The diskette for HACKER'S KIT #1 contains the following:

directory of 11:28:10

Owner Last modified attributes sector bytecount name

0 84/01/31 1126 d-ewrewr A 120 CMDS

directory of CMDS 11:28:21

Owner Last modified attributes sector bytecount name

0 84/01/31 1126 =--e-rewr 13 A26 disinp
0 84/01/31 1126 --e-rewr 1F A7 memlist
0 84/01/31 1126 --e-rewr 21 9B memload
0 84/01/31 1126 —--e-rewr 23 97 resmem
0 84/01/31 1126 --e-rewr 25 2C2 split
0 84/01/31 1126 --e-rewr 29 AA filter
0 84/01/31 1126 --e-rewr 2B DA rewrite
The CMDS directory contains only executable programs,
the documention with this package for their use.

probably want to copy these to your working CMDS directory on you
system disk.

HACKER 'S KIT #1

The utilities included in this package will be of use to those
programmers who have at least a fair knowledge of assembly

language and the ways of the 0S-9 operating system. Haphazard
use of some of them (mainly memload) can cause you to crash your
system. (If you write over active proagram code with memload).

To make full use of this package you need to understand the use
of pipes and I/0 redirection as you will almost always need to
use one or the other with these utilites, for example; the
memlist utility writes a portion of memory to the standard output
with no formatting. Unless you now that the area of memory you
are listing contains ascii text you cannot just let it go to the
screen. If the area contains binary data you could "pipe" the
data into the DUMP command to get a hex dump or (>) redirect it
into a file for some other use.

Similarly the DISINP disassembler command disassembles data from
the standard input. If you use it without I/0 redirection it
will be tryina to disassemble the what ever the binary values of
the keys you type on the keyboard are (likely not what you had in
mind). By having its source as the standard input however you
gain versatility by using redirection.

Example, two ways to disassemble assembly code in the file "code"
would be:
disinp <code ‘and

list code ! disinp

both would produce the same result. If the code you want to
disassemble is in memory all you need is a way to move the data
from memory to the input of DisInp. (HINT: see memlist).

Copyright (c) 1984 - D. P. Johnson Page 1

DISINP
SYNTAX: DISINP [hex offset]
Disassembles bytes from the standard input to standard output,
after skipping hex offset bytes from standard input (default hex
offset = 0). If more than SEF0 bvtes are to be skipped or dis-
assembled then use shell to expand the data memory beyond #4K.

Examples: LIST /DO0/CMDS/DIR ! DISINP AB

(list command and pipe send the binary contents of dir into
disinp, disassembly starts at an offset of AB bytes from the
beginning).

MEMLIST EQ15 45 ! DISINP >/P

The above example uses memlist to list 45 hex bytes stqrting. at
absolute memory location EO015 hex, these bytes are piped into
DISINP which disassebles them with the disassembly listing sent

to the printer (>/p).

NOTE: When trying to disassemble an executable 0S-9 assembly
language module, remember that the executable code does not start
at the beginning of the module. The first bytes contain the

module header. At an offset of 9 from the beginning of the
module header 1is the offset to the execution address of the
module, (normally the first instruction code bytes). Therefore

to disassemble a program module first use dump or debug to find
the hex execution offset (two bytes starting at byte 9 1in the
dump), then use this offset with disinp to start the disassembly
at the actual execution address of the module.

The memory locations shown in the disassembly listing will begin
at some even page boundary dependent on where the data memory is
that is used by disinp plus any disassembly offset given with the
command .

Copyright (c) 1984 - D. P. Johnson Page 2

FILTER

SYNTAX: FILTER [-opts] hex_character_value

FILTER copies the standard input to the standard output removing
all occurances of the given character value.

Options have form -A or -An where n 1is a decimal number

associated with that option. Options are single letters A

through 2 (upper or lower case). Multiple options can be written

as -A -B-C or -ABC .

OPTIONS: -An If the A options is specified "n" bytes after each
occurance of hex_character_value are romoved from
the stream also.

Example: filter OA <text file >cleanfile

Filters linefeed characters ($0A) from text file to new file
cleanfile.

EXAMPLE: 0S9: filter -al de <docfile >docfile.f

When ever the hex character $DE is encountered in docfile, it and
the one byte after it are skipped, everything else is copied to
docfile.f (I use this to remove printer control codes from text I
edit with Dynastar).

Copyright (c) 1984 - D. P. Johnson Page 3

MEMLIST
SYNTAX: MEMLIST beginning address [bytecnt]
Memory 1is listed in unformated binary beginning at beginning
address for bytecnt bytes to the standard output. If bytecnt is

ommitted 100 hex is assumed. Both numbers are given in hex.

EXAMPLES: memlist 0 ! dump

Gives you a hex dump of the first $100 bytes of ram in
system (system direct page).

memlist 40a7 3FC >tempfile

Copies $3FC bytes of memory beginning at $40A7 to tempfile.

Copyright (c) 1984 - D. P. Johnson Page 4

MEMLOAD

SYNTAX: MEMLOAD starting_hex_ address

Memload reads the standard input into memory beginning at the
absolute hex starting address given until eof is encountered on
the input or until the system crashes, which ever comes first!!!

It is your responsibilty to determine that the memory area you are
loading into is free memory, the safe way is to enter debug, use
resmem to reserve the required size area of memory, then execute
MEMLOAD from within debug. Usually memload will have its standard
input redirected to a file.

EXAMPLES: memload 1000 </d0/os9boot

The entire contents of the os9boot file is loaded into memory
starting at location $1000. (NOTE: the file loaded does not
need to contain program modules with valid CRC’s as reqguired
by the LOAD command).

Copyright (c) 1984 - D. P. Johnson Page 5

RESMEM

SYNTAX: RESMEM hex memory_size

RESMEM is meant to be executed under DEBUG to reserve an area of
memory for special use i.e. usually for using MEMLOAD.

To use under debug:

059:1oad resmem debua

059 :debug

D: lresmem

D: eresmem 800 (example showing reserving 800 hex bytes of ram)
D: G (debug will stop with error #13 after the g

Error #U13

command is given and display a register
dump... the U register contains the address of
the beginning of the reserved memory area)

To load a file into this memory invoke memload
while still in debug by using the "$" to
invoke a shell command line.

D: Smemload AO0Q0 </d0/junkfile

D: Smemlist a00 14b

The above assumes that "AOQ0" was the beginning
of the memory area to load junkfile into as
given by the U-register in the previous
operation, at this point debug commands could
be used to patch the file in memory and then
it could be saved to disk again with memlist
as follows:

>/d0/newijunk

D:
0S89

The above will save 14B hex bytes starting at
memory location AO00 hex to the file newjunk,
if newjunk is suppossed to be an executable
program the verify command will need to be
used to update the module crc and then
attr to set the file execute permission bit
before it could be called as a command.

Copyright (c) 1984 - D. P. Johnson Page 6

REWRITE
SYNTAX: REWRITE pathname [hex offset]

Writes the standard input to the pathname in update mode beginning
at the optional hex offset into the pathname (usually a disk file).
The default offset is zero. REWRITE writes over exsisting data in
the file given by pathname.

Examples:

Rewrite /d0/os9boot 7FC </d0/patch

The above writes the contents of patch into the o0s9boot file
beginning at an offset of 7FC from the beginning of the o0s9boot
file. (NOTE: This will likely make your disk unbootable unless you
are really sure what you are doing, remember when tampering with
an executalbe module in a file to use the VERIFY command with the
Update switch to copy that file to a new one with a corrected
CRC.

Copyright (c) 1984 - D. P. Johnson Page 7

SPLIT

SYNTAX: SPLIT <input path [-opts] [[cnt path] {[cnt path])...]}
>output_path

Data read thru the standard input path is split into one or more
output paths. The first "cnt" bytes or lines of input data are
written to the first path given, the next "cnt" bytes or lines to
the next path, etc., any remaining data is then written to the

standard output path. The counts are hex bytes by default but
can optionally be lines.

Options have form -A or -An where n 1is a decimal number
associated with that option. Options are single letters A
through 2 (upper or lower case). Multiple options can be written
as -A -B-C or -ABC

Options: Bn Use a buffer size of nK bytes. (Default is
approximately 3K).

D Counts on command line are 1in decimal
(default is hex).

L Counts are by line instead of the default by
bytes, and data is read and written a line
at a time.

Examples:

SPLIT <BIG TEXT -LD 500 TEXT1 350 TEXT2 >TEXT3

Creates 3 new files, TEXT]l contains the first 500 1lines of
BIG_TEXT, TEXT2 contains the next 350 lines from BIG _TEXT, and
TEXT3 contains any remaining lines.

SPLIT

Copies the standard input to the standard output

SPLIT <BINFILE -B32 AC2 BINFRONT >JUNK

Copies the first AC2 (hexidecimal) bytes of BINFILE to BINFRONT
and the remaining bytes into JUNK. A 32K buffer is used by the
split program, in this case the same effect as the -b32 switch
could have been obtained by #32K on the command line, if the
input to split was a pipeline from another program the ~b32 would
have been the only way to supply more memory to split.

Copyright (c) 1984 - D. P. Johnson Page 8

