‘‘‘‘‘‘‘‘‘

May/J

e

‘‘‘

Exploring how
DECB stores data
on disk -- and a

Play
RobLOC Eap?

Just type in this DECB
program, and if you
have a Speech/Sound
pak listen in!

A AENNNTNCTTTITIT
AR R RARER
‘i ‘l‘l IK ll .l II'l.l.il‘l‘lg‘\
{ [N BN BN 2N BN A u&
CONTENTS

Ediitor's Page 2

Lefters 2

0S-9 ‘ed” Utility 3
Mark Heilpern

CoCo3 Consumer Information 4
Frank Swygert & Others

DECB Disk Structure 6
Robert Gault

Operating System 9 11
Rick Ulland

Adventures in Assembly, Part 1 16
Art Flexser

RoboZap 18
Eric Striger

Advertisers Index 8C

Pennsyivania
Don'’t forget to make
plans for the PennFest
coming in August!!
Kuoshug

Philadeiphia

POSTMASTER:
If undeliverable return to:
FARNA Systems PB
Box 321
WR, GA 31099

If your address is incorrect, send me a postcard!

the world of 68' micros page 1

The Editor’s Page

WANTED: EDITOR FOR

“68’ micros” MAGAZINE

Must have good general knowledge
of the CoCo and all hardware, interest
in 0S-9 and 0S-9/68K machines. Must
have at least a 486 clone with 8MB
RAM and 40MB free hard drive space
for necessary software. Should have
some experience with DTP software
(software will be provided). Must have
reliable Internet connection or ability
to get one. Token payment will be
made to editor -- negotiable. Editor will
be required to gather information and
layout pages on provided template.
Publisher will maintain mailing data-
base, advertising, shipping, and pro-
duction. Write or call Frank Swygert ¢/
o FARNA Systems (mailing and e-mail
address below), 912-328-7859 5-10pm
EST weekdays, 9am-10pm EST week-
ends. All applicants considered.

So a few people panicked. Don't worry,
“the world of 68’ micros” will keep coming
even if someone doesn’t apply for the po-
sition advertised above. Yes, I'm still look-
ing. I'm considering dropping the price to
$20 per year and the frequency to quar-
terly (those already with subscriptions will
get an extra issue -- no one will lose any-
thing!). That will keep the magazine going
a couple more years and give me ample
time to actually do all the necessary work.
Will this cause a lot of you to drop your
subscriptions? | hope not. You are in no
danger of losing any money -- you never
have been. | keep all magazine money in

a separate account so that if | did have to
suddenly quit publishing | could refund any
remaining funds. As long as the magazine
IS being published, no refunds will be
made. And ! still intend to publish through
volume seven (until July 2000) as long as
there are enough subscribers to make it
worth while (at least 75-80 -- still have
about twice that number). Let me know
what you think!

You know, | got to thinking. Maybe no
one wants to edit the magazine while | am
still over the operation. Does anyone feel
more like taking it over altogether? | wouid
be willing to discuss that as a possibility.
If interested in taking over publication and
production of 268'm, just get in touch with
me and we’'ll explore some options.

Well, with spring here and more people
getting outside and away from their com-
puters, there haven't been many letters.
So no letters column this time around.
Don't forget me! A letter or two for next
issue would be nice. Ask a question, let
me know what you are still doing with your
CoCo or 68K 0S-9 machine, etc.

| know this issue is late -- later than I'd
like. My military unit has had some deploy-
ments, meaning we have been short
handed, and I've had to work some over-
time. On top of that, we're getting ready
for a major “test” of the unit's capabilities
early next year. That means week long “war
games” with lots of overtime. Getting ready
for one of those now, and another is sched-
uled for August and November. | should
be able to work around all this and keep
issues from being so late, but they will
occasionally be late again. Sorry for the

inconvenience, but this is a part time, one
man operation!

Until next issue, keep your CoCo's alive
and kicking!

A Quick Letter for ColorZap93
| just went through an issue with Jeff

and someone | sent Colorzap-93 to. The
program will only work on the Coco3 emu-
lator if the “horizontal interrupt mode” is
engaged. This can be done with two op-
tions in the latest version of the emulator.

You might want to add an editorial com-
ment about this. | have since made a mi-
nor code change as a work-around. Look
at the start of the source code where | time
the horizontal interrupt to determine the
clock speed. That can be changed to count
the vertical interrupt if a 16 bit register is
used tc do the counting.

Robert Gault

Thanks for the tip Robert! Now people
with the emulator can make the change or
run in the proper mode.

I'll add that anyone wishing the program
on disk can send $5 to cover copying, ship-
ping and handling. But if you want to leam
assembly, enter the program into your as-
sembler and study what each segment of
the well commented listing does.

the world of 68’ micros

Publisher:

FARNA Systems PB

P.O. Box 321

Warner Robins, GA 31099-0321

Editor:
Francis (Frank) G. Swygert

Subscriptions:

US/Mexico: $24 per year

Canada: $30 per year

Overseas: $50 per year (airmail)

Back and single issues are cover price.
Overseas add $3.00 one issue, $5.00 two
or more for airmail delivery.

The publisher is available via e-mail
dsrtfox@delphi.com

Advertising Rates:

Contact publisher. We have scales to suit
every type of business. Special rates for
entrepreneurs and “cottage” businesses.

Contributions:

All contributions welcome. Submission
constitutes warranty on part of the author
that the work is original unless otherwise
specified. Publisher reserves the right to
edit or reject material without explanation.
Editing will be limited to corrections and
fitting available space. Authors retain copy-
right. Submission gives publisher first pub-
lication rights and right to reprint in any
form with credit given author.

General Information:

Current publication frequency is bimonthly.
Frequency and prices subject to change
without notice. All opinions expressed
herein are those of the individual authors,
not necessarily of the publisher. No war-
ranty as to the suitability or operation of
any software or hardware modifications is
given nor implied under any circum-
stances. Use of any information in this
publication is entirely at the discretion and
responsibility of the reader.

All trademarks/names property
of their respective owners

ENTIRE CONTENTS COPYRIGHT
1998, FARNA Systems

page 2 the world of 68’ micros

Changing Direcftories

A standalone “cd?” utility

Mark Heilpern

Here is a program | wrote in “c” quite a while back to imple-
ment a stand-alone ‘cd’ utility. It gets around the memory protec-
tion problem by calling _os_permit() to get access. For this to
work the program must execute as super-user (group 0). If you
will not always run this as super-user you must modify the code
somewhat (make the module owned by group 0 and toss in a
_os_setuid() to change yourself to group 0 early in the program).
If you have no MMU or are not running the SSM extension there
IS No memory protection.

/*** This is the first of 2 files ***/

#include <types.h>

#include <stdio.h>

#include <process.h>

#include <errno.h>

#include <cglob.h>

#include <modes.h>

error_code find_proc_desc(process_id, procid **);
main(u_int32 argc, char **argv)

char "pathname = argv([1];
u_int32 mode = S_IREAD;

/* change data directory */
procid *me, *dad;

/* if no directory was specified, check for default */
if (argc==1) pathname = (char*)getenv("HOME"),
if (pathname==NULL) exit(E_BPNAM),

* check for execution directory change request */
if (argc>2)

if (Istrcmp(argv[1],"-x")) pathname = argv(2];
mode = S_|IEXEC;
* change execution directory */
o)
/" do the directory change */ -
errno = _os_chdir(pathname mode),
if (errno) exit(errno);
/™ find my process descriptor */
errno = find_proc_desc(_procid, &me);
if (errno) exit(errno);
/*find my parent’s process descriptor */
errno = find_proc_desc(me->_pid, &dad);
if (errno) exit(errno);
/*copy over the directory information */
errno = _os_cpymem(_procid,&me->_dio,&dad->_dio,DEFIOSIZE),
if (errno) exit(errno);
/* and exit™/
exit(0);
}

/*** the next file is for the find_proc_desc() function ***/
#include <process.h>

#include <sysglob.h>

/* to get systemglobals */

#include <stddef.h>

/* for ‘offsetof() macro */

#include <modes.h>

/* for permit access modes */

#include <ermo.h>

extern process_id _procid,

/*myid*/

”

** Usage:

** process_id proc_id;

** procid *proc_desc;

** errno = find_proc_desc (proc_id,&proc_desc);
*/

error_code find_proc_desc(process_id proc_id,

procid **proc_desc)
{

u_int32 *ptab;

u_int32 size;

/* first, find the system'’s process */
/* database table */
(void)_os_getsys((offsetof (sysglobs,d_prcdbt)) sizeof(u_int32*),
(glob_buff*)&ptab);

/* get access to this memory region */
/* number of bytes we need access to */
/* (size) is the process id of interest, */
/*times size of each pointer entry (4) */__ .
/* plus the size of one entry (4) */
size = (proc_id+1)*4;
errno = _os_permit(ptab,size,S_IREAD,_procid);
if (errno) return(errno);
" got the tabie. lets index into it */
proc_desc = (procid)ptab[proc_id];
/* finally, get access to that memory */
(void)_os_permit(*proc_desc,sizeof(procid),
S_IREADI|S_IWRITE, _procid);
/* note, don’t need error checking on */
/*the last _os_permit(),since the call */
/*should only fail if not running */
/*as super user. since the first permit */
/*call worked, we must be a SU */

return(0);

}

Questions? | can be reached via e-mail at:
heilpern@microware.com. If you don’'t have
e-mail access, feel free to write the editor in
reference to this article

Ron Bull lnvites You To Attend

PennFest ‘98

The Second Pennsylvania CoCoFest!

August 15th and 16th
9am -5pm each day
Holiday Inn East
4751 Lindle Road
Harrisburg, PA 17111
(Call 717-939-7841 for reservations)

Many vendors have already registered to attend!
Buy software, hardware, meet new and old friends,
learn new tricks, hear the guest speakers,
and most of all, have fun!

Admission is $5 per person per day or
$15 for a “Family Pass” good for both days.

For more information contact Ron Bull
Phone 717-834-4314
ronbull@aol.com
‘www.geocities.com/SiliconValley/Vista/1412

the world of 68' micros page 3

Color Computer 3 Consumer Information

Frank Swygert & *“Others”’

Editor: Rather than edit the following, | printed as it was
originally written five to six years ago. At the time, the Intel
386SX/16MHz processor was the popular choice for home
computers, with 286 models between 12 and 16 MHz the
most numerous. This was edited from various sources.

I. WHAT IS A COLOR COMPUTER?

The Tandy Color Computer 3 is a very inexpensive yet
powerful computer for the home or small business. The
original Color Computer, introduced in 1980, boasted eight
colors at a time when all other Radio Shack computers in
the TRS-80 line were monochrome (one color -- green or
amber on a black background), hence the name “Color
Computer”. Unfortunately, the name has a toylike conno-
tation. The Color Computer 3 is not, however, a toy. It can
do all those things generally expected of personal comput-
ers. Technically, it compares quite favorably with comput-
ers priced much higher.

The Color Computer is probably the most versatile per-
sonal computer on the market. In its simplest form, it can
be used with a TV set and Nintendo-like cartridges. In its
most complex form, it can be configured with a multisync
color monitor, a hard drive, and run several programs at
the same time with the OS-9 operating system. The Color
Computer uses standard peripherals (except monitors) such
as serial printers, floppy disk drives (360K and 720K), hard
disk drives, and modems. It offers an amazing combina-
tion of simplicity, power, and versatility.

II. WHAT CAN IT DO?

The Color Computer will not run software designed for
other personal computers (i.e., it is not IBM- or Apple-com-
patible, although the BASIC computer language that is in-
cluded with the standard Color Computer 3 is nearly iden-
tical to the GW-BASIC used by IBM-compatible comput-
ers). Nevertheless, the software necessary for doing all
tasks commonly done on personal computers is available
for the Color Computer 3. Professional quality programs
exist for many varied applications, including the following:

WORD PROCESSING programs feature index and table
of contents generation, mail merge, editing in multiple win-
dows, programmable macros, spelling and punctuation
checkers, with up to 160 pages in memory at one time
(512K machine).

DATABASE programs for both general and specific needs
(e.g., recipes).

SPREADSHEET programs offer up to 512 columns by
1024 rows, with graphics.

DESKTOP PUBLISHING programs include a tremendous
variety of fonts and clip art, for use with any printer.

GRAPHIC DESIGN programs allow the Color Computer
user to simply and inexpensively create custom title screens
for home or business videos, or “slide shows” for business
presentations.

MUSIC programs support MIDI-equipped music synthe-
sizers.

page 4 the world of 68' micros

TELECOMMUNICATIONS programs support all major
protocols for going “on-line”, and include VT-100 and VT-
52 mainframe terminal emulations. One can get on the
Internet through on-line services that still use a “shell” ac-
count (such as Delphi), but there are no graphical web
browsers available. Electronic mail, broker services, travel
services, information services, etc., are available through
Delphi, which still has a text interface. Internet “use-net”
groups are also available. While the text interface doesn't
offer all the “pretty pictures” of the graphical web browsers,
it has the advantage of being simple and fast.

EDUCATION programs range from learning the ABC's
to calculus.

COMPUTER LANGUAGES available for the Color Com-
puter include C, Pascal, LOGO, BASIC-09, and FORTH09.

Simplified word processing, file, and spreadsheet appli-
cations are available in cartridge form and are both less
expensive and easier for the beginner to use than similar
programs for other computers. Most software for the Color
Computer is generally less expensive (sometimes quite a
bit less) than similar software for other computers. In addi-
tion to standard software applications, the Color Computer
3 has built-in scientific and foreign language symbols, and
arithmetic, trigonometric, and logarithmic math functions.

The Color Computer 3 can utilize the OS-9 disk operat-
ing system (optional), which is probably the most powerful
operating system available for any personal computer. OS-
9 is based on UNIX (used on large mainframe computers).
It is the operatihg system used by NASA when communi-
cating with satellites and the space shuttle. It transforms
the Color Computer into a true multitasking system, which
simply means it is capable of running several programs on
the screen at the same time, in independent “windows”,
like a $2000 IBM PS/2. “Multi-Vue” is a program that makes
the power of OS-9 readily accessible through the use of
“point-and-click” icons (pictures), much like the Macintosh.

. HOW DOES IT COMPARE?

The heart of the Color Computer is a so-called “eight-bit”
microprocessor, the Motorola 6809E, which is a more pow-
erful microprocessor than the 6502 used in the Apple II's
and the Commodore 64/128. The 6809 possesses several
sixteen-bit registers used for mathematical, logical, and
graphics operations, giving it some of the power of six-
teen-bit computers such as the Commodore Amiga, the
Macintosh, and the IBM AT.

The maximum clock speed of the Color Computeris 1.788
MHz, aimost twice as fast as an Apple lie that selis for five
times as much! Note that clock speed is NOT a good mea-
sure of computer speed, as the efficiency of the chip is
more important. The Color Computer 3's exclusive GIME
(Graphics Interrupt Memory Enhancement) chip, and the
powerful OS-9 disk operating system, working together,
allow the Color Computer 3 to surpass the speed of a typi-
cal IBM PC in many benchmark tests. Indeed, at its intro-

duction, Tandy officials demonstrated the Color Computer
3 beating Tandy’s own 1000 SX running at 7.16 MHz. The
Color Computer 3 is fast enough for any home or small
business needs. It compares favorably to an Intel 80286
processor running at 12MHz. Remember, the Windows
graphical user interface requires a lot of power and memory.
If you've been around Intel machines for a long time, you
should remember that it didn't take a lot of power to do
most common tasks until Windows came along!

From the factory the Color Computer 3 comes with 128K
of memory. This can be inexpensively increased to 512K
with Tandy or third-party cards, and up to 1 megabyte with
athird-party upgrade. Most available programs require only
128K, although some of the latest and larger programs re-
quire 512K of memory.

Screen resolution in the text mode may be either 40 col-
umns by 24 lines or 80 columns by 24 lines. Screen resolu-
tion in the graphics mode may be either 320 dots horizon-
tally by 192 dots vertically (320x192, with sixteen colors
on the screen), or 640x192 (with 4 pure colors on the
screen). Both text and graphics high resolution modes can
be increased by software to 80x28 or 640x225 (12.5% more
dots per screen than IBM CGA resolution of 640x200). In
the highest resolution graphics mode, the four pure colors
may be combined to form even more colors. Additionally,
a total of 64 pure colors are availabie, which, through a
technique called “palette-switching”, provides animation
abilities not possible on low-cost IBM-compatibles (for ex-
ample, a flickering fire). All lower resolution graphics and
text modes of the earlier Color Computers are also sup-
ported so that older programs will work. The large charac-
ters of the older 32x16 text screen are easy on the eyes of
senior citizens or others with visual impairment.

The Color Computer 3 may be used with a TV set (color
or b&w), a composite monitor (color or monochrome), or
an analog RGB monitor, or even all three simultaneously!
The RGB monitor is required for the high resolution text
modes, but most programs support both TV (composite)
and RGB modes. Other than the monitor, the Color Com-
puter is compatible with IBM-standard peripherals such as
floppy disk drives and disks (both 5.25 inch and 3.5 inch),
hard disk drives, modems, and, with an inexpensive “se-
rial-to-parallel converter”, printers (even laser printers).
Tandy 1000 series joysticks, mice, and printers plug right
in. More exotic peripherals such as video digitizers, MIDI
interfaces (for use with music keyboards), and sophisti-
cated voice synthesizers are also available. Use of a cas-
sette recorder is supported as a very inexpensive and simple
alternative to a disk drive.

IV. WHY BUY A COLOR COMPUTER?

If you have a need for a specific program that is not avail-
able for the Color Computer, or you would like or need to
maintain compatibility with computers at work, buy a com-
puter that meets that need. HOWEVER, if you simply need
“a computer” for writing a novel, tracking the stock market,
putting out a Cub Scout newsletter, or predicting the next
eclipse of the moon, the Color Computer 3 will fill the bill
admirably. Consider these advantages:

LOW COST: A basic system consisting of computer,

Tips for new users eager to get started

1. NEVER, EVER plug or unplug anything into the large side
port while the computer is turned on! If you do, you could blow
the processor. This isn't an expensive part, but it is tedious to
replace. A 40 pin chip has to be desoldered and removed from
the circuit board, a socket soldered in, and a new processor put
in the socket. A TV shop would charge about $30 to pull the
original processor and put in a socket, and a processor is about
$20.

2. Game cartridges (program Paks) plug into the side port.
Turn the computer off, plug in the pak, then turn it on. These
games all self-start. Some have instruction screens, others you
need the book for or will need to experiment with. Applications
came in cartridges also, not just games.

3. Some games and such will ask what kind of monitor you
have. Select either TV or Composite,(Color) monitor if you have
a TV or monitor that plugs into round connectors on the back of
the CoCo. The RGB monitor is special for the CoCo3. They aren't
real expensive, used ones are under $100. Multi-sync monitors
work, but have to sync down to 15.75KHz for the CoCo. This is
the same as the old |IBM compatible “CGA” monitors. NEC Multi-
Sync and Multi-Sync Il monitros work fine.

4. Games on disk are pretty easy. With the disk drive control-
ler plugged into the computer and the disk drive power on, put a
disk in with the label side up. Now type DIR on the computer
and press the ENTER key. You will have a directory of what is on
the disk (that's why DIR... short for DIRectory).

5. Games-or programs that end in .BIN are binary or machine
language programs. To start one of them, type:

LOADM’PROGRAM <ENTER>

PROGRAM wili be the name before the BIN, <ENTER> means
press the ENTER key. The game will start. Some you end by
pressing the red <BREAK> key. Others you have to press the
RESET button on the back, next to the power button. If that doesn't
end it, hold the <CTRL> and <ALT> keys down and press the
RESET button. You will get a picture on the screen of three of
the programmers who worked on the CoCo at Tandy. Press the
RESET button again and the game will end. <CTRL> <ALT>
RESET clears everything from memory. You can of course turn
the power off, but if you do, count to FIVE before turning the
power back on. It doesn't like sudden off/on cycles, could blow
the processorl!!

6. Games of programs that end in .BAS are BASIC programs
written in the BASIC computer language. The CoCo has BASIC
built in, so all you have to do is type:

RUN"PROGRAM <ENTER>

PROGRAM will be the name before the BAS, <ENTER> means
press the ENTER key. The game will start.

All BASIC games should end by pressing the <BREAK> key,
but if it doesn’t do the same as with BIN programs.

7. You will need a few biank disks for later. What you want is
5.25" DOUBLE DENSITY disks, or 360K disks. DO NOT get
5.25" HIGH DENSITY disks (1.2MB), as they won't work right.
Any Radio Shack will be able to get disks, and computer stores
MIGHT have some.

disk drive, and monochrome monitor is only $400. An ab-
solute beginner, supplying his or her own TV and cassette
recorder, could get started for only $100!

continued on page 21

the world of 68' micros page 5

Color Computer Disk Basic Disk Structure

Robert Gault

And a binary disk editor -- ColorZap 93 -- to boot!

When Tandy finally marketed a disk system for the Color Com-
puter, it did all users a big favor by releasing complete details on
disk structure under Disk Basic. This made it possible for users
to write some very interesting programs for the disk system and
even find ways to overcome bugs present in DOS version 1.0.
Happily Tandy and Microware were just as forthcoming when
0S-9 was released. The complete details on disk structure un-
der 0S-9, different from Disk Basic, were documented.

Among the first programs written for the Coco disk systems
were disk editors. These programs made it possible to read raw
data from a disk, modify it if desired, and write it back to a disk
ignoring the directory and file structure. This permitted users to
repair the trashed disks, directories, and files which sooner or
later happen to everyone.

My favorite disk editor for 0S-9 is dEd by Doug DeMartinis.
For some time | wanted an equivalent program for Disk Basic
and finally wrote it myself. The source code for this Disk Basic
look and workalike to dEd is part of this article. It can be com-
piled without any changes by my patch to Tandy's EDTASM (which
I sell as EDTASM6309) or any other assembler that can use
lower case, local labels, and multiple FCBs. Readers who have
stock EDTASM can still assemble the program by replacing all
labels of the form a@ with standard labels and using upper case
for all source code. Replace any FCB 1,23 statements with
separate FCB and FDB lines as needed. However, before look-
ing at the source code let's see how Disk Basic organizes a disk.

Tracks, Sectors, and Granules

Regardiess of your computer or disk operating system, disks
must be formatted before use. Formatting is the process that
takes a blank disk and partitions it into pieces that can be used
by a computer. Disk Basic separates the disk into 35 pieces called
tracks that are numbered 0-34. Each track is about 6,250 bytes
(8 bit words) of which 6,084 are divided into 18 pieces called
sectors, numbered 1-18, while the rest are system control bytes.
Each sector contains 338 bytes where 256 bytes are for data
and the rest are for system control.

Tandy describes the system control bytes in detail in the “Own-
ers Manual & Programming Guide” for Disk Basic but this can
be ignored by all but the most inveterate hackers. However, all
users should know how the data portion of the disk is organized.
Remember the data is stored in 256 bytes per sector, 18 sectors
per track, and 35 tracks per disk side. This is a total of 161,280
data bytes per disk side.

Coco Disk Basic reserves track 17 for the directory. You can
think of the directory as a special file that stores the names,
location, and file types of all files on the disk side. The other 34
tracks are divided into 68 pieces called granules. Each granule
is 2,304 bytes long or 9 sectors and there are two granules per
track. You may be saying, “If the tracks have already been di-
vided into sectors, why are they also divided into granules?”

Sectors are the low level structure of a disk, while granules are
the low level structure of Disk Basic files. Putting it differently,
the minimum space that a file can reserve under Disk Basic is
2,304 bytes even if the file is one byte long. This minimum re-
served space is known as a granule in Disk Basic or a cluster
under OS-9 where it can be as small as a 256 byte sector. Since
the minimum space a Disk Basic file can reserve is one granule,
it is easy to see that the maximum number of files per disk side
is 68, the total number of granules.

Why are the Disk Basic clusters larger than OS-9 clusters?
There is a trade off between wasted space and the possibility of
file fragmentation. Large clusters can waste disk space but they

page 6 the world of 68’ micros

help prevent the sectors of a file from being scattered all over a
disk. Tandy made an arbitrary choice for large ciuster size.

Directory and File Allocation Table (FAT)

| have already said that track 17 is reserved for the directory,
the index for all files on the disk. In Color Disk Basic, the direc-
tory track has the following structure: sector #1 not used, sector
#2 file allocation table (FAT), sectors #3-11 directory entries,
sectors #12-18 not used. The FAT only uses the first 68 bytes of
sector #2, corresponding to the 68 granules on the disk. The FAT
is a map of the granules used by each file with the byte number
equivalent to the granule used. If a FAT byte has the vaiue $FF
then it is not in use. A FAT byte value from 0-$43 points to the
next granule in a file. A FAT byte value of $CO-$C9 indicates the
number of sectors in the last granule.

If you have been following this closely, you may be asking,
“Why have a FAT value of $C0?” This is a special case for zero
length files that still are assigned one granule; $CO indicates
that no sectors were used. You may also have been wondering
why Disk Basic does not use a 40 track disk. Clearly there is
sufficient room in both the FAT and directory entry area to cover
78 granules worth of files. This unfortunately, is an example of
Tandy marketing expertise. The disk structure can support 40
tracks, but Disk Basic software cannot. It is simpie to patch Disk
Basic to format and access 40 tracks per side but the file system
still cannot make use of the extra tracks. So much for 40 track
disks under Disk Basic, let's get back to the directory structure.

Each directory entry uses 32 bytes. The first 8 bytes (0-7) con-
tain the left justified file name. The next 3 bytes (8-10) contain
the extension (ex. .BAS). Byte 11 indicates the file type: 0 =
BASIC program, 1 = BASIC data file, 2 = machine language
program, 3 = text editor source file. Byte 12 indicates whether
the file is ASCII ($FF) or binary format ($00.) You may remem-
ber that Basic programs are normally saved to disk in tokenized
format. They can be saved in ASCII text format by the command
SAVE"filename”,A. Byte 13 is the number of the first granule in
the file and bytes 14-15 indicate the number of bytes used in the
last sector of the file. Finally, bytes 16-31 were reserved for fu-
ture use and must be all zeros for compatibility with Tandy's
EDTASM that does use these bytes.

The directory entry section starts with all bytes having the value
$FF. As entries are added, the table grows and sooner or later
some files will be deleted. When this happens, the first byte of
the entry for the deleted file is set to $00. The next new file is
added into this vacated slot.

Why a Disk Editor?

There are many reasons for using disk editors ranging from
simple curiosity, to disk repair, to breaking copy protection
schemes. Have you ever deleted a file and immediately had the
sickening feeling of erasing the only copy of a 40 hour project?
With a good disk editor, you stand a very good chance of being
able to recover the file. This is because the file still exists on the
disk until the space is reused. What has been lost is the chain of
granule entries in the FAT and the first letter of the file name in
the directory. If you change the first name byte from $00 to what-
ever it was and reenter the FAT information, your file will be re-
covered. You can find the first file granule by looking at the direc-
tory entry, to find the rest you must look at each granule on the
disk for identifying text or code.

Colorzap-93 is a machine language disk editor for Coco3 only.
With it you can select for examination drives, granules, tracks,
or sectors and modify any byte. You can search a disk for a

pattern of bytes either hexadecimal or ASCli. One powerful op-
tion is the ability to link to any file on the disk and scroll through
the file without having to know where the file sectors are located.
Information displayed on screen can be sent to a printer. For
those of you who use 0S-9, Colorzap-93 looks and works like
dEd so you only have to remember one set of commands.

Colorzap-93 works in.an 80 column screen with a fast clock
setting. However, the program tests your original clock speed
and uses that speed for all disk I/0. The original clock speed is
reset when you exit the program. Colorzap-93 supports DOS1.0,
DOS1.1, and RGBDOS. The program has a repeat key function,
so holding down an arrow key permits rapid scrolling through
sectors. The program auto starts on loading with the first screen
displayed being the instructions.

The Source Code

There are two ASM files used with Colorzap-93. There is a
short file EDTDEFS that is a list of equates (equ) which | use
with several of my programs. The main file, COLORZAP, is some
1700 lines long. Most of the critical lines have comments and |
will not cover the code further except to point out several inter-
esting routines that you may want to use in your own programs.

Lines 1160 - 1320 determine whether the CoCo is running at 1
or 2 MHz by counting loop cycles between interrupts. Lines 1730
- 1950 determine what screen colors are currently in use so that
the program can use reverse colored letters regardless of the
user’s preference. Lines 16610 - 16990 are a repeat keys routine
based on code by Roger Schrag. Lines 17020 - 17030 make the
program auto-starting.

You will notice that whenever possible, | make calls to the
Basic ROM routines. This makes the program much shorter than
it otherwise would be. | am therefore indebted to the information
contained in the Spectral Associates, “Basic Unravelied” series.

If you have questions about the code or cannot get it to com-
pile and run, send questions by e-mail to:

robert.gault@ worldnet.att.net

00100 * Basic entry points for Coco3 DOS1.1

00110 titte EDTDEFS

00120

00130 cls equ $FBED

00140 wdth32 equ $F652

00150 wdth40 equ $F65C

00160 wdth80 equ $F679

00170 locate equ $F8F7 enter with reg.a=column reg.b=row
00180 printS equ $B99C

00190 decout equ $BDCC send #in reg.D as ASCI|

00200 scrprt equ $A30A

00210 dskcon equ $C004 POINTER TO DSKCON ROUTINE
00220 trkzro equ $D7B8

00230 getchr equ $A1B1 blink while waiting

00240 ikeyim equ $87 in key image

00250 waitky equ $ADFB wait for key no blink; go to Basic on break
00260 hedtk0 equ 0

00270 readequ 2
00280 wnteequ 3
00290 charad equ
00300 getnch equ
00310 getcch equ
00320 binval equ $2B

00330 linbuf equ $2DC Basic line buffer
00340 CR equ $0D

00350 LF equ $0A

00360 blk equ

00370 colon equ

00380 bkspc equ $08

00390 zero equ $8a two bytes are always fdb 0

$A6
$9F
$AS

00000 title COLORZAP-93

00010 * {c) by Robert Gault September 1993; VR. 1.6

00020 * Full ml version of a disk editor program

00030 * Emulates dEd [by Doug DeMartinis (c) 1987] from the OS-9 world.
00040 * 9-29-93 Seek, Edit, Write, Find, Next, Copy, Repeat keys

00050 * 10-10-93 Link, Unlink, and correction needed to find, next, copy, etc.
00060 * 10-15-93 When linked, last sector stops printing at last byte.

00070 * 10-20-93 Corrected bug in link/edit: bad char does not leave edit

00080 *

Down arrow roll-over in last sector corrected

00090 * 10-21-93 Added adjustable max values for track/sector.
00100 * 11-02-93 Corrected spelling of “hexadecimal”.
00110 * 12-28-93 Handle incorrect file structure; ie. files where last sector

00120 *
00130~

contain zero bytes. Adjust maxgrn when adjusting maxtrk &
maxsec.

00140 " 3-3-94 Added info to help screen.

00150 * 4-6-94 Changed repeat keys to K and records to R

00160 * 5-6-94 Added (P) screen dump to printer.

00170 * 11-2-95 Corrected error in xitopn routine which had an incorrect

00180 *
00190
00200 org O

00210 fgetnm rmb
00220 fopen rmb
00230 fstfcb rmb
00240 fget rmb 2
00250 flof rmb 2
00260 fclose rmb

error trap. Added auto start routine.

2 get file name offset

2 open file offset

2 set file FCB offset

get record from file offset
get length of file

2 close file offset

00270 fdir rmb 2

00280

00290 org $EOO

00300 start bra beginprogram has fixed exec loaction
00310 dataequ *

00320 drivermb 1 working values

00330 trackrmb 1

00340 sector rmb 1

00350 granrmb 1

00360 recnumrmb 2 record nhumber of open file; max=612

00370 iof rmb 2 length of file

00380 Istsec rmb 1 last sector flag; 0=not FF= last sector

00390 fcblst rmb 2 bytes in last sector+$ee; points to buffer

00400 linhdr rmb 1 counter; holds $00,$10,$20,... $F0

00410 color rmb 1 O=normal; FF=reversed

00420 stndcl rmb 1 normal attributes used by program

00430 revrcl rmb 1 reverse color attrs

00440 hexflg rmb 1 O=hex; FF=ascii

00450 mtcflg rmb 1 0=no match; FF=matth used by next; set by find
00460 splits rmb 1 0=no split; FF=split match across sector boundary
00470 mtctrk rmb 2 this holds track & sector of last find

00480 frcnum rmb 2 this hold record number of linked match

00490 fndloc rmb 2 find offset in buffer

00500 endmtcrmb 2 end of current match data in target buffer

00510 hexioc rmb 1 x screen location; hex. table

00520 rownum rmb
00530 ascloc rmb 1
00540 io1 rmb 1
0055002 rmb 1
00560 repflg rmb

1 y screen location
x screen location; ascii table
temp. i/o storage

1 O=repeat key not installed FF=instailed
00570 cpyflg rmb 1 copy active flag 0=no FF=yes

00580 drvmax rmb 1 filled by program; varies with 35-40 tk system
00590 maxtrk rmb 1

00600 maxgrnrimb 1

00610 maxsecrmb 1

00620 dos rmb 1 indicates DOS version

00630 * 0=D0S1.0, 1=D0OS1.1, 2=RGB-DOS, 3=unknown
00640 drvflg rmb 1 FF=drive set 0=drive not selected

00650 opnflg rmb 1 file open flag; 0=none FF=open

00660 enddat equ * what follows does not get erased

00670 clock rmb 1 O=slow t=fast

00680
00690
00700 * Customize Colorzap-93 by changing the DOS jump tables. *
00710 * Addition of functions to the table Must be accompanied by *
00720 * simultaneous additions to the first RMB table above. *
00730
00740
00750 dos10
00760 fdb
00770 fdb
00780 fdb
00790 fdb
0080C fdb
00810 fdb
00820 dos11
00830 fdb
00840 fdb
00850 fdb
00860 fdb
00870 fdb
00880 fdb

fdb $c8a4 get file name

$c468 open file

$c808 point to fcb

$c2ccget record

$cdSd get LOF

$ca3b close

$cbd2 dir

fdb $c952 get file name

$c48d open

$c838 point to file fcb

$c2e6 get record; reg.D=record number

$ce39 get LOF

$cae9 close all files

$ccacdir reg.B=drive #;

$eb = drive #

00890

00900 * system equates

00910 iobffr equ $989 i/o buffer for find/next

00920 eiobuf equ iobffr+$100

00930 mtctrg equ $d00 match characters stored

here; target .
the world of 68' micros page 7

00940 tmpbuf equ $1da temporary buffer; 256 bytes

00950 secmaxequ 18max. sector value; min.=1

00960 " table positions are 0 - n

00970 hextbl equ 5*$100+3 x=5;y=3

00980 asctbl equ 58x=58

00990 hexcel equ 3 size (in spaces) of a single
tabie byte

01000

01010 * Include many standard defs_based on

ROM Basic

include EDTDEFS

tite COLORZAP-93

page

01020
01030
01040
01050
01060 begin ldx$fffe

01070 cmpx #$8c1b

01080 beq b@

01090 leax a@-1,pcr

01100 jmp printS

01110a@ fcc /SORRY! THIS PROGRAM IS FOR/
01120 fcb CR

01130 fcc /THE COCO3 ONLY!/

01140 fcb CR,0

01150 b@ jsrwdth80

01160 orcc #$50 determine system clock rate
01170 clra

01180 Idb $ffo0

01190c@ Idb $ff01

01200 bpl c@

01210d@ Idb $ff00

01220 Idb $ffo1

01230 bmi d@

01240 e@ inca

01250 Idb $ff01

01260 bpl e@

01270 andcc #$af

01280 clrb

01290 cmpa#8

01300 blo sclock

01310 incb
01320 sclock stb
01330
01340
01350

clock
stb $ffd9 set fast clock

cir$71
01360 Idx#data
01370 Idb #enddat-data
01380 clra
01390 a@ sta
01400 decb
01410 bne a@
01420 Idx#iobffr
01430 Sstx$EE set drive buffer to FCB buf

#1 location
#secmax
maxsec
ldx#$322 max drive & track; 4 drives

35 tracks

01470 stxdrvmax
01480 |Ida #$43 max gran; 35 track system
01490 sta maxgrn
01500 dx$c002 pointer to disk basic
01510 cmpx #$2004
01520 beq init
01530 inc dos atleastdost.1
01540 Idx$c00a DOS
01550 cmpx #$df00
01560 beq Init
01570 nc dos atleast RGB-DOS
01580 * ldx#$2243 probably RGB system; 35 tracks
01590 * stxmanxtrk
01600 Ildx[$d936] ait. RGB-DOS DSKCON entry
01610 cmpx #$3476 pshs dxy,u
01620 beq irgb
01630 inc dos
01640 bra init
01650 irgb Ida $150 read max drive
01660 sta drvmax
01670 init inc sector sector can'tbe 0
01680 Idx#$c58f console in
01690 tstdos
01700 beq init2
01710 Idx#$c5bc
01720 imt2 stx$16b
01730 Ida $FEO8 current attributes
01740 anda #%00111111
01750 tfrab
01760 anda #%00111000 keep foreground
01770 Isra normalize 0-7

page 8 the world of 68' micros

set for cold restart

x+set all data to 0

01440 Ida
01450 sta
01460

01780 Isra
01790 Isra
01800 adda #8 foreground palettes start at 8-15 .

01810
01820
01830
01840

andb #%00000111 keep background
Idx#$FFBO start of palettes

lda axget foreground color

anda #%00111111

01850 Idb bxget background color

01860 andb #%00111111

01870 sta 14x attr 6; store palette colors

01880 stb 15x attr 7
01890 sta 6x attr 6
01900 stb 7x attr,7

01910 Ida #%00110111 attr 6,7 normal; attr 7,6
reverse color
$FE08 set new attributes
stndclkeep an image
#%00111110 reverse color attributes
revrcl keep an iImage
Idxzero remove ON BRK and ON ERR
stx$fe0c ON BRK
stx$fe0e ON ERR
01990 leax drverr,pcr set new error dnver
02000 Ida #$7e
02010 sta $191
02020 stx$192
02030 Ibsr ckdos
02040 jsr{fclose,x]
02050 sta $fid9 fast clock
02060 Ids #$7ffe set stack
02070 Idd #2set two FCBs; #1 not active
02080 stb $95b active FCBs =2
02090 idx$928 point to FCB #1
02100 sta x closed
02110 decb =1
02120 std 7.xrecord number = 1; wiltprint as 0
02130 leax memd,per set return address
02140 pshs x
02150 Ibra help display help screen then
go to command

01920 sta
01930 sta
01940 Ida
01950 sta
01960
01970
01980

02160

02170 drverr leas 2,5 pop return; entered via JSR

02180 cmpb#54 bad record

02190 beq xerr

02200 err2 cmpb#52 file not found

02210 bne xerr

02220 leax NEmsg-1,pcr

02230 jsrprintS

02240 jsrgetchr

02250 jsrunlink

02260 xerr Ids #3$7ffe

02270 bra main

02280 NEmsgfcb CR

02290 fcc /FILE does not exist!/

02300 fcb 0

02310

02320 cirkey pshs dx speeds up arrow key
functions; needed even with

02330 Idx#$152 repeat key routine

02340 Idd #8ff08

02350 ckip sta x+

02360 decb

02370 bne ckip

02380 puls dxpc

02390

02400 main Idx#iobffr needed because some disk

routines change it

02410 stx$See

02420 ibsr screen acquire data and show sector

02430 memd bsr wemd print CMDS:

02440 clrepyfig

02450 jsrgetchr

02460 cmpa#A

02470 blo memd2

02480 anda #.not.$20 make upper case

02490 mcmd2bsr evicmd evaluate key

02500 bcs memd loop if not command

02510 bsr cmdjmp execute command

02520 becs mcmd if illegal arguments loop
without read

wait for a key press

02530 bsr
02540 bra
02550
02560 evicmd leay cmds,pcr point tocommand tabie
02570 cmpa#Q quitand

02580 beq ev0
02590 cmpa#D
02600 beq ev0

clrkey
main if legatl arguments get new data

drive select always available

02610 tstdrvfig all others must make sure

drive was selected

02620 beq nodrv

02630 ev0 Idb #cmdend-cmdstotal # of commands
02640 evl cmpa y+hunt

02650 beq ev2

02660 decb

02670 bne ev1

02680 ev3 comb indicate error

02690 rts return with carry set

02700ev2 pshs b

02710 Idb #cmdend-cmds

02720 subb ,s+ reg.b=cmd# (0toc-1)

02730 clra clear carry

02740 rts
02750 nodrv
02760 jsrprintS
02770 jsrgetchr
02780 bra ev3
02790 ndrmsgfcc

leax ndrmsg-1,per

/Please select a drive!
Hit any key when ready/

02800 fcb O

02810

02820 cmdjmp leax jmptbl,pcr
02830 Islb

02840 abx point to command
02850 jmp [x]

02860

02870 wernd Idd #21 col=0 row=22
02880 jsrlocate

02890 leax Dblklin-1,pcrblank line
02900 jsrprintS clear command line
02910 idd #22

02920 jsrlocate

02930 leax cmdtxt-1,pcr

02940 jmp printSprint CMDS:
02950 cmdtxt fcc /CMDS:/

02960 feb O

02970 cmds fcc “H/?DGTSCEFNWZQ*"
02980 fcb $0A down arrow
02990 fcc /KLUIRP/

03000 cmdend equ *

03010

03020 jmptbl equ *
03030 fdb help
03040 fdb heip
03050 fdb heip
03060 fdb setdrv
03070 fdb setgrn
03080 fdb settrk
03090 fdb setscS
03100 fdb copy
03110 fdb edit
03120 fdb find find string: hex or alpha numeric
03130 fdb next find next occurance

03140 fdb wrtsec write sector to disk

03150 fdb <zap erase sector

03160 fdb quit return to Basic

03170 fdb secup increment sector

03180 fdb secdwn decrement sector

03190 fdb repkey

03200 fdb link

03210 fdb unlink

03220 fdb reset adjust max track & max sector
03230 fdb setscR actually set record#

03240 fdb print dump screen to printer

03250

03260

03270 biklin fcc /
03280 fec /

03290 blkin2 fcc /
03300 fec /

03310 fcc

03320 fcc /

03330 fcb O

03340 twoblk fcc //
03350 feb O

03360 betwn fcc / /

/40spaces
/40spaces
/ 40spaces
/40spaces
/40spaces
/ 39spaces

2 spaces

5 spaces between
hex. & ascii tables
03370
03380
03390 sure leax surmsg-1,pcr
03400 jsrprintS

03410 sure2 jsrgetchr

03420 anda #.not.$20

03430 cmpa#Y

03440 beq sr

03450 coma

fcb 0

FARNA Systzems

Your most complete source for Color Cofputer and 05-9 information!

Post Office Box 321
Warner Robins, GA 31099
Phone: 912-328-7859

E-mail: dsrtfox@delphi.com

ADD 33 S&FMH, $4 CANADA, $TO OVERSEAS

BOOKS:

Mastering 0S-9 - $30.00

Completely steps one through learning all
aspects of OS-9 on the Color Computer.
Easy to follow instructions and tutorials.
With a disk full of added utilities and soft-
ware!

Tandy'’s Little Wonder - $25.00

History, tech info, hacks, schematics, re-
pairs,... aimost EVERYTHING available for
the Color Computer! A MUST HAVE for
ALL CoCo aficionados, both new and old!!!
This is an invaluable resource for those
trying to keep the CoCo alive or get back
into using it.

Quick Reference Guides

Handy little books contain the most refer-
enced info in easy to find format. Size
makes them unobtrusive on your desk.
Command syntax, error codes, system
calls, etc.

CoCo 0S-9 Level Il : $5.00

0S-9/68000 : $7.00

Complete Disto Schematic set: $15

Complete set of all Disto product schemat-
ics. Great to have... needed for repairs!

CHECK OUT THE NEW

LOW PRICES ON NITRO PRODUCTS!

See editorial in this issue for details

SOFTWARE:

CoCo Family Recorder: Best genealogy
record keeper EVER for the CoCo! Re-
quires CoCo3, two drives (40 track for OS-
9) and 80 cols.
DECB: $15.00 0S-9: $20.00
DigiTech Pro: $10.00

Add sounds to your BASIC and M/L pro-
grams! Very easy to use. User must make
simple cable for sound input through joy-
stick port. Requires CoCo3, DECB, 512K.

ADOS: Best ever enhancement for DECB!
Double sided drives, 40/80 tracks, fast
formats, extra and enhanced commands!
Original (CoCo 1/2/3) : $10.00

ADOS 3 (CoCo 3 only) : $20.00
Extended ADOS 3 (CoCo 3 only, requires
ADOS 3, support for 512K-2MB, RAM
drives, 40/80 track drives mixed) : $30.00
ADOS 3/EADOS 3 Combo: $40.00

Pixel Blaster - $12.00

High speed graphics tools for CoCo 3 OS-
9 Level Il. Easily speed up performance of
your graphics programs! Designed espe-
cially for game programmers!

Patch 0S-9 - $7.00
Latest versions of all popular utils and new
commands with complete documentation.
Auto-installer requires 2 40T DS drives
(one may be larger).

TuneUp : $10.00

Don't have a 6309? You can still take ad-
vantage of Nitro software technology!
Many OS-9 Level Il modules rewritten for
improved speed with the stock 6809!

Thexder OS-9

Shanghai 0S-9 : $10.00 each

Transfer your ROM Pack game code to
an OS-9disk! Requires ownership of origi-
nal ROM pack.

Rusty : $10.00
Launch DECB programs from OS-9! Load
DECB programs from 0S-9 hard drive!

NitrOS-9:

Nitro speeds up 0S-9 from 20-50% de-
pending on the system calls used. This is
accomplished by completely rewriting OS-
9 to use all the added features of the Hita-
chi 6309 processor. Many routines were
streamlined on top of the added functions!
The fastest thing for the CoCo3! Easy in-
stall script! 6309 required.

Level 3 adds even more versatility to Ni-
tro! RBF and SCF file managers are given
separate blocks of memory then switched
in and out as needed. Adds 16K to sys-
tem RAM... great for adding many devices!
NitrOS-9 v.2.0: $10.00

NitrOS-9 Level 3: $10.00

The ATS200 05-9 Single Board Computer

AT306 Motherboard Specs:
16 bit PC/AT /O Bus (three slots)
MC68306 CPU at 16.67MHz

Four 30 Pin SIMM Sockets

IDE Hard Drive Interface

Floppy Drive Interface (180K-2.88M)
Two 16 byte Fast Serial Ports (up to 115K baud)
Two “Terminal” Serial Ports (no modem)
Bidirectional Paralle! Port

Real-time clock

PC/AT Keyboard Controller (five pin DIN)

Included Software Package:
“Personal” 0S-9/68000 Vr 3.0

(Industrial with RBF)
MGR Graphical Windowing Environment

with fuil documentation
Drivers for Tseng W32i

and Trident 8900 VGA cards
Drivers for Future Domain 1680

and Adaptec AAH15xx SCSI cards
Many PD and customized utilities and tools

The AT306 is a fully integrated single board computer. It is de-
signed to use standard PC/AT type components. Sized the same as
a “Baby AT” board (approximately 8” square). Compact and inex-
pensive enough to be used as an embedded controller! Use with a
terminal (or terminal emulation software on another computer) or
with a video card as a console system. Basic OS-9 drivers are in
ROM, making the system easy to get started with.

HACKERS MINI KIT (FARNA-11100): Includes AT306 board, 0S-9 and drivers,
util software, assembly instructions/tips, T8900 1MB video card. Add your own

case, keyboard, drives, and monitor!

ONLY $500!

Call for a quote on turn-key systems and quantity pricing.
Warranty is 90 days for labor & setup, components limited to manufacturers warranty.

Microware Programmers Package -
Licensed copies of Microware C compiler, Assembler, Debugger,
and many other tools!

With system purchase: $65.00 Without system: $85.00

the world of 68' micros page 9

03460 srrts
03470 surmsgfcb CR

03480
03490
03500

fcc / Write sector to disk; are you sure?/

fcb 0

03510 hprntS jmp printS

03520

03530 header pshs y

03540
03550
03560
03570
03580
03590
03800
03610
03620
03630
03640
03650
03660

03670

03680 h1

03690
03700
03710
03720
03730
03740
03750
03760
03770
03780
03790
03800
03810
03820
03830
03840

03850
03860
03870
03880
03890

03900 h2

03910
03920
03930
03940
03950
03960
03970
03980
03990
04000
04010
04020
04030
04040
04050
04060

clristsec

leax copyrt-1,per

bsr hprntS

leax head1-1,pcr drive

bsr hpmtS

Ida drive

jstdecprt print decimal number

ldd #12*$100+1 across, down

jsrlocate

leax head2-1,pcr gran

bsr hprntS

Ida gran

bmi h1 directory track does not have
gran value

Ibsr hexprt print hexadecimal number

Idd #23"$100+1

jsrlocate

leax head3-1,pcr track

bsr hprntS

Ida track

jsrdecprt

ldd #36*$100+1

Jsrlocate

leax head4-1,pcr sector

bsr hprntS

lda sector

jsrdecprt

idd #48*$100+1

jsrlocate

leax head4b-1,pcr

bsr hpmtS

1dx$928 point to FCB #1; recnum may
not = last sector

lad 7.x

subd #1

cmpd lof

blo h2

com |stsec

jsrdecout

jdd #62°$100+1

jsrlocate

leax headdc-1,per

bsr hprntS

ldd lof

jsrdecout

ida #CR

jsrscrprt

bsr flipcl reverse colors

leax head$-1,pcr print byte numbers

jsrprintS

bsr normcl normal colors

ida #CR

jsrscrprt

puls ypc

04070 normel pshs a,cc

04080

04090 normi2 sta

04100
04110

lda stndcl
$fe08
puls a.cc,pc

04120 flipclpshs a,cc

04130
04140
04150

ida revrcl
bra normi2

04160 copyrt fcc / /

04170

04180

04190 head1 fcc

04200

04210 head2 fcc

04220

04230 head3 fcc

04240

04250 head4 fcc

04260

04270 head4b fcc

04280

04290 head4c fcc

04300

fcc /COLORZAP-93 (c) Sept. 1993 by
Robert Gault VR. 1.6/

fcb CR.O

/DRIVE. #/

fcb 0

/IGRAN: $/

fcb 0

/TRACK: #/

fcb O

/SECT: #/

fcb 0

/RECORD #/

fcb 0

/LOF #/

fcb 0

page 10 the world of 68’ micros

04310head5 fcc / 0123456789

ABCDEF
04320 fcc / /6 spaces
04330 fcc /02468ACE/

04340 fcb O
04350 footr1 fcc / 0123456
ABCDEF
04360 fcc [/ / 6 spaces
04370 fcc /13579BDF/
04380 fcb O
04390 footr2 fcb CR
04400 fcc /# = decimal number
$ = hexadecimal number/

789

04410 fcb O

04420

04430 errorleax errmsg-1,pcr

04440 jmp printS

04450 errmsg fcb CR

04460 fec 'Disk I/O error! Drive not ready.’

04470 fcb CR,0

04480 wrking fcc /Working Floppy drives

are slow./

04490 fcb CR,0

04500

04510 screen jsrclsclear screen

04520 leax wrking-1,pcr

04530 jsrprintS

04540 cirlinhdrclear counter

04550 tstopnfig

04560 beq secred

04570 Idx$928 pointer to FCBs

04580 Ida 3x

04590 sta gran

04600 pshs a

04610 ibsr clcts

04620 decb

04630 puls a

04640 Dbita #1

04650 bne nocir

04660 clrb

04670 noclr

04680 stb

04690 Idd 19x get bytes in last sector

04700 addd $ee add buffer location

04710 std fcbist

04720 bra nxtin0

04730 secred lda #read command for dskcon

04740 Idb drive tell dskcon the parameters

04750 std $EA

04760 ldd track

04770 std $EC

04780 Ibsr diskon

04790 Ibne error

04800 nxtln0 idd zero

04810 jsrlocate

04820 Ibsr header print common header with
drive,gran track,sect

04830 Idy$SEE point to dskcon buffer

04840 nxtlin pshs y

04850 Ibsr flipel flip colors

04860 Ida linhdrget row counter

04870 Ibsr hexprt print ASCIl hexadecimal

04880 Ida #colon

04890 jsrscrprt

04900 Ibsr normcl reset colors

04910 leax twoblk-1,pcr

04920 jsrprintS

04930 Idb #16 print 16 ASCII hexadecimal bytes

04940 sloop1 Ida y+ print byte value

04950 tstopnflg

04960 beq slupib

04970 tstistsec

04980 beq slupib

04990 cmpy fcbist

05000 bis sluptb

05010 Ida #8ff

05020 slup1b bsr hexprt

05030 Ida #blk print space

05040 jsrscrprt

05050 decb

05060 bne sloop1

05070 leax betwn-1 pcr

05080 jsrprintS

05090 Idy,s recover buffer pointer

05100 Idb #16 print ASCli character or *."

05110 sloop2 lda y+

05120 tstopnfig

05130 beq slup2b

addb 4,x
sector

5 space gap

05140 tstlIstsec

05150 beq slup2b

05160 cmpy fcbist

05170 bls slup2b

05180 Ida #sff

05190 slup2b bsr

05200 decb

05210 bne sloop2

05220 Ida #CR

05230 jsrscrprt

05240 Ida

05250 adda #$10

05260 sta linhdr

05270 puls y

05280 leay $10,y update line/buffer pointer
$10 per line

cmpa#0 finished a sector?

bne nxtlin no?; then loop

Ibsr flipcl

leax footr1-1,pcr

jsrprintS

Ibsr normcl

leax footr2-1,pcr

jmp printS

ascprt

05290
05300
05310
05320
05330
05340
05350
05360
05370
05380 ascprt anda #$7f remove fcs bit
05380 cmpa#$7f printer sees this as delete
05400 beq period

05410 cmpa#bik

05420 bhs norm

05430 period Ida #.exclude control codes

05440 norm jmp scrprt

05450

05460 hexprt pshs a print binary# as ASCII
hexadecimai

05470 Isra get MSN

05480 Isra

05490 Isra

05500 Isra

05510 bsr digit

05520 puls

a

05530 anda #$F

05540 digit cmpa#9 1s it a number

05550 bils numb

05560 adda #7 must be letter; offset to letters
05570 numb adda #0 convert to ascii
05580 jmp scrprt

05590

05600 decprt tfr a,b print byte as ASCIHl decimal

05610 clra

05620 jmp decout decimal out
05630

05640 cmdst2 idx#tinbuf+1

05650 Idd x

05660 tsta was there an entry?
05670 bne cmd3

05680
05680 rts

05700 cmd3 tstb
05710 bne hxDbin

05720 tfrab
05730 Ida #0
05740

05750 hxDbin bsr hexbin convert ascii hex
reg.D tp binary in reg A

05760 bes hxDxit

05770 Isla

05780 isla

05790 Isla

05800 Isla

05810 exg ab

05820 bsr hexbin

05830 bcs hxDxit

05840 pshs b

05850 adda s+

05860 bra notlet

05870 hxDxit rts

05880

05890 hexbin suba #0 convert ascii hex. in
reg.A to binary in reg.A

05900 bcs invall

05910 cmpa#9

05920 bis notlet

05930 suba #7

05940 cmpa#$F

05950 bhi invall

continued on page 12

linhdr update line header; $10 per line

message #=dec. $=hex.

andcc #.not.4 no entry; indicate bad entry

operating system nine

CoCo IV ideas

Rick Ulland

Posted recently on the Internet
CoCo List concerning talk about
the possibility of creating a
“CoCo4™

Come on people. The CoCo had
it's day, it saw the light, but please
get a grip and move on! There will
not be a CoCo IV or V or VI or
whatever. There is no money. You
barely support the “little” people still

giving...

ME:

I'm afraid | must agree with you
to some extent. Gone are the days
when a person could finance a
good idea by making a few origi-
nal CoCo addons. But this sort of
hardware has low budget potential,
in that you don’t need the $5000
boardcutting or workstation class
development system. Anyone with
a pClone and $500 can make a
small run of sub10 MHz parts.

Now what you do with them...if
‘new’ means ‘take the CoCo design
and tack a xyz on it’ there would
be no reason at all to build a
CoCo4. It's original mission has
been filled. For Joe User, budget
computing consists of castoffs from
the pClone wars. If you want stable
multitasking, use linux. If you want
lots of applications, use Win3.1
and reboot every few hours.

This brings us to CoCo4. Our
community has a larger than nor-
mal share of hobbiests. These are
the guys that used to build TV daz-
zlers and twist tie old teletypes to-
gether. The resulting machines
weren't that useful in themselves,
but they developed the techniques
and people that got us (the com-
puting public) where we are today.

But where have we gone? The
fastest Pentium wonderbox is noth-
ing more than a really big Altair. it's
got huge drives, it's got wasteiands

of DRAM, perps to amaze the most
jaded hacker. But it's still a one in-
struction wide path to a lone cpu -
- CP/M with animated wizards. |
refuse to believe this represents
the ultimate in computing architec-
ture. :

But commercially viable comput-
ers aren’'t hackable. You pretty
much run the motherboard they
sold you. As long as ‘commecially
viable’ means ‘really fast Altair’
they're kind of boring, so we should
investigate a new paradigm that
can later be scaled up in the Atlair-
>Wintel mold.

The solution proposed is true
‘multiprocessing’. Rather than one
overworked wafer laboring under
its Own Fan, a ‘computer’ would
be a collection of cpus working to-
wards a possibly common goal.
This is going to require software a
little beyond billyBASIC, bringing
us to the CoCo3 and OS9. This
alternative opsys has a smart
scheduler, doesn't leak, and is al-
ready segmented in exactly the
right places, with each ‘process’
nearly independant enough to
move offboard already. And in
hardware the CoCo has been us-
ing dual port DRAM (cpu, com-
bined refresh/video) for years.

Great for the hackers involved,
ignores the guy that needs a $50
upgrade path. So we've decided to
stay as CoCo like as possible in
the prototypes of any “CoCo IV".
This way, anything useful can be
drawn up as a CoCo version.
Where it ends, we'll see. I've al-
ready designed a board that con-
trols interupts through hardware,
taking a big task away from the
CPU under OS-9 (but pretty use-
less for DECB users).

But Frank recently told me about
a fellow in Great Britain who has
done what was discussed in Chi-

cago a couple years ago -- well,
almost. When the first seminar on
the CoCo IV project was held at the
Chicago CoCoFest in 1997, the
general consensus was that the
best way to pursue a prototype
would be to make an I/O controller
that took a lot of the general work
tasks away from the main proces-
sor. This would plug into the side
port and take care of the keyboard,
interrupts, and anything else we
could give it. The board would have
a 6809, a PIA or two, and what-
ever necessary circuitry to do the
jobs given it. Then OS-9 would be
patched to use the added proces-
sor.

We weren't the first to get this
idea! This Briton did almost the
same thing with a Dragon and
Dragon DOS (Tano’s version of
DECB) some years ago. Only he
went an easier route -- let the CoCo
be the |/O procesoor and the
added 6809 the “main” one!

Sounds so logical it is hard to see
why we didn't think of it! Since the
CoCo processor is already pro-
grammed to do all the 1/O func-
tions, leave it alone! Pass the code
crunching to another CPU, in this
case clocked at 3MHz, and let the
CoCo process the results! This
chap says it works fine, and will be
sending Frank some schematics
and code later. Hope he comes
through, | can’t wait to see this stuff
and start designing a board any
0OS-9 user would be proud to have!

the world of 68’ micros page 11

ColorZap93 (continued from page 10)
05960 notlet andcc # not.1

05870 orcc #4

05980 rts

05990 invail orcc #1
06000 hxxit rts

06010

06020 decbin Idx#linbuf+1
06030 orcc #1

06040 Ida x

06050 beq decxit

06060 Idycharad

06070 pshs y

06080 stxcharad

06090 sr$AF67

06100 puls y

06110 stycharad

06120 tstopnfig

06130 beq db

06140 tstcpyfig

06150 bne db

06160 Idd binval

06170 andcc #.not1
06180 rts

06190 db tsta

06200 bne baddrv

06210 Ida binval+1
06226 clrb

06230 decxit rts

06240

06250 Inkmsg fcc /Must link to file!/
06260 fcb O

06270 unimsg fcc /Must unlink file!/
06280 fcb O

06290 setdrv tstopnflg
06300 beq a@

06310 ulerrieax unimsg-1,pcr
06320 ulerr2)srprintS
06330 jsrgetchr

06340 orcc #1

06350 rts

06360 Inkerr leax Inkmsg-1,pcr
06370 bra ulerr2

06380 a@ leax drvnum-1,pcr
06390 Ibsr cmdset print query; get answer
06400 bsr decbin convert to binary
06410 bcs baddrv

06420 cmpadrvmax

06430 bhi baddrv
06440 sta drive

06450 clra

06460 deca

06470 sta dnflg indicate drive selected
06480 bsr setgrn

06490 bcs b@

06500 bne b@

06510 bsr settrk

06520 b@ ldxzero

06530 stxmtctrk

06540 stxfndioc

06550 clrmtcfig

06560 ns

06570 baddrv coma

06580 rts

06590 drvnum fcc /Drive: #/
06600 fcb 0

06610

06620 setgrn tstopnflg
06630 bne ulerr

06640 leax grnnum-1,pcr
06650 Ibsr cmdset
06660 Ibsr cmdst2

06670 bcs nogrn

06680 bne nogm

06690 cmpamaxgrm

06700 bhi baddrv
06710 sta gran

06720 [bra clcts

06730 nogrn clra

06740 ris

06750 grnnumfcc / Gran: $/
06760 fcb O

06770

06780 settrk tstopnfig
06790 bne ulerr

06800 leax trknum-1,pcr
06810 Ibsr cmdset

page 12 the world of 68’ micros

06820 Ibsr decbin

06830 bcs baddrv

06840 cmpamanxtrk

06850 bhi baddrv

06860 sta track

06870 bsr ssec

06880 clra

06890 rts

06900 trknum fcc / Track: #/

06910 fcb O

06920

06930 recmsgfcc /RECORD #:/
06940 fcb 0

06950 setscS tst opnfig

06960 beq ssec

06970 Ibra ulerr

06980 x@ bra baddrv

06990 setscR tst opnfig

07000 bne setrec

07010 lbra inkerr

07020 setrec leax recmsg-1,pcr
07030 Ibsr cmdset

07040 bcs x@

07050 Ibsr decbin

07060 cmpdiof

07070 bhi x@

07080 cmpd#0

07090 beq x@

07100 std recnum

07110 ssec0 ldx#iobffr

07120 six$ee

07130 1dx$928 pointer to fcb #1

07140 stx$f1

07150 cIr16x

07160 clr16.x

07170 clr17x

07180 cir18x

07190 clr6x

07200 clr$d8 used as GET/PUT flag; O=get
07210 Ibsr ckdos

07220 jsr{fgetx]

07230 sta $ffd9

07240 cira

07250 rts

07260 ssecleax secnum-1,pcr

07270 {bsr cmdset

07280 Ibsr decbin

07290 bcs x@

07300 cmpa#0

07310 beq x@

07320 cmpamaxsec

07330 bhi x@

07340 sta sector

07350 bra clcgrn

07360 secnum fcc/ Sector: #/

07370 fcb 0

07380

07390 cictslda gran calculate track/sector from
gran#

07400 ldb #1sectors startat 1

07410 bita #1

07420 beq a@

07430 Idb #10 sector=10 on odd grans
07440 a@ cmpa#33 track 16

07450 bis

07460 adda #2 compensate for track 17
07470 b@ Isra

07480 std track

07490 andcc #.not5

07500 rts

07510

07520 clegrn Ida sector calculate gran# from
track/sector
07530 cIrb
07540 cmpa#9
07550 bls a@

07560 incb odd gran
07570 a@ Ida track

07580 cmpa#17

07580 beq 4@

07600 blo b@

07610 deca compensate for track 17
07620 b@ Isla 2 grans/track
07630 pshs b

07640 adda s+

07650 c@ sta gran

07660 andcc #.not.S

07670 rts

even gran

07680d@ Ida #$FF directory no gran number
07690 bra c@
07700
07710 quit leax a@-1,pcr
07720 jsrprintS
07730 jsrsure2
07740 bcs hxit
07750 Ibsr setclk
07760 mp [$fife]
07770 a@ fcc /QUIT Are you sure?/
07780 fcb 0
07790
07800 help jsrcls
07810 leax helpms-1,pcr
07820 a@ jsr printS
07830 Iidd x
07840 bne a@
07850 b@ jsrgetchr
07860 beq b@
07870 clra
07880 hxit rts
07890
07900 helpms fcc “H gets this message; also /
or?”
07910 fcb CR,O
07920 fcc “Up/Down arrows move to next/
previous sector”
07930 fcb CR,0
07940 fcc “D select drive number; [gran, track/
sector]”’
07950 fcb CR.0
07960 fcc /G select gran value/
07970 fcb CR,0
07980 fcc /T select track value; [sector)/
07980 fcb CR,0
08000 fcc /S select sector value; R record #
if linked/
08010 fcb CR,0
08020 fcc /C copy current sector to D,T,S/
08030 fcb CR
08040 fcc / enter each value separately with
ENTER key/
08050 fcb CR,0
08060 fcc /E edit current sector/
08070 fcc /, must Write sector to make changes
permanent/
08080 fcb CR,O
08090 fec /F find string; hex. or alphanumeric;
case sensitive/
08100 fcb CR
08110 fcc /; quit search in progress with any key/
08120 fcb CR,0
08130 fcc /P print screen; preset BAUD for 2MHz
from BASIC/
08140 fcb CR,O
08150 fcc /N next occurance of string/
08160 fcc /; starts at last match regardless of
current sector/
08170 fcb CR
08180 fec ' no action if last find/next
unsuccessful’
08190 fcc /; quit searching with any key/
08200 fcb CR.,0
08210 fcc /W write current sector to disk/
08220 fcb CR,0
08230 fcc /L link to disk file; 'ENTER' gives
directory./
08240 fcb CR,0
08250 fcc /U unlink from disk file/
08260 fcb CR,0
08270 fcc /Z zap current sector with selected
value/
08280 fcb CR,0
08290 fcc /K repeat key function. Use ONLY if
your ROM does not/
08300 fcc /have built in repeats./
08310 fcb CR,0
08320 fcc /Q quit program for Basic/
08330 fcb CR,O
08340 fcc /! Adjust allowable maximum track
and sector values /
08350 fcc /for oddbail disks;/
08360 fcb CR
08370 fcc / usually 34 or 39T & 18S.
USE CAUTIONY/
08380 fcb CR,O
08390 fec / /
08400 fcc /[indicates optional parameters/

08410 fcb CR,O
08420 fcc / /
08430 fcc /any key returns to main screen/
08440 fcb 0,0

08450

08460 secup tstopnfig
08470 beq a@

08480 !dd recnum
08490 cmpdlof

08500 |bhs baddrv
08510 addd #1

08520 bra d@
08530a@ Idd track increment sector; track if
necessary

08540 cmpbmaxsec
08550 beq b@

08560 incb

08570 bra c@

08580 b@ cmpamaxtrk
08590 Ibeq baddrv
08600 Iidb #1

08610 inca

08620 c@ std track
08630 Ibra clcgrn
08640 secdwntst opnflg
08650 beq e@

08660 Idd recnum
08670 subd #1

08680 beq g@

08690 d@ std recnum
08700 Ibra ssecO
08710e@ Idd track decrement sector; track if
necessary

08720 cmpb#1

08730 beq f@

08740 decb

08750 bra c@

08760 f@ tsta

08770 9@ Ibeq baddry
08780 Idb maxsec
08790 deca

08800 bra c@

08810

08820 cmdset jsrprintS print command and get
answer

08830

08840 * Replacement for Basic line input. Needed
because Basic prints CR at
08850 * end of input.

08860

08870 linein Idx#linbuf+1
08880 linin2 Idb #1
08890 linlup jsr$A171
08900 cmpa#bkspc
08910 bne notbs
08920 decb

08930 beq linein
08940 leax -1x

08950 bra echo

08960 notbs cmpa #815 shift left arrow
08970 bne noclin
08980 clin decb

08990 beq linein
09000 |Ida #bkspc
09010 jsrscrprt

09020 bra clin

09030 noclin cmpa #3break
09040 orcc #1

09050 beq linxit
09060 cmpa#CR

09070 bne inschr
09080 clra

09090 linxit pshs cc

09100 clrx

09110 puls cc,pc
09120 inschr cmpa #blk
09130 bio linlup
09140 cmpa#z+1
09150 bhs linlup
09160 cmpb#250
09170 bhs linxit
09180 sta x+

09190 incb

09200 echojsrscrprt
09210 bra linlup
09220

09230 wrtsec Idb drive write sector to disk
038240 stb $EB

09250 Idxtrack

09260 st$EC

09270 wsec2 lbsr sure
09280 bes nowrt

09290 Ida #write

09300 sta S$EA

09310 Ibsr diskon

09320 bne badcpy
09330 nowrt rts

09340

09350 * Copy sector to any other sector at any drive
or track

09360

09370 copy com cpyflg
09380 leax cpymsg-1,pcr
09380 bsr cmdset
09400 Ibsr decbin
09410 bcs badcpy

09420 cmpadrvmax
09430 bhi badcpy

09440 sta $EB

09450 bsr more

09460 cmpamaxtrk

09470 bhi badcpy

09480 sta $EC

09490 bsr more

09500 cmpamaxsec
09510 bhi badcpy

09520 sta $ED

09530 bra wsec2

09540 more Ida #colon
09550 jsrscrprt

09560 jsrlinein

09570 Ibsr decbin
09580 bcs badcpy
08590 nts

09600 badcpy coma

09610 rts

09620 cpymsgfcc /Enter destination Drive#<CR>
Track#<CR> Sector#<CR>: /
09630 fcb O

09640

09650 * Fill sector with any single character; ie. erase
sector

09660

09670 zap leax zapmsg-1,pcr
09680 Ibsr cmdset
08690 Ibsr cmdst2
09700 bne badcpy
09710 bcs badepy

09720 Idx$EE

09730 clrb

09740 zloop sta x+ fill write buffer
09750 incb

09760 bne zioop

09770 lbra wrtsec

09780 zapmsg fcc/Enter ZAP byte: $/
09790 fcb O

09800

09810 * Find any hex. or ascii character string up to
125 hex or 250 ascii

08820 " bytes of data.

09830

09840 find Idd #21

09850 jsrlocate

09860 leax fndmsg-1,pcr
08870 jsrprintS

09880 fndinp Idd #22
09890 jsriocate

09800 ieax bikin2-1,pcr
08910 jsrprintS

09920 Idd #22

09930 jsrlocate

09940 leax fndh-1,pcr
09950 tsthexfig

09960 beq findh

09970 leax fnds-1per
09980 findhjsr printS

09990 Idy#mpbuf

10000 Ibsr linein

10010 cmpa#3 BREAK key
10020 bne fnd2

10030 com hexfig

10040 bra fndinp

10050 fnd2 cmpx #linbuf+1

10060 Ibeq badcpy no input for find
10070 tst hexfig

10080 bne fascii

10090 fhex idb ,-x

10100 Ida #0

10110 cmpx #linbuf+1

10120 beq h1ibyt

10130 Ida x

10140 h1byt Ibsr hxDbin

10150 Ibes badfnd

10160 sta y+

10170 cmpx #linbuf+1

10180 bne fhex

10190 idx#tmpbuf cassette buffer used as
temporary hold

10200 pshs x

10210 ldx#mtctrg

10220 h1lp Ida -y

10230 sta x+

10240 cmpy.s

10250 bne htip

10260 fasci2 leas 2,s yanktemp data
10270 stxendmtc save end of match data
10280 idxzero

10290 stxmtcfig clear match and split find
indicator

10300 stxfndloc

10310 leax 1,x

10320 stxfrcnum initialize to record #1
10330 bra fndwds now go get it
10340

10350 fascii Idy#tinbuf+1

10360 pshs x

10370 Idx#mtctrg

10380 h2ip Ida y+

10380 sta x+

10400 cmpy,s

10410 bne h2lp

10420 bra fasci2

10430

10440 " find the string

10450 fdwds0 idd zero

10460 std fndloc

10470 tst mtcfig

10480 beq fndwds

10490 com splits

10500 fndwds tst opnflg

10510 beq fndO

10520 Idd recnum

10530 cmpdlof

10540 bhi fpk3

10550 pshs xyu

10560 Ibsr ssecO

10570 puis xyu

10580 jsr$atcit

10590 bne fpk3

10600 Idd recnum

10610 addd #1

10620 std recnum

10630 bra fpS

10640 fpk3 Idd frenum

10650 std recnum

10660 Ibra ssecO

10670 fndO bsr readsc

10680 jsr$ailcl check keyboard break on any
key

10690 beq fpki

10700 fpk2 ldxtrack

10710 stx$ec

10720 cira

10730 rts

10740 fpk1 Idd $ec get track/sector
10750 cmpbmaxsec max sector?
10760 beq fp1

10770 incb

10780 bra fp2

10790 fp1 cmpamaxtrk

10800 bne fp3 end of disk; stop reading sectors
10810 Iida #8$80+19

10820 sta $ed sector; will create lllegal read
below

10830 bra fp5

10840 fp3 Idb #1

10850 inca

10860 fp2 std $ec

the world of 68' micros page 13

28456 S.R. 2, New Carlisle, IN 46552
H kS@ﬁ 219-654-7080 eves & ends MO, Check. COD; US Funds
aw Shipping included for US, Canada, & Mexico
MM/1 Products (OS-9/68000)

CDF $50.00 - CD-ROM File Manager! Unlock a wealth of files on CD with the MM/1! Read most text and
some graphics from MS-DOS type CDs.

VCDP $50.00 - New Virtual CD Player allows you to play audio CDs on your MM/1! Graphical interface
emulates a physical CD player. Requires SCSI interface and NEC CD-ROM drive.

KLOCK $20.00 - Optional Cuckoo on the hour and half hour!! Continuously displays the digital time and
date on the /term screen or on all open screens. Requires I/0 board, I/0 cable, audio cable, and speakers.

WAVES vr 1.5 $30.00 - Now supports 8SVX and WAY files. Allows you to save and play all or any part of
asound file. Merge files or split into pieces. Record. edit, and save files; change playback/record speed.
Convert mono to stereo and vice-versa! Record and play requires /O board. cable, and audio equipment.

MM/1 SOUND CABLE $10.00 - Connects MM/1 sound port to stereo equipment for recording and play-
back.

GNOP $5.00 - Award winning version of PONG(tm) exclusively for the MM/1. You’ll go crazytrying to
beat the clock and keep that @#$%é& ball in line! Professional pongists everywhere swear by (at) it! Requires
MM/1, mouse, and lots of patience.

CoCo Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug n’ Power controller back on the
job with your CoCo3! Control up to 256 modules, 99 events! Compatible with X-10 modules.

HI & LO RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or no adapter at the flick of a
switch! No more plug and unplugging of the joystick!

KEYBOARD CABLE $25.00 - Five foot extender cable for CoCo 2 and 3. Custom [engths available.

MYDOS $15.00 - Customizable, EPROMable DECB enhancement. The commands and options Tandy left
out! Supports double sided and 40 track drives, 6ms disk access, set CMP or RGB palettes on power-up.
come up in any screen size, Speech and Sound Cartridge support, point and click mouse directory, and MORE
OPTIONS than you can shake astick at! Requires CoCo3 and DECB 2.1.

DOMINATION $18.00 - Multi-Player strategy game. Battle other players armies to take control of the
planet. Play on a hi-res map. Become a Planet-Lord today! Requires CoCo3, disk drive, and joystick or
mouse.

- SMALL GRAFX ETC.

“Y" and “TRI” cables. Special 40 pin male/female end connectors,

priced EACH CONNECTOR - $6.50
Rainbow 40 wire ribbon cable, per foot - $1.00
Hitachi 63B09E CPU and socket - $13.00
MPI Upgrades for all small MPIs (satellite board) - $10.00
Serial to Parallel Convertor with 64K buffer

and external power supply - NOW ONLY $28.00!!!
Serial to Parallel Convertor (no buffer)

and external power supply - ONLY $18.00!!!
2400 baud Hayes compatible external modems - $15.00
Serial to Parallel Convertor or

Modem cable (4 pin to 25 pin) - $5.00

ADD $3.00 S&H FOR FIRST ITEM, $1.00 EACH ADDITIONAL ITEM

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK JET PRINTERS, RIBBONS & vr. 6 EPROM FOR CGP-
220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

Terry Laraway
41 N.W. Doncee Drive
Bremerton, WA 98311
360-692-5374

\-

page 14 the worid of 68' micros

S

_/

10870 fp5 idd $ee get start address of buffer
10880 addd fndloc add last “found at” offset
10890 mtip4 tfr d,ynow try to match from new address
10900 tst mtcflg
10810 bne mtip2
10920 mtip3 ldx#mtctrg point to target buffer
10930 clrsplits
10940 leau y update buffer address
10950 mtip2 cmpy #eiobuf are we past end of

1 sector buffer?
10960 bhs fdwdsO yes?; then advance 1 sector
10970 cirmtcflg clear match flag; ie. no match
10980 Ida x+
10990 cmpa.y+
11000 bne mtip3
11010 com mtcflg
11020 cmpxendmtc end of target buffer?
11030 beq gotit
11040 bra mtlp2
11050 badfnd Idxzero
11060 stxmtctrk
11070 sixfndloc
11080 clrmtcflg
11090 rts
11100 readsc Ida #2
11110sta $ea
11120tst $ed
11130bmi bdread
11140Ibsr diskon
11150beq xread
11160 bdread Ida
11170sta $ed
11180 bread2 clra
11190leas 2,s
11200 xread rts
11210
11220 * now calculate markers for tables
11230 gotit Ida $ed
11240 anda #$7f remove possible flag
11250 sta S$ed
11260 ffr ud reg.U = location in dskcon buffer
11270 subd $ee
11280 stb fndloc+1
11290 clirfndloc
11300 1idd $ec
11310 cmpb#1
11320 beq gt1
11330 decb
11340 tstsplits
11350 beq mark
11360 decb
11370 bra mark
11380gt1 deca
11390 Ildb maxsec
11400 tst splits
11410 beq mark
11420 decb
11430 markstd mtctrk
11440 std track
11450 lbsr clegrn
11460 tstopnfig
11470 beq mark2
11480 dx$928
11490 Idd 7x
11500 subd #1
11510 st splits
11520 beq mark3
11530 subd #1
11540 mark3 std recnum
11550 std frcnum
11560 ibsr ssecO
11570 mark2 |bsr
11580 Idx#hextbl
11580 stxhexloc
11600 Ida #asctbl
11610 sta ascloc
11620 Idb fndloc+1
11630 Ida rownum
11640 deca
11650 mkip1 inca
11660 subb #$10
11670 bcc mkip1
11680 sta rownum
11680 addb #$10
11700 pshs b
11710 Ida #hexce! size
11720 mul
11730 addb hexloc

maxsec

sector offset for find

screen show correct sector data

divide reg.B by 16

11740 stb hexloc
11750 Ida ascloc
11760 adda s+
11770 sta ascloc
11780 idb rownum
11790 jsrlocate
11800 Ibsr flipcl
11810 jsriocate
11820 ldd hexloc
11830)srlocate
11840 Idd #22
11850 jsrlocate
11860 Ibsr normcl
11870 Ibra endchk
11880

11890 fndmsg fcc

/BREAK toggles hexadecimal
byte vrs. ASCII string/

11800 fcb CR,0

11910 fndh fcc /Search byte string: $/

11920 feb ©

11930 fnds fcc /Search character string: /

11940 fcb 0

11950 keys fcb $¢ up arrow

11960 fdb moveup

11970 fcb $0a down arrow

11980 fdb movedn

11990 fcb $09 right arrow

12000 fdb movert

12010 fcb $08 left arrow

12020 fdb movelf

12030 fcb CR

12040 fdb endedt

12050 fcb O

12060 fdb edinp edit input

12070

12080 endedt clir color remove reversed color from
display

12090 lbsr eddisp

12100 Idd #$c5e normalize CLEAR & up arrow
12110 stb $a26e

12120 sta $a27c

12130 Idx#$ed84 enable cursor

12140 stx$f812

12150 endchk orcc #1

12160 rts

12170

12180 edtmsg fcc
ASCII uparrow/
12190 feb O
12200

12210 edit tstopnflg
12220 beq a@
12230 Idx$ee
12240 cmpx fcbist
12250 bne a@
12260 tstistsec
12270 bne endchk

12280 a@ |dx#$1212 prevent cursor generation
12290 stx$fg12

12300 Idd #$cS5e swap CLEAR & up arrow
12310 sta $a26e

12320 stb $a27c

12330 Idd #22

12340 jsrlocate

12350 leax fndmsg-1,pcr print Edit messages
12360 jsrprintS

12370 leax edtmsg-1,pcr

12380 jsrprintS

12390 tpleftidu $ee sector buffer begin edit
12400 Idx#hextbl row column

12410 stxhexloc

12420 Ida #asctbl column only; row same as
hex. section

12430 sta ascloc

12440revbyt com color

12450 bsr eddisp

12460 edinp Idd hexloc

12470 tsthexflg are we changing hex. section or
ascii?

12480 beq hexin

12490 Ida ascloc if hex. adjust x location
12500 hexin jsrlocate move cursor

12510 tsthexflg what type of input do we need?
12520 bne inchr
12530 bra inbyte
12540

12550 eddisp dd
12560 jsrlocate

/ENTER exits Edit CLEAR =

hexloc

12570 tstcolor

12580 beq eddsp2

12590 Ibsr flipcl make reverse
12600 eddsp2ldd hexioc
12610 jsriocate

12620 Ida u

12630 lbsr hexprt

12640 Ibsr normcl make normai
12650 Ida ascloc

12660 Idb hexioc+1

12670 jsrlocate

12680 tstcolor

12690 beq eddsp3

12700 Ibsr flipci make reverse
12710 eddsp3ida ,u

12720 Ibsr ascprt

12730 Ibra normcl make normal
12740

12750 check pshs ax test for special edit keys
12760 leax keys,pcr

12770 chkip Ida x+

12780 beq gokey

12790 cmpa,s

12800 beq gokey

12810 leax 2,x

12820 bra chkip

12830 gokey leas 3.s

12840 jmp [x]

12850

12860 inchr bsr read?
12870 cmpa#

12880 blo check

12890 sta u

12900 Ibsr flipcl make revers
12910 jsrscrprt

12920 Ibsr normcl make normal
12930 bra movert

12940

12950 inbyte bsr read1t
12960 sta o1

12970 Ibsr hexbin

12980 Ida o1

12990 bcs check

13000 bsr inbyt2

13010 bsr read1

13020 sta o2

13030 Ibsr hexbin

13040 Ida o2

13050 bes check

13060 bsr inbyt2

13070 ldd o1

13080 Ibsr hxDbin

13090 sta u

13100 bra movert
13110inbyt2 Ibsr flipcl make reverse
13120 jsrscrprt

13130 Ibra normci make normal
13140

13150 read1 Ibsr flipci
13160 jsrgetchr

13170 Ibsr normcl

13180 cmpa#3

13190 bne enread

13200 com hexfig

13210 leas 2,8

13220 |bra edinp

13230 enread rts

13240

13250 movert Idd hexloc
13260 jsrlocate

13270 circolor

13280 |Ibsr eddisp

13290 fleau 1,u

13300 tstopnfig

13310 beq dspyrt

13320 tstistsec

13330 beq dspynt

13340 cmpufcbist

13350 blo dspyrt

13360 Ibra tpleft

13370 dspyrt inc ascloc
13380 Ida ascloc

13390 cmpa#74

13400 bhs rowdn

13410 Ida hexioc

13420 adda #hexcel size
13430 sta hexloc

13440 |bra revbyt

13450 rowdn inc rownum
13460 Ida rownum
13470 cmpa#18

13480 |bhi tpleft
13490 idd #5"$100+58
13500 sta hexloc
13510 stb ascloc
13520 |Ibra revbyt
13530

13540 movelf Idd hexloc
13550 jsrlocate

13560 clrcolor

13570 Ibsr eddisp
13580 mvif2 leau -1,u
13590 dec ascloc
13600 Ida ascloc
13610 cmpa#58

13620 blo rowup
13630 lIda hexloc
13640 suba #hexcel size
13650 sta hexloc
13660 bra mvif3
13670 rowup dec rownum
13680 Ida #50
13690 sta hexloc
13700 Ida #73
13710 sta ascloc
13720 Ida rownum
13730 cmpa#3

13740 blo gobot
13750 bra mvif3
13760 gobot Ida #18
13770 sta rownum
13780 leau $100,u
13790 mvif3 tstopnflg
13800 beq Ifdone
13810 tstistsec

13820 beq Ifdone
13830 cmpufcblist
13840 bhs mvif2
13850 lfdone lbra revbyt
13860

13870 moveup Iddhexloc
13880 jsrlocate

13890 clrcolor

13900 Ibsr eddisp
13910 leau -$10.u
13920 dec rownum
13930 Ida rownum
13940 cmpa#3

13950 bhs updone
13960 leau $100,u
13970 Ida #18

13980 sta rownum
13990 tstopnflg

14000 beq updone
14010 tstistsec

14020 beq updone
14030 mvup3 cmpu fcbist
14040 blo updone
14050 dec rownum
14060 leau -$10,u
14070 bra mvup3
14080 updone lbra revbyte
14090

14100 movedn
14110 jsrlocate
14120 circolor
14130 Ibsr eddisp
14140 leau $10,u
14150 inc rownum
14160 tstopnfig

14170 beq mvdn2
14180 tstistsec

14190 beq mvdn2
14200 cmpufebist
14210 blo mvdn2
14220 Ida rownum
14230 bra mvdnS
14240 mvdn2 Ida rownum
14250 cmpa#18

14260 |bis revbyt
14270 mvdn4 leau -$100.u
14280 Ida #3

14290 sta rownum
14300 lbra revbyt

continued on page 19

lddhexloc

the world of 68’ micros page 15

Adventures in Assembly, Part 1

Some assembly excercises and solutions by the creater of ADOS.

Here is an exercise in assembly lan-
guage programming. It is ail very well to
read these tutorials and assemble the
programs that go with them, but to learn
assembly language, it is also necessary
to practice writing programs by yourself.
So, here’s something to get you started.
The “answers” are in the files
TUTA1A.SRC and TUTA1B.SRC, with
some commentary following the listings.
But | encourage you to not look at these
until you've had a whack at doing it your-
self. Practice makes perfect!

Exercise #1

Write a program that will clear the
screen with a particular color when you
type the initial of the name of that color.
When the screen has been cleared, the
program should loop back to the begin-
ning and await another color key. Keys
that are not color initials should be ig-
nored, except for the break key, which
should cause the program to exit to BA-
SIC. Since some colors share the same
initial, we'll use the following as our color
codes:

X = black ($80)

G = green ($8F)

Y = yellow ($9F)

B = blue ($AF)

R = red ($BF)

W = buff ($CF)

C = cyan ($DF)

M = magenta ($EF)
O = orange ($FF)

For an additional challenge, see if you
can make the program work properly re-
gardless of whether the input is in lower
or upper case. It is possible to accom-
plish this with just a single added instruc-
tion (an AND instruction, if you must
know!)

Exercise #2

This is not really a separate program-
ming problem, but rather a more sophis-
ticated approach to solving #1 than the
most straightforward one. The straight-
forward approach to #1 involves using 9
separate CMPA #<byte value> instruc-
tions, one to check for each possible color
key. This approach is shown in
TUTA1A.SRC. It works very nicely when
there are only 3 or 4 keys to be scanned
for, but gets a bit cumbersome when
there are more. The program in

page 16 the world of 68’ micros

TUTA1A.SRC has a lot of repetitious
codeinit, and, as in Basic programming,
that should hint that a more efficient pro-
gramming approach may be called for.

So, see if you can write a program that
accomplishes the same thing as de-
scribed in #1, but which uses a lookup
table containing pairs of bytes instead of
multiple CMPA instructions. The first byte
of each pair will be the ASCII value for
the color name initial, and the second will
be the byte that the screen will get filled
with to produce that color. One advan-
tage of this approach is that the program
can very easily be modified to define a
new key and the screen fill byte that goes
with it, just by adding an additional pair
of bytes to the lookup table. To allow
maximum flexibility, do not have the pro-
gram assume that the lookup table con-
tains any fixed number of entries. Rather,
just have the program look for a byte
value of zero to tell it when it has come
to the end of the lookup table (such a byte
is referred to as a “terminator”).
TUTA1B.SRC contains a program that
uses this approach.

00100 *TUTA1A.SRC

00110 *"ART FLEXSER

00120 ORG $3000

00130 *FILLS SCREEN WITH APPROPRIATE
COLORWHENKEY IS

00140 *PRESSED THAT IS THE INITIAL OF
THE COLOR NAME

00150 START JSR [$A000] GET
KEYPRESS

00160 BEQ START LOOP IF NOKEY
PRESSED .
00170 CMPA #3 BREAKKEY?
00180 BEQ EXIT YES,RTS
00190 ANDA #$DF ENSURE
UPPERCASE

00200 CMPA #X BLACK?
00210 BNE GRN

00220 LDA #$80

00230 BRA FILSCR

00240 GRN CMPA #G GREEN?
00250 BNE YELO

00260 LDA #$8F

00270 BRA FILSCR

00280 YELO CMPA #Y YELLOW?
00290 BNE BLUE

00300 LDA #$9F

00310 BRA FILSCR

00320 BLUE CMPA #B BLUE?
00330 BNE RED

00340 LDA #3AF

00350 BRA FILSCR

00360 RED CMPA #R RED?
00370 BNE BUFF

00380 LDA #3$BF

00390 BRA FILSCR

00400 BUFF CMPA #W BUFF?
00410 BNE CYAN :

Art Flexser
00420 LDA #3CF
00430 BRA FILSCR
00440 CYAN CMPA #C CYAN?
00450 BNE MAG
00460 LDA #3$DF
00470 BRA FILSCR
00480 MAG CMPA #M MAGENTA?
00490 BNE ORNG
00500 LDA #S$EF
00510 BRA FILSCR

00520 ORNG CMPA #0 ORANGE?

00530 BNE START NO, GET
ANOTHER KEY
00540 LDA #$FF

00550 *FILL SCREEN WITHBYTE VALUE IN
AREGISTER
00560 FILSCR LDX #8400

00570 TFR AB 2BYTESATATIME
00580 LOOP1 STD X++

00530 CMPX #8600

00600 BLO LOOP1

00610 BRA START DONE, GET NEW
KEY

00620 EXIT RTS EXIT ON BREAK
KEY

00630 END START

00100 *TUTA1B.SRC

00110 *ART FLEXSER

00120 ORG $3000

00130 *FILLS SCREEN WITH APPROPRIATE
COLORWHENKEY IS

00140 *PRESSED THAT IS THE INITIAL OF
THE COLOR NAME
00150 START JSR
KEYPRESS

00160 BEQ START LOOP IF NOKEY
PRESSED
00170
00180

[$A000] GET

CMPA #3 BREAKKEY?
BEQ EXIT YES,RTS

00180 ANDA #$DF ENSURE UPPER
CASE

00200 LEAX TABLEPCR X=START
OF TABLE

00210LOOP CMPA X CHECKKEY
AGAINST TABLE ENTRIES

00220 BEQ FILSCR FILL SCREEN IF
FOUND

00230 TST X++ END OF TABLE?
00240 BEQ START YES,NOTIN

TABLE, GET NEW KEY

00250 BRA LOOP NO,CHECK
NEXT TABLE ENTRY
00260 EXIT RTS
00270 FILSCR LDB

ADIOS, AMIGO
1.X GETCOLOR

BYTE VALUE

00280 LDX #$400 START OF
SCREEN

00290 LOOP1 STB X+ PUTCOLOR
ON SCREEN

00300 CMPX #$600 END OF
SCREEN?

00310 BLO LOOPt NO, CONTINUE
00320 BRA START YES, GETNEW
KEYPRESS

00330 *TABLE OF 2-BYTE ENTRIES

00340 * 1ST BYTE IS COLOR INITIAL

00350 * 2ND BYTE IS THE SCREEN DISPLAY
VALUE FOR THE COLOR

00360 TABLE FCB 'X BLACK

00370 FCB $80

00380 FCB ‘G GREEN
00390 FCB $8F

00400 FCB ‘Y YELLOW
00410 FCB $9F

00420 FCB ‘B BLUE
00430 FCB S$AF

00440 FCB ‘R RED
00450 FCB $BF

00460 FCB ‘W BUFF
00470 FCB $CF

00480 FCB ‘C CYAN
00490 FCB $DF

00500 FCB ‘M MAGENTA
00510 FCB S$EF

00520 FCB ‘O ORANGE
00530 FCB $FF

00540 FCB 0 TERMINATOR
00550 END START
Comments on TUTA1A.SRC

Line 190 ANDA #$DF

This instruction converts any lowercase
input to uppercase. Lowercase letters
have ASCIl values starting with “a"=$61;
uppercase letters start with “A"=$41. The
difference between the ASCII codes for
the upper and lowercase versions of the
same letter is that the lowercase version
has bit 5 equal to 1 and the uppercase
version has this bit equal to 0.

The individual bits of an 8-bit byte are
numbered 0-7, starting with the bit at the
right. Thus, a bit's number corresponds
to the power of two that that bit position
represents.

76543210 bit

“A” = $41 = %01000001

“a” = $61 = %01100001

Note that the percent sign is used to
signify a binary quantity. Some assem-
blers, though unfortunately not Edtasm+,
will accept this notation.

(editor: Thus the easy explanation for
bits and bytes -- a single byte is one char-
acter on the screen, so megabyte is a
million characters on the screen, etc.
Good explanation for novices!)

When you AND two binary quantities
(call them M and N) together, each bit
position of the result P is determined
solely by the bit values in the correspond-
ing bit positions of M and N. Bit 3 (say) of
P will be a one if and only if Bit 3 of M
AND Bit 3 of N are BOTH one. Looking
at each bit position separately, we can
then say that if we AND a particular bit
position with a 0, the result must have a
zero in that bit position, regardless of
whether the original bit value in that posi-
tion was a one or a zero. (1 AND 0)=0;
(0 AND 0) = 0. Also, if we AND a bit po-
sition with a one, its value will be un-
changed. (0 AND 1) =0; (1 and 1) = 1.

What good is all this? It allows us to

reset a particular bit position to a zero
while preserving all of the other seven bit
positions unchanged, which is exactly
what we need to convert lowercase to
uppercase input. That is, if we AND the
ASCII value of the keypress with
%11011111 (=3DF), we will force Bit 5 to
assume avalue of zero while leaving the
other bits alone. So, by inserting an ANDA
#3DF instruction, we can then allow sub-
sequent instructions of the program to
check only for the uppercase forms of
the letters. Incidentally, the AND opera-
tor works exactly the same in Basic. Try
this little one-liner, which converts an in-
put letter to uppercase:

10 INPUT A$:?CHR$(ASC(AS) AND
&HDF):GOTO10

While we are on the subject, the OR
operator is pretty much the mirror image
of AND. If you OR a bit with a 1, the re-
sultisa1. (OOR1) =1, 10OR1)=1.
But if you OR a bit with a 0, you preserve
its value: (0OR0)=0; (1OR0)=1. So,
if you have a need to force a particular
bit position to be a one, you do this by
ORing with a quantity that consists of
zeroes in all bit positions except the criti-
calone. Thus, for example, to force low-
ercase instead of uppercase, which in-
volves setting Bit 5 to a one, we would
use an ORA #%00100000, (or ORA
#320, in language that Edtasm+ under-
stands). Incidentally, forcing a particular
bit to be 1 or 0 is called SETTING it or
RESETTING it, respectively.

Lines 560-610

These lines contain the routine that fills
the screen with the desired byte value.
Note that in this version, a TFR A,B in-
struction is used to duplicate the contents
of the A register into the B register. Thus,
if A contained $80, the D register, which
consists of the A and B registers taken
together and considered as a 16-bit quan-
tity, would contain $8080. Copying A into
B allows use to use a STD, X++ instruc-
tion to fill the screen two bytes at a time,
which is faster than if we had used a STA
X+ instruction.

Comments on TUTA1B.SRC

Line 200 LEAX TABLE,PCR

This instruction does the same thing as
LDX #TABLE, as far as what value gets
put into the X register. However, the
LEAX TABLE,PCR form allows the pro-
gram to be RELOCATABLE. That is, it
will still work properly if we load it in with
an offset (PCR stands for “position
counter relative”, by the way). TABLE, in
this program, is at location $3029, which

happens to be $19 bytes beyond the byte
that follows the LEAX TABLE,PCR in-
struction (I can tell this by looking at my
assembled printout, produced by A/LP/
NO, and seeing that the LEAX instruc-
tion translated to a sequence of bytes

ending with a $19).
The difference between the LDX
#TABLE form and the LEAX

TABLE,PCR form is that LDX #TABLE
means that TABLE will be considered as
being located at $3029, regardiess of any
offset that is used in loading the program,
while LEAX TABLE,PCR means that
TABLE is considered to be located $19
bytes beyond the start of the instruction
that follows the LEAX. The latter loca-
tion will be at $4029 instead of $3029 if
we offset load the program by $1000 so
that it loads in at $4000. A relocatable
program will assemble to produce the
same sequence of bytes, regardless of
any ORG statement that is included with
the source, so that the program will be
equally happy anyplace in memory. Itis
a good idea to get into the habit of writ-
ing programs that are relocatable, since
itis so easy to do, thanks to the structure
of the 6809's instruction set. Use BRA
and BSR instead of JMP and JSR to pre-
serve relocatability, if the address you
wish to jump to is not a fixed one, such
as a ROM call.

Line 270 LDB 1,X

This instruction says to load the B reg-
ister with the byte that is in the address
one beyond that pointed to by the X reg-
ister. That is, if X contains $4000, B is
loaded with the contents of location
$4001. The value of X is not changed by
this instruction, but is left at $4000. in the
program, X points to the ASCII value of
a letter—the first byte of one of the pairs
of bytes that make up the lookup table.
LDB 1,X will therefore load B with the
color byte that follows the ASCIl code—
the second byte of the corresponding byte
pair. It is important to keep straight the
difference between LDB 1,X and LDB
,X+. The latter instruction (if X = $4000)
will load B with the contents of address
$4000, and then change the X register
so that it contains $4001. In the program,
the incrementing of X to point to the next
byte pair is taken care of by the TST X++
instruction in line 230.
This instruction also
checks for the zero
terminator at the end
of the lookup table.

the world of 68' micros page 17

RORBOT Z&

P BY ERIC
STRIGER

This simple BASIC game puts the Tandy Speech/Sound Cartridge (SSC) to work if you have one! Those familiar with
the SSC will realize the “misspellings” are intentional, as the cartridge “speaks” phoneticly. So spelling has to be
“adjusted” to get the desired sounds. A good excercise in using the SSC in BASIC programs.

1 REM ROBOTZAP V1.02

2 REM BY ERIC STRIGER 1986

5 PCLEAR4:PMODE4,1:SCREEN1, 1:
SCREENO,0: CLS0:PCLS1

9 REM CLEAR STRING SPACE

10 CLEAR1000:DIM MAP(32,19), FE(16),
RB(16),MN(16),MI(16),EX(16)

11 REM VARIBLE TABLE

14 REM SC=SCORE

15 SC=0

19 REM HS=HIGH SCORE

20 HS=1000

24 REM BS$=BLACK SPACE &
DS$=DOUBLE BLACK SPACE

25 BS$=CHR$(128):DS$=BS$+BS$

29 REM LV=LEVEL

30 LV=1

34 REM NM=NUMBER OF MEN

35 NM=3

50 ROB$="U3L2U3R3U2LU3R3D3L2D2
R3D4L2ND3L3E3"

55 MAN$="E3NF3U4NF2NHNG3UNRU"
60 FEN$="U4NRNLU2NE3NH3U3"

65 MIN$="NR2NL2NU3NE3NH3"

70 EXIT$="NR3U3NR2U3R3"

74 REM REMOVE REMARK IF YOU
HAVE RS-SPEECH AND SOUND PACK
75 V=&HFF00:V1=&HFF7E:V2=-1

90 GOSUB 700:IF V2=-1 THENA$=
"ROWBOT ZAP":GOSUB955:FORT=1TO
100:NEXTT

95 PLAY"V31T1001L4CL20004BA#AG
#AGHFEE-DCO3BA#AGHGF#FEE-DCO
2BA¥AGHGF#FEE-DC#CO2BA#AGHGF
#FEE-DC#CO1BA”

96 B$="....... PREPAIR FOR BATTAL

99 NM=3:LV=1

100 REM TITLE SCREEN

105 CLS0:A$="BY ERIC STRINGER

1986 PRESS ANY KEY TO BEGIN
*INSTRUCTIONS HIT ‘@’ * “:SC=0

110 PRINT@O0,STRING$(32,CHR$(143+
RND(7)*16)); PRINT@64, STRING$(32, CHR$(143+
RND(7)*16));:PRINT@32,USING"SCORE
it HIGHSCORE ##HHHHE" SC HS
115 C1=(RND(8)-1)*16

120 PRINT@96,DS$;STRING$(4,CHR$
(131+C1));DS$;STRING$@4,CHR$(131+C1)),DS$;
STRING$(4,CHR$(131+C1));DS$;STRIN
G$ (4,CHR$(131+C1));DS$;STRINGS$(4,
CHRS$(131+C1));

125 PRINT@128,DS$,CHR$(143+C1);
DS$; BS$;CHR$(138+C1);BS$;,CHR$(143
+C1);DS$;CHR$(143+C1);DS$;,CHRS$(143
+C1);DS$;BS$; CHR$(138+C1);BS$;CH

page 18 the world of 68' micros

R$ (143+C1);DS$;CHR$ (143+C1):DS$;
BS$;CHR$(133+C1);CHR$(138+C1);DS$;
130 PRINT@160,DS$;CHR$(143+C1);
DS$;BS$;CHR$(138+C1);BS$;CHR$(143+
C1); DS$;CHR$(143+C1); DS$;CHR$(143
+C1);DS$;BS$;CHRS(138+C1);BS$;CHRS
(143+C1);DS$,CHR$(143+C1);DS$;BS$;
CHR$(133+C1);CHR$(138+C1);DS$;

135 PRINT@192,DS$;CHR$(143+C1);ST
RING$(3,CHR$(140+C1));CHR$(130+C1);
BS$;CHR$(143+C1);DS$;CHR$(143+C1);
DS$;CHR$(143+C1);STRING$(3,CHR$(140+
C1)):.CHR$(130+C1);BS$;CHR$(143+C1),DS$;
CHR$(143+C1);DS$:BS$;CHR$(133+C1),CHR$
(138+C1);

140 PRINT@224,DS$;CHR$(143+C1);DS
$; BS$;:CHR$(138+C1);BS$;CHR$(143+C
1);CHR$(131+C1);CHR$ (131+C1);.CHR$
(143+C1);DS $;CHR$(143+C1);STRINGS
(3,CHR$(131+C1));CHR$(136+C1);BS$;
CHR$(143+C1);CHR$(131+C1);CHR$(131+
C1);CHR$(143+C1):DS$:BS$;CHR$(133+C1);
141 PRINTCHR$(138+C1);:PLAY"CO1BA”
145 PRINT@256,STRING$(8, CHR$(128
));STRING$(4,CHR$(131+C1));DS$;CHRS
(129+C1);CHR$(131+C1);CHR$(131+C1);
CHR$(130+C1):DS$;STRING$@,CHR$(131+C1));
150 PRINT@288,STRING$(11,CHR$(128
));CHR$(134+C1);DS$;CHR$(143+C1),0S$;
CHR$(133+C1);DS$;CHR$(143+C1);DS$;
BS$;CHR$(138+C1);

155 PRINT@320,STRING$(10,CHR$(128
));.CHR$(134+C1);DS$;BSS$;CHRS(143+C1);
STRING$(2,CHR$(131+C1));CHR$(135+C
1) DS$,CHRH(143+C 1), STRINGSB CHRH(131+C 1)),
CHR$(136+C1);

160 PRINT@352,STRING$(9,CHR$(128
));CHR$(134+C1);DS$;DS$;CHR$(143+C1);
DS$;CHR$(133+C1):DS$;CHR$(143+C1);
165 PRINT@384,STRING$(8,CHR$(128
));CHR$(135+C1);STRINGS$(3,CHR$(131+C1));
DS$:CHR$(143+C1);DS$;CHR$(133+C1);
DS$;CHR$(143+C1);
170PRINT@416,STRING$(32,CHR$(143+
RND (7) *16));175A$=RIGHT$(A$,LEN(A
$) -2)+LEFT$(A$.2):PRINT@448, LEFT$(
A$,32);

180 C2=RND(7)*16:PRINT@480,STRING
$(31,CHR$(143+C2));;POKE1024+511,143+C2
185 I$=INKEY$:IF 1$="@" THENGOSUB
1000:GOTO110 ELSE IF 1$="" THEN110
190 GOSUB200:GOSUBS00

195 GOTO 300

200 REM DISPLAY SCORE AND LEVEL
205 CLSO

210 FOR Z=1TO 25

215 PRINT@O0,STRINGS$(32,CHR$(143+
RND (7)*16));

220 PRINT@32,USING"SCORE ##HHHH#
HIGHSCORE ###HHt",SC HS;:PRINT@
64,STRING$(32,CHR$(143+RND(7)*16));
225 PRINT@224,STRING$(32,CHR$(143
+RND (7)*16));

230 PRINT@256,STRING$(32,CHR$(143
+RND(7)*16));:PRINT@256+12, USING"LEVEL
HELV;

235 PRINT@288,STRING$(32,CHR$ (143
+RND(7)*16));

240 PRINT@320,STRING$(32,CHR$(143
+RND(7)*16));:PRINT@320+12,USING"MEN
#HE"NM;

245 PRINT@352,STRING$(32,CHR$(143
+RND(7)*16));

246 B$=RIGHT$(B$ LEN(B$)-2)+LEFT$(B
$,2):PRINT@384,LEFT$(B$,32),STRING$(32,
CHR$(143+RND(7)*16)):

250 NEXT Z:RETURN

300 REM MAIN GAME CONTORL

305 JX=JOYSTK(0):JY=JOYSTK(1):PK=
PEEK (65280)

310 IF JX<20 THEN PX=PX-1

315 IF JX>42 THEN PX=PX+1

320 IF JY<20 THEN PY=PY-1

325 IF JY>42 THEN PY=PY+1

329 REM UP DATE MAN POSITION

330 GOSUB 400

334 REM UP DATE ROBOT POSITION
335 GOSUB 500

340 T=D(1)+D(2)+D(3)+D(4)+D(5):IF T=0
THENQ=5:GOTO600

345 IF SC>HS THEN HS=SC

390 GOTO 300

400 REM MAN POSITION UP DATE

405 IF MAP(PX,PY)=4
THENQ=1:GOTO600 ELSE IF MAP(PX,P
Y)=30RMAP(PX, PY)=1THENQ=3.GOTO
600 ELSE IF MAP(PX,PY)=6 THEN Q=2:
GOTO600 ELSE IF MAP(PX,PY)=2 THEN
Q=4.GOTO 600

406 MAP(OX,0Y)=0:MAP(PX,PY)=5

410 COLOR 1,1:LINE((OX-1)*8,(0Y-1)*10
+10)-((OX-1)*8+8,(OY-1)*10),PSET,BF
415 PUT((PX-1)*8,(PY-1)*10+10)-((PX-1)
*8+8,(PY-1)*10),MN,PSET

416 IF PK=126 OR PK=254 THEN 430
420 OX=PX:0Y=PY:RETURN

430 REM DROP MINE

435 MAP(0X,0Y)=6:PUT((OX-1)*8,(OY-
1)*10+10)-((OX-1)*8+8,(0Y-1)*10), M,
PSET

440 GOTO 420

500 REMAN ROBOT UPDATE

505 FORZ=1TO 5

509 IF RND(INT(10/LV))=1THEN510
ELSE NEXTZ:RETURN

510 IF D(Z)=0 THEN NEXT Z:RETURN
511 LINE((PX(2)-1)*8,(PY(2)-1)*10+10)-
((PX(2)-1)*8+8,(PY(Z)-1)*10),PSET BF
512 MAP(PX(2),PY(2))=0

515 PX(Z)=PX(Z)+1*SGN(PX-PX(2))
520 PY(Z)=PY(Z)+1*SGN(PY-PY(2))
525 IF MAP(PX(Z),PY(Z))=3 AND LV<3
THENGOSUB550:NEXT Z:RETURN

530 IF MAP(PX(Z),PY(2))=6 THEN GO
SUB 550:NEXTZ:RETURN

535 IF MAP(PX(Z),PY(2))=5 THEN
Q=1:GOTO600

536 PUT((PX(Z)-1)*8,(PY(Z)-1)*10+10)-((
PX(Z)-1)*8+8,(PY(2)-1)*10),RB,PSET
537 MAP(PX(Z),PY(2))=4

545 NEXT Z:RETURN

550 SC=SC+50:MAP(PX(2),PY(2))=0:PL
AY "T1L255V3101ADCFABGEDV16ACG
ADV4EABCAEDB":D(Z)=0:RETURN

600 REM MAN KILLED RUTINE

605 IF Q=1 THEN B$=" THEY GOT YOU
ML NM=NM-1

610 IF Q=2 THEN B$=" STEPED ON YO
UR OWN MINE.......":NM=NM-1

615 IF Q=3 THEN B$=" ZAP Ill YOU HAV
E BEEN ELECTROFIDE... ““NM=NM-1
620 IF Q=4 THEN B$=" YOU HAVE ESC
APE OUT AN EXIT... "

625 IF Q=5 THEN B$=" YOU HAVE KILL
ED ALL THE ROBOTS ON THIS LEVEL..
BONUS “+STR$(LV*100)+"...":LV=LV+1:
SC=SC+100*LV

630 IF NM=0 THENBS$="........"* GAME
OVER ***..... ":GOSUB200:GOTO95
635 IF V2=-1 THENA$=B$:GOSUB955
645 IF SC>HS THEN HS=SC

650 GOSUB200:GOSUBS00

698 SCREEN1,1:GOTO300

699 END

700 REM DRAW PICES

705 PCLS1

710 DRAW'COBM128,95;"+ROB$

715 GET(126,94)-(126+8,84),RB,G

720 PCLS1:DRAW'BM128,95;"+MAN$
725 GET(127,95)-(127+8,85),MN,G

730 PCLS1:DRAW’BM127,95;"+MINS
735 GET(124,95)-(132,85),M1,G

740 PCLS1:DRAW'BM128,95."+FEN$
745 GET(126,95)-(134,85),FE,G

750 PCLS1:DRAW'BM128,95"+EXIT$
755 GET(127,95)-(135,85),EX,G

760 RETURN

800 REM SETUP SCREEN FOR PLAY
805 FORX=1T032:FORY=1TO18:MAP(X,
Y)=0:NEXTY X

810 PCLS1:POKE178,2:SCREEN1,1
815 REM SET UP BOUNDREIS

820 FOR X=0 TO 31

825 IF RND(10)=5 THENMAP(X+1,0)=2:
PUT(X+8*X,10)-(X+8+8*X,0),EX,PSET
ELSE LINE(X+8*X,10)-(X+8+8X,0),PSET
BF:MAP(X+1,1)=1

830 IF RND(10)=5 THENMAP(X+1,19)=2:
PUT(X+8*X,190)-(X+8+8*X,180),EX,PSE

T ELSE MAP(X+1,19)=1:LINE (X+8*X,19
0) -(X+8+8*X,180),PSET BF

835 NEXT X

840 FOR Y=1TO 17

845 MAP(1,Y+1)=1:LINE(0,20+10*(Y-1))-
(8,10+10%(Y-1)),PSET,BF

850 MAP(32,Y+1)=1:LINE(8*31,20+10%(Y
-1))-(8*32,10+10%(Y-1)),PSET,BF

855 NEXT Y

860 REM PUT FENCES ON BORD

865 NF=10*LV

870 FOR X=1 TO NF

875 X1=RND(32):Y1=RND(19)

880 IF MAP(X1,Y1)<>0 THEN 875

885 MAP(X1,Y1)=3:PUT((X1-1)*8,10+10*
(Y1-1))-((X1-1)*8+8,(Y1-1)*10),FE,PSET
890 NEXT X

895 REM PUT ROBOTS ON SCREEN
900 FOR X=1TO 5

905 X1=RND(32):Y1=RND(19)

910 IF MAP(X1,Y1)<>0 THEN 905

915 MAP(X1,Y1)=4:PUT((X1-1)*8,10+10*
(Y1-1))-((X1-1)*8+8,(Y1-1)*10),RB,PSET
920 PY(X)=Y1:PX(X)=X1:D(X)=1:UX(X)=
X1:UY(X)=Y1

925 NEXT X

930 REM PUT THE MAN ON SCREEN
935 X1=RND(32):Y1=RND(19)

940 IF MAP(X1,Y1)<>0 THEN935

945 MAP(X1,Y1)=5:PUT((X1-1)*8,10+10*
(Y1-1))-((X1-1)*8+8,(Y1-1)*10),MN,PSET
950 PX=X1:PY=Y1:0X=PX:0Y=PY:
RETURN

955 REM SPEECH OUTPUT

956 POKEV+1,52:POKEV+3,63:POKEV+
35,60

957 POKE65494,0

960 FOR 1=1 TO LEN(A$)

965 IF PEEK(V1) AND 128=0 THEN 965
970 POKE V1,ASC(MID$(AS,1,1))

975 NEXT |

980 IF PEEK(V1) AND 128=0 THEN 980
985 POKE V1,13:FORT=1 TO30"LEN (A
$):NEXTT:POKE65495,0:RETURN

1000 REM INSTRUCTIONS

1005 CLS1

1010 PRINT"USEING RIGHT JOYSTICK
KEEP AWAY FROM ROBOTS AND FEN
CES AND WALLS."

1015 PRINT’PRESS FIRE BUTTON TO D
ROP MINES.”

1020 PRINT"E’' ARE EXITS. BUT IF YOU
EXIT YOU DONT ADVANCE A LEVEL."
1025 INPUT"PRESS ENTER TO BEGAIN
"N$:CLSO:RETURN

ColorZap93 (continued from page 15)

14310 mvan3 ieau $10.u
14320 inca
14330 mvdn5
14340 bne
14350 bra
14360

14370 nonext
14380 rts
14380 next tst mtcflg
14400 beq nonext
14410 ldxzero
14420 stxmtcfig
14430 tstopnfig
14440 bne nxinxt
14450 |dxmtctrk
14460 stxtrack
14470 six$ec system track/sector

14480 nxI2 idxfndloc start search AFTER current
match
14490

cmpa#19
mvdn3
mvdn4

coma

clear match and split find

leax 1x

14500 stxfndloc

14510 |bra fndwds
14520 nxinxt |dd frcnum
14530 std recnum
14540 bra nxI2

14550
14560 repkey
14570 bne
14580 |Ida
14590 beq
14600 deca
14610 beq d1

14620 deca

14630 beq d1

14640 bra norep

14650 d1 Idx#$d8ce end of DOS1.1 irq

14660 bra rpk2

14670 rpk1 Idx#$d7db end of DOS1 0 irg

14680 rpk2 leay REPEAT pcr

14680 Idu x

14700 cmpu#$8955

14710 bne norep

14720 sty x

14730 com repflg

14740 endrep coma

14750 rts

14760 norep leax repmsg-1,pcr

14770 jsrprintS

14780 jsrgetchr

14790 bra endrep

14800 repmsgfcc /Sorry, can't help you with your
current system./

14810 fcb CR,0

14820

14830 opnmsg
14840 fcb 0
14850 ispn fcc
14860 fcb 0
14870 isopn leax ispn-1,pcr

14880 jsrprintS

14890 jsrgetchr

14900 orcc #1

14910 badink rts

14920 quitin andcc #.not.1

14930 s

14940 link tst opnflg

14950 bne isopn

14960 leax opnmsg-1,pcr

14970 jsrprintS

14980 Ibsr linein

14980 bces quitin exiton BREAK

15000 Idx#linbuf+1

15010 tst x

15020 beq dir

15030 decb

15040 leay xitopn,pcr

15050 pshs y

15060 clr,-s

15070 Ida drive

15080 sta $eb

15090 Idy#$94c

15100 pshs b

15110 idd #$200b

15120 nmcir sta y+ erase file name area
15130 decb

tst repflg
endrep
dos

rpk1

fee/Link to file: /

/A file is already open!/

the world of 68’ micros page 19

RGBoost - $15.00

If you want to speed up DECB easily,
install an Hitachi 6309 and get RGBoost.
This patch for DECB uses the extra 6309
functions for up to a 15% gain in overall
speed. It is compatible with all programs
tested to date! Save an additional $5 by
purchasing RGBoost along with one of
my other products listed below!

EDTASM6309 v2.02-$35.00

Patches Tandy’s Disk EDTASM to support Hita-
chi 6309 codes! Supports all CoCo models,
including stock 6809 models. CoCo 3 version
uses 80 column screen, runs at 2MHz. YOU
MUST HAVE A COPY OF DISK EDTASM. This
is a PATCH ONLY! It will not work with “disk
patched” cartridge EDTASM

CC3FAX - $35.00

Receive and print weather fascimile maps from
shortwave! The US weather service sends them
all the time! Requires 512K CoCo3 and short-
wave receiver. Instructions for simple cable
included.

HRSDOS - $25.00

Move programs and data between DECB and
0S-9 disks! Supports RGB-DOS - move files
easily between DECB and OS-9 partitions! No
modifications to OS5-9 modules required.

DECB SmartWatch Drivers - $20.00

Access your SmartWatch from DECB! Adds
function to BASIC (DATES$) for accessing date
and time. Only $15.00 with any other purchase!

Robert Gault
832 N. Renaud
Grosse Pointe Woods, Ml 486236
313-881-0335
Please add $4 S& H per order

15140 bne nmcir

15150 puls b

15160 pshs x

15170 bsr ckdos

15180 leay x

15190 puls x

15200 sname jmp {fgetnm.y]
15210

15220 dir bsr
15230

ckdos

Idb drive

15240 stb $eb

15250 Jsr[fdir.x}

15260 sta $ffd9

15270 Iida #CR

15280 jsrscrprt

15290 bra link

15300

15310 setclk pshs ax

15320 Idx#$ffd8

15330 Ida clock get default clock speed
15340 sta axset correct clock rate
15350 puls axpc

15360

15370 ckdos bsr setclk

15380 leax dos10,pcr

15390 tstdos

15400 beq xckdos

15410 leax dos11 per

15420 xckdos rts
15430

15440 diskon bsr
15450 jsr[dskcon]
15460 sta $ffd9
15470 tst $f0
15480 rts

setclk

page 20 the world of 68’ micros

15490
15500 xitopn
15510
15520
15530

ldx#$1ff
stx$957 file type
idx#$100

stx$97c record length
15540 com opnflg

15550 Idd #1*$100+1
15560 bsr ckdos
15570 jsr[fopen x]

15580 sta $ffd9

15590 orcc #1

15600 tst$973

15610 Ibeq badink
15620 bsr ckdos

15630 leay x

15640 1dx$928

15650 jsr[flofy]

15660 sta $ffd9

15670 jsr$b3ed

15680 std lof

15690 bsr ckdos

15700 jsr(fclose,x]

15710 sta $ffd9

15720 |dx#$200 binary format
15730 stx$957 file type
15740 Idx#$100

15750 stx$97c record length
156760 Idd #R*$100+1
15770 bsr ckdos

15780 jsr[fopen,x]

15790 sta $ffd9

15800 ldd #1

15810 std recnum
15820 lbra ssecO

15830

15840 unlink tst opnflg
15850 beq noulnk
15860 Ibsr ckdos

15870 jsr[fclose x]

15880 sta $ffd9

15890 Idd zero

15900 sta opnfig

15910 std recnum
15920 std frenum
15930 std lof

15940 1dx$928

15950 incb =1

15960 std 7 xclear file record number
15970 andcc #.not.1
15980 rts

15990 nouink orcc #1
16000 rts

16010

16020 * Next routine used pnmarily for 35/40 track
disks but also can be

16030 * used to bypass certain copyright schemes.
16040 rsmsg fcc /Enter max values for
Track#<CR> Sector#<CR>: /
16050 fcb O

16060 reset leax rsmsg-1,pcr adjust max values
for track/sector

16070 com cpyflg

16080 Ibsr cmdset
16090 Ibsr decbin
16100 bes badrst
16110 sta maxtrk
16120 tbsr more

16130 sta maxsec
16140 clrb

16150 cmpa#9

16160 bis a@

16170 incb

16180 a@ !da maxtrk
16190 cmpa#17

16200 beq d@

16210 blo b@

16220 deca

16230 b@ Isla

16240 pshs b

16250 adda s+

16260 c@ sta maxgm
16270 s

16280 d@ deca

16290 bra c@

16300 badrst orcc #1
16310 rts

16320
16330 * PRINT: dump text screen to printer
16340 printlda $ff22

16350 Isra

16360 bes 2@

16370 idd #$36fe

16380 sta $ffa2 $4000

16390 dx#$4000
16400 stb $6f
16410 a@ Ida x++
16420 jsr[$a002
16430 cmpx #$4fa0
16440 bne a@
16450 Ida #CR
16460 jsr[$a002)
16470 cir $6f
16480 rts

16490 z@ leax prterr-1,pcr

16500 jsrprintS

16510 jsrgetchr

16520 bra badrst

16530 prterr fcc /printer not ready!/

16540 fcb O

16550

16560 * REPEAT KEYS FOR THE RGB DOS
SYSTEM

16570 * Based on the code of Roger Schrag in
Rainbow

16580

16590 * ADJUST ONLY RATE1 or RATE2. Leave
everything else alone!

16600

16610 RATE1 EQU 60time for repeat key in IRQs
16620 RATE2 EQU 3 .05s repeat

16630 SCRUBEQU $3F row 6 not repeated
16640 KCLEAR EQU $14A RGB variable area
16650 KHOLDEQU $14Bmay need to be moved
16660 KEYBUF EQU $152 KEYBOARD BUFFER
16670 KBFEND EQU $15A

16680

16690

16700 REPEAT LDX #KEYBUF

16710 a@ LDA X+

16720 ANDA #SCRUB

16730 CMPA #SCRUB

16740 BNE A@

16750 CMPX #KBFEND

16760 BNE a@

16770 INC KCLEAR

16780 LDA KCLEAR

16790 CMPA #7

16800 BLO Z@

16810 CLR KCLEAR

16820 CLR KHOLD

16830 A@ INC KHOLD

16840 LDA KHOLD

16850 CMPA #RATE1

16860 BNE Z@

16870 SUBA #RATE2

16880 STA KHOLD

16890 LDX #KEYBUF

16900 b@ LDA X

16910 ORA #SCRUB

16920 STA X+

16930 CMPX #KBFEND

16840 BNE b@

16950 Z@ JMP $8955 EXBasic IRQ

16960 zendequ *

16970
16980
16990
17000
17010
17020
17030
17040
17050

print to console out

ORG KCLEAR
FDB 0

org $16a
jmp start

end start

FINALLY!!
THE END OF
ColorZap93
LISTINGS!!

CoCo 3 Consumer Info
continued from page 5

SIMPLE: The simple keyboard is
less confusing than these having many
unfamiliar keys. Disk BASIC is much
easier to learn than MS-DOS. And
what could be simpler than inserting a
Program Pak and turning on the com-
puter?

VERSATILE: The Color Computer
supports both TV sets and monitors,
disk drives (floppy and hard) and cas-
sette recorders, large character text
screens and 80 column screens. It can
be as simple or sophisticated as you
want.

COMPATIBLE: with standard print-
ers (serial port built in, parallel print-
ers require a serial to parallel conver-
tor), disk drives, and modems (exter-
nal, maximum practical speed is 9600
bps).

POWERFUL: Muiltitasking, 64 coi-
ors, programming languages sup-
ported - a good hacker's computer

RELIABLE: Widely used for control-
ling industrial processes, the Color
Computer has a long history of reliabil-
ity. Service is available at any Radio
Shack. The ROM-based Disk BASIC
operating system is immune to viruses.

“the world of 68' micros”: an excel-
lent monthly magazine that, since
1992, has provided programs, help,
product reviews, and instruction for
users of the Color Computer.

DELPHI: a national telecommuni-
cation information service with a Color
Computer Special Interest Group, for
exchanging programs and information
with “CoCoNuts” across the country.

COCO-LIST: An internet mailing list
and use-net group of CoCo lovers.

Computers are playing an ever-in-
creasing role in modern society. The
Color Computer 3 is ideal for anyone
wanting to learn about them and how
to use them, without having to spend
a lot of money or attend special
classes. No other computer in the world
provides so much power for so little
cost.

NEW Hardware coming from

Cloud Nine

c/o Mark Marlette

3749 County Road 30
Delano, MN 55328

email : mmarlett@isd.net
voice: 612-972-3261

512k - 2048k upgrade board

Just install SIMM memory in 512k in-
crements (2x256K 8 or 9 chip SIMMs).
Three chip SIMMs WILL NOT work! This
is a timing requirement, as the 8/9 chip
SIMMs use the same timing as the CoCo
DRAM upgrades.

SCSI Host adapter interface

+ Comes with OS9 Drivers, 6x09.
63b0%e 1.78MHZ system “megaread”
times are ~11 seconds with 512 byte sec-
tors (Nitros 2.00 Level3).

+ 256/512/1024 Sector size selection

+ FULL SCS! ID supported

« Parity generation, enable/disable. Can
use with parity devices such as ZIP drives!

- Gold plated card edge connector

* 50 pin SCSI header port

+ Instailation/Operation Manual

« Schematic package

+ OS9 Utilities SCSitools, SCSldesc,
ZIPIJAZ Tools

» SCSitools - A BASICO09 utility that will
do low level SCSI commands.

» SCSldesc - A BASICO09 utility pro-
gram that will create the SCSI descriptor
for you based upon the menu drive op-
tions inputted.

» ZIPJAZtools - This utility will allow the
features of the lomega ZIP/JAZ drives.
Eject disk, software protection are some.
This utility isn’'t written yet, but | have the
documentation needed from lomega. Will
do this soon!

These products should be avail-
able at the Chicago CoCoFest! Look
for me there!!

A 512K SIMM upgrade is ready to ship.
The unit will ship with the following items:

1 - 512K SIMM Memory Board with 8 or
9 chip 120ns or faster SIMMS

1 - Installation Manual

1 - Schematic package

1 - RSDOS Memory Test Program sup-
plied on 5 1/4" disk.

$40 each including shipping, UPS
ground, within the US. If you are outside
of the US please indicate method of ship-
ment desired and | will check into the
added cost, if any.

BrLackHawk
ENTERPRISES

New Products!

By Alpha Software Technologies.

« Data Windows - $69.95 - A complete flat database program for 03-0/68K.
Facilities include database creation, searching, maintenance and report generation.

« GNU TWO - $49.95 - This package include a new port of GNU M4, and the AUTOCONF
automatic configuration macros. Together with the included port of BASH these tools
make automatic configuration of software a much easier chore. Widely used on UNIX
and other operating systems, use it now on your OS-9 platform! Includes two new
manuals totaling about 110 pages.

+ Model Rocketry Tools - $15 - Includes ports of tools for modeling and tracking the
performance of various configurations of model rockets. Essential tools for those
interested in designing rockets or achieving specified altitudes. Should run on any
08-9/68K machine.

MM/1, MM/1a and MM/1b hardware and other software still available, inquire!
P.0.Box 10552+ Enid, OK 73706-0552 - (405) 234-3911

the world of 68' micros page 21

1629 South 61st Street

West Allis, WI 63214

(pulland@omnifest.uwm.edu)
414-328-4043

STrRoNGgWARE

Fast232- 16550 does serial! Port speed to 115200bps,
transfers up to 5000 cps. Addressable to four locations.
With OS9 and Nitros9 drivers. $79.95

2nd Port Daughter Board - $45.00

OS9 IVI2 i1 avaitabier

Level2 Bundle $49.95
0s9, b09, mvue, more! plug-n-go for 6809
Dynacalc+Pgraph $19.95
Profile $19.95
TSEdit/Word+vi patch $12.95
Epyx TriPak $14.95
Koronis Rift, Rescue Fractulus, Rogue
King's Quest 3 $9.95
Microscopic Mission $4.95
Sub Battle Simulator $4.95
Hardware
64K upgrd 2 or 4 chip $5.95
512K upgrd(used) 0K $24.95
512K $44.95
decb1.1rom + manual $12.95
mpi upgrd sat. board $9.95
cable, cassette $5.95
cable, printer $5.95
cable, rs232 (100ft!) $19.25
colr mouse (1 button) $9.95
mono composite monitor (used) $24.95
Orchestra90cc Pak $12.95
DECB
Disk EDTASM (used) $19.95
Disk ProFile (used) $12.95
One on One $7.95
Sands of Egypt $7.95

ROMPaks too! (Inquire for titles)
Parts (many more in stock!)

1488/89 .75 68b09%e 6.95
1723 1.95 6821a 3.95
1773 6.95 SALT 2.28
2764 2.95 746 35
6802 3.50 7418133 42

['ve also been working on some NEW hardware
that may be available later. One of these items is a
revision of my Expander idea that actually works on

most CoCo 3's, not just the occasional “right” one.
I'll keep everyone posted on any progress!

Check with me for complete disk drive systems,
misc. hardware items, hardware repairs, and hard
to find new and used CoCo software not listed!

Shipping & Handling $4 US, $6 Can/Mex, $10 World
offworld destinations please consult local Postmaster!

Box 361 Matthews, IN 46957 Phone 317-998-7558

CoCo 3 Software:

CopyCat wmmmmmmoeeeneeee §5
HFE- HPrint Font Editor --------- $15

MM/1 Software:
Graphics Tools ------------------ $25
Starter Pak -----------------n---- $15

CopyCat ------=-====-=--- $10
Painter ----------==mememeemmnee- $35

ADVERTISER'’S INDEX

BlackHawk Enterprises 21
Cloud Nine 21
CoNect BC
FARNA Systems 9, BC
Robert Gault 20
Hawksoft 14
Pennsylvania CoCoFest 3
Small Grafx 14
StrongWare BC

What are you waiting for?

Get your friends to subscribe to
the only magazine that still supports
the Tandy Color Computer...
“the world of 68’ micros”!
The more people who want the support,
the longer it will be herel

page 22 the world of 68’ micros

	68' micros
	Table of Contents
	The Editor's Page
	Changing Directories - OS-9 "cd" Utility
	CoCo3 Consumer Information
	Consumer Con't

	DECB DIsk Structure
	Operating System-Nine
	Adventures in Assembly, Part 1
	Robot Zap
	Advertiser's Index

