When the called program exits, return is direct to the parent
of the current process.

The text expression cannot include /O redirection, pipes or other special
shell features. Multiple commands cannot form part of a ‘chain’
statement.

WARNING: The chain command is available only if supported by the

operating system in use and is not guaranteed to operate in an identical
way on all systems that do support it.

See also the exec command.

EXAMPLE:

1) chain “sage ordlines ” + ordno

2) chain “"menu main”

3) chain “sage calc”

SCULPTOR Reference Manual 10/86 page 3-31

3.10 sage Commands — chain



check

Check that a record is selected.
SYNTAX:

check <«{ile identifier > [nrs= <label>]
DESCRIPTION:

Checks that a record has been read from the specified file and not written
back or cleared. If a record is available, control passes to the next
statement, otherwise the error No record selected is displayed and
control passes to the option prompt. This error may be trapped by using
the nrs = <label> clause, in which case control passes to the line
indicated.

EXAMPLES:

1) +a=Amend

check cust nrs=A2

Al input c_name - c_status
prompt “"Amendments correct” no= Al
write cust
clear: end

A2 input ¢c_name
tind cust
goto Al

2) +d = Delete
check cust
prompt “Are you sure” no=Dl
delete cust
clear

D1 end

page 3-32 3/86 SCULPTOR Reference Manual
3.10 sage Commands — check



clear

Clear all or specified boxes.
SYNTAX:

clear [ <box list>]
DESCRIPTION:

If a box listis specified, clears the screen of data displayed in those boxes
and re-initialises the fields associated with them, alphanumeric fields
being set to spaces and numeric fields to zero. The box list may consist of
individual box names separated by commas, ranges of box names
separated by hyphens, or a combination of the two. Subscripted fields
and boxes in the scroll area are cleared only on the row identified by the
current value of the special variable scrline. (See the scroll command.)

If no box list is specified then all boxes are cleared, the message line is
erased, all file buffers are re-initialised and any records currently held are
unlocked. However, in this case, although their screen boxes are
cleared, the data held in any associated temporary fields is not lost. The
file buffers are initialised according to the Ifile record layouts,
alphanumeric fields being set to spaces and numeric fields to zero.

Note that other information, such as the current position of each file and
any match keys set up by the find command is not destroyed by clear.

See also the preserve command.

EXAMPLE:

clear name,addr-status,t_code

SCULPTOR Reference Manual 3/86 page 3-33
3.10 sage Commands — clear



clearbuf

Clear a file's record buffer.
SYNTAX:

clearbuf <file identifier >
DESCRIPTION:
The specified file buffer is cleared and the currently selected record, if
any, is unlocked. The buffer is initialised according to the !file record
layout, alphanumeric fields being set to spaces and other fields to zero.

EXAMPLE:

clearbuf stk

page 3-34 10/86 SCULPTOR Reference Manual
3.10 sage Commands — clearbuf



close

Close a file.
SYNTAX:

close <file identifier >
DESCRIPTION:

Closes the specified file and unlocks the current record. The content of
the file's record buffer remains unaltered.

If the file is later reopened, the file position is unchanged but any selected
record has been lost, so a write will not be permitted unless a record is
first read.

The clear command still operates on a closed file’s record buffer but this
may be prevented by using the preserve command.

An attempt to close a file that is already closed is ignored.

EXAMPLE:

close control

SCULPTOR Reference Manual 3/86 page 3-35
3.10 sage Commands — close



decdate

Decode a date.
SYNTAX:

decdate < expression >
DESCRIPTION:

Decodes a date into day, month and year components. The expression
must yield a valid day number and will normally be a simple date field.
The decoded values are placed in the special temporary variables day,
month and year which must be declared (see ltemp).

EXAMPLE:

decdate datedue
tempmth = month
decdate date
if tempmth = month then\
message “"Delivery due this month”

page 3-36 3/86 SCULPTOR Reference Manual
3.10 sage Commands — decdate



delete

Delete a record.
SYNTAX:

delete <file identifier> [nrs= <label>]
DESCRIPTION:

Deletes the currently selected record from the specified file. If no record
is currently selected, then the error No record selected is displayed and
control passes to the option prompt. This error may be trapped by using
the nrs= <label> clause, in which case control passes to the line
indicated.

EXAMPLE:
+*d = Delete
prompt “Are you sure” no=Dl
delete stk
clear
D1 end
SCULPTOR Reference Manual 3/86 page 3-37

3.10 sage Commands — delete



display

Display data.
SYNTAX:

display <box list>
DESCRIPTION:

Displays the current values of the specified fields in their associated
boxes on the screen. The box list may consist of individual box names
separated by commas, ranges of box names separated by hyphens, or a
combination of the two. The display takes place in the order specified in
the box list.

The data is displayed with the attributes defined by the Start Normal
Data and End Normal Data sequences in the vdu parameter file. This
reverses the effect of the highlight command.

EXAMPLE:
+f=Find
input s_code bs=F1
read stock
display s_code - s_rol
Fl end
page 3-38 10/86 SCULPTOR Reference Manual

3.10 sage Commands — display



encdate

Encode a date.
SYNTAX:

encdate <date field >
DESCRIPTION:
Encodes the current values in the special temps day, month and year
into a day number and stores the result in the designated date field. The
temps day, month and year must be declared (see ltemp).
If the date to be encoded is not valid, the designated field is set to zero.
EXAMPLE:

decdate date

day = 31: month = 12
encdate eoy (last day of current year)

SCULPTOR Reference Manual 3/86 page 3-39
3.10 sage Commands — encdate



end

End the current option.
SYNTAX:

end
DESCRIPTION:

Terminates statement execution and passes control back to the option
prompt. It is permissible for statement execution to fall through an option
title line into the logic for the following option, therefore care should be
taken to include an end statement at the conclusion of each option,
unless such continuation is intended.

EXAMPLE:
+n = Next
next stk
display s_code - s _rol
end

*a=Amend
etc.

page 3-40 3/86 SCULPTOR Reference Manual
3.10 sage Commands — end



error

Display an error message.
SYNTAX:

error <text expression >
DESCRIPTION:

Displays an error message in the bottom, left-hand corner of the screen.
The text expression may be a string constant, an alphanumeric field or a
concatenation of several such items using the + and / operators. If the
value of a numeric field is required in an error message, it must first be
assigned to an alphanumeric field.

The textis displayed bracketed by the Start error message and End error
message sequences in the VDU parameter file (see section 5.8), and is
erased as soon as fresh input is received, another message is displayed
or a clear command with no box list is given. Certain error conditions,
unless trapped, automatically display an error message and return
control to the option prompt. These are:

Message Cause

No such record Attempt to read a non-existent record.

Record exists Attempt to insert a record with a duplicate key.

No record selected Attempt to write back or delete with no record
selected.

The language configuration program lef may be used to alter the text of
these error messages in sage itself.

EXAMPLES:
1) error “Sale price must exceed cost price!”
2) atemp = max disc

"

error “"Maximum discount is “ + atemp + “%"

SCULPTOR Reference Manual 3/86 page 3-41
3.10 sage Commands — error



exec
execu

Execute a child task.
SYNTAX:

exec < text expression>
execu <text expression>

DESCRIPTION:

Executes the text expression as a system command line. The expression
may be a string constant, an alphanumeric field or a concatenation of
several such items using the + and / operators. When the child task
completes, control is returned to the statement following the exec. The
special variable tstat contains the child tasks’ termination code.

Before executing the command, exec issues the Ignore Protection and
Enable Scroll and the Reconfigure VDU sequences defined in the VDU
parameter file. On regaining control, itissues the Configure VDU and the
Honour Protection and Disable Scroll sequences. If there is a possibility
that the screen form will be damaged, the newform command should be
used to redisplay it. No VDU sequences are issued by the execu (execute
unseen) command.

WARNING: The exec command is available only if supported by the
operating system in use and is not guaranteed to operate in an identical
way on all systems that do support it. For further details see appendix A
(Implementation Differences).

The exec statement normally calls a new shell (command processor) to
process the specified command. However, if the command is a simple
program call {with or without arguments), then a shell is not required.
This can be indicated to the system by preceding the command with a -
as in example 3 below. A shell is required if the command involves 1/O
redirection, pipes, shell expansion or multiple commands.

EXAMPLES:

1) exec “kicheck *.k”

2) exec ‘'sagerep printinv “ + ptr + " + spooler

3) exec “-sage stock”

page 3-42 10/86 SCULPTOR Reference Manual

3.10 sage Commands — exec, execu



exit

Terminate the program.
SYNTAX:
exit [ <numeric expression > |
DESCRIPTION:
Terminates the program and returns control to the calling task. The
optional numeric expression may be used to pass back a termination

code (default zero if omitted).

EXAMPLE:

» e = Exit
exit

SCULPTOR Reference Manual 3/86 page 3-43
3.10 sage Commands — exit



find

Find and read a record.
SYNTAX:

find <« f{ile identifier> [key = <field list>] [nsr= <label >]
[riu= <label >]

DESCRIPTION:

Searches for the first record on the file whose key matches the supplied
key. If no matching key is found, the error No such record is displayed
and control passes to the option prompt. This error may be trapped by
using the nsr = < label> clause, in which case control passes to the line
indicated. An unsuccessful find leaves the record buffer unaltered.

If the located record is currently locked by another user, the message
Waiting... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu= <label >
clause, in which case control passes to the line indicated. The record in
use status can only occur if the file is open in update mode.

If the key = clause is omitted, the data in the file's natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details. The find
command differs from read by not requiring an exact key. The rules are:

1) If the natural key field is alphanumeric, then trailing spaces in the
supplied data are ignored and only the leading characters must
match the corresponding characters in that key field, e.g. if “"Smith"’
is supplied then “‘Smithson’" will match but “*‘Smythe”” will not.

2) If the natural key field is numeric (including dates) and the supplied
data is non-zero, then that key field must match exactly.

3) If the natural key field is numeric (including dates) and the supplied
data is zero, then any value in that key field matches.

See also the match command.

page 3-44 3/86 SCULPTOR Reference Manual
3.10 sage Commands — find



find {cont.)

EXAMPLE:
+f=Find
input surname,firstname,dob
find addr

In the above example, surname and firstname are alphanumeric and dob
is a date field (date of birth).

If the user inputs part of the surname, part of the firstname and no dob,
then the first record which matches the supplied parts of both surname
and firstname is read, regardless of dob.

If the user inputs firstname and dob but no surname, then the first record
which matches the supplied part of firstname and has the required dob is
read, regardless of surname, but in this case the search may be slower,
since surname is the most significant part of the key and many surnames
may have to be checked until a match is found.

SCULPTOR Reference Manual 3/86 page 3-45
3.10 sage Commands — find (cont.)



getstr

Extract a sub-string.
SYNTAX:
getstr( < source>, <pos>, <len>)
DESCRIPTION:
getstr returns the sub-string which starts at character position pos in the
string source and is up to len characters long. It can be included as part

of an expression.

source can be either an alpha field or a string constant. pos and len can
be either numeric constants or numeric expressions.

The first character in source is position 1. If pos is less than 1 or greater
than the length of source, then a null string is returned. If len is greater
than the number of characters remaining, then getstr returns only those
available.
EXAMPLES:

orderno = getstr(custno,l,n) + aseq

aday = getstr("SunMonTueWedThuFriSat”,3*day-2,3)

message “Sub-code is: " + getstr(code,5,4)

page 3-46 10/86 SCULPTOR Reference Manual
3.10 sage Commands — getstr



gosub

Call a subroutine.
SYNTAX:

gosub <label >
DESCRIPTION:

Transfers control to a subroutine at the line indicated. When a return
statement is encountered, control is returned to the statement following
the gosub command.

Up to 200 subroutines may be nested at any one time. Each subroutine
must always be exited eventually using a return statement. Repeated use
of goto commands to exit a subroutine will ultimately cause the error
message Too many nested gosubs to be displayed.

EXAMPLE:

+f=Find
clear
input item bs=F1l
find item
gosub DISP
F1 end

+n = Next
clear
next stk

gosub DISP: end

DISP display item - rol
if stklev < rol then\
error "Below re-order level”
return

SCULPTOR Reference Manual 10/86 page 3-47
3.10 sage Commands — gosub



goto

Transfer control to another line.
SYNTAX:
goto <label>
DESCRIPTION:
Transfers control to the statement at the line indicated. Itis permissible to
jump from the code in one option to the code in another but it is not

advisable to jump into or out of subroutines. The compiler will not
complain but your program is unlikely to work as intended.

EXAMPLE:
*{ = Find
clear
input item
tind stk
goto DISP
*n = Next
clear
next stk
DISP display item - rol
end
page 3-48 3/86 SCULPTOR Reference Manual

3.10 sage Commands — goto



highlight

Highlights specific data items.
SYNTAX:

highlight <box list >
DESCRIPTION:

Displays the current values of the specified fields in their associated
boxes on the screen, bracketed by the display attribute defined by the
Start Highlight and End Highlight sequences in the vdu parameter file.
The command can be used to highlight specific data values on the
screen.

This ecommand will only work if the VDU terminal is capable of supporting
it. Some terminals do not have the ability to highlight areas of the screen,
and some of those which do are unsuitable or impose limitations. The
most suitable type of terminal is one which has non-embedded display
attributes.

For this reason, the highlight command should not be used if truly
portable software is required.

See the display command which reverses the effect of highlight.
EXAMPLE:

highlight st_stklev,st_rol

SCULPTOR Reference Manual 10/86 page 3-49
3.10 sage Commands — highlight



if ... then ... else

Conditionally execute a statement.
SYNTAX:
if <expression> then <statement> [else <statement>]

DESCRIPTION:

The statement which follows then is executed only when the if
expression is found to be true. If the optional else clause is included, the
statement which follows else is executed only when the if expression is

found to be false. Both statements can be multiple statements separated
by colons.

The statement which follows else can be another conditional statement,
but, if the statement which follows then is a conditional statement, the
first expression must not have an else clause. An else clause always
relates to the immediately preceding if.

Conditional expressions can include all supported arithmetic, relational
and logical operators and parentheses can be used to force a particular
order of evaluation. Relational and logical operators available are:

< Less than. bw Begins with (alphanumeric
> Greater than. data only).
= Equal to. ct Contains (alphanumeric
< = Less than or equal to. data only).
> = Greater than or equal to. and Logical and.
<> Not equal to. or Logical or.
EXAMPLES:
1) if salepr < = costpr then\
error "Sale price must exceed cost’: goto I1
2) if d_date > date and (cat = "“A” or cat = "B")\
then status = 1
3) if flaga \
then flda = val: display flda \
else if flagbh \
then gosub DISPLAY B
else gosub DISPLAY C
page 3-50 10/86 SCULPTOR Reference Manual

3.10 sage Commands — if...then.. else



input

Input data from screen boxes.
SYNTAX:
input <box list> [bs= <label>] [eoi= <label>] [ni= <label >]

DESCRIPTION:

Positions the cursor to each box in turn and awaits input. If the input is
valid then its value is assigned to the field associated with the box. If the
input is not valid, then the bell is sounded and re-input is awaited. The
box list may consist of individual box names separated by commas,
ranges of box names separated by hyphens, or a combination of the two.
Input takes place in the order specified in the box list.

Data is validated according to the field associated with the box, firstly for
correct type and secondly against any validation list associated with the
field.

During input, certain keys have special functions:

RETURN (ENTER on some keyboards)

The RETURN key is used to terminate the input in each box. If
used at the beginning of a box, no other characters having been
typed, then input to that box is skipped subject to valid data being
present in the box. If there is no validation list then a blank box is
considered valid.

BACKSPACE

The BACKSPACE key erases the last character typed. If itis used
at the beginning of a box, then the cursor is moved to request
input at the previous box in the list. Attempting to backspace
beyond the first box in the list is rejected and causes the bell to
sound. However, if the bs = <label> clause is present, control
is transferred to the line indicated.

(cont.)

SCULPTOR Reference Manual 3/86 page 3-51
3.10 sage Commands — input



input (cont.)

EOI (End of Input)

The EQI key (as defined in the VDU parameter file) has the same
effect as the RETURN key unless the eoi= <label> clause is
present, in which case control is transferred to the line indicated.

CANCEL

If cancel is on (see the command cancel}, pressing the CANCEL
key (defined in the VDU parameter file) causes a clear command
to be executed and control to pass to the option prompt. If
cancel is off then the CANCEL key is ignored.

If the ni= <label> clause is present and if no fields are updated by the
input command, then control is transferred to the line indicated. The no
input condition is only satisfied if valid data is displayed in the boxes and
no new values are entered. Skipping the boxes after a clear command
implies that the associated fields are being updated with null vaiues and
does not count as no input. Further, this trap should be used with
considerable care — it is easy to miss the implications of returning to the
input statement for amendments after valid data has been entered.

EXAMPLES:

1) input ¢c_name,c_addr-c_status bs=12 eoi=15

2) input t_ no ni=D5

page 3-52 3/86 SCULPTOR Reference Manual

3.10 sage Commands — input {cont.)



insert

Insert a new record.
SYNTAX:

insert <file identifier> [key= <field list>] [re= <label>]
DESCRIPTION:

Inserts a new record on the specified file. The index is immediately
reorganised so that the record appears in its correct location in the file.
The key must be unique. If a record having the supplied key already
exists, then the error Record exists is displayed and control passes to the
option prompt. This condition may be trapped by using the re = <label >
clause, in which case control passes to the line indicated.

Normally, the key = clause is omitted and the data in the file’'s natural key
fields is used as the key. If the key= clause is present, a key is
constructed using data from the named fields and the natural key fields
are updated accordingly. See section 3.6 for full details.

EXAMPLE:
*i=Insert
input c_name - c_status
insert cust re=1I1
message "New customer recorded”
end
Il error "Customer already on file”
end
SCULPTOR Reference Manual 3/86 page 3-53

3.10 sage Commands — insert



interrupts

Enable or disable interrupts.
SYNTAX:

interrupts {on/off]
DESCRIPTION:
If interrupts are on and sage receives a standard keyboard interrupt, then
it will abort the program and terminate. If interrupts are off, then
keyboard interrupts are ignored.
Whatever state 1s set with command, sage does not respond to
interrupts while it is updating a disk file. This prevents the index from
becoming damaged.
Certain types of terminal require sage to work in raw mode. In such a
case the operating system does not check for special characters and
keyboard interrupts are not recognised.
The default state for interrupts is off.

EXAMPLE:

interrupts on

page 3-54 3/86 SCULPTOR Reference Manual
3.10 sage Commands — interrupts



let

Assign a value to a field.
SYNTAX:

[let] <tield name> = <expression>
DESCRIPTION:
The expression is evaluated and the result stored in the designated field.
If the type of the result does not match the type of field then an
appropriate conversion takes place. The expression may include all
supported arithmetic, relational and logical operators and parentheses
may be used to force a particular order of evaluation. A relational or
logical expression, or part expression, yields O if false and 1 if true.
The word let is optional and is normally omitted.
EXAMPLES:
1) let fullname = firstname /" ” + surname

2) total = gty * price * (1 + vatrate)

3) roflag = stklev < rol

SCULPTOR Reference Manual 3/86 page 3-55
3.10 sage Commands — let



match

Find and read the next matching record.
SYNTAX:

match <file identifier> [nsr= <label>] [riu= <label >]
DESCRIPTION:

Returns the next record whose key matches the key supplied to the
previous find command applied to the designated file. The match
command starts its search at the current file position. Refer to find for full
details of key matching.

If no matching key is found, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr= <label> clause, in which case control passes to the line
indicated. An unsuccessful read leaves the record buffer unaltered.

If the located record is currently locked by another user, the message
Waiting... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu= <label>
clause, in which case control passes to the line indicated. The record in
use status can only occur if the file is open in update mode.

EXAMPLE:
+fc = Find customer
input c_name bs=FC3
find cust nst=FC2

FCl1 display c_name - c_status
prompt “Correct customer” yes=FC3

clear
match cust nsr=FC2
goto FC1
FC2 error “"Sorry - can't find customer”
FC3 end
page 3-56 3/86 SCULPTOR Reference Manual

3.10 sage Commands — match



message

Display a message.
SYNTAX:

message <text expression>
DESCRIPTION:

Displays a message in the bottom, left-hand corner of the screen. The
text expression may be a string constant, an alphanumeric field or a
concatenation of several such items using the + and / operators. If the
value of a numeric field is required in a message, it must first be assigned
to an alphanumeric field.

If message is preceded by an at command in a multiple statement, as in
examples 4 and 5 below, the message is displayed at the current cursor
position instead of the bottom left hand corner of the screen.

A message remains displayed until another message or error message is
issued or a clear command with no box list is executed.

See also the error command.

EXAMPLES:

1) message “"New record inserted for ” + ¢_name
2) message “"Updating sales ledger..."”

3) message " (Clear the current message)
4) at 8,40: message "This is at line 8 column 40"
5) at 12,10: vdu 50: \

message "This is at line 12 column 10”: vdu 51

SCULPTOR Reference Manual 10/86 page 3-57
3.10 sage Commands — message



newform

Re-display the screen form.
SYNTAX:
newlorm
DESCRIPTION:
Clears the screen and re-displays the background screen form. This
command is useful if an exec statement has been used to call a program

which may have destroyed the screen form.

EXAMPLE:

exec “'sage invoice”
newiform

page 3-58 3/86 SCULPTOR Reference Manual
3.10 sage Commands — newform



next

Read the next record.
SYNTAX:

next <file identifier> [nsr= <label>] [riu= <label>]
DESCRIPTION:

Reads the next record in ascending key sequence from the specified file.
The next record is the one whose key immediately follows the last key
referenced by any file access command except testkey, even if that key
does not actually exist on the file. Note that next never returns the first
record on a file if its key is completely null (all bytes binary zero).

If end of file has been reached, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr= <label> clause, in which case control passes to the line
indicated.

if the next record is currently locked by another user, the message
Waiting... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu= <label>
clause, in which case control passes to the line indicated; in this case the
file position is not changed, so another next will try to read the same
record. The nextkey command may be used to skip a busy record. The
record in use status can only occur if the file is open in update mode.

See also rewind.

EXAMPLE:
»n = Next
clear
next cust riu=N1
display c_name - c_status
end
N1 error "Record in use”
end
SCULPTOR Reference Manual 3/86 page 3-59

3.10 sage Commands — next



nextkey

Read next key only.
SYNTAX:

nextkey <file identifier> [nsr= <label>]
DESCRIPTION:

Reads key data only for the next record in ascending key sequence. No
attempt is made to read the data record, so a record in use status cannot
occur and the file's data fields remain unaltered. Since it is faster than the
next command, it is useful when searching keys for particular values. It
may also be used to skip a locked record whilst reading a file sequentially.

The next record is the one whose key immediately follows the last key
referenced on the file by any file access command except testkey, even
if that key does not actually exist. Note that nextkey never returns the
first key on a file if that key is completely null (all bytes binary zero).

If end of file has been reached, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr= <label> clause, in which case control passes to the line
indicated.

EXAMPLE:

+*s=Search
message “Enter known part of name"
input target bs =59
rewind cust
S1 message “‘Searching...”
S2 nextkey cust nsr= S8
if surname ct target then goto S3

goto S2

S3 message "': display surname
promptyn “"This one” no=S1
read cust
end

S8 message "End of file reached”

S9 end

page 3-60 3/86 SCULPTOR Reference Manual

3.10 sage Commands — nextkey



open

Open a file.
SYNTAX:

open < file identifier >
DESCRIPTION:

Opens a file that was initially declared closed with !cfile or has been
closed with the close command.

Closing and reopening a file does not alter the current file position and
does not clear the file’s record buffer but note that the clear command
still operates on a closed file's buffer unless the preserve command is
used.

If there are no commands in the program which can update the file and if
the record locking mechanism of the operating system permits, then the
file is opened in read-only mode, otherwise it is opened in update mode.

The maximum number of files that may be open at one time varies
according to the operating system but is normally at least six. If an
attempt is made to open too many files at the same time then the
program will abort. An attempt to open a file that is already open is
ignored.

EXAMPLE:

open stock

SCULPTOR Reference Manual 3/86 page 3-61
3.10 sage Commands — open



pause

Suspend the program and wait for an alarm interrupt.
SYNTAX:
pause
DESCRIPTION:
The program sleeps until an alarm interrupt is sent to the process. On
receiving an alarm interrupt, processing continues with the statement

which follows the pause.

This command is available only with Unix and certain similar operating
systems.

See also the wakeup command.

page 3-62 10/86 SCULPTOR Reference Manual
3.10 sage Commands — pause



preserve

Preserve file buffer from global clear.
SYNTAX:

preserve <file identifier >
DESCRIPTION:

Stops the clear command (with no fieldlist) from clearing the specified
file’s record buffer. Takes effect for the rest of the program.

The preserve command may be applied to both open and closed files.

EXAMPLE:

preserve control

SCULPTOR Reference Manual 3/86 page 3-63
3.10 sage Commands — preserve



prev

Read the previous record.
SYNTAX:

prev <tfile identifier> [nsr= <label>] [riu = <label >]
DESCRIPTION:

Reads the previous record from the specified file. The previous record is
the one whose key immediately precedes the last key referenced by any
file access command except testkey, even if that key does not actually
exist on the file. Note that prev cannot return the last record on a file if its
key contains the highest possible value.

If beginning of file has been reached, the error No such record is
displayed and control passes to the option prompt. This error may be
trapped by using the nsr = < label > clause, in which case control passes
to the line indicated.

If the previous record is currently locked by another user, the message
Waiting... is displayed and the read is retried every three seconds until
successful. This status may be trapped by using the riu= <label >
clause, in which case control passes to the line indicated; in this case the
file position is not changed, so another prev will try to read the same
record. The record in use status can only occur if the file is open in
update mode.

EXAMPLE:

+p = Previous
clear
prev cust riu=Nl1
display c_name - c_status

end
N1 error “Record in use”
end
page 3-64 3/86 SCULPTOR Reference Manual

3.10 sage Commands — prev



prompt

Prompt for yes/no reply.
SYNTAX:

prompt <text expression> [no= <label>] [yes= <label>]
DESCRIPTION:

The text expression is displayed centralised beneath the menu line, with
(y/n)? appended and a valid reply is awaited. Only an upper or lower case
y or n is accepted.

The no = <label> and yes = <label > traps enable the programmer tc
designate the next line to be executed according to the operator’s reply.
if the particular reply is not trapped, execution continues with the next
program statement.

The language configuration program lef may be used to alter the (y/n)?
text in sage itself. If this is done, note that the characters replacing y and
n must be in exactly the same place in the text.

EXAMPLE:
+d = Delete
check cust
prompt “Are you sure” no=Dl
delete cust
clear
D1 end
SCULPTOR Reference Manual 3/86 page 3-65

3.10 sage Commands — prompt



read

Read a record.
SYNTAX:

read <f{ile identifier> [key = <{ield list>] [nsr= <label>]
[riu = <label >]

DESCRIPTION:

Reads the record whose key exactly matches the supplied key. If no
matching key is found, the error No such record is displayed and control
passes to the option prompt. This error may be trapped by using the
nsr = <label> clause, in which case control passes to the line indicated.
An unsuccessful read leaves the record buffer unaltered.

If the requested record exists but is currently locked by another user, the
message Waiting... is displayed and the read is retried every three
seconds until successful. This status may be trapped by using the
riu = <label> clause, in which case control passes to the line indicated.
The record in use status can only occur if the file is open in update mode.

If the key = clause is omitted, the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details.

EXAMPLES:
1) *f=Find Item
input st_code
read stk nsr=F1 riu=F2
Fl error "Item not recorded”: end
F2 error “In use - please try later”: end
2)
Input order number and read details
input o_ordno
read orders
.Now read customer name and address
type = \\CII
read cust key =type,o_custno
page 3-66 3/86 SCULPTOR Reference Manual

3.10 sage Commands — read



readkey

Read key data only.
SYNTAX:

readkey < file identifier> [key= <field list>] [nsr= <label>]
DESCRIPTION:

Reads key data only from the designated file. If a record is located whose
key exactly matches the supplied key, then the file's natural key fields are
updated and control passes to the next statement. No atternptis made to
read the data record, so arecord in use status cannot occur and the file's
data fields remain unaltered.

If no matching key is found, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr= <label> clause, in which case control passes to the line
indicated.

Whether or not a matching key is found, the current file position is
changed for the purpose of the next and nextkey commands. In this
respect, readkey differs from testkey which does not alter the file
position.

If the key = clause is omitted, the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details.

EXAMPLE:

.Position file to read first “TT" item
st_code = “TT”
readkey stk nsr=N1

N1 next stk nsr=N5

SCULPTOR Reterence Manual 3/86 page 3-67
3.10 sage Commands — readkey



return

Return from a subroutine.

SYNTAX:
return
DESCRIPTION:
Returns control from a subroutine to the statement following the calling
gosub.
EXAMPLE:
+f=Find
clear
input item bs=F1
find item
gosub DISP
Fl end
«n = Next
clear
next stk
gosub DISP: end
DISP display item - rol
if stklev < rol then\
error "Below re-order level”
return
page 3-68 3/86 SCULPTOR Reference Manual

3.10 sage Commands — return



rewind

Reposition a file at its start.
SYNTAX:
rewind <file identifier >
DESCRIPTION:
Repositions the specified file at its start so that the next command will
return the first record in the file. The content of the file’s record buffer is

not affected.

Note that the next command cannot return a record whose key is
completely null {i.e. all binary zeros).

EXAMPLE:

rewind trans

SCULPTOR Reference Manual 3/86 page 3-69
3.10 sage Commands — rewind



scroll

Reset the scroll line number.
SYNTAX:

scroll [ < expression > ]
DESCRIPTION:

Resets the special variable scrline according to the value of the
expression, as follows:

Expression = O Increments scrline by one.

{or omitted)

Expression > O Sets scrline to the value of the expression.
Expression < O Reduces scrline by the value of the expression,

but not below the value one.
The scroll line number defines the line within the scroll area on which
scroll data will be displayed and is the index value for all subscripted
fields. See the lscroll declaration for details of setting up the scroll area.

By declaring scrline with Itemp, its value may be directly referenced but
it may not be altered by direct assignment.

The value in scrline may exceed the depth of the scroll area. If it does,
data is displayed and indexed on a wrap around basis.

(cont.)

page 3-70 3/86 SCULPTOR Reference Manual
3.10 sage Commands — scroll



scroll (cont.)

EXAMPLE:

The following example displays records from a transactions file in a scroll
area thatis five lines deep. At the end of each batch, the user is prompted
to reply y for the next batch or n to terminate the display.

»dt = Display transactions
rewind trans
DT1 clear: scroll 1
DT2 next trans nsr=DT3
display t_date - t_amount
if scrline%5 then scroll: goto DT2
prompt "Next batch” yes=DT1
DT3 message “End of transactions file”
end

SCULPTOR Reference Manual 3/86 page 3-71
3.10 sage Commands — scroll (cont.}



setstr

Set a sub-string.
SYNTAX:
setstr( < dest>, <pos>,<len>, <source>)

DESCRIPTION:

setstr overwrites characters in the alpha field dest with characters from
the string source. Overwriting starts at character position pos in dest and
continues for len characters, or until the end of dest is reached, or until
the end of source is reached, whichever occurs first.

dest must be an alpha field. source can be either an alpha field or a string
constant. pos and len can be either numeric constants or numeric
expressions.

The first character in dest is position 1. If pos is less than 1 or greater
than the length of dest, then the command is ignored.

EXAMPLES:

setstr(code, 1,4, prefix)

setstr(sent,p + 1,n,word)

page 3-72 10/86 SCULPTOR Reference Manual
3.10 sage Commands — setstr



sleep

Suspend the program for a number of seconds.
SYNTAX:
sleep <expression>.
DESCRIPTION:
Suspends program execution for the number of seconds specified in the
expression. When the time has elapsed, execution resumes at the

statement following the sleep command.

Since many operating system clocks are only accurate to the nearest
second, an error of up to one second is possible.

EXAMPLE:

A typical use of the sleep command is to give the operator time to read a
message before clearing the screen:

message “'Order deleted”
sleep 4
clear: end

SCULPTOR Reference Manual 3/86 page 3-73
3.10 sage Commands — sleep



testkey

Check for record with specified key.
SYNTAX:

testkey <file identifier> [key = <field list>] [nsr= <label >]
DESCRIPTION:

Tests the specified file for a record whose key exactly matches the
supplied key. If the record exists, then the file's natural key fields are
updated and control passes to the next statement. No attempt is made to
read the data record, so a record in use status cannot occur and the file's
data fields remain unaltered.

If no matching key is found, the error No such record is displayed and
control passes to the option prompt. This error may be trapped by using
the nsr= <label> clause, in which case control passes to the line
indicated.

Whether or not a matching key is found, the current file position remains
unchanged for the purpose of the next and nextkey commands. In this
respect testkey differs from readkey which alters the file position.

If the key = clause is omitted, the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details.

page 3-74 3/86 SCULPTOR Reference Manual
3.10 sage Commands — testkey



testkey (cont.)

EXAMPLE:

Typical use is in an insert option to test if the record already exists prior to
inputting all the data fields:

*i =Insert
I1 input surname,fstname bs =19
testkey cust nsr=12
error “Customer already recorded”
goto I1
12 input addrl - status bs=11
insert cust
message ‘New customer inserted”
I9 end
SCULPTOR Reference Manual 3/86 page 3-75

3.10 sage Commands — testkey (cont.)



unlock

Unlock a record.
SYNTAX:
unlock < file identifier >
DESCRIPTION:
Unlocks the currently selected record from the specified file to allow
access by other users. The data in the file's record buffer is not affected
but the record may no longer be written back or deleted.
Alocked record is automaticaily unlocked if it is written back or deleted or

if an attempt is made to read another record from the same file. Records
are only locked if the file is open in update mode (see ile).

EXAMPLE:
+*{=Find
input flight_no
read resv
gosub DISP
prompt "Hold"” yes=F1
unlock resv
Fl end
page 3-76 3/86 SCULPTOR Reference Manual

3.10 sage Commands — unlock



wakeup

Send an alarm interrupt to a process.
SYNTAX:

wakeup <task id>
DESCRIPTION:

An alarm interrupt is sent to the specified process. The alarm call can be
sent to any process whose id is known and which is capable of accepting
the interrupt. For example, it could be sent to a sage or sagerep program
which has used the pause command. The suspended program will then
restart from the point at which it paused.

A simple way of determining the task id of another program is to cause
each participating program to write its id into a shared file.

A good understanding of the equivalent operating system function is
recommended before using the wakeup command. For example, it is
wise on Unix to ensure that at least a few seconds elapse before a
program which has paused can receive an alarm interrupt. Otherwise,
because of task switching, itis possible for the program which is pausing
to receive and ignore the alarm before it has completed the pause
operation, with the result that it sleeps forever.

This command is available only with Unix and certain similar operating
systems.

EXAMPLE:

wakeup re_id

SCULPTOR Reference Manual 10/86 page 3-77
3.10 sage Commands — wakeup



write

Write a record back.
SYNTAX:

write <file identifier> [re= <label>] [nrs= <label >]
DESCRIPTION:

Writes back and unlocks the record last read from the specified file. Note
that a record must be written back if amendments made to its key or data
fields are to be permanently recorded.

If no record is currently selected, then the error No record selected is
displayed and control passes to the option prompt. This error may be
trapped by using the nrs = <label > clause, in which case control passes
to the line indicated.

If any key data has been altered since the record was read, then a new
record is inserted and the old record is deleted. In this case, the file is
positioned at the old key value for the purpose of the next and nextkey
commands.

If key data has been altered but a record with the new key value already
exists on the file, then the error Record exists is displayed, the old record
is not deleted and control passes to the option prompt. This error may be
trapped by using the re = <label > clause in which case control passes
to the line indicated.

EXAMPLE:
+a=Amend
check cust
Al input c_name - c_status eci=A2
A2 prompt “"Amendments correct” no= Al
write cust
clear: end
page 3-78 3/86 SCULPTOR Reference Manual

3.10 sage Commands — write



vdu

Send a vdu control sequence to the screen.
SYNTAX:
vdu <n>

DESCRIPTION:

Sends contrel sequence number n from the vdu parameter file to the
screen at the current cursor position. The cursor can be positioned using
the at command before the vdu control sequence is called.

The control sequences in the vdu parameter file are numbered from 1
upwards, starting with the sequence Position Cursor. The vdu
command can be used to send any one of these sequences, but it is
primarily intended for use with sequences 50 through 59, which are
available for any use the programmer requires.

EXAMPLE:

at 7,28: vdu 59

SCULPTOR Reference Manual 10/86 page 3-79
3.10 sage Commands — vdu



3.11 COMPILING AND RUNNING A SAGE PROGRAM

After creating the text source file of a program it must be compiled using
the program cf. The source code file must have a .f extension and the
compiler requires access to the descriptor files (.d extension)
corresponding to each Iile and Irecord declaration. Unless these have
pathnames, the compiler expects to find them in the current local
directory. The syntax for calling cf is:

cf < program name >

The .f extension on the program name does not have to be typed since
the compiler assumes it. If the compilation is successful, a file is created
with the same name stem as the program but with a .g extension. sage
requires this output file in order to run the program. If the compilation is
unsuccessful then any existing .g file is unaltered and one or more error
messages are output. These indicate the line number at which the error
was detected and point to the offending part of the line.

The command line for running a sage program is
sage < program name> [<arguments> ]

where <arguments> is an optional list of parameters, separated by
spaces, that may be referenced through the special temp arg.

Refer also to the installation instructions on setting up vdu parameter
files.

page 3-80 3/86 SCULPTOR Reference Manual
3.11 Compiling and Running a sage Program



o313 REPORT GENERATION
(SAGEREP)

This chapter explains the use of the sagerep program to produce printed
reports. The chapter is divided into seven sections. Sections 4.1 to 4.4
explain the overall structure and main features of sagerep; Sections 4.5
and 4.6 explain all the Declarations and Commands; Section 4.7
explains the compilation and running of sagerep programs.

Sectian Page
4.1 Introductiontosagerep................ccoooiviiiiiiiii i 4-2
4.2 sagerep Program Structure...............ooooi 4.6
4.3 sagerep Format Definitions..................... 4-8
4.4 sagerep Expressions and Operators...................ooo 49
4.5 sagerep Declarations...................co 4-12
4.6 sagerep Commands.. ... 4-38
4.7 Compiling and Running a sagerep Program....................... 4-84
SCULPTOR Reference Manual 10/86 page 4-1

4. Report Generation (sagerep)



4.1 INTRODUCTION TO SAGEREP

sagerep is a powerful program which takes care of much of the complex
logic associated with producing reports, leaving the programmer free to
concentrate on the information to be printed. Although designed
primarily as a report generator, sagerep is sufficiently flexible to
undertake other tasks, such as global file updating and, by redirecting
standard output, the creation of text files for input to programs written in
other languages.

To make the best use of sagerep it is important to understand how it
operates. The explanation on the following pages is supplemented by a
flowchart (see page 4-5). Note also that sagerep is a batch processor
and that, with the exception of a simple input and display facility, it has
no interactive features.

The sequence beiow shows how sagerep is used in a simple SCULPTOR
application:

1) Inany available text editor, write your source code program using the
sagerep language declarations and commands.

2} Run the er program to compile the source code file into an object
program.

3) Run the new sagerep program.
Note: Steps 1 and 2 can be performed automatically using the rg

program to create a standard report program. Refer to Chapter 5 for
details of the rg program.

page 4-2 3/86 SCULPTOR Reference Manual
4.1 Introduction 1o sagerep



SAGEREP STATEMENTS

Statements are grouped into sets, each set being executed at the
appropriate time in the overall processing logic. Within any one set,
statements are executed in the order in which they are declared within

the program. The sets are:

DRIVING FILE
Ifile

INITIALISATION STATEMENTS

linit
linput
ldisplay
lconstant
Iread
Istartrec
fendrec

TITLE STATEMENTS
ltitle

CONTROL STATEMENTS
Iselect if

lexclude if

Ixfile (with key = clause)
Itemp (with assignment)

PAGE HEADING STATEMENTS

theading

FOOTNOTE STATEMENTS
Ifootnote

ON STARTING STATEMENTS

lon starting

ON ENDING STATEMENTS
lon ending

FINAL STATEMENTS
Ifinal

MAIN STATEMENTS

The main body of statements.

SCULPTOR Reference Manual 3/86
4.1 Introduction to sagerep {cont.)

page 4-3



STATEMENT EXECUTION SEQUENCE

Initialisation statements are executed first, followed by the title
statements. The driving file (see !file) is then read in ascending key
sequence either from beginning to end or within the limits defined by
Istartrec and !endrec and each record is then processed as follows.

The control statements are executed. If whilst doing so an exclusion
condition is found to be true and no prior selection condition was true,
then the processing of control statements immediately terminates and
the next record is read.

The on ending statements are checked. If any require executing,
sagerep temporarily backtracks to the state that existed before the
current set of records was read, but any temporary data modified by the
on ending statements is carried forward.

The on starting statements are now checked and executed as
necessary.

Finally the main block of statements is executed, following which all
total, min, max and count function accumulators are updated.

When an end of file condition occurs on the driving file, the on ending
statements are executed, followed by the final statements.

Heading statements are executed at the top of each page and footnote
statements at the bottom of each page. Since these two statement sets
can be invoked at any time, care should be taken not to cause
unintentional changes. For example, it is normally wise to ensure that
scrline is not altered, so if the scroll command is used in headings, the
following code is recommended:

lheading scrsave = scrline
< other heading statements >
lheading scroll scrsave

page 4-4 3/86 SCULPTOR Reference Manual
4.1 Introduction to sagerep (cont.)



SAGEREP FLOWCHART

sagerep

Execute initialisation statements

Execute title statements

>
Read driving file ——»——EOF

Execute control statements

—— exclude ——

Check on ending statements

Check on starting statements

Execute main statements

Update total,min,max,count

¢
Execute on ending statements
Execute final statements
EXIT
SCULPTOR Reference Manual 3/86 page 4-5

4.1 Introduction to sagerep {cont.)



4.2 SAGEREP PROGRAM STRUCTURE

A sagerep program is written as a text file using a standard editor. The

language is line-oriented and the compiler recognises four different line

types:

1} Lines commencing with a full stop **."" are comment lines and are
ignored by the compiler. Completely blank lines are also ignored by
the compiler.

2} Lines commencing with a plus sign ** 4+ ' are format definitions and
should appear first in a program.

ey

3) Lines commencing with an exclamation mark are declarations.

4) Otherlines are program statements. If the first word on the line is not
a field name or SCULPTOR keyword then it is taken to be a line label.
Multiple statements, separated by colons, may be placed on the
same line.

Both declarations and program statements may extend over more than
one physical line by terminating each line that is to be continued with a
backslash “’\'". This is particularly useful when several statements are to
be controlled by an if ... then command.

page 4-6 3/86 SCULPTOR Reference Manual
4.2 sagerep Program Structure



A typical sagerep program has the following structure:
< format definitions >
< declarations >
< main statements >
< subroutines >

Since sagerep reads the driving file automatically, the main block of
statements does not require a command to obtain the nextrecord. There
is also nc need to program a loop into the main statements, their
execution for each selected record being implied. However, if one or
more subroutines are included in the program, then the main statements
must terminate with an end command. The following example shows
how straightforward a sagerep program which produces neat output can
be:

lheading printh sst_code,*st_desc, «st_stklev,+st_costpr
lheading print

keep 6

printh st code,st_desc,st_stklev,st_costpr

Itis possible to write a sagerep program which reads all required records
and does all processing explicitly by using a !title declaration to call a
subroutine containing the required logic and having an exit command as
a single main statement. A program like this cannct make use of any
control statements such as !on starting, although 'heading statements
are still effective. Example:

ltitle gosub MYLOGIC
exit

MYLOGIC\

return

SCULPTOR Reference Manual 3/86 page 4-7
4.2 sagerep Program Structure {cont.)



4.3 SAGEREP FORMAT DEFINITIONS

By default, the heading and format used for a field are the ones defined
when the field was described (see the describe program in Chapter 2}. A
particular report program may wish to override these and can do so by
including a format definition for the field:

+ <{tield name > ,[ <heading > ][, <{format>]

Either a heading or a format or both may be specified.

page 4-8 3/86 SCULPTOR Reference Manual
4.3 sagerep Format Definitions



4.4 SAGEREP EXPRESSIONS AND OPERATORS

sagerep supports a comprehensive set of arithmetic and relational
operators. These may be used to form expressions involving keyed file
fields, temporary variables and constants.

PRECEDENCE

Operators have precedence as set out below, but sub-expressions may
be enclosed in parentheses to force a particular order of evaluation. The
available operators are listed below. The operators grouped together
have equal precedence and the groups are listed in descending order of
precedence.

Group 1:
- Negate (unary minus)
Group 2:
* Multiply
/ Divide
% Remainder {after integer division)
/ String concatenation {with trailing spaces
stripped from left operand)
Group 3:
+ Add
- Subtract
String concatenation {with trailing spaces
retained from left operand)
Group 4:
= Eqgual to
< Less than
> Greater than
<= Less than or eqgual to
>= Greater than or equal to
<> Not equal to
ct Contains
bw Begins with
{cont.)
SCULPTOR Reference Manual 3/86 page 4-9

4 4 sagerep Expressions and Operators



Group b:

and Logical and
Group 6:
or Logical or

The operators ¢t and bw apply to alphanumeric data only. ct yields true if
the right operand is a sub-string of the left operand. bw vyields true if the
left operand begins with the right operand. Examples:

if "Smithson’” bw “'Smith"’ (true)
if “’Smithson’’ bw “'son’’ (false)
if “ABCDEF"" ct "'CD"’ {true)
if “ABCDEF"" ¢t "'BD"’ (false)

Relational expressions are most commonly used with the if command,
but it is also permissible to have a relational expression as part of an
assignment statement; its value is 1 if true or O if false.

CONSTANTS

Numeric and alphanumeric constants may be freely included in
expressions. Numeric constants may be integer or floating point and
positive or negative; a numeric constant is floating point if it includes a
decimal point. Alphanumeric constants, sometimes called strings, must

be enclosed in either single single or double quotes (" or **"'}. Examples:
123 {integer)
-50 {integer)
34.451 (floating point)
100.0 {floating point)
‘Thursday’ (alphanumeric)
““today’s"’ (alphanumeric)
{null string)
page 4-10 3/86 SCULPTOR Reference Manual

4.4 sagerep Expressions and Operators (cont.)



FIELD TYPE CONVERSION

Expressions may include fields of different types. Each operation
examines the types of its two operands and if they differ, an automatic
type conversion is performed according to the following rules:

1) If either operand is floating point then the other operand is converted
to floating point and the result is floating point.

2) Otherwise, if either operand is integer then the other operand is
converted to integer and the result is integer.

3) An operation is only alphanumeric if both its operands are
alphanumeric.

in the following expression, the two division calculations will be
evaluated first, without type conversion, the result of the integer division
will then be converted to floating point for the multiplication and finally
the product converted to alphanumeric for the assignment:

alpha = (int1 /int2) » (reall / real2)

All internal integer arithmetic is performed with long integers to minimise
the possibility of overflow in an intermediate result.

Arithmetic may be freely performed on dates which are treated as day
numbers, counting 1/1/0001 as day 1. Useful operations on dates are
addition and subtraction of a number of days and taking the remainder
after division by 7 (% 7} to get the day of the week (0 = Sunday).

When operating on money fields remember that their data value is in the
lower currency unit, e.g. pence or cents.

SCULPTOR Reference Manual 3/86 page 4-11
4.4 sagerep Expressions and Operators (cont.)



4.5 SAGEREP DECLARATIONS

This section describes the declaration statements available in sagerep.
They are listed on the pages indicated below.

Declaration Statement Page
Iefile .. o 4-13
lconstant. ... 4-14
Idepth . .. ... 4-15
Idisplay. . ..... ... 4-16
lendreC . . ... 4-17
lexclude. ... .. ... 4-18
Mile . 4-19
Hinal .. 4-20
Hootnote ................ 4-21
o T- T o 2 4-22
theading ... 4-23
LY ) 4-24
PUt . 4-25
lonending................... 4-26
lonstarting. ... 4-27
Tread . . 4-28
lrecord .. 4-29
Is@leCt. ... 4-30
IStartrec. ... . 4-31
8 01 1 1T« J U 4-32
il . 4-35
dwidth .. 4-36
Il 4-37
page 4-12 3/86 SCULPTOR Reference Manual

4.5 sagerep Declarations



Icfile

Declare a cross-reference file which is initially ciosed.
SYNTAX:

Ictile [ <file number>] <pathname>
DESCRIPTION:

Declares a cross-reference file which is initially closed. See xfile for
declaring cross-reference files which are initially open.

Commands in the program which access the file must use the file
number. Cross-reference file numbering starts at 2 and the numbers
must be allocated in upward sequence.

The file must exist when the program is run (see the program newkf for
creating new files) and its descriptor file must exist when the program is
compiled {see the program describe). sagerep will Iook for the file in the
current working directory unless a full pathname is supplied. Both the
data file and its associated index file (.k extension) must exist in the same
directory.

It is important to note that sagerep temporarily opens each Icfile when it
loads the program. If it has already opened the maximum number of files
permitted by the operating system then the program wili abort. For this
reason, Icfile declarations should precede Ixfile declarations.

The maximum number of files that may be deciared in one program using
Icfile and Ixfile is 15.

EXAMPLES:

1) Ictile 2 control

2) lctile 3 /usr/sales/customers

SCULPTOR Reference Manual 3/86 page 4-13

4.5 sagerep Declarations — !cfile



lconstant

Declare a temporary field and its initial value.
SYNTAX:

lconstant <name>,[<heading>], <type&size>
[, <format>] = <expression >

DESCRIPTION:

Declares a temporary field and its initial value. The syntax is similar to that
used with the program describe, to which reference should be made for
full details, except that no validation list is permitted.

The expression is calculated once only as part of the initialisation
procedure and is useful for setting up keys for cross-reference files (see
Ixfile and lread). In other respects a constant is the same as a temp and
its value may be altered later by direct assignment.

Special care must be taken with date constants, since the expression
may be either numeric, yielding an absolute day number, or a formatted
date. Mathematical symbols such as / and - are taken for their normal
meaning and not as separators for day, month and year. For this
purpose, a comma should be used.

EXAMPLES:

1) lconstant ckey,,al = “A"

2) lconstant status, ,il,## =1

3) lconstant sdate,Start Date,d4=1,1,80

4) lconstant edate,End Date,d4 = date + 28

page 4-14 3/86 SCULPTOR Reference Manual

4.5 sagerep Declarations — Iconstant



Idepth

Declare page length.
SYNTAX:

ldepth <integer>
DESCRIPTION:
Declares the number of lines per page required.
It is generally preferable not to include a !depth statement. In this case
the value set in the printer parameter file is used, allowing the report to
print correctly on different paper sizes.
The declaration is useful in cases where the depth is fixed (e.g. pre-
printed payslips) since it allows testing on ordinary paper without
adversely affecting other reports.

EXAMPLE:

!depth 14

SCULPTOR Reference Manual 3/86 page 4-15
4.5 sagerep Declarations — ldepth



Idisplay

Display a message on the screen.
SYNTAX:
!display <text expression >
DESCRIPTION:
Generates an initialisation statement to display a message on the screen.
The text is displayed on the screen even if standard output has been

redirected or piped elsewhere.

If standard input has been redirected and the operating system permits
sagerep to detect this, then the display is suppressed.

EXAMPLE:

ldisplay "STOCK VALUATION REPORT”

Idisplay “Customer report ..."” + date

page 4-16 3/86 SCULPTOR Reference Manual
4.5 sagerep Declarations — !display



lendrec

Define ending record.
SYNTAX:

lendrec key = <{ield list>
DESCRIPTION:

Defines the record on the driving file at which the report is to finish. The
end key value is established during the initialisation process, so the field
values required must be assigned in earlier initialisation statements. The
linit statement is the most flexible method of assigning values during the
initialisation phase, but the lconstant, !read and linput statements can
also be used.

If no record having the supplied key exists on the driving file, then the
report finishes after processing the record with the next lower key.

See also Istartrec.
EXAMPLE:

linput “Start date”,sdate
linput “"End date”,edate
lconstant highno,,i4 = 999999
Istartrec key = sdate

lendrec key = edate, highno

SCULPTOR Reference Manual 3/86 page 4-17
4.5 sagerep Declarations — lendrec



lexclude

Declare an exclusion condition.
SYNTAX:

lexclude if < conditional expression >
DESCRIPTION:

Generates a control statement to exclude records for which the specified
condition is true. Refer also to !select. Any number of lexclude
declarations are permitted.

If the program contains no selection or exclusion conditions then all
records are selected.

If the program contains exclusion conditions only (no selection
conditions) then records are selected unless one of the exclusion
conditions is true.

If the program contains selection conditions only (no exclusion
conditions) then records are selected only if one of the selection
conditions is true.

If the program contains both selection and exciusion conditions then the
conditions are tested in the order defined and the first one found to be
true determines whether or not the record is selected. If none are found
to be true then the record is rejected.

EXAMPLES:

1) lexclude if stklev = 0 or cat <> “A”

2) lexclude if age < 18

page 4-18 3/86 SCULPTOR Reference Manual

4.5 sagerep Declarations — lexclude



Ifile

Declare the driving file.
SYNTAX:

lfile [1] <pathname>
DESCRIPTION:

Declares a keyed file to drive the report. Only one driving file may be
declared. The file must exist when sagerep is run and its descriptor file
must exist when the program is compiled (see describe). sagerep
automatically reads each record from the file in ascending key sequence,
processes the control statements and if the record is selected, executes
the main statements. If a report is required in another sequence then a
cross-reference file must be built and used as the driving file.

sagerep will look for the file in the current working directory unless a full
pathname is supplied. Both the data file and its associated index file (.k
extension) must exist in the same directory. If there are no commands in
the program which can update the file, then it will be opened in read-only
mode, otherwise in update mode.

Any explicit commands in the program which access the file must use the
file number 1. Note that the ascending sequence in which the file is
automatically read can be altered by explicit access to the file.

EXAMPLES:

1) lfile stock

2) lfile 1 customers

3) 'file /usr/john/income_tax

SCULPTOR Reference Manual 3/86 page 4-19

4.5 sagerep Declarations — Ifile



lfinal

Declare a final statement.
SYNTAX:

!final <statement> [: <statement>]...
DESCRIPTION:

Final statements are executed once only at the end of the report. Any
valid sagerep command, except goto, may be used in Hfinal.

Any number of Hfinal declarations are permitted and will be executed in
order of definition.

EXAMPLES:

1) !final print: print "END OF REPORT"; #f

2) ltinal gosub WINDUP

page 4-20 3/86 SCULPTOR Reference Manual

4.5 sagerep Declarations — Ifinal



Ifootnote

Declare a footnote statement.
SYNTAX:

footnote < statement> [: < statement>]...
DESCRIPTION:

Footnote statements are printed at the bottom of each page. Any valid
sagerep command, except goto, may be used in a footnote statement.

Any number lIfootnote declarations are permitted and will be executed in
order of definition.

Note that the compiler has to be able to count the number of print
commands included in Ifootnote statements so that the number of lines
to be reserved at the bottom of each page is known. Since the compiler
cannot follow a gosub, avoid putting print commands in a subroutine
that is called from a !footnote.

Since footnote statements can be invoked at any time, care should be
taken not to cause unintentional changes. For example, it is normally
wise to ensure that scrline is not altered, so if the scroll command is used
in footnotes, the following code is recommended:

{ootnote scrsave = scrline
< other footnote statements >
footnote scroll scrsave

EXAMPLES:
1) footnote print: print tab(70); “Page: ";pageno
2) lfootnote if flag = 1 then\
print “"Continued on next page”
SCULPTOR Reference Manual 3/86 page 4-21

4.5 sagerep Declarations — !footnote



lgap

Declare the standard gap.

SYNTAX:
lgap <integer>

DESCRIPTION:

Declares the number of spaces to be left between print items that are
separated by commas {see the print command). If the program does not
include a lgap statement, a default of two spaces is set.

EXAMPLE:

!gap §

page 4-22

3/86

SCULPTOR Reference Manual
4.5 sagerep Declarations — lgap



lheading

Declare a heading statement.
SYNTAX:

lheading < statement> [: <statement>]...
DESCRIPTION:

Heading statements are executed at the start of each new page. Any
valid sagerep command, except goto, may be used in a heading
statement.

Any number !heading declarations are permitted and will be executed in
order of definition.

Since heading statements can be invoked at any time, care should be
taken not to cause unintentional changes. For example, it is normally
wise to ensure that scrline is not altered, so if the scroll command is used
in headings, the following code is recommended:

lheading scrsave = scrline
< other heading statements>
'heading scroll scrsave
EXAMPLES:
1) lheading printh +p_sur, «p_fname, «p_tel

2) lheading print "STOCK REPORT":\
if pageno > 1 then print ** (continued)”

3) lheading gosub STARTPAGE: flag = 1

SCULPTOR Reference Manual 3/86 page 4-23
4.5 sagerep Declarations — lheading



linit

Declare an initialisation statement.

SYNTAX:

linit <statement> [: <statement>]...

DESCRIPTION:

Declares a general purpose initialisation statement which will be
executed once only at the beginning of the report. Any valid sagerep
command, except goto, may be used in an initialisation statement.

Any number of linit declarations are permitted and will be executed in
order of definition.

EXAMPLES:

linit scroll 4: firstno = arg
linit scroll 5: lastno = arg
Istartrec key = firstno
lendrec key =lastno

page 4-24 3/86 SCULPTOR Reference Manual
4.5 sagerep Declarations — linit



linput

Input an initial value into a temporary field.
SYNTAX:

linput < prompt text>, <field name>
DESCRIPTION:

Generates an initialisation statement to input a value into a temporary
field. The prompt text is displayed on the screen with a guestion mark
appended. The reply is validated for correct data type and stored in the
designated field. Note that sagerep does not check validation lists. If the
reply is not valid then the bell is sounded and the prompt is repeated.

Responses to linput may be placed in a text file by redirecting standard
input. On operating systems that allow sagerep to detect this situation,
the prompt text is suppressed and an invalid reply aborts the program.

From sagerep version 1.09:2 onwards, the linput statement honours the
u and Hormats on alphanumeric fields and folds the input to upper/lower
case. However, since sagerep does not work in single character input
mode, the characters are still echoed back as typed.

EXAMPLE:

temp stdate,Start Date,d4
linput “Start date”,stdate

SCULPTOR Reference Manual 3/86 page 4-25
4 .5 sagerep Declarations - linput



lon ending

Declare a statement to be executed on ending a field value.
SYNTAX:

lon ending <field name> <statement> [: <statement>]...
DESCRIPTION:

Declares a statement to be executed on ending a value in the specified
field. sagerep checks the field's value after selecting the next record from
the driving file, reading automatic cross-references (see Ixfile) and
recalculating all automatic temps (see temp). If a change has occurred
then sagerep temporarily backtracks to the state that existed before the
current set of records was read and executes the defined statement.

The control field can be a field on the driving file, a field on an automatic
cross-reference file, or an automatically recalculated temporary field.
Usually it is a key field on the driving file.

The functions total, min, max and count when used in an !on ending
statement are taken to refer only to the ending block of records and are
therefore particularly useful for printing sub-totals and other block
analysis figures. Note, however, that this does not apply if the function is
in a subroutine called from an lon ending statement. In this case the
functions return values computed from the start of the report.

Any valid sagerep command, except goto, may be used in an lon ending
statement and any number of lon ending declarations are permitted and
will be executed in order of definition.

See also lon starting.

EXAMPLES:

1) lon ending s_cat print tab(40);total(costval)

2) lon ending ordno gosub END_ORDER: newpage

page 4-26 3/86 SCULPTOR Reference Manual
4.5 sagerep Declarations — lon ending



lon starting

Declare a statement to be executed on starting a field value.
SYNTAX:

lon starting <{ield name> <statement> [: <statement>]...
DESCRIPTION:

Declares a statement to be executed on starting a new value in the
specified field. sagerep checks the field’s value after selecting the next
record from the driving file, reading automatic cross-references (see
Ixfile) and recalculating automatic temps (see !temp). If a change has
occurred then sagerep executes the defined statement.

The control field can be a field on the driving file, a field on an automatic
cross-reference file, or an automatically recalculated temporary field.
Usually it is a key field on the driving file.

Any valid sagerep command, except goto, may be used in an lon
starting statement and any number of lon starting declarations are
permitted and will be executed in order of definition.

See also lon ending.

EXAMPLES:

1) lon starting s_cat newpage

2) lon starting initial print: print

3) lon starting t_ordno gosub START_ORDER

SCULPTOR Reference Manual 3/86 page 4-27
4.5 sagerep Declarations — lon starting




Iread

Declare a cross-reference file and initially read a record.
SYNTAX:

Iread [ <file number>] <pathname> key= <field list >
DESCRIPTION:

Declares a cross-reference file and creates an initialisation statement to
read the record whose key exactly matches the key defined in the key =
clause. The values required in the key fields must have been established
in earlier initialisation statements.

The file must exist when the program is run (see the program newkf for
creating new files) and its descriptor file must exist when the program is
compiled (see the program describe}. sagerep will lock for the file in the
current working directory unless a full pathname is supplied. Both the
data file and its associated index file (.k extension) must exist in the same
directory. If there are no commands in the program which can update the
file, then it will be opened in read-only mode, otherwise in update mode.

Any explicit commands in the program which access the file must use the
file number. Cross-reference file numbering starts at 2 and the numbers
must be allocated in upward sequence.

EXAMPLES:

1) Iconstant ckey,,al = "A”
Iread control key = ckey

2) ltemp mth,Month,il, #
lconstant ctype,al = “S"
linput “Which month”, mth
lread /usr/sales/control key = ctype, mth

page 4-28 3/86 SCULPTOR Reference Manual
4.5 sagerep Declarations — lread



lrecord

Declare an alternative record layout.
SYNTAX:

record <file number> <pathname>
DESCRIPTION:

This command is used to declare an alternative record layout for the file
referred to by the file number (previously declared in a Hfile, Iread or Ixfile
statement). The pathname identifies an alternative descriptor file created
with the program describe. Both sets of fieldnames may be referred to in
subsequent program statements. Up to eight record statements may be
associated with each file.

Alternative record layouts must have the same key length as the main
record and it is recommended that the key structure is also identical to
avoid ambiguity. If a different key structure is used, do not use the
Irecord key fields in a key = clause, since sagerep will build the key
assuming that these fields are supplying values for the main key fields.
Instead, assign values to the alternative key fields, which overlay the
main key fields in the record buffer, and omit the key = clause.

Alternative record layouts are useful not only for completely different
record types contained in the same file, e.g. a control file, but also for
redefining the structure of individual fields to enable access to their
component parts.

EXAMPLES:

1) lfile 1 trans
Irecord 1 transl
lrecord 1 trans2

2) Ixfile 2 control
Irecord 2 controll

SCULPTOR Reference Manual 3/86 page 4-29
4.5 sagerep Declarations — Irecord



Iselect

Declare a selection condition.
SYNTAX:

Iselect if < conditional expression >
DESCRIPTION:

Generates a control statement to select records for which the specified
condition is true. Refer also to lexclude. Any number of lIselect
declarations are permitted.

If the program contains no selection or exclusion conditions then all
records are selected.

If the program contains selection conditions only (no exclusion
conditions) then records are selected only if one of the selection
conditions is true.

If the program contains exclusion conditions only (no selection
conditions) then records are selected unless one of the exclusion
conditions is true.

If the program contains both selection and exclusion conditions then the
conditions are tested in the order defined and the first one found to be
true determines whether or not the record is selected. If none are found
to be true then the record is rejected.

EXAMPLES:

1) Iselect if acc_date > = stdate

2) Iselect if cat="B" and st_code ct “"TT"

page 4-30 3/86 SCULPTOR Reference Manual

4.5 sagerep Declarations — Iselect



Istartrec

Define starting record.
SYNTAX:

Istartrec key = <field list>
DESCRIPTION:

Defines the record on the driving file at which the report is to start. The
start key value is established during the initialisation process, so the field
values required must be assigned in earlier initialisation statements. The
linit statement is the most flexible method of assigning values during the
initialisation phase, but the !constant, !read and linput statements can
also be used.

If no record having the supplied key exists on the driving file then the
report starts at the record with the next higher key.

See also 'endrec.

EXAMPLE:

!read control key = ttyno
Istartrec key = c_sdate

SCULPTOR Reference Manual 3/86 page 4-31
4.5 sagerep Declarations — !startrec



Itemp

Declare a temporary field.

SYNTAX:

ltemp <name>,[<heading>], <type&size > [( < dimension > )]
[, <format>][= < expression >]

DESCRIPTION:

Declares a temporary field for use within the program. The syntax is
similar to that used with the program describe, to which reference
should be made for full details, except that no validation list is permitted.
A temporary field may be subscripted, in which case the element
accessed is determined by the current value of the special variable
scrline. If scrline exceeds the field’s dimension then a wrap around takes
effect.

If the optional assignment to an expression is included, then a control
statement is generated to recalculate automatically the temp’s value.

Once defined, temporary fields may be treated in the program in the
same way as keyfile fields.

EXAMPLES:

1) ltemp total, Total,m4, “#, ###, #it# . ##"

2) ltemp costval,Cost Value,m4 = s_stklev * s_costpr

3) ltemp cat,Category,a2(10)

page 4-32 3/86 SCULPTOR Reference Manual

4.5 sagerep Declarations — Itemp



Itemp (cont.)

SPECIAL TEMPORARY FIELDS

Certain special variables, some of which are operating system
dependent, may be referenced. Unlike sage, these special temps are
automatically defined in sagerep and cannot be the subject of a ltemp
statement. The fields day, month and year are exceptions and must be
declared if required.

ltemp arg, ,a0
Command line arguments.

ltemp date,Date,d4
The system date.

temp lines_left, ,i2

Lines left on current page.
ltemp pageno,Page,i2

Current page number.
ltemp scrline, ,i2

See the scroll command.

ltemp systime, ,i4, ###H##H#EHH
System time in seconds.

ltemp time, Time,m4, ##. ##
The current time: hours.mins.

temp tstat, ,il
Child task termination status.

ltemp ttyno, ,i2
tty port number.

temp day,[ < heading >],il
Day for encdate/decdate commands.

ltemp month,[ <heading>],il
Month for encdate/decdate commands.

ltemp year, [ <heading>], i2
Year for encdate/decdate commands.

ltemp printer,Printer,al2
Name of printer in use (from parameter file}.

SCULPTOR Reference Manual 10/86 page 4-33
4.5 sagerep Declarations Itemp (cont.)



Itemp (cont.)

arg returns a command line argument. Whenever it is referenced, the
particular argument returned depends on the current scroll line number.
For example, if the command line is:

sagerep invoice printer IN99

then sagerep is returned if the scroll line number is 1, invoice is returned
if it is 2, printer is returned if it is 3, and IN99 is returned if it is 4.
Reference to a non-existent argument returns a null string. The values in
arg cannot be altered. See Iscroll for information on setting the scroll line
number. Note that a printer parameter filename must be explicitly
included if arguments are to be passed.

date returns the system date and is updated each time it is referenced, so
that programs running over midnight can still access the correct date.
However, if a value is stored into the field date, then automatic updating
stops.

lines_left returns the number of lines left on the current page. 1t should
not be altered.

pageno returns the current page number and may be altered if required.

scrline returns the current scroll line number. Its value cannot be altered
by direct assignment (see scroll).

systime returns the system time in seconds. Its value cannot be altered.
Since its base value is somewhat arbitrary, systime should only be used
to measure time intervals.

time returns the time of day and is updated each time it is referenced.
Note the use of a money field as a convenient way of presenting hours
and minutes.

tstat returns the termination code of the last child task (see the exec
command).

ttyno returns the port number (or other unigue number) on multi-user
systems. On single-user systems, it returns zero.

day, month, and year are used by the commands decdate and encdate.

page 4-34 10/86 SCULPTOR Reference Manual
4.5 sagerep Declarations — Itemp (cont.)



Declare a title statement.
SYNTAX:

ltitle < statement> [: <statement>]...
DESCRIPTION:
Title statements are executed once only at the beginning of the report but
after any initialisation statements. {(Use the linit declaration to place a
general statement in the initialisation section.) Any valid sagerep

command, except goto, may be used in a title statement.

Any number of Ititle declarations are permitted and will be executed in
order of definition.

EXAMPLES:

1) ltitle print #dw; #su;\
tab(33);"STOCK VALUATION REPORT";\
spc(5);date; # eu; #sw

2) ltitle print: print: print (Blank lines)

3) ltitle if cat = “'B"” then flag = 2: gosub SETUP_B

SCULPTOR Reference Manual 3/86 page 4-35

4.5 sagerep Declarations — ltitle



lwidth

Declare required width.
SYNTAX:
lwidth <integer>
DESCRIPTION:
Declares the number of columns required for the report. sagerep uses
this value to select the initial character compression on the printer in use.

If there is no 'width statement, the compiler makes an estimate.

See also the width command which aliows the character compression to
be altered for particular sections of the report.

EXAMPLE:

lwidth 126

page 4-36 3/86 SCULPTOR Reference Manual
4.5 sagerep Declarations — lwidth



Declare a cross-reference file which is initially open.
SYNTAX:

Ixfile [ < file number>] <pathname> [key= <field list>]
DESCRIPTION:

Declares a cross-reference file which is initially open. The maximum
number of cross-reference files which may be open at one time is
operating system dependent but is normally at least five. See Icfile for
declaring a cross-reference file that is initially closed.

If a key= clause is included then a control statement is built to
automatically read the cross-reference file after reading each record from
the driving file. The fields in the key may be either temps or be from the
driving file or from a previously declared cross-reference file. If, when
reading a cross-reference file, no record with an exact key match is
found, a blank record is returned.

The file must exist when the program is run (see the program newkf for
creating new files) and its descriptor file must exist when the program is
compiled (see the program describe). sagerep will look for the file in the
current working directory unless a full pathname is supplied. Both the
data file and its associated index file (.k extension) must exist in the same
directory. If there are no commands in the program which can update the
file, then it will be opened in read-only mode, otherwise in update mode.

Any explicit commands in the program which access the file must use the
file number. Cross-reference file numbering starts at 2 and the numbers
must be allocated in upward sequence.

The maximum number of files that may be declared in one program using
Ixfile or Icfile is 15. See also !read.

EXAMPLES:

1) Ixtfile stock

2) Ixfile cust key =oh_custno

SCULPTOR Reference Manual 3/86 page 4-37

4.5 sagerep Declarations — Ixfile



4.6 SAGEREP COMMANDS

This section describes the command language from which program
statements are constructed. The commands are listed on the pages
indicated below.

Command Page
AbOt . 4-40
chain. ... 4-41
clearbuf ... . 4-42
ClOSe . . 4-43
decdate . ... 4-44
delete. ... 4-45
display.. ... 4-46
encdate ... ... 4-47
N 4-48
BN . . 4-49
OXUt . 4-50
fINd . 4-51
GeTSIT . 4-53
gosub. ... 4-54
GOTO . . 4-55
if ...then ...else. ... .. .. . . . 4-56
DU 4-57
114171 o S TR 4-58
INterTUPYS . ... 4-59
KD .. . 4-60
lOt . 4-61

{cont.)
page 4-38 10/86 SCULPTOR Reference Manual

4.6 sagerep Commands



SAGEREP COMMANDS (CONT.)

Command Page
match ... 4-62
NEWPAGE. .. .. .o 4-63
Xt 4-64
nextkey ... ... 4-65
OPI . 4-66
PAUSE ... 4-67
PRV 4-68
PNt 4-69
printh ... 4-71
Pead .. . 4-72
readkey ... 4-73
PO UNN 4-74
reWINd .. 4-75
scroll ... o 4-76
SE ST 4-77
sleep .. .. 4-78
testkey ... 4-79
unlock ... 4-80
WaKEUD .. o 4-81
width 4-82
W L 4-83
SCULPTOR Reference Manuat 10/86 page 4-39

4.6 sagerep Commands (cont.)



abort

Immediately terminate the program.
SYNTAX:
abort [ <numeric expression > |
DESCRIPTION:
Immediately terminates the program and returns control to the calling
task. The optional numeric expression may be used to pass back a

termination code (default zero if omitted).

abort is similar to exit except that it skips the execution of any !final
statements.

EXAMPLE:

abort 1

page 4-40 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — abort



chain

Chain new program.
SYNTAX:

chain <text expression>
DESCRIPTION:

Terminates sagerep and replaces it with a new program. The text
expression may be a string constant, an alphanumeric field or a
concatenation of several such items and specifies the program to be
called and its arguments. When the called program exits, return is direct
to the parent of the current process.

The text expression cannot include 1/O redirection, pipes or other special
shell features. Multiple commands cannot form part of a chain
statement.

WARNING: The chain command is available only if supported by the
operating system in use and is not guaranteed to operate in an identical
way on all systems that do support it. For further details, see Appendix A
(Implementation Differences).

See also the exec command.

EXAMPLE:
1) chain “myprog”
2) scroll 3

chain “sagerep part2 " + arg

3) chain “sagerep calcl”

The second example shows how sagerep can pass its printer parameter
file to another sagerep program.

SCULPTOR Reference Manual 10/86 page 4-41
4.6 sagerep Commands — chain



clearbuf

Clear a file's record buffer.
SYNTAX:
clearbuf <file number>

DESCRIPTION:

The specified file buffer is cleared and the currently selected record, if
any, is unlocked. The buffer is initialised according to the !file record
layout, alphanumeric fields being set to spaces and other fields 1o zero.

EXAMPLE:

clearbuf stk

page 4-42 10/86 SCULPTOR Reference Manual
4.6 sagerep Commands — clearbuf



close

Close a file.
SYNTAX:

close <file number>
DESCRIPTION:

Closes the specified file and unlocks the current record. The content of
the file's record buffer remains unaltered.

If the file is later reopened, the file position is unchanged but any selected
record has been lost, so a write will not be permitted unless a record is
first read.

Because the driving file {file number 1) is read automatically, it is normally
very unwise to close it.

An attempt to close a file that is already closed is ignored.

EXAMPLE:

close 2

SCULPTOR Reference Manual 3/86 page 4-43
4.6 sagerep Commands — close



decdate

Decode a date.
SYNTAX:

decdate < expression >
DESCRIPTION:

Decodes a date into day, month and year components. The expression
must yield a valid day number and will normally be a simple date field.
The decoded values are placed in the special temporary variables day,
month and year which must be declared (see ltemp).

EXAMPLE:
decdate date

if day =25 and month =12 then\
print "Merry Christmas!”

page 4-44 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — decdate



delete

Delete a record.
SYNTAX:

delete <file number>
DESCRIPTION:
Deletes the currently selected record from the specified file. The file
number may refer to the driving file or to0 a cross-reference file. If no
record is currently selected, then the command is ignored.
Arecord is selected when itis read from the file, either explicitly or by an
automatic read. A record is no longer selected after it has been written
back, deleted, unlocked or an attempt has been made to read a new
record.

EXAMPLE:

delete 2

SCULPTOR Reference Manual 3/86 page 4-45
4.6 sagerep Commands — delete




display

Display a message on the screen.
SYNTAX:

display <text expression>
DESCRIPTION:

Displays a message on the screen. The text is displayed on the screen
even if standard output has been redirected or piped elsewhere.

If standard input has been redirected and the operating system permits
sagerep to detect this, then the display is suppressed.

EXAMPLE:
display “'Starting update phase...”

display "Customer ..."” + o_cust

page 4-46 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — display



encdate

Encode a date.
SYNTAX:

encdate <date field >
DESCRIPTION:
Encodes the current values in the special temps day, month and year
into a day number and stores the result in the designated date field. The
temps day, month and year must be declared (see ltemp).
If the date to be encoded is not valid, the designated field is set to zero.
EXAMPLE:

decdate date

day = 31: month = 12
encdate eoy (last day of current year)

SCULPTOR Reference Manual 3/86 page 4-47
4.6 sagerep Commands — encdate



end

End the current set of statements.
SYNTAX:

end
DESCRIPTION:

Terminates the processing of the current set of statements and moves on
to the next set. For example, if sagerep encounters and end whilst
processing an lon ending statement, no further lon ending statements
are checked for the current set of records and sagerep continues with
lon starting statements.

If the main block of statements is followed by subroutines, then the main
statements must terminate with an end to avoid statement execution
falling through to the first subroutine.

EXAMPLE:

lon ending cat newpage: end
lon ending sub_cat keep 4

page 4-48 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — end



exec

Execute a child task.
SYNTAX:

exec <text expression>
DESCRIPTION:

Executes a system command line as a child task. The text expression to
be executed may be a string constant, an alphanumeric field or a
concatenation of several such items using the + and / operators. When
the child task completes, control is returned to the statement following
the exec. The special variable tstat contains the child task’s termination
code.

The exec statement normally calls a new shell (command processor) to
process the specified command. However, if the command is a simple
program call (with or without arguments), then a shell is not required.
This can be indicated to the system by preceding the command with a -
as in example 3. A shell is required if the command involves /O
redirection, pipes, shell expansion or multiple commands.

WARNING: The exec command is available only if supported by the

operating system in use and is not guaranteed to operate in an identical

way on all systems that do support it. For further details see Appendix A
{Implementation Differences).

See also the chain command.
EXAMPLES:

1) exec "newk{ tmptrans”

2) exec "myprog " + argl + arg2

3) exec "'-sagerep discount’’
P

SCULPTOR Reference Manual 10/86 page 4-49
4.6 sagerep Commands — exec



exit

Terminate the program.
SYNTAX:
exit [ <numeric expression> |
DESCRIPTION:
Terminates the sage program and returns control to the calling task. The
optional numeric expression may be used to pass back a termination

code (default zero if omitted).

Note that Ifinal statements are still executed after an exit command has
been given. See also the abort command.

EXAMPLE:

exit 1

page 4-50 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — exit



find

Find and read a record.
SYNTAX:

find < file number> [key= <field list>] [nsr= <label>]
[riu = <label >\

DESCRIPTION:

Searches for the first record on the file whose key matches the supplied
key. The file number may refer to the driving file or to a cross-reference
file but note that a find on the driving file may alter the file position and
affect the report sequence.

If the file is “'open update’ and if the record is currently locked by another
user, then sagerep waits until it becomes free.

If no matching key is found, then a blank record is returned. This
condition may be trapped by using the nsr= <label> clause, in which
case control passes to the line indicated.

If the key = clause is omitted, the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details.

The find command differs from read by not requiring an exact key. The
rules are:

1) If the natural key field is alphanumeric, then trailing spaces in the
supplied data are ignored and only the leading characters must
match the corresponding characters in that key field, e.g. if ’Smith"’
is supplied then "*Smithson’” will match but "*Smythe’" will not.

2) If the natural key field is numeric (including dates) and the supplied
data is non-zero, then that key field must match exactly.

3) If the natural key field is numeric (including dates) and the supplied
data is zero, then any value in that key field matches.

See also the match command.

{cont.)

SCULPTOR Reference Manual 10/86 page 4-51
4.6 sagerep Commands — find



find (cont.)

EXAMPLE:
find 2 key = orderno nsr = ENDIT

A command similar to this might be used if the driving file was an order
header file and the order lines were held on a cross-reference file. If the
key to the cross-reference file was order number and item code, then the
above statement would locate the first order line, since a null value has
been implied for item code. The match command could then be used to
locate the other order lines.

page 4-52 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — find (cont.)



getstr

Extract a sub-string.
SYNTAX:
getstr( <source>, <pos>,<len>)
DESCRIPTION:
getstr returns the sub-string which starts at character position pos in the
string source and is up to len characters long. It can be included as part

of an expression.

source can be either an alpha field or a string constant. pos and len can
be either numeric constants or numeric expressions.

The first character in source is position 1. If pos is less than 1 or greater
than the length of source, then a null string is returned. If len is greater
than the number of characters remaining, then getstr returns only those
available.
EXAMPLES:

orderno = getstr(custno,l,n) + aseq

aday = getstr("SunMonTueWedThuFriSat”,3*day-2,3)

message “"Sub-code is: ' + getstr(code,5,4)

SCULPTOR Reference Manual 10/86 page 4-53
4.6 sagerep Commands — getstr



gosub

Call a subroutine.
SYNTAX:
gosub <label>
DESCRIPTION:
Transfers control to a subroutine at the line indicated. When the
subroutine executes a return statement, control is returned to the

statement following the gosub command.

Subroutines may be nested and may be called from both the main
statements and from control statements such as theading, final, etc.

EXAMPLE:

lon starting s_cat gosub NEW_CATEGORY

page 4-54 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — gosub



goto

Transfer control to another line.
SYNTAX:

goto <label >
DESCRIPTION:

Transfers control to the statement at the line indicated. The goto
command may not be used in control statements such as 'heading,
Ifinal, etc. nor is it advisable to jump into or out of subroutines.

EXAMPLE:

if stklev > = rol then goto L3

print “++Item below re-order level”

print “++Economic order quantity = ";eoq
L3 print

SCULPTOR Reference Manual 3/86 page 4-55
4.6 sagerep Commands — goto



if ... then ... else

Conditionally execute a statement.
SYNTAX:

if <expression> then <statement> [else <statement>]

DESCRIPTION:

The statement which follows then is executed only when the if
expression is found to be true. If the optional else clause is included, the
statement which follows else is executed only when the if expression is
found to be false. Both statements can be multiple statements separated
by colons.

The statement which follows else can be another conditional statement,
but, if the statement which follows then is a conditional statement, the
first expression must not have an else clause. An else clause always
relates to the immediately preceding if.

Conditional expressions can include all supported arithmetic, relational
and logical operators and parentheses may be used to force a particular
order of evaluation. Relational and logical operators available are:

< Less than.

> Greater than.

= Equal to.

< = Less than or equal to.

> = Greater than or equal to.

<> Notequal to.

bw Begins with {alphanumeric data only).

ct Contains (alphanumeric data only).

and Logical and.

or Logical or.
EXAMPLES:
1) if stklev < rol then\

print “Item below re-order level”

2) if vcode = “a’ then gosub CALCA else gosub CALCB
page 4-56 10/86 SCULPTOR Reference Manual

4.6 sagerep Commands — if...then...else



input

Input a value into a field.
SYNTAX:

input < prompt text>, <field name >
DESCRIPTION:

Inputs a value into a field. The prompt text is displayed on the screen with
a question mark appended. The reply is validated for correct data type
and stored in the designated field. Note that sagerep does not check
validation lists. If the reply is not valid then the bell is sounded and the
prompt is repeated.

Responses to input may be read from a text file by redirecting standard
input. On operating systems that allow sagerep to detect this situation,
the prompt text is suppressed and an invalid reply aborts the program.
input honours the u and I formats on alphanumeric fields. However,
since sagerep does not work in single character input mode, the
characters are echoed back as typed.

EXAMPLE:

input "Is the paper correctly aligned”,reply

SCULPTOR Reference Manual 3/86 page 4-57
4.6 sagerep Commands — input



insert

Insert a new record.
SYNTAX:

insert < file number> [key = <field list>] [re= <label >]
DESCRIPTION:

Inserts a new record on the specified file. The file number may refer to the
driving file or to a cross-reference file but note that if a record is inserted
on the driving file, the file position may be altered and the report
sequence affected.

The index is immediately reorganised so that the record appears in its
correctlocation on the file. The key must be unique. If arecord having the
supplied key already exists, then the command is ignored. This condition
may be trapped by using the re = <label > clause, in which case control
passes to the line indicated.

If the key = clause is omitted then the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields and the natural key fields are updated
accordingly. See section 3.6 for full details.

EXAMPLE:

insert 3 key =date,ordno

page 4-58 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — insert



interrupts

Enable or disable interrupts.
SYNTAX:

interrupts {on/off}
DESCRIPTION:

If interrupts are on and sagerep receives a standard keyboard interrupt,
then it will abort the program and terminate. If interrupts are off, then
keyboard interrupts are ignored.

Whatever state is set with this command, sagerep does not respond to
interrupts while it is updating a disk file. This prevents the index from
becoming damage.

If all files accessed by the program are “‘open read only’’, the default
state for interrupts is ““on’’. If one or more files are “"open update’’, the
default state for interrupts is “"off’".

EXAMPLE:

linit interrupts on

SCULPTOR Reference Manual 3/86 page 4-59
4.6 sagerep Commands — interrupts



keep

Reserve lines.
SYNTAX:

keep < expression>
DESCRIPTION:

Checks the number of lines left on the current page (excluding footnote
lines) and if there are less lines left than the value of the expression, starts
a new page.

The command is useful to ensure that a block of lines can all be printed on
the current page. To avoid printing over the perforations on continuous
stationery, a minimum keep 2 is recommended at the start of the main
statements, with a complementary theading statement that prints two
blank lines.

Before starting a new page, all footnote statements are executed and at
the start of the new page, all theading statements are executed.

EXAMPLE:

lon starting ordno keep nlines + 4

page 4-60 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — keep



let

Assign a value to a field.
SYNTAX:

[let] <field name> = < expression>
DESCRIPTION:
The expression is evaluated and the result stored in the designated field.
If the type of the result does not match the type of field then an
appropriate conversion takes place. The expression may include all
supported arithmetic, relational and logical operators and parentheses
may be used to force a particular order of evaluation. A relational or
logical expression, or part expression, yields O if false and 1 if true.
The word let is optional and is normally omitted.
EXAMPLES:
1) let tullname = firsthame /" " + surname

2) total = qty « price « (1 + vatrate)

3) roflag = stklev < rol

SCULPTOR Reference Manual 3/86 page 4-61
4.6 sagerep Commands — let



match

Find and read the next matching record.
SYNTAX:

match <file number> [nsr= <label>] [riu= <label >]
DESCRIPTION:

Returns the next record whose key matches the key supplied to the
previous find command applied to the specified file. The file number may
refer to the driving file or to a cross-reference file but note that a match on
the driving file may alter the file position and affect the report sequence.
The match command starts its search at the current file position. Refer to
find for full details of key matching.

If the file is ““open update’’ and if the record is currently locked by another
user, then sagerep waits until it becomes free.

If no matching key is found, then a blank record is returned. This
condition may be trapped by using the nsr= <label > clause, in which
case control passes to the line indicated, and the record buffer is not
cleared.

EXAMPLE:

find 2 key = orderno nsr = ENDIT
DOL gosub DO_ORDER_LINE

match 2 nsr = ENDIT

goto DOL
ENDIT ...

page 4-62 10/86 SCULPTOR Reference Manual
4.6 sagerep Commands — match



newpage

Start a new page.
SYNTAX:

newpage
DESCRIPTION:
Since sagerep knows the page depth (either from a ldepth declaration or
from the printer parameter file), it starts new pages automatically. The
newpage command may be used to force a new page at a particular

point in the report.

Before starting a new page, all footnote statements are executed and at
the start of the new page, all Yheading statements are executed.

EXAMPLE:

lon starting s_cat newpage

SCULPTOR Reference Manual 3/86 page 4-63
4.6 sagerep Commands — newpage



next

Read next record.
SYNTAX:

next <{ile number> {nsr = <label>] [riu = <label >]
DESCRIPTION:

Reads the next record from the file in ascending key sequence. The file
number may refer to the driving file or to a cross-reference file but note
that an explicit read on the driving file affects the report sequence.

The next record is the one whose key immediately follows the last key
referenced on the file by any file access command, even if that key does
not actually exist. Note that next never returns the first record on a file if
its key is completely null (all bytes binary zero).

If the fileis ""open update’’ and if the record is currently locked by another
user, then sagerep waits until it becomes free.

If end of file has been reached, then a blank record is returned. This
condition may be trapped by using the nsr= <label > clause, in which
case control passes to the line indicated, and the record buffer is not
cleared.

EXAMPLE:

next 3nsr=1L6

page 4-64 10/86 SCULPTOR Reference Manual
4.6 sagerep Commands — next



nextkey

Read next key only.
SYNTAX:

nextkey <file number> [nsr= <label>]
DESCRIPTION:

Reads key data only for the next record in ascending key sequence. No
attemptis made to read the data record, so a record in use status cannot
occur and the file’s data fields remain unaltered. Since it is faster than the
next command, it is useful when searching keys for particular values. It
may also be used to skip a locked record while reading a file sequentially.

The next record is the one whose key immediately follows the last key
referenced on the file by any file access command except testkey, even
if that key does not actually exist. Note that nextkey never returns the
first key on a file if that key is completely null (all bytes binary zero).

If the end of file has been reached and the error is not trapped, the
appropriate key fields are cleared. Data fields are always left unaltered. If
the error is trapped using the nsr= <label > clause, control passes to
the line indicated and no fields are cleared.

EXAMPLE:

nextkey 2 nsr=E2

SCULPTOR Reference Manual 10/86 page 4-65
4.6 sagerep Commands — nextkey



open

Open a file.
SYNTAX:

open <file number>
DESCRIPTION:

Opens a file that was initially declared closed with !cfile or has been
closed with the close command.

Closing and reopening a file does not alter the current file position and
does not clear the file's record buffer.

If there are no commands in the program which can update the file and if
the record locking mechanism of the operating system permits, then the
file is opened in read-only mode, otherwise it is opened in update mode.

The maximum number of files that may be open at one time varies
according to the operating system but is normally at least six. If an
attempt is made to open too many files at the same time then the
program will abort. An attempt to open a file that is already open is
ignored.

EXAMPLE:

open 3

page 4-66 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — open



pause

Suspend the program and wait for an alarm interrupt.
SYNTAX:
pause
DESCRIPTION:
The program sleeps until an alarm interrupt is sent to the process. On
receiving an alarm interrupt, processing continues with the statement

which follows the pause.

This command is available only with Unix and certain similar operating
systems.

See also the wakeup command.

SCULPTOR Reference Manual 10/86 page 4-67
4.6 sagerep Commands — pause



prev

Read the previous record.

SYNTAX:

prev <{ile number> [nsr= <label>] [riu= <label >]

DESCRIPTION:

Reads the previous record from the specified file. The file number may
refer to the driving file or to a cross-reference file but note that an explicit
read on the driving file affects the report sequence.

The previous record is the one whose key immediately precedes the last
key referenced by any file access command except testkey, even if that
key does not actually exist on the file. Note that prev cannot return the
last record on a file if its key contains the highest possible value.

If the record is currently locked by another user, then sagerep waits until
it becomes free.

If end of file has been reached, then a blank record is returned. This
condition may be trapped by using the nsr= <label> clause, in which
case control passes to the line indicated and the record buffer is not
cleared.

EXAMPLE:

prev 3
prev 4 nst = NOPREV

page 4-68 10/86 SCULPTOR Reference Manual
4.6 sagerep Commands — prev



print

Print items.

SYNTAX:
print [ <print item > ][, <print item >]...
DESCRIPTION:

Prints the items listed to standard output. items may be separated by
either commas or semicolons. A comma prints the number of spaces
specified in the Igap declaration (default 2 if not declared). A semicolon
causes no spaces to be printed. The end of the print list generates a new
line unless it is terminated by a comma or a semi-colon.

If an item or series of items in the print fist is enclosed in square brackets
“[ 1", then the printing of the items is suppressed and an equivalent
number of spaces is printed instead. This facility makes it easy to align
continuation print lines and total lines.

Print items may be any of the following:

Item Interpretation
<field name > Current data value.
+ <field name > The field's heading.
total( < field name>) Currenttotal.

min( < field name >)
max( < field name>)

Current minimum value.
Current maximum value.

count() Selected record count.

< constant > Value of that constant.
spc(<integer >) Specified number of spaces.
spc(<field name>) Spacesaccordingto field value.
tab( < integer >) Tab to specified column {from 0).
tab(< field name>) Tabaccording to field value.

#t Top of form character.

#dw Start double width characters.
#sw Start single width characters.
#su Start underline.

#eu End underline.

#ec Start enhanced characters.

#oc Start ordinary characters.

#ac Select alternate character set.
#sc Select standard character set.
#c0... #c9 User defined sequences from the printer

parameter file.

SCULPTOR Reference Manual
4.6 sagerep Commands — print

3/86 page 4-69



print (cont.)

Field data values are printed according to the field’s print format. This is
the format declared with the program describe or in the case of a
temporay variable, the format in the Itemp declaration. In the absence of
a declared format, a sensible default is used (see describe). A pre-
declared field format may be changed with a format declaration (see
section 4.3).

The total, min, max and count functions are updated after each cycle
through the main block of statements. If used in an lon ending statement
they return values for the ending block only, which makes for easy sub-
totalling. Otherwise they return values for the report so far, but since the
update takes place {necessarily) at the end of the main statement cycle,
the functions are in a sense one step behind. Correct running values are
obtained by using them in lon starting and !final statements. These
functions may be applied both to keyfile fields and to temporary
variables.

The special # items print the control codes defined in the selected printer
parameter file, allowing simple selection of double width characters,
underlining, etc. Note that some printers automatically revert to single
width at the start of each new line whereas others don’t. To be safe, the
code to return to single width should always be given and not assumed.
Take care also when selecting different character sets, since this can
send the printer back to a default character compression. The character
compression may be reset with the width command. Note that the
newpage command, which executes the theading statements, is the
normal way to start a new page; # tf throws a page without executing the
lheading statements.

EXAMPLES:

13 lheading print #dw; #su;"SALES ANALYSIS"” date; #eu; #sw
2) 'heading print: print

3) print c_name,c_initial;".”,c_date,c_amount,c_status

4) print s_code,s_desc,s_bin;spc(20);s_stk

5) lon ending cat print [i_code,i_costpr],total(costval)

page 4-70 3/86 SCULPTOR Reference Manual

4.6 sagerep Commands — print {cont.)



printh

Print items with heading alignment.
SYNTAX:

printh | <print item > ][, <print item>]...
DESCRIPTION:

The printh command functions in precisely the same way as print except
that the spacing between columns is adjusted so that field headings and
their data values are correctly aligned. If the item being printed is a data
value then the gap either side is adjusted on the assumption that another
printh statement exists to print the field’s heading in the same column.
Conversely, if the item being printed is a field heading then the gap either
side is‘adjusted on the assumption that another printh statement exists to
print the field's data value in the same column.

The printh command cannot operate sensibly if the print list contains an
spci) or tab() function with a field name argument.

To use printh correctly, simply ensure that the statement which prints
the headings has an identical print list to the one which prints the data
values, except of course for selecting headings instead of data. Any item
which is to printed in one case and not in the other must be included as a
dummy, i.e. enclosed in square brackets "'[ 1",

For all other details refer to print.

EXAMPLES:

1) lheading printh +c_name,*c_date,»c_amount
printh c_name,c_date,c_amount

2) lheading printh ["Item: ";itemno], *1_code, *i_bin
printh “Item: ";itemno,i_code,i_bin

SCULPTOR Reference Manual 3/86 page 4-71
4.6 sagerep Commands — printh



read

Read a record.
SYNTAX:

read <file number> [key= <field list>] [nsr= <label >]
[riu = <label>]

DESCRIPTION:

Reads the record whose key exactly matches the supplied key. The file
number may refer to the driving file or to a cross-reference file but note
that if an explicit read is made on the driving file, the file position will be
altered and the report sequence affected.

If the file is ““open update’” and if the record is currently locked by another
user, then sagerep waits until it becomes free.

if no matching key is found, then a blank record is returned. This
condition may be trapped by using the nsr= <label > clause, in which
case control passes to the line indicated, and the record buffer is not
cleared.

if the key = clause is omitted, the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details.

EXAMPLE:

read 3 key=o_cust nsr=14

page 4-72 10/86 SCULPTOR Reference Manual
4.6 sagerep Commands — read



readkey

Read key data only.
SYNTAX:

readkey < file number > [key = <{ield list>] [nsr= <label >
DESCRIPTION:

Reads key data only from the designated file. If a record is located whose
key exactly matches the supplied key, the file's natural key fields are
updated and control passes to the next statement. No attempt is made to
read the data record, so arecord in use status cannot occur and the file's
data fields remain unaltered.

If no matching key is found and the error is not trapped, the appropriate
key fields are cleared. Data fields are always left unaltered. If the error is
trapped using the nsr= <label> clause, control passes to the line
indicated and no fields are cleared.

Whether or not a matching key is found, the current file position is
changed for the purpose of the next and nextkey commands. In this
respect, readkey differs from testkey, which does not alter the file
position.

If the key = clause is omitted, the data in the file's natural key fields is
used as the key. If the key = clause is present, a key in constructed using
data from the named fields. See section 3.6 for full details.

EXAMPLE:

readkey 4 nsr=E9

SCULPTOR Reference Manual 10/86 page 4-73
4.6 sagerep Cormmands — readkey



return

Return from a subroutine.

SYNTAX:
return
DESCRIPTION:
Returns control from a subroutine to the statement following the calling
gosub.
page 4-74 3/86 SCULPTOR Reference Manual

4.6 sagerep Commands — return



rewind

Reposition a file at its start.
SYNTAX:
rewind <file number>
DESCRIPTION:
Repositions the specified file at its start so that the next command will
return the first record in the file. The content of the file’s record buffer is

not affected.

Note that the next command cannot return a record whose key is
completely null (i.e. all binary zeros).

EXAMPLE:

rewind 2

SCULPTOR Reference Manual 10/86 page 4-75
4.6 sagerep Cormmands — rewind



scroll |

Reset the scroll line number.
SYNTAX:

scroll | <expression > ]
DESCRIPTION:

Resets the special variable scrline according to the value of the
expression, as follows:

Expression = O Increments scrline by one.

(or omitted)

Expression > O Sets scrline to the value of the expression.
Expression < O Reduces scrline by the value of the expression,

but not below the value one.
The scroll line number is the index value for all subscripted fields. The
value in scrline may be explicitly referenced but it must not be altered by
direct assignment.

EXAMPLE:

scroll ordline

page 4-76 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — scroll



setstr

Set a sub-string.
SYNTAX:
setstr( < dest>,<pos>, <len>, <source>)

DESCRIPTION:

setstr overwrites characters in the alpha field dest with characters from
the string source. Overwriting starts at character position pos in dest and
continues for len characters, or until the end of dest is reached, or until
the end of source is reached, whichever occurs first.

dest must be an alpha field. source can be either an alpha field or a string
constant. pos and len can be either numeric constants or numeric
expressions.

The first character in dest is position 1. If pos is less than 1 or greater
than the length of dest, then the command is ignored.

EXAMPLES:
setstr{code, 1,4, prefix)

setstr(sent,p + 1,n,word)

SCULPTOR Reference Manual 10/86 page 4-77
4.6 sagerep Commands — setstr



sleep

Suspend the program for a number of seconds.
SYNTAX:
sleep <expression >
DESCRIPTION:
Suspends program execution for the number of seconds specified in the
expression. When the time has elapsed, execution resumes at the

statement following the sleep command.

Since many operating system clocks are only accurate to the nearest
second, an error of up to one second is possible.

EXAMPLE:

sleep 6

page 4-78 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — sleep



testkey

Check for a record with a specified key.
SYNTAX:

testkey <file number> [key= <lield list>] [nsr= <label>]
DESCRIPTION:

Tests the specified file for a record whose key exactly matches the
supplied key. If the record exists, the file's natural key fields are updated
and control passes to the next statement. No attempt is made to read the
date record, so a record in use status cannot occur and the file's data
fields remain unaltered.

If no matching key is found and the error is not trapped, the appropriate
key fields are cleared. Data fields are always left unaltered. If the erroris
trapped using the nsr= <label> clause, control passes to the line
indicated and no fields are cleared.

Whether or not a matching key is found, the current file position remains
unchanged for the purpose of the next and nextkey commands. In this
respect, testkey differs from readkey which alters the file position.

If the key = clause is omitted, the data in the file’s natural key fields is
used as the key. If the key = clause is present, a key is constructed using
data from the named fields. See section 3.6 for full details.

EXAMPLE:

testkey 3 nsr=E5

SCULPTOR Reference Manual 10/86 page 4-79
4.6 sagerep Commands — testkey



unlock

Unlock a record.
SYNTAX:
unlock <« tile number>
DESCRIPTION:
Unlocks the currently selected record on the specified file to allow access
by other users. The data in the file’s record buffer is not affected but the
record may no longer be written back or deleted.
A locked record is automatically unlocked if it is written back or deleted or

it an attempt is made to read another record from the same file. Records
will only be locked if the file is open in update mode.

page 4-80 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — unlock



wakeup

Send an alarm interrupt to a process.
SYNTAX:

wakeup <task id>
DESCRIPTION:

An alarm interrupt is sent to the specified process. The alarm can be sent
to any process whose id is known and which is capable of accepting the
interrupt. For example, it can be sent to a sage or sagerep program
which has used the pause command. The suspended program will then
restart from the point at which it paused.

A simple way of determining the task id of another program is to cause
each participating program to write its id into a shared file.

A good understanding of the equivalent operating system function is
recommended before using the wakeup command. For example, it is
wise on Unix to ensure that at least a few seconds elapse before a
program which has paused receives an alarm interrupt. Otherwise,
because of task switching, it is possible for the program which is pausing
to receive and ignore the alarm before it has fully completed the pause
operation with the result that it sleeps forever.

This command is available only with Unix and certain similar operating
systems.

EXAMPLE:

wakeup rep_id

SCULPTOR Reference Manual 10/86 page 4-81
4.6 sagerep Commands — wakeup




width

Change line width.
SYNTAX:

width <integer>
DESCRIPTION:

Changes the current line width to the specified number of columns. On
printers that support the feature, this has the effect of selecting a new
character compression. Itis useful for highlighting parts of the report and
for compressing lines that would otherwise overflow the width of the
paper.

The new value remains in force until a subsequent width command is
encountered. The initial line width may be set with a !width declaration.

EXAMPLES:

width 120

page 4-82 3/86 SCULPTOR Reference Manual
4.6 sagerep Commands — width



write

Write record back to file.
SYNTAX:

write <file number> [re= <label>]
DESCRIPTION:

Writes back and unlocks the record last read from the specified file. The
file number may refer to the driving file or to a cross-reference file. A
record must be written back if amendments made to its key or data fields
are to be permanently recorded.

If no record is currently selected from the specified file, then the
command is ignored.

If any key data has been altered since the record was read, then a new
record is inserted and the old record is deleted. In this case, the file is
positioned at the old key value for the purpose of the next command.

If key data has been altered but a record with the new key value already
exists on the file, then the command is ignored. This condition may be
trapped by using the re= <label > clause in which case control passes
to the line indicated.

EXAMPLE:

write 3

SCULPTOR Reference Manual 3/86 page 4-83
4.6 sagerep Commands — write



4.7 COMPILING AND RUNNING A SAGEREP PROGRAM

After creating the text source file of a program it must be compiled using
the program cr. The source code file must have a .r extension and the
compiler requires access to the descriptor files (.d extension)
corresponding to each Hfile and !record declaration. Unless these have
pathnames, the compiler expects to find them in the current local
directory. The syntax for calling cr is:

cr <program name> [nfuncs]

The .r extension on the program name does not have to be typed since
the compiler assumes it. If the compilation is successful, a file is created
with the same name stem as the program but with a .q extension.
sagerep requires this output file in order to run the program. If the
compilation is unsuccessful then any existing .q file is unaltered and one
or more error messages are output. These indicate the line number at
which the error was detected and point to the offending part of the line.

If the error message Too many functions occurs, increase the
compiler’s function table by specifying a value for nfuncs on the
command line. The defaultis 20 and represents the maximum number of
total, min, max and count functions that may be included in the
program.

page 4-84 10/86 SCULPTOR Reference Manual
4.7 Compiling and Running a sagerep Program



The command line for running a sagerep program is
sagerep < program name> [<ppi> [<arguments>]]

where <ppf> is a printer parameter file and defaults to printer if not
specified. The parameter file contains the page length and width and the
control code sequences used to invoke special features such as double
width characters and underlining on the output device. If output is going
to the terminal (default) then the parameter file pvdu should be specified.

Any optional parameters to be referenced through the special temp arg
should follow the printer parameter file.

sagerep sends its output to standard output which by default is the
terminal. {t may be redirected to a printer or to a file or piped to another
program using the standard facilities provided by the operating system.
Typically it will be redirected to a printer device or piped to a spooler.

EXAMPLES:

1) sagerep rprog pvdu

2) sagerep rprog pl32 >PRN:

3) sagerep rprog ricoh argl arg2 | spr

4) sagerep rprog < replies > repfile

SCULPTOR Reference Manual 3/86 page 4-85

4.7 Compiling and Running a sagerep Program (cont.)



oL YA IS A UTILITY PROGRAMS

This chapter explains the operation of the Utility Programs which are
used to support the SCULPTOR system. The chapter is divided into ten

sections.
Section Page
5.1 Keyed File Utilities. ... 5-2
5.2 ReformataKeyedFile (reformat)..................................... 5-7
5.3 Language Configuration (lef)........................ 5-9
5.4 MenuSystem (menu) ..o 5-10
5.5 Printa Screen Form Layout (sageform)............................ 5-13
5.6 Automatic Screen Form Program

Generation {(SG). ... 5-14
5.7 Automatic Report Program

Generation (Pg) ... ... 5-16
5.8 Setup VDU (CRT) Parameter Files

(setvdu/decvdul}. ... 5-18
5.9 Set up Printer Parameter Files

(setprinter/decprinter) ... 5-27
.10 QUEBIY 5-30
SCULPTOR Reference Manual 10/86 page 5-1

5. Utility Programs



5.1 KEYED FILE UTILITIES

This section describes the utility programs that are used to maintain
SCULPTOR Keyed Files:

® Create New Keyed Files (newkf) this page
® Keyed File Integrity Check (kfcheck) page 5-3
® Keyed File Copy {(kfcopy) page 5-4
® Keyed File Details (kfdet) page b-5
® Rebuild Keyed File Index (kfri) page b-6

CREATE NEW KEYED FILES (newkf)
newki [-i] [-r<n>] <flilename> [<{ilename>]...

The named files must be valid descriptor files built with describe. The
filename arguments may be typed with or without the .d extension. For
each named file, a new empty keyed file is created and the message

< tilename > created
is displayed. If the keyed file already exists then it is recreated empty.

If the -i option is specified, then files which have no data fields have only
an index file created. Such files may be used in Sculptor to hold efficient,
alternate indexes without wasting disk space but note that kfri cannot
rebuild such a file, so its content must be recoverable from other sources
in the event of corruption.

If the -r option is specified, then the file is created with space for n
records. On the 0OS9 operating system, a file which is repeatedly
extended may fill up its sector map and cause a disk write error. This can
damage the file. For this reason, it is strongly recommended that files
created on OS9 are pre-extended to the maximum number of records
that they are likely to hold. This may take a extra time when the file is
created but does not significantly affect performance when accessing
the file later.

EXAMPLES:
newk{ control members

newk{ -r3500 customers

page 5-2 3/86 SCULPTOR Reference Manual
5.1 Keyed File Utllities



KEYED FILE INTEGRITY CHECK (kfcheck)
kicheck [-s] [-d] <filename> [<{ilename>]...

The SCULPTOR keyed file system is very robust and has been thoroughly
tested over several years. However, the multi-level tree index can be
corrupted if an update routine is interrupted by power or hardware failure
or by uncontrolled task termination when the system is incorrectly shut
down . The update routines ignore all normal software interrupts.

The program kfcheck verifies a keyed file index by checking that all
pointers are unique and that missing pointers belong to deleted records.
It should be run every time the system is switched on, or if the system is
permanently on, it should be run once each day. It should also be run
immediately after a system crash.

The filename arguments may be typed with or without the .k extension.

The -s option causes kfcheck to stop immediately and to exit with a non-
zero termination code if it discovers a damaged file. The -d option prints
the number of deleted records in each file. The following messages can
occur:

Checking <filename > - Okay (n records)
Checking <filename> - Okay (n records + n deleted)
Checking <filename> - DAMAGED

Immediate action must be taken if a file is found to be damaged. Either
recover an undamaged copy from your backup sources or run the
program kfri to rebuild the index.

EXAMPLE:

kicheck -s *.k

SCULPTOR Reference Manual 3/86 page 5-3
5.1 Keyed File Utilities (cont )



KEYED FILE COPY (kfcopy)
kicopy [-c] [-e] <oldfile> <newtile>

Without the -e option, kfcopy creates <newfile> and then copies all
records in < oldfile> to <newfile> . If <newfile> already exists then
it will be recreated empty. The new file will have no deleted records and
may be physically smaller than the old file, but since Sculptor
automatically re-uses deleted records for new insertions, this is only
worth doing if <oldfile> has undergone a substantial and permanent
reduction in its number of records.

If the -e option is used and <newfile>> aiready exists, then kfcopy
merges <oldfile> into <newfile>. Any existing records in
< newfile> are retained. Both files must have identical key and record
lengths.

On the OS9 operating system, a file which is repeatedly extended will
eventually fill up its sector map and cause a disk write error which may
damage the file. If an existing file is becoming full, rename it temporarily
and use newkf to create a new, pre-extended file of sufficient size. The
existing data in the oid file may then be copied into the new file as shown
in the example below.

The -c option displays a count every 100 records copied.

The number of deleted records in a file may be ascertained by running
kfcheck with its -d option.

EXAMPLE:

rename myfile oldfile
rename myflile.k oldfile.k
newkf myfile -r5000
kicopy -ec oldfile mytile
delete oldfile

delete oldfile.k

page 5-4 3/86 SCULPTOR Reference Manual
5.1 Keyed File Utilities (cont.)



KEYED FILE DETAILS (kfdet)
kidet <filename> [<{lilename>]...

This program indicates the following details about a keyed file. The
filename arguments may be typed with or without the .k extension.

Key length (in bytes)
Record length (in bytes)
Number of index levels

EXAMPLE:
kidet +.k

SCULPTOR Reference Manual 3/86 page 5-5
5.1 Keyed File Utilities (cont.)



REBUILD KEYED FILE INDEX {(kfri)
kfri [-c] <filename >

If a keyed file is found to be damaged or if its index file has been lost, then
as long as the data file is intact, kfri will build a new index. It can do this
because SCULPTOR stores the key data at the front of each data record.
If you use the C Keyed File Routines independently of SCULPTOR then
you must conform to this convention in order to be able to use kfri.

If the .k file still exists then kfri displays the key and record lengths and
asks for confirmation that they are correct. If the .k file is not available
then kfri prompts for the key and record lengths. In either case, the
correct values should be ascertained from the main descriptor file as
shown in the example below. If the index is rebuilt with an incorrect key
or record length, the result will be DISASTROUS.

kfri has to be able to detect the deleted records in the data file. It does this
by assuming that all records which are completely null except for their
first three bytes are deleted; the first three bytes are pointers in the
deleted record chain. It is therefore just possible that a file with a very
small record size and no alphanumeric data after the first three bytes
could have some genuine records taken as deleted. In practice, there are
very few cases where kfri cannot perfectly rebuild the index.

On the OS9 operating system, the new index file is automatically pre-
extended to a suitable size.

The -¢ option displays a count every 100 records.

EXAMPLE:
copy myfile.d temp.d { Ascertain the key
newk{ temp [ and record lengths
kidet temp { if not known.

kiri -c myfile
delete temp temp.d
temp.k

page 5-6 3/86 SCULPTOR Reference Manual
5.1 Keyed File Utilities (cont.)



5.2 REFORMATTING A KEYED FILE (reformat)

reformat [-c] [-e] <oldfile> <newdile>

If you wish to alter a file's record layout by deleting fields or inserting new
ones, or by changing the size or type of any field, then the file must be
either recreated or reformatted. Failing to do this will corrupt existing data
in the file. The program reformat provides a simple method of
reformatting a keyed file.

Note 1:

reformat only works for files with a single record type. To reformat a file
with multiple record types, write a sage or sagerep program which can
ascertain the type of each record and map its fields to a new file
accordingly. In this case you will first have to rename the fields in the old
descriptor files. Since the .d files are text files, this can be done with a
standard editor, but be careful to alter ONLY the field names.

Note 2:

After using the reformat program, all programs which access the
reformatted file must be recompiled.

Prior to making any changes, ensure that you have all original files well
backed up, then take a copy of the descriptor file to a temporary name
and rename the original data file and its .k file to correspond to that
temporary name.

Now use describe to alter the original descriptors. At this stage don’t
alter the names of any fields whose data is to be preserved. Finally, run
reformat to copy the temporarily named keyed file back to its original
name.

reformat examines both .d files and assumes that only fields which have
the same name are to be kept. If their type or size differs then reformat
will perform a suitable conversion. Fields which exist in the old
descriptors but not in the new ones are deleted. New fields are initialised
blank. If the dimension of a field is decreased then the excess elements
are discarded. If the dimension of a field is increased then the new
elements are initialised blank.

SCULPTOR Reference Manual 3/86 page 5-7
5.2 Reformatting a Keyed File (reformat)



If the -e option is specified, then < newfile> must exist and may have
been pre-extended with newkf. Any existing records in <newfile > are
retained.

The -¢ option displays a count every 100 records copied.

From version 1.09:2 onwards, when converting r8 fields 1o m4 or m8
fields, reformat multiplies by 100, and when converting m4 or m8 fields
to r8, it divides by 100.

The error messages

Key length error
Record length error

indicate that the key or record length described in the old .d file does not
match the actual file.

EXAMPLE:

copy stock.d temp.d
Copy original descriptor file to temporary file.
describe stock

Alter the original record descriptions.
rename stock temp
rename stock.k temp.k
Rename the original data file and index to correspond to the
temporary descriptor filename.
reformat temp stock
Run reformat to copy the temporary file back to its original name
with the new record descriptors.
delete temp temp.k temp.d
Delete the temporary files.
cf, cr....
Recompile all programs that access the stock file.

page 5-8 3/86 SCULPTOR Reference Manual
5.2 Reformatting a Keyed File (cont.)



5.3 LANGUAGE CONFIGURATION

lef <program name >

Most programs in the SCULPTOR system are language and date format
configurable, the program load modules being designed to allow the
translation of text messages into another language. The program ficf is
provided for the this purpose.

Icf scans the program load module and displays each translatable piece
of text in turn. Beneath the text it indicates the maximum acceptable
fength with a row of dots and waits for new text to be typedin. if RETURN
alone is pressed, the existing text remains unaltered. Wherever the text
y/n occurs it must be translated such that the characters which
correspond to y and n are in exactly the same place in the text.

In the case of a date format, the characters dd, mm and yy are used to
indicate day, month and year respectively. You may alter their order, the
separator character and the number of digits in the year, but if the date
formatis changed in one program then it should be changed in the same
way in all other programs.

In sage and sagerep, the single characters'’."" and *’,"" are presented for
alteration. These characters are used in numeric formats (see section
2 .6). Changing them alters the format of input and output data values but
you must still use the English notation {"*."’ for decimal pointand **,"" for
digit grouping} when defining formats in your programs and in describe.

In sagerep, on Uniflex systems, the single character r is presented. This
specifies that a Carriage Return character is to be output at the end of a
report. The Uniflex advanced print spoocler needs this otherwise itignores
any control codes sent to reset the printer. This Carriage Return can be
suppressed by changing the letter to x. This is the default on other
systems.

After modifying a load module on the OS9 operating system, don’t forget
to use verify to reset the CRC {see the 0SS System Manual).

SCULPTOR Reference Manual 10/86 page 5-9
5.3 Language Configuration



5.4 MENU SYSTEM (menu)

menu <filename> [<argl>] ... [<arg9>]

The program menu provides a simple and effective method of creating a
nested menu system. The named file, which must have a .m extension,
is a text file and may be built with any text editor. The firstline in the file is
the menu title and must be present although it may be blank. Subsequent
lines define options and their associated commands.

A simple option is defined by a pair of lines:

First line: < option number >, <option description >
Second line:  <command line >

If the parameter substitution facility is used, a third line is required to
specify the text for the run-time prompt line, e.g.:

First line: 1,Create a New Database File
Second line:  describe %; newki %; sg %; sage %;
Third line: Enter Name of New Database File

% is the parameter substitution character which will be replaced by the
answer typed in response to the prompt.

Option numbers must be in the range 0 to 99. An option number O with
description Finish and command line exit is inserted automatically but an
alternative option 0 may be specified in the file. The command exit is
taken to mean exit from the menu.

The menu is displayed on the screen with spacing adjusted according to
the number of options. The user is prompted to select an option with the
following message:

Which option do you require?

When the user selects an option, the specified system command is
executed as a child task. If the command line contains one or more %
characters then the prompt text is displayed and each % is replaced by
the user’s reply.

page 5-10 3/86 SCULPTOR Reference Manual
5.4 Menu System {menu)



Up to 9 arguments may be passed to the menu program for substitution
in command lines and these are referenced as $1 through $9 ($0 is the
menu filename).

The special characters % and $ can be "“escaped’’ in the command line

by typing them twice. For example, typing %% gives a % character
which is not used for text substitution.

When the task completes, the menu is redisplayed but if the child task
returns a non-zero termination code, then the menu program assumes
that it has displayed an error message and prompts the user to press
RETURN before redisplaying the menu.

If the command line is a simple program call {with or without arguments),
you can precede the command line with a - to indicate to menu that a
new shell (command processor) is not required. Command lines must
have a new shell if they contain multiple commands or use special
features such as 1/0 redirection, pipes, shell expansion, background
tasks or shell script files.

If the command is recognisable as another menu call and is not a multiple
command, then the menu program loops within itself and no child task is
created. If you have renamed the menu program then be careful to keep
the word menu in such commands in order to take advantage of this
feature.

In all cases, execution of a command uses up some extra memaory, SO
your menu system must be designed to eventually return to its original
level. Note that the menu program directly interprets the .m file. It is not
necessary to use a compiler.

EXAMPLES:

1) MAIN MENU
1,Stock Control
menu stock
2,Sales Ledger
menu sales
3,Purchase Ledger
menu purchase

{cont.)

SCULPTOR Reference Manual 10/86 page 5-11
5.4 Menu System {(cont.)



MENU EXAMPLES (CONT.)

2)

STOCK SYSTEM MENU
0,Return to Main Menu

exit

1,Maintain Stock Records

sage /usr/stk/stock

2,Enter Goods Received

sage /usr/stk/receipts

3,Enter Issues

sage /usr/stk/issues

4,Stock Listing

chd /usr/stk; sagerep stklist | $1
5,User Selected Program

sage %

Which program do you wish toc run
6,User Selected Report

sagerep % pvdu

Which report do you wish to run
7,System Command Level
/bin/shell

The $1in the command for option 4 of the second example assumes that
the print spooler name is passed as an argument to the menu program.

page 5-12 3/86 SCULPTOR Reference Manual

5.4 Menu System (cont.}



5.5 PRINT A SCREEN FORM (sageform)

sageform <filename> [<cols>[, <rows>]]
This program prints a sage screen form to standard output in a format
suitable for printing so that the layout may be included in documentation.
The named file must be a compiled sage program.

The cols and rows arguments indicate the screen size in rows and
columns. By default, an 80 x 24 screen is assumed.

EXAMPLE:

sageform stock | spooler

SCULPTOR Reference Manual 3/86 page 5-13
5.5 Print a Screen Form (sageform)



5.6 AUTOMATIC SCREEN FORM PROGRAM
GENERATION (sg)

sqg [-a] <{ilename >

The program sg automatically creates a screen form program for the
maintenance of a file, using record descriptions previously defined in the
describe program.

Type sg followed by the name of the data file you wish to use. sg will
create a source program from the file descriptor (the file with the .d
extension). This source file will have the name < filename > .f and will be
automatically compiled to an object program with the name
< filename > .g.

WARNING: Any files named <filename>.f or <filename>.g that
already exist in your current directory will be overwritten.

The program produced can then be used as a normal SCULPTOR screen
form program by calling sage < filename>. The source file can be
amended using any editor and then recompiled using the program cf.

sg will design a screen form to fit on the screen, if at all possible. The
following is a typical layout for a file with two key fields and four data

fields:

SCREEN FORM HEADING
Todays Date [ ]

Key Field 1 [ ] Key Field 2 [ ]

Data Field 1
Data Field
Data Field
Data Field
Data Field
Data Field
Data Field

NN B W
e B B N R )
—_—

izinsert f=find n=next m=match azamend d=delete e=exit

Which option do you require?

page 5-14 3/86 SCULPTOR Reference Manual
5.6 Automatic Screen Form Generation (sg)



If you wish to create a screen form program which differs from the
standard, or with a different name, use the -a option:

sg -a <filename >

Using this option, a prompt screen will be displayed allowing you to do
the following:

amend the program name
amend the screen title
select certain fields
amend field headings
amend output formats

This option should also be used when the contents of a file descriptor are
likely to overflow the screen: you can then select which fields you want to
display.

The backspace key can be used t0 skip back to previous fields.

SCULPTOR Reference Manual 3/86 page 5-15
5.6 Automatic Screen Form Program Generation (cont.)



5.7 AUTOMATIC REPORT PROGRAM GENERATION (rg)

rg [-a} <{ilename>

The program rg automatically creates a report program for reporting on a
data file, using record descriptions previously defined in the describe
program.

Type rg followed by the name of the data file you wish to use. rg will
create a source program from the file descriptor (the file with the .d
extension). This source file will have the name < filename > .r and will be
automatically compiled to an object program with the name
< filename > .q.

WARNING: Any files named <filename>.r or <filename>.q that
already exist in your current directory will be overwritten.

The program produced can then be used as a normal SCULPTOR report
program by calling sagerep < filename>. The source file can be
amended using any editor and then recompiled using the program cr.

The following is the default report layout produced by rg:

D REPORT HEADING )
Page No Date o
Field Headings Aligned Above The Data
XXXXX XXXXXXXXXXX XXX XXXXX XX XXXXXXXXXXXXXX XXX

) XXX SXOGOOXXXXXXX XXXX XXXXX XX XXXXXXXKXXKN XXX XXX D
XXXX XXXXXXXXXX X XX X XXXXX XX XXX X XXX

2 XXXXX XXXXXXXXXXX XXXXX XXXXX X OO XXX XXX XX 2

END OF REPORT

page 5-16 3/86 SCULPTOR Reference Manual
5.7 Automatic Report Program Generation (rg)



If you wish to create a report which differs from this standard, or with a
different name, use the -a option:

rg -a <filename>

Using this option, a prompt screen will be displayed allowing you to do
the following:

amend the program name

amend the report title

select certain fields

amend field headings

amend output formats

total numeric fields

suppress display of repeated key values

This option should also be used when the contents of a file descriptor are
likely to overflow one line, thus making the report unclear: you can then
select which fields you want to include.

The backspace key can be used to skip back to previous fields.

SCULPTOR Reference Manual 3/86 page 5-17
5.7 Automatic Report Program Generation (cont.)



5.8 SET UP VDU (CRT) PARAMETER FILES

A set of VDU parameter files is supplied as part of the SCULPTOR
package. If you are using a VDU for which a parameter file has not been
supplied then you may create one using the program setvdu. The
program decvdu may be used to print the parameters from an existing
parameter file and you may find it helpful to examine some of those
supplied. Note that the output from decvdu is suitable for reinput to
setvdu, which means that you can change an existing parameter file
quite easily by redirecting the output from decvdu into a text file, editing
the file, and then redirecting the edited file as input to setvdu. For
example:

decvdu qvtl02 >qvtl02.s
edit qvt102.s

setvdu qvtl02 <qvtl02.s

Setting up a new parameter file often involves some trial and error as the
available documentation is not always clear. The best approach is to get
cursor positioning and the basic erase functions working first. If the
terminal supports protected fields, try using these next, as they
considerably speed up erases on the foreground data. It is common for
protected fields to be in low intensity and this provides a good contrast
between the form and the data. Finally, experiment with highlighting, but
note that those terminals which have embedded attributes (i.e.
occupying a space on the screen) can only be used to highlight text
which has a spare space at each end. Terminals with non-embedded
attributes are much more flexible.

Check for VDUs with alternative lead-in characters for their escape
sequences (e.g. Hazeltine) — the character which starts a control
sequence may differ according to the setting of a dip switch on the back
of or inside the VDU.

It is not possible to guarantee that sage will work with a particular
terminal, but the only known limitation is a terminal which has a non-
contiguous set of cursor position codes. No modern terminal has been
identified with this limitation.

page 5-18 10/86 SCULPTOR Reference Manual
5.8 Set Up VDU (CRT) Parameter Files



Note that the parameter file ibmpc is a special case, recognised as such
from its VDU name parameter. In this file all highlight codes are single
byte attribute values for the type 10, BIOS interrupt.

The program setvdu is called as follows:
setvdu <filename>

The filename is the name you wish to give to the parameter file. On Unix
systems it should correspond to the name used in /etc/termcap.
Responses to the following questions are required. The width and depth
parameters are entered in decimal but all other codes are entered in hex.
In a multiple code sequence, use commas to separate the codes.

VDU NAME?

This is for identification only. Type in a short name for the VDU, probably
the same as the filename.

STANDARD WIDTH?

The number of columns on the standard screen. For most VDUs this is
80.

EXTENDED WIDTH?

The number of columns on an extended screen, e.g. 132. If your VDU
does not have such a feature, enter the standard width.

STANDARD DEPTH?

The number of lines on the standard screen. For most VDUSs this is 24.
Some screens have a status line which should not be counted.

EXTENDED DEPTH?

The number of lines on an extended screen, e.g. 28. If your VDU does
not have such a feature, enter the standard depth.

X OR Y CO-ORDINATE FIRST?

Indicate which co-ordinate is required first in a cursor positioning
seguence, x {column) or y {row/line).

SEND CO-ORDINATES AS ASCII TEXT?

Reply n if the x and y co-ordinate values are each sent as a single
character code. Reply y if the co-ordinates are sent as a variable number
of ASCH numerals with a separator between the x and y values {ANS]
standard).

SCULPTOR Reference Manual 3/86 page 5-19
5.8 Set Up VDU (CRT) Parameter Files (cont.)



CURSOR POSITION BIAS?

There is no bias if the co-ordinates are sent as ASCIl text. Otherwise this
is the hex value that must be added to 1 in order to generate the required
ASCI| character for a cursor position code. The code tables for most
VDUs start with hex 20 (SPACE), in which case the required value is 11
(1f + 1 = 20). Some start at O, in which case the required value is ff
(interpreted as-1) and some startat 1, in which case the required value is
0. If you get results that seem one line wrong, then you have probably
selected Q instead of ff or 20 instead of 11.

EXTENDED POSITION BIAS?

If the VDU does not have an extended width feature or if it does and the
code for extended cursor positioning is the same as the code for standard
cursor positioning, set this value to the standard cursor position bias plus
the standard width. (Don’'t forget to work in hex, e.g. 1f + 50 = 6f) If
there is a different code for extended cursor positioning and if the
extended positions count from the standard width, then set this bias on
the same principle as the standard bias.

POSITION CURSOR?

Type the codes that start a cursor position sequence but exclude any co-
ordinate separator or terminator codes.

POSITION CURSOR (EXTENDED)?

If the VDU has an extended width feature, type the codes which start a
cursor position sequence when the column co-ordinate exceeds the
standard width. This may be the same as the standard sequence. If the
VDU does not have an extended width feature, enter the standard
sequence.

SET EXTENDED SCREEN WIDTH?

Enter the sequence which sets extended width but leave blank if the VDU
does not support this feature.

SET STANDARD SCREEN WIDTH?

If the VDU supports extended width, enter the sequence which resets
standard width, otherwise leave blank.

page 5-20 3/86 SCULPTOR Reference Manual
5.8 Set Up VDU (CRT) Parameter Files {cont.)



SET EXTENDED SCREEN DEPTH?

If the VDU does not have an extended depth feature, put a home and
clear screen sequence here. Otherwise enter the sequence that sets the
screen to extended depth and if this doesn’t also clear the screen, add
home and clear screen.

SET STANDARD SCREEN DEPTH?

If the VDU does not have an extended depth feature, put a home and
clear screen sequence here. Otherwise enter the sequence that resets
the screen to standard depth and if this doesn’t also clear the screen, add
home and clear screen.

CANCEL CHARACTER?

This is the character which invokes the CANCEL feature in the input
command in sage. Choose a keystroke that is unlikely to be hit by
accident, such as Control X (18). There may be a key labelled CANCEL
which sends this code.

BACKSPACE CHARACTER SEQUENCE?

If the VDU has a destructive backspace key then the code for this alone
will suffice {probably 08). Otherwise a sequence must be constructed,
the first character of which identifies the backspace key, and which
effectively erases the last character typed when echoed. Backspace (or
cursor left) is usually 08 but is rarely destructive, so the required
seguence is probably 08,20,08 although 7,08,20,08 may be preferred
if DEL is normally used for backspace.

END OF INPUT CHARACTER?

This is the character which invokes the EOI trap in the input command in
sage. If the keyboard has separate RETURN and LINEFEED keys then
LINEFEED (Oa) may be used. On some keyboards, the down arrow key
sends a linefeed. Otherwise ESC {1b) is probably the best choice.

HOME CURSOR?

Enter a sequence to home the cursor without clearing the screen. There
is usually a special code for this purpose, but if not, a cursor positioning
sequence can be used.

SCULPTOR Reference Manual 3/86 page 5-21
5.8 Set Up VDU (CRT)} Parameter Files (cont.)



CONFIGURE VDU?

This code sequence is issued on initial entry to sage and on return from
an exec command. It may be used to put the VDU into a special mode. A
null response here is quite common.

RECONFIGURE VDU?

This code sequence is issued on exit from sage and prior to an exec
command. It may be used to reset any special modes set by Configure
VDU or to ensure that the VDU is reset to its normal state.

HOME AND CLEAR SCREEN?

Enter a sequence which homes the cursor and clears the entire screen,
including protected characters. In case one code is used for both
protected and unprotected erases, sage issues the Disable protection
sequence prior to this one.

HOME AND CLEAR UNPROTECTED?

Enter a sequence which homes the cursor and clears the screen except
for protected characters. In case the same code is used for both
protected and unprotected erases, sage issues the Honour protection
sequence prior to this one. If the VDU does not have protected fields,
leave this code blank and sage will erase the foreground data by spacing
over It.

ERASE TO END OF SCREEN?

Type a sequence which erases all characters from the current cursor
position to the end of the screen. If the VDU does not provide this, enter
the Home and clear screen sequence.

ERASE UNPROTECTED TO END OF SCREEN?
This sequence is not currently used and may be left blank.

ERASE TO END OF LINE?

Type a sequence which erases all characters from the cursor position to
the end of the current line or failing that, one which erases the whole of
the current line.

page 5-22 3/86 SCULPTOR Reference Manual
5.8 Set Up VDU (CRT) Parameter Files (cont.)



ERASE TO END OF FIELD?

If using protected fields and the VDU has an erase to end of field or an
erase field code, enter this. Otherwise leave blank and sage will erase
fields by spacing over them. {This sequence must leave the cursor at the
beginning of the field.)

HONOUR PROTECTION AND DISABLE SCROLL?

If the VDU has protected fields that are effective only when protection is
enabled, enter the sequence which enables it. If this does not also disable
scroll and there is a separate sequence to do so, enter this as well.

IGNORE PROTECTION AND ENABLE SCROLL?

If using protected fields that are effective only when protection is
enabled, enter the sequence which disables it. If this does not also enable
scroll and there is a separate sequence to do so, enter this as well.

START PROTECTED FIELD?

If using protected fields, enter the sequence which defines the start of a
protected field. It is permissible to define a highlight code such as low
intensity here even if protected fields are not used. Try this if the VDU
normally operates in low intensity and put the same sequence in
Reconfigure VDU.

END PROTECTED FIELD?

If using protected fields, enter the sequence which defines the end of a
protected field. It is permissible to define a highlight code such as high
intensity here even if protected fields are not used. Try this if the VDU
normatlly operates in low intensity.

START PAGE TITLE?

If a suitable highlightis available for the title line (e.g. inverse video), enter
the sequence which starts it. If using protected fields and the highlight
code includes a protection attribute, ensure that protection is on. Note
that sage always sends the Start protected field sequence immediatley
prior to this one.

END PAGE TITLE?

If a highlight sequence is used for the title line, enter the sequence which
ends it, and if this includes a protection attribute, ensure that protection is
off. Note that sage always sends the End protected field sequence
immediately following this one.

SCULPTOR Reference Manual 3/86 page 5-23
5.8 Set Up VDU (CRT) Parameter Files {cont.)



START FIELD HEADING?

If a suitable highlight is available for field headings (e.g. underlining or
low intensity), enter the sequence which starts it. On some screens,
protected fields are automatically low intensity. If using protected fields
and the highlight code includes a protection attribute, ensure that
protection is on. Note that sage always sends the Start protected field
sequence immediately prior to this one.

END FIELD HEADING?

If a highlight sequence is used for the field headings, enter the sequence
which ends it, and if this includes a protection attribute, ensure that
protection is off. Note that sage always sends the End protected field
seguence immediately following this one.

START ERROR MESSAGE?

Enter a bell code (07) followed by the sequence to start any suitable
highlighting (e.g. flashing). If the highlight code includes a protection
attribute, ensure that protection is off.

END ERROR MESSAGE?

If a highlight sequence is used for error messages, enter the sequence
which ends it, and if this includes a protection attribute, ensure that
protection is off.

XY CO-ORDINATE SEPARATOR?

If the cursor position co-ordinates are sent as ASCII text, enter the code
which separates the x and y co-ordinates.

XY CO-ORDINATE TERMINATOR?

If the cursor position co-ordinates are sent as ASCII text, enter the code
which terminates the positioning sequence.

ENTER 1 TO AVOID RAW MODE?

If RAW mode is avoided then Unix and similar operating systems will be
able to check for special control characters such as X-ON and X-OFF.
This may be essential if you work with modems. However, you must use
RAW mode if control codes are used for cursor co-ordinates or if an
operating system control code conflicts with a terminal control code.

page 5-24 3/86 SCULPTOR Reference Manual
5.8 Set Up VDU [CRT) Parameter Files {cont.)



START NORMAL DATA

This sequence precedes each data field that is displayed with the display
command. Its main use is to reverse the effect of the highlight
command. If highlighting is not used, this sequence can be left blank.
Otherwise, enter codes to select the normal display attribute.

END NORMAL DATA

This sequence is appended to each data field that is displayed with the
display command. It is only necessary if the Start Normal Data
sequence requires some kind of termination.

START OPTION LIST

If a suitable highlight is available for the Option List {e.g. underlining),
enter the sequence which starts it. Note that sage always sends the Start
Protected Field sequence immediately prior to this one.

END OPTION LIST

If a highlight sequence is used for the Option List, enter the sequence
which ends it. Note that sage always sends the End Protected Field
sequence immediately following this one.

START HIGHLIGHT DATA

This sequence precedes each data field that is displayed with a highlight
command. It can be used to display data with a special highlight (e.g.
reverse video or a different colour). This feature works best on terminals
that have non-embedded display attributes. On terminals that have
embedded attributes (i.e. occupying a space on the screen), the only
approach is to backspace and erase the left box character and to replace
it with the highlight code. In this case, it may be necessary to first turn off
protection. The box character should be reinstated by the Start Normal
Data sequence. This approach overrides the !box declaration in sage.

END HIGHLIGHT DATA

This sequence is appended to each data field that is displayed with the
highlight command. It should reselect the normal display attribute. If the
Start Highlight Data sequence replaces the left box character, this
sequence should replace the right box character. The cursor will be
positioned over the right box character when the sequence is sent.
Finally, if the Start Highlight Data sequence has turned off protection,
this sequence should turn it back on.

SCULPTOR Reference Manual 10/86 page 5-25
5.8 Set Up VDU (CRT) Parameter Files (cont.}



ENTER 1 TO FORCE LEFT/RIGHT BOX SEQUENCES

If the box delimiting characters are both spaces, the cursor does not
normally move to each box position when the screen is painted. This
avoids the cursor moving over the screen for no apparent purpose.
However, if protected fields are used and if there is a code for Erase to
end of field, then End Protected Field must be painted at the start of
each box, and Start Protected Field must be painted at the end of each
box. If this is the case, enter 1 here.

REDISPLAY FORM CHARACTER

This defines a character which, if typed while sage is waiting for input,
causes it to repaint the background screen form. Only a single character
can be specified and it should be a control code. Control F (06) is
suggested as a standard. Leave blank if not required.

START LEFT BOX DELIMITER

When the form is painted, this seqguence precedes each left box
character. It can be used to assign a special display attribute to that
character. However, the box characters are normally protected and it is
unusual to assign a special display attribute to them.

END LEFT BOX DELIMITER

When the form is painted, this sequence follows each left box character.
It is used to reset any attribute defined by the Start Left Box Delimiter
sequence.

START RIGHT BOX DELIMITER

When the form is painted, this sequence precedes each right box
character. It can be used to assign a special display attribute to that
character. On terminals which have non-embedded display attributes, it
can also serve to reset the Start Highlight Data attribute, making an End
Highlight Data sequence unnecessary.

END RIGHT BOX DELIMITER

When the form is painted, this sequence follows each right box
character. Itis used to reset any attribute defined by the Start Right Box
Delimiter sequence.

RESERVED (44 - 49)

These sequences are reserved for future use.

USER SEQUENCE (50 - 59)

These parameters can contain any special sequences that the user
requires. These can be sent to the screen using the vdu command.

page 5-26 10/86 SCULPTOR Reference Manual
5.8 Set Up VDU (CRT) Parameter Files (cont.}



5.9 SET UP PRINTER PARAMETER FILES

A set of printer parameter files is supplied as part of the SCULPTOR
package. If you are using a printer for which a parameter file has not been
supplied then you may create one using the program setprinter. The
program decprinter may be used to print the parameters from an existing
parameter file and you may find it helpful to examine some of those
supplied. Note that the output from decprinter is suitable for reinput to
setprinter, which means that you can change an existing parameter file
quite easily by redirecting the output from decprinter into a text file,
editing the file, and then redirecting the edited file as input to setprinter.
For example:

decprinter dre_132 >dre_132.s
edit dre_132.s

.;,etprinter dre_132 <drel32.s

Printer parameter files are less critical than VDU parameter files. The p80
and p132 parameter files, for example, are suitable for use with almost
any printer, but if you wish to use special features such as double width,
underlining, etc. then a special parameter file must be prepared. In order
to make the best use of different paper sizes, several parameter files may
be required for each type of printer being used. A different set of
parameters should be prepared for each page length and if the printer
supports compressed print, for each different paper width.

If you want to use a printer feature which Sculptor does not specifically
allow for, you can always allocate some unused code for the purpose.
For example, you could use start and end alternate character set to
switch between red and black ribbons. Bear in mind that programs
written to use such features may behave oddly with other printers.

The program setprinter is called as follows:

setprinter <filename>
The filename is the name you wish to give to the parameter file.
Responses to the following questions are required. Widths and page

lengths are entered in decimal but all control codes are entered in hex. In
a multiple code sequence, use commas to separate the codes.

SCULPTOR Reference Manual 3/86 page 5-27
5.9 Set Up Printer Parameter Files



PRINTER NAME?

This is for identification only. Type in a short name for the printer,
probably the same as the filename.

TOP OF FORM?

Enter the form feed code (usually Oc) if supported by the printer. If left
blank, sagerep will output line feeds to reach top of form.

START UNDERLINE?
If available, enter the code which starts underlining.

END UNDERLINE?
If available, enter the code which ends underlining.

PRINT DOUBLE WIDTH?
If available, enter the code to select double width characters.

PRINT SINGLE WIDTH?

If double width characters are available, enter the code which reselects
single width.

PRINT ENHANCED CHARACTERS?

If the printer has both a draft and a high quality character set, enter the
code to select high quality.

PRINT ORDINARY CHARACTERS?

If the printer has both a draft and a high quality character set, enter the
code to select draft quality.

SET ALTERNATE CHARACTER SET?
If the printer has an alternate character set, enter the code to select it.

SET STANDARD CHARACTER SET?

If the printer has an alternate character set, enter the code to reselect the
standard set.

SELECT CONTROL 0? — SELECT CONTROL 9?

These ten sequences are provided for special requirements, such as
different colours.

page 5-28 3/86 SCULPTOR Reference Manual
5.9 Set Up Printer Parameter Files (cont.)



STANDARD PAGE LENGTH?
Enter the number of lines on the page (decimal).

STANDARD PAGE WIDTH?
Enter the number of characters on a standard line (decimal).

NUMBER OF PAGE WIDTHS?

Enter the number of different print compressions available (decimal). If
the printer does not support different compressions, enter 1. The
following two questions are now repeated according to the number of
print compressions. Respond for each compression in turn, starting with
the least compressed size and finishing with the most compressed.

WIDTH N?

Enter in decimal the number of characters per line for the selected paper
size and compression. You may have to calculate this by multiplying the
page width in inches by the number of characters per inch. {80 column
paper is 8 inches wide and 132 column paperis 13.2 inches wide). If the
printer does not support different compressions, enter the standard
width.

CODE TO SET WIDTH N?

Enter the control sequence which sets the selected print compression.
Leave blank if the printer does not support different compressions.

SCULPTOR Reference Manual 3/86 page 5-29
5.9 Set Up Printer Parameter Files (cont.)



5.10 QUERY

Query is a simple but powerful facility for producing ad-hoc reports and
retrieving information from any SCULPTOR file and one associated cross-
reference file.

To use this facility, a copy of the files you wish to enguire on and their
associated .d files must be in your current directory.

Typing sage query will display the Query Prompt Screen:

F1APTOR ENUIRY SYSTEM
Enquiry reme [ 1 Main file reme [
Page Heading [ ]
Oress referace file [ ] Cross-referace file key lergth [
Slect field (? = list available fields, s = start selection again) [
Gorditions [ 10 101¢C
[ 10 101¢C
[ JLI0TL
Crossreferace selectian [
Prirt list [
. Headirg Type N
I I 1 I
I I I I
I

As you proceed through the input of your enguiry, the system prompts
with a series of guestions. The prompts and the appropriate responses
are indicated below:

PROMPT Type the name for this enquiry (BACKSPACE to exit)

ACTION Enter the name of this enquiry and press ENTER. The
system will then search for an engquiry on file with this
name.

e.g. Enquiry Name [overdue ] Main File | |

page 5-30 3/86 SCULPTOR Reference Manual

5.10 Query



PROMPT Is this a new enquiry {Y/N)

ACTION An enquiry does not exist with this name. If this is a new
enquiry answer Y — otherwise answer N and key in the
correct name.

PROMPT Type in the name of the main file

ACTION Enter' the name of the main file on which you wish to
enquire.

PROMPT Type a page title heading

ACTION Optionally type in the heading to appear at the top of
each page and press ENTER.

e.g. Page Heading [Overdue Members List ]

PROMPT Type a cross-reference file name, or leave blank

ACTION Enter the name of the cross reference file for this enquiry

(if any). The key length will be completed automatically.
e.g. Cross Reference File [subs ] Cross Ret File Key Length [ 4]

If a cross reference file has been entered, the following prompt will
appear:

PROMPT Select fields for cross reference file matching

ACTION To display all the fields on the main file type in 2. Enter
the field numbers in the main file which make up the key
to the cross-reference file. Press ENTER after each field
number and ENTER by itself to terminate this action.

e.g. Select Field (? =list available fields, s=start again [ 3]

Num Heading Type Num Heading Type

[1] [Members Code ] [al0] [ 3] [Surname ] [a20]
[2] [Members Name ] @301 ] [ 11 1
SCULPTOR Reference Manual 3/86 page 5-31

5.10 Query (cont.)



PROMPT Select fields for printing

ACTION To display all available fields type in ?. To build up a print
list enter the field numbers of the information that is
required for printing. Press ENTER after each one and
ENTER by itself to terminate the action. As each field is
selected, the print list is built up on the screen.

e.g. Print List [MBcode, MBname,MBsname, MBdate, MBsub,SBsubs ]

When all fields have been selected a prompt is displayed for selection
conditions. Up to three conditions may be entered.

PROMPT Enter selection conditions — select a field first
ACTION Enter the number of the field you wish to use
e.g. Conditions [MBdate 11 11 11 ]
PROMPT Operator: =, <>, >, < ,>=, <=, bw,ct
ACTION Enter the operator to be used in selection

= Equais

<> Not equals

> Greater than

< Less than

> = QGreater than or equals

< = Less than or equals

bw Begins with

ct Contains
e.g. Conditions [MBdate <110 11 ]
PROMPT If the comparison is with another field enter f here
ACTION Enter f if conditional on a field and press ENTER.

By pressing ENTER only, the default ¢ will remain to
compare with a constant.

e.g. Conditions [MBdate JI<1llell ]

page 5-32 3/86 SCULPTOR Reference Manual
5.10 Query {cont.)



PROMPT Enter a constant value
ACTION Type in the selection constant value and press ENTER.
e.g. Conditions: [MBdate 1 <] [e] [L,1,85 ]
Records with MBdate earlier than 1,1,85

Conditions: [MBname ] [bw] [c] [S |
Records with the first letter of MBname being S

Conditions: [MBname ] [et] [e] [John ]

Records where MBname contains the string John

PROMPT Enter the field name
ACTION Type in the name of the field and press ENTER.
e.g. Conditions: [MBdate ] [< ] ] [SBdate ]

Records where MBdate is earlier than SBdate

PROMPT Do you wish to print a totals line

ACTION Answer Y for a total line or N for No Total

PROMPT Do you wish to run this enguiry ?

ACTION éﬁ_srvgsr Y if you wish to run the enguiry now and press

For UNIX systems the following prompt will be displayed:

PROMPT If the Print Spooler name is blank, the screen will be used
ACTION Type in the name of the print spooler, if required.

For MS DOS systems the following prompt will be displayed:
PROMPT Is the output to go to the printer {y/n)

ACTION Typein Y in you wish the output to go to a printer, N to be
displayed on the screen.

SCULPTOR Reference Manual 3/86 page 5-33
5.10 Query (cont.}



If the reply to the previous prompt was Y, the following prompt will be
displayed:

PROMPT Name of list device [PRN]:
ACTION Press return unless another printer has been configured

EXAMPLE OF THE OUTPUT REPORT FROM QUERY:

Overdue Members List 1/3/85
Code Name Surname Date Subs
Shore John Shore 01/03/84 00
Smith John Smith 23/06/83 35.00
Strong Jonny Strong 13/05/84 17.50

End of Report

page 5-34 3/86 SCULPTOR Reference Manual
5.10 Query (cont.)



L S\Dlh@ie IMPLEMENTATION
DIFFERENCES

Source code programs written in the sage and sagerep languages are
generally machine independent. However, since the SCULPTOR system
permits access to operating system commands, the use of such
commands can make a program machine dependent. Also, where
SCULPTOR relies on an operating system service, there may be
differences between implementations.

The following guide lists the known implementation differences. It is not
guaranteed to be exhaustive.

MS-DOS

There are special versions of SCULPTOR for certain networks on which
file sharing and record locking is fully supported. The standard, single-
user version for MS-DOS cannot share files: it accepts the unlock
command but ignores it. Providing that sufficient files have been
specified in CONFIG.SYS {see DOS manual), 7 keyed files can be open in
one program. The following limitations exist:

1) The exec command is available but since the operating system does
not swap, the machine must have sufficient RAM memory to hold all
concurrent tasks. Several system commands may be given in one
exec call, a semicolon being used as the separator. This emulates
UNIX but means that if a semicolon is required as part of a system
command, that command must be executed in a batch file.

2) The special temp tstat receives the termination status of a child
program only if the command is prefixed with - (no new command
processor). In other cases, tstat will normally be zero, although it
may be non-zero if the exec failed completely.

3) Except on the NOVELL and certain other network versions, the
special temp ttyno is always zero.

4) The special temp task is always blank.

5) MS-DOS Version 1 is no longer supported.

SCULPTOR Reference Manual 10/86 page A-1
Appendix A



0S9 LEVEL ONE (6809)
Not supported.

0S9 LEVEL TWO

Up to 6 keyed files may be opened in one program. The following
restrictions exist:

1) The exec command is available but since the operating system does
not swap, the machine must have sufficient RAM memory to hold all
concurrent tasks.

2) The special temp ttyno relies on the terminal device module name
ending with the port number, e.g. “'T1"".

QuUIX
A maximum of 8 keyed files may be opened in one program.

UNIFLEX (6809)

A maximum of 6 keyed files may be opened in one program. Note that
the range of values that can be stored in a 4-byte integer differs from
other implementations. See section 2.5.

UNIX

On most implementations of Unix, a maximum of 8 keyed files may be
opened in one program, although on some implementations the limit is
16.

VMS

The version of SCULPTOR for VAX VMS uses the RMS indexed filing
system. Because of this and because there are fundamental differences
between the Unix and VMS operating systems, programs may need
some modification when moved from Unix to VMS or vice-versa. The
following differences exist:

1) There is no prev {previous) command.
2) The programs kfcheck, kfdet and kfri are not supplied. The DCL

program ANALYSE provides file details and file checking. The DCL
program CONVERT can be used to repair a damaged index.

page A-2 10/86 SCULPTOR Reference Manual
Appendix A {cont.)



3) It may be necessary to close files before using the exec command in
order to avoid exceeding the user limit for open files.

4) A program that terminates with exit 0 returns status code 1 instead
of 0. This is the VMS standard (SYS$_NORMAL). The menu
program does not treat return code 1 as an error.

SCULPTOR Reference Manual 10/86 page A-3
Appendix A



APPENDIX B

RESERVED WORDS

The following words are SCULPTOR keywords or command names and

cannot be used as field names or line labels.

ac error min sC

at eu newform scroll
autocr exclude newpage select
box exec next setstr
bs execu nextkey sleep
cO - c9 exit ni spc
cancel file no starting
cfile final nrs startrec
chain find nsr su
check footnote oc SwW
clear gap off tab
clearbuf getstr on temp
close gosub open testkey
constant goto pause tf
count heading preserve then
decdate highlight prev title
delete if print total
depth input printh unlock
display insert prompt vdu
dw interrupts re wakeup
ec keep read width
encdate key readkey write
end let record xfile
ending match return yes
endrec max rewind

eoi message riu

SCULPTOR Reference Manual 10/86 page B-1

Appendix B



INDEX,

Page
A g
abort command. ... 4-40
Aligning printheadings. ... 4-71
AllOW GCCESS . .. 3-76, 4-80
Alphanumericfield. ... 2-7,2-9,3-11, 4-11
Altering record layouts. ... 1-7
Alternative recordlayouts....................o 2-2,3-20,4-29
APG . 3-24, 3-80, 4-34, 4-85
ASSIGNMENT. ..o 3-bb, 4-61
At COMMaANG. 3-28
AUTOCT COMMaANG. .. 3-29
Automatic validation. ... 2-12
B
Batch processor. . ... ... 4-2
Box definitionS. ... o 3-5
Box delimiting characters..............coociiii 3-16
BOX IS S . 3-14
IO . 3-b, 3-16
B-tree INAeX . 1-2
C
cancel command. ... .. 3-30
Cf 1-4,1-7,3-2, 3-80
Yefile. . 3-17, 4-13
chain command. ... 3-31, 4-41
check command. ... ... 3-32
clear command. ... ... 3-20, 3-33
clearbuf command. .. ... 3-34, 4-42
close command. ... 3-35, 4-43
Closed files. ... 3-17,4-13
Column NUMbDET. ... 3-b
Commands. ... 1-2, 3-26, 4-38
Compilers. ... 1-7,3-2, 3-80, 4-84
Conditional expressions. ..o 3-50, 4-18, 4-30, 4-56
CONS AN S, 3-10, 4-10
lconStant . ... .. 4-14
Copying files. ... 5-4
. 1-4,1-7,4-2, 4-84
Creatinga SCULPTOR system........oooiii 1-7
Cross-referencefiles. ... 4-28, 4-37
CurrenCy UNITS. ... 3-11

SCULPTOR Reference Manual 10/86 Index A-C



D Page

A exXtension. 1-7,2-2,3-80, 4-84
Data fields. .o 2-2
Data file. . 1-5
date. 3-24, 4-34
Date field. .. . 2-7,2-8, 2-9
Date format. oo 5-9
day, monthandvyear........ ... ... 3-24,4-34
Declarations: Sa@ge....... ... 3-15
Declarations: SAQereP...........c.cooii i 4-12
decdate command... ... .. 3-36, 4-44
decprinter. . ... ... . 1-4, 5-27
decvdU. ... ... 1-4, 5-18
delete command. ... 3-37,4-45
Idepth.... . ... . 3-18, 4-15
describe........ ... 1-4,1-7, 2-1 &ff, 5-2
Descriptor files. ... 2-2
Display @ mesSage.......coo oo 3-41, 3-b7
display command. ... 3-38, 4-46
Idisplay..... ... 4-16
Documentation conventions. ... ... ... ..o 1-3
Driving file. ... 4-7,4-17, 4-31
E

encdate command............ 3-39, 4-47
end statement. . ... 3-7, 3-40, 4-48
YenNdrec . ... 4-17
B KOy . 3-b2
BITOr COMMANA 3-41
Yexclude. ... ... .. 4-18
exec, execu command.. ... 3-42, 4-49
exit statement. ... .. 3-7, 3-43, 4-50
EXPressions. ..o 3-9, 4-9
Extended alphanumeric formats..................c 2-11
F

F X NS ON . 1-7, 3-80
Field formats. ... 2-9, 2-11, 4-8
Field headings. ... 2-6, 3-5, 4-8
Fleld DStS. . 3-14
Fleld Names. .o 2-5,3-5
Fleldtype & Size........ 2-7
Field type CONVErsioN . ... ... o 3-11, 4-11
Flelds . 2-2
File integrity Checks. ... 1-8,56-3

Index D-F 10/86 SCULPTOR Reference Manual



Page

F

Fille numbers. 4-19
File restrictions. ... 1-b
Bl SiZe. . 1-5
Wile. ... 3-19, 4-19
Minal ... 4-20
find command............. 3-44, 4-51
Floating pointfield........................................ 2-7,3-11,4-17
Flowchart (sagerep)...................ocoii i 4-5
Hootnote ... ... ... ... 4-21
Force lower Case, UPPEr CASE. ... e 2-9
Format Definitions................. . 4-8
G

2 BXIENSION L 1-7, 3-80
e T- T o J 4-22
getstr command. ... 3-46, 4-53
gosub command...... ... 3-47, 4-54
goto COMMANd. .. ... 3-48, 4-55
H

Heading statements. ... 4-4.4-23
Yheading ... 4-23
highlight command................ 3-49
|

if...then...elsecommand.................................. ... 3-50, 4-56
Implementation differences................... A-1
INOEXES . . 1-2,1-5,1-8
Rt 4-24
input command. ... 3-51, 4-57
HNPUt . 4-25
insert command. . ... ... 3-b3, 4-568
Integerfield. ... 2-7,3-11, 4-11
interrupts command. ... 3-54, 4-59
K

Kextension. 1-5,2-2,4-19, 5-6
keep command. .. ... ... 4-60
Key fields. ... 1-5,2-2,2-3,3-12
Keyedfiles.. ... ... 1-2,1-5,3-2,4-19
Keyed file COpY. ... o 5-4
Keyedfiledetails...... ... 5-b
Keyed file utilities. ... b-2
K Y S 1-5, 2-3
SCULPTOR Reference Manual 10/86 Index F-K



K

Key= clause.................ooii 3-12, 3-44, 4-51
kfcheck. ... ... ... ... ... 1-4,1-8, -3
KECOPY. . 1-4,5-4
kfdet. 1-4, b-5
Kfri . 1-4, 1-8, b-6
L

Language configuration......... ..o 5-9
I 1-4, 3-65, b-9
let command. ... ... 3-bb, 4-61
lines left. ... . .. 4-34
LiNES DOI PAYE. o 4-15
M

N EXEON S O . 5-9
match command.............. 3-56, 4-62
Maximum No. of files. ... 3-61,4-66
MCNU . . 1-4, 5-10
MesSage COMMANG. ... .. i 3-57
Maney field. ... 2-7,2-8
N

newform command. ... 3-58
newkf . 1-4,1-7,3-2,4-2,5-2
NeWPAGe COMMEANG. ...t e 4-63
nexXt CommMand. ... ... 3-b9, 4-64
nextkey command.............. 3-60, 4-65
NfUNGS . ... 4-84
NO INPUL. 3-52
Numericfields. ... 2-10
0]

fonending.................. 4-26
lonstarting. ... 4-27
oPeN COMMANG. ... ... . 3-61,4-66
Open files. ..o 3-19
OperatOrS. . 3-9, 4-9
Options: describe......................... 2-4
OPtiONS: SAGE. ... . 3-7

index K-O 10/86 SCULPTOR Reference Manual



P Page
PAGENO ... 4-34
Page width. ... ... 4-82
pause Command. ... ... 3-62, 4-67
Precedence of operators..................cc o 3-9, 4-9
Pre-extended files.............oo b-2
preserve COmMmMand..... ..o 3-63
Pprev command. ... ... 3-64, 4-68
PriNt COMMANG. ... 4-69
Printer parameterfiles..................... 1-6,5-27
printh command.. ... .. 4-70
Printing ascreen form..........oo 5-13
Program struCture: Sage. ... 3-3
Program structure: sagerep.....................cco.oo 4-6
Program SUIte. ... ... .. o 1-4
prompt command........... 3-65
Q

L EXTENSION. .. 1-7,4-84
QueIY . .. 1-4, 5-30
R

X NS ON . 1-7,4-84
read command. ... 3-66, 4-72
lread ... . 4-28
readkey command............. 3-67, 4-73
Realnumberfield. ... ... 2-7
Rebuild file index............ . . 5-6
Recompilation ... 2-2
Record layout. .. ... .. 1-5,1-7, 2-1 & ff
Record length. . ..o 1-5
lrecord. . ... 3-20, 4-29
Redirection of output.. ... ... 4-85
reformat. ... .. 1-4, b-7
Report programs. ... 4-1 & ff
Reserved WoOrds. . ... B-1
return COmMMaAaNd. ... 3-68, 4-74
rewind command.......... 3-69, 4-7bH
Lo T TR 1-4,1-7,4-2,5-16
ROW nUMbDeTr. 3-5
RUNNING Programs. ... 3-80, 4-84
SCULPTOR Reference Manual 10/86 Index P-R



S Page

SAQG. ... 1-3, 1-4,1-7, 3-1 & ff, b-14
sageform.. ... .. ... 1-4, 5-13
SAGEIEP . ... ... i 1-3,1-4,1-7, 4-1 &ff, 5-16
sagerep StatementS. . ... 4-3
SCrEN DOXES . . 3-b
Screen depth. .. . 3-18
Screen form programs. . ..o 3-1 &ff
Screen WIAth. .o 3-25
scrline............... .. .. 3-21, 3-24, 3-70, 4-34
scroll command. ... 3-70, 4-76
Iscroll. . ... 3-b, 3-21
SCULPTOR Development SYsStem. ..o, 1-4
SCULPTOR Run-Time System ... 1-4
Iselect ... ... ... 4-30
Sequential @CCeSS OTAEI. .. it 2-3
Setprinter........... ... 1-4,1-6,5-27
SetStr COMMANd. ... ... o 3-72, 4-77
setvduU. ... 1-4,1-6,5-18
SO 1-4,1-7,3-2,5-14
sleep command............. 3-73, 4-78
Special temporary fields.................. 3-23, 4-33
LY F:] 4.1 ¢ TSI 4-31
Statement execution SEQUENCE. ... ... oo 4-4
Subroutines............ . 3-4,3-47, 3-68, 4-b4, 4-74
SUD-SIIING. . 3-46, 4-53
Suspend exXeCUtiON. ... ..o 3-73, 4-78
SWILCRING ON . 1-8
systime. ... ... 3-24,4-34
T

taSK 3-24
eMp. ... 3-22, 4-32
Temporary fields.. ... 3-22, 4-32
TermMINalS. 1-6, 5-18
testkey command........... 3-74,4-79
(1111 TOU O 3-24, 4-34
Witle . . . 4-35
TOtalS. 4-69, 4-70
Translatable text. ... 5-9
Trap Clauses. . . ..o 3-13, 3-41
1 51 ¢ | U 3-24, 4-34
BN, 3-24, 4-34

Index S-T 10/86 SCULPTOR Reference Manual



Page

U

unlock command. ... .. 3-76, 4-80
Untrapped EITOr. o 3-7

Utility programs. ... 1-2,5-1 & ff
\Y

NValidation . 2-12, 3-50
Validation liStS. . oo 2-13
vdu command. ... 3-79
VDU (CRT) parameterfiles................. .. ... 1-6,5-18
W

“Waiting...”” message. ... 3-44, 3-b9
wakeup command. ... 3-77, 4-81
width command. ... ... 4-82
IWidth. 3-2b, 4-36
Write COmMmMand. ... . 3-78, 4-83
X

IxFile 4-37

Sculptor Reference Manual 10/86 Index U-X



