Greetings!
Thanks for sticking with
“the world of 68’ micros”.

Be sure to check the “Editor’s Page” for the latest
on changes and ideas. Also, please take note of my
contact information listed below.

All renewals from this point on should be sent to the
address below, and any checks should be made
payable to Stephen Disney.

NOTE - This contact information is NEW.
Please keep it soinewhere handy so that you’ll

know where to serd those renewals and letters!

Stephen Disney
273 Peach Orchard Rd.
Statesboro, GA 30458

(912) 865-9:)77

email: disneys@bulloch.com {a!l attachments)
or disneys@hotmail.coi»

rrirrnierly
CEL LTS
AR N NE RN
JJ4 0 ey

CONTENTS

Editor’s Page 2
Vendor Ad Policy for 1999 3
Letters 3
New Subscribers and Renewals 3
GWBASIC to DECE, Part 2 4
Frank Swygert
One Line Wonders! 6
microNotes 8

edited by Brian Tietz

Adventures in Assembly, Part 3 9
Art Flexser

P2 Modules In 0S/9 12
Boisy Pitre

Recursive Procedures on a CoCo 14
Aaron Banerjee

Great CoCoist Interview Series 16
John Kowalski
Nick Marentes
Classic BASIC Games -
Ghana Bwana Patch 19
Steve Bjork
WordWrap 20
Andrew Jackson
Coming Attractions! BC
Advertisers Index BC

POSTMASTER:
If undeliverable return to:
268'm
273 Peach Orchard Rd.
Statesboro, GA 30458-6682

If your address is incorrect, send me a postcard!

the world of 68' micros page 1

The Editor’s Page

There was no OCT/NOV/DEC issue,
just in case anyone was wondering. |
thought I'd be able to get one out, but
just couldn’t. This will be made up for
by extending existing subscriptions by
one issue. I'm still around and con-
tributing to the magazine, as well as
assisting Stephen (I'll be listed as “as-
sociate editor” for the next few issues.
Our agreement is that Stephen is re-
quired to provide only one year of
magazines. It will be up to the readers
to make it worth while for him to con-
tinue printing beyond January of 2000.
| hope he is well supported and con-
tinues! | will be paying all printing/ship-
ping costs for his first issue. If you
need to reach me for any reason, | can
be contacted at:
FARNA@worldnet.att.net.

May you all have a happy New Year!!!

NOTE from Frank:

Hello,

In case you haven't heard, my name
is Stephen Disney. |1 am the new editor
and | hope that each of you will con-
tinue to support “the world of 68' micros”
for at least the next year.

Aot happened in the CoCo commu-
nity in 1998. We had two great fests.

We lost a couple of beloved friends (look
for a memorial hopefully in the next is-
sue). There was a little animosity, and
alot of generosity. However, if 1998 will
be remembered for anything, it oughtto
be these two things: great ideas and
new users. Over the course of the next
few issues, | hope to have articles that
will stress these two items. Remem-
ber when OS/9 levels one and two were
both successfully burned into an
EPROM? How about the CoCo that
was installed into a Toyota truck? Or
maybe a CoCo with a builtin 720k disk
drive installed into a camper? Would
you like to build a CoCo 3 from scratch?
It's been done! How about that IDE in-
terface? Sure, we haven't received it
yet, but thaybe soon... We may very
well have a 1 gig partitioned hard drive,
LS-120, or CD-ROM drive attached to
CoCos by this time next year. There
were also many 2 meg ram boards built
last year. OS/9 level 2, v.3 was finally
released. And that's just the tip of the
iceberg. The new CoCoists are hunting
all over for answers to some pretty com-
mon problems and some more complex
ones as well. | hope to cover all of the
above in the next few issues, as well as
bring you the latest news and up-to-date
information, boundry-pushing programs,
hardware and software reviews, and
some new features.

Yes, there will be changes. For in-

stance, starting with this issue the
names of new subscribers or renewers
(with any information that they'd like to
make public; e.g. email, interests, etc.)
will be published in the magazine.
Those receiving there last paid issue will
also find their name. Each issue will
have an interview with one of the “Great
CoCoists”. | am also starting a small
“Coming Attractions!” spot to hype up-
coming articles or events. You will find
agreat “One Line Wonder!” on page 6.
I hope to include one or two in each is-
sue, so SEND THEM IN!. In the next
issue, | hope to start a small spot called
“Jokes and Quotes”. This section will
feature a great quote (computer related
when possible) and a computer related
joke. Come on everyone! This is your
big chance to share that great Microshaft
joke or rag on Windoze ‘98. The most
important section to me, however, will
be an oldie but goodie. That's the Let-
ters section. | want feedback. | would
like you to consider it your obligation to
send me at least one letter or email a
year! Tell me what you like or dislike.
How can | improve? | need your votes
of confidence.

Speaking of feedback, here's a ques-
tion. Would you like to see the
microDisk feature return? How about
an on-line accessible version? Or
maybe both ways? Let me know. Don't
be afraid. Keep in touch!

the world of 68’

micros

Publisher:

273 Peach Orchard Rd.

Statesboro, GA 30458-6682

email: disneys@pulloch.com
http://www.home.pon.net’kféntg/68micros

Editor-in-Chief:

Stephen T. Disney
Associate Editor:

Francis (Frank) G. Swygert

Subscriptions:

US/Mexico: $22 per year

Canada: $28 per year

Overseas: $48 per year (airmail)

Back issues within 2 years are $5 each.
Older issues are $3 each.

An order of 6 issues will not surpass $22.
Shipping varies depending on destination.

Advertising Rates:

Contact the publisher. We have scales to
suit every type of business. Special rates
for entrepreneurs and “cottage” busi-
nesses. Rates include a subscription and
may be negotiable on an individual basis.

Contributions:

All contributions are welcome. Submis-
sion constitutes a warranty on the part of
the author that the work is original unless
otherwise specified. Publisher reserves
the right to edit or reject material without
explanation. Editing will be limited to cor-
rections and fitting available space. Au-
thors retain copyright. Submission gives
the publisher first publication rights and
right to reprint in any form with credit given
to the author. Each contributor will receive
a complimentary issue.

General Information:

Current publication frequency is bimonthly.
Frequency and prices are subject to
change without notice. All opinions ex-
pressed herein are those of the individual
authors, not necessarily of the publisher.
No warranty as to the suitability or opera-
tion of any software or hardware modifi-
cation is given nor implied under any cir-
cumstances. No further support should
be expected as the result of an ad or ar-
ticle published herein. Use of any infor-
mation in this publication is entirely at the
discretion and responsibility of the reader.

All trademarks/names are the property
of their respective owners.

ENTIRE CONTENTS COPYRIGHT
1999, S. Disne

page 2 the world of 68’ micros

VENDOR AD POLICY - effective 1/1/99

DEFINITION OF A VENDOR)

In the eyes of "the world of 68' micros® a vendor -

a) sells more than one item (exceptions made only for exceptional items), and
b) sells said items for at least six months.

AD RATES

For a year of ads (six issues) paid in advance (includes a copy of each issue) -
1/4 page ad (3-1/2'x4-3/4", 1-3/4"x10", or 7-1/4"x2-1/4") = $50

1/2 page ad (7-1/4"x4-3/4" or 3-1/2"x10") = $80

Entire page ad (7-1/4°x10") = $140

For a single issue paid in advance (includes a copy of the issue) -
1/4 page ad (see above) = $15

1/2 page ad (see above) = $25

Entire page ad (see above) = $35

Non-vendor spot ads (maximum of 1/8th page - formatted by editor) will be FREE
to subscribers or $5 to non-subscribers.

Rates may be negotiable on an individual basis.
The value of a hardware/software trade will be taken off the ad price.

Letters

(ed. - This following letter was for Frank.)

| for one hate to see you go but, | understand your reasons and | am confident
that Stephen Disney will do just as good a job as you did. As long as there is a
TWOG8K, I'll keep renewing.
Thanks for all you've done Frank and good luck to Stephen.
Jim Cox

-ed. - Thanks for the vote of confidence Jim. It's very important for me to
know that everyone is dedicated to the continuity of this magazine. Also, you got
it backwards. As long as 268'm has subscribers, I'll keep printing it. ;-)

Happy New Year, Stephen -

| used to subscribe and have the first few years. | let the subscription lapse
when it went to every other manth. | would like to subscribe and also get the
missing back issues. The home page doesn't work for me. It still gives Frank's
E-Mail address. Does this mean He is handling the back issues? Let me know
where to send the money, and how much.
Garry - the Florida CoCo Nut

-ed.- Thanks again for the vote of confidence. All money should now be sent
to my address. Itis on the front cover. | will be handling all aspects of the
magazine. Contact me to order back issues. | will be putting alist of the contents
of the previous issues in an upcoming issue.

Hello, Stephen,

A charter subscriber to The World of 68' Micros, | now am about to renew my
subscription. The last issue | received, Jul/Aug/Sep '98, mentioned that the price
will drop by $2. So | plan to send at least $22 for a year's sub to your Statesboro
address. | say “at least,” because | have probably missed one or more issues
since you became the new editor. Heretofore, back issues were sold for the
cover price of $4. But has the cover price also been lowered? How many issues
have | missed?

Ad<thanks>vance.
David Baker

-ed.- Guess what! You haven't missed a thing. Please send your renewal to
the address on the cover. In case you noticed, the cover price actually went up.
This is to discourage people from getting back issues in place of a subscription.
The price of older issues went down to $3 though, so purchasing back issues is
still relatively inexpensive.

New Subscribers
and Renewals!

| would also like to thank the following people for sending in

there renewai:

David Baker
David Hazelton
Franklin Sevier
If your name is listed below, this is the last issue of your
subscription. | sincerely hope that you will consider a re-

newal.

Carl Boll

Art Boos

William F. Brown
Eleanor Buck

John Chasteen
Kenneth Drexler
E.J. Haas

William Hamblen
Rodney V. Hamilton
Henry O. Harwell

J. L. Henderson
William Hochstetter
Michael Hollick
Andre Jacobs
James Jones

Kevin Kounovsky

Terry Laraway
Howard Luckey
Roger Merchberger
[. Michaelides
Larry E. Olson
Tony Podraza
Monk Repair

Mark Rosenfield
Kurt Ryman

Ron Shively

James Toth

C. L. Tucker

Rick Ulland

Ray Watts
John-Michael Wong
Bill Yakowenko

UltiMusE-III and

UltiMusE-K

Still Available and Better than Ever!

We’re Celebrating the Tenth Anniversary of this
Classic MIDI Sheet Music Composing OS-9 Application

by declaring it FREEWARE!

512K Coco-III and MM/1 Versions and Manual
Documents are free to download via FTP from
RTSI.COM. If you can’t download, then ask a friend.
Spread UltiMusE around —It’s legal!

It’s all mine — and it can be yours.

Find out why dozens of Coco users paid big bucks for
UltiMusE back in 1989. Low-cost MIDI keyboards are
back — check out The Shack! There will never be a
better time to get in on the fun and satisfaction of pro-
gramming your own music. And I’m still using and

upgrading this powerful package.

— Mike Knudsen —

the world of 68' micros page 3

Converting GW-BASIC to DECB Part 2

Creating a simple but fast database format

Frank Swygert

Introduction...

In the last installment | discussed how pro-
gram parameter setup is accomplished within
each GW-BASIC program setup. For the
CoCo, alittle more work was required for setup
so aseparate “‘BOOT" program was used which
also included some “speed up” patches. As
one can see, the differences inthe programs
are many and a straight conversion was im-
possible. it was simpler to rewrite the GWBASIC
programs for the CoCo using the GW code as
aguide. Notes on the code follows each seg-
mentin the listings.

Creating a fast database in
BASIC...

Anyone who has programmed in BASIC
knows it is far from the fastest language for a
database, mainly due to speed. Yet | have had
people assume CoCo Family Recorder was
written in assembly language because of the
unlistable program segment names and be-
cause of the relatively fast speed. Part of the
speed comes from using the high speed poke
and patching SDECB (Super Disk Extended
Color BASIC) for reliable double speed disk
access. But database access speed comes
from the way the database was programmed.

In order to speed record access in the data-
base, the database is given a permanent struc-
ture. Blank records are written on the disk in
fixed positions. So all the disk access routine
has todo is find the file. Each record has a fixed
number so is very easy to find. And since the
blank records were all written atone time, there
is one single file instead of many small indi-
vidual files. This is why it is important to start
building your data from a blank disk - doing so
will make the program even faster because the
file is stored in one contiguous area on the disk
instead of being in fragments across the disk.

Database Limitations...

There are some limitations inherent with cre-
ating blank records ahead of time. One is that
you need to make 2-3 backups of your data
files. This is always a good idea, but more im-
portant in this case. Any given record number
is always written to the same track and sector
on the disk once the file is created. So if that
particular bit of data goes bad, reentering will not
help since the same sector will be reused. If that

paae 4 the world of 68' micros

sector or a portion of itis bad it will always be
bad. In that case you have to go to one of the
backups. This means that high quality disks
should be used and regular backups made.
This is pointed out in the manual, and hasn't
been a problem for any of the 60 or so users.
While some have switched to more extensive
PC based programs, there are still a few users
religiously using there CoCo3 and CCFR.

Another limitation was the number of records
that could be kept. The GW program has the
ability to change the number of records, but
SDECB doesn't. Rather than make the num-
ber of records flexible, | decided to simply cre-
ate the maximum number of records SDECB
would handle - 256. The size of the resulting
files dictated that two data disks be used, one
labeled PERSFILE and the other MARRFILE.
The first contains records of individual persons
and the second records of marriages interlinking
persons. The data files themselves would only
take up the 68 granules that a single 35 track
disk has for storage, but an index of each record
is kept as anindividual file. The indices require
only one granule each, putting the data over the
68 granule limit. One user keeps alidataona
single 40 track disk, which has 78 granules for
storage. |f the SDECB ROM has been modi-
fied for 40 track access it is safe to simply insert
the same disk when creating the data files. If
you don't have a modified ROM but have 40
track capable disk drives, a 40 track patch can
be added to the BOOT program. | didn't include
this initially as there was a possibility that a user
may not have 40 track capable drives.

The following pokes are used to set SDECB
for 40 track operation. The first set is for version
2.0, the second for version 2.1. Remember, the
CoCo3 patches DECB and changes the ver-
sion numberfrom1.0and 1.1t02.0and 2.1.
The patches work on a CoCo2 with DECB 1.0
and 1.1 also.

Version X.0

POKE 50952,78 (kill command)

POKE 51083,78 (fike allocation table)

POKE 51104,78 (granule allocation tabie)

POKE 52697,78 (free command)

POKE 53680,40 (backup command)

POKE 54111,78 (copy command)

POKE 54342,39 (DSKI$/DSKOS)

POKE 54642,40:POKE 54677 40

(dskini command)

Version X.1

POKE 50997,78 (kill command)

POKE 51034,78 (file allocation table)
POKE 51183,78 (granule allocation table)
POKE 52917,78 (free command)

POKE 5391740 (backup command)
POKE 54349,78 (copy command)
POKE 54580,39 (DSKI$/DSKO$)
POKE 54879,40:POKE 54914,40
(dskini command)

Just for your information, the first set of five
numbers is the memory location. Note that the
locations are different for version X.0 and X.1,
the reason for two different sets of POKEs. The
second two digit number is a decimal number.
“78" refers to 78 granules, 40 t0 40 tracks. DSKI$
and DSKOS starts counting at 0 rather than 1,
hence the use of 39 instead of 40.

It would be best to add these commands in
the BOOT file before running CCFR. Orwrite a
short BASIC program to make all the POKEs
that can be used with other programs as well. If
you run CREATMAR and insert the PERSFILE
data disk and error will occur when the disk fills.
The MARRFILE data file won't be damaged.
The disk will fill only if you attempt to create both
files on a 35 track disk.

Conclusion...

As in the last issue he listings are side by
side beginning on the next page. Compare them
line by line when possible. There are Some ob-
vious differences, such as the CoCoonly allow-
ing only two characters for variable names
whereas GW allows up to 40. There are also
the GW and MS-DOS setup parameters. Oth-
ers will be noted within or after the code. Enjoy
the coding exercise and address any ques-
tions to the editor or directly to me.

Frank Swygert

Box 321

W.R., GA 31099

e-mail: fama@woridnet.att net

Phone 912-328-7859 (not after Spm EST!)

Listings on next page

GW-BASIC

SDECB

IMPORTANT: Because of overlapping subjects, it is necessary to read the notes in BOTH listings.

100 REM CREATPER Program

110 REM Creates (Formats) a Persons File
120 REM By: Melvin O. Duke. Last Updated 2 February 1986.
200 REM Screen Definitions

210 WIDTH "scrn:", 80

220 SCREEN S$1,52,S3,54

600 REM Titles

610 TITLES = "Create a Persons File"

620 TITLE$ = TITLES + " ON DISPLAY"

700 REM Terminate if not called from the Menu

710 IF DD.MENU$ <> "™ THEN 770

720 COLOR 7,0: KEY ON : CLS : LOCATE 15,1

730 PRINT “Cannot run the"

740 PRINT TITLES

750 PRINT "Program, unless selected from the MENU"

760 END

770 REM OK

* The above segment reestablishes some of the setup parameters, mak-
ing sure the screen hasn't been changed. It also prevents running un-
less started from the menu. | didn't know how to incorporate this into the
SDECB program, since SDECB can't pass parameters from one program
to another. So the encoded file names serve two purposes — protection
of the code from inexperienced BASIC programmers and preventing the
ancillary programs from being run without running the boot and menu
programs first.

1000 REM Produce the first screen

1010 KEY ON : CLS : KEY OFF

1020 REM Draw the outer double box
1030R1=1:C1=1:R2=24:C2=79: GOSUB 1300
1040 REM Find the title location

1050 TITLE.POS =40 - INT(LEN(TITLES)/2)

1060 REM Draw the title box

1070 R1=3:C1=TITLE.POS-
2:R2=6:C2=TITLE.POS+LEN(TITLE$)+1:GOSUB 1500
1080 REM Print the title

1090 LOCATE 4, TITLE.POS : PRINT TITLES

1100 LOCATE 5,40-INT(LEN(VERSIONS$)/2) : PRINT VERSIONS;
1230 REM Draw the Copyright box
1240R1=19:C1=21:R2=22:C2=59: GOSUB 1300
1250 REM Print the Copyright

1260 LOCATE 20,40-INT(LEN(COPY1$)/2) : PRINT COPY1$;
1270 LOCATE 21,40-INT(LEN(COPY2$)/2) : PRINT COPY2$;
1280 GOTO 1700

1300 REM subroutine to print a double box
1310COLORP

1320FORI=R1+1TOR2-1

1330 LOCATE |, C1: PRINT CHR$(186);

1340 LOCATE |, C2: PRINT CHR$(186);

1350 NEXT I

1360FORJ=C1+1TOC2-1

1370 LOCATER1, J : PRINT CHR$(205);

1380 LOCATE R2, J : PRINT CHR$(205);

1390 NEXT J

1400 LOCATE R1, C1: PRINT CHR$(201);

1410 LOCATE R1,C2: PRINT CHR$(187);

1420 LOCATE R2, C1: PRINT CHR$(200);

1430 LOCATE R2, C2: PRINT CHR$(188);

1440 COLORW

1450 RETURN

1500 REM subroutine to print a single box

1510 COLOR B

1520 FORI1=R1+1TOR2-1

1530 LOCATE |, C1: PRINT CHR$(179);

1540 LOCATE |, C2: PRINT CHR$(179);

1550 NEXT |

1560 FORJ=C1+1TOC2-1

1570 LOCATE R1, J : PRINT CHR$(196);

1580 LOCATE R2, J: PRINT CHR$(196);

1590 NEXT J

1600 LOCATE R1, C1: PRINT CHR$(218);

10 REM " CREATPER Program

20 REM Copyright (c) by F.G. Swygert, September 1991
30 POKE113,0:WIDTHB80:CLS6

40 IF PEEK(269)*256+PEEK(270)<>32401 THEN 780

* The above PEEK statement checks for the patches made in the MENU
program. If the patches haven't been made, then MENU hasn't been run.
While not essential for the operation of the CREAT programs, the patches
do speed the process. | don't recall exactly which patch the statement
checks for, but | believe it may be the double speed POKE.

50 ON ERR GOTO 560 : ON BRK GOTO 700

60 LOCATE 21,8 : PRINT “The CoCo Family Recorder Version 1.0"

70 LOCATE 28,12: PRINT “Create a Persons File”

80 LOCATE 13,18: PRINT “Place Blank Disk in Drive 1. Label this disk
PERSFILE."

90 SOUND150,4:L. OCATE 27,22 : PRINT “Press any key to continue.”
100 EXEC 44539

110CLS 6

120 CLS 2:SOUND150,4:SOUND150,4

130 LOCATE 7,10 : PRINT “This program FORMATS a Persons-file by
writing new, empty records.”

140 LOCATE 6,11 : PRINT “it will destroy any data which exists with the
same record-numbers.”

150 LOCATE 5,12 : PRINT “If this is REALLY what you want to do, type
'Y’ to continue then press”

160 LOCATE 12,13 : PRINT “the ‘ENTER' key. Hit any other key to return to
the MENU"

170 LOCATE 6,15 : INPUT “DO YOU WISH TO CONTINUE".R$

180 IF LEFT$(R$,1)="y" THEN 240

190 IF LEFT$(R$,1)="Y" THEN 240

200 LOCATE 30,17 : PRINT “File was NOT Created"

210 SOUND150,4:LOCATE 27,20 : PRINT “Press any key to continue”
220 EXEC 44539

230 GOTO 530

* Always give ample warning before doing any potentially destructive
processes! Things like this make the program very “user friendly”. If
there is a possibility for error, warn! Always assume the user is inexpe-
rienced when writing. These warnings may be a slight inconvenience
for experienced users, but better to be safe than turn a novice away
because of accidentally lost data -- especially when the programmer
can prevent such accidents.

240 OPEN“D", #1, “PERSFILE:1"

250 FIELD 1,5ASFA$,20ASFB$,30ASFC$ 2ASFDS$ 5ASFES,5ASFFS,
5ASFG$,11ASFH$,18ASFI$,16ASFJ$, 16ASFKS,11ASFLS,18ASFMS,
16ASFZ$,16ASFY$,11ASFP$,18ASFQS$,16ASFRS$,16ASFS$

* The above line sets the number of spaces and string names. “5SASFA$”
reads “5 spaces used as FA$” in plain English. Line 240 opens the data
file and names it “PERSFILE" on drive 1.

260 FOR I=1TO550

270 TP=|

280 TP$=MKNS$(TP)
290LSETFA$ =TP$

300 TP =""

310TP=0

320LSETFB$ =TP$
330LSETFC$=TP$
340LSETFD$ =TP$

350 LSET FE$ = MKNS$(TP)
360 LSET FF$ = MKNS$(TP)
370 LSET FG$ = MKNS(TP)
380LSETFH$ =TP$
390LSETFI$=TP$
400LSETFJ$=TP$

410 LSET FK$ =TP$

420 LSETFL$ =TP$
430LSETFM$=TP$

440 LSETFZ$ =TP$

the world of 68’ micros page 5

GW-BASIC

SECB

1610 LOCATE R1, C2: PRINT CHR$(191),

1620 LOCATE R2, C1: PRINT CHR$(192), -
1630 LOCATE R2, C2: PRINT CHR$(217);

1640 COLORW

1650 RETURN

1700 REM ask user to press a key to continue

* All the above creates a semi-graphics screen with lots of boxes
using the extended IBM character set.

1710 LOCATE 251

1720 PRINT "Have Data Diskette(s) in Place, then Press any key to
continue.",

1730 K$ = INKEYS : IF K$ =" THEN 1730

1740 KEY ON : CLS : KEY OFF

1800 REM Give the User one more chance to protect himself.
1810 LOCATE 10,1

1820 PRINT "This program FORMATS a Persons-file by writing new,
empty records.”

1830 PRINT "It will destroy any data which exists with the same
record-numbers."

1840 PRINT

1850 PRINT "If this is REALLY what you want to do,”

1860 PRINT "type y to continue, and press the 'enter key."
1870 PRINT "Otherwise, type anything else, and press the ‘enter key."
1880 PRINT

1890 INPUT "Enter your desired action.",REPLY$

1900 IF LEFT$(REPLYS$,1) ="y" THEN 2000

1910 IF LEFT$(REPLY$,1) ="Y" THEN 2000

1920 PRINT,

1930 PRINT "File was NOT Created."

1940 PRINT"

1950 PRINT "Press any key to continue"

1960 A$ = INKEYS$: IF A$ ="" THEN 1960

1970 GOTO 2330 'to end the program

2000 REM CREATPER Program Starts Here

2010 OPEN DD.PERSS$+"persfile" AS #1 LEN = 256

2020 FIELD 1,5ASF1$,20ASF2$,30ASF3$,2ASF4$,5ASF5%,5ASF6$,
5ASF7$,11ASF8$,18ASF9%,16ASF108,16ASF11$,11ASF12$,18ASF13$,
16ASF14$,16ASF158,11ASF168,18ASF173,16ASF18%,16ASF19%
2030 REM Write the Persons Records

2040 FOR | = OLD.MAX.PER + 1 TOMAX.PER

2050 TEMP =-| .

2060 TEMPS = MKS$(TEMP)

2070 LSETF1$=TEMPS

2080 TEMP$=""

2090 TEMP =0

2100 LSET F2% = TEMPS

2110 LSET F3$ =TEMP$

2120 LSET F4$ = TEMPS

2130 LSET F5% = MKS$(TEMP)

2140 LSET F6$ = MKS$(TEMP)

2150 LSET F7$ = MKS$(TEMP)

2160 REM all the rest are string

2170 LSET F8% = TEMP$

2180 LSET F9% = TEMP$

2190 LSET F10$ = TEMP$

2200 LSETF11$=TEMPS

2210 LSET F12% = TEMPS

2220 LSET F13$ = TEMPS

2230 LSET F14% = TEMPS

2240 LSET F15% = TEMP$

2250 LSET F16$ = TEMP$

2260 LSETF17$ = TEMP$

2270 LSETF18% = TEMP$

2280 LSET F19% = TEMP$

2290 LOCATE 23,1 : PRINT "Writing Record Number:*;|

2300 PUT#1,|

2310NEXTI

2320 CLOSE #1

2330 KEY ON: CLS : KEY OFF : LOCATE 21,1

2340 PRINT "End of Program”

2350 RUN DD.MENU$+"menu"

page 6 the world of 68' micros

450 LSETFY$=TP$

460 LSETFP$ =TP$

470LSETFQ$=TP$

480 LSET FR$ = TP$

490 LSETFS$=TP$

500 LOCATE 27,22 : PRINT “Writing Record Number:";1
510 PUT#1,1

520 NEXT |

530 CLOSE #1

* Lines 260-530 writes the datafile to the disk.

540 CLS 3: LOCATE 33,12: PRINT “End of Program”
550 LOADCHR$(130)+CHR$(32)+CHR$(130)+CHRS$(03)+"/
"+CHR$(03)+CHR$(12)+CHR$(13),R

* Since the program has ended, I'll return users to the MENU program
automatically.

560 CLS 2

570 LOCATE 26,8 : PRINT “Error Number “;ERNO;"” Has Occured”

580 LOCATE 26,8 : PRINT “Error Number “;ERNO;” Has Occured”

590 LOCATE 18,10 : PRINT “ERROR NUMBERS:"

600 LOCATE 18,11 : PRINT “3 = Out of Data 6 = Out of Memory”
610 LOCATE 18,12 : PRINT “27 = Bad Record Number 17 = Bad File
Data”

620 LOCATE 18,13 : PRINT “20 = {/O Error 21 =Bad File Mode”
630 LOCATE 18,14 : PRINT “25 = Disk Full 26 = File Not Found”
640 LOCATE 16,16 : PRINT “<<** Check for correct disk(s) in drive(s)!
5"

650 LOCATE 25,18 : PRINT “Place Program Disk in Drive 0"

660 SOUND150,4:.LOCATE 15,20 : PRINT “PRESS ANY KEY TO RETURN
TO MENU, BREAK TO TRY AGAIN"

670 EXEC 44539

680 CLOSE : CLS 3: LOCATE 33,12 : PRINT “End of Program”

690 GOTO550

* Lines 550-690 are repeated at the end of every program segment. | am
giving all readers permission to use this error trapping routine in their
programs, all | ask is a credit byline somewhere in the program listing. Of
course you'll want to change line 550 if a different program needs to be
run, or delete line 690 to end the program and clear the screen with lines
700-750. You may want to change line 760 to “CLS:END". No error
handling routine is needed in GW, it has built in error trapping.

700CLS 2

710 LOCATE 20,12 : INPUT “Do you wish to halt the program, Y or N”; R$
720 IF R$="Y" OR R$="y" THEN 750

730IFR$=“N"ORR$ ="“n"THEN 770

740 GOTO 710

750 CLOSE:CLS3:LOCATE33,12:PRINT"End of Program”

760 GOTO550

770 CLOSE:CLS6:CLEAR 500:GOTO 40

780 CLS2:SOUND1,8:LOCATE 25,12:PRINT"PROGRAM MUST BE RUN
FROMMENUY

790 GOTO550

One Line Wonders!

SUNSET OVER THE CITY - from Robert Rice - FPO Miami, FL
(-ed.- The following should be typed in one line.)
OPMODEA4,1:PCLS:SCREENI1,1:CIRCLE(126,65),40,3,.7:POKE178,2:
PAINT(126,52),,3:POKE178,1:LINE(0,60)-(255,191),PSET,BF
:FORA=0T0356:CIRCLE(126,60),A,0,.4,0,.5:NEXT:FORA=ITO12:
X=RND(75):Y=RND(50):Z=RND(50):PSET(X+160,Z):PSET(X,Y):
NEXT:LINEINPUTAS

If you have a one or two liner that you would like to share, SEND IT IN!
Have some FUN inventing one - THEN SHARE IT WITH US!

FARNA Syszems

Your most complete source for Color Computer and 0S/9 information!

Post Office Box 321
Warner Robins, GA 31099
Phone: 912-328-7859
E-mail: dsrtfox@delphi.com

ADD $33 S&FH, 34 CANADA, $70

OVERSEAS

BOOKS:

Mastering OS-9 - $20.00

Completely steps one through learning all
aspects of OS-9 on the Color Computer.
Easy to follow instructions and tutorials.
With a disk full of added utilities and soft-
ware!

Tandy’s Little Wonder - $25.00

History, tech info, hacks, schematics, re-
pairs,... almost EVERYTHING available for
the Color Computer! A MUST HAVE for
ALL CoCo aficionados, both new and old!!!
This is an invaluable resource for those
trying to keep the CoCo alive or get back
into using it.

Quick Reference Guides

Handy little books contain the most refer-
enced info in easy to find format. Size
makes them unobtrusive on your desk.
Command syntax, error codes, system
calls, etc.

CoCa.0S-9 Level ll : $5.00

0S-9/68000 : $7.00

Complete Disto Schematic set: $15
Complete set of all Disto product sche-
matics. Great to have... needed for repairs!

SOFTWARE:

CoCo Family Recorder: Best genealogy
record keeper EVER for the CoCo! Re-
quires CoCo3, two drives (40 track for OS-
9) and 80 cols.
DECB: $15.00 0S-9: $20.00

ADOS: Best ever enhancement for DECB!
Double sided drives, 40/80 tracks, fast
formats, extra and enhanced commands!
Original (CoCo 1/2/3) : $10.00

ADOS 3 (CoCo 3 only) : $20.00
Extended ADOS 3 (CoCo 3 only, requires
ADOS 3, support for 512K-2MB, RAM
drives, 40/80 track drives mixed) : $30.00
ADOS 3J/EADOS 3 Combo: $40.00

Patch 0S-9 - $7.00

Latest versions of all popular utils and new
commands with complete documenta-
tion. Auto-installer requires 2 40T DS
drives (one may be larger).

TuneUp : $10.00

Don't have a 63097 You can still take ad-
vantage of Nitro software technology! Many
08-9 Level || modules rewritten for im-
proved speed with the stock 6809!

NitrOSs-9:

Nitro speeds up OS-9 from 20-50% de-
pending on the system calls used. This is
accomplished by completely rewriting OS-
9 to use all the added features of the Hita-
chi 6309 processor. Many routines were
streamlined on top of the added functions!
The fastest thing for the CoCo3! Easy in-
stall script! 6309 required.

Level 3 adds even more versatility to Ni-
tro! RBF and SCF file managers are given
separate blocks of memory then switched
in and out as needed. Adds 16K to sys-
tem RAM... great for adding many devices!
NitrOS-9 V.2.0: $10.00

NitrOS-9 Level 3: $10.00

ONLY 3 LEFT!

That's right, only 3
“Mastering 0S-9”
book and disk sets are left!
P'll print no more!

New from...

¢

'FLASH! - Available for the first time in 12 years....Green Mountain Micro’s famed “Learning the 6809” set. This set contains an
in-depth text book autographed by the author (Dennis Béthory-Kitsz), a set of Motorola data sheets, and 12 cassettes featuring
two thirty minute lessons each (or one MPEG3 CD with all 24 lessons). Each lesson is packed with a mixture of spoken text,
questions, and loadable programs. You will not have to type any demo programs. All examples are already in the lessons! A Hot
CoCo reviewer once referred to the set as “a first-rate, honest product...9.8 out of a possible 10”. Make a New Year’s resolution to
finally learn the 6809 processor, then buy this set to do it right. Once you’ve learned the 6809, adding programming knowledge of
the disk system, GIME, and 6309 should be a snap. This set is for use on a CoCo 1/2 with a tape setup and EDTASM. We do not
guarantee use on a CoCo 3. We are hoping to provide updates in the future, but at this time neither ThunderSoft nor the author
are offering support. This is a time tested set. We feel there should be no problems.

Learning the 6809 set (as described above - please specify tapes or CD) - $50 (plus $5 S&H in the U.S.)
Learning the 6809 text only (for replacement purposes) - $10 (plus $3 S&H in the U.S.)
Make all checks payable to
Stephen Disney and mail to:
ThunderSoft
273 Peach Orchard Rd.
Statesboro, GA 30458

And now for the stupid and amazingly obvious disclaimer:

“The Thundersoft (distribution and publishing) run by Stephen T. Disney (editor of “the world of 68’ micros”) is not in any way
affiliated with any other company by the same name.” - S.D. (ThunderSoft)

the world of 68’ micros page 7

microNotes

Notes and news from all over related to the CoCo, OS/9 and of interest to readers. Got something
interesting to let the CoCo/0S-9 world know about? Send it to us!

New Pac-man distributor!

Jim Davis has taken over from Rick Coo-
per as the official distributor for Pac-man
along with all remaining CoCo-Pro and
Sundog products. As if that wasn’t
enough, he has also taken over the CFDM
disk magazine! Obviously someone with
lots of spare time on his hands.....not! Con-
tact Jim Davis for more information regard-
ing CFDM, [highly recommend it!! Thank
you to Rick Cooper for all his hard work
acting as the U.S. Pac-man distributor and
for his support to the CoCo community!
The full registered version of Pac-man is
available for the reasonable price of $20
from:

Jim Davis

(e-mail: gearboxed@geocities.com)
P.0.BOX 1704

NIXA,M€.65714

New Micros, Inc., has recently intro-
duced a system for real time programming
called IsoMax which is further explained at

http://www.newmicros.com/isomax.html.
They are looking for your comments, all
and sundry, on this page and this concept.
“Our idea is to help real time programming
develop solutions using what we call
[soStructure. Generally, IsoStructure makes
problems involving concurrency much
easier to solve. It improves fault tolerance
by not having all state information stored
on the CPU’s program counter register.
[soStructure permits multiprocessing
across non-similar processors, and com-
piling into hardware, as well as other nifty
features.” If you have an interest in
IsoStructure, please contact them for more
information and documentation.

Chet Simpson has Doom and Doom II
running on both the x86 and PPC versions
of OS-9. They are currently supporting a
wide variety of configurations (minimum
16mb recommended for ROM based sys-
tems) with both 256 color displays as well
as 16bit. It has been tested with Doom I
and Doom II data files as well as total

conversion WADS such as “Alien”. It has
been run on both the MBX boards and
the Enhanced OS-9 for x86 release. Stay
tuned for more great OS-9/x86 news!

I have made a new product called the
“Pro-Tector”. What this product does is
buffer the address bus in the CoCo3. I have
used this many times when troubleshoot-
ing bad boards that would normally blow
out the processor. The end result is a pro-
tected circuit. Since the 63x09ep is getting
harder and harder to find, we now have to
get them from S. Africa. [thought this
would be a good way to save that invest-
ment in case of a local disaster on the ad-
dress bus of your CoCo3. The cost of this
unit is $18, plus $4 shipping within the US.
[will update my web page when I get my
camera back on line. If you are interested
in this product please Email me privately
and not to this list. I’'m trying to get an
approximate board count so I can send it
off to the board manufacturer.

- Mark Marlette (Cloud Nine)

their web page -

October 12, 1998

DES MOINES, lowa - Microware Systems Corporation (NASDAQ:
MWAR), today announced their superior real-time operating system (RTOS)
08-9/Hawk supports Motorola's new MPC8260 PowerQUICC Il proces-
sor. Designed for communications applications such as remote access serv-
ers, LAN-to-WAN bridges, cellular base stations, and telecom switch con-
trollers, the PowerQUICC processor is the latest of Motorola's next genera-
tion products.

Motorola's PowerQUICC Il combines a high-speed PowerPC core, a
powerful communications engine processing up to 710 megabits of data per
second and a circuit board's worth of system interface and control functions
on asingle chip. Its unparalleled degree of system integration can reduce
asystem's component count by up to six chips, shorten customer’s time-to-
market by six months, and slash a system's component cost by as much as
70 percent.

The MPC8260 PowerQUICC Il microprocessor is the first member of
Motorola's MPCB8000 series, a high-performance extension to Motorola's
popular MPC800 series of integrated PowerPC processors. The new
PowerQUICC Il family offers high performance for the latest high-band-
width intemetworking and telecommunications systems, continuing Motorola's
legacy of proving highly integrated and powerful communications proces-
S0rs.

Major communications equipment makers such as Alcatel, Bay Networks,
Fujitsu, Italtel, Lucent Technologies, Motorola, Newbridge Networks, Nokia
and Siemens are examining the PowerQUICC Il processor for their next
generation systems.

For more information on Microware's products, visit www.microware.com;
send e-mail to info@microware.com; or call 1-800-475-9000 or 515-223-
8000.

page 8 the world of 68’ micros

(-ed.- See this issue’s Cloud Nine ad.)
28456 S.R. 2, New Carlisle, IN 46552
219-654-7080 eves & ends
MO, Check, COD; US Funds. Shipping
included for US, Canada, & Mexico
MM/1 Products (0S-9/68000)
CDF $50.00 - CD-ROM File Manager! Unlock a wealth of files on CD with
the MM/1! Read most text and some graphics from MS-DOS type CDs.
VCDP $50.00 - New Virtual CD Player allows you to play audio CDs on your
MM/1! Graphical interface emulates a physical CD player. Requires SCSI
interface and NEC CD-ROM drive.
KLOCK $20.00 - Optional Cuckoo on the hour and half hour!! Continu-
ously displays the digital time and date on the /term screen or on all open
screens. Requires [/O board, I/O cable, audio cable, and speakers.
WAVES vr 1.5 $30.00 - Now supports 8SVX and WAV files. Allows you to save
and play all or any part of a sound file. Merge files or split into pieces. Record, edit,
and save files; change playback/record speed. Convert mono to stereo and vice-
versa! Record and play requires /O board, cable, and audio equipment.
MM/1 SOUND CABLE $10.00 - Connects MM/1 sound port to stereo
equipment for recording and playback.
GNOP $5.00 - Award winning version of PONG(tm) exclusively for the
MM/1. You’ll go crazytrying to beat the clock and keep that @#$%& ball in
line! Professional pongists everywhere swear by (at) it! Requires MM/I,
mouse, and lots of patience.

CoCo Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug n’
Power controller back on the job with your CoCo3! Control up to 256
modules, 99 events! Compatible with X-10 modules.
HI & LO RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or no
adapter at the flick of a switch! No more plug and unplugging of the joystick!
KEYBOARD CABLE $25.00 - Five foot extender cable for CoCo 2 and 3.
Custom lengths available.
MYDOS $15.00 - Customizable, EPROMable DECB enhancement. The
commands and options Tandy left out! Supports double sided and 40 track
drives, 6ms disk access, set CMP or RGB palettes on power-up, come up in
any screen size, Speech and Sound Cartridge support, point and click mouse
directory, and MORE OPTIONS than you can shake a stick at! Requires
CoCo3 and DECB 2.1.
DOMINATION $18.00 - Muiti-Player strategy game. Battle other players
armies to take control of the planet. Play on a hi-res map. Become a Planet-
Lord today! Requires CoCo3, disk drive, and joystick or mouse.

Adventures in Assembly, Part 3
Usiﬂ a Bubble Sort for strings

Art Flexser

This tutorial continues the discussion of ma-
chine-language sorting techniques that was
begun in the last issue. Be sure and read that
tutorial before this one!

In this tutorial, a string sort is demonstrated,
using the same bubble-sort algorithm that was
used in Part 2 to sort single bytes in screen
memory. The string sort is more complicated,
since we are dealing with multiple-byte quanti-
ties to be sorted. The string sort will allow us to
sort a string array, or a portion of such an ar-
ray, into alphabetical order (or more precisely,
into order according to ASCIl codes).

The string sort also differs from the single-
byte sort of Part 2 in that the strings will be
sorted indirectly, by swapping pointers that point
to the string data rather than by sorting the
string data itself. Swapping pointers is much
more efficient than swapping the strings them-
selves, since, by this method, long strings take
no more time to sort than short strings. Also,
the fact that the strings may vary in length cre-
ates no difficulties for this method.

Here is how BASIC treats strings. Eachtime
you create a string from a BASIC program, say
by inputting the value “ABCDEF” in response to
an INPUT A$ prompt, things happen in two dif-
ferent areas of memory. If A$ has been newly
defined, a 5-byte entry is created for this vari-
able in the variable storage space immediately
above where your program resides in memory.
This 5-byte entry is called a string descriptor
(the address of this descriptor is the value re-
turned by BASIC's VARPTR function).

Only three bytes of the 5-byte string descrip-
tor for A$ are actually used; the other two are
there simply for conformity with the format in
which floating-point variables are stored, since
a floating point number takes up five bytes. The
first of the 5 bytes for a string variable descrip-
tor contains the length of the string. The other
two bytes of the descriptor that are used, the
third and fourth bytes, contain a pointer to the
actual string data. This string data (the ASCII
string “ABCDEF") is generally stored in the area
reserved for string storage at the top of avail-
able memory.

Thus, to swap values between two string
variables, say to swap A$ and B$, all we need
to do is swap both the first bytes of the two
descriptors (the string lengths for A$ and B$),
and to swap bytes 3-4 of the two descriptors
(the pointers to the string data for A$ and B$).
When this has been done, A$ will have the
value formerly assigned to B$ and vice versa,
even though the string data itseif has not been
touched.

So far, we have been discussing scalar string
variables, but our sort program works with
string arrays. The only difference that this fact
makes is that we can depend on the string de-
scriptors for the array elements to be consecu-
tively stored in memory: the descriptor for A$(3)
right after that for A$(2), etc., five bytes per
array element. For a muitidimensional array, the
order of storage is with the first subscript vary

ing fastest: A$(0,0), A$(1,0),... A$(n,0),A$(0,1),
A$(1,1),...A$(n,1), A$(0,2),...., etc.

Our sort program will be usable with either
single-dimension or multidimensional arrays, so
long as the elements being sorted have their
descriptors stored consecutively in memory. in
other words, elements in a multidimensional
array can be sorted by first subscript only. That
is, we could sort A$(0,0) through A$(n,0) with
one call to our sort routine, A$(0,1) through
A$(n,1) with another call, etc., but we could
not sort A$(0,0), A$(0,1), A$(0,2), etc., be-
cause these are not consecutively stored.

Using the Sort Routine

The sort routine MLSORT is designed to be
called from a BASIC program using BASIC's
USR function with a string argument, asin Y$ =
USRO(AS$(0)), where the argument is a string
array element. This string array element tells
the sort routine which string array we wish to
sort, and what element of the array we wish
the sort to begin at.

That s, if we wanted to sort only array ele-
ments A$(21) through A$(30), the argument
would be A$(21). We also need to tell the sort
routine how many array elements (10, in the
example of A$(21) through A$(30)) we wish
to include in the sort. Unfortunately, BASIC per-
mits user-defined functions to have only one
argument, so passing the second argument to
our sort routine is more awkward than would
otherwise be the case.

The simplest method is to have BASIC POKE
the argument into some location (or rather, pair
of locations, since we do not wish to limit our
sort to 256 elements or less) that the ML routine
knows about. This means that the user's BA-
SIC program must convert N, the number of
array elements to be sorted, into a most-signifi-
cant byte and a least-significant byte to be
POKEG into two consecutive memory locations.

The BASIC code for performing this conver-
sion generally goes something like this:

MS=INT(N/256).LS=N-256"MS
(An alternate expression for LS is LS=N AND
255. See Part 2 for an explanation of the
logical AND operation if this expression is
not clear to you.) Here, MS and LS stand for
the most significant byte (MSB) and least
significant byte (LSB) of N. For example, if
the hex equivalent of N is &H1287, MS=&H12
and LS=&H87.

Our sort routine will reserve the top two
locations of user RAM ($3FFE-F in a 16K
CoCo, or $7FFE-F in a 64K machine) to ac-
commodate the MSB and LSB of the number
of array elements to be sorted, which will
be poked in from BASIC.

Comments on TUTA3.SRC

On entry to the routine, the X register will
contain a pointer to the string descriptor of the
array element specified in the USR argument,
the lowest array element to be sorted. The bit
of magic that accomplishes this is written into

the ROM code for the USR function, so we
need not go to any special trouble with VARPTR
or anything to get X pointed to the address of
the start of the bunch of string descriptors that
we want to fiddle with. However, finding the
RAM location of the END of the array (or rather,
the end of the array portion that is to be sorted)
does involve a bit of trouble, since we need to
take the number of elements to be sorted, mul-
tiply by 5 (since there are 5 bytes per array
descriptor), and add this product to the address
that was in X when the routine was entered,
the address of the descriptor for the lowest
element to be sorted. The routine needs to
know the location of the end of the array in
order to efficiently perform the comparisons
that determine when the inner and outer loops
reach their respective upper limits (this check
could also be done using decrementing 16-bit
counters to keep track of the number of itera-
tions, but figuring out the position of the end of
the array in advance gives a routine that runs
faster and is also easier to write).

Anyway, as | was saying....finding the loca-
tion of the end of the array (er, “end of the
string descriptors for the portion of the array
that is to be sorted”, but I'll just refer to it as the
end of the array from now on, if you don't mind)
requires a muttiplication by 5. The 6809 conve-
niently has a built-in muitiply instruction (MUL),
but unfortunately, it works on 8-bit quantities
only, and we need to multiply a 16-bit quantity
by 5. This is accomplished by multiplying the
LSB by 5, then the MSB by 5, adding in the
carry from the first MUL (note the use of self-
modifying code to store the resulting product
as the operand of CMPU and CMPX in the sort
routine, replacing dummy $FFFF's).

There is a check to make sure that there is
no carry from the second multiplication, since
that would imply that our result was a 24-bit
quantity and that the array to be sorted took up
more than 64K. An occasional check for screwy
results is an excellent idea in utility routines that
are subject to user errors, since ML routines
that have gone awry have an unfortunate ten-
dency to crash the machine if they are allowed
to get too far astray. In this spirit, there are also
checks to ensure that the user-specified array
portion lies between the addresses specified
in $1D-E and $1F-20, BASIC's pointers to the
start and end of array variable space. If any of
these checks fail, the program exits to ROM
address $B44A, which aborts the user's BA-
SIC program with an FC error.

At the heart of the sort is the SWAP subrou-
tine, which interchanges two strings if the string
pointed to by X is alphabetically greater than
that pointed to by U. As a first step, this sub-
routine ensures that X, rather than U, initially
points to the string with the shorter length, cail-
ing the REVER1 subroutine to interchange the
two strings (by swapping their length bytes
and data pointers) to accomplish this if neces-
sary. This initial step will simplify things later,
since if in comparing the strings byte by byte

the worid of 68' micros page 9

we come to the end of the X-string with no
bytes having mismatched, we can simply exit
and know that the shorter string will appear
firstin the sort (‘ABC” alphabetically precedes
"ABCD".)

After this initial step, X and U are made to
point to the actual string data itself, rather than
the corresponding descriptors, and a byte-by-
byte comparison takes place of corresponding
character positions in the two strings. If the
two characters in a particular position match,
the comparison must go on to check the follow-
ing character position to determine which string
is alphabetically first.

If a character position is reached where a
mismatch is found, the subroutine performs an
interchange of the two string descriptors if
necessary, to make X point to the string with
the lower-valued character, and then returns
(this operation requires setting X and U to point
to the descriptors again rather than to the string
data). Finally, as noted above, if the end of the
X-string (which we ensured was the shorter
in length) is reached, the subroutine simply re-
turns.

If the last explanation of the swap routine
was less than clear, the following little BASIC
program does pretty much the same thing as
the SWAP subroutine and may be easier to fol-
low the logi¢ in. The main difference is that the
REVER1 subroutine used by SWAP inter-
changes the descriptors, whereas the corre-
sponding BASIC GOSUB in line 100 inter-
changes the strings themselves, which is much
less efficient.

10 INPUT X$,U$

20 IF LEN(X$)>LEN(U$) GOSUB 100

30 FOR I=1 TO LEN(X$)

40 IF MID3(X$,1,1)>MID$(US.1, 1) GOSUB
100:GOTO70

50 IF MID$(X$,1,1)<MID$(US.], 1) THEN 70
60 NEXT |

70 PRINTXS;" PRECEDES “;U$:GOTO10
100'SUBROUTINE TO INTERCHANGE X$ AND
us

110 T$=X$:X$=U$:U$=T$:RETURN

A demo in BASIC for you to use...

The following is a demonstration BASIC pro-
gram that uses the ML string sort to order 500
randomly-generated two-character strings.
This program displays BASIC's array area in
PMODE4 while the sort takes place, so you can
watch the string descriptors get swapped
around as the sort progresses.

10'ML STRING SORT DEMO (BUBBLE SORT)
20'ART FLEXSER, MIAMI, JULY 1985

30'SEE MLSORT.DOC FOR HOW TO USE THE
MACHINE-LANGUAGE SORT ROUTINEIN
YOUR OWN PROGRAMS

40 PMODEOQ:PCLEAR1:GOSUB320:DEFUSR=
&H3F7E+OF:CLEAR4500,&H3F7E+OF

50 GOSUB320 THIS 2ND GOSUB NEEDED
BECAUSE "CLEAR" RESETS ALL VARIABLES
60 FORI=&H3F7E+OFTO&H3FFD+OF:READPS:
POKEI VAL("&H"+P$):NEXT

70 DATA 9C,1D,25,45,EC,8D,0,78,10,83,0,1,
23,3A,86, 5,3D,34,6

80 DATAE6,8D,0,69,86,5,3D,EB E4,E7 E4,4D,
26,28,1F,10,E3,E1,10

page 10 the world of 68’ micros

90 DATA 93,1F 22,1F,ED,8D,0,F,83,0,5,ED,8D,
0,F.33,5,8D,13

100 DATA 33,45,11,83,FF,FF,25,F6,30,5,8C,
FF FF.25 ED,39,7E B4,4A

110 DATA 34,50,E6,84,E1,C4,23,2,8D,17,ES,
84,27 F AE.2,EE 42,A6

120 DATA 80,A1,C0,22,7,25,3,5A,26,F5,35,
D0,35,50,A6,84,E6,C4,A7

130 DATA C4,E7,84,EC 2,10,AE 42 ED 42,10,
AF 2,39

140 N=500

150 DIM A$(N)

160 PRINT'GENERATING RANDOM ARRAY™:
PRINT"OF",STR$(N);" TWO-CHARACTER
STRINGS:"

170 FORI=1 TON

180 'GENERATE RANDOM TWO-LETTER
STRINGS

190 GOSUB330:A$()=CHR$(C)+CHRS$(D):
PRINTAS(l)" ":NEXT

200 PRINT:PRINT'PRESS ANY KEY TO START
SORT"

210 IF INKEY$=" THEN 210

220 PRINT"SORT INPROGRESS...."

230 POKE&HB6,4:POKE&HBA, PEEK(&H1D):
SCREENT1,1'DISPLAY ARRAY VARIABLE
AREA IN PMODE 4

240 MS=INT(N/256):.LS=N AND 255

250 POKE&H3FFE+OF MS:POKE&H3FFF+OF,
LS

260 X$=USR(A$(1))'SORT DEM STRINGS!
270 PRINT:PRINT"SORT COMPLETE":PRINT
280 PRINT'PRESS ANY KEY TO SEE™:PRINT
"SORTED ARRAY"

290 IF INKEY$="THEN 290

300 FORI=1TON:PRINTAS$(l)" ":NEXT
310END

320 IF PEEK(&H74)>&H3F THEN OF =&H4000:
RETURN ELSE RETURN 'SET OFFSET TO
&H4000 FOR 32/64K MACHINES (&H74-5
CONTAINS "END OF RAM" ADDRESS)

330 C=&H40+RND(&H1A):D=8&H40+RND
(&H1A).RETURN

The statements in lines 40-130 of
MLSORT.BAS and the subroutine in line 320
are suitable for general use. They will cause
the ML routine to be poked in to the highest
available user RAM for the memory size of your
machine, will protect the routine from BASIC,
and will set up things so the routine can be
called with the USR function.

Depending on the memory demands of your
particular application, you may wish to adjust
the PCLEAR argument and the first argument of
the CLEAR statement (which determines how
much space is reserved for string storage). If
your program seems to "hang up" for long peri-
ods and then resume by itself, you are experi-
encing delays due to garbage collection (reor-
ganizing of the string storage area to reclaim
wasted space). Such delays may be allevi-
ated or eliminated by increasing the storage
allotted to strings in the CLEAR statement, if
available memory permits.

To use the sort routine, you must tell it two
things: the array element that the sort is to
begin with (i.e., the element with the lowest-
numbered subscript), and how many consecu-
tively-numbered array elements are to be in-
cluded in the sort. The sort routine gets told the
starting element of the sort by making that ele-
ment the argument of the USR call. Note that

the USR argument must be an array ELEMENT,

- not simply the NAME of the array. The number

of elements to be included in the sort is told to
the sort routine by converting this numberto a
two-byte quantity (most significant byte, least
significant byte) and POKing these two num-
bers into the two bytes directly above the end
of the ML routine ($3FFE-F in a 16K machine,
$7FFE-F in a 32/64K machine).

Line 240 of MLSORT.BAS does this conver-
sion of the number of elements (N) into the re-
quired two-byte format, and line 250 pokes the
resulting most-significant and least-significant
bytes into the required addresses prior to the
USR call in line 260. The quantity X$ which oc-
curs to the left of the USR call in line 260 is a
dummy variable whose value is not used.

TUT2A.SRC

00100 *STRING SORT USING BUBBLE SORT
ALGORITHM

00110 *ART FLEXSER, JULY 1985

00120

00130 *ON ENTRY, X REGISTER CONTAINS
ADDRESS

00140 *OF DESCRIPTOR OF 1ST STRING
ELEMENT.

00150 *NUMBER OF ARRAY ELEMENTS TO
BE SORTED

00160 *IS POKED BY BASIC INTO LEN AND
LEN+1.
00170
64K
00180 *ORG SELECTED TO MAKE ADDR OF
LEN

00190 *COME OUT TO $3FFE-F OR $7FFE-F

ORG $3F7E USE $7F7E FOR

(TOP OF MEMORY)

00200 START CMPX $1D IS ARRAY ST.
LEGIT?

00210 BLO FCERR NO, ?FC ERROR
00220 LDD LEN,PCR GET ARRAY
SIZE

00230 CMPD #1 RETURNINTRIVIAL
CASE

00240 BLS RTN

00250 *MULTIPLY 16-BIT ARRAY LENGTH BY
5

00260 *AND ADD TO ARRAY START TO FIND
ARRAY END.

00270 LDA #5 B=LSBOFLEN
00280 MUL MULT BY 5
00290 PSHS AB STORE ON STACK

00300 "A=CARRY, B=LSB OF 5"LEN

00310 LDB LEN,PCRGETMSB OF LEN
00320 LDA #5 MULTBYS

00330 MUL

00340 ADDB S ADD PREV.CARRY
00350 STB S B=MSBOF 5*LEN
00360 TSTA ENSURE PRODUCT <
64K

00370 BNE FCERR ELSE GIVE ?FC
ERROR

00380 TFR X,.D GETPTRTO
ARRAY ST.

00390 ADDD ,S++

END=START+5"LEN

00400 CMPD $1F ISARRAY END
LEGIT?

00410 BHI FCERR NO, ?FC ERROR
00420 STD ULIMPCRUPRLIMFORU
00430 SUBD #5 BACK1ELEMT
00440 STD XLIM,PCRUPRLIMFORX

00450 *NOW BEGINS THE ACTUAL SORT 00630 *SWAPPED, WHICH EFFECTIVELY 00800 BHI REVERS IF >, INTER-
00460 NEXTX LEAU 5X INITIALIZEU= INTERCHANGES CHANGE
X+1 00640 *THE TWO STRINGS. 00810 BLO OUT DONEIF <
00470 NEXTU BSR SWAP INTRCHG 00650 * 00820 DECB =, GET NEXT BYTE
X&U IF NEC. 00660 SWAP PSHS X,U STOREENTRY 00830 BNE LOOP UNLESS STR.
00480 LEAU 5U INCREMENTU PARMS ENDS
00490 CMPU #$FFFF DONE W/INNER 00670 *ENSURE THAT X POINTS TO 00840 OUT PULS X,U,PC RETURN
LOOP? SHORTERSTRING 00850 *THIS ROUTINE INTERCHANGES THE 2
00500 ULIM EQU *-2 ULIMREPLACES 00680 *BY SWAPPING IF NECESSARY STRING
SFFFF 00690 LDB X GET1STLENGTH 00860 *DESCRIPTORS, THEN RETURNS FROM
00510 BLO NEXTU NO,NEXTU 00700 CMPB U COMPARETO2ND SWAPROUTINE
00520 LEAX 5X INCREMENT X 00710 BLS ON 00870 REVERS PULS XU POINT X ,UAT
00530 CMPX #$FFFF DONE W/OQOUTER 00720 BSR REVER1 SWAP IF DESCR'S
LOOP? GREATER 00880 REVER1 LDA X 1STLENGTH
00540 XLIM EQU *-2 XLIMREPLACES 007300N LDB X EXITIF SHORT BYTE
SFFFF STRING 00880 LDB ,U 2NDLENGTHBYTE
00550 BLO NEXTX NO, NEXT X 00740 BEQ OUT HASZERO 00900 STA U SWITCHLENGTHS
00560 RTN RTS DONE LENGTH 00910 STB X
00570 FCERR JMP $B44A ?FC ERROR 00750 *NOW B CONTAINS LENGTH OF 00920 LDD 2X 1STSTR. ADDR.
00580 * SHORTER STRING 00930 LDY 2U 2ND STR. ADDR.
00590 *THIS SUBROUTINE 1S ENTEREDWITH 00760 LDX 2,X POINTXTO 00940 STD 2,U SWITCHSTR.
ADDR. ACTUAL STR ADDRS.
00600 *OF 1ST STRING DESCRIPTOR IN X, 00770 LDU 2U SAMEFORU 00950 STY 2X
2NDINU. 00780 LOOP LDA X+ GETASTR 00960 RTS
00610 *IF THE X-STRING IS ALPHABETI- BYTE 00970LEN RMB 2
CALLY GREATER 00790 CMPA U+ COMPARETO 00980 END START
00620 *THAN THE U-STRING, THE TWO OTHERSTR.
DESCRIPTORS ARE
(continued from page 13) SayHi6 Ildy #40
-——g—LiStiﬁ 1 $ g;::; H+2,u
Type =~ et Systm+Obijct 059 SWiitLn '
Revs set ReEnt+ s
mod 0S9End, OS9Name, Type,Revs,Cold,256
OS9Name fos *0S9p3* Hello fec *Hello there user.”
fcb 1 edition number o %
ot emod
use Idd/defs/os9defs.12 0S9End oqu .
endc end
level equ 2
opt < Listing 2
ot f Type st Prgmm-+Obijct
Revs set ReEnt+1
* routine cold mad OS9End, 0S9Name, Type,Revs,Cold,256
Cold leay SveTbi,per OSYName fes *SayHi*
0s9 F$SSvc
s fcb 1 edition number
F$SAYH equ $25 fp1
use /dd/defs/os9defs i1
SvcThl equ * endc
fcb F$SAYHI
fb SayHi-*-2 level equ 1
fcb $80 opt <
ot f
SayHi ldx R$X,u * routine cold
bre SayHi6 Cold e .
Idy D.Proc * The following three instructions areimportant. They cause the link
ldu P$SPy * count of this module to increase by 1. This insures that the module stays
leau 40 *in memory, even if forked from disk.
ida D.SysTsk leax OS9Name,per
idb PSTASKy dra
Idy #40 0s9 F$Link
leax Hello,per
IO::x Sf;Move le2y SveTbl por (continued on page 13)

the world of 68' micros page 11

0S-9 401: System Extension Modules

Boisy G. Pitre

Welcome to the first in a possible series of articles
dealing with 0S-9/6808 intemals. If you are like | was
when | first discovered OS-9, then you spent quite a bit
of time reading the documentation that came with the
operating system. The technical information, espe-
cially in the OS-9 Level Two manuals, is brimming
with details and information that can unlock a wealth of
understanding about how OS-9works. Unfortunately,
some of this information can be hard to digest without
proper background and some help along the way. This
series of articles is intended to take a close look at the
intemals of 0S-9/6809, both Level One and Level Two.
So along with this article, grab your OS-3 Technical
Manual, sit down in a comfortable chair or recliner, grab
abeverage, relax and let's delve into the deep waters!

Assemble Your Gear

For successful comprehension of the topics pre-
sented in this and future articles, | recommend that you
have the following items handy:

- 08-9 Level Two Technical Reference Manual OR
» OS-9 Level One Technical Information Manual (light
blue book}, and the OS-9 Addendum Upgrade to

Version 02.00.00 Manual
- A printout of the os9defs file for your respective

operating system. This file can be found in the

DEFS directory of the OS-9 Level One Version

02.00.00 System Master (OS-9 Level One) or the

DEFS directory of the OS-9 Development System

(OS-9 Level Two).

Inthis article, we will look at a rarely explored, yet
intriguing OS-9 topic: system extensions, a.k.a. P2
modules. When performing an mdir command, you
have no doubt seen modules with names like OS9p1
and OS9p2in OS-9 Levef Two (or 0S9 and OS9p2in
OS-8Level One). These modules are essentially the
O8-9 operating system itself; they contain the code for
the system calls that are documented in the OS-9 Tech-
nical Reference documentation. In the case of 0S-9
Level One, the modules OS9 and OS9p2 are located
in the boot track of your boot disk (track 34). In 0S-9
Level Two, OS9p1 (equivalent to the 0SS module in
Level One) is found in the boot track while OS9p2 is
located in the bootfile. Both of the modules are of
module type Systm and define the basic behavior and
structure of 0S-. Even the module IOMan is a sys-
tem extension, containing code for the I/0 calls in the
operating system.

While drivers and file managers have been the most
common area to expand the capabilities of 0S-9, they
are pretty much limited to expanding the functionality of
/0. What system extensions allow you todo is even
more powerful: they can add new system calls or
even replace existing ones. Such functionality allows
you to change the behavior of 0S-9 in a very funda-
mental way. Of course, with such power, caution must
be exercised. It is not wise to radically modify the
behavior of an existing system call; such an action
could break compatibility with existing applications.

What we aim to do in this article is not to replace an
existing system call, but rather to add a new system
call by looking at the example provided in Tandy's OS-

page 12 the world of 68’ micros

9 Level Two documentation. Although the example is

Table 1- OrS-9 Level One System Call Ranges

written for OS-9 Level Two, we will look at how it can[System CallRange

Function

be changed to run under OS-9 Level One as well. But]
first, let's get alittle background on system calls and
how they are constructed in OS-9.

$00-$27 User mode system call codes
$29-834 Privileged system mode call codes
$80-$8F 11O system call codes

The System Call
As an operating system, OS-9 provides system

Table 2— 0S-9 Level Two System Call Ranges

level functions, or system calls to applications. Thes

System Call Range

Function

system calls give applications a base by which they
can operate consistently and without fear of incompat-
ibility from one OS-9 system to the next. The system|

$00-$7F User mode system call codes
$80-$8F /0 system call codes
$90-$FF Privileged system call codes

callin 0S-9/6809 evaluates to an SWI2 instruction on
the 6809, which is a software interrupt. Suffice itto say
that when this instruction is encountered by the CPU,
control is routed to OS-9, which interprets and performs
the system call on behalf of the calling process.
While system calls are generally hidden by wrap-
per functions or procedures in high-level languages
such as Basic09 and C, we can see the system call in
its native form by looking at 6809 assembly language.
Consider the following assembly source fragment:

da #1
leax mess,per
Idy #5
0s9 1$Write
s

mess fec “Hello”

In the middie of what appears to be normal 6809
assembly language source code is amnemonic called
0s9. This is a pseudo mnemonic, since Motorola did
not place an os9 instruction in the 6809 instruction set.
The 0S-9 assembler actually recognizes this pseudo
mnemonic as a special case, along with the I$Write
string, and translates the above piece of code into:

ida #1
leax mess,per
Idy #5
swi2
fcb $8A
s
mess foc *Hello”

The $8A which follows the swi2 instruction is the
constant representation of the I/O system call I$Write.
Since the swi2 instruction calls into the OS-9 kernel,
the code in the kemel looks for the byte following the
swi2 instruction in the module (the $8A) and interprets
that as the system call code. Using that code, 0S-9
jumps to the appropriate routine in order to execute the
[$write.

Since the system call code following the swi2 in-
struction is a byte, in theory this would altow OS-9 to
have up to 256 different system calls that can be ex-
ecuted on behalf of an application. Under 0S-9 Level
Two, this is the case; however under OS-9 Level One
there are restrictions placed on exactly which codes
are available. The following tables show the range of
system call codes.

The idea behind User mode vs. System modeis to
allow two different points of execution for the same
system call, depending on whether the calling process
is running in user state or system state. 0S-9 controls
this by maintaining two system call tables: one for user
state and one for system state. When installing a sys-
tem call, as we'll soon see, we can specify whether
our system calf should only be called from system
state (hence only updating the system table) or from
both user and system state (updating both the user and
system tables).

An example of a system call that can be executed in
both user and privileged modes is the F$Load function
code (pp. 8-25in the OS-9 Level Two Technical Refer-
ence manual; pp. 106 in the OS-9 Level One Technical
Information manual). Since F$Load can be called from
a user state process as well as from a driver or other
module running in system state, 0S-9installs this sys-
tem call in both the user and system tables. On the
other hand, a privileged mode system call such as
F$AProc (Level Two: pp. 8-74; Level One: pp. 141)
can only be called from system state and therefore a
user state process attempting to call it will receive an
€fTor.
Notice that in both 0S-9 Level One and OS-9 Level
Two, codes $80-$8F are reserved for 1/O system call
codes. When the OS-9 kemel receives one of these
codes, it passes the code along to IOMan for process-
ing. /0 system calls cannot be added since they are
under the control of (OMan.

Installing a new system call involves selecting a
free system call code, determining whether the call will
be accessible from both user/system state or from sys-
tem state only, and building a table in assembly lan-
guage that will be used toinstall the system call. Inter-
estingly enough, the method of installing a system call
is by calling a system call! It's called F$SSvc and is
documentedin your respective 0S-9 Technical manual.

Installing a System Call in 0S-9 Level Two

The source code in Listing 1 is the system extension
module, 0s9p3.a, which contains the code toinstall the
system call, as well as the system call code itself.
Incidentally, this is virtually the same code that is found
in the OS-9 Level Two Technical Reference Manual on
pp. 2-2to 2-4. I've eliminated the comments for brevity
since they are already in your manual, as well as
changed the use directive. Instead of including /dd/
defs/os9defs, | include /dd/defs/os9defs.12. The rea-

son for this is that | do compiling of both OS-9 Level
One and 0S-9 Level Two modules on my CoCo 3
development system. Since the OS-9 definitions are
different for each operating system, ! have renamed
their respective 0s9defs files with an extension indicat-
ing which operating system they belong to. Even if you
just develop for one operating system or the other, |
strongly suggest following the same naming conven-
tion; it will save you headaches in the long run.

This module, called 0S9p3, installs the FESAYH!
system call. A process making this call can either
pass a pointer to a string of up to 40 bytes {carriage
return terminated) in register X, or set X to 0, in which
case the system call will print a default message. In
either case, the message goes to the calling process’
standard error path. While not very useful, this system
callis a good example of how to write a system exten-
sion.

The asm program is used to assemble this source
code file. Notice that the entry point for the module is
the label Cold, where Y is set to the address of the
service table, SveThl. Each entry in this table contains
three bytes. The firstis the system cail code that we
have selected from a range that Microware says is
safe to use for new system calls, and the remaining
two are the address of the first instruction of the system
call. The table, which can contain any number of
entries, is terminated by byte $80. After setting Y tothe
address of the service table, a system call to F§SSve
is made, which takes the table pointed to by Y and
installs the system calls.

The code for the FSSAYHI system call inlisting 1 is
for OS-9 Level Two only. it determines whether or not
avalid string pointer has been passed in register X. If
indeed the caller has passed a valid pointer, then con-
trol is routed to the label SayHi6 where Y is loaded with
the maximum byte count and the process descriptor of
the calling process is used to obtain the system path
number of the process' standard error in register A. The
separation of user and system state paths is an impor-
tant concept to understand; however, we will discuss
itin detail in another article. For now, let's continue
analyzing the code.

The I$WritLn system call then prints the string at
register Xto the caller's standard error path. If on the
other hand, register X contains a zero, then room is
made on the caller's stack for the default message,
which is then copied into the caller's address space
using the F$Move system call. The moving of the
default message from the system address space tothe
caller's address space is necessary due to the separa-
tion of a process’ address space in OS-9 Level Two.

Once the module has been compiled, it should be
included in your OS-9 Level Two bootfile. Reboot with
the new bootfile, and the 0S9p2 module willfind OS9p3
then jump into the execution offset {the Cold Iabel in this
case). This will install the FESAYHI system call and
make it available for programs immediately.

Installing a System Call in 0S-9 Level One

Listing 2is similar to the code in Listing 1, except that
the code to move the default message from system
space tothe caller's address space has been removed.
Also, the code to install the system call has changed,
and the module type is not of type Systm, butinstead of
type Prgrm. This is due to the lack of separation of
address space in Level One, which makes writing

system extension modules much easier than in Level
Two.

The commeon address space between the system
and all processes in 0S-9 Level One also makes the
F$SSvc system call available from user state as well
as from system state. Unlike OS-8 Level Two, where
the system extension module must be placed in the
bootfile, installing a system extension in 0S-9 Level
One takes a different approach. Placing a module
called 0S9p3in an 0S-9 Level One bootfile will NOT
cause the system extension to be called because there
are no provisions for that in the keme!. Instead, system
extensions are instatled by creating a module of type
Prog that contains both code to install the system call
and the system call itself. Installing the system call
entails executing the module from the command line.

Besides the sayhi.a source inlisting 2, another ex-
ample of the this is the Printerr command that comes
with OS-9 Level One. This is a program that actually
installs a newer version of the FSPE system call. To
install the new system call, you simply run Printerr
from the command line. it then installs the call and
exits. There is an advantage to 0S-9 Level One's
approach to installing system calls: it can be done at
run-time without making a new bootfile and rebooting
the system. However, additional care must be taken
notto uniink the Printerr module from memory. Why?
Because the code for the replacement F$PEm call is in
that module, and if the module s unlinked, the memory
it occupied is made available subsequent realiocation
and at some point, a system crash will ensue.

Exercising Our New System Call

Listing 3 is a small assembly language program,
tsayhi, which calls the F§SAYHI routine. it wilf work
fine under both OS-9 Level One and Level Two. If you
fork the tsayhi program without any parameters, then
the F$SAYHI system call is called with register X set
to $0000, which will cause the system call fo print the
default message. Otherwise, you can pass a mes-
sage on the command line as a parameter and up 10 40
of the message's characters will be printed to the stan-
dard error path.

Summary

Extension modules give us an effective way of
altering the behavior of 0S-3 by allowingustoadd a
new system call or modify the behavior of an existing
one. Writing extension modules requires an extremely
good understanding of the intemals of 0S-9. The par-
ticutars of writing a system extension vary under OS-
g Level One and Leve! Two primarity due to the differ-
ences between memory addressing.

Next time, we will explore the internals of 0S-9
Level One and 0S-9 Level Two by looking at their
respective 0s9defs files. There is aworld of information
about both operating systems in these text files. To get
ahead start, begin to study them. They may seem a bit
archaic for now, but we will soon break new ground in
this fascinating study of 0S-3 intemals. If you have
any questions about this article, or ideas for future top-
ics, please contact me.

Boisy G. Pitre is a Principal Software Engineer for
Microware Systems Corporation and owner of Planet 9
Systems (hitp://www pitretech.com/planetd). He has
been an avid 0S-9 user and advocate for over 12 years
and still uses his CoCo 3 with 0S-9 Level Two. He can
be reached via e-mail at: boisy@acadian.net.

Listing 1 starts on page 11.

(continued from page 11)

0s9 F$SSvc
bes Exit
crb
Exit 0s9 F$Exit
FSSAYHI equ $25
SveThl equ *
fob F$SAYHI
fb SayHi-*-2
fcb $80
* Entry point to F$SAYHI system call
SayHi ldx R$Xu
bre SayHi6
leax Hello,per
SayHi6 idy #40
du D.Proc
ida P$PATH+2,u
0s9 I$Wrtln
s
Hello fec “Hello there user.”
b $0D
emod
0S9%End equ *
end
Listing 3
Type set Prgrm+Objct
Revs set ReEnt+1
mod
0S9End,0S9Name, Type, Revs start, 256
0S9Name fcs “TSayHi”
fio 1 edition number
in]]
use /dd/defs/osdefs
endc
level eu 2
oo <
ot f
FSSAYH! equ $25
*routine cold
start eu "
lda X
cmpa #$0D
bne SayHi
ldx #30000
SayHi 0s9 F$SAYHI
bes emor
drb
eror 083 FSEXit
emod
OS%End equ *
end

the world of 68' micros page 13

Recursive Procedures in Languages That Do Not Support Recursion

by Aaron Banerjee

A recursive procedure is a procedure which invokes
itself. While this is not a particularly complicated idea, recur-
sion is one of the more awkward concepts in computer
programming. Why would anyone write a recursive proce-
dure? How is recursion used to solve problems? After all,
anything a recursive procedure can do can also be done with
non-fecursive techniques.

Although recursive procedures are never the only way to
solve a problem, in certain cases, they may be the most
intuitive or convenient. Consider the Fibonacci series,
which is a series of numbers which appear in certain biologi-
cal phenomena’ .

1,1.2,358,13....

The first two terms are 1. Every term after that s the sum
of the preceding two terms (1+1=2, 1+2=3, 3+5=8, etc.).
This can be described with a recursive procedure:

f(n+2) = f(n) +f(n+1)

where f(1)=1,f(2)=1
This can easily be implemented in C code:

intfibonacci(int n)

{intg;

if{(n==1)i[(n==2)) q=1
else g=fibonacci(n-1)+fibonacci(n-2);
retum (q);

}

The corresponding code in TRS-80 Color Computer BA-
SIC (shown below) would not run properly because (among
other things), changing the value of N in one “iteration” will
change itin every other. The Clanguage (in versions which
support recursion) ‘remember” the state of the previous itera-
tion.

10 REM Calculate Fibonacci Numbers (doesn’t work)
15 REM Input N, output Q

20 IF N=1 OR N=2 THEN Q=1 ELSE N=N-1:GOSUB
10:Z=Q:N=N-1:GOSUB 10:Q=Z+Q

30 RETURN

In order to make this work recursively, we would need a
more complex BASIC program. In the simple case of
Fibonacci numbers:

f(n+2)=f(n+1)+f(n) f(0)=1, f(1)=1
itis better to solve the difference equation instead of worrying
about recursion. Besides, on small computers that operate at
0.9 MHZ, you don't want to do any iterations you don't have
to. The following program prints out the first 10 Fibonacci
numbers in closed form:
5CLS
10 REM FIBONACCI NUMBERS = FNF(N)

15 F1=(1+SQR(5))/2:F2=(1-SQR(5))/2
20D=F2-F1

25 A=(F2 - 1)/D:B=(1-F1)/D

30 DEF FNF(N)=INT(.5+A*F1 N + B*F2*N)
35 FOR N=0 TO 10:PRINT N,FNF(N):NEXT N

The above program works rapidly on a TRS-80 Color
Computer and for large numbers, even faster than a 486 25
MHz system running the recursive technique. Thisisn'ta
fair comparison because we didn’t do a recursive approach.
Instead, we simply found a totally different approach to solve
the same problem. In general, there is a way around recur-
sion, but sometimes recursion can be the simplest way to
solve a problem. Consider a more challenging example:
One of the most famous recursive problems is the *eight

page 14 the world of 68’ micros

queens’ problem. The object is tofind each and
every way one can place eight queens on a
chess board without having any one queen being
able to attack any other. Forthose unfamiliar with
chess, achess board is an 8x8 matrix. A queen
can move any number of spaces vertically, hori-
zontally, or diagonally. A queen may attack any
other piece which is on a square that the queen
can move to. One obvious solution to this is to
do an exhaustive search. Set up an array and
keep placing queens on it until none of them can
attack each other. Placing queens at random
gives you 646362*61760*59"58*57 = 1.78 x
1014 possibilities, which would probably take
years on the Coco. There is a recursive algo-
rithm which is known to solve the eight queens
problem2 .

“The problem can be solved with a recursive
procedure having two parameters—some repre-
sentation of the chess board and an integer in the
range zero to eight. When the procedure s called
with the integer parameter having some valuen,
itis assumed that an acceptable placement has
been found for queens in the first n columns of the
chessboard. Thus if n is eight, the procedure
shouild just print out the arangement of queens on
the chessboard and retum. If nis less than eight,
the program should try to place a queen in each of
the eight squares of column n+1 in tum, and check
whether a queen on that square is in the same
row, left-to-fight ascending diagonal, or left-to-ight
descending diagonal as a queen in some previ-
ous column. If this check reveals no conflicts
with any queens in previous columns, the proce-
dure should call itself recursively with the chess-
board representation having a queen on that
square and the integer parameter equal ton+1, to
try tofillin the remaining columns.”

From our exercise above with Fibonacci num-
bers, we see that the Coco does not lend itself
particularly well to recursive procedures and fur-
thermore, this time, however, there isn't a simple
way out. In order to solve this problem recur-
sively, first we have to solve the problem of the
Coco not being able to recurse. One of the main
reasons why the attempt at recursion in BASIC
for the Fibonacci series (above) did not work is
that all of the variables and states are global. The
C example, on the other hand, stores the state
before invoking the next iteration. An obvious
solution would be to emulate a stack so that the
program could “remember where it left off* before
recursing, and restoring the state upon retum (ex-
cept for the quantity which was to be changed).
Actually, some Coco functions do ‘remember
where they left of". Try this short program and
runit.

5 PRINT MEM
10GOTO 5

Not very impressive. It simply prints your
available memory (20805 in my case) and re-
peats it. Now try this one:

5 PRINT MEM
10 GOSUB 5

Run it and watch as your computer unceremoni-
ously runs out of memory and gives you an ?0M
ERROR. Every time you GOSUB, the computer has
to use some memory to remember where you
GOSUB'ed from so that when it encounters a RE-
TURN, it will return to the correct place. If you had
pressed <BREAK> before running out of memory, you
would be able to type RETURN several times (as
many as the program had cycled) without getting an
7RG ERROR. The trick to recursion on the Cocois to
save everything which is needed instead of just retum
addresses.

The following is a solution to the eight queens prob-
lem written in Coco BASIC.
10CLS
20 GOSUB 600
30 CLEAR
40 DIM YS(10),NS(10),8(8,8)
50 SP=0:BC=0
60 REM
70 REM
80 REM
90 REM
100 N=0:GOSUB 380
110 PRINT"YEE HAI
120 END
130 REM CLEAR THE BOARD
140 FORIC=1 TO 8:FOR JC=1TO 8
150 B(IC,JC)=0
160 NEXT JC,IC
170 RETURN
180 REM CHECK FUNCTION
190 REM INPUT NY
200 REM OUTPUT C=0 (FALSE) 1=TRUE
210 REM
220 C=1
230 FOR IC=1 TO N-1:FOR JC=1TO 8
240 IF B(IC,JC)=0 THEN 270
250 IF IC=N OR JC=Y THEN C=0
260 IF ABS(IC-N)=ABS(JC-Y) THEN C=0
270 NEXT JC,IC

MAIN PROGRAM

280 RETURN

290 REM PUSH Y AND N

300 REM

310 SP=SP+1:NS(SP)=N:YS(SP)=Y
320 RETURN

330REM PULLY AN N

340 REM

350 N=NS(SP):Y=YS(SP):SP=SP-1
360 RETURN

370 REM

380 REM PLACE FUNCTION (RECURSIVE)

390 REM

400 IF N>=8 THEN GOSUB 490.GOTOC 460

410 N=N+1

420FORY=1T08

430 GOSUB 180

440 IF C THEN B(N,Y)=1:GOSUB 290:GOSUB
330

450 NEXT Y

460 GOSUB 330

470 B(N,Y)=0

480 RETURN

490 REM DRAW BOARD

500 CLS:BC=BC+1:PRINT*BOARD *BC:PRINT:
PRINT

510 PRINTTAB(10)'EIGHT QUEENS"PRINT
520 PRINT* * STRINGS$(26,128)

530 FOR JC=1T0 8

540 PRINT * “CHR$(128);

550 FORIC=1T0 8

560 IF B(IC.JC)=1 THEN PRINT* Q*; ELSE PRINT

570 NEXT IC: PRINT CHR$(128): NEXT JC
580 PRINT * “STRING$(26,128)
590 RETURN
600 REM INTRO
610 REM
620 CLS
630 PRINT
640 PRINTTAB(9)'EIGHT QUEENS"
650 PRINTTAB(7)'BY AARON BANERJEE"
660 PRINT:PRINT
670 PRINT"THIS PROGRAM FINDS ALL POS-
SIBLE"
680 PRINT"WAYS TO PLACE 8 QUEENS ON A *
690 PRINT"CHESS BOARD WITHOUT ALLOW-
ING * ¢
700 PRINT'ANY QUEEN TO ATTACK ANY
OTHER."
710 PRINT:PRINT*PLEASE BE PATIENT. THE
PROGRAM®
720 PRINT"IS EXTREMELY SLOW (SEVERAL *
730 PRINT"MINUTES FOR THE FIRST BOARD)'
740 PRINT
750 INPUT"PRESS ENTER TO BEGIN";A$
760 RETURN

This program executes the recursive algorithm
for solving the 8 queens problem. The representation of
the board is the B(8,8) array. Each element has a
value of 1 if there is a queen present, O if not. The value
Nis the integer whose value is from 010 8. To startthe
program, N is given a value of 0 and the subroutine is
called.

Let us now consider operation of the program. As
mentioned before, Nis setto zero and the Place proce-
dure (line 380) is invoked. The algorithm calls for each
square in the N+1 column (column 1 in this case) to be
checked. Inthis design, to check the N+1 column, N
isincremented by 1 and a FORYY loop s setupin line
420 to start the count. The first time the check function
is called from line 430, it will be checking to see if any
queen can attack square 1,1. Since there aren’t any
queens on the board yet, the check function will set
C=1. Line 440 places a queen at the location (1,1).
The algorithm states that at this point the procedure
should be recursively called for the next (N+1 = 2)
column. If we do that, we will be altering the value of
N. In addition, we haven't completed the FOR'Y loop
yet, which will cause problems. At this point, the board
should look like this:

In this example, the upper left comer is taken as

square 1,1. The column number (N) progresses to the
right, the row number (Y) progresses downward. In
line 440, we push Y and N on a simulated stack and
GOSUB 380 (calls the Place function fromiitself).

Inthe second iteration, N is incremented to
2andanew FORY loopis started. The computer has
forgotten about the old FOR Y, but this will be dealt with
shortly. The new FOR'Y loop looks at square 2,1 {to
the right of the previous queen). This s not acceptable
soit checks 2,2 (also unacceptable). Square 2,3 will
check out(C=1) so aqueenis placed there. The board
now appears like this:

.....

Again the procedure will push the values of Y and N
(2,3) onto the stack (on top of the 1,1 pushed previ-
ously). This process will keep repeating and pushing
Y and N on the stack until the following pattern is
encountered:

m.
i
u BuiSas
Fb e o e
H, I SIS

At this point the stack will have (1,1), (2,3),
(3,5), and (4,2). It will push (5,4) onto the stack and
GOSUB 380 again. This time, there will be no spaces
in the N=6 column where a queen can be placed with
out being able to attack any other. The NEXT Y will be
reached. The program then pulls N=5,Y=4 from the
stack. Since there were no good places to place a
queen in the sixth row with the position of the first 5, the
queen at5,4 is removed in line 470. Since we called
Place (line 380) from line 440, the RETURN in fine 480
will not retum us from the subroutine, but rather back to
line 450. Although we have already exited the FOR Y
loop, we have reset the counter Y back to § and jumped
backin. NEXTY is not that smart and will not realize
we've ever left. This is an unorthodox technique that is
generally frowned upon because different BASIC inter-
preters may react differently. Computer programmers
who disdain the use of GOTO would probably con-
sider jumping in and out of FOR loops and altering the
counter anything from “spaghetti code” to blasphemy.
Inorder to get recursion in non-fecursive environments,
some unconventional techniques are necessary. In
any event, the location of the last queen (5,4) was
pulled from the stack and removed from the board. The
NEXT Y in line 450 increments Y to 6 and the next
square is checked. Notice that we've fooled the com-
puter into going back to where it was in the N=5 row
whenitleft. The computer will find another place to place
aqueen at(5,8) but again there will be no safe place to put
aqueen on the N=6 row. This is shown below:

+ + +
‘

The computer will pull the (5,8) from the stack and

remove the queen, and then pull the (4,2) from the stack
(N=4,Y=2) and remove that queen. When the NEXT
Y inline 450 is encountered, it goes back to Y=3 in the
N=4 row, effectively “going back to where it left of". It
eventually finds a safe spot at Y=7:

Although the above pattern will not result in eight
queens, since we have saved the values of Nand Y
on the stack, we will eventually be able to *get back” to
earlier columns. Ultimately, a valid solution will be
found. The first valid solution is shown below:

When this solution is eventually encountered by the
program, N will be equai to 8. Note that in line 400, if
N>=8, the program simply displays the board and
returns {first pulling the last values of Nand Y off of the
stack). Note that the procedure does not stop there or
clearthe board. Itwili recurse back and try to find other
similar solutions. Ultimately, it will find all 92 solutions
to putting 8 queens on a chessboard such that none can
attack another. There are a few important quirks to the
8 queens program:

1. It does not run on all BASIC interpreters. For
example, GWBASIC will usually run out of memory.
I'm using Extended Color Basic 1.0 with Disk Ex-
tended 1.1.

2. ltis extremely siow. On a 0.9 MHz Color Com-
puter, it takes several minutes just to find the first solu-
tion.

3. I haven't written a routine to record the solutions to
the board. Once it finds the second solution, it forgets
thefirst. Thisis easy to overcome by altering the “draw
board" subroutine at line 490 (even something as simple
as PRINT #-2 instead of PRINT would do the trick).
Make sure you print the board to a tape/disk file or to the
printer if you're planning on leaving the program running
overnight to get all of the solutions. Don't print a
CHR$(128) to aprinter. It can have some interesting
side effects on some printers.

4. The graphics aren't very good.

There are other famous recursive routines that could
be solved on the Color Computer. One is the method
of printing out the contents of a binary tree in order. The
logic for programming would be the same as in the
chess example. Before the GOSUB to the recursive
subroutine, push needed quantities onto a stack. Im-
mediately before RETURNing from the subroutine, pull
the same quantities off of it.

Aaron Banerjee <aaron@mirror.his.com>

7620 Willow Point, Falls Church, VA 22042

1 The ratio of one Fibonacci number over a preceding
one approximates a “Golden Ratio” which occurs fre-
quently in nature. Forexample the length of aleafoverit's
breadth is a Golden Ratio. Even the dimensions of my
credit card very closely approximate a Golden Ratio.

2 Cohen, N.H. "ADA as a Second Language’.
McGraw-Hill. 1986. Exercise 9.1

the world of 68' micros page 15

Great CoCoist Interview Series

J O h n Kowa I S ki By Nick Marentes

John Kowalski, currently 27, is the wizard behind many of the CoCo3's most
spectacular *Demos”. John has literally pushed his machine to the limits, doing what
many previously believed to be impossible on a stock CoCo3. For John, it's acase
of, “possible unless proven otherwise’! John has a very informative web site
featuring many of his CoCo achievements. Most of his programs are shareware and
are available for download via his web site. Support John's efforts and show your
appreciation by sending him a shareware registration. With enough support from the
CoCo community, John will continue to amaze us with his programming expertise
and continue to remind us how powerful our favorite *8-bitter” really is!

Programming Achievements

Mouse Maze - 1986 - CoCo3

Twilight BBS - 1987-97 - CoCo3

Demo 1 - 1989 - CoCo3

Demo 2 - 1992 - CoCo3

Boink - 1993 - CoCo3

Digi-512 - 1993-96 - CoCo3

Twilight Terminal - 1995 - CoCo3

Williams Arcade - 1996 - SNES

CoCo Tracker - 1996 - CoCo3

Gloom - 199 - CoCo3

Atari Collection - 1997 - SNES

Gloom2 - 1998 - CoCo3

(Note: Jeff Vavasour was the main programmer of Williams Arcade)
Web Page - http:/www.axess.com/twilight/sock/
E-Mail - sock@axess.com

INTERVIEW

Q: Why are you referred to as “Sock Master"?

A: I've written programs under several pseudonyms in the past, Dave Osbome,
and most notably Sock Master. The Sock Master name is still more famous than my
real name, so | tend to use that one alot. They originate from the old days of BBSing,
when most users had aliases rather than real names on the BBS.

Q: Where do you live?

A: Montreal, Quebec, Canada. Montreal isn't technically accurate anymore since
| moved into the suburbs a couple of years ago. I'm really in St-Hubert, but nobody's
heard of St-Hubert.

Q: How and when did you become interested in computers?

A It all started when | was still a kid. School was close enough to home to be
walking distance, and there was a Radio Shack along the way. Back then, Radio
Shack was a friendlier place and | used to hang out there after school or during lunch
(when | wasn't at the arcade, instead). Anyway, | got along well with the people
there, and they didn't mind if | stayed in the store for hours just tinkering with the TRS-
80, especially since | ran errands for them now and then or made demos on the
computer or something. When the TRS-80 Model IIl came out, | convinced my
parents to get me one. Interestingly enough, when | first saw a CoCo, | didn't think
much of it because of it's blurry (TV) no-lowercase 32 column display. | didn't get a
CoCo 2until years tater. Lucky for me that | did get one. Machine language was less
intimidating on the 6809 and | leamed how to program it myself. My first machine
language programs were hand coded and poked into memory from BASIC.

Q: What computers have you owned and currently own?

A: I've got afair pile of them, though I've lost a few over the years. Most of them are
not hooked up, and just sitting in the attic. | don't have my TRS-80 Model f or Ill
anymore, but ! still have a Model 4D. | also owned a VIC-20 for 3 days when they
came out before retuming it to the store, and got another one recently and had it for a
week before giving it away to someone who actually LIKED it! | have an Atari
130XE, an Atari 520 ST, and a 1040 ST (| used to use the ST regularly). Also have

page 16 the world of 68’ micros

a couple of Apple lls and a Mac SE. My wife has a Mac LCA75. There's a Tandy
1000, and enough spare parts to put together a few 8088, 386 and 486 PCs. I'm
typing this on my K6 (Pentium clone) PC. Most importantly, | have a 64K CoCo 1,
64K CoCo 2, and about six CoCo 3s in various states of functionality and configu-
rations. | also have afew odds and ends like a Timex/Sinclair ZX81(??) and a Seiko
computer watch (with printer and keyboard!) which can run games/programs off a
rompack, or typed in BASIC.

Q: What was your favorite computer and why?

A: My favorite computer is the CoCo 3. Yes, it's obsolete now, butit's one of the few
computers out there that is FUN to use, easy to program, and has tons of hidden
potential. Yes, | have a PC and use that a lot too, but when it comes to making
computers do something specific that you want done, | use the CoCo 3. For things
like that, the only real disadvantage the CoCo 3 hasis that it's slower than amodem
PC. The fact that it's more fun makes up for it, especially if you're making it do
something that it was never envisioned as being capable of doing.

Q: What products have you developed?

A: | worked on Arcade’s Greatest Hits - The Atari Collection 1 and Williams
Arcade’s Greatest Hits for the Super Nintendo. I've made aton of CoCo programs,
but many of those are free or shareware. (1 haven't received any registrations in
months! hintthint!) The most notable ones being Twilight Terminal because of it's 20
color 840x225 graphics and proper Extended ASCII font set, and CoCo-Tracker
because it finally lets the CoCo play 4 voice MOD files. | also wrote a number of
BBS programs over the years. The only one still up is mine, Twilight BBS which
you can call 300 to 14400 baud at (450) 926-8444. | also made a number of demos
that show off some things a CoCo3 can do. | was hoping that by showing that some
neat things CAN be done, maybe people would start writing programs that actually
used them. So far, not many people have tried using those ideas. One of these days,
I'd like to write a game that incorporates as many neat effects as possible and just
wow everybody. Wouldn't it be great if there was a CoCo game that had hundreds
of colors on the screen, 4 voice digitized sound, raster video effects (graphics
scaling, on-the-fly palette changes, muiltiple fayer smooth scrolling...), and maybe
really fast 30 graphics?

Q: Your'Boink' bouncing ball demo looks fantastic! How does it work?

A: The Boink bouncing ball demo is one of my more interesting programs. It doesn't
specifically push the CoCo's hardware to the limits or anything, but it combines a
number of hardware tricks all together in one elegant ‘package’. Along with probably
most CoCo users out there, | found Vaughn Cato's bouncing ball demo very
interesting. The only problem { had with it, was that the background was empty. The
original Amiga demo had a checkerboard background, so why couldn't the CoCo?
The problem was that when you scroll the ball around the screen, you're scrolling the
whole screen - including the background. Can't have a checkerboard background if
it's just going to bounce along with the ball... So, | wanted to make a demo that
somehow kept a steady background. Unfortunately, the only legal way to do that
would be to redraw the ball over the background every time it moved. There are a
couple of demos out there that do it that way, but they end up with low frame rates
(choppy movement), because it takes the CPU a long time to draw the ball every
frame (unless you want to have a very small ball). | came up with the idea of just
putting vertical stripes in the background. This would allow the ball o move up and
down without affecting the background (though, that's not a checkerboard yet), but the
stripes still follow the ball when you move it left & right. To fix that, | rigged the
program to generate four copies of the graphics screen in memory, each with the
stripes in the background offset by a few pixels. Now | could rig the demo to ‘select’
which of the 4 backgrounds to use depending on the horizontal position of the ball
itself. Technically, it would have required 8 copies of the screen to cover all ball
positions for the width of the stripes, but | could eliminate half of them by reversing the
palette settings of the background to ‘fake' the other 4 screens. Well, that gives us
solid stripesin the background. Where's the checkerboard? There actually isn't any

checkerboard in the background of my demo. it just looks like there is because |
altemate the palette settings every 12 scan lines - color 1 is black and color 2is
white, and then 12 fines later, | switch color 1 towhite and color 2to black...and on.
| decided that since | was switching palettes every few scan lines on the screen
anyway, | might as well use that to my advantage. Instead of just black & white
checkers in the background, | made it do a rainbow effect. If you find that it looks
familiar, it's because it's actually modeled after the colors on the cover of the CoCo3
BASIC manual! At that point, | decided that it wouid still be too easy to guess what
the trick behind the demo was, so | wanted to add something to throw people off. |
wanted to put some non-moving graphics at the bottom of the screen that were more
than just checkers to convince people that the background really WASN'T moving.
The problem s, if you're scrolling the whole screen up, down, left & right, the bottom
of the screen will scroll right along with the ball. Along time before this, 1 looked into
the possibility of fooling the GIME chip into retriggering a graphics screen in mid-
frame. Some way of forcing a new memory address to the video after it's already
begun being displayed. That's how other systems did things like split screen two
player games and other stuff. | gave up, | concluded that there was no way the
GIME could be tricked into doing that. | came up with another way to keep the
graphics at the bottom of the screen from moving. The GIME has a lot of odd
graphics modes that never get used. One mode keeps repeating the same line over
and over across the whole screen - essentially a 320x1 resolution. Itwas time to
use it! Instead of making the stripes behind the ball extend ail the way to top and
bottom of the screen, | rigged it so that there was only ONE pixel of stripes above
and below the ball. Since the demo was already synchronized with the video so that
it could update the palettes at specific scan lines without causing palette glitches on
the screen, it wasn't hard to add some extra code to also set the video mode at
specifiggcan lines. Whatit does, it sets the resolution to 320x1 for the first‘however
many pixels the ball is away from the top of the screen’ scan lines, then set the
resolution to 320x225 for the next ‘however many pixels the ball is tall' scan lines,
then switch back to 320x1 for the next 'however many pixels the ball is away from
the bottom of the screen’ scan lines. Once that was done, it just switched it back to
320x225 to display the last 9 scan lines that held the ‘non-moving’ graphics at the
bottom of the screen. Oh, and while it was at t, set the horizontal scroll register back
to zero so that the bottom doesn't move left & right along with the ball either. All that
was left to do was to make sure that the program always kept track of how many
pixels were above the ball, and how many were below, and the whole graphics
screen would end up rock-stable while the ball is bouncing all over the place. What
about the transparent ball shadow? That just got added in as an afterthought. | figured
it wouldn't be any harder to switch palettes for four background colors than it would
be to do two. The shadow under the ball is just drawn in two extra colors, one for
when the shadow is over a stripe, and one for when the shadow is over black. The
palette switching that creates the illusion of a checkerboard background also switches
the shadow palettes to create the illusion that the shadow is darkening the checker-
board pattem. The only drawback to reserving 4 colors for the background was that
itleft only 12 to do the ball's palette animation rotation. That's why the ball seems to
tum faster than the other demos - it's because it's cycling through less palettes. Oh
yeah, that's about everything except the ball itself. | didn't want to actually draw it,
because | figured anything | would draw would look more fake. So, | took a blue
rubber ball | had and drew lines on it and painted checkers on it. | used that as a
model, and then wrote a basic programto try to generate that ball on the screen. | still
have that ball sitting in a drawer in the attic. After some experimentation, | fixed up
most of the mathematical glitches that gave me all sorts of screwed up looking balls
on the screen. There was one glitch | never fixed, and | decided it was ‘good
enough'. If you look at the top of the ball, where all the lines join together, you notice
that the center point is a bit warped, or off-center. | figured it wasn't distracting enough
to be too much of a problem. | just never did figure out the proper math to do a ‘30’
ball on the screen! If you're wondering, it took that program about an hour to run
before completing the image.

Q: What motivates you to make another ground-breaking demo?
A: Time. If | had free time, I'd make another demo!

Q: You have also designed a 4Mhz accelerator for the CoCo3. Can you tell us
more about this?

A: The 4Mhz accelerator came about after having a few separate ideas that ended
up fitting together. | wanted to try speeding up the CoCo3, so ! tried the usual stuff of

changing the clock crystal - that works to an extent, but it has side effects. Boosting
the clock beyond 2Mhz (normal is 1.79) would push the video rate enough for my
CM-8 not to sync with video anymore and also cause my RS232 card to malfunc-
tion. After a certain number of tests with various crystals, | concluded that the CPU
ITSELF could be over clocked significantly - without biowing up! But the rest of the
CoCo could not. The next idea came when | looked at the 6809 cycle-by-cycle
operation flow charts. There are afair number of CPU cycles that execute without
addressing memory. If 1 could only run those cycles faster, | could speed up the
CPU without affecting any other part of the CoCo. Looking at the 6809 data sheets,
| saw that the AVMA pin on the CPU always gave early warning wether the CPU
would or would not be addressing memory in the next cycle. So, the plan was to
build a circuit that knew when the CPU wouldn't use memory, and run ‘non-
memory' cycles at afaster clock. That's actually not too hard, but there's a hitch. If
you run one cycle twice as fast, you still have to WAIT for the next cycle to
resynchronize with the 1.79Mhz bus. You'd only get any speed increase if there
were two ‘non-memory' cycles in a row because you could run both within one bus
cycle. The next thing | did was actually build something. | just wanted to screw
around with the CPU clock and see how dangerous it was to the rest of the hardware
to do so. | built a clock divider. For every two E and Q pulses being generated by
the GIME, the circuit would only send ONE to the CPU. | booted it up, and
PRESTO! It ran as slow as molasses. My CoCo3 just booted up at 0.45Mhz, and
the fast poke switched it to a fantastic 0.89Mhz! Other than some jittery video in
.45Mhz sometimes, it ran fine. | concluded that you could ‘bend’ CPU & memory
timing quite a bit without it failing. The final idea that made the 4Mhz accelerator
possible was this : Instead of ‘just’ running non-memory cycles at 4Mhz, | could try
bending the previous and following cycle's timing to make room for a sneak (burst)
cycle. This way, any single non-memory cycle could be executed BETWEEN two
nomal cycles without the rest of the CoCo ever knowing it happened! What it does
is cut the ending phase of the ‘before’ cycle short, sneak in a burst cycle that doesn't
address memory, and then clip the beginning of the ‘after’ cycle. The result meant that
the CPU ran 5 different ‘sizes' of cycles, depending when it's using memory and
when itisn't, butit also means thatit can run FLAT OUT double speed if there is at
least one non-memory cycle happening every two CPU cycles. Well, it doesn't
happen that there are that many non-memory cycles occurring, so it doesn't actually
perform at twice the speed. On average, it runs about 40% faster than stock. Later
on, | got a 6309 CPU and the clock doubler also works with that. A 6309 in native
mode is already faster than 26809, and it's faster still with the clock doubler. It's really
neat seeing CoCo programs run faster than they were intended to, especially with
games. The speed, though is a bit program dependent. Any program that uses few
opcodes with non-memory cycles in them won't speed up much, but programs that
do have a lot of those opcodes will speed up a lot.

Q: What companies did you work for?

A: I'mcurrently working for Digital Eclipse. They develop console video games.
Before that, | did programming for a medical company, MedNet. The rest wasn't
computer related, unfortunately.

Q: Can you tell us any interesting “stories” of your past development days?

A: Most of my experiments were deliberate. | had an idea that something shoutd be
possible and | tried it. There was some random hunting for effects - keep poking all
sorts of numbers into all sorts of registers (especially video registers) in all sorts of
‘times’ and see if anything neat happened. By times, | mean things like during the
horizontal or vertical video border, or at the end of a scan line or the ast line of the
screen, etc.. A few neat but fairly useless discoveries were that the 1987 GIME
could be tricked into displaying overscan graphics (graphics WITHIN the border)
and that the 1986 GIME couid be tricked into displaying interlaced video (640x450).
1 also found out that the interrupt timing between both versions of the GIME is very
different, and that's a regular annoyance that interferes with special effects. Luckily,
| also found out how to detect which GIME your CoCo has so | could make it so that
a program works on both of them. One interesting story is about writing the sound
code the Williams Arcade's Greatest Hits. | wrote a transiator that converted the
original arcade sound program from 6800 to Super Nintendo (SNES) Sound CPU
assembly. | made sure that it generated code that ran exactly atthe same frequency
because all the sounds were algorithmic (A program loop that generated numbers
that got fed to a DAC - timing is everything!) and it tumed out that everything ran way
too slow. Why? Turned out to be a combination of a typo and a half truth in the

the world of 68' micros page 17

Nintendo manual. What they meant to write as
2.048Mhz got written as 2.48Mhz, and 2.048 it-
self was sort of a lie because every 2nd cycle
was stolen by DMA so the CPU really ran at
1.024Mhz when the manual said it was 2.48Mhz!
Lets just say it was a lot of trouble to go through all
the code by hand and make it go 242% faster.

Q: Are you still developing for the CoCo and
why?

A: Yep, | gotinto it too late to have quit while | was
ahead, | guess. The reason | program the CoCo
is because | enjoy it. There's a big feeling of
satisfaction when you finally get your CoCo to do
something really neat. It's also nice when you
can program whatever it is you want to program,
in any time frame you want.

Q: What are some of your favorite CoCo prod-
ucts of all time?

A: There are a lot of programs that | really liked,
either because they were fun, useful or techni-
cally impressive. The standards have gone up
since the early CoCo days, but that doesn't make
some of the older programs any less impressive.
Some of my favorites are Zenix, Shanghai, Gaunt-
let II, V-Term, CoCoMax Ill, VIP Library, ADOS-
3, Dungeons of Daggorath, Wildcatting and Dino
Wars. Dragonfire wasn't the best game in the
world, but it gets an honorable mention because
it managed to coax 8 REAL colors out of the

PMODES3 display on a CoCo1. The 8 colors in
the CoCo version weren't artifacted. The game
switched between the two PMODE3 ‘palettes’ a
few times in almost every scan line of the screen.
So you had all 8 colors simultaneously on the
screen. The trick backfired on the CoCo3 be-
cause the GIME had different video timing, and
the color changes happened around 8 pixels
ater than they should have and it made a messy
looking screen.

Q: Whatis your opinion of the CoCo2 and CoCo3
hardware platform?

A: The CoCo 2 was nice in it's day, but it's seri-
ously out of date now. It's still useful for number
crunching and interfacing with the real world (mea-
suring and/or controlling things), but as a desk-
top computer, it's not very useful. The CoCo 3 is
pretty cool. The CPU isn't fast enough and the
graphics aren't good enough, but with a little bit of
work you can still do quite a lot of things with it.
The only serious thing that it's lacking today is
Internet ability - and even that could be over-
come with some work. As far as I'm concemned,
the CoCo can do ANYTHING, only slower or not
as well as a new machine. It's just a shame that
there aren't many programmers left. The CoCo 3
hasn't reached anywhere near it's potential yet.

Q: If you were asked by “Mr. Tandy” to create a
CoCo4, what would you include?

A: Some people might think I'm crazy, but I'd
keep the 6809 - or rather, the 6309 CPU. My
vision of a CoCo4 is a three 6309 CPU machine,
where each CPU runs at 4 (not 3.58) Mhz. With
three CPUs, this CoCo4 would be slightly more
than 8 times faster than a stock CoCo3. The neat
thing about 3 CPUs is that you can specifically
program each one to do a different task. A game
could use one CPU for sound & music, another
to draw all the graphics, and the last to process
game data. !t would be like having one proces-
sor and two completely customizable co-proces-
sors. Want a sound chip? Write it! Want a graph-
ics processor? Write it! Want a JAVA interpreter?
..you get the idea. It's very versatile, and could
do a lot of neat things while still being cheap to
make. | wrote a text file describing my vision of a
CoCo4, it's on my web page.

Q: Have you any “words of wisdom” to pass on
to any budding CoCo programmers?

A: Learn 6809 assembly. Count CPU cycles
when programming important sections of your
program - the most obvious way to program some-
thing usually isn't the fastest. Find an idea that has
never been properly taken advantage of on the
CoCo and just do it, whether it seems impossible
or not - If you think about it for a while, you might
be surprised at some of the solutions you can
come up with. Oh, use lots of self-modifying code,
it's faster!

----- interview copyright by Nickolas Marentes -
July 23, 1998. Updated - September 3, 1998.

StrongWare

Box 361 Matthews, IN 46957 Phone 317-998-7558

Cloud-9

Mark Marlette

3749 County Road 30
Delano, MN 55328
e-mail: mmarlett@isd.net
Voice: 612-972-3261

CoCo 3 Software:
Soviet Bloc

Custom Hardware Designed to Enhance the
Performance of the CoCo!
{Pro-Tector Daughter Board

GEMS

$15
$20

CopyCat

HFE- HPrint Font Editor —

MM/1 Software:

$5
$15

ICoCo 1,2,3 Processor Protector

[This device is plugged in to the CoCo’s motherboard after a socket is
dded. I have used this device for many years, and it has saved many
PU’s! (Processor not included.)

rice: US$18 + $4 Shipping *

0Co3 512K Memory Card

rogrami.

ew Rev. B with improved layout! Includes memory and memory test

rice: US$40 Includes Shipping! *
0Co 2,3 AT Keyboard Interface

Graphics Tools
Starter Pak

$25

BShow

$15
$5

CopyCat
Painter

$10
$35

page 18 the world of 68’ micros

esigned by Dana Peters, Produced by Cloud-9
he interface connects to the CoCo via the standard keyboard connector.
ecause it emulates a real CoCo keyboard, no special software drivers
¢ required. This interface can connect to the CoCo 2 or 3, and any 101
ey PC “AT” Keyboard. (Keyboard not included)
rice: US$55 + $4 Shipping *

* Shipping is UPS ground or USPS in continental US. If you desire a differ-

nt shipping method or live outside of the designated shipping area, [will
uote additional shipping charges, if any.

COMING SOON FROM CLOUD-9:

SCSI Card, and a 2 Meg Memory Card!

Classic BASIC Game Series

The Ghana Bwana Patch

By Steve Bjork

-ed.- This is the official Ghana Bwana, Pitfall Il, Desert Rider & One On One patch from Steve Bjork (used by permission).
Replace the old basic boot program with this new one and you will be all set. Ok, so it's not a game, but it will fix some good
ones that most CoCo 3 users haven't been able to use. It also allows for a RGB monitor.

10 ‘NEW PROGRAM BOOT GHANA
BWANA, PITFALL il, DESERT RIDER,
ONE ON ONE.

20 'THISPROGRAM WILL GIVE YOU
FULL COLOR ON A COLOR COM-
PUTER 3 WHEN USING A RGB MONI-
TOR.

30 ‘THIS PROGRAM WILL ALSO FIX
THE BUG IN GHANA BWANA ON THE
COLOR COMPUTER 3.

40 CLEAR 50,&H3FFE

50 P=PEEK(&H3FFF)

60 X=&H7FFF:POKE X,165

70 POKE X,255-PEEK(X)

80 IF PEEK(X)<>80 THEN 100

90 IF P=PEEK(&H3FFF) THEN 110
100 CLS:PRINT"64K IS NEEDED FOR
THIS GAME”

110 CLEAR 500,&H7FFF
120FORI=0TO 70

130 READ A$

140 POKE &H5000+|,VAL("&H"+A$)

150 NEXT :\WIDTH 32

160 DSKI$0,34,4,A$,B%:SUM=0:FOR
X=1TO
128:SUM=SUM+ASC(MID$(A$,X, 1))+
ASC(MID$(BS,X,1)):NEXT X

170 IF SUM=20423 THEN
INPUT"REMOVE WRITE TAB FROM
DISK AND PRESS ENTER.
*Q$:MID$(AS,106,1)=CHR$(254):
MID$(A$,122,1)=CHR$(254):
DSK0$0,34,4,A$,B$: GOTO 160

180 READ S,A,B,C,D:IF S=0 THEN 280
ELSE IF S<>SUM THEN 180

190 POKE &HFFD8,0:PRINT “ARE YOU
USING ARGBMONITOR? (Y/N)"
200 Q$=INKEYS$:IF Q$<>"Y" AND
Q$<>"N" THEN 200

210 IF Q$="N" THEN 280

220 PALETTE 0,A:PALETTE 4,A

230 PALETTE 1,B:PALETTE 5,8

240 PALETTE 2,C:PALETTE6,C

250 PALETTE 3,D:PALETTE 7,0

260 PRINT “PLEASE HOLD THE
CLEAR KEY TiLL THE GAME IS
BOOTED.”

270 IF INKEY$<>CHR$(12) THEN 270
280 EXEC &H5000

290 DATA 86,22,8E,26,00,8D,0D

300 DATAFC,26,00,10,83,4F 53

310 DATA 26,03,7E,26,02,39,34

320 DATA 20,10,BE,C0,06,A7,22

330 DATA 86,02,A7,A4,6F 21 6F

340 DATA 23,6C,23,AF 24,10,BE

350 DATA C0,06,A6,23,81,13,27

360 DATA 12,AD,9F,C0,04,4D,27
370DATA 06,6C,23,6C,24,20,E9

380 DATA 7F,FF,40,35,A0,4F,20

390 DATAF8

400 DATA 22438,63,0,9,36

410 DATA 20651,63,36,9,0

420 DATA 22631,0,9,36,63

430 DATA 65280,63,36,9,0

440 DATA 0,0,0,0,0

BlackHawk

Enterprises

New Products!

¢+ Data Windows - $69.95 - A complete flat database pro-
gram for OS-9/68K. Facilities include database creation,
searching, maintenance and report generation. By Alphal
Software Technologies.

* GNU TWO - $49.95 - This package include a new port of
GNU M4, and the AUTOCONF automatic configuration}
macros. Together with the included port of BASH these
tools make automatic configuration of software a much}
easier chore. Widely used on UNIX and other operatingj
systems, use it now on your OS-9 platform! Includes twol
new manuals totaling about 110 pages.

 Model Rocketry Tools - $15 - Includes ports of tools for
modeling and tracking the performance of various configu-
rations of model rockets. Essential tools for those interestedl
in designing rockets or achieving specified altitudes. Should
run on any OS-9/68K machine.

MM/1, MM/1a and MM/1b hardware
and other software still available, inquire!
P.O.Box 10552 » Enid, OK 73706-0552 « (405) 234-3911

i

RGBoost - $15.00
If you want to speed up DECB easily, install an Hitachi 6309 and get
RGBoost. This patch for DECB uses the extra 6309 functions for up
to a 15% gain in overall speed. It is compatible with all programs
tested to date! Save an additional $5 by purchasing RGBoost along
with one of my other products listed below!

EDTASM6309 v2.05 - $35.00

atches Tandy’s Disk EDTASM to support Hitachi 6309 codes! Supports
Il CoCo models, including stock 6809 models. CoCo 3 version uses 80
olumn screen, runs at 2MHz. YOU MUST HAVE A COPY OF DISK
DTASM. This is a PATCH ONLY! It will not work with “disk patched”
cartridge EDTASM

C3FAX - $35.00

eceive and print weather fascimile maps from shortwave! The US weather
ervice sends them all the time! Requires 512K CoCo3 and shortwave
receiver. Instructions for simple cable included.

RSDOS - $25.00

ove programs and data between DECB and OS-9 disks! Supports RGB-
S - move files easily between DECB and OS-9 partitions! No modifica-

tions to OS-9 modules required.

ECB SmartWatch Drivers - $20.00
ccess your SmartWatch from DECB! Adds function to BASIC (DATES)
or accessing date and time. Only $15.00 with any other purchase!

Robert Gault
832 N. Renaud
Grosse Pointe Woods, MI 48236
313-881-0335
Please add $4 S&H per order

. the world of 68’ micros page 19

Classic BASIC Game Series

Word

Wrap

A neat little word game for up to four players.

By Andrew Jackson

This is a pretty neat and fun game for up to four people. The instructions are at the end of the listing and incorporated into
the program for display. The text will have to be reformatted to fit the screen when displayed, as it s difficult to count spaces
in a printed listing. It is not necessary to type the instructions, of course. You may simply want to make a photo copy of the
last part of the listing and keep it with the program. Happy word hunting!

10 R=RND(-TIMER):GOTO180

20 POKEPEEK(136)*256+PEEK(137),
96: TM=TM-1:IFTM=0THENS0ELSEIF
SF=1 THEN SOUND240,1

30 A$=INKEY$:IFA$=""THENPOKEPEEK
(136)*256+PEEK(137),255:GOT0O20

40 IFA$=CHR$(13)ORA$>CHR$(31)
THENRETURNELSE!IFA$<>CHR$(8)
THEN20ELSEIFSA$=""THEN20ELSE
PRINTAS$;:SA$=LEFT$(SAS$,LEN(SAS)-1)
:GOTO20

50 PRINT@511,STRING$(31,8);"time is
up";:SOUND1,10:RETURN

60 JP=1024:C=96:P4=PEEK(136)*256+
PEEK(137)-1024:IF(JF AND1)=1THEN
JS=0:B=1ELSEJS=2:B=2

70 J=JOYSTK(0):J=INT(JOYSTK(JS+1)/
(63/N2)):K=INT(JOYSTK(JS)/(63/N2)):
POKEJP,C:TM=TM-8:IFTM=0THENS50

80 JP=J*32+K+SP:C=PEEK(JP):POKE
JP,25 5:IF(PEEK(65280)ANDB)THEN70
ELSEPOKEJP,C:SA$=RIGHT$(STR$ (J*
10+K),2):GOSUB160:PRINTSAS;:RETURN
90 FORJ=1TO11*N2+1:J=INSTR(J,F$,
"1":IFJ=0THEN110

100 IFMID$(F$,H(J1)+1,1)="1"THENJ=J-
1:K=H(J):GOTO140ELSENEXTJ

110 J=RND(11*N2+1)1:IFBL$(J)=""OR
MID$(F$,J+1,1)="1"THEN110

120 IFMID$(F$, H(J)+1,1)="1"THENK=
H(J):GOTO140

130 K=RND(11*N2+1)1:IFBL$(K)=""OR
J=KOR(MID$(F$,K+1,1)="1"ANDK<>H(J))
THEN130

140 SA$=RIGHT$(STR$(J),2):GOSUB
160:PRINTSAS$;:RETURN

150 IFA$<"0"ORA$>RIGHT$(STR$(N2),
1) ORLEN(SA$)=2THENRETURNELSE
PRINTAS;:SA$=SA$+A$:RETURN

160 IFVAL(SA$)>9THENRETURNELSE
MID$(SA$,1,1)="0"RETURN

170 FORDL=1T0O2000:NEXT:RETURN
180 CLS:CLEAR10000:TM=0:TA=175:
DIMBL$(99),H(99),L(50):N$="0123456789":
W$="WORDWRAP":M=1:D=33:POKE1184,
143: POKE1189,143

190 PRINT@P ,MID$(WS$,M,1);:C=C+1:M
=M+1:IFC=140THEN205ELSEIFPEEK
(P+D+1024)<>96THEND=(D=33)*-1+
(D=1)*33+(D=-33)+(D=-1)*-33

200 P=P+D:IFM=LEN(WS$)+1THENM=1:
GOTO190ELSE190

205 PRINT@224,"COPYRIGHT JULY
1990"," ANDREW JACKSON",," 6825
SUENADR"," AUSTIN, TX78741",,,,,
"NEED INSTRUCTIONS? (Y/N)",:GOSUB
20: CLS:IFA$="Y"ORA$="y"THENGOSUB

page 20 the world of 68’ micros

1000

210 SA$=""JF=1:WF=0:CLS:PRINTWS, "
GRID SIZES:","(1) 5BY 5",,"(2) 6 BY 6",,
“(3)7BY 7",,"(4)8BY 8",,"(5)9BY 9",,"(6)
10 BY 10"," (K) USE KEYBOARD"," (N)
NO WORDWRAP",,"ENTER OPTIONS:",
220 GOSUB30:IFA$="K"THENJF=0:
POKE1252,11:GOTO220ELSEIFA$="N"
THENWF=1:POKE1284,14.G0OT0220
ELSEIFA$="V"THEN
210ELSEIFA$<"0"ORAS$>"6"THEN220
230 N2=VAL(A$)+3:GC=INT((N2+1)*2):
SL=INT(GC/2):F=GC-INT(GC2)*2:PRINT
A$,,"UP TO FOUR CAN PLAY. HOW
MANY 7

240 GOSUB30:IFA$="\"THEN210ELSEIF
A$<"1"ORA$>"4"THEN240

250 PRINTAS;:NP=VAL(A$):W=NP:FOR
X=1TONP:PS(X)=0:SA%$=""PRINT:PRINT"
PLAYER"X"ENTER NAME:"

260 GOSUB30:IFA$="\"THEN210ELSE
IFA$>CHRS$(13)THENIFLEN(SAS$)<10
THENPRINTAS;:SA$=SA$+A$.GOTO260
ELSE260ELSEIFSA$=""THEN260ELSE
NAS$(X)=SAS$:IFSA$="COMPUTER"THEN
W=W-1

270 JN(X)=X:NEXT:GOT0290 :
280 IFTC<GC THENS5S40ELSEFORX=0
TONP1:NAS(X)=NAS(X+1):PS(X)=PS(X+1).
INQO=INQCH):NEXTXCNASOENAS(0): PSX -
PS(0):JN(X)=JN(0)

290 FORX=0TO11*N2:BL$(X)="":NEXT:
FOR X=0TOSL:L(X)=1:NEXT:TC=F:SF=1:
P=231:M=1:C=0:T=0:D=1.SP=1255:\WW$="".
IFW<20RWFTHENWWS=STRING$(GC,32):
WF=1:GOTO380

300 FORX=1TONP:WF(X)=0:IFNA$(X)=
"COMPUTER"THENPW$(X)="":GOTO360
310 SA$="":CLS:PRINTNAS$(X);" ENTER
UP TO"INT(GCW):PRINT "CHARAC-
TERS FOR YOUR WORDWRAP"

320 GOSUB20:IF(A$=""OR(A$>"@ "AND
A$<"T"))ANDLEN(SAS)<INT(GCW)THEN
PRINTAS;:SA$=SA$+A$.GOTO320ELSEIF
A$=CHR$(13)THENCLS:Y=1ELSE320
330 Y=INSTR(Y,SA$," "):IFY=0THEN350
ELSEIFY=1THENSA$=RIGHT$(SAS$,LEN
(SA$)-1):GOTO330ELSEIFMID$(SAS,Y
+1,1)=""THENSA$=LEFT$(SAS,Y)+
RIGHT$ (SA$,LEN(SAS$)-Y-1):Y=Y-1EL
SEIFY=LEN(SAS)THENSAS=LEFT$(SA$,LEN
(SA%)-1)

340 Y=Y+1:GOTO330

350 IFSA$=""THENX=X1ELSEPW$
X)=SA$

360 NEXTX:FORX=1TONP

370 R=RND(NP):IFWF(R)THEN370

ELSEWWS=WWS$+PWS$(R)WF(R)=1:NEXT
380 IFLEN(WW$)<GCTHENWWS$=
WW3$+WW$.GOTO380ELSEWWS=LEFT$
(WWS,GC)

390 CLS:SF=0:F$=STRING$(SL,48):
C=RND(38)+127

400 T=T+.5:D=(D=1)*-32+(D=32)+(D=-
1)*32+(D=-32)*-1:IFT+M>GC THEN T=
GC-M+1

410 FORY=1TOT:P=P+D:PRINT@P,
CHRS$ (ASC(MID$(WW$.M, 1))+C);

420 M=M+1:NEXTY:IFM<GC THEN400
430 SP=SP-32:IFPEEK(SP-32)<>96
THEN430

440 SP=SP-1:IFPEEK(SP-1)<>96THEN
440ELSEP3=SP-1024:PRINT@P3-32,
LEFTS(NS,N2+1)

450 SB=0:FORX=0TON2:POKESP-2 X+
112:IFF ANDX=N2 THENN2=N2-1

460 FORY=SPTOSP+N2:BL$(SB)=
CHRS$(PEEK(Y)-C):POKEY,99

470 R=RND(SL)-1:N=VAL(MID$(F$,R+1,
1)):IFN=2THEN470

480 N=N+1:MID$(F$,R+1,1)=RIGHT$
(STR$(N),1):IFL(R)=-1THENL(R)=SB
ELSEH(SB)=L(R):H(L(R))=SB

490 R=R-(R>35)*62:BL$(SB)=BL$(SB)+
CHR$(96+R):SB=SB+1

500 NEXTY:SB=10*X+10:SP=SP+32:
NEXTX:IFF THENN2=N2+1.PRINT@Y-
1024,CHR$(PEEK(Y)-C);

510 SP=P3+1024:F$=STRING$ (11*N2
+1,48).PRINT@79,"player"; TAB(25)"score™:
FOR X=1 TO NP:PRINT@143+(X-1)*64,
LEFT$(NAS(X),8)

520 PRINT@153+(X-1)*64,PS(X):IFSF
THENRETURNELSENEXTX

530 FORX=1TONP

540 PRINT@511,STRING$(95,8);: TM=
TA: SF=0:I FTC=GC THEN790

550 SA$=""PRINT@416:PRINT@416,
NAS$(X)" ENTER 1ST CHOICE:";

560 IFNA$(X)="COMPUTER"THENGO-
SUB 90:GOTOS590

570 IFJF THENJF=JN(X):TM=INT(TA/1.6)
*8:GOSUB60:IFTM=0THEN 690ELSE IF
INKEY$=""THEN

800ELSE590

580 GOSUB30:IFTM=0THENG690 ELSE
IFA$="\"THENBOOELSEIFA$>CHR$(13)
THENGOSUB150:GOT0580

590 IFLEN(SA$)<2THENS80ELSEV=VAL
(SAS):IFBL$(V)=""THEN550

600 MID$(F$,V+1,1)="1".P=VAL(LEFTS$
(SA$,1))*32+VAL(RIGHT$(SAS, 1))+P3:PRINT
@P,RIGHT$(BL$(V),1); ’
610 SA$=""PRINT@448:PRINT@448,

"ENTER SECOND CHOICE:";

620 IFNAS(X)="COMPUTER"THENSAS$=
RIGHT$(STR$(K),2):GOSUB160:PRINTSAS;:
GOTO650

630 IFJF THENGOSUBG60:IFTM=0THEN
680ELSEB50

640 GOSUB30:IFTM=0THENGBOELSEIF
A$>CHR$(13)THENGOSUB150:GOTO640
650 IFLEN(SA$)<2THENB4OELSEV2=
VAL(SAS):IFBL$(V2)=""ORV=V2 THEN
610

660 MID$(F$,V2+1,1)="1"P2=VAL
(LEFT$(SAS$,1))*32+VAL(RIGHT$(SAS, 1))+
P3:PRINT@P2,RIGHT$(BL$(V2),1);

670 IFRIGHT$(BL$(V),1)=RIGHT$(BL$
(V2),1)THEN700ELSEGOSUB170:PRINT
@P2,"#";

680 PRINT@P,"#";

690 PS(X)=PS(X)-2:SF=1:GOSUB520:
NEXTX:GOTO530

700 PS(X)=PS(X)+5:SF=1:GOSUB520:
PRINT@482,"right";: SOUND210,1:GOSUB
170:TC=TC+2:SF=0

710 PRINT@P,LEFT$(BL$(V),1);:PRINT
@P2 LEFT$(BL$(V2),1);:BLS(V)=""BLS(V2)=
":MID$(F$,V+1,1)="0"MID$(F$,vV2+1,1)="0"
720 IPNAS$(X)="COMPUTER"ORWF=1
THENB40ELSEFORY=1TONP:IFPWS$(Y)=""
ORX=Y THENELSESF=1

730 NEXT:IFSF THENSF=0:TM=TA:)
PRINT@480,"WANT TO GUESS WORD
WRAP? (Y/N):".ELSE540

740 GOSUB30:IFTM=00RA$="N"THEN
540ELSEIFA$<>"Y"THEN740ELSEC=INT
(GC/W)*2:SA$=""PRINT@511,STRING$
(95,8)"ENTER GUESS "NA$(X)":";

750 TM=53:C=C-1:GOSUB30:IFTM=00R
C<00ORAS$%= CHR$(13)THENELSEIFLEN
(SAS)=INT(GCW)THEN
750ELSEPRINTAS;:SA$=SA$+A$:GOTO750
760 FORY=1TONP:IFPW$(Y)=""ORPW$
(Y)<>SASORY=XTHEN780ELSEPWS(Y)
=""PS(X)=PS(X)+10:SF=1:GOSUB520
770 PRINT@416,STRING$(32,42);"
THAT'S CORRECT "NAS$(X)", YOU","
SOLVED "NA$(Y)"S WORDWRAP";:FOR
DL=1TO40:SOUNDRND(10)+200,1:NEXT
780 NEXTY:IFSF=0THENPS(X)=PS(X)-
5:5F=1:GOSUBS520:PRINT@416,"wrong
guess";:SOUND1,20: GOTOS540ELSE540
790 PRINT@384,"END OF WORD
WRAP:"

800 SA$=""TM=0:PRINT@416,"(R)
ESUME GAME""(N)EW GAME","PRESS
ANY OTHER KEY TO QUIT.","WHICH
ONE?"; ’

810 GOSUB30:PRINT@511,STRINGS
(95,8);:ONINSTR("RN",A$)GOT0280,210:
END:GOTO540

1000 PRINT" This game is a concentra-
tion type game with a different twist. in
Wordwrap the words actually wrap clock-
wise around and around each other.
Wordwrap requires a good memory, the
ability to type or peck at least *;

1010 PRINT"four words per minute, and
alittle luck. It can be played by one to four

people. The computer can play one or
more of the positions. At the beginning of
a new game a menu will print six options,
"::GO SUB2000

1030 PRINT"for the six available grid
sizes and options K and N. If option K
(press Kto used keyboard to play game)
and/or N(press N to play game without a
wordwrap) is used they must be entered
before one of the ",
1040 PRINT"grid size options is entered.
At the next prompts the totai number of
players in the game should be entered
and each piayer should enter their name
(enter COMPUTER for any position the
computer will play). While ";:GOSUB2000
1060 PRINT"the menu is still displayed,
to go back to the first prompt to correct any
mistakes, press SHIFT CLEAR at the
same time (if this option is used all previ-
ous menu items must be reentered). If
option N was not used and ", _

1070 PRINT"there are at least' two real
players, each player will be asked to enter
a wordwrap. A sound should also be
heard, if not the volume should be turned
up until it can be heard. This sound will
prevent anyone from “;:GOSUB2000
1090 PRINT"pressing BREAK or RESET
to find out what any of the other player's
wordwrap is, and then restarting the pro-
gram. All players not entering a wordwrap
cannot look at the monitor or the keyboard.
As long as there ";

1100 PRINT"is an audible sound every-
thing should be alright. Use only space
s and uppercase alpha characters for
wbrdwrap entries. Wordwraps can be on
any subject, movies, sports, books, au-
thors, states, random selections, etc.
",:GOSUB2000

1120 PRINT" The order of play for each
player will be to the right of the game grid.
At the start of each new game if joysticks
will be used and there is more than two
players in the game, players one and three
must share the

1130 PRINT"right joystick, and players two
and four must share the left joystick. To
allow players time to get into position, at
the start of each game the game can be
paused by pressing SHIFT @. Before a
player enters their ";:GOSUB2000

1150 PRINT"first choice, the game can
also be paused at any point during play
by pressing SHIFT CLEAR and if joysticks
are used press the joy button in use. Each
grid position has a match, and the object
ofthe *;

1160 PRINT"game is to find it. Each player
will have ten seconds and one chance to
find two matching grid positions. If a match
is not found or time runs out the player
loses two points and game control
passes tothe next ";:GOSUB2000
1180 PRINT"player. If a match is found

the player scores five points, gets another
turn, two wordwrap characters will be
printed at the two matching grid positions,
and if there is any unsolved wordwraps
he or she will have a ",

1190 PRINT"chance to guess one of the
otherplayer's wordwrap. To guess press
Y, otherwise press N (N will be assumed
if N or Y is not pressed within ten sec-
onds). No points is loss if a guess is not
made. If a wordwrap guess is
".:GOSUB2000

1210 PRINT"made, at least one charac-
ter must be entered every three seconds
and the total number of keystrokes can-
not exceed two times the maximum char-
acters a wordwrap could be (backspace
and other non-printing characters

1220 PRINT"will not be considered as
characters or counted as keystrokes). If
time runs out or too many keystrokes is
entered, the computer will check anything
that has been entered for a wordwrap
match. Ten ";:GOSUB2000

1240 PRINT"points is scored for a correct
wordwrap guess. Five points is loss for a
incorrect guess. When playing from the
keyboard, to enter a grid position, first en-
ter it's row number and then it's column

1250 PRINT"number, press ENTER when
done. For joystick use move the cursor to
the chosen grid position and press the
joy button. At the end of each game
options (R)ESUME GAME and (N)EW
GAME will be displayed. If R is";;:GOSUB
2000

1270 PRINT"pressed the order of play will
change, but the names, scores, and the
original joy positions will be carried over
to the next game. If N is press all scores
and names will be cleared from memory.
At the main menu all ",

1280 PRINT"prompted information must
be reentered. If any other key is pressed
to end the game prematurely, type CONT
and press ENTER to resume game. The
amount of time each player has to make
grid entries can be ";;GOSUB2000

1300 PRINT"adjusted by changing vari-
able TA in line 180. The first TM in line
750 can be adjusted to allow more of less
time for wordwrap guesses. A number
less than zero will allow player to play at
their own pace. Use *“;

1310 PRINT"whole numbers only for TA
and TM. ":GOSUB2000:RETURN
2000 PRINT@480,"HIT ANY KEY TO
CONTINUE READING";

2010 IFINKEY$=""THEN2010ELSECLS:
RETURN R

the world of 68' micros page 21

THE GLENSIDE COLOR COMPUTER CLUB

presents - Coming Attractions!
THE EIGHTH ANNUAL “LAST” CHICAGO]] - .
"COCOFEST! Coming soon in “the world of 68’ micros” -

MAY 1st & 2nd, 1999 (SAT. 10-5; SUN. 10-3:30)
AT THE SAME GREAT LOCATION AS LAST YEAR
345 W. RIVER ROAD (A CITY BLOCK FROM I-90 & IL-31),
ELGIN, ILLINOIS GWBASIC to DECB - part 3
GENERAL ADMISSION: $10.00, WHOLE SHOW
*wssere CHILDREN 10 AND UNDER - FREE ~ **#***

Jokes and Quotes - a new section

Adventures In Assembly - part4
OVERNIGHT ROOM RATE: $65.00 (PLUS 10% TAX)

CALL 1-847-695-5000 FOR RESERVATIONS. “Great CoCoist” Interview Series - #2
BE SURE TO ASK FOR THE “GLENSIDE” OR “COCOFEST!" RATE.

WILL BE RELEASED FOR REGULAR RESERVATIONS ON Where Is OS9 Today?
APRIL 14th, 1999, AND WILL NOT, INOT! BE AVAILABLE TO .
THE FEST ATTENDEES >>>>>YOU MUST REGISTER

UNDER “COCOFEST!" TO GET THIS RATE<<<<< All About CoCozilla!
WHY?- A. TO PROVIDE VENDOR SUPPORT TO THE COCO .)
COMMUNITY Dumping Carts To Disk

B. TO PROVIDE COMMUNITY SUPPORT TO THE COCO VENDORS
C. TOPROVIDE EDUCATIONAL SUPPORT TO NEW USERS.

Neurocomputing for the CoCo

FOR FURTHER INFORMATION, GENERAL OR EXHIBITOR, CONTACT: ...and much more!
TONY PODRAZA, VP, SPCL EVNTS, GCCCl or BRIAN GOERS,
PRESIDENT, GCCCI

847-428-3576, VOICE - 708-754-4921, VOICE
847-428-0436, BBS - TONYFODRAZA@JUNO.COM

ADVERTISER"S INDEX
Ron Bull Invites You To Attend -

‘ BlackHawk Enterprises 19
Pe nn FeSt 99 .. “Last” Chicago CoCo Fest ‘99 BC

loud Ni
The Third Pennsylvania CoCoFest! g:}l;NQ[?yes tems 178
August 21st and 22nd Robert Gault 19
8am - 4pm Saturday and 8am - 3pm Sunday Hawksoft 8
HO":‘:&'E" (negr ;heli;:'jpo"t) Mike Knudson (UltiMUSE) 3
eers oChoo . P Fest ‘99 B
Coraopolis, PA 15106 i ? ; 8C
(Call 1-800-333-4835 for reservations) T I: "”5 g’ j’t ,
underSo

Many vendors have already registered to attend!
Buy software, hardware, meet new and old friends,
learn new tricks, hear the guest speakers,
and most of all, have fun!

Admission is $5 per person per day or
$15 for a “Family Pass” good for both days.

What are you waiting for?

Gei your friends to subscribe to
For more information contact: the only magazine that still supports
Ron Bull the Tandy Color Computer...

Phone: 717-834-4314 “the world 0f 68’ micros”!
ronbull@aol.com

www.stg.net/bullsbarn The more people who want the support,
the longer it will be here!

page 22 the world of 68' micros

	68' micros
	Greetings!
	Table of Contents
	The Editor's Page
	Vendor AD Policy for 1999
	Letters
	New Subscribers and Renewals
	Converting GW-BASIC to DECB Part 2
	microNotes
	Adventures in Assembly Part 3
	OS-9 401: System Extension Modules
	Recursive Procedures on a CoCo
	Great CoCoist Interview Series - John Kowalski
	Classic BASIC Games
	The Ghana Bwana Patch
	WORDWRAP

	Coming Attractions!
	Advertiser's Index

