Setling Colo— s
Disks into (and |
outod aPC |

TETRIS!.

In assembly for the CoCo!

CONTENTS

Editor’s Page 2
A Letter 2
CoCo Emulator Transfer Tricks

3
J. Consugar, M. Haaland, R. Cooper
4
6
9

CoCofFest Vendor Information
Brian Schubring

Op Sys Nine : MultiVue
Rick Ulland

Tetris!
Lome Kelly

Embedded Programmer 12
Paul McKneely

CoCo 3 Extended Memory : 5 15
Herbert Enzman

A Change of Directory 18
Marx Heilpem

Emulator Sand Patch 19
Robert Gault

New Products from Cloud Nine 19

Advertisers Index BC

Don’t forget to make plans
for the Chicago CoCoFest!!!

T

POSTMASTER:

If undeliverable return to:
FARNA Systems PB
Box 321
WR, GA 31099

If your address is incorrect, send me a postcard! the word of 68’ micses page 1

The Editor’s Page

Sorry, but | was a little rushed getting
this issue out on time. What with the holi-
days and my other hobby (Ramblers), fam-
ity, and military career, it is sometimes hard
to get everything done!

Right after Christmas is always a “dry”
spell for everyone. Recovering from the
holidays is tough! And the end of this year
has been particularly trying for me. But
there is light at the end of the tunnel! My
*new” Rambler is coming together (1963
Classic wagon with a 1989 Jeep 4.0L fuel
injected six) and I'm finally getting this is-
sue out!

You'll notice no letter page this issue.
That's the “dry spell” | was referring to. Oh.
| got plenty of renewal notes with “thanks”
and “keep it up®, but rather than print those
| thought I'd use the page for more con-
tent. And keep the renewals coming in,
so | can keep the magazines flowing out!

I've always told you I'd keep you posted
on anything that might affect the maga-
zine, and | have some bad news. | won't
be able to make the Chicago CoCoFest
this year due to military commitments. It
was bound to happen sometime or other!

My unit has been tasked to go to the
middle east and move an encampment.
No, nothing is going on over there! The
USAF just decided to combine two smaller
troop encampments into one larger, but
easier to manage and secure, one. My unit
hasn’t been anywhere recently, so we got
the duty. There will be two 45 day deploy-
ments beginning about 15 February. I'll be
going on the second, which would begin
about the first of April. Thatis IF | go. There
will be 50 people in each deployment, and
there are about 200 total in my unit. So

some will be staying.

Officially, | have volunteered for the sec-
ond deployment (my wife has surgery
scheduled for early February and will need
help around the house for a few weeks),
as | haven't been on a lengthy deployment
in quite a while and it isn't fair to the other
unit members. But | don't make the final
decision as to who goes and who doesn't,
so there is a possibility | won't be going.
Even if | don't go, | won't be able to take
leave for the Chicago CoCoFest as we'll
be short handed at home. And just in case
someone wonders, this isn't a classified
mission (VERY routine!) so I'm not divulg-
ing anything that isn't a matter of public
record. Itll be covered in the base paper
when we leave!

I'm going to try to build the next issue a
litle earlier than usual because of the de-
ployment dates. | won't know for sure if
I'm going (I do know I'm not on the first
deployment) for a week or two at the ear-
liest. If | don't get everything early enough,
the next issue may have to wait until | get
back, which should be mid-May. Of course,
if the work isn't completed, we may have
to stay a few days (or weeks!) more.

if | go, I'll be checking my e-mail when |
retum. My wife will be collecting all other
FARNA mail and holding it for me, so noth-
ing will be missed. Orders and renewals
will be processed when | return. Sorry for
the inconvenience, but someone has to do
their part to protect this great country and
its interests!

Thanks for all the sup-
port and understanding!
'l keep you all posted.

A Letter] AT306 Tips

1. 68micros: Great that it keeps coming!

2. Someplace in the last issue is a remark
that CoCo can fill screen faster than it can be
read. A project on my to do list is a “read” cmd
substitute for “list™ which scrolls a scan line
or two at a time so a file can be read while siow
scrolling and can be stopped or run up or down.

3. ved stumbles on my AT306 because the
cursor keys don't work. ENV/ved_env.file
should have some lines edited to be:

\kd=$1B,$5B,$42 down
\ki=$1B,$5B,$44 left
\kr=$1B,$5B,$43 right
\ku=$1B,$5B,$41 up
\pd=$1B,$36,$7E pgdn
\pu=$1B,$35,$7E pgup

4. The AT306 and OS9 v3 didn't have Basic
or Runb when purchased. Runb from my MM/
1 doesn't run on the AT306/0S9v3. Basic | code
programs respond with “:cannot execute®. |
would like more explanation than that. | notice
that the BlackHawk ad lists MWbasic with their
MM1b/AT306. Omni Basic looks interesting.
But why is there not a Basic09 or MWbasic?

5. installing OS9 C v3 with the built-in “in-
stall” on the distribution disk will clobber the
termcap file which umacs wants. So one must
grab a termcap from the AT306 OS9 distribu-
tion disk (or protect/hide it while “install” is do-
ing its thing).

6. CoCoFest 98!! Good news!!

Fran Walters
72130.3067 @compuserve.com

All MWBasic (which is Basic09 for the 68K
version of OS9) requires a RunB module. I'm
not certain that BlackHawk has ported RunB
to the AT306. Even if they have, it may run
under OSK v2.4 only, and not v3. Carl didn't
include RunB or MW Basic because of the
additional licensing fees.

Thanks for the tips! I'm sure other AT306
users will find them very useful.

Publisher:

FARNA Systems PB

P.O. Box 321

Wamer Robins, GA 31099-0321

Editor:
Francis (Frank) G. Swygert

Subscriptions:

US/Mexico: $24 per year

Canada: $30 per year

Overseas: $50 per year (airmail)

Back and single issues are cover price.
Overseas add $3.00 one issue, $5.00 two
or more for airmail delivery.

The publisher is available via e-mail
dsrtfox@delphi.com

Advertising Rates:

Contact publisher. We have scales to suit
every type of business. Special rates for
entrepreneurs and "cottage” businesses.

Contributions:

All contributions welcome. Submission
constitutes warranty on part of the author
that the work is original unless otherwise
specified. Publisher reserves the right to
edit or reject material without explanation.
Editing will be limited to corrections and
fitting available space. Authors retain copy-
right. Submission gives publisher first pub-
lication rights and right to reprint in any
form with credit given author.

General Information:

Current publication frequency is bimonthly.
Frequency and prices subject to change
without notice. All opinions expressed
herein are those of the individual authors,
not necessarily of the publisher. No war-
ranty as to the suitability or operation of
any software or hardware modifications is
given nor implied under any circum-
stances. Use of any information in this
publication is entirely at the discretion and
responsibility of the reader.

All trademarks/names property
of their respective owners

ENTIRE CONTENTS COPYRIGHT
1997, FARNA Systems

page 2 the world of 68’ micros

CoCo EmulatorTransfer Tricks

Porting Double Sided Disks Joseph Consugar

DOS to Emulator Transfer Mike Haaland

Despite the fact that | have used all sorts of computers over
the years, my favorite is still my CoCo3 and OS9 Level 2. In
fact, | bought the CoCo3 emulator specifically so | could run
0S9 on my PC.

It took a while, but with the help of Walter Grossman'’s article
in the November/December 1997 issue of “The World of 68'
Micros”, | was able to create a boot disk for the emulator and
get OS9 to come up. Now | was left with one problem; how to
transfer all of my OS9 disks to the PC so the emulator could
read them.

The emulator comes with the RETRIEVE program to create
disk images that can be read by the emulator, but it is designed
to work only with single-sided disks. My OS9 disks are a mix-
ture of 5.25" and 3.5" disks, all double-sided.

Transferring the 5.25" disks didn’t present a problem. | sim-
ply formatted a 3.5" disk as single-sided, copied the files from
the 5.25" double-sided disk to the 3.5" single-sided disk, and
used the RETRIEVE program to move the disk to the PC. Dis-
covering how to transfer the 3.5" disks without having to do
multiple copies was more of a challenge.

Transferring 3.5" Disks

Transferring a complete 3.5™ double-sided disk so it can be
used with the emulator requires two pieces of software; the
089 file transfer utility available on the CoCo Files web page
(http://people.delphi.com/phxkenvCOCOFILE.HTML) and a disk
editor, like dEd. You must also have an OS9 drive descriptor
set up to handle the format of the disk you are trying to transfer
(in my particular case, this meant double-sided with 80 tracks).

(Editor: Just any OS9 to MSDOS transfer utility won't work.
The one mentioned was specially wriften to create a virtual
disk image on a DOS computer that is compatible with the
emulator. If you don’t have Web access send a $5 handling
fee to FARNA Systems requesting the file. Don't forget to
mention the article title and issue date.)

To perform the transfer, download and install the OS9 file
transfer utility on your PC. Go to DOS (or a Windows DOS
screen), place the 3.5" disk in the PC’s drive, and type the
command “OS9 a: -m os9disk.dsk” (this command assumes
you have placed the disk in the PC’s “a:” drive. If not, change
the drive designator to the one approprite for your PC). The
result will be an emulator disk image file named os9disk.dsk in
your current directory.

Start the emulator and boot OS9. Press F2 to start the vir-
tual drive utility and place the disk image you just created
(os9disk.dsk) into the slot corresponding to the drive descrip-
tor you have to handle the disk format. Press <ESC> to retum
to OS9.

Start the disk editor with a filename cormresponding to the
disk you just entered in the virtual disk drive utility (e.g., if you
placed the disk in slot 1 and are using dEd, the command would
be “dEd /d1@" where the “@” symbol means you wish to edit
the disk as if it was one big file). Move to LSNO of the disk and
change the value in location $10 from $03 to $02 (or from $07
to $06). Write the sector back to the disk and quit the disk
editor. You should now be able to access the disk.

continued on page 17

To tranfer an MS-DOS file to a CoCo emulator virtual disk
(.DSK) file you need to create a virtual disk by:

1. When you're in the emulator, click the right mouse button
to bring up the main menu. Click on the “L. Virtual Disk Menu”
option. This brings up a list of PC drives on the right and the the
CoCo disk drives in the upper left.

2. Click on a CoCo drive slot under Diskname. This tumns on
the cursor in the slot. Now you can type in any name you want
to create a disk. If you want to mount an existing disk, click on
the down arrow in the upper right to see a list of .DSK file in the
current directory and click on the one you want to mount.

3. If a new virtual disk was created, it must be formatted with
DSKINI under DECB once it's mounted.

4. Now to transfer to/from a CoCo .DSK image, click the
right mouse button to take the emulator to the main menu.
Select “P. File Port Utility”.

5. This bring up the import/export screen. On the right there
are two long boxes. The first one is a listing of the CoCo direc-
tory and the second is the list of PC drives.

6. Click the down arrow in the MS-DOS Files window and
select the disk image (.DSK) you want to use as the emulator
disk to transfer to/from. The contents should be displayed in
the CoCo Files box.

7. Now you can move files from MS-DOS to the emulator
disk by clicking on the MS-DOS file to transfer _-
in the MS-DOS File box. Or transfer from the £
emulator disk to the current MS-DOS direc-
tory by clicking on a file in the CoCo box.

8. You can set the transfer options on the
left by clicking on any bright light blue option.

Emulator/”Real” CoCo Transfers Rick Cooper

Files are transferred by using the programs named
DSKINLEXE and RETRIEVE.EXE. These programs are in-
cluded in the CoCo 2 and CoCo 3 emulator packages.

You must have a 5 1/4" drive on your PC, preferably a hi-
density drive. I've not had any success using low-density drives.

To move a “real” CoCo disk to the PC:

1. Place the disk in your PC drive (example drive B:).

2. From the DOS prompt in the emulator directory type:

RETRIEVE B: DISKNAME <ENTER>

Please note the space between the B: and the diskname; it
must be there. The diskname is 8 characters long. Don’t put an
extension on the name (The extension “.DSK" will be assumed
and automatically added).

To move an emulator .DSK image to a “real” CoCo 5 1/4"
disk:

1. Place a disk in your PC drive.

2. From the DOS prompt in the emulator directory type:

DSKINI B: DISKNAME <ENTER>

Please note the space between the B:
and the diskname. The diskname will be
the name of the PC“.DSK” file that you are
moving to the “real” CoCo disk.

the world of 68’ micros page 3

Chicago CoCoFest 98!

THE GLENSIDE COLOR COMPUTER C1UB OF ILLINOIS PRESENTS

THE SEVENTH ANNUAL “LAST” CHICAGO COCOFST
April 18th & 19th, 1998 (Sat. 10am-5pm; Sun. 10am-3:30pm)

Elgin Holiday Inn
(A Holidome Indoor Recreation Center)
345 W. River Road
Right off intersection of I-90 & IL-31, Same location as past years!
Ovemight room rate: $65.00 (plus 10% tax)

Call 1-847-695-5000 for reservations. Be sure to ask for the “Glenside” or
“CoCoFEST!” rate. There is a limited number of rooms set aside for the
CoCoFest. These rooms will be released on March 31. They will not be avail-
able at the ‘Fest rate after that date, so make your reservations early!

CoCoFEAST!

That's right a CoCo FAMILY DINNER at the
HaliDay Inn. Why? So You don't have to drive ‘here
or there' or try to decide which group you want to
spend time with. We can be all together to enjoy
the food, and best of all, each others company.
There my be a Keynote speaker present. This is
planned for Saturday Night about 6:00pm. We
need is a MINIMUM of 50 people to reserve a din-
ing room. The tickets will only be available in ad-
vance, AT THIS TIME! People to conntact are
listed below. The cost will be only $15 U.S. PER
Person. We will be able to take paid reservations
only up to March 28th, 1998. Please contact one
of us for further details.

NOTE: THE CLUB IS NOT MAKING ANY
MONEY FOR THE DINNER, NOR PLANS TO.
THIS FUNCTION IS ONLY TO PROMOTE A

General Admission: $10.00, whole show (Children 10 and under are free)

For further information, general or exhibitor, contact:
Tony Podraza, VP, Spcl Evnts, GCCCI

847-428-3576, VOICE
847-428-0436, BBS
Tonypodraza@juno.com

COCO FAMILY GATHERING AT ONE GREAT
LOCATION. .. THE COCOFEST!

If by the specified date we are lacking the num-
ber of attendees required, the dinner will be
scrapped and a refund will be issued at the Fest.

Afterwards there may be a Musical Monk'O
Rama Jam-Session like we had last year with
Brother Jeramy, Alien Huffman, and anyone eise
who wants to bring and instrument and join in!

See Ya'll there in '98!!!

Mike Knudsen, President, GCCCI
630-665-1394, VOICE
Mknudsen@lucent.com

Brian Schubring, Ast., Fest Coordinator, GCCCI

E-MAIl theschu2@juno.com

OR

theschu3@aol.com

ADDITIONAL COCOFEST VENDOR INFORMATION

The Glenside Color Computer Club of
llinois is a not-for-profit computer club
established to assist its members in the
learning and better understanding of
Tandy's Color Computer. In the pursuit of
that goal, we have been priveleged to host,
under the auspices of Falsoft Publishing,
five Chicago Rainbowfests and one
CoCoFEST! sponsored by CoCoPro!. Last
year, we organized AND sponsored the
Sixth Annual “Last” Chicago CoCoFEST,
which was in the Chicagoland area.

This year, Glenside will again sponsor
the show as noted above. We would like
to continue our tradition of giving door
prizes, but we need your help to do so. All
vendors are asked to donate items to be
distributed through a drawing of admis-
sion pass stubs. If you wish your dona-
tion to be part of the Grand Prize given on
Sunday, please state so. We are also open
to donations for the auction held during
the show. Proceeds go to Glenside to help
offset costs for this and future
CoCoFEST's.

Donations MUST be received by April
1, 1998, in order that all prizes and ven-
dors can be properly credited. You will re-
ceive a receipt for your donations

page 4 the world of 68° micros

EXHIBITOR INFORMATION:

Tables: $35 each (excludes vendor passes)

Full booth exhibits shall be no less than 8'x8'. including one 6’ table (draped and
skirted), booth sign bearing Exhibitor's company name and booth number, two chairs,
and one electrical outlet. Other exhibition needs can be provided at extra cost. Booths
may not be shared without the knowledge and written consent of the FEST! Coordina-
tor (inquiret).

Vendor Passes: $5.00 each (max of 2 passes per table)

REGISTRATION MUST TAKE PLACE WITHIN THE MONTHS OF JANUARY AND
FEBRUARY, 1998! The FEST! Coordinator MUST have your deposit of $25 by Febru-
ary 28, 1998. The remainder is due by April 1, 1998. Payments received AFTER Apiril 1
will be subject to a 20% LATE FEE based on the outstanding balance. Deposits are
NON-REFUNDABLE after April 1, 1998. Send a check for the deposit made payable to
“Glenside Color Computer Club” to:

CoCoFest! Glenside Color Computer Club
c/o Tony Podraza, FEST! Coordinator

119 Adobe Circle

Carpentersville, IL 60110-1101

A registration packet will be returned to you. You may, of course, write for the packet
first, but the deposit MUST be received by the FEST! Coordinator no later than Febru-
ary 28,1998.

Liabilities and Restrictions:

Sponsor reserves the right to change exhibit hours or cancel the exhibition of its own volition, in which
case all deposits and prepayments will be refunded. Should the exhibit be cancelled due to circum-
stances beyond the exhibitors control, deposits and payments may not be refunded. Neither the spon-
sors nor its representatives shall be liable for any injuries, loss, or damages in any form. Exhibitor is at
all times responsible for its own goods and materials regardiess of location.

FARNA Syszems

Your most complete source for Color Computer and 05-9 information!

Post Office Box 321
Warner Robins, GA 31099
Phone: 912-328-78659

E-mail: dsrtfox@delphi.com

ADD $3 S&1IH, $4 CANADA, $37T0 OVERSEAS

BOOKS:

Mastering 0S-9 - $30.00

Completely steps one through learning all
aspects of OS-9 on the Color Computer.
Easy to follow instructions and tutorials.
With a disk full of added utilities and soft-
ware!

Tandy's Little Wonder - $25.00

History, tech info, hacks, schematics, re-
pairs,... almost EVERYTHING available for
the Color Computer! A MUST HAVE for
ALL CoCo aficionados, both new and old!!!
This is an invaluable resource for those
trying to keep the CoCo alive or get back
into using it

Quick Reference Guides

Handy litie books contain the most refer-
enced info in easy to find format. Size
makes them unobtrusive on your desk.
Command syntax, error codes, system
calls, etc.

CoCo 0S-9 Level Il : $5.00

0S-9/68000 : $7.00

Complete Disto Schematic set: $15
Complete set of all Disto product schemat-
ics. Great to have... needed for repairs!

SOFTWARE:

CoCo Family Recorder: Best genealogy
record keeper EVER for the CoCo! Re-
quires CoCo3, two drives (40 track for OS-
9) and 80 cols.
DECB: $15.00 0S-9: $20.00
DigiTech Pro: $10.00

Add sounds to your BASIC and M/L pro-
grams! Very easy to use. User must make
simple cable for sound input through joy-
stick port. Requires CoCo3, DECB, 512K.

ADOS: Best ever enhancement for DECB!
Double sided drives, 40/80 tracks, fast
formats, extra and enhanced commands!
Original (CoCo 1/2/3) : $10.00

ADOS 3 (CoCo 3 only) : $20.00
Extended ADOS 3 (CoCo 3 only, requires
ADOS 3, support for 512K-2MB, RAM
drives, 40/80 track drives mixed) : $30.00
ADOS 3/EADOS 3 Combo: $40.00

Pixel Blaster - $12.00

High speed graphics tools for CoCo 3 OS-
9 Level li. Easily speed up performance of
your graphics programs! Designed espe-
cially for game programmers!

Patch 0S-9 - $7.00
Latest versions of all popular utils and new
commands with complete documentation.
Auto-installer requires 2 40T DS drives
(one may be larger).

TuneUp : $20.00

Don't have a 63097 You can still take ad-
vantage of Nitro software technology!
Many OS-9 Level Il modules rewritten for
improved speed with the stock 6809!

Thexder OS-9

Shanghai 0S-9 : $25.00 each

Transfer your ROM Pack game code to
an OS-9 disk! Please send manual or ROM
Pack to verify ownership of original.

Rusty : $20.00
Launch DECB programs from OS-9! Load
DECB programs from OS-9 hard drive!

NitrOS-9:

Nitro speeds up OS-9 from 20-50% de-

pending on the system calls used. This is

accomplished by completely rewriting OS-

9 to use all the added features of the Hita-

chi 6309 processor. Many routines were

streamlined on top of the added functions!

The fastest thing for the CoCo3! Easy in-

stall script! 6309 required.

L.evel 3 adds even more versatility to Ni-

tro! RBF and SCF file managers are given

separate blocks of memory then switched

in and out as needed. Adds 16K to sys-

tem RAM... great for adding many devices!
NitrOS-9 V.2.0: $35.00

NitrOS-9 Level 3: $20.00

SAVE $10! V.2.0 & Level 3: $45.00

The ATS06 05-9 Single Board Computer

AT306 Motherboard Specs:
16 bit PC/AT I/O Bus (three slots)
MC68306 CPU at 16.67MHz

Four 30 Pin SIMM Sockets

IDE Hard Drive interface

Floppy Drive interface (180K-2.88M)
Two 16 byte Fast Serial Ports (up to 115K baud)
Two “Terminal” Serial Ports (no modem)
Bidirectional Parallel Port

Real-time clock

PC/AT Keyboard Controller (five pin DIN)

Included Software Package:
“Personal” OS-9/68000 Vr 3.0
(Industrial with RBF)
MGR Graphical Windowing Environment
with full documentation
Drivers for Tseng W32i
and Trident 8900 VGA cards
Drivers for Future Domain 1680
and Adaptec AAH15xx SCSI cards
Many PD and customized utilities and tools

The AT306 is a fully integrated single board computer. It is de-
signed to use standard PC/AT type components. Sized the same as
a “Baby AT” board (approximately 8” square). Compact and inex-
pensive enough to be used as an embedded controller! Use with a
terminal (or terminal emulation software on another computer) or
with a video card as a console system. Basic OS-9 drivers are in
ROM, making the system easy to get started with.

HACKERS MINI KIT (FARNA-11100): includes AT306 board, 0S-9 and drivers,
util software, assembly instructions/tips, 78900 1MB video card. Add your own

case, keyboard, drives, and monitor!

ONLY $500!

Call for a quote on turn-key systems and quantity pricing.
Warranty is 90 days for labor & setup, components limited to manufacturers warranty.

Microware Programmers Package -
Licensed copies of Microware C compiler, Assembler, Debugger,
and many other tools!

With system purchase: $65.00 Without system: $85.00

the world of 68° micros page 5

operating system nine

MultiView!

Rick Ulland

North & South of Computing

Computer magazines talk alot about
applications. This is fine ... applications
are what you buy a computer for. Right?
Well ... it does make a great way to sell
software but it's important to look at why
computers have historically been used
this way.

There are two directions an operating
system can take. An obvious solution with
limited hardware is to devote 100% of
the machines resources to the job at
hand. Made lots of sense for early home
computers. By now we've seen both
pretty and elegant versions and the con-
cept ‘feels’ familiar — to do a job, you buy
atool (program) and follow the directions.
You buy enough tools, they upgrade ‘em
next year. The only problem is your tool
had better have all the features needed
because if it can't do it, it can’t easily be
done. At best, this makes for some big
programs.

There is a second way to use comput-
ers. Here, the data set is king. Instead of
loading Quicken (tm,r,@,etc, etc) you go
to the directory with the bankbook data.
The difference isn't obvious when you've
only got one app anyway, but eventually
the ol’ bankbook directory will have doz-
ens of appletts sharing facts.

Folks who do mainframes and minis
are comfortable here, but this scheme
never caught the mainstream. It takes a
slightly different sort of computer. Instead
of opening a known hardware platform
and just lying there, the opsys has to steal
a little of the machines power and man-
ageit's users. From a privileged vantage,
it keeps multiple applets happy with a
single disk drive and monitor withoutlock-
ing users in some tiny utility. But the man-
agement costs are high, and single-use
computers quickly alliowed some pretty
advanced looking tools. With a new dii
and wholly owned hardware, you can do
some mean byte mashing! This only re-
inforces the tool per job mentality and the
glitz hides the fact a single task opsys
needs an ‘Office Suite’ to handle the
scheduling.

It also needs a blazing fast CPU to get
all these sequential operations out of the
way fast enough to keep the GUI run-
ning! Speedometers are a popular diver-
sion. Paradoxically, the single program
machine usually appears to be getting
more done - once it moves, it really
moves, zapping out a screen before hid-

page 6 the worid of 68° micros

ing behind the hourglass to catch up com-
puting during the user's wow time.

Trying to emulate this console-centric
view breeds big, bloated windowing pack-
ages that allow workstations to divide and
conquer any conceivable cpu upgrade
(evenly among all users). It's no wonder
few considered such a scheme practical
on a desktop!

Enter MultiVue

By overlaying a GUI on OS9's unix like
command structure, MultiVue (MVue)
provides our collection of tiny appletts with
a modem interface. With OS9 as a base,
the GUI doesn’t have to provide
multiprocess scheduling — it's only job is
to replace the text screen and keyboard
interface. if the CoCo hadn’t died out from
under it, Windint coulda beena contenda.

By creating and maintaining clickable
menus at the opsys level it brings real time
to the user interface. With applications
relieved of the need to talk to a human,
they can concentrate on the job at hand
and OS9's inherent strengths keep our
motley collection of software chugging
along without the burps and hiccups com-
mon in wintel. You can even close and
reopen programs!

In answer to the recent CoCo-list ques-
tion ‘What does real time response pro-
vide the average CoCo user?’ | point to
aworking cursor (someplace) at all times.
Remember, these applications were not
specially written to appear to multitask!
In fact, if you leam to roll over the delays
with extra windows a MultiVue CoCo can
run with a 386 Windows box. This is not
the same as saying it's as fast as a 386 -
- screen resolution is less and the files
much smaller. It’s the tortoise and hare -
- does your bank book really need more
than 10 decimal palces?

Those that have built a real MultiVue
system know that at first, speed is not an
issue. Just getting a usable system up is
enough. To begin, here aren’t many pro-
grams for Windint. Other than Hypertech
(ShellMate, MVCanvas) and Gravity Stu-
dios (Planet Engine) none come to mind.

Even so, a stock CoCo staggers badly
if you throw too much OS9 at it. Tinker-
ing types can patch the CoCo to a rea-
sonable level — get a hard disk to avoid
the halting floppy, patch to Ed9 clock for
rs232 work, and any serious terminals
need buffered serial like Fast232
(CoNect). With more than one port, tie

irqg (CART) on the mpi (“strap” the CART
lines). There are still limits imposed by
the hardware, mainly visible as a periodic
spasm/crash. Those little keyscan and
mousecount routines still manage to get
in the way sometimes.

Ifyou don’t write programs, Windintre-
mains just an interesting factoid so we'll
stick to the highlight reel. Some of the
‘additions’ are mere gingerbread — shad-
owed dialog boxes are pretty but a simple
change of background color would serve
and not cost a gfx console.

The menu windows are the meat of the
package. A few simple system calls can
arrange the number and contents of
menus on the bar, and the mouse han-
dler takes care of monitoring them. The
mouse will signal when clicked, then re-
port the scaled X/Y data range or retum
menu and selection numbers if outside
the work area.

Scrollbars are simply another menu
(actually id# 4-7 for 4 ways), and a hotkey
press is returned as a selection from
menu 8. Stock menus Tandy(20),
File(21) and Edit(22) are predefined for
any program, which can add custom
menus 128-255 to total 10 menus of 20
items each. This is great news if you've
got a data cruncher and need an inter-
face. Create your own menu library with
a few includes.

For the rest of us, the main thing
MultiVue supplies is gshell. Download
Mark Marlette's excellent patch set and
you've got almost everything you need
to make the CoCo easy to use next time.
When it's time to do email, | want to click
the phone and go. MultiVue supplies that,
at the cost of ‘hacking CoCo’ occasion-
ally. If you don’t think it's sort of fun to
draw new icons and invert procedure files,
and you don't have an other who does, it
will take some patience to replacing the
pretty interface supplied with a ‘suite’.

All we're given is the pathlist. This is
literally the directory structure of a
system’s hard drive but can also be read
as a series of menu choices. Consider
the path /user/desktop/graphicsfimages
... this is a logical set of menu choices
when looking for a big pile of images, and
thats what you'll find after clicking a few
file folder icons. The programs that work
with them are nowhere to be seen, which
makes for a nice clean directory listing
but leaves the user a little lost. This is
normal OS9 but even with a printed list /

command line various on an obscure con-
traction of a process who's name is long
forgotten is not all that useful!

Gshell adds small data files to link these
programs to the directory (by location),
and the specific data file type (by file ex-
tension). The directory screen starts with
the AIF list followed by the files them-
selves. Works like a win toolbar, just click
up top to load and run as many bits of
the graphics suite as needed, or launch
a data file directly. Imagine this interface
projected to the animated audio icon level
and you wonder why “They” stretched
so far for ‘weblike’?

Giving itago

It seems lots of folks stumble getting
MultiVue installed. It does require a
change to the operating system itself.
What'’s actually not that difficult a process
is hidden inside Tandy’s auto installer,
which promptly explodes if you throw
anything interesting at it. All it's doing is
replacing the standard Lvi2 Grfint mod-
ule with Windint and doubling the num-
ber of installed window descriptors for
some GUI room. The rest of the install is
simply copy the program with the only
wrinkle adding a /dd/CMDS/ICON
directory.

From: Dennis Bathory-Kitsz

Hi folks! I’ve been hiding out
in Vermont, but since it’s the
10th anniversary of my com-
pany Green Mountain Micro’s
demise, I thought it might be
time to put in an appearance
here.

About 150 copies of ‘Learn-
ing the 6809’ (book only) re-
main, which I’d be happy to
offer at $10 postpaid to any-
one interested. If at least 10
people also want the original
tapes, I'd be pleased to make
up a set of those as well.

One of these days I'l1 tell my
own tale ... amusing indeed...

Dennis Bathory-Kitsz

RD 2 Box 2770

Cox Brook Road
Northfield, Vermont 05663

<bathory@maltedmedia.com>
Malted/Media:
http://www.maltedmedia.com/

If your hacking has been limited to
modpatch and cobbler, there’s some prep
work undone. You could build a Tandy
MVue and simply repatch everything, but
this will come up again. Better to save
any changes made to your pre-multivue
system as discrete modules. This way,
0S9's system builder of last resort
(OS9Gen) can recreate any version from
a selection of bootlist files.

Luckily, you've just gotten the tool to
do this. MultiVue includes the OS9 save
utility, hidden away in the pmpts file. Load
pmpts off the MVue disk and let save
save itself (command: save save save).
Now you can save anything you've
modpatched as an official system mod-
ule. Common changes will be to descrip-
tors (fterm, /2, /dd, etc) although almost
every OS9 module has been patched by
somebody. Save stores things in the ex-
ecution directory (usually you are saving
executable program modules) so you'll
want to divert that with a chx to wherever

you keep your system modules, saving
each update under a descriptive name
like d1_80d6ms.dd. Copy all the MVue
supplied modules in as well.

You'll find both the stock and MultiVue
disks include a bootiist file. Comparing
the two, changes are limited to replacing
Grfint with Windint, and adding a half
dozen window descriptors. You'll want to
edit in your updates, add hard disk driv-
ers and so on.

Once the list is complete OS9Gen
makes short work of a new bare boot.
On a hard disk system, this is close to
the end. Copy cc3go and shell to make
a bootable floppy and make sure all
MVue’s programs have been moved to
the HD. You can decide if you want MVue
to autostart — what they've done is copy
multistart to a file with the key name
autoex. Rename autoex MVue, and type
that to manually start the program.

Even if you don't always run MultiVue,
you might want to take advantage of its

NEW PRODUCT ANNOUNCEMENT:

Nickolas Marentes is proud to release

** rdae-

man **

“A tribute to the great game”
For the Tandy Color Computer 3 with 512K RAM and Disk Drive

Finally! A version of the 1980 classic that is so similar to the original that you will think
you ARE playing the original. Many of the original's features and characteristics have
been included to make this game as faithful to the original Namco classic as possibie.
Fun, clean, violence free, 80's style entertainment for the whole family.

Features include:
* Most of the original sound effects
* Accurate replica of the original maze

* Accurate display of graphics and animations

* Many of the originals game play elements

* Coded in 100 percent 6809 assembly language

* Runs at 60 fps with 2 channel digital sound

* Keyboard and Joystick controis

* Reduced function DEMO version available as Freeware.

* Low price for full registered version ($20)

Get the best version of this historic game for your CoCo3 today!

Available from:
- USA -

Rick's Computer Enterprises, P.O. Box 276, Liberty, KY 42539
intemet Page: www.voicenet.com/~swyss/cfdm.html

E-mail: rcooper@kih.net

- AUSTRALIA -

Nickolas Marentes, P.O. Box 2003, Runcom, 4113, QLD.
Intemet Page: www.launch.net.au/~stauros/nickpage/ (FREE DEMO!!)
E-mail: N.Marentes@mailbox.uq.edu.au

Pac-man is the registered trademark and property of Namco/Midway.
Money collected is payment for the work involved in the development of the 6809 code.
The author has not seen or copied any of the original’'s Z-80 code.

the world of 68 micros page 7

control applet, which sets system colors,
key speed and the like. To invoke all
MVue settings in any boot just add the
line control -e to the startup file. To change
system settings, fire MVue and run con-
trol ... macho types can edit /dd/sys/
env.file, a Gatezian ini file that explains
itself.

Floppy users have a small problem to
work around. What MVue wants is con-
stant access to all executables in /dd/
CMDS, all icons in /dd/CMDS/ICONS,
and all system data in /dd/SYS. This is
very hard to do when/ddis a 360K floppy.
The best luck I've had is with a 2 disk
boot, where startup loads common utili-
ties from ‘merged files’ then a second disk
is swapped in for normal running. A 360K
floppy can add 200K of ‘RAMdisk’ in
preloaded commands, leaving 200K
RAM to run them in. The second disk al-
ways has the complete ICONS dir for all
data disks, and the complete SYS. The
lithe bit of leftover room is filled with com-
mands not preloaded, and drive #2 can
combine specific programs with their data
— for example the non-boot contents of a
Tandy program disk.

I've heard of a trick here that I've never
had identical sized floppies to try. The
idea is to make up a boot disk compete
with CMDS, CMDS/ICONS, and SYS
directories, then use backup to make
identical copies of this disk. Now make
the replacement /d0 disks by deleting and
adding files to one of the boot disk
clones. You'll end up with multiple pro-
gram disks that don't leave out any im-
portant files, since each has to be explic-
ity deleted. The good part is this leaves
the CMDS dirs at identical locations on
each former clone. You don't have to chx
when they're swapped! With MVue’s
change execute dir hidden off in the
menus, this is no small favor.

Once MVue boots, the process of re-
organizing begins. If you've been follow-
ing standard OS9 practice, the placement
work is mainly done, perhaps a little re-
naming to emphasize the menu nature
of the directory tree. The filenames may
be done aiso.

A typical program uses a three letter
extension to identify its datafiles and
MVue sorts data files into categories by
the same extensions. Any file named
AlF)ox is assumed to contain info to
launch the appropriate program. The fine
pointis these AIF links aren’t part of some
system wide database, but loaded on the
fiy from the data directories encountered
as the user climbs among the tree.

Where you put an aif is as important

page 8 the world of 68' micros

as whats in it. For speed, you want the
user to pick up often used AlFs early so
later directories don’t need a separate
copy. Litlle used ones can be placed far
up the tree where they will rarely be
loaded. You can even control the pro-
grams offered by the system, again us-
ing the pathlist.

When an ICON is loaded, it over rides
any future aifs using that extension. If
icons for system administration utilities
are in SYS and the user goes there, he’ll
carry the ‘system administrator’ aifs with
him until flushing the cache by selecting
a drive icon.

A typical example — the /desktop/write
path assigns .doc to dynastar, a word pro-
cessor. The /sys/docs path links .doc to
vu, for fast file listing. To edit one of the
Isys/doc files user climbs to the desktop
(locking in DynaStar), then climbs over
to docs without using the /h0 button. The
vu aif.doc can't load, so all the doc files
have word processor icons. A parting bit
of placement trivia — name each one in
capitals. A gsort will put AIF.XXX ahead
of almost anything.

Programming

An AIF is a simple creature, nine lines
oftext representing program name, com-
mand line options, path to icon, ram size
(O for default), screen type, x size, y size,
forecolor, and backcolor. Any text editor
can make them, but you'll need to down-
load an icon editor to create the match-
ing pictures. For examples, we’'ll list a few
standard AlFs that should have been sup-
plied with MultiVue, but weren’t.

First, an 80 column text shell or basic09
workspace. Add separate AlFs for a
couple of gfx screen versions:

shell basic09
(blank line) #32K
iconsf/icon.ops iconsf/icon.b09
0 128

7 7

80 32

24 16

1 1

0 0

After the command kne, notice the shell
aifs blank line adds no command line
options while the basic09 version calls for
a 32K workspace . A third altemative (af-
ter patching gshell) is to put a question
mark here. The machine will then ask the
user for command line options at run time.
You have to know how to type them in so
a final option is multiple AlFs with com-
monly used option settings.

Note that both examples use a type 7
text screen, 80x24 initial size. If you think
about it, the 2 lines following seem re-
dundant — the system should know that
a type 7 screen is an 80x24 box. What
they do is allow sizeable windows. The
example uses a 32x16 shell to match the
older Basic09 screen format. Simply
specify a window size smaller than full
screen and clicking causes a place
screen to appear. The user can position
this minimum size window among other
running programs, or drag it up to full win-
dow size.

Then there are packed Basic09 pro-
grams. The normal method of launching
(runb program) works, but translates to
first line (programname)=runb, second
line (options)= BOS program name. This
leaves all the B09 icons titled ‘runb’. While
the gshell patch removes the need to ex-
plicitly call runb you have to manually edit
all the AlFs to take advantage, moving
line 2 to line 1 to get meaningful AlF titles.

Another earty project should be an AIF
for the control program. It already has a
menu slot, but the menu selection uses
the exsisting (usually 4 color) screen.
Setup the AIF to fire control (no options)
in a 16 color window and set ALL the
colors with the mouse! You can also
make an AlF for multistart, and click for
a second, separate gshell.

For years, | thought this couldn’t be
done — attempting to fire two gshells in
startup leaves one with a dead menubar.
The aif sometimes creates a menu bar
that appears dead but a click reveals
things are working fine.

And I'm out of time! As usual, we have
a disk for those without modem -- $5
S&H, specify 158 (single sided 5.257),
360 (double sided 5.25), or 720K (3.5")
format. More later.

CoNect

1629 South 61st Street

West Allis, WI 53214
(pulland@omnifest.uwm.edu)
414-328-4043

Tetris!

An assembly game for the CoCo 3

Lorne Kelly

This is an assembly language version
of Tetris that | wrote. Run The basic pro-
gram to generate DATA.BIN, assembie the
assembly (absolute origin), load data.bin,
and start execution at /SS. | know this
could be done much better - it was just
for fun...

00010
00020 * TETRIS BY LORNE KELLY *
00030 * 11/23/96 THIS PROGRAM *
00040 * REQUIRES A BLOCKOF *
00050 * DATA WITH BYTEMAPS FOR *
00060 * GRAPHICS ETC. (GENERATE*
00070 * WITH TETRIS.BAS) -
00080
00100 ORG $6600
00105 BLANK EQU $80

Background color
00110 SCREEN EQU $400

Screen starts here
00120 SDATA EQU $6000

Data to draw screen
00130 BLDATA EQU $6200

Data for block shapes
00140 AGNMSG EQU $65A0

‘Play again?’ message
00150 STACK EQU $5FFF

User stack goes here
00160 POLCAT EQU $A000

Scan keyboard

00170
00180 CURBLFCB$2
Current block variable
00190 CURRO FCB$18
Current rotation
00200 CURCOR FDB$404
Current coordinate
00210
00220 *draw the game screen
00230 CLRSCR LDX#SCREEN
00240 LOOP1 LDY SDATA-SCREEN, X
00250 STY X++
00260 CMPX #$600
00270 BNELOOP1
00280 RTS
00285
00290 * Erase block at old co-coordi-
nates, Test new pos, and draw.
00300 DRAWBL. LDX#BLDATA
00310 PSHU X)Y,D
00320 LDY CURCOR
00330 LDD CURBL
A=Block(0-7) B=Rotation(0,8,16, or24)
00340 ABX Rotation
00350 LDB #128
Size of a block (all 4 rotations)
00360 MUL Block
00370 LEAX D,X Load x with offset
00380 LDB#8 Block is 8 bytes wide
00390 ERASE LDA X
00400 CMPA #BLANK
00410 BEQSKIP10
00420 LDA #BLANK
00430 STAY

00440 SKIP10LDA 32,X
00450 CMPA #BLANK
00460 BEQSKIP11
00470 LDA#BLANK
00480 STA 32)Y

00490 SKIP11 LDA64,X
00500 CMPA #BLANK
00510 BEQSKIP12
00520 LDA #BLANK
00530 STA 64

00540 SKIP12LLDA96,X
00550 CMPA #BLANK
00560 BEQSKIP13
00570 LDA #BLANK
00580 STA 96Y

00590 SKIP13LEAX 1,X
00600 LEAY 1Y
00610 DECB

00620 BNEERASE

00630 *Test for room at new position

00640 PULU D,Y,X

00650 TDNEW PSHU X)Y,D

00660 ABX

00670 LDB #128
00680 MUL

00690 LEAX DX
00700 LDB #8

00710 TEST LDA X
00720 CMPA #BLANK
00730 BEQSKIPE
00740 LDAY

00750 CMPA #BLANK
00760 BNENOROOM
00770 SKIP6 LDA32,X
00780 CMPA #BLANK
00790 BEQSKIP7
00800 LDA32)Y
00810 CMPA #BLANK
00820 BNENOROOM
00830 SKIP7 LDA64,X
00840 CMPA #BLANK
00850 BEQSKIP8
00860 LDAG4Y
00870 CMPA #BLANK
00880 BNENOROOM
00890 SKIP8 LDA96,X
00900 CMPA #BLANK
00910 BEQSKIP9
00920 LDA96Y
00930 CMPA #BLANK
00940 BNENOROOM
00950 SKIP9 LEAX 1.X
00960 LEAY 1Y
00970 DECB

00980 BNETEST

00990 *TEST SUCCESS! Store new
pos,block & rotation

01000 PULU D,Y,X
01010 STY CURCOR
01020 STD CURBL
01030 LDY #0
01040 PSHU X)Y,.D

01050 *Draw at stored location

& rotation

01060 NOROOMLDYCURCOR

01070 LDX #BLDATA
01080 LDD CURBL
01090 ABX

01100 LDB #128

01110 MUL

01120 LEAX D,X

01130 LDB#8

01140 DRAW LDA X
01150 CMPA #BLANK
01160 BEQSKIP

01170 STAY

01180 SKIP LDA 32,X
01190 CMPA #BLANK
01200 BEQSKIP1

01210 STA32)Y

01220 SKIP1 LDA64,X
01230 CMPA #BLANK
01240 BEQSKIP2

01250 STA64)Y

01260 SKIP2 LDA96,X
01270 CMPA #BLANK
01280 BEQSKIP3

01290 STA 96,

01300 SKIP3 LEAX 1,X
01310 LEAY 1Y

01320 DECB

01330 BNEDRAW

01340 PULU D,Y,X
01350 RTS

01355

01360 *EXEC location
01370 SSLDU #STACK
01380 LBSR CLRSCR
01390 LBSR NEWBL
01395 *"Main Loop Area
01400 LOOP15 JSR[POLCAT]
01410 JSR CHOICE
01415 LDY #0 Y is fail flag
01420 LBSR FALL
01425 CMPY #0 did fali fail?
01427 LBNE AGAIN yes! End game.
01430 LBSR RNDAB
01440 BRALOOP15
01445

01450 CHOICE CMPA #0
01460 BEQNOKEY
01490 CMPA #$4B K
01500 BEQROTATE
01530 CMPA #%4A J
01540 BEQMOVEL
01550 CMPA #$4C L
01560 BEQMOVER
01570 CMPA #$20 SPAC
01580 LBEQ DROPBL
01590 NOKEYRTS

01595

01600 MOVELLDY CURCOR
01610 LEAY -2)Y

01620 LDA CURBL
01630 LDB CURRO
01640 LBSR DRAWBL
01650 RTS

01655

01660 MOVER LDYCURCOR
01670 LEAY 2Y

01680 LDA CURBL

the world of 68' micros page 9

01690 LDB CURRO

01700 LBSR DRAWBL

01710 RTS

01705

01720 ROTATE LDYCURCOR

01730 LDA CURBL

01740 LDB CURRO

01750 ADDB #8next rotation

01760 CMPB #$20 Iast rotation

01770 BNE SKIPS

01780 CLRB retumn to O rotation

01790 SKIPS LBSR DRAWBL

01800 RTS

01803

01805 *Drop block to bottom

01810 DROPBL LDYCURCOR

01820 LDD CURBL

01830 LEAY +32)Y one line

01840 LBSR DRAWBL

01850 LDX#$750

01860 LOOP16 LEAX -1,X

01870 BNELOOP16

01880 CMPY #0

01890 BEQDROPBL

01900 NEWBL BSR TETRIS

01910 BSRRNDAB

01920 STD CURBL

01930 LDY #SCREEN+5

01940 STY CURCOR

01950 LBSR TDNEW

01980 RTS

01983

01985 *Generate random number
for block & rotation

01990 RNDPTR FDBS$A000

02000 RSTPTR LDX#$A000

02010 STXRNDPTR

02020 RNDABLDX RNDPTR

02030 LEAX 1,X

02040 CMPX #$B000

02050 BEQRSTPTR

02060 STX RNDPTR

02070 LDB #$18

02080 ANDB [RNDPTR]

02090 LDA #$7

02100 ANDA [RNDPTR]

02110 CMPA #$7

02120 BNE SKIP20

02130 LDA#3

02140 SKIP20 RTS

02143

02145 * Check if time for biock to fall

02150 FALTMR FDB$500

02160 FALLLDX FALTMR

02170 LEAX -1,X

02180 CMPX #0

02190 BEQFALRST

02200 STX FALTMR

02210 RTS

02220 FALRST LDX#$500

02230 STXFALTMR

02240 LDY CURCOR

02250 LDD CURBL

02260 LEAY 32Y

02270 LBSR DRAWBL

02280 CMPY #0

02290 BNENEWBL

02300 RTS

02304

02305 *test for full line (a tetris)

02310 TETROW FDBSCREEN+1

page 10 the world of 68’ micros

02320 TETRISLDY TETROW
02330 LEAY 32)Y

02340 CMPY #S$5E1

02350 BEQTETRST

02360 STY TETROW

02370 LDA #21

02380 LOOP25 LDB,Y+
02390 CMPB #BLANK
02400 BEQTETRIS

02410 DECA

02420 BNELOOP25

02430 BRATETYES

02440 TETRST LDY#SCREEN+1
02450 STY TETROW

02460 RTS

02465 *clear line and start test over
02470 TETYES LDYTETROW
02480 LDB #10

02490 LOOP26 LDX-32)Y
02500 STX,Y++

02510 DECB

02520 BNELOOP26

02530 LDY TETROW

02540 LEAY -32)Y

02550 STY TETROW

02560 CMPY #SCREEN+1
02570 BEQDONE

02580 BRATETYES

02590 DONE BRATETRIS
02593

02595 * Play again?

02600 AGAIN LDX#AGNMSG
02610 LDY #$4E0

02620 LOOP30 LDD, X++
02630 STD,Y++

02640 CMPY #$540

02650 BNELOOP30

02660 LOOP31 JSR[POLCAT]
02670 CMPA #$4E N
02680 LBEQ QUIT

02680 CMPA #3$59 Y
02700 LBEQ SS

02710 BRALOOP31

02720 QUITRTS Change to swi for zbug

02730 END
DATA.BAS
10 CLEAR 2000,&H6000

20FORX=1TO 15
30 PRINT CHRS$(131);

40 PRINT STRING$(20,128),CHRS$(131);

50 PRINT STRING$(1,128)
60 NEXT X

70 PRINT CHR$(128);

80 FOR X =1TO 10

90 PRINT CHR$(132);CHR$(136);
100 NEXT X

110 PRINT STRINGS$(2,128);

120 PRINT @2°32+24,"TETRIS!"
130 PRINT @3°32+24," .

140 PRINT @1°32+24," -

150 PRINT @5*32+24,"J LEFT"
160 PRINT @6°32+24,"K TURN"
170 PRINT @7*32+24,"L RIGHT"
180 PRINT @11*32+26,"1.0"

190 PRINT @10°32+24,"VERSION"
200 PRINT @9*32+24,"11/2/96";
210 PRINT @13*32+25,"LORNE"
220 PRINT @14*32+25,"KELLY"
230 COPY UP TO $6000

240 DEST=&H6000

250 FOR X = &H400 TO &H5FF

260 POKE DEST,PEEK(X)

270 DEST=DEST+1

280 NEXT X

290 ‘DRAW BLOCKS PAGE 1

10000 ‘white square

10010 DATA 207,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0
10020 DATA 207,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0
10030 DATA 207,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0
10040 DATA 207,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0
10050 ‘red line

10060 DATA 191,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0
10070 DATA 191,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0
10080 DATA 191,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0
10090 DATA 191,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0
10100 ‘pale blue T

10110 DATA 223,0,0,0,0,0,0,0,0, 1,1,1,0,0,1,0,0
10120 DATA 223,0,0,0,0,0,1,0,0,1,1,0,0,0,1,0,0
10130 DATA 223,0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,0
10140 DATA 223,0,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0
10150 * green step

10160 DATA 143,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0
10170 DATA 143,0,0,0,0,0,0,1,0,0,1,1,0,0,1,0,0
10180 DATA 143,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0
10190 DATA 143,0,0,0,0,0,0,1,0,0,1,1,0,0,1,0,0
10200 READ A

10210 FORY=0TO 3

1020 FORX=0TO 3

10230 READ C$

10240 IF C$="0" THEN POKE&H400+0+X"2+
(Y*32),128:POKE &H401+0+X*2+(Y*32),128
10250 IF C$="1" THEN POKE&H400+0+X*2+
(Y*32),A:POKE&H401+0+X*2+(Y*32),A

10260 NEXT XY

10270 O=0+8:IFO/32=INT(O/32)THENO=0+
32*3

10280 IF O >12*32+30 THEN GOTO 10300
10290 GOTO10200

10300 ‘REM COPY UP

10310 DEST=&H6200

10320 FOR X = &H400 TO &H5FF

10330 POKE DEST,PEEK(X)

10340 DEST=DEST+1

10350 NEXT X

10360 ‘DRAW BLOCKS PAGE 2

20000 ' BLUE REV STEP

20010 DATA 175,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0
20020 DATA 175,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0
20030 DATA 175,0,0,0,0,0,0,0,0,0,1,1,0,1,1,0,0
20040 DATA 175,0,0,0,0,1,0,0,0,1,1,0,0,0,1,0,0
20050 * YELLOW L

20060 DATA 159,0,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0
20070 DATA 159,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0
20080 DATA 159,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0
20090 DATA 159,0,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0
20100 ' PURPLE REV L

20110 DATA 239,0,0,0,0,0,0,1,0, 0,0,1,0,0,1,1,0
20120 DATA 239,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0
20130 DATA 239,0,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0
20140 DATA 239,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0
20150 ‘rem blank

20160 DATA 143,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20170 DATA 143,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20180 DATA 143,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
20190 DATA 143,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
201950=0

20200 READ A

20210 FORY=0TO 3

20220 FORX=0TO 3

20230 READ C$

20240 IF C$="0" THEN POKE &H400+0+X"2+

28456 S.R. 2, New Carlisle, IN 46552
219-654-7080 eves & ends MO, Check, COD;, US Funds

HaWk\%ﬁ Shipping included for US, Canada, & Mexico

MM/1 Products (0S-9/68000)
CDF $50.00 - CD-ROM File Manager! Unlock a wealth of files on CD with the MM/1! Read most text and
some graphics from MS-DOS type CDs.

VCDP $50.00 - New Virtual CD Player allows you to play audio CDs on your MM/1! Graphical interface
emulates a physical CD player. Requires SCSI interface and NEC CD-ROM drive.

KLOCK $20.00 - Optional Cuckoo on the hour and half hour!! Continuously displays the digital time and
date on the Aerm screen or on all open screens. Requires I/O board, 1/O cable, audio cable, and speakers.

WAVES vr 1.5 $30.00 - Now supports 8SVX and WAV files. Allows you to save and play all or any part of
a sound file. Merge files or split into pieces. Record, edit, and save files; change playback/record speed.
Convert mono to stereo and vice-versa! Record and play requires I/O board, cable, and audio equipment.

MM/1 SOUND CABLE $10.00 - Connects MM/1 sound port to stereo equipment for recording and play-
back.

GNOP $5.00 - Award winning version of PONG(tm) exclusively for the MM/1. You’ll go crazytrying to
beat the clock and keep that @#$%& ball in line! Professional pongists everywhere swear by (at) it! Requires
MM/1, mouse, and lots of patience.

CoCo Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug n’ Power controller back on the
job with your CoCo3! Control up to 256 modules, 99 events! Compatible with X-10 modules.

HI & LO RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or no adapter at the flick of a
switch! No more plug and unplugging of the joystick!

KEYBOARD CABLE $25.00 - Five foot extender cable for CoCo 2 and 3. Custom lengths available.

MYDOS $15.00 - Customizable, EPROMable DECB enhancement. The commands and options Tandy left
out! Supports double sided and 40 track drives, 6ms disk access, set CMP or RGB palettes on power-up,
come up in any screen size, Speech and Sound Cartridge support, point and click mouse directory, and MORE
OPTIONS than you can shake a stick at! Requires CoCo3 and DECB 2.1.

DOMINATION $18.00 - Multi-Player strategy game. Battle other players armies to take control of the
planet. Play on a hi-res map. Become a Planet-Lord today! Requires CoCo3, disk drive, and joystick or

\

4 SMALL GRAFX ETC.

“Y™ and “TRI” cables. Special 40 pin male/female end connectors,

priced EACH CONNECTOR - $6.50
Rainbow 40 wire ribbon cable, per foot - $1.00
Hitachi 63B09E CPU and socket - $13.00
MPI Upgrades for all small MPIs (satellite board) - $10.00
Serial to Parallel Convertor with 64K buffer

and external power supply - NOW ONLY $28.00!!!
Serial to Parallel Convertor (no buffer)

and external power supply - ONLY $18.00!!!
2400 baud Hayes compatible external modems - $15.00
Serial to Parallel Convertor or

Modem cable (4 pin to 25 pin) - $5.00

ADD $3.00 S&H FOR FIRST ITEM, $1.00 EACH ADDITIONAL ITEM

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK JET PRINTERS, RIBBONS & vr. 6 EPROM FOR CGP-
220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

Terry Laraway
41 N.W. Doncee Drive
Bremerton, WA 98311

360-692-5374

\-

(Y*32),128:POKE&H401+0+X*2+(Y*32),128
20250 IF C$="1"THENPOKE&H400+O+X*2+
(Y*32),A:-POKE&H401+0+X*2+(Y*32), A
20260 NEXT X,Y

20270 O=0+8:IFO/32=INT(O/
32)THENO=0+32"3

20280 IF O >12*32+30 THEN GOTO 20300
20290 GOT0O20200

20300 PRINT@14*32,"DO YOU WISH TO
PLAY AGAIN? <Y/N>";

20310 DEST=&H6400

20320 FOR X = &H400 TO &H5FF

20330 POKE DEST,PEEK(X)

20340 DEST=DEST+1

20350 NEXT X

20360 PRINT'BYTEMAP SAVED IN_

DATA.BIN® ' ‘:"2\

kelly@polar.enet.dec.com (work) '

ci245@freenet.carleton.ca (home) ‘.

Lihat are
you waiting
for?

Get your friends
1o subseribe
1o the only
magazine that
sHll supporis the
Tandy Color

Computer...

“¢he world of
687 mieros’

The more
people who
want support,
the longer i#
will be here!

the world of 68’ micros page 11

The Embedded Programmer Paul K. McKneely

Life and Death of the Boot Process

One of the most intriguing things about advanced computer system software is how it appears to run many
programs at once when we know that there is only one processor in the system. This problem becomes
much simpler to comprehend when we narrow our focus to one “main program” that is active all the time that
| call the Boot Process. Before we go too much further, though, let's define a few terms:

Program: A functional unit of executable code.

Process: A sequence of program execution, including its runtime context.

Task: A kind of pre-emptible process together with its threads and

associated I/0O resources that does not have system priviledges.
Thread: One stream of execution within a Task.

Various authorities define these terms differently so we will use these rough definitions for the purposes of
our discussion. Notice that this definition of the word process is very general and it applies to system as well
as application software. In fact, the execution of an interrupt service routine itself is a process. A task, on the
other hand, is more specific and it excludes the inner parts of system software. Furthermore, task does not
even imply that there is only a single execution stream. In modemn operating systems, it is possible for a
single task to have many execution streams (j.e. threads) active at once.

If we ignore, for now, that our system may be very complex with many things going on at once, we can get
a better idea of how to coordinate such a system using a single process called the Boot Process. When you
first apply power to your computer, the processor begins to execute a single stream of execution that is
never pre-empted (but will be temporarily suspended by interrupt service routines) and it basically runs until
your system either crashes or completes an orderly shut down. The Boot Process is the main process
responsible for tying all of the system together and it oversees program execution by the processor. So if we
were to draw a simple diagram of the life of the Boot Process it would be something like the one below:

CCCCCCCE=eee(
Reset Initialize (Scheduler (Deinitialize Halt
> aeeeeee e eaecccccccccccccccce

A A N N N L e
Startup Phase Run Phase Shutdown Phase

The life cycle of the Boot Process is divided into three phases: Startup Phase, Run Phase, and Shutdown
Phase. Startup Phase begins with system reset. There are quite a lot of things that have to get done before
the system is ready for use and this is where the basic kernel-level initialization is done. When these things
are completed, the Boot Process enters the Run Phase. Here the Boot Process enters a program called the
Scheduler which is a looping algorithm that determines what other processes are to get execution time. The
only processes that are not directly controlled by this algorithm are the interrupt processes. This is because
the mechanism that decides what interrupt processes are to run is done in hardware. When the person
responsible for the system decides to shut it down, the Boot Process eventually exits the Scheduler, entering
the Shutdown Phase. This causes things to be cleaned up properly so the system can be tumed off.

The Startup Phase is the most complicated of all of the phases because it has to get the computer in
normal running order. By the time this phase is completed, all of various parts of the Kemel are initialized and
ready for operation. Let’s look at this phase in a little more detail. Below is a list of the major steps that take
place during the life of the Boot Process with the Startup Phase (marked by*) resolved into several steps:

*Reset

*Set up temporary ISP

*Scan Main Memory (and possibly clear)

*Partition Memory

*Initialize Kernel

*Initialize On-board Device Objects

*Load Startup Task

Run Scheduler

Perform Orderly Shutdown

Stop
page 12 the world of 68’ micros

Reset

Reset is a rather simple step because most of the important
work is done in hardware. A well-designed computer will route
a system reset signal to all of the various hardware compo-
nents and get them ready to start from the beginning. The most
critical thing that has to happen during reset is that all interrupt-
ing devices must turn off their interrupt requests.

Setting Up a Temporary ISP

Most 68K-based computers have some memory available
immediately at power-up. It is often dynamic memory or ECC
(Error Checking and Correcting) memory that requires initial-
ization before it can be used. Even so, in many systems it is
necessary to set up a temporary stack before the rest of initial-
ization can take place. For example, the memory scan algo-
rithm discussed in the next section has the potential of gener-
ating an exception so an interrupt stack with at least a few
bytes of good memory mustbe setup. In the CD68X20, this is
not a problem because main memory is immediately ready for
use. Setting the ISP at 16K is a good place to start. In systems
like the MVME177 where the main memory module must first
be initialized before use, the board provides an appreciable
amount of static memory that can be used before the main
memory is ready.

Measuring Main Memory

The first thing our system will do after reset is to find out how
much main memory there is. There is litle our system can do
without main memory at its disposal. In some systems this is a
trivial task and in others it can get rather complicated. The (Ker-
nel requires that main memory begins at location 0. This has
two advantages. First of all, the original 68000’s EVT starts at
0 so we know that our kemmel will work with the whole 68K
family. Secondly, you can efficiently access the first 32K of
address space using short addressing.

For those of you who are used to writing functions in assem-
bly language that are called from HLL's such as C and Pascal,
it is worthy to note that the Boot Process does not have to save
any of the registers before using them. Thisis because itis the
only code in the whole system that was not called by some-
thing else. However, the Boot Process does reserve certain
registers to be used for special purposes during parts of the
startup sequence. After reset is complete, the A6 register is
reserved for pointing to the byte location that is one past the
last usable byte of main memory. Notice that this address tums
out to be the total amount of usable main memory because
main memory always begins at location 0.

The example | will discuss works on the CD68X20 from Pe-
ripheral Technology. The CD68X20's main memory is ready
for use immediately after reset. All you have to do is to find out
how much there is. This is in contrast to the MVME167 and
MVME177 single board computers from Motorola that require
complicated initialization before their dynamic RAM modules
can be used. But even on the CD68X20, detecting the end of
memory is more tricky than you might think. Below is a se-
quence of code that measures the amount of main memory
available to the system. Forreasons to be discussed later, main
memory is assumed to be (and can only be used) in incre-
ments of 4 KBytes (Pages):

;Measure Main Memory in increments of 4K

:D0=All 0's Bit Pattern

:D1=All 1's Bit Pattern

;D2=Test Register

;A0=Original ISP

;A6=End of Memory

SizMem: MOVE.L A7,A0 ;Save ISP
LEA.L (SizMem9,PC),A1
MOVE.L A1,(8).W ;Buss Ermor Vector

SUB.L A6,A6 ;A6=End of Main Memory
CLR.L DO ;D0=All 0's
MOVEQ #-1,D1 ;D1=All 1's

;Try 1st combination

SizMem0: MOVE.L D1,(A6) ;Write the 2nd Pattem
MOVE.L A6,D2 ;At 1st Page?
BEQ.B SizMem1
TST.L (0).W ;\Wrapped Around?

BNE.B SizMem10

SizMem1: MOVE.L DO0,(4,A6)

CMPL (A6),D1
BNE.B SizMem10
CMP.L (4,A6),D0
BNE.B SizMem10

;Try 2nd combination

MOVE.L DO,(A6)
MOVE.L D1,(4,A6)
CMPL (A6),D0
BNE.B SizMem10
CMPL (4,A6),D1
BNE.B SizMem10

;Approved!

ADDW #4096,A6
BRA.B SizMem0

SizMem9: MOVE.L A0,A7

SizMem10:

We begin our algorithm by setting our end-of-memory bound-
ary pointer (A6) to the beginning of memory (location 0). A6
points to the first location within the next Page to be tested. Al
memory locations lower than the value in A6 (unsigned) are
considered to be good memory. We test all bits of the first 8
locations of the page for the ability to store 0’s and 1’s. If all bits
pass this test, the whole page is approved and we go on to the
next page. The way we do this is to write all 1's to the first four
byte locations then we write all 0’s to the next four byte loca-
tions. We then go back to see if the 1’s we wrote in the first
four locations are still there. The reason why we altemate be-
tween two patterns instead of using just one at a time is be-
cause there can actually be enough capacitance in the data
lines to store the values intended to go to memory evenif there
is no memory there. Since we are testing for 1’s when the pro-
cessor just wrote 0's we can be assured that there is good
memory there if the value returmned is the same as what was
written at that location earlier.

To make sure that we are not just reading back values that
the bus circuitry always likes to retum at these locations even
without memory actually being present, we do the test again
but we reverse the pattemns being used, still making sure we
alternate patterns between reading and writing. If the values
still compare, then we know there must be good memory there.

But there are still two other problems that we need to be
prepared for. Many 68K-based computers cause bus error ex-
ceptions when the processor attempts to access memory that
is not present. If this happens, the first attempt to write a pat-
temn beyond actual memory will cause an exception and the
next instruction will never be executed. To handle this situation
we first set up the appropriate exception vector before our loop
begins. Our algorithm assumes that a bus error indicates that

‘Wirite the 1st Pattemn
;2nd Pattem Still There?

;1st Pattemn Still There?

‘Wiite 1st Pattern
‘Wirite 2nd Pattem
;1st Pattem still there?

;2nd Pattem still there?

;Restore ISP

the world of 68’ micros page 13

the end of memory has been encoun-
tered and the scan is terminated. The last
value that was present in A6 before the
exception occured is used as the end of
memory. If an exception is taken we sim-
ply restore the original value of the ISP
(saved in AD) effectively throwing the ex-
ception stack frame away.

There is a second problem that we
must be prepared for while measuring
memory. The CD68X20 does generate
a bus error but only when accesssing lo-
cations beyond the end of memory when
the system memory is maxed-out. This
means that the use of a bus error excep-
tion to determine how much memory is
in the system will only work if you have
128 MBytes of DRAM. If your system is
like mine, you don’t have near that much
memory in your computer. What can hap-
pen in systems that don’t have the maxi-
mum amount of memory they were de-
signed to accomodate is that the memory
you do have will repeat through the ad-
dress space that is set aside for main
memory. This can cause a problem when
you are trying to find out how much
memory there is because you might start
testing the same memory over again. The
way we avoided this problem is by know-
ing that we end our test loop by leaving
all 0’s in the first four locations. After writ-
ing all 1's to the first four locations of the
next page we go back and test the very
first four locations in Page 0 if A6 does
not point to page 0. This effectively tests
for memory wrap-around and if it never
occurs, the first four locations will stay 0's
like we left them. If memory ever does
wrap-around, it should happen first at lo-
cation 0 and we exit the loop.

Partitioning Memory
Once the Boot Process knows how

much main memory is available, it can
begin setting it up for use. The (Kemel
has a number of different ways main
memory is used and it divides memory
into five pieces called partitions before
the kemel is initialized. These five parti-
tions are listed below in the order they
appear in memory:

Absolute

Kemel Image

Dynamic Memory

Interrupt Stack

Page Memory

The size and location of the Absolute

Partition is actually decided, not by the
Boot Process, but by the linker. This is
the only partition that is accessed using
fixed locations. Since the Absolute Parti-
tion begins at location 0, the kemel can

page 14 the world of 68’ micros

use short addressing to access data
stored here. The locations of all of the
other partitions are determined at run-
time and must be accessed using meth-
ods other than absolute addressing.

Following the Absolute Partition is the
Kemnel Image Partition. The Kemel Im-
age is that part of the code which con-
tains the (Kemel if it is to be loaded into
main memory. In some cases, the kemel
may be bumed into ROM. If this is the
case then a significant amount of RAM
may be saved by directly running it out of
ROM making the Kemel Image Partition
optional. Even if the kemel is bumed in
ROM, often times ROM is slow when
compared to RAM so that the Kemel Im-
age may be loaded into RAM anyway just
to get more performance. In the
CD68X20, the boot ROM is only 8-bits
wide and code running from there is quite
a bit slower than it would be if running
from RAM, so | usually copy the ROM
code into a specially prepared Kemel Im-
age Partition when | bumn the kernel itself
into ROM. If the Kemel Image is loaded
from a storage device, such as a floppy
drive, then the Kemel Image Partition is
certainly necessary.

Next is the Dynamic Memory Partition.
The exact location of the first usable byte
must fall on an even 16-byte boundary.
The8e 16-byte chunks of memory are
called paragraphs and are the basic unit
of allocation from this pool of memory that
acts much like the heap that is so famil-
iar in the C language.

Next is the Interrupt Stack Partition
which remains fixed in size once the
memory partitions are set up. Remem-
ber that the 68K uses a push-down stack
so that the ISP is first set up to point just
past the end of the partition. This means
that it starts out pointing into the first byte
of the next partition which is the Page
Memory Partition.

Finally, the Page Memory Partition is
useful for storing data for block-oriented
devices such as a disk drive. This parti-
tion is always a multiple of 4 KBytes and
is divided into 4 KByte Pages for alloca-
tion. Because memory is measured in
multiples of 4 KBytes and because the
Page Memory Partition is the last parti-
tion, each 4 KByte Page is guaranteed
to begin on an even 4 KByte boundary.
This is the memory pool from which vir-
tual memory is implemented.

Initializing the Kemel

After memory has been partitioned, the
kemel can be initialized. Without going
into too much detail about how the (Ker-

nel works it should be said that it is com-
posed of modules. Some modules use
others so that the different modules must
be initialized in order of dependency. This
ensures that services that are required
for the initialization of each module are
already in place before they are needed.

Initializing Onboard Device Objects

Almost all SBCs come with a number
of VO devices built-in. As with the PC's
BIOS, it makes sense to include a de-
vice driver in the Boot ROM with each
specific /O device thatis part of the SBC.
If your system is completely embedded
thenthis is relatively straight-forward. But
this is a problem if your Kemel Image was
designed to be loadable so that it can run
unchanged on a number of different com-
puter systems. When your Kemel Image
is loaded from an external storage de-
vice you would like it to be able to make
use of all onboard devices and run cor-
rectly. The loadable image should not
have to be specially prepared for the par-
ticular computer you are running it on. In
such a case, you will want your Boot ROM
to contain a list of device drivers that will
not actually be installed by the code in
the Boot ROM. A pointer to a table de-
scribing these device drivers is passed
to the Kemel Image afteritis loaded from
disk. The loaded image can then install
the device objects using the kemel facili-
ties that came with the Kemel Image.

Loading the Startup Task

Once your kernel is in place, you will
not want to do any of the user-specific
initialization in the kemel itself. This kind
of work is best done using a task whose
program is loaded from either the Boot
ROM or from a storage device. Once
the task has been initialized and is ready
to run, the Boot Process can enter the
Scheduler. The Scheduler will then see
that it has a task that is ready to run and
it will give the task processing time.

in the next article we'll look deeper into
memory partitioning, PREBOOT, and
how a basic Scheduler works. If you have
any comments or requests, please feel
free to write me at either
<gecko@onramp.net> or at the address
given below:

Paul K. McKneely

technoVenture, inc.

P. O. Box 5641

Pasadena, Texas 77508-5641

CoCo3 Extended Memory Secrets Part 5

Add menu and text windows to your programs

Herbert Enzman

In this part, I'll show you how to add
a little “pizzaz” to your programs with
the addition of Menu and Text Win-
dows. Although they are not TRUE’
multi-tasking ‘windows’, they can add
some interest to dull screens. These
windows will write over the tops of
screens and each other, but when you
exit the window, the original screen will
still be there. LISTING 15 is the DEMO
program for this part, and is far from
complete; but it is a building block that
you can use your imagination with. To
demonstrate it's capability, I've only
included one workable entry in each
menu. This keeps the program as short
as possible. After you see how it works,
you can play with it; move windows
around, try your own, etc.

So, let’s get started. Type in listing
15, save it to disk. Since the program
is a little long, it will be best to as-
sembile it to disk and then load it from
Z-BUG to run. When it is assembled,
go to Z-BUG and load it into memory;
run it with “GGO” and follow along with
the program “play by play”.

After starting it up, you will see a
menu overwrite Z-BUGs screen, which
will be the “UTILITIES™ menu. Using
the UP/DOWN arrow keys, move the
cursor thru the menu. You will notice
that the ‘cursor’is just a different color
for the text.

| chose this method to be different.

The old ‘reverse video' from the COCO
1 days was getting boring, and |
thought that something different was
in order.

Now move the cursor down to the
entry “disk routines” and press <EN-
TER>. This is the only active entry for
this menu; all other choices will exit
the ‘utilities’ menu. You will then see a
second menu appear on the screen.
Press the <?> key and this will dem-
onstrate another use for the windows
— a help screen. It is rather small, but
can be made to any size. Press <?>
again and you will see a second help
screen. To exit back to the ‘Disk Rou-
tines’ menu, press <BREAK> twice
(once will take you back to the 1st help
screen).

Now using the UP/DOWN arrow
keys again, choose the entry “Clean
Drive”. You will be greeted with a third
Menu. Choose a drive number and
press <ENTER> and you will see a
‘text’ window pop up with a graph init.
This is a routine that will run the drive
motor for 30 seconds to clean the
drive, while the graph counts off the
seconds. When it is done, the text win-
dow will be erased and you will be back
to the ‘select drive’ menu. Press
<BREAK> to exit back to the ‘disk rou-
tine’ menu, and select the last entry to
exit this menu. Select the last entry
again to exit back to Z-BUG, and you

TABLE 15 - Altemate format for Menu / Windo tables for DECIMAL use.
MENU1FDB 8520 0,U Upper left comer of window Address
FCB 26 2,U # of characters per line
FCB 19 3,U # of lines in window
FCB 10 4.U Window color
FCB 10 5,U # of menu entries
FCB 42 6,U Highlight color
FCB 58 7,U Menu text color
FDB 9008 8,U 1st menu entry start Address
RMB 2 10,U Lower cursor limit
RMB 2 12,U Cursor TEMP
RMB 2 14,U down counter/ (15,U) up counter
RMB 10 16,U Attribute table for menu 1
WINDO1 FDB 8584 0,U Upper left corer of window Address
FCB 34 2U # characterrs perline
FCB 7 3,U #lines in window
FCB 5 4,U window color

will find the MAIN screen just as you
left it.

See what | mean by adding “pizzaz”
to your programs? And it is all done
on the text screen. No need to gobble
up large amounts of memory by using
graphics screens. Even though the list-
ing is commented, there are still a few
things that will need discussion. If you
are still interested, just continue.

I'll start with the LABEL *"MENU1",
because it is used by you to tell the
program how to set up a window. You
will need the screen grid that you made
during PART 2 of this series to locate
screen addresses. To aid in the layout
of the windows, you can overlay a
blank sheet of paper on top of the
screen grid.

The first thing you want to do is fig-
ure out what you want in the menu.
How many entries, where you want
extra text (such as headings or spe-
cial instructions) and what the entries
will be. Write down the menu entries
and pick the longest text entry and
count it's number of characters. This
will tell you how wide the window
should be. The number of menu en-
tries, extra text and extra ‘space’ lines
will tell you how long the window will
be.

With this information in hand, you
can now choose where you want to put
the upper left comer of the window. Put
this address in the 1st ‘FDB’ location.
See TABLE 15 if you want to use a
DECIMAL format instead of HEX. They
both work the same, but they have to
be different for the assembiler to as-
semble the decimal numbers properly.
The one in LISTING 15 is for HEX only.

Now you want to tell it how many
characters (including left and right mar-
gins) wide you want the window and
how many lines down that you want it.
This information goes into the next
FDB (or next 2 FCB's if decimal for-
mat). Next choose the windows back-
ground color, and tell it how many
MENU entries that there are (don't in-
clude headings, etc.). This goes in the
3rd FDB. The 4th FDB is used to tell
the routine what color to use for the
menu text and highlight colors. Make
sure the highlight color stands out from

the world of 68’ micros page 15

the rest of the text and also goes with
the background color. Remember, the
highlight color will be the cursor.

The last thing to choose is where you
want the 1st menu entry to start. After
telling the routine this, it will fill in the
other entries in thier proper locations.
The 3 "RMB 2~ entries will be filled in
by the routine. The last ‘RMB’ reserves
locations for attribute table for the
menu entries and should reflect the
same amount as the number of menu
entries (10 in the 1st menu).

Text windows need the least amount
of information, as can be seen in the
label *"WINDO1". Again, see TABLE 15
for the Decimal format. Basically, you
are just putting the winagow on the
screen, and then filling in the text that
you want. The “HELP" screens will
demonstrate the keyboard poll routine
to use. The “GRAPH" text window is
the most comiicated, because it has
more to do. Most text windows can be
simple, for example, the help windows,
or for error messages, etc.; let your
imagination run wild!

Looking at LISTING 15, you will no-
tice that each Menu routine is fairly
similar, with the exception of the extra
text, headings and keyboard decode
routines.

The "GETRDY" routine points to the
attribute table and gets the proper color
code for the menu entry that it is going
to write. The “CALC” routine will cal-
culate the routine address from the
offset table for that particular menu.

The *DWNARW" and *UPAROW"”
routines are common to all menus. It
will take care of the cursor location,
moving the cursor and the up/down
counters. The “TUBE” routine will fill
in the menu entries for each menu.

The *SETATT" routine is only used
on the 1st entry to a menu. It is re-
sponsible for setting the attribute codes
forthe menu entries. It is only used on
the start up of each menu, because
the cursor will be where you left it when
you retumn to that menu from another.
This way, it won't always start at the
top of the menu.

The “KWIK” routine is the keyboard
check routine used by ail menus and
text windows. It will swap the task reg-
ister so that the ROMs can be used
(remember that the ROMs are located
in TR=0). The “STRING" / “SCRIPT”
routines are used to write text to the

page 16 the world of 68’ micros

screen. Enter “STRING” when the text
attribute is located before the text and
“*SCRIPT" if you want to use a text line
that exists with a different color.

The “SETUP” routine is responsible
for saving the screens before it puts a
window on the screen. itis why the pre-
vious screen(s) are still intact when you
retumn to them. Looking at the listing,
you will see that before doing a win-
dow, register ‘B’ is loaded with a ‘posi-
tive’ number (1 in the Utilities menu),
which tells the “SETUP” routine to save
the 1st screen. When the utilities menu
is done it sends $81 to the setup rou-
tine to tell it to restore the original
screen. The table "START" at the end
of the listing is used by this number
(1-3) to determine the start address of

menus. The address is in the form of
an offset, hence the format *FDB
SPARE-GO". To add your routines to
the jump table; just replace the first
word (SPARE in the UTLJMP table)
with the name of your routine. This
way, the “CALC” routine will point to
your routine, no matter where it is.

"TXTAB1”, "“TXTAB2" and “DRTXT"
are used for the menu text. Use this
format. It uses the ‘negative’ stop char-
acter format, so the last character
should be negative so the ‘screen’ rou-
tine will know when to stop printing a
line of text. The same is true for “TXT1"
thru TXT13". The “FCB" before each
“TXT" line is used for the color of the
text that follows it (see the comment
column for TXT1).

the screen to save or
restore screens, de-
pending upon the
level of windows that
are on the screen. For
example: “Utilities”
uses level 1 ($81 for
restore); “Diskit” uses

UPON ENTRY:

LISTING 5 - Write to screen routine

X = Points to text that is to be printed to screen
Y = location on screen to put text
B = SEE TUTORIAL TEXT

level 2 ($82) and | STRING LDB -1,X get attribute that is before text string

“Clean” uses level 3 | SCRIPT LDA X+ get text character

($83). This way, every PSHS A save for stop character test

time you write over BSR FIX send it to the screen

the top of a screen TST S+ was character a STOP char. (negative)?
. . BPL SCRIPT no, loop for more characters

with a new menu, this RTS DONE - return

routine will know what
level that was used

FIX ANDA #$7F
SCREEN PSHS D

drop MSB first
save for after block swap

and will put back the ORCC #$50 disable interupts
previous screen. It LDA #3$36 = BLOCK # that scren uses
sounds complicated LDB $FFA3 *** $FFAB for 6309 users
at first, but you will STB SAVE save current block # for return
STA $FFA3 =+ $FFAB
;?;nv;zzt pll a;n :viat: PULS D get character and it's attribute
STD ,[Y++ store both to the screen

the program.] LDB SAVE get original biock # that was saved

The “WINDOW STB $FFA3 ** $FFAB
routine is called to put ANDCC #$AF enable interupts
the window on the RTS return for more characters
screen with the pa-
rameters from the | SAVE RMB 1 ** temp for current block #
‘MENU’ tables. It)))
does not put any text o FCB XX PUT desired attribute here in place of
onthe screen, justthe | oy roc yOUR MESSAGE HER/
window. The final FCB ‘E+$80 this is for STOP printing code
subroutines “CLEAR” END
and “SET", are used
to swap the task reg- | LISTING 6 LISTING 7
ister to access the
ROMs. GO LEAX TEXT1,PCR GO LEAX TEXT1,PCR

*UTLJMP® and LDY #$2AF0 LDY #$2AF0
“DSKJMP” are the | BSR STRING LDB #5XX = attribute
routine jump tables | SW! g\?\ﬁ SCRIPT

for the first two

LISTINGS 6 AND 7 call LISTING 5. — SEE TEXT

LISTING 8 “Second” screen demo

GO NOP
* CLR $FF91 set TR=0
LDA #$3F end address of second screen
(msb)
STA $FE06 set it for SECB
STA $F688 set it for SECB
DECA ‘A’ now = $3E
STA $F875 set SECB
LDA #3$30
STA $F7BC set start address of second screen
(msb)
STA $F68D set SECB
STA $F6A3 set SECB
STA $F6D5 set SECB
JSR $F679 Now set up 80 column screen
* LDA #1 HHH#
* STA $FF91 #Ht set TR=1
LDD #$3600 set screen colors
STA $FFB8 set foreground to yellow
STB $FFBO set background to black
(disk edtasm)
* STB $FFB4 set background to black
(e/a 6309)
STB $FF9A set border to black
Swi FINISHED
END

That's pretty much all that there is to it. Now that you
have an idea of how this routine works; you can play with
it. Change the window positions, colors, # of entries, win-
dow sizes, etc. Add some routines of your own, and add
them into the 'JUMP’ tables to see how that works.

In the final part (PART 6) of this series, | '¢ :’""‘m
will show you how to load everything on ﬂtl?"‘ﬁ
program start-up, even if a program is in a \’g@. (/]
block that is different than the current task '\
register set-up.

| e

VIDEO GAME
MAGAZINES WANTED!

Video Games Player, Atari Age, Electronic Fun,
Electronic Games, Replay, Playmeter, Blip, and
Atarian. Write with what you have and what con-
dition they are in and I'll send back a quote. Video
Games, Box 9542, Pittsburg, PA 15223

RGBoost-$15.00
If you want to speed up DECB easily, install an Hitachi
6309 and get RGBoost. This patch for DECB uses the ex-
tra 6309 functions for up to a 15% gain in overall speed. It
is compatible with all programs tested to date! Save an
additional $5 by purchasing RGBoost along with one of
my other producis listed below!

EDTASM6309 v2.02 - $35.00

Patches Tandy’s Disk EDTASM to support Hitachi 6309 codes! Sup-
ports all CoCo models, including stock 6809 models. CoCo 3 ver-
sion uses 80 column screen, runs ot 2MHz. YOU MUST HAVE A
COPY OF DISK EDTASM. This is a PATCH ONLY! It will not work
with “disk patched” cartridge EDTASM

CCIFAX - $§35.00

Receive and print weather fascimile maps from shortwavel The US
weather service sends them all the timel Requires 512K CoCo3
and shortwave receiver. Instructions for simple cable included.

SDOS - $25.00
Move programs and data between DECB and OS-9 disks! Sup-
ports RGB-DOS - move files easily between DECB and OS-9 par-
titions| No modifications to OS-9 modules required.

DECB SmartWaich Drivers - $§20.00

Access your SmartWatch from DECBI Adds function to BASIC
(DATES) for accessing date and time. Only $15.00 with any other
purchasel

Robert Gault
832 N. Renaud
Grosse Pointe Woods, Ml 486236
3135-8661-0335
Please add 34 S&H per order

Emulator Transfer Tricks
continued from page 3

What you have done is simple in concept. The OS9 disk
transfer utility creates an image of the 3.5" disk on the PC's
harddrive. However, this image is of a double-sided disk and
the emulator will only handle single-sided disks. Therefore, the
disk editor is used to change the disk image's format informa-
tion to say it is single, not double sided. That's all there is to it.

Final Notes

Despite the fact that you have changed the format informa-
tion stored on the disk image to indicate a single-sided disk,
the format information stored in the drive descriptor used to
access the image must match the format of the original disk or
the emulator will not read the image properly.

I have presented this transfer method in terms of the double-
sided 3.5" disks since that was my major concern. However, it
would probably work just as well with double-sided 5.25" disks.
Also, while | used the dEd disk editor under OS9 to modify the
disk image, you could probably do the same thing under MS-
DOS using a disk editor like that in Norton Utilities. This could
be particularly useful for those people who are just getting
started with OS9 on the emulator and trying to transfer their

0S89 boot disk. X
PR
SN

The only other way to transfer double sided ¢ 'R
3.5” disks is obvious: copy as much as pos- (i 927\
sible to a single-sided disk, transfer, then copy ‘;‘{Q‘.’\"
the remaining files and transfer them also. "\f s
This is time consuming but may be your only =
choice if the tools mentioned are not available. _——f~~_

the world of 68’ micros page 17

A Change of Directory
A “Change Directory” command for OS9/68K (modify for 68097?)

Mark Heilpemn

Here is a program | wrote quite a while back to implement a stand-alone ‘cd’ utility. It gets around the
memory protection problem by calling _os_permit() to get access. For this to work the program must execute
as super-user (group 0). If you will not always run this as super-user you must modify the code somewhat
(make the module owned by group 0 and toss in a _os_setuid() to change yourself to group 0 early in the
program). If you have no MMU or are not running the SSM extension there is no memory protection.

Questions? | can be reached via e-mail at: heilpern@microware.com. If you don’t have e-mail access, feel

free to write the editor in reference to this article.

This code IS NOT guaranteed to work, but did the last time | compiled it.

/~* This is the first of 2 files ***/

#include <types.h>

#include <stdio.h>

#include <process.h>

#include <ermo.h>

#include <cglob.h>

#include <modes.h>

error_code find_proc_desc(process_id, procid **);

main(u_int32 argc, char **argv)

{
char *pathname = argv[1];
u_int32 mode = S_IREAD;

/* change data directory */
procid *me, *dad;

/* if no directory was specified, check for default */
if (argc==1) pathname = (char*)getenv(*HOME");
if (pathname==NULL) exit(E_BPNAM);

/* check for execution directory change request */
if (argc>2)

if (Istrcmp(argvi1],”-x")) pathname = argvi[2];
mode = S_|EXEC,;

/* change execution directory */

}
/* do the directory change */

ermo = _os_chdir(pathname,mode);

if (ermo) exit(errmno);
* find my process descriptor */

ermo = find_proc_desc(_procid, &me);

if (ermo) exit(ermo);
/*find my parent’s process descriptor */

ermo = find_proc_desc(me->_pid, &dad);

if (ermo) exit(ermo);
I*copy over the directory information */

errno = _os_cpymem(_procid,&me->_dio,&dad-

>_dio,DEFIOSIZE);

if (ermo) exit(errmo);
/* and exit */

exit(0);
}

/~** the next file is for the find_proc_desc() function ***/
#include <process.h>

#include <sysglob.h>

I* to get system giobals */

page 18 the world of 68’ micros

#include <stddef.h>

/* for ‘offsetof() macro */

#include <modes.h>

I* for permit access modes */

#include <ermo.h>

extern process_id _procid;

" myid*/

r~

** Usage:

** process_id proc_id;

** procid *proc_desc;

b ermo = find_proc_desc (proc_id,&proc_desc);

*/

error_code find_proc_desc(process_id proc_id,
procid **proc_desc)

{

u_int32 *ptab;
u_int32 size;

/* first, find the system’s process */
/* database table */
(void)_os_getsys((offsetof
(sysglobs,d_precdbt)),sizeof(u_int32*), (glob_buff*)&ptab);

I* get access to this memory region */
/* number of bytes we need access to */
I* (size) is the process id of interest, */
[* times size of each pointer entry (4) */
I* plus the size of one entry (4) */
size = (proc_id+1)*4;
ermo = _os_permit(ptab,size,S_IREAD,_procid);
if (ermo) retum(ermo);
/* got the table. lets index into it */
proc_desc = (procid)ptab[proc_id];
/* finally, get access to that memory */
(void)_os_pemit(*proc_desc,sizeof(procid),
S_IREAD|S_IWRITE,_procid);
I* note, don't need error checking on */
Mthe last _os_permit(},since the call */
/*should only fail if not running */
f*as super user. since the first permit */
/*call worked, we must be a SU ¥/

retumn(0);

}

NEW Hardware coming
from Cloud Nine!

512k - 2048k upgrade board

Just install SIMM memory in 512k in-
crements (2x256K 8 or 9 chip SIMMs).
Three chip SIMMs WILL NOT work! This
is a timing requirement, as the 8/9 chip
SIMMs use the same timing as the CoCo
DRAM upgrades.

SCSI Host adapter interface

+ Comes with OS9 Drivers, 6x09.
63b09%e 1.78MHZ system “megaread”
times are ~11 seconds with 512 byte sec-
tors (Nitros 2.00 Level3).

« 256/512/1024 Sector size selection

e FULL SCSI ID supported

« Parity generation, enable/disable. Can
use with parity devices such as ZIP drives!

» Gold plated card edge connector

« 50 pin SCSI header port

« Installation/Operation Manual

» Schematic package

« OS9 Utilities SCSltools, SCSldesc,
ZIP/IJAZ Tools

« SCSiltools - A BASICO09 utility that will
do low level SCSI commands.

« SCSidesc - A BASICO09 utility pro-
gram that will create the SCSI descriptor
for you based upon the menu drive op-
tions inputted.

« ZIPJAZtools - This utility will aliow the
features of the lomega ZIP/JAZ drives.
Eject disk, software protection are some.
This utility isn't written yet, but | have the
documentation needed from lomega. Will
do this soon!

These products should be avail-
able at the Chicago CoCoFest! L ook
for me therell

A 512K SIMM upgrade is ready to ship.
The unit will ship with the following items:

1 - 512K SIMM Memory Board with 8 or
9 chip 120ns or faster SIMMS

1 - Installation Manual

1 - Schematic package

1 - RSDOS Memory Test Program sup-
plied on 5 1/4" disk.

$40 each including shipping, UPS
ground, within the US. If you are outside
of the US please indicate method of ship-
ment desired and | will check into the
added cost, if any.

Cloud Nine

c/o Mark Marlette ?’" @,
3749 County Road 30 ;;(!
Delano, MN 55328 @g’

email . mmariett@isd.net
voice: 612-972-3261

Emulator Sand Patch

Robert Gault

Patch “Sands of Egypt” for the CoCo Emulator

A while back | tried out Jeff
Vavasour’s emulation of the Coco
1&2. Definitely and interesting
package.

One of the things | checked was
how well the emulator handled
color artifacting and programs like
“Sands of Egypt.” The emulator
does the best possible with an
RGB monitor system. It switches
to a fake PMODES3 format using
the colors white, black, red, and
blue. This does not produce the in-
termediate artifact colors of yel-
lows, greens, and purples, but
there is no better practical tech-
nique.

“Sands of Egypt” is another mat-
ter. This program makes use of an
unusual copy protection scheme
which fails with a typical PC disk
controller. The program looks for a
sector which does not have data
address marks and quits if the en-
tire disk is good. PC controllers (at
least with Jeff’'s emulator) do not
give errors with missing data marks
and “Sands” won't run. That is to
say, “Sands” goes through the
color check test and then immedi-
ately says, “this adventure is over.”

However, all is not lost for this
great Coco program! Using the

built in Debugger from the emula-
tor, | have found how to patch the
“Sands” disk so that the program
will run using the emulator. This will
also let you copy the program onto
a PC hand drive as well as running
it from the original floppy.

For this game to work with an
emulator on a PC you need 3
patches. Change the following
tracks, sectors and bytes:

track sector byte old new

18 16 1A 27 26
22 5 E4 26 21
23 8 6D 26 21

The track and sector values are
in decimal. The byte locations and
values are in hexadecimal.

For comment, | can be reached
in care of this magazine or via e-
mail:

robert gault@WORLDNETATT.NET

New Products!

* Data Windows - $69.95 - A complete flat database program for OS-9/68K. Facilities include database
creation, searching, maintenance and report generation. By Alpha Software Technologies.

« GNU TWO - $49.95 - This package include a new port of GNU M4, and the AUTOCONF automatic
configuration macros. Together with the included port of BASH these tools make automatic configu-
ration of software a much easier chore. Widely used on UNIX and other operating systems, use it
now on your OS-9 platform! Includes two new manuais totaling about 110 pages.

» Model Rocketry Tools - $15 - Includes ports of tools for modeling and tracking the performance of
various configurations of model rockets. Essential tools for those interested in designing rockets or
achieving specified altitudes. Should run on any OS-9/68K machine.

MM/1, MM/1a and MM/1b hardware and other software still available, inquire!
P.O. Box 10552 » Enid, OK 73706-0552 « (405) 234-3911

the worid of 68’ micros page 19

1629 South 61st Street

West Allis, Wi 53214
{pulland @omnifest.uwm.edu)
414-328-4043

StroNeWARE

Fast232- 16550 does serial! Port speed to 115200bps,
transfers up to 5000 cps. Addressable to four locations.
With OS9 and Nitros9 drivers. $79.95

2nd Port Daughter Board - $45.00

OS9 WVI2 w1 avaitabrer

Level2 Bundle $49.95
0s9, b09, mvue, more! piug-n-go for 6809
Dynacalc+Pgraph $19.95
Profile $19.95
TSEdit/Word+vi patch $12.95
Epyx TriPak $14.95
Koronis Rift, Rescue Fractulus, Rogue
King’'s Quest 3 $9.95
Microscopic Mission $4.95
Sub Battle Simulator $4.95
Hardware
64K upgrd 2 or 4 chip $5.95
512K upgrd(used) OK $24.95
512K $44.95
decb1.1rom + manual $12.95
mpi upgrd sat. board $9.95
cable, cassette $5.95
cable, printer $5.95
cable, rs232 (100ft!) $19.25
colr mouse (1 button) $9.95
mono composite monitor (used) $24.95
Orchestra90cc Pak $12.95
DECB
Disk EDTASM (used) $19.95
Disk ProFile (used) $12.95
One on One $7.95
Sands of Egypt $7.95

ROMPaks too! (Inquire for titles)

Parts (many more in stock)

1488/89 .75 68b09%e 6.95
1723 1.95 6821a 3.95
1773 6.95 SALT 2.25
2764 2.95 74*6 35
6802 3.50 741s133 42

I've also been working on some NMEW hardware
that may be available later. One of these items is a
revision of my Expander idea that actually works on

most CoCo 3's, not just the occasional “right” one.
I'll keep everyone posted on any progress!

Check with me for complete disk drive systems,
misc. hardware items, hardware repairs, and hard
to find new and used CoCo software not listed!

Shipping & Handling $4 US, $6 Can/Mex, $10 World

offworld destinations please consult local Postmaster!

Box 361 Matthews, IN 46957 Phone 317-998-7558

CoCo 3 Software:

Soviet Bloc $15
GEMS $20
CopyCat $5
HFE- HPrint Font Editor --------- $15

MM/1 Software:

Graphics Tools $25
Starter Pak $15
BShow $5

CopyCat $10
Painfer $35

ADVERTISER’S INDEX

BlackHawk Enterprises 19
Chicago CoCoFest 4
CoNect BC
FARNA Systems 5, 11, BC
Robert Gault 17
Hawksoft 11
Dennis Kitsz 7
Nickolas Marentes 7
Small Grafx 11
StrongWare BC
Video Games 17

What are you waiting for?
Get your friends to subscribe to
the only magazine that still supports
the Tandy Color Computer...
“the world of 68’ micros™!

The more people who want the support,

the longer it will be here!

page 20 the world of 68’ micros

	68' micros
	Table of Contents
	The Editor's Page
	A Letter
	CoCo Emulator Transfer Tricks
	Emulator Con't

	CoCoFest Vendor Information
	Operating System-Nine
	Tetris!
	The Embedded Programmer
	CoCo3 Extended Memory Secrets Part 5
	A Change of Directory
	Emulator Sand Patch
	New Products from Cloud Nine
	Advertiser's Index

