,—-’i;)

AN INTRODUCTION TO SCULPTOR

Issued February 1986
Incorporating October 1986 Revision

Copyright {C) 1986 by
Microprocessor Developments Limited

ISBN 0947770 02X

Published by
Microprocessor Developments Ltd.
3 Canfield Place
London NW6 3BT
England

TRADEMARK ACKNOWLEDGEMENTS

MS-DOS and MS-NET are trademarks of Microsoft Corp.
Netware is a trademark of Novell Inc.

0S9is atrademark of Microware Corp.

PC-DOS and PC-NET are trademarks of International Business Machines
Corp.

Quixis a trademark of Imtec Computers Ltd.

Ultrix and VMS are trademarks of Digital Equipment Corp.
SCULPTOR is a trademark of Micropracessar Developments Ltd.
UniFLEX is a trademark of Technical Systems Consultants Inc.
Unix is atrademark of AT & T Bell Laboratories

Xenix is a trademark of Microsoft Corp.

CONTENTS

CHAPTER 1. INTRODUCING SCULPTOR CONCEPTS

1.1 Fourth Generation Programming.....................ccooiiiiii 0. 1-2
1.2 Data Storage with SCULPTOR..............c..ci 1-3
1.3 The SCULPTOR Program Suite.............cooocoiiiiiiiiiiiin, 1-6
1.4 Default Values. ... 1-9
1.5 Programming Standards and Practices................................ 1-9

CHAPTER 2. KEYED FILES — How to Describe and Create them

2.1 Files and File Structures..........cooovieiiiei 2-2
2.2 Data Dictionaries.c.oviei e 2-4
2.3 Choosing Key Fields. ... 2-5
2.4 The describe Program.....................c 2-6
2.5 Thenewkf Program.. ... 2-13
CHAPTER 3. AUTOMATIC PROGRAM GENERATORS

3.1 Automatic Screen Form Program Generation (sg).................. 3-2
3.2 Automatic Report Program Generation {rg).......................... 3-4

CHAPTER 4. SCREEN FORM PROGRAMS (sage)

4.1 Screen Form Program Structure.. 4-2
4.2 sage DeclarationsS. ... 4-5
4.3 Screen Form Design. ... 4-7
4.4 sage Program OptioNS...... ..o 4-9
4 5 Compiling the sage Program.. 4-17
4.6 Running the sage Program......................iiiii 4-18
Introduction to SCULPTOR page i

Contents

CONTENTS

(cont.) ~ PAGE

CHAPTER 5. REPORT PROGRAMS (sagerep)

5.1 Report Program Structure...............cccooooo i b-2
5.2 sagerep Format Definitions................. 5-7
5.3 sagerep Declarations.............coooooi 5-8
5.4 sagerep Commands............ocoiiiiiii i 5-14
5.5 Compiling the sagerep Program.................................... b-16
5.6 Running the sagerep Program..........................cc 5-17
CHAPTER 6. THE MENU PROGRAM..................................... 6-1
CHAPTER 7. THE QUERY PROGRAM......................ccool 7-1
CHAPTER 8. THE UTILITY PROGRAMS................................ 8-1

APPENDIX A. PROGRAM EXAMPLES

INDEX

page ii Introduction to SCULPTOR
Contents {cont.}

IS e INTRODUCING
SCULPTOR CONCEPTS

This manual is intended to provide a basic explanation of the use of the
SCULPTOR Program Development System. Reading this manual will
enable you very quickly to develop the ability to set up data files and
create programs, both for interactive screen use and to produce reports
from the contents of your data files. When you have gained some
experience of the basic functions, you can refer to the SCULPTOR
Reference Manual for complete details of all the SCULPTOR features,
including the more advanced techniques.

This chapter provides simple explanations of some of the basic concepts
that underlie the SCULPTOR system. The chapter is divided into five
sections:

Section Page
1.1 Fourth Generation Programming.............coooiiiiii i, 1-2
1.2 Data Storage with SCULPTOR. ... 1-3
1.3 The SCULPTOR Program Suite..............ooooiii 1-6
1.4 Default Values................ 1-9
1.5 Programming Standards and Practices......................o 1-9
Introduction to SCULPTOR 3/86 page 1-1

1. Introducing SCULPTOR Concepts

1.1 FOURTH GENERATION PROGRAMMING

The term “"Fourth Generation’’ is used to describe the major step
forward in programming technigues which has been made in recent
years. Third Generation programs were written in high level languages
such as COBOL, BASIC or ‘C’, and then compiled or interpreted. The
compiler would translate the high level language into machine code
before attempting to run the program. The interpreter would decode the
program instructions, step by step, as the program was run. Although
the high level languages were powerful and a single command could
represent a considerable number of machine code operations, it was still
the responsibility of the programmer to create every last detail of the
program structure. The programmer was, effectively, both the architect
and the builder.

In Fourth Generation programming, an application program can be
generated using a set of powerful development tools, each of which is
specially designed for a particular part of the job. The programmer is still
the architect, but the development aids take over the major part of the
actual building work.

Many file management and database applications rely on fundamentally
similar processes for storing, retrieving and manipulating information. A
Fourth Generation Program Development System enables you to write
complex and powerful programs by combining selected options and
tailoring them to meet your own particular needs, without having to go
right back to basics and laboriously code every step of the process.

The development tools that are included in the SCULPTOR system are:

System for creating and maintaining Indexed Data Files
Data Dictionary Descriptor program

Screen Form Access and Update program

Report Writer for printed output

Menu program

Automatic program generators

Database Enquiry system

page 1-2 3/86 Introduction to SCULPTOR
1.1 Fourth Generation Programming

1.2 DATA STORAGE WITH SCULPTOR

The tremendous capacity of modern mass storage devices, coupled
with the high speed of access and retrieval, make it essential to organise
the storage of data as efficiently as possible. The sequence in which
information is stored and the method of indexing can make a significant
impact on the speed and efficiency of the retrieval and processing
programs. To ensure that the explanations of data storage in SCULPTOR
are understood without confusion, the following paragraphs describe
some of the basic terms of reference used.

RECORDS

A record consists of a collection of pieces of information relating to a
single entity, e.g. an employee, a stock item, a customer. For an
employee, this information might include Name, Forenames, Date of
Birth, Employee No., Date of Joining, Job Title, Grade, Rate of Pay, etc.
Similarly, a stock item record would include information such as Item
Description, Stock Code, Cost Price, Selling Price, Current Quantity, Re-
order Level, Last Issue Date, Last Receipt Date, and so on.

FIELDS

Each of the pieces of information within a record is known as a Field.
Different fields will contain different types of information, such as a
date, a sum of money, or an item of text. For these different types of
information, SCULPTOR uses different types of field, the types being
alphanumeric, integer, date, money, and floating point fields.

FILES

A number of similar records grouped together forms a File. Thus a
collection of Employee records forms an Employee File, and a collection
of Stock records forms a Stock File. As files are also used to store other
types of information besides data records, a file containing this type of
data record is referred to as a Data File. Within a Data File, all the
records will have exactly the same length assigned to them, regardless
of the actual amount of data stored in each record. The record size is
determined by adding together the lengths of ali the fields that are
contained in the record.

Introduction to SCULPTOR 3/86 page 1-3
1.2 Data Storage with SCULPTOR

INDEXES AND KEYS

In order for the system to be able to access and retrieve a particular
record from a data file, there must be an Index which points to the
precise location of the required data record. To enable the index to
identify a record uniquely, each record must include a particular field {or
a group of two or more fields} which contains some sort of unique
identification, such as the stock code for a stock item record, or the
employee number for an employee record. This field, or group of fields,
is known as the Key.

One reason for some files having more than one field in the Key is simply
to obtain a unique identification. For example, using the customer name
for the Key in a customer file will not distinguish between two customers
with the same name: adding a second field to the Key — perhaps the
customer number — will provide the required unique identifier.

The method which the SCULPTOR system uses to index information is
to create an Index File in association with each data file. This Index File
contains only the Key Fields for the records in the data file, sorted into
sequence and containing 'pointers’’ that indicate the location of the full
data record. This shorter Index File can be read by the system much
more rapidly than the full data file, thus enabling the required data
record to be extracted for processing more rapidly.

The actual structure of a SCULPTOR index is of a type known as a B-tree
index, which is a particularly efficient indexing method, especially for
large files. The SCULPTOR system automatically handles the
maintenance of the index when new records are added to the file or old
ones deleted. The only task for the programmer is to specify, when
describing the record layout, which field {or fields) is to be used as the
Key: all the rest is carried out by the system. A Data File which has been
set up with an Index File is referred to as a Keyed File, the term being
applied to the combination of both parts — the data and the index.

The choice of which fields to use as Key Fields within a record depends
very much on the type of information being stored and the sort of
processing which it is intended to perform on that information. Chapter
2 of this manual contains further details of choosing Key Fields.

page 1-4 3/86 Introduction to SCULPTOR
1.2 Data Storage with SCULPTOR {cont.)

A DATABASE

In a large or complex application, a number of data files may be
interlinked to form a Database. The key field of the records in one file
may also appear as a data field in another file, thus enabling cross-
references between the two files during processing. The example below
shows a simple interlinking of files:

PURCHASE |—————» e
ORDERS
FILE

KEY FIELD DATA FIELD ...

STOCK RECORD STOCK CODE | DESCRIPTION | UNIT | COST PRICE
PURCHASE ORDER P/O NUMBER | SUPP CODE | STOCK CODE | QUANTITY
RECORD:

SUPPLIER RECORD: SUPP CODE | SUPPLIER NAME | SUPPLIER ADDRESS
SALES ORDER S/0 NUMBER | CUST NO | STOCK CODE | QUANTITY
RECORD:

CUSTOMER RECORD: | CUST NO CUSTOMER NAME | CUSTOMER ADDRESS

When processing the Purchase Orders file, for example, the details of
the stock item ordered can be picked up using the Stock Code as the key
to the Stock File, and the supplier details can be similarly obtained from
the Suppliers File using the Supp Code key.

Introduction to SCULPTOR 3/86 page 1-5
1.2 Data Storage with SCULPTOR (cont.)

1.3 THE SCULPTOR PROGRAM SUITE

The SCULPTOR Program Development System consists of a number of
programs which are designed to perform particular tasks in the building
of a SCULPTOR application, and utility programs which are used when
setting up the system and for maintenance and general support
thereafter. The programs are as follows:

Program
Name
describe

newkf

cf

sage

cr

sagerep

menu

query

Description

The describe program is used to define the record
layout for a data file. Both key fields and data fields are
described, and the output of this program is referred to
as a Data Dictionary.

The newkf program is used to create a new Keyed File
from the record description specified in the data
dictionary.

cf is a compiler which reads your source language
program {written using the SCULPTOR screen language
commands), checks for errors, and produces a file of
intermediate code for the sage interpreter to read at run
time.

The sage interpreter runs the interactive screen form
programs compiled by cf.

cr is a compiler which reads your source language
program {(written using the SCULPTOR report language
commands), checks for errors, and produces a file of
intermediate code for the sagerep interpreter to read at
run time.

The sagerep interpreter runs the batch processing and
report programs compiled by ecr.

The menu program is a text file interpreter which
produces a neatly formatted menu on the screen for
access to the applications programs you have created.

The query program provides a simple method of
displaying or printing information from SCULPTOR data
files.

page 1-6

3/86 Introduction to SCULPTOR
1.3 The SCULPTOR Program Suite

Program
Name

sg

rg

sageform

kfcheck,
kfcopy,
kfdet & kfri

reformat

Icf

setvdu/
decvdu

setprinter/
decprinter

Description

The sg program is an automatic program generator for
screen form programs. From the Data Dictionary output
of the describe program, sg will create a screen form
and generate an interactive program for it. An option
within sg enables you to amend the standard details of
the screen form and the program.

The rg program is an automatic program generator for
report programs. From the Data Dictionary output of the
describe program, rg will create a report layout and
generate the program to extract the information for the
report from the data file. An option within rg enables
you to amend the standard details of the report layout
and the program.

The sageform program is used to provide a printed
version of a screen form.

The Keyed File Utilities provide facilities for checking the
integrity, copying, displaying details, and rebuilding the
index of Keyed Files.

The reformat program is used to reorganise a Keyed File
when the record layout has been changed.

The lcf program is the means by which you can adjust
the system for different language configurations, such
as translations of standard text items and the format of
dates.

The VDU parameter file programs are used to set up and
decode the parameters that describe the way in which
your particular VDU terminal operates. (A set of
standard parameter files is supplied with the SCULPTOR
package.)

The printer parameter file programs are used to set up
and decode the parameters that describe the way in
which your particular printer operates. (A set of
standard parameter files is supplied with the SCULPTOR
package.)

Introduction to SCULPTOR

3/86 page 1-7

1.3 The SCULPTOR Program Suite (cont.)

Diagram of the SCULPTOR Program Suite

SCREEN
FORM
AUTOMATIC TEXT voU
SCREEN EDITOR sage ¢ PARAMETER menu
PROGRAM FILES
sg

A
A\

SSEEECNE — »| COMPIER LE{ET
PROGRAM of

- newkf -— .

describe H DATA reformat
DICTIONARIES
AUTOMATIC REPORT
REPORT COMPILER
PROGRAM > SOURCE er
g PROGRAM
TexT PRINTER
sagerep «4——»| PARAMETER
EDITOR
FILES
2 D
2 D
2 bl
D REPORT D
o)]
b} 2
'l/

Note: The diagram indicates only the major relationships between the
modules, and is not intended to show all the interactions between the
various programs.

page 1-8 3/86 Introduction to SCULPTOR
1.3 The SCULPTOR Program Suite {cont.)

1.4 DEFAULT VALUES

Throughout the SCULPTOR programs, there are many instances where
the system expects a value to be input to define an item such as a field
format, the gap between printed items, or the width or depth of the
screen. If no value is input, the system assumes a standard value for the
item. These standard values are known as default values. Considerable
care has been exercised in selecting the default values so that, as often
as possible, the most commonly required result can be achieved simply
by doing nothing. Any of the default values, however, can be
overwritten if a value other than the default value is required. The
SCULPTOR Reference Manual gives details of the default values in the
sections on the relevant programs and commands.

1.5 PROGRAMMING STANDARDS AND PRACTICES

The SCULPTOR system can be used to create a complex network of
interlinked data files which are accessed, updated and processed by a
large number of applications programs. Because of the numbers of both
files and programs that can be involved in a single application, it is
advisable to employ some basic programming standards and practices
to ensure that errors are not caused simply by incompatible
programming techniques.

An example of an advantageous adoption of a simple standard practice
can be found in the naming of fields within data records (part of the
describe program): to guard against possible duplication of field names,
each field name can be preceded by a one or two letter abbreviation of
the file name. Thus the order number field in the Purchase file record
could be named p_ordno, and the order number field in the Sales file
record could be named s_ordno. This simple technique goes a long way
towards ensuring that each field name is unique.

Some examples of coding standards can be found in the sample
programs given in Appendix A.

Introduction to SCULPTOR 3/86 page 1-9
1.4 Default Values, 1.5 Programming Standards

SN31: 3P KEYED FILES — How to
Describe and Create

them

Keyed files (also referred to as keyfiles) form the database at the heart of
each system created by SCULPTOR. This chapter describes the structure
and organisation of data files and indexes which, together, form keyed
files, and explains the use of the describe and newkf programs. The
chapter is divided into five sections:

Section Page
2.1 Filesand File Structures.. ... 2-2
2.2 Data DiCtionaries. ... 2-4
2.3 Choosing Key Fields...........cooooo 2-5
2.4 The describe Program.. 2-6
2.5 Thenewkf Program................... 2-13
Introduction to SCULPTOR 3/86 page 2-1

2. Keyed Files

2.1 FILES AND FILE STRUCTURES

in any system that you create using SCULPTOR, informationis storedin a
database of index sequential files. Each of these index sequential files
consists of a data file and an associated index. The index system used by
SCULPTOR is known as a B-Tree index, which has the advantages that
insertion, retrieval and deletion of records is very fast, and, since the
index remains permanently sorted, no file re-organisation is necessary.

It is important to understand that the index is sorted and sequenced
(logically, rather than physically) according to the field in each record
which you designate as the Key Field. If you select the employee
surname as the main key field for your personnel records, the index will
be sorted, logically, into alphabetic order of employee surname. Reading
the file and retrieving records in key field sequence provides for very rapid
retrieval. However, if you attempt to read the same file without specifying
the primary key (e.g. using the forename field only as the key), the
benefits of the index sequential system are lost, and retrieval time can be
much slower, particularly on a large file.

The diagram below indicates, very simply, the relationship between the

records in the Index File and those in the Data File.

index Data Records

BEY 4] Other data fields ...

| KEY 17| Other data fieids ...
KEY8 | Other data fields

l
| KEY2 | Other daa fields ..
l

KEY 25| Other data fields ..

efc.

KEY 1 Other data fields ...

| kev 10| Otner data fields .

KEY 3 Other data fields ...

page 2-2 3/86 Introduction to SCULPTOR
2.1 Files and File Structures

FILENAME CONVENTIONS

As you use the various SCULPTOR programs to create data files and
indexes and to generate screen form programs and report programs, the
system uses a simple method of naming to identify all the files that are
associated with your original data file. It is worthwhile becoming familiar
with these filename conventions even before the different activities are
explained in detail.

The choice of name for your original data file is entirely your own (with
the exception of a few SCULPTOR reserved words). However, if the
application is intended to be portable, it is advisable to ensure that the
various operating system restrictions are adhered to, for example — the
MS DOS limit of eight characters with an optional three character
extension.

File Extension Example
Data file None orders
Data dictionary .d orders.d
Index file k orders .k
Screen program {source code) f orders.f
Screen program {compiled) g orders.g
Report program (source code) T orders.r
Report program {compiled) q orders.q
Menu program .m orders.m

FILE STRUCTURE

The structure of the data file is set up using the describe program to
define the field sizes and types. This information is stored in the data
dictionary for the file. However, the actual splitting of each record into
the fields of the different types is a logical operation which is performed
by the sage or sagerep interpreters at run time. Most of the keyfile utility
programs are not aware of the internal structure of the file, with the
exception of the location and size of the key within the record.

Introduction to SCULPTOR 3/86 page 2-3
2.1 File and File Structures (cont.}

2.2 DATA DICTIONARIES

A Data Dictionary is a set of descriptions defining the type of data which
is to be stored in a file. This is where the record structure of a file is
separated logically into fields, and where the attributes of each field are
specified. When a Data Dictionary has been created for a file, any
programs that use the file will have access to the definitions that have
been set up.

The first stage in developing a SCULPTOR application is to create the
Data Dictionary for each data file. However, before starting work on your
computer terminal, you should first decide on the basic data storage
requirements for each record:

® \What data items are to be stored in each record?

® How much space is required for each field?

® What type of information is to be stored {e.g. text, date, money)?
® Which field (or fields} will be used as the Key?

This last point is very important. The key used must always produce a
unigue index reference to each record, so the possibility of two records
with the same key must be completely eliminated. If the first data field
that you consider for the Key Field does not achieve this, then it will be
necessary to specify additional fields to form the Key. (Refer to Section
2.3 of this manual for examples of choosing Key Fields.)

The other point about the selection of the Key is that the logical ordering
of the index sequential file will be in Key sequence. You should therefore
be sure that the key you select is going to provide the required sequence
for retrieval and processing of records within the file.

When you have decided on the basic elements of your file design, use the
SCULPTOR program called describe to create a Data Dictionary. Section
2.4 of this manual gives details of using the describe program.

page 2-4 3/86 Introduction to SCULPTOR
2.2 Data Dictionaries

2.3 CHOOSING KEY FIELDS

There are two purposes in choosing fields from a data record to form the
Key for the record:

1. Providing a unique identifier for the record.
2. Sorting the file into the required sequence.

If you specify more than one field to form the key, the hierarchy of the
sorting sequence will correspond to the order in which you specify the
key fields. Thus Key Field 1 gives the main sequence; Key Field 2 gives
the subsidiary sequence within the main sequence, and so on.

Consider the following examples of Key Fields selected for a file to store
customer records:

Key Fields Comments

forename, surname This may provide a unique key, but the order of
the Key Fields will cause the file to be sorted into
Forename sequence.

custno, surname Assuming that the Customer Number is unique
for each customer, the Surname field need not
be included in the Key as it is not serving either of
the two required purposes.

custref If a suitable customer code system is chosen
{e.g. an abbreviation of the surname), this is a
simple method of achieving fast direct access
and a sensible file sequence.

surname, custno This provides file sequencing in surname order,
which is desirable for reports. If fast direct
access is required by “‘custno’’ alone, a second
index file must be built with an inverted key (i.e.
custno, surname).

Any type of field can be used as a key field, but it is advisable to avoid
using floating point fields and fields which may contain negative
numbers, as these can have undesirable effects on file sequencing.

Introduction to SCULPTOR 3/86 page 2-5
2.3 Choosing Key Fields

2.4 THE describe PROGRAM

The first stage in the creation of a SCULPTOR file is the definition of the
record structure using the SCULPTOR program called describe.

ACCESS

On the SCULPTOR Development Menu, select option 1. The system
waits for you to enter the name of the file for which you want to create a
Data Dictionary. Alternatively, type describe < filename> to call the
program from your directory. When you enter the name of your data file
{in the example below, the filename is "‘custmrs’’) the system displays
the following text:

Descriptors for custmrs

For each field enter:
name,heading, type&size,format ;validation
Type h for help

KEY FIELDS
1:

page 2-6 3/86 Introduction to SCULPTOR
2.4 The describe Program

The cursor waits for you to type in the field description for Key Field 1.
When you finish the Key Field 1 description and press return (or enter],
the system displays *2:"" on the next line and waits for the description for
the second key field. If you do not want a second key field, simply press
return to move on to describing the data fields.

Each line of description consists of entries for the following items, typed
one after the other, but separated by commas:

name The field name.

heading The heading to be displayed on the screen or in reports.

type&size The type of data to be stored and the size of the field.

format Special instructions for the format of the field when
displayed or printed in reports.

validation Specifying limitations as to the permitted values that can

be stored in this field.

Each of these parts of the description is explained briefly in the following
paragraphs.

FIELD NAMES

Each field must be given a reference name which will be used to access
the field by all programs that read, process or update the file. It is
recommended most strongly that field names should be selected which
are concise, meaningful and unlikely to be duplicated in other files within
the database. A useful field naming practice to adopt is to prefix each
name with a cne or two letter abbreviation of the file name. File names
can contain alphabetic characters, the underscore character (_), and the
numerals 0 to 9. The first character must not be a numeral, and all other
punctuation and special characters are prohibited. For all practical
applications, there is no limit to the length of the field name. Examples
are as follows:

su_name SUPPLIERS file, the field to contain the supplier name.

tr_date TRANSACTION file, the field to contain the transaction
date.

ordquant the field to contain the order quantity.

Pressing return instead of entering a field name will end entry of Key Field
descriptions or Data Field descriptions, whichever was being entered at
the time. After entering the field name, type a comma and then enter the
heading.

Introduction to SCULPTOR 3/86 page 2-7
2.4 The describe Program (cont.)

FIELD HEADINGS

The field heading you enter here will be stored by SCULPTOR as the
default heading for the field, to be used when the field is displayed on the
screen or printed in reports. When you are generating screen form
programs or report programs, you will be able to override this default
heading, if required. There are no restrictions as to the characters used
for the heading, but, if it is to contain any punctuation characters, the
entire heading should be enclosed in quotation marks.

Entering a single space followed by a comma will produce a blank
heading. If you enter nothing at all for the heading f{i.e. two consecutive
commas}, the field name will be used as the heading. {Remember that
the entire field name will be used as the heading — including the file
prefix, if used.)

Examples of field names and headings:

su_name,Supplier Name,

tr_date, TRANSACTION DATE,

o_quant, , (no heading)
quantity,, (field name “"quantity’’ used as
heading)

c_freq,"LOW, MED or HIGH", (heading contains a comma)

FIELD TYPE AND SIZE

This entry is used to describe the type of data to be stored in the field and
the storage size. For numeric fields, the size does not correspond to the
number of digits, but indicates a range. The permitted letters (indicating
type) and numbers (indicating size) are as follows:

an = alphanumeric text n = length of text, up to 2b5 chs.
in = integer {whole number) n =1 0 to 2b5
n=2 -32767 to 32767
n=4 Refer to Section 2.5
dn = date n=4 of the SCULPTOR
mn = money n=4 Reference Manual
n=28 for exact details of
rn = real {i.e. decimal, n=238 field size limitations.
or floating point)
page 2-8 10/86 Introduction to SCULPTOR

2.4 The describe Program (cont.)

Examples of field names, headings, type and size:

su_name,Supplier Name,a30
tr_date, TRANSACTION DATE,d4
o_value,Value,m4

quantity, ,i2

The Format and Validation entries are optional, so, if you do not want to
enter any value for these items, you can just press return to move on to
the description of the next field.

FORMAT

The format description enables you to provide special instructions for the
display of the field on the screen, or the way in which it will be printed in
reports. If you do not make any entry here, SCULPTOR will use suitable
defaults for the type and size of field. Some of the possible entries are
shown below: refer to Chapter 2 of the SCULPTOR Reference Manual for
further details.

Alphanumeric fields: u = change input to upper case
I change input to lower case
e = do notdisplay input (e.g. for

passwords)
Numeric fields: # = digits, leading zeroes suppressed
0 = digits with feading zeroes

*

digits with leading asterisks

Date fields: dd/mm/yyyy (for example — used to
alter the standard date format)

Examples:

su_name,Supplier Name,a30,u name will appear in upper case
tr_date, TRANSACTION DATE,d4,"dd mm yy”

spaces for date separators
o_value,Value,m4, ##### . ## no leading zeroes

If validation values are t0 be specified, the format should be terminated
with a semi-colon. Otherwise, you can just press return to move on to the
next field description.

Introduction to SCULPTOR 3/86 page 2-9
2.4 The desecribe Program (cont.)

VALIDATION

When you are running your screen form program, the data that you input
is automatically validated by the system to ensure that the data is the
correct type and size for the field. For example, a number containing a
decimal point would be rejected as input for an integer field. Further
validation can be specified by adding a list of the acceptable values to the
field description. This should be done with care, as restrictions that are
imposed at this stage can not be overridden later, when running the
program.

Both individual values and ranges of values can be specified. Ranges are
defined by typing the lower value followed by a hyphen and the upper
value, such as 0-9. Each value or range of values is separated by a
comma. If “'no input’’ is acceptable to your program specification, this
should be included in the validation list by typing two successive
commas. The validation list is preceded by a semi-coion.

Examples of field descriptions with validation lists:

c_ireq,"LOW, MED or HIGH",al,u;L,M,H
m_chno,"CHASSIS NO."”,i2,00000;,00100-29999,40000-69999

The first example will only accept entries of L, M or H (although entries of
[, m or h would be accepted and changed into upper case because of the
Format descriptor — u)}. The second example will accept *‘no input’’, or
a number in one of the specified ranges.

Chapter 2 of the SCULPTOR Reference Manual gives further details of
using validation lists.

When you have typed your validation list for a field, press return to move
on to the next field description.

COMPLETING THE RECORD DESCRIPTION

When you have no further fields to describe, press the return key to
complete the description. The system displays a line of options:

List, Change, Delete, Insert, Abandon, Save, Help

page 2-10 3/86 Introduction to SCULPTOR
2.4 The describe Program (cont.)

To select an option, type the initial letter of the option and press return. If
you are satisfied with the descriptions you have entered, type S for the
Save option to store the record description. The other options are
explained in Chapter 2 of the SCULPTOR Reference Manual.

CHANGING AN EXISTING DESCRIPTION

When you access the describe program, entering the name of an
existing descriptor file enables you to alter any of the field descriptions for
that record type. (Incidentally, when entering the filename you need not
type in the .d extension.) The system then displays the list of options
given above. You can then select the required option and make the
necessary alterations to the field descriptions.

WARNING: If fields are inserted or deleted or if field sizes are altered, the
existing keyed file must be reformatted using the reformat program, and
all the sage and sagerep programs that access the file must be re-
compiled. This is essential to avoid file corruption. Complete details of
the reformat program are given in Chapter 5 of the SCULPTOR
Reference Manual.

MONEY FIELDS AND DATE FIELDS

Money fields are stored in the lower currency unit (e.g. pence for sterling,
or cents for US $), which helps to avoid rounding errors. Money values
which are input in the screen form program are validated to ensure that
they are either integer values of the higher currency unit, or that they
contain exactly two digits following the decimal point. For example:

INPUT: STORED AS:
125 12500

12.5 Invalid

12.50 1250

12.508 Invalid

If, in a program, you are assigning a value to a money field (as opposed to
inputting a value on the screen form), you must remember to use the
lower currency unit. E.g. to assign a value of $12.50, your statement
must use the value 1250.

Introduction to SCULPTOR 3/86 page 2-11
2.4 The describe Program (cont.)

Date fields are stored internaily as a day number, the sequence starting
with day 1 being 1/1/0001. The format for the input and display of dates
can be set using the Language ‘Configuration program lef. Most
separators are permitted, and either two or four digits can be used for the
year. If, in a program, you are assigning a value to a date field {(as
opposed to inputting a date on a screen form}, you must remember to
use the semi-colon separator, e.g. 31;3;86. If you assigned a value of
31/3/86, the value would be interpreted as an arithmetical expression,
calculated as 31 divided by 3 divided by 86.

EXAMPLE

The example below shows the screen contents when the field
descriptors have been entered for a simple sales orders file:

Descriptors for orders

For each field enter:
name ,heading, type&size,format jvalidation
Type h for help

KEY F1ELDS
1:0_ordno,ORDER NO,i2,00000
2:0 stcode,STOCK CODE, a6

3:

DATA FIELDS

3:0_custno,CUSTOMER NO,i2,00000

4:0 _quant,QUANTITY,i4,"££8, 888,888
5:0 ordate,ORDER DATE,d4

6:0 deldate,DELIVERY DATE,d4

7:0 method,DELIVERY METHOD,11,&;,1-7
8

9

10 _pandc,PACKING & CARRIAGE,m&4
to_vat,VAT,m4

10:0_value, VALUE,m4

11:

It is interesting to note that the sterling pound sign has replaced the #
character in the numeric formats in the above example. In the ASCII
character set, these two characters have the same value. Some
terminals and printers display a pound sign, others a # character.

page 2-12 10/86 Introduction to SCULPTOR
2.4 The describe Program (cont.)

2.5 THE newkf PROGRAM

When the Data Dictionary has been created using the describe program,
the second stage in the process of creating a SCULPTOR file is to create
the new, empty key file. This is achieved using the newkf program.

To call up the newkf program, simply type newkf followed by a space
and the name of the file you want to create. For example:

newk{ custmrs

The Data Dictionary for the “"custmrs’’ file must already exist for newkf
to read the record size and key field location. When newkf has read this
information and created the key file, the system displays the message:

custmrs created

WARNING: newkf creates an empty file. If the named file already exists,
it is recreated as a new, empty file and the existing data is destroyed.

More than one key file can be created from one newkf command
statement by listing all the required filenames, separated by spaces. For
example:

newk{ afile bfile cfile

Two additional features exist for the newkf program, selected by typing
either -1 or -rn after newkf and before the filename. The -i option creates
only an index file with no data records. The -rn option, which is only
normally used with the OS9 operating system, creates a file with space
for the number of records specified by the number n, for example:

newk{ -r2500 customers

Further details of these options are given in Section b.1 of the SCULPTOR
Reference Manual.

When you have created the key files for your SCULPTOR application, you
are then ready to start writing screen form programs to input and amend
information for the files, and report programs to produce printed output
from the filed information.

Introduction to SCULPTOR 3/86 page 2-13
2.5 The newkf Program

oINS AUTOMATIC PROGRAM
GENERATORS

When you have defined the record layout and created your keyfile using
the describe and newkf programs, the next stage in building your
SCULPTOR application is to create two types of program: a screen form
program to enable you to input, amend and delete data records in the
keyfile, and a report program to produce printed reports from the data.

There are two methods of generating these programs. The first method is
to use the Automatic Program Generators sg and rg to create standard
programs. The second method is to use the SCULPTOR screen and
report languages to write your own programs. This chapter explains the
first method; the second method is described in Chapters 4 and b.

This chapter is divided into two sections:

Section Page
3.1 Automatic Screen Form Program Generation{sg)..................... 3-2
3.2 Automatic Report Program Generation(rg)............................. 3-4
Introduction to SCULPTOR 3/86 page 3-1

3. Automatic Program Generators

3.1 AUTOMATIC SCREEN FORM PROGRAM
GENERATION (sq)

The utility program sg is used to create a standard screen form program.
Using the Data Dictionary created by the describe program, sg formats
the fields from the data record into boxes on a screen form, and prepares
a standard list of options for the input, amendment or deletion of records
from the file. The way in which the fields are arranged on the screen will
depend on the number and size of the fields in the record. If there are
more fields than can be included on the screen, sg will display a message
to that effect and the program will terminate. The sg -a option should
then be used to select the fields required to be displayed (see page 3-3).

The example below shows a typical screen form layout that sg would
produce for a simple file having two key fields and seven data fields:

SCREEN FORM HEADING
Todays Date [

Key Field 1 {] Key Field 2 []

Data Field
Data Field
Data Field
Data Field
Data Field
Data Field
Data Field

]

NNV W N
m . —_—
—

izinsert f=find n=next m=match a=amend d=delete e=zexit

Which option do you require?

page 3-2 3/86 Introduction to SCULPTOR
3.1 Automatic Screen Form Program Generation (sg)

ACCESS

To create your standard screen form program, simply type sg followed
by the name of the data file you want to use. For example:

sg custmrs

Note that the data dictionary for the ““custmrs’’ file must already have
been defined using the describe program. sg then obtains the key field
and data field details from custmrs.d and creates a new file, custmrs.f,
containing the source code of the screen form program. This file is
automatically compiled to produce the object code file — custmrs.g.

To run your screen form program, type sage foliowed by the filename,
for example:

sage custmrs

ALTERNATIVE PROGRAMS

If you want to create a screen form program that differs from the
standard, you can use the sg -a option, for example:

sg -a custmrs

This option enables you to change the program name, the screen title,
the field headings and the output formats from the defaults that would be
provided by sg. It also allows you to select particular fields for the screen
form in instances when sg has been unable to create a screen form with
all the fields on one screen. When you use this option, the system
displays a prompt screen on which you can select and enter the
amendments that you require.

Note: You can also make amendments to the standard program
produced by sg. This is done by calling up the source code file (e.g.
custmrs.f) in your text editor and amending the actual program
statements. When you have altered your program using this method, you
will also have to recompile the program using the compiler ¢f. To attempt
this method, however, you should already be familiar with the writing of a
sage program, as described in Chapter 4.

Introduction to SCULPTOR 3/86 page 3-3
3.1 Automatic Screen Form Program Generation {sg) {(cont.)

3.2 AUTOMATIC REPORT PROGRAM GENERATION (rg)

The utility program rg is used to create a standard report program. Using
the Data Dictionary created by the describe program, rg formats the
fields from the data record into an appropriate set of headings and
columns for a printed report. The actual arrangement of the fields in the
report will depend on the number and size of the fields in the record. If
there are more fields than can be accommodated on one line of the
report, you can use the rg -a option described on page 3-5 to select the
fields to be included in the report layout. This option is recommended for
most applications, unless the file consists of records that contain only a
few, short fields.

The example below shows a typical report layout that rg would produce
for a simple file containing six fields:

R REPORT HEADING)
Page No Date
Field Headings Aligned Above The Data
XXX XX XXXXXXX XXX X XXX XX XXX XX XXX XXX XXX XXX XXX

:) XXX XXX XXX X XXX XXXXX XX XXX XXX 3
XXXX XXXXX XXX XXX XXX XX XXX XX 1. 9.2.2.9.9.9.9.9.9.9.9.9.$99.993

:) XXX XX XXXOHXXX XX XXX XXXXX XX XXX X XXX XXX XXX XX XXX D

END OF REPORT

ACCESS

To create your standard report program, simply type rg followed by the
name of the data file you want to use. For example:

rg orders

Note that the data dictionary for the Orders file must already have been
defined using the describe program. rg then obtains the field details and

page 3-4 3/86 introduction to SCULPTOR
3.2 Automatic Report Program Generation (rg)

field headings from the file orders.d and creates a new file, orders.r,
containing the source code of the report program. This file is
automatically compiled to produce the object code file — orders.q.

To run your report program, type sagerep followed by the filename, for
for example:

sagerep orders

ALTERNATIVE PROGRAMS

If you want to create a report program that differs from the standard, you
can use the rg -a option, for example:

rqg -a orders

This option enables you to change the program name, the report title, the
field headings and the output formats from the defaults that would be
provided by rg. It also allows you to select particular fields for the reportin
instances where rg has not been able to accommodate all the fields on
one line. Other amendments you can make are suppressing the display of
repeated key values, and producing totals for numeric fields. When you
use this option, the system displays a prompt screen on which you can
select and enter the amendments that you require.

Note: You can also make amendments to the standard report program
produced by rg. This is done by by calling up the source code file (e.g.
orders.r} in your text editor and amending the actual program
statements. When you have altered your program using this method, you
will also have to recompile the program using the compiler cr. To attempt
this method, however, you should already be familiar with the writing of a
sagerep program, as described in Chapter 5.

Introduction to SCULPTOR 3/86 page 3-5
3.2 Automatic Report Program Generation (rg) (cont.)

o NSNS 3’s SCREEN FORM
PROGRAMS (sage)

Screen form programs are used to input data to keyfiles, the data being
entered in specially formatted boxes on the screen that correspond to the
fields in the data record. Subseguently, the screen form programs are
also used to insert or delete records and to update or amend the existing
information.

A standard screen form program can be created using the sg program, as
described in Section 3.1. These standard programs are entirely
satisfactory for straightforward applications, but they do have
limitations, such as the restriction of only one data file. If you want to
create a more complex program which can read several data files and
perform more specialised file operations, it is necessary to write your
own source code program using the SCULPTOR screen language.

The source code program is written using whichever text editor is
available on your system. When the program is complete, you use the
compiler program cf to read your source code text file and create the
object code program for use at run time.

This chapter describes the structure of sage programs and explains the
use of a selection of the SCULPTOR screen language commands.
Complete details of writing sage programs can be found in Chapter 3 of
the SCULPTOR Reference Manual.

This chapter is divided into six sections:

Section Page
4.1 Screen Form Program Structure. ..o 4-2
4.2 sage Declarations. ... 4-5
4.3 Screen Form Design. ... 4-7
4.4 sage Program OptionS........oooiiiiii i 4-9
4.5 Compiling the sage Program...................ooo i, 4-17
4.6 Running thesage Program...................coiii i 4-18
Introduction to SCULPTOR 3/86 page 4-1

4. Screen Form Programs {sage)

4.1 SCREEN FORM PROGRAM STRUCTURE

The structure of a screen form program relates to the layout of the final
product — the screen form. The example below is a typical screen form,
as produced by the program sg:

SCREEN FORM HEADING
Todays Date []

Key Field 1 [] Key Field 2 [1

Data Field]
Data Field
Data Field
Data Field
Data Field
Data Field
Data Field

N oV R W N -
—_— e — e
—

izinsert f=find nznext m=match a=amend d=delete e=exit

Which option do you require?

At the top of the screen is the Screen Form Heading, or title line. This is
followed by the date field, and then a field heading and space for the
appropriate amount of data for each of the key fields and data fields, the
space being indicated by the delimiting characters: [1. Atthe foot
of the screen is the line specifying the list of options for the file operations
that can be performed, and the prompt asking for an option to be
selected.

page 4-2 3/86 Introduction to SCULPTOR
4.1 Screen Form Program Structure

To produce such a screen form, the sage program must perform the
following tasks:

@ Define a title for the program.

® Identify all the files that will be accessed by the program, and
any temporary fields that are required, such as the system
date field.

@ List all the fields that are to be displayed on the screen and
specify their position on the screen by row and column
number.

® Specify the options for the list at the foot of the screen, and,
for each option, define the processing that should take place
when the option is selected.

The program structure that enables these tasks to be achieved consists
of different types of program line, which are identified by the initial
character on the line:

The title line
The first line in the program is the title line, irrespective of the initial
character.

Declarations

Lines that start with an exclamation mark (!} are declarations. These are
statements that identify the files that are to be read, specify temporary
fields, define different box delimiting characters, and perform other
initialising tasks.

Box Definitions

Lines that start with a plus sign (+) are box definitions. These are
statements that specify the position on the screen of the boxes for each
of the fields that are to be displayed.

Options
Lines that start with an asterisk (*) are options. Each option specifies the
code and option name, and is followed by the program statements that
specify the processing that is to take place when that particular option is
selected.

Introduction to SCULPTOR 3/86 page 4-3
4.1 Screen Form Program Structure (cont.)

Comments
Comment lines can be included anywhere in the program by starting the
line with a period: these lines are ignored by the program compiler.

Program Statements

Lines starting with any other character are program statements. If the
first word on the line is not recognised as one of the SCULPTOR screen
language words or a field name, it is taken to be a line label. Multiple
statements can be placed on one line by separating them with colons. To
continue a statement onto a second line, the first line should be
terminated with a backslash (\).

A typical sage program structure groups these different line types
together as follows:

Screen Form Title line

!declaration

Ideclaration declarations, as required
ldeclaration

+ box definition box definitions for each

+ box definition field to be displayed on the

screen form

+box definition

*option option names, and their
program statements associated program

statements, for each option
*option to be included at the foot
program statements of the screen form
+option

program statements

subroutines subroutines are identified
by line labels, and can
appear anywhere in the
program

page 4-4 3/86 Introduction to SCULPTOR
4.7 Screen Form Program Structure {cont.)

4.2 sage DECLARATIONS

After the screen form title line, the first section of a sage program
contains one or more declarations. These lines, commencing with an
exclamation mark, are used to list the files which are to be accessed by
the program, and to set up other initial features of the program. The
declarations that are available in sage are listed below. The full
explanations of the declarations can be found in Section 3.9 of the
SCULPTOR Reference Manual.

FILE DECLARATIONS

Ifile Declare a file which is initially open. A separate declaration is
required for each file that is to be accessed. A file can also be
declared using a file identifier and a pathname (the pathname
is omitted when the file identifier is the filename). The file
identifier is then used to refer to the file in subsequent file
access commands. For example:

Ifile orders
'file al /usr/acc/accounts

Icfile Declare afile which is initially closed. This is frequently used to
increase the number of files declared above the operating
system limit. For example:

Ictile rates

Irecord Declare an alternative record layout for a file. The file must
already have been declared, and the alternative layout must
have been defined using the describe program. For example:

record orders ordersl

SCREEN DECLARATIONS

lbox Define box delimiters to be used on the screen instead of the
standard ones, which are normally [1. For example:
lbox <>

!depth Define the number of lines required for the screen depth (the
default being 24). For example:

!depth 20

'width Define the number of columns required for the screen width
{the default being 80}. For example:

lwidth 132

Introduction to SCULPTOR 3/86 page 4-5
4.2 sage Declarations

OTHER DECLARATIONS

Itemp

Iscroll

Declare a temporary field for use within the program. Fields
that you declare here can be used in the program in the same
way as ordinary keyfile fields. As in the describe program,
fields must have a name, can have a heading, and must have a
type and size. For example:

ltemp total,Total,m4

These items are defined in the same way as for field
descriptions in the describe program: refer to Section 2.4 of
this manual for details. (Termporary fields cannot have
automatic validation lists.) Some special temporary fields can
also be declared: these are described in Section 3.9 of the
SCULPTOR Reference Manual.

Define an area on the screen where data is to be displayed in
columns under a heading line. The two numbers after the
declaration define the line number of the heading line, and the
number of rows of boxes required in each column. For
example:

Iscroll 8,12

(Twelve rows of boxes under the headings in line 8.)

For a simple application, you will not reguire to declare closed files,
alternative record layouts or scroll areas, and the screen declarations can
be left as the default values. An example of the declarations for a simple
program could be as follows:

ORDER ENTRY PROGRAM

Ifile orders

lfile stock

lfile custmrs

ltemp date,Today’s Date,d4
temp total, Total, m4

Note that blank lines can be included in the program to improve clarity:
like comment lines, they are ignored by the compiler.

page 4-6

10/86 Introduction to SCULPTOR
4.2 sage Declarations (cont.)

4.3 SCREEN FORM DESIGN

The design of the screen form is achieved using the Box Definitions. All
fields for which values are to be input or displayed in the program must be
given a box definition line starting with a plus sign. The screen boxes can
be defined in any order. However, because input and display of a range
of fields is carried out in the order in which the boxes were defined, it is
usual to write the box definitions in a logical order of screen position.

A box definition consists of the following elements:
+ field name, field heading, row, column, format

The field heading and the format are optional, but the name, row and
column must be specified.

When designing your screen form, do not position boxes on the top line
or the bottom three lines of the screen. These lines are required for the
screen form title, the menu line, the prompt and the message area.

Field Name
The name must be that of a field from one of the declared files, or of a
declared temporary field. Terminate the name with a comma.

Field Heading

Type in the heading to be displayed to the left of the box, terminating with
a comma. If you make no entry for the heading (i.e. two consecutive
commas), the field heading from the data dictionary for the file is used. If
you want a blank heading, leave a single space between the commas.

Row and Column Numbers

The position specified by the row and column numbers is the position of
the first character of the data in the field, so you must remember to leave
space for the field heading and the box delimiter.

Format

if no entry is made for the format, the format from the data dictionary is
used. If you want a format different from the data dictionary one, type a
comma after the column number and define the required format in the
same way as in the describe program (refer to Section 2.4 of this
manual).

Introduction to SCULPTOR 3/86 page 4-7
4.3 Screen Form Design

For each box definition, the system will create a screen box bounded by
the box delimiting characters. These are normally [], butcan be
altered with a Ibox declaration, or by changing the default value in the
utility program Icf. For alphanumeric fields, the box width equals the field
width. For other field types, the field width depends on the format, which
is either specified in the box definition, or defaulted to the format from the

data dictionary.

Box Definition Examples
+ date,Today's Date, 2,70

+ cu_code, CUSTOMER NO 4,20

+ cu_name,,5,20
+ cu_addrl,,6,20
+cu_addr2, ,7,20
+ cu_addr3, ,8,20
+cu_addr4, ,9,20
+cu_tel,, 10,20

These examples produce
screen boxes positioned as
in the illustration below.

CUSTOMER NO
NAME
ADDRESS

TELEPHONE

Today's Date {

page 4-8

3/86 Introduction to SCULPTOR
4.3 Screen Form Design (cont.)

4.4 sage PROGRAM OPTIONS

When the declarations and box definitions have been completed, the
remaining part of a sage program consists of the options for the menu
line at the foot of the screen. Each option for the operations to be
performed on the data files (such as inserting, amending or deleting
records) is identified by an option title line, which is followed by the
program statements for that option.

The option title line starts with an asterisk and has the following format:
*» <code> = <description>

For example:
*f=tind

The code can be any one or two printable characters. The descriptions
should be kept short and the number of options fairly small as the options
are all merged into a single menu line at the foot of the screen. The
prompt line that appears beneath the menu is produced automatically by
the system. The menu line and prompt for a typical program might
appear as follows:

i=insert a=amend d =delete { =find n =next e = exit
Which option do you require?

The program options part of such a program would have six option
sections each starting with the relevant option title line, e.g. *i=Iinsert,
*a=amend, etc. When one of the options is selected during the running
of the program, control is passed to the commands in the section
following that option’s title line. Processing of those commands
continues until it is terminated in one of the following ways:

® An end statement returns controf to the option prompt.

® An exit statement terminates the program completely.

® An error condition causes a message to be displayed: control is
returned to the option prompt.

® The CANCEL key is used to cancel input for an option and return to
the option prompt.

The commands that can be used in the program statements are
described in the following pages.

Introduction to SCULPTOR 3/86 page 4-9
4 .4 sage Program Options

There are more than forty commands in the SCULPTOR screen
language. For a complete list of the commands and a full explanation of
each command, refer to Section 3.10 of the SCULPTOR Reference
Manual. In the following pages, the different categories of command are
explained briefly with selected examples of particular commands.

KEYFILE CONTROL COMMANDS

These commands are used to control the use of the declared keyfiles.
The available commands include:

open, close, rewind, unlock

For example, if the orders file was declared as a closed file (using the
Icfile declaration), the program statements would need to include a
command to open the orders file before any attempt is made to access it.
The syntax for such a command is simply:

open orders

KEYFILE ACCESS COMMANDS

When a keyfile is declared (see Section 4.2 of this manual), the system
sets up a record buffer for the file. The access commands are used to
search the keyfile for a particular record and to read the data into the
record buffer. The available commands include:

read, find, next, prev, match, readkey, nextkey, testkey, check

The read and find commands are used for direct access to a file. The
filename must be specified and there is an option to specify a key other
than the file's natural keyfields. The read command transfers a record to
the record buffer only if there is an exact match with the key field; the find
command transfers a record if there is a partial match.

The next, prev and match commands are normally used after a direct
access command to transfer to the record buffer the record whese key is
next higher (next), nextlower (prev) or the same as (match) the key used
by the last direct access command. Thatis, the current value of the index
pointer in the index sequential file.

The readkey, nextkey and testkey commands search the index part of
the file, but do not transfer a record to the buffer. Their advantage is that
these operations are successful even if the associated data record is
locked.

page 4-10 3/86 Introduction to SCULPTOR
4.4 sage Program Options (cont.)

The check command is used to check that a record has been read from
the specified file and not written back or cleared.

An example of a read command with an alternative key specified:
read custmrs key = ordno

KEYFILE UPDATE COMMANDS

These commands are used to update the keyfile data by inserting new
records, writing amended information back to existing records and
deleting records. The commands are:

insert, write, delete

For the delete command, the key field value currently in the record buffer
must correspond to a record in the file (otherwise there is no record to
delete). For the insert command, the reverse is true: the current key field
value'-must be a new value that does not already exist in the keyfile.

For these commands, it is only necessary to specify the filename: the
actual record is determined by the current contents of the record buffer.
For example:

insert custmrs

SCREEN FORM COMMANDS

These commands are used to control the input and display of data on the
screen form. The commands include:

input, display, clear, preserve, newtorm, highlight,

For the input and display commands, the syntax requires either a single
box name or a range of box names. The display command displays on
the screen the current contents from the record buffers of the screen
boxes named. The input command positions the cursor at the beginning
of the first box specified and awaits input.

The clear command clears the contents of the specified boxes, if one or
more boxes are listed. With no box list, all screen boxes and the message
area are cleared and the record buffers are re-initialised, with the
exception of the record buffers of any files that have been saved using the
preserve command. The newform command clears all screen boxes
and re-displays an empty screen form.

Introduction to SCULPTOR 10/86 page 4-11
4.4 sage Program Options {cont.}

The highlight command is similar to the display command, but displays
the data with special screen highlighting, providing the terminal supports
this feature.

An example of an input command to a range of boxes:

input c_code-c_addr4

The cursor will wait at each box in turn, from c_code to c_addr4, forinput
to be made. Pressing the RETURN key moves on to the next box.

PROGRAM FLOW CONTROL COMMANDS

These commands are used to control the sequence of processing
statements within the program. The commands include:

goto, gosub, return, if...then...else, scroll

The goto command transfers control to the specified line label. gosub
calls a subroutine, which ends when a return command passes control
back to the main program. The if...then...else command sets up a
conditional test which can be followed with the desired subsequent
statements. The scroll command is used to control the input or display of
fields within a scroll area on the screen.

For example: if code = 0 then gosub NEWACC

MESSAGE DISPLAY COMMANDS

These commands deal with the display of error messages, information
messages and prompts. The commands are:

error, message, prompt

The error command is normally used when an unacceptable condition
has been identified in the program. It is usually followed by a goto
command to pass control to the appropriate part of the program for
correction of the error. The message command simply displays the
specified text expression at the bottom of the screen. The message
remains displayed until another message command is issued, or a clear
command without a box list is made. The prompt command displays a
text expression and waits for a response of y or n. Either response can be
used to pass control to a specified line label. Although not one of the
message display commands, the sleep command is often used in
conjunction with the message command to suspend execution for a
number of seconds to permit the user to read the message before a clear
command is issued.

page 4-12 10/86 Introduction to SCULPTOR
4.4 sage Program Options (cont.)

For example:

message “'Customer record deleted”
sleep 5
clear

The message will be displayed for five seconds before the screen is
cleared.

END COMMANDS
These commands are: end, exit

The end command is used to end the processing within an option and
pass control back to the option prompt. The exit command is used to
terminate the program altogether and return to the state from which the
sage program was called. Every option must terminate with an end
command to prevent processing from continuing through into the
statements for the next option. Most programs will include an exit
command, as this is the usual way to leave a sage program. The only
other normal termination is via a chain command. Uncontrolled
termination of a program, such as switching off the computer, can
damage the data files. exit is often included as a simple option:

e = exit
exit

PROGRAM LINKING COMMANDS

These commands interrupt processing to call another program or task.
The commands are:

chain, exec, execu

The chain command terminates the sage program, while the exec and
execu commands return control to the sage program when the
execution is completed, execu being used to call a task which does not
require screen display. (Note: Because these commands interface with
operating system facilities, the precise details of their operation will vary
slightly depending on the operating system in use.)

FIELD VALUE COMMANDS

These commands are used to assign a specified value to a field, or to
obtain a string with a specified value. The commands are:

let, setstr, getstr

Introduction to SCULPTOR 10/86 page 4-13
4 4 sage Program Options (cont.)

The let command designates a field and then assigns a value, either by
means of an expression, or by the name of another field, or a
combination of the two. The word let is optional and is usually omitted.
The setstr command overwrites a portion of the destination field with a
specified string of characters from the source field. The getstr command
obtains a string of characters from a designated portion of the source
field.

An example of a let command with the word let omitted:
o_value = o_qgty * st_price

This command assigns to the field ‘o_value’ the result of multiplying the
contents of the field o_qty by the contents of the field st_price.

DATE COMMANDS

These commands are used to decode and encode day number values for
the special date fields. The commands are:

decdate, encdate

decdate decodes the day number from the designated date field and
stores the appropriate figures in the special temporary fields day, month
and year, which must have been declared. encdate does the reverse and
encodes a day number for the designated field from the current values in
the day, month and year fields. The syntax is simply the command
followed by the date field name, e.g.

decdate duedate

PROGRAM ABORT CONTROL COMMANDS

These commands are used to enable or disable the two types of program
abort control. The commands are:

cancel, interrupts

if cancel is ON, the operator can abort any input operation by pressing
the CANCEL key. If cancel is OFF, the CANCEL key is ignored. If
interrupts are ON, the sage program will be aborted on receipt of a
standard keyboard interrupt; otherwise keyboard interrupts are ignored.
The syntax is simply the command followed by the word ON or OFF, e g.

cancel off

page 4-14 3/86 Introduction to SCULPTOR
4 4 sage Program Options (cont.)

SAGE EXPRESSIONS AND OPERATORS

Many of the sage commands can make use of operators to form complex
expressions using keyfile fields, temporary fields and constants. The
available operators are as follows:

ARITHMETIC

+ add

- subtract

* multiply

/ divide

% modulus (remainder after integer division)

STRING (i.e. for alphanumeric fields)

+ concatenation (keep trailing spaces)
/ concatenation (strip trailing spaces)
bw begins with

ct contains

RELATIONAL

= equal to

<> not equal to

< less than

> greater than

< = less than or equal to

> = greater than or equal to

LOGICAL

and logical ""and"’

or logical “"or”’

The precedence taken by these operators when used in combination
with each other is defined in Section 3.5 of the SCULPTOR Reference
Manual. The sequence of evaluation can also be controlled by the use of
parentheses in the normal way. The following examples show some uses
of operators and expressions with sage commands:

1) if c_bal > c_crlim then\
message "Credit limit exceeded”

2) name = forename/"“ " + surname

Introduction to SCULPTOR 3/86 page 4-15
4.4 sage Program Options (cont.)

3) if c_code bw "'S"” or c_code ct "X"” then\
gosub STANDING_ORDER

4) vat = (qty « price + carr) » 0.15

TRAPPING ERRORS

If the sage interpreter detects an error, such as a non-existent record or
no record selected, it displays an error message and performs a suitable
default action, such as returning control to the option prompt. By using
trap clauses, however, you can intercept the error and designate your
own line label to which control should be passed in the event of an error.

Trap clauses are included in the syntax of the command during which the
error would be detected. For instance, a file access command could
include a trap clause in case the specified record does not exist. The
general syntax for any trap clause is:

<trap code> = <label >

The available trap codes are listed below:

TRAP

CODE MEANING

bs BACKSPACE key pressed in first character of box
eoi End of input key pressed

ni No input entered for a box

nrs No record selected for the check, delete or write commands
nsr No such record found by file access command

re Record exists for insert or write commands

riu Record in use (by another user)

yes Response of 'y’ or "Y'’ to the prompt command
no Response of “'n’" or “'N’' to the prompt command

For example:

read custmrs nsr=M1 riu=M2

where M1 and M2 are the labels of the lines to which control is to be
passed.

The trap codes that can be used with each command are specified in the
syntax for the command: refer to Section 3.10 of the SCULPTOR
Reference Manual for details of individual commands.

page 4-16 10/86 Introduction to SCULPTOR
4.4 sage Program Options (cont.)

PROGRAMMING TECHNIQUES

Appendix A, at the end of this manual, provides an example of a
complete system of SCULPTOR programs, including both screen form
and report programs. Not all of the commands can reasonably be
demonstrated in a simple example, but a selection of the more common
uses are included.

45 COMPILING THE sage PROGRAM

When you have completed the writing of the program, you will have a
text file with a name terminating in a .f extension. This is your source
code program. For the sage interpreter to read your program, this text file
will have to be compiled using the compiler program ¢t. The syntax for
calling the compiler is:

cf <program name>

For example, if your program source code file is named “‘orders.f”’, the
call to compile it would be:

cf orders

{You do not actually have to type the "*.f'* as ¢f assumes it.) ¢f also
requires access to the data dictionaries (the .d files) for all keyfiles and
alternative record descriptors that have been declared in the sage
program using the !file, !cfile and Irecord declarations.

If the compilation is successful, the ¢f program creates a file with the
same name as the source code file, but with a .g extension. This is the
object code program which is used by the sage interpreter when you
actually run your sage program.

If the compilation is not successful, the .g file is not created (or, in the
case of a re-compilation, the existing .g file is left unaltered) and error
messages are output to identify the program errors. These error
messages identify the line number containing the error and the part of the
line that caused the error condition. You can then correct the condition
by amending your source code file, and then calling the ¢f program
again.

Introduction to SCULPTOR 3/86 page 4-17
4.5 Compiling the sage Program

4.6 RUNNING THE sage PROGRAM

After a successful compilation, your sage program is now ready to run.
The command line to run your sage program is as follows:

sage < program name>
For example, if your prcgram name is "‘orders’’, the command line is:
sage orders

(You do not need to type the .g extension as sage assumes it.) The other
method of calling the sage interpreter is to select Option 4 on the
development menu. The system then prompts for your program name,
as above.

The system will then display the screen form that you designed, with the
heading at the top, the data boxes in the central screen area, and the
menu line at the bottom of the screen. You can now select an option by
typing the relevant code and pressing the RETURN key. If the option
requires input from you, the cursor will wait at the start of the box where
the input is required. Your input should be typed normally, terminating
each input with the RETURN key. The BACKSPACE key can be used in
the middle of a box to delete the last character entered. When used at the
start of a box in a range of inputs, the BACKSPACE key moves the cursor
back to the previous box.

INPUT VALIDATION

To guard against the input of unacceptable data, SCULPTOR
applications enable input validation in a number of ways. Firstly, there is
the validation by field type which is defined in the data dictionary.
Secondly, you can add to this by including a validation list to the field
descriptor {refer to Section 2.4 of this manual for details). You can also
create your own input validation tests using the available sage
commands in the program. One such method is to validate by conditional
test, using the if...then command. For example:

input arrdate,depdate

if arrdate > depdate then\
error “Departure date before arrival date!”:\
goto I1

page 4-18 3/86 Introduction to SCULPTOR
4.6 Running the sage Program

o /31338 REPORT PROGRAMS
(sagerep)

Report programs are used to extract information from the keyed files and
produce printed reports. They can also be used to perform batch
processing routines, and the reports can be organised to calculate and
print sub-totals and end of report figures. Records can be selected for
inclusion in a reportin a number of different ways, giving the programmer
complete flexibility in the selection process.

A standard report program can be created using the rg program, as
described in Section 3.2. However, such a standard report cannot
include any of the more advanced features offered by the sagerep
program, such as multiple cross-reference files, record selection and
exclusion, and the accumulation of total, minimum and maximum values
for fields. If you want to take advantage of the advanced features, it is
necessary to write your own source cede program using the SCULPTOR
report language.

The source code program is written using whichever text editor is
available on your system. When the program is complete, you use the
compiler program cr to read your source code text file and create the
object code program for use at run time.

This chapter describes the structure of sagerep programs and explains
the use of the SCULPTOR report language commands. Complete details
of writing sagerep programs can be found in Chapter 4 of the SCULPTOR
Reference Manual.

This chapter is divided into six sections:

Section Page
5.1 Report Program Structure...........ooo i 5-2
5.2 sagerep Format Definitions................ 5-7
5.3 sagerep Declarations.................... 5-8
5.4sagerep COMMAaNAS. oiimi 5-14
5.5 Compiling the sagerep Program...................cccoiiie 5-16
5.6 Running the sagerep Program.....................cco . 5-17
Introduction to SCULPTOR 3/86 page 5-1

5. Report Programs (sagerep)

5.1 REPORT PROGRAM STRUCTURE

A printed report will consist of particular fields arranged on the printed
page, the fields being obtained from selected records from one or more
keyfiles. The report will require a title, suitably positioned headings, and
accumulated information such as totals at the end of each group of
records or at the end of the report. In order to achieve this, the sagerep
program must perform the following tasks:

® Define a title for the report.
@ |dentify all the files that will be accessed by the program.

® Specify the selection and exclusion criteria by which records
will be obtained from the keyfiles.

® |ist the page headings and page footnotes to be printed at
the top and bottom of each page.

® |ist the fields that are to be printed and their positions on the
page.

® Specify any processing that is to be done, such as reading
records from cross-reference files, calculating additional
values and printing them.

® Define the final actions to be performed at the end of the
report.

Format Definitions

Lines that start with a plus sign (+) are format definitions. These are
statements that re-define either the heading or the format of a field,
overriding the default value which is taken from the data dictionary.

Declarations

Lines that start with an exclamation mark (!} are declarations. These are
statements that define the files to be read, specify temporary constants
and variables, define titles and headings, specify the record selection
criteria, and perform other initialisation tasks.

page 5-2 3/86 Introduction to SCULPTOR
5.1 Report Program Structure

Comments
Comment lines can be included anywhere in the program by starting the
line with a period: these lines are ignored by the program compiler.

Program Statements

Lines starting with any other character are program statements. If the
first word on the line is not recognised as one of the SCULPTOR report
fanguage words or a field name, it is taken to be a line label. Multiple
statements can be placed on one hine by separating them with colons. To
continue a statement onto a second line, the first line should be
terminated with a backslash (\).

Before considering the way in which these different types of program line
are combined to form a sagerep program, it is necessary to understand
the method which sagerep uses to process the data files and produce the
report.

SAGEREP PROCESSING METHODS

One keyfile is designated as the main file, or driving file. The processingis
based around the automatic reading of the records in this file in index
sequential order. Various selection methods can be used to start
processing at a particular record, to exclude certain records, or to stop
processing after a specified record, but, if no such selection is specified,
all the records of the driving file will be read in index sequential order.

For each record, the main statements in the sagerep program define the
processing that is to take place. This may just be the printing of a
selection of fields from the record, but the processing can also include
the reading of a cross reference file, the performing of calculations and
the updating of fields in the keyed file.

At its simplest, therefore, a sagerep program can consist only of a
declaration of the file to be read, and a list of the fields to be printed. Most
applications, however, will require additional processing such as titles,
page headings and footings, and some sort of control and selection of the
records to be processed. All these, and other, features can be
incorporated into a sagerep program by grouping together sets of
program statements. Each set of statements is executed at the
appropriate time in the program: some at the start of processing, some
for every record, some when a particular field value is read, and some at
the beginning and end of pages and at the end of the report.

Introduction to SCULPTOR 3/86 page 5-3
5.1 Report Program Structure {cont.)

The groups of program statements are as follows:

INITIALISATION STATEMENTS
TITLE STATEMENTS

CONTROL STATEMENTS

PAGE HEADING STATEMENTS
PAGE FOOTNOTE STATEMENTS
““ON STARTING"" STATEMENTS
““ON ENDING"” STATEMENTS
FINAL STATEMENTS

MAIN STATEMENTS

The diagram on page 5-5 shows the position in the sagerep processing
cycle of these groups of statements.

The initialisation and title statements are executed first, before the driving
file is read. Then a record is read from the driving file and the control
statements are executed. If the control statements indicate that the
record should be excluded, processing of the record terminates and the
next driving file record is read.

The ““on ending’’ and ‘‘on starting’’ statements are checked. If the
record meets the condition for the start or end of a group, the necessary
processing is performed.

Next, the main statements are executed for the record. Page heading and
footnote statements are executed as required whenever the top and
bottom of a page is encountered. The cycle then returns to read another
record from the driving file.

When the end of file is reached on the driving file, the *'on ending”’
statements are checked, and last of all the final statements are executed.

page 5-4 3/86 Introduction to SCULPTOR
5.1 Report Program Structure (cont.)

SAGEREP PROCESSING CYCLE

sagerep Program

EXECUTE
INITIALISATION
STATEMENTS

EXECUTE
TITLE STATEMENTS

READ DRIVING FILE —»— EOF

EXECUTE
CONTROL
STATEMENTS

exclude

P —

select

CHECK *““ON ENDING"
STATEMENTS

CHECK ""ON
STARTING"
STATEMENTS

EXECUTE
MAIN STATEMENTS
|

CHECK ""ON ENDING"
STATEMENTS

|
EXECUTE FINAL
STATEMENTS

v

EXIT

Introduction to SCULPTOR

3/86

5.1 Report Program Structure {cont.)

page 5-5

Because sagerep performs the cycle of statement execution
automatically, there is no need for the main statements to include a
command to read from the driving file: the cycle is completed for each
record in turn without the commands having to create a program loop.
The main statements, therefore, need only list the processing and
printing commands that are to be performed for each selected record.

The other groups of statements are identified by the declaration used,
e.g. ltitle, lheading, lon starting, etc. Within any group, the statements
are executed in the order in which they are declared in the program. If
required, a declaration can call a subroutine instead of specifying directly
the processing or printing to be performed. Subroutines, when used, are
identified by line label. If subroutines are used, the main statements must
terminate with an end command.

A typical sagerep program could have a structure as shown below:

+ format definitions = Format definitions are only required for fields
when a heading or format is required other than
that defined in the data dictionary.

ldeclarations Declarations are written for all the groups of
statements other than the main statements.

main statements The main statements define the processing and
printing that is to be performed for each record
read from the driving file.

subroutines Subroutines, if used, can appear anywhere in
the program, but are often grouped together at
the end. They are identified by line labels.

The following sections of this chapter explain the format definitions,
declarations, and the sagerep commands.

page 5-6 3/86 Introduction to SCULPTOR
5.1 Report Program Structure (cont.)

5.2 sagerep FORMAT DEFINITIONS

Each field has its description defined in the data dictionary created using
the describe program. The only parts of the field description that can be
altered for printing are the field heading and the format. If no format
definition is made for a field, sagerep will use the default value from the
data dictionary. Format definitions need only be included in a sagerep
program when you want to alter either the field heading or the format.

Format definitions should normally be placed at the beginning of the
program, before any of the declarations. The syntax for a format
definition is as follows:

+ < field name >,[<heading >][, <format>]

Either the heading or the format or both can be redefined. If the heading
is to remain as the default but the format is to change, two commas must
separate the field name and the format.

For example:

+ c_name,Name,t
+c_addrl, t
+ c_tel, Telephone No

The first field, c_name, has both a different field heading (Name) and a
different format specified. (The format code "'t’' causes trailing spaces to
be removed from alphanumeric fields. Refer to Section 2.6 of the
SCULPTOR Reference Manual for other format codes.) The second field,
c_addr1, uses the default field heading {two consecutive commas), but
has a new format. The third field, c_tel, has a new field heading, but the
format is unchanged.

Introduction to SCULPTOR 3/86 page 5-7
5.2 sagerep Format Definitions

5.3

sagerep DECLARATIONS

After any format definitions have been specified, the next section of a
sagerep program is the declarations. Each of the specialised groups of
statements consists of one or more declarations, the declaration lines

starting

with an exclamation mark. The declarations that are available in

sagerep are listed below. The full explanations of the declarations can be
found in Section 4.5 of the SCULPTOR Reference Manual.

INITIALISATION STATEMENT DECLARATIONS

Ifile

linit

Itemp

Declare the driving file. Only one driving file can be declared. The
declaration must specify either the filename or a full pathname.
The number 1 can be used to identify the file, this number being
used subsequently by any commands that access the file
explicitly. For example:

1) file orders
2) ile 1 orders
3) lile /usr/accs/taxtile

Declare an initialisation statement that will be executed once
only at the beginning of the report. The declaration can specify
any sagerep command except goto. For example, the linit
declaration could be used to call a subroutine to perform a
stationery alignment check, e.g.

linit gosub ALIGN

Declare a temporary field for use within the program. Fields that
you declare here can be used in the program and printed in the
same way as keyfile fields. The syntax for declaring a temporary
field is the same as in the describe program, with the exception
that no validation list is allowed. Additionally, the declaration can
end with an assignment similar to that used in the let command.
Refer to Section 2.4 of this manual for further details of the
describe program. For example;

ltemp total, TOTAL, m4
ltemp value,Value,m4 = o_qty « st_price

page 5-8

3/86 Introduction to SCULPTOR
5.3 sagerep Declarations

ldisplay Display a message on the screen, for example:
!display "OUTSTANDING ORDERS REPORT”

linput [nput an initial value into a temporary field. The specified
prompt text is displayed on the screen (followed by a
qguestion mark), and the subsequentinputis stored in the
designated field. For example:

linput “Stock Code”,tmp_stock

lconstant Similar to Itemp, this declaration specifies a temporary
field and its initial value. For example:

lconstant status,,il = 1

Iread Declare a cross-reference file and initially read a record
from it. The key value is taken from the field list specified
in the key = clause. The values in these fields must have
been established in a previously declared initialisation
statement. For example:

lconstant ckey,,al = "A"
Iread control key = ckey

Istartrec Define the record in the driving file at which the report is
to start. The key value is taken from the field list specified
in the key = clause. The values in these fields must have
been established in a previous declared initialisation
statement. For example:

temp tmp_stock,,ab
linput “'Stock Code”,tmp_stock
Istartrec key =tmp_stock

lendrec Define the record in the driving file at which the report is
to end. The key is defined in the same way as for
Istartrec.

Introduction to SCULPTOR 10/86 page 5-9

5.3 sagerep Declarations (cont.)

TITLE STATEMENT DECLARATIONS

Ititle

Declare a title statement that will be executed once only,
after the initialisation statements, but before the start of
the report. An obvious example is to print the title of the
report and one or two blank lines, but !title statements
can also be included to perform setup routines, print the
date, print an introductory paragraph, and so on. There
is no limit to the number of ltitle statements, and the only
sagerep command that cannot be used in a ltitle
statement is goto. For example:

ltitle print "OUTSTANDING ORDERS REPORT": print

{(Prints the title and a blank line.)

CONTROL STATEMENT DECLARATIONS

Icfile

Ixfile

record

Declares a cross-reference file which is initially closed.
The declaration must specify either the filename or a full
pathname. The file can be given a file number, starting at
2, which can be used by commands in the program that
access the file. For example:

Icfile 2 charges

Declares a cross-reference file which is initially open.
The declaration must specify the file as for Icfile, above.
If a key= clause is included, a control statement is
created to automatically read a record from the cross-
reference file each time a record is read from the driving
file. The maximum number of cross-reference files
(declared either by Icfile or Ixfile) is 15. For example:

xfile 3 custmrs
!xfile 4 stock key = o_stkno

Declare an alternative record layout for a file. The file
must already have been declared, and the alternative
layout must have been defined using the describe
program. e.g.

Irecord custmrs custmrsl

page 5-10

3/86 Introduction to SCULPTOR
5.3 sagerep Declarations {cont.)

Iselect and These two declarations are used to set up the conditions

lexclude for including records from the driving file in the report.
When each record is read, it is tested against the
specified conditional expressions and then either
selected or excluded depending on the result. The
priority of the conditions is determined by the order in
which you place the !select and exclude declarations.
For example:

Iselect if duedate < = date
lexclude if c_code = “S"” or c_code = "X"
Iselect if ordcode > 0

This set of conditions will select records where the
duedate field has a value less than or equal to today's
date, regardless of the other two conditions. Records
that do not meet this first condition will be excluded if the
c_code field is S or X. The remaining records will be
inctuded if the ordcode field is greater than zero. All other
records will be excluded.

Any number of Iselect and !exclude declarations can be
made in a program. Refer to Section 4.5 of the
SCULPTOR Reference Manual for further details of the
way in which sagerep interprets the selection and
exclusion conditions.

NOTE: Other techniques for selecting records for
processing include the following:

® Using Istartrec and lendrec declarations.

® Inputting parameters from the terminal at run time.
® Reading parameters from a file read at run time.
[

Passing arguments to the program from the
command line entered at run time.

These technigues are explained in detail in Chapter 4 of
the SCULPTOR Reference Manual.

Introduction to SCULPTOR 3/86 page 5-11
5.3 sagerep Declarations (cont.)

HEADING STATEMENT DECLARATIONS

theading Heading statements are executed, in the order in which
they are written in the program, at the start of each new
page. Any sagerep command can be specified except
goto. The most common use is to print column headings
at the top of the page, using the printh command to align
the headings with the field data to be printed for each
record. For example:

lheading printh «c_name,«c_ordno, «o_date, xo_value:\
print

FOOTNOTE STATEMENT DECLARATIONS

Ifootnote Footnote statements are executed, in the order in which
they are written in the program, each time the report
reaches the foot of a page. Any sagerep command can
be specified except goto. For example:

lfootnote print tab(40); “Page: ";pageno

ON STARTING STATEMENT DECLARATIONS

lon starting Declares a statement to be executed when a new value
is detected in the specified field. Any number of ““on
starting’’ declarations can be made, execution being in
the order in which they appear in the program. Any
sagerep command can be specified except goto. For
example:

lon starting s_areacode newpage

ON ENDING STATEMENT DECLARATIONS

lon ending Declares a statement to be executed on ending a value in
the specified field. Any number of ““on ending’’
declarations can be made, execution being in the order
in which they appear in the program. Any sagerep
command can be specified except goto. For example:

lon ending c_ordno gosub END_ORDER

page 5-12 3/86 Introduction to SCULPTOR
5.3 sagerep Declarations (cont.)

FINAL STATEMENT DECLARATIONS

Ifinal Declares a statement that will be executed once only at
the end of the report. Any number of final statements
can be made, execution being in the order in which they
appear in the program. Any sagerep command can be
specified except goto. For exampile:

lfinal print: print "END OF REPORT"

PRINTOUT CONTROL DECLARATIONS

In addition to the declarations for the various types of program
statement, there are three declarations that can be used to alter the
format of the printout of the report. These are !depth, lwidth and !gap.
The first two define the number of lines and columns to be used for the
report. The tgap declaration is used to alter the standard space between
printed items.

For a simple application, many of these declarations will not be required.
A straightforward report program reading from a driving file and two
cross-reference files, with a temporary field for totals, printing the title,
page headings and footnotes, and final totals, could be produced using
only the following declarations:

Ifile 1 filename_a
temp total, Total, m4

Ixfile 2 filename_b key = a_code
!xfile 3 filename_c key= b_custno

ltitle print tab(30);"REPORT TITLE": print
lheading gosub HEADING

!footnote gosub PAGENO

lfinal gosub END_REPORT

followed by the Main Statements and the commands for the subroutines.

Introduction to SCULPTOR 3/86 page 5-13
5.3 sagerep Declarations {cont.)

5.4 sagerep COMMANDS

When the format definitions and declarations have been completed, the
remaining part of a sagerep program consists of the main statements and
any subroutines. This is the part where you define the processing and
printing that is to take place in the program. The main statements and
subroutines, and many of the declarations, make use of the commands
that are available in the SCULPTOR report language.

Most of the sagerep commands are very similar in both syntax and
method of use to their counterparts in the sage language. To avoid
repetition, these commands are not further explained in this section. You
can refer to Section 4.4 of this manual for a brief overview of the sage
commands, and a complete list of the available sagerep commands is
given at the beginning of Section 4.6 of the SCULPTOR Reference
Manual.

The following paragraphs briefly explain the commands that are unique
to sagerep and are not used in sage.

PRINT COMMANDS
The two commands that are used to print items in the report are:

print and printh

The print command prints the listed items, which can include the
contents of a named field, the heading of of a field, a constant, a blank
line, a space the same size as the named field, and several other items
designed to make report printing both easy to control and extremely
flexible. The printh command operates in much the same way, butitalso
adjusts the spacing to ensure that the data fields are aligned with the
column headings. (To achieve this, it is necessary to make sure that the
printh command for the headings includes the field headings for exactly
the same list of items as the printh command list for the data field
values.)

Both the print commands can also specify characters to start and stop
the printing of special effects, such as double width characters,
underlining, or tabbing to a designated column. By specifying total, min
or max and a field name, you can print the current accumulated total, the
minimum or the maximum value for that field. The complete list of items
that can be included in a print or printh list is given under the print
command in Section 4.6 of the SCULPTOR Reference Manual.

page 5-14 3/86 Introduction to SCULPTOR
5.4 sagerep Commands

For example:

lheading printh «st_code, +st_descr, «st_unit, «st_qty, »st_price:\
print

printh st_code,st_descr,st_unit,st_qty,st_price

The 'heading declaration will print the field headings (specified by the
preceding asterisks) for the list of fields, followed by a blank line. The use
of the printh command ensures that the subsequent printing of the data
content of the fields will be aligned with the field headings.

PRINT CONTROL COMMANDS

These commands provide additional control of the printout. The
commands are:

keep, newpage, width

The keep command checks the number of lines left on the current page.
If the number left is less than the specified value, a new page is started.
The newpage command is used to force the start of a new page at a
particular point in the program. The width command changes the
current line width to the specified number of columns.

For example, if the main statements will produce six lines of printed
output for each record processed and it is required not to split a record
over two pages, the main statements can be started with the command:

keep 6

ABORT COMMAND

In addition to the exit command which terminates the program after
executing the Hinal statements, sagerep includes the abort command
which terminates the program immediately without executing the final
statements. Control is passed to the task from which the sagerep
program was called.

SAGEREP EXPRESSIONS AND OPERATORS

Many of the sagerep commands can make use of operators to form
complex expressions. The available operators are the same as those
used in sage programs and their use is explained in Section 4.4 of this
manual.

Introduction to SCULPTOR 3/86 page 5-15
5.4 sagerep Commands {cont.)

PROGRAMMING TECHNIQUES

Appendix A, at the end of this manual, provides an example of a
complete system of SCULPTOR programs, including both screen form
and report programs. Not all of the declarations and commands can be
demonstrated in a simple example, but a selection of the more common
uses are included.

5.5 COMPILING THE sagerep PROGRAM

When you have completed the writing of the program, you will have a
text file with a name terminating in a .r extension. This is your source
code program. For the sagerep interpreter to read your program, this text
file will have to be compiled using the compiler program cr. The syntax
for calling the compiler is:

cr <program name >

For example, if your program source code file is named “‘custmrs.r’’, the
call to compile it would be:

cr custmrs
(You do not actually have to type the ““.r'" as cr assumes it.) cr also
requires access to the data dictionaries (the .d files) for all keyfiles and
alternative record descriptors that have been declared in the sagerep
program using the Hfile, Icfile, !xfile, 'read and !record declarations.

If the compilation is successful, the cr program creates a file with the
same name as the source code file, but witha **.q"’ extension. This s the
object code program which is used by the sagerep interpreter when you
actually run your sagerep program.

If the compilation is not successful, the .q file is not created (or, in the
case of a re-compilation, the existing .q file is left unaltered) and error
messages are output to identify the program errors. These error
messages identify the line number containing the error and the part of the
line that caused the error condition. You can then correct the condition
by amending your source code file, and calling the ¢r program again.

page 5-16 3/86 introduction to SCULPTOR
5.5 Compiling the sagerep Program

5.6 RUNNING THE sagerep PROGRAM

After a successful compilation, your sagerep program is now ready to
run. The command line to run your sagerep program is as follows:

sagerep <program name> [<ppi> <arguments>]

where <ppf> is a printer parameter file, and <arguments> are
parameters to be referenced by the special temporary field arg. These
fast two elements of the sagerep command line are optionai and are
described in full detail in Section 4.7 of the SCULPTOR Reference
Manual.

By default, the output will be directed to the terminal. If this is the desired
output destination, the printer parameter file pvdu should be specified.
To print the report, the output should be redirected to the required
printer, and the appropriate printer parameter file should be specified.

NOTE: The printer parameter file does not cause the output to be sentto
any particular device. Redirection of the output must be achieved using
the operating system’s 1/O redirection facilities.

For example, to print the report of the sagerep program ‘‘custmrs’’,
using the printer parameter file p80 under the Unix operating system, the
command line would be:

sagerep custmrs p80 >/dev/lp

(You do not need to type the "'.q"" extension as sagerep assumes it.)
Refer to your operating system instructions for details of the I/O facilities.

The other method of calling the sagerep interpreter is to select either
Option 6 or Option 7 on the SCULPTOR Development Menu, depending
on whether you want the output directed to the terminal or the printer.
The system then prompts for your program name, as above.

Introduction to SCULPTOR 3/86 page 5-17
5.6 Running the sagerep Program

oSN THE MENU PROGRAM

The menu program is an easy to use part of the SCULPTOR system that
enables you to produce neatly formatted menus on the screen that can
be used to access your SCULPTOR application programs. A typical menu
screen produced by the menu program is shown below:

+++++ ORDERS MENU +++++ 11th May 1986
0 - Finish

1 - Customer File Maintenance

2 - Stock File Maintenance

3 - Run an Order Entry/Release Program

4 - Sales Accounts Menu

5 - Customer Reports Menu

6 - Stock Reports Menu

7 - Order Reports Menu

Which option do you require?

All SCULPTOR produced menus will have this type of format with a title
line and the system date at the top of the screen, followed by a numbered
list of options, and the prompt asking you to select an option at the
bottom of the screen. The options can be sage programs, sagerep
programs, other menus, or any other programs or directories that can be
accessed in your system.

Introduction to SCULPTOR 3/86 page 6-1
6. The menu Program

The menu program consists simply of a text file interpreter. The code for
your menu is written as an ordinary text file using whatever text editor is
available on your system. The text file must be given a "".m’’ extension
and the code should be written in the following format:

FIRST LINE
The menu title to appear at the top of the screen.

SUBSEQUENT GROUPS OF LINES

Each option requires two lines of code, the first contains the
aption number and the text to be displayed; the second contains
the program command {or commands} to be executed when the
option is selected. A further enhancement can be included by
using the parameter substitution character % in the command
line. This enables the user to input the actual value of the
parameter (for example, the program name) when the option is
selected. If this feature is used, a third line is required to specify
the prompt to be displayed when the option is selected.

The menu program supplies the system date and the prompt for the
bottom of the screen. An option 'O - Finish”’ is provided automatically by
the menu program, but an alternative option for O can be created if
required. There must always be an option with the command line exit in
order to provide a way out of the menu.

An example of the parameter substitution feature can be seen in Option 3
of the menu shown on page 6-1. When this option is selected, the
system displays the prompt:

Which program do you want to run?

When the program name is entered, the command line for option 3 is
then executed.

Page 6-3 shows the text file for the sample menu. Further details of the
menu program can be found in Section 5.4 of the SCULPTOR Reference
Manual.

page 6-2 3/86 Introduction to SCULPTOR
6. The menu Program (cont.)

The text file (orders.m) for the Orders Menu:

ORDERS MENU

1,Customer File Maintenance

sage custmrs

2,Stock File Maintenance

sage stock

3,Run an Order Entry/Release Program
sage %

Which program do you want to run
4,Sales Accounts Menu

menu sales

5,Customer Reports Menu

menu custreps

6,Stock Reports Menu

menu stkreps

7,0rder Reports Menu

menu ordreps

Introduction to SCULPTOR 3/86
6. The menu Program (cont.)

page 6-3

o413 e THE QUERY PROGRAM

The query program provides a very straightforward method of making
specific enquiries into SCULPTOR keyed files and producing ad hoc
reports of the results of the enquiries. Access to the query program is
achieved by typing:

sage query

The system then displays a blank enquiry screen, as shown below:

FTUPTOR ENQUIRY SYSTEM

Ergdry rame [1 Main file rame [

Page Headirg []

Cross refererce file [1 Oross-refererce file key lagth [

Select field (7 = list availahle fields, s = start selection acain) [

Gorditios [10 101¢

[10 101¢

[10101t

Cross—refererce selectian [

Prirt list [

Headirg

By responding to a series of prompts, you complete the empty boxes on
the screen and so give the query program the required information to
enable it to interrogate the specified keyed files and extract the data for
the printed report.

Introduction to SCULPTOR 3/86 page 7-1
7. The query Program

The first prompt that you have to respond to is the enquiry name. The first
time you make a particular enquiry, this will be a new name and you will
have to respond to the remaining prompts to provide the names of the
files, the selection criteria for records to be included in the query report,
the list of fields to be printed, and so on. On subsequent occasions,
entering the name of an existing enquiry will cause the query program to
use the previously defined responses.

The enqguiry can be into a single file (defined in the “'"Main file name”’
box), or can also include a single cross-reference file, in which case you
then have to specify the fields for cross-reference file matching.

In addition to the prompts for filenames, record selection conditions and
the print list, the query program also asks if you want to include a totals
line in the report, if you want to run the enquiry immediately {or merely
store the selections), and if you want to direct the output to the screen or
the printer.

Refer to Section 5.10 of the SCULPTOR Reference Manual for further
details of the prompts and responses in the query program.

page 7-2 3/86 Introduction to SCULPTOR
7. The query Program {cont.)

o Nl THE UTILITY

PROGRAMS

To support the main SCULPTOR programs which have been described in
the earlier chapters of this manual, the SCULPTOR system also includes
the following utility programs:

The keyed file utilities — kfcheck, kfcopy, kfdet and kfri
reformat

The Language Configuration program — lcf

The VDU parameter file programs — setvdu/decvdu

The printer parameter file programs — setprinter/decprinter

sageform

THE KEYED FILE UTILITIES
The keyed file utilities are used to maintain SCULPTOR keyed files.

kfcheck

kfcopy

kfdet

kfri

The Keyed File Integrity Check program is used to perform
a complete check on the index of a data file.

The Keyed File Copy program is used to copy an existing
keyed file to a new filename.

The Keyed File Details program is used to display the key
length, record length and number of index levels for a
selected keyed file.

The Rebuild Keyed File Index program is used to build a new
index from an intact data file that has had its index
damaged.

Refer to Section 5.1 of the SCULPTOR Reference Manual for details of
running these programs.

Introduction to SCULPTOR 3/86 page 8-1
8. The Utility Programs

REFORMAT

The reformat program is used to reorganise a keyed file when the record
structure has been changed. If you change the record length of a file,
alter the size or type of any of the fields, or insert or delete fields within the
record, it is essential that the file is reformatted in order to avoid
corrupting the existing data in the file. You will also have to recompile all
the sage and sagerep programs that access the file. Refer to Section 5.2
of the SCULPTOR Reference Manual for details of the reformat program.

THE LANGUAGE CONFIGURATION PROGRAM

The program lef is used to provide alternative versions {for example, in
another language) of the standard text items and special characters that
are displayed in the SCULPTOR programs. For example, the standard
text displayed on sage screen forms can be translated, the default box
delimiters can be changed, or the format for displaying the date can be
altered. Refer to Section 5.3 of the SCULPTOR Reference Manual for
details of the lcf program.

VDU PARAMETER FILES

in order to be able to accept keyboard input and display items on the
screen, SCULPTOR must be supplied with the VDU parameters for your
terminal. A set of VDU parameter files is supplied with the SCULPTOR
system, and, for most systems, one of these will define the parameters
for your system. However, in rare cases that are not covered by one of
the supplied files, you can create a new VDU parameter file using the
program setvdu. The associated program decvdu can be used to print
the contents of an existing VDU parameter file. Section 5.8 of the
SCULPTOR Reference Manual contains full details of these programs.

PRINTER PARAMETER FILES

Similarly to the VDU parameters, SCULPTOR must also be supplied with
a printer parameter file. Again, a set of printer parameter files is supplied
with the SCULPTOR system, and one of these may match your printer. if
not, a new printer parameter file can be created using the program
setprinter. The associated program decprinter can be used to print the
contents of an existing printer parameter file. Refer to Section 5.9 of the
SCULPTOR Reference Manual for further details.

page 8-2 3/86 Introduction to SCULPTOR
8. The Utility Programs (cont.)

SAGEFORM

This program is used to produce a printed version of a sage screen form,
for use in your program documentation, for example. The specified
program must be a compiled sage program, and sageform gives you the
opportunity to indicate the screen size in rows and columns {defaulting to
80 by 24). The output can either be printed, or just displayed on the
screen.

Introduction to SCULPTOR 3/86 page 8-3
8. The Utility Programs {cont.)

