Nicholas Marentes introduces
a NEwW Pac-Man game for the

CoCo 3! (see page S)

CONTENTS

Ediifor’s Page
Readers Write
More CoCo RS-232 Info

Robert Gault
Operating System Nine

Alan Dekok
MM/1 Survey

Boisy Pitre
Hacking Ochestra 90 Pak: 2

Robert Gault
0S-9 Level ll on a PC!

Walter Grossman
Embedded Programmer

Paul McKneely
CoCo 3 Extended Memory : 4

Herbert Enzman
New ProductAnnouncements

OmniBasic

Pac-Man
Advertisers Index

a LN

10

12

POSTMASTER:
If undeliverable return to:
FARNA Systems PB
Box 321
WR, GA 31099

If your address is incorrect, send me a postcard!

J—

the world of 68' micros page 1

The Editor’s Page

With the advent of a new project, it
has taken a bit longer to get this issue
out than usual. The new project is a
magazine supporting my other hobby,
AMC (American Motors Corporation)
and related cars. For those of you who
have seen me at CoCoFests in recent
years this should be no surprise. The
little green and silver Rambler pretty
much heraided my arrival! I'm sure
Allen Huffman and Linda Podraza will
never forget our venture into downtown
Chicago in the Rambler a couple years
back, nor will many of the other fest
goers that year, as some maintained a
vigil at the hotel while others searched
for us... as we limped the Rambler
back to the hotel. You see, we got in
an accident downtown and called to
have someone come get us, but they
got lost (or were our directions flawed?)
and we got tired of waiting. The big-
gest problem was a leak in the radia-
tor, so we just stopped every 30 min-
utes to put more water in. Took us
about three hours to make the drive
from downtown to the hotel (usually
takes just over an hour!), but we made
it by five a.m.1!

The new magazine is coming along
nicely, but not taking the place of this
one. I'll restate now that the goal is to
be publishing “68’ micros” when the
new century tums over, so don't lose
faith! When | retire from service in
about six years, maybe I'll have
enough to keep me busy with the two
magazines. That's doubtful, but sure
does sound good!

There will be a CoCoFest in Chi-
cago again this spring. If you've
never attended a ‘fest before, this is
the one to attend! For the last few years
attendence has been fair and stable.
There will be a few new items avail-
able this year, both in hard and soft-
ware. Nicholas Marentes announces a
new game in this issue, and Mark
Mariette has developed a new 2MB
board.

Working examples of the CoCo
IDE interface should also be avail-
able this time. Unexpected problems
caused developmental delays, but Carl
Boll was quick to keep everyone ap-
praised of the situation. He had offered
to refund deposits, but all decided he
should press on with squashing a few
bugs first.

| must commend Carl for his actions,
as simply not keeping people informed
has hurt many CoCo businesses in the
past. The CoCo community is well
aware that there is a lot of time and
little profit made in new hardware, and
that unexpected delays are normal. As
long as an effort is made to keep most
of them informed (in Cari’s case, it was
through the Intemet and various CoCo
publications), they are very forgiving
of delays.

Mark’s 2MB board is a bit differ-
ent from the usual CoCo projects.
He has invested in a PAL programmer
and sophisticated board layout soft-
ware for other projects. This reduces
the amount of chips and soldering re-
quired to build any particular project.

This particular board will have surface
mount devices (a first for thind party
CoCo peripherals!). And instead of
using DRAM or 1MB SIMMs, Mark’s
new board uses eight 256K 30 pin
SIMMs. The reason is that these use
the same memory refresh cycle as
DRAM, but take up less space. 1MB
SIMMs would have been more com-
pact, but would require additional re-
fresh circuitry. By using 256K SIMMs,
Mark was able to eliminate the sec-
ond circuit board, making his upgrade-
easierto install. A SCSI| board should
aiso be available.

I may not be able to attend the fest
this year (but will be represented by
someone). My wife (Tiffany) is sched-
uled for surgery in February and may
not be ready to travel by then. She will
be out of work through March, so the
budget will be stretched also. Don't
worry, the surgery isn’t anything life
threatening, just something that needs
to be done. Even though I'm military,
we still have some red tape and
“hoops” to go through to get them to
pay for everything, just like anyone
would have to do with their insurance
company!

| hope you all had a great Thanks-
giving, and that Christmas and the
coming of the New :

Year are equally
rewarding!

the world of 68° micros

Publisher:

FARNA Systems PB

PO. Box 321

Warner Robins, GA 31099-0321

Editor:
Francis (Frank) G. Swygert

Subscriptions:

US/Mexico: $24 per year

] Canada: $30 per year

Overseas: $50 per year (airmail)

Back and single issues are cover price.
Overseas add $3.00 one issue, $5.00 two
or more for airmail delivery.

The publisher is available via e-mail
dsrtfox@delphi.com

Advertising Rates:

Contact publisher. We have scales to suit
every type of business. Special rates for
entrepreneurs and “cottage” businesses.

Contributions:

All contributions welcome. Submission
constitutes warranty on part of the author
that the work is original unless otherwise
specified. Publisher reserves the right to
edit or reject material without explanation.
Editing will be limited to comrections and
fitting available space. Authors retain copy-
right. Submission gives publisher first pub-
lication rights and right to reprint in any
form with credit given author.

General Information:

Current publication frequency is bimonthly.
Frequency and prices subject to change
without notice. All opinions expressed
herein are those of the individual authors,
not necessarily of the publisher. No war-
ranty as to the suitability or operation of
any software or hardware modifications is
given nor implied under any circum-
stances. Use of any information in this
publication is entirely at the discretion and
responsibility of the reader.

All trademarks/names property
of their respective owners

ENTIRE CONTENTS COPYRIGHT
1997, FARNA Systems

page 2 the world of 68’ micros

Reader’s Write...

Kudos...

Just a reminder of my appreciation
to you for keeping the CoCo alive
through 68’ micros. | started in "80 with
the chicklet CoCo, and have a “3" now;
I'm doing this note on a Macintosh
Performa 475. My NO MS-DOS belief
was formed thereby!

By the way, could | go “online”
(WWW) using my still-packed 300
Baud Volksmodem by Anchor Automa-
tion. | have OS-9, but use only pro-
grams in it and TandyDOS.

Dale Hawley
Dale_Hawley@dbug.org

Thanks for the kudos Dale! It really
means a lot to know that the maga-
zine is appreciated by readers. A lot of
you declare an anti-DOS/Windows
idiom, but I can't. I use a Win 95 based
machine for things the CoCo just can't
do efficiently, like the layout of this
magazine. The CoCo is a hobby and a
great machine for many tasks, but can'’t
compete with more modern machines
for ease of use in daily chores. These
new machines are very poor for really
learning about computers though. This
the CoCo does extremely well! The
CoCo is also much better suited for
electronics hobbyists. It is robust and
easy to fix as well as to program and
‘hack” hardware.

Now, to answer your question about
surfing the web with your CoCo and
300 baud modem.... It CAN be done.
You must have a shell account with an
internet provider to do this, or belong
to a service such as Delphi that still
offers access through their system in-
stead of a direct connection. This
works well for general e-mail, but to
“surf” the web (world wide web) you
will need to run a text browser such as
Lynx from the system you are connect-
ing to. The CoCo can easily handle a
2400 baud modem, and with an RS-
232 pak a 9600 baud. Again, you will
need a UNIX shell account or an ac-
count with a service that still offers text
terminal only access (like Delphi) to
make this work. You can generally ask
for more detailed help on the system,
or in the CoCo Forum once on Delphi.
To view graphics you will have to go
with a Mac or Windows based system.

CoCo3 Secrets Made Clearer...

| have been reading Herbert
Enzman’s CoCo3 Secrets series with
interest. In the latest issue (Sept '97)
there are some errors of omission
which may confuse the readers. The

service manual makes the functions

of $FF99 very clear. This register does
not control the number of text lines per
screen. It controls (among other things)
the number of “lines per field” which is
is a very different animal.

Think of a CoCo graphics screen
which normally has 192 vertical lines.
With $FF99, we can change this to 200
or 225 but this says nothing about the
number of lines of text. Byte $FF98
controls (among other things) the num-
ber of lines per text character which
canbe 1,2, 3,89, or12.

To find the number of text lines per
screen, we need to divide the lines per
character into the lines per field. In
Herbert’s program listing #9, the char-
acters are the default 8 lines per. 225/

=28.125 Unit number of text lines can
be had only with 192/8=24 or 225/
9=25. Other combinations will leave a
fractional character on the last line with
the stock screen print routines.

Herbert’s Table 10 would be better
presented as in the service manual. If
done that way, some mistakes in Table
10 would have been prevented; $FF99
values 8,$28,$68 should be 0,$20,$60.

$FF99 video resolution register

bit7 -

bit6 = LPF1
bits5 = LPFO
bit4 = HRES2
bit3 = HRES1
bit2 = HRESO
bit1 = CRES1
bit0 = CRESO

LPFn = lines per field
HRESRN = horizontal resolution
CRESnN = color resolution

LPF1 LPFO lines per field
0 0 192

0 1 . 200

1 0 reserved
1 1 225

In text screen mode:

HRES2 HRES1 HRESO CRESf
32character 0 0 1 na
40 character 0 1 1 na
80 character 1 1 1 na
and adding Herbert's discoveries
32character 0 0 0 nosttributes
40 character O 1 0 na
64 character 1 0 0 na
64 character 1 0 1- wi atfributes
80 character 1 1 o na .

This is not unexpected when you
consider that $FF99 does not control
the number of characters per line but
the number of bits per line. Selections
are 160, 256, 320, 512, 640 and with 8
bit wide characters the results are 20,
32, 40, 64, and 80. Unfortunately, in
text mode you cannot select the 160
bit width.

One programming hint. Listing 9 has
several entries such as:

LDD TEMP

STA $FF9D

STB $FF9E

The code should be:

LDD TEMP

STD $FF8D

Robert Gault
robert.gault@worldnet.att.net

Thanks Robert! | can always count
on you to discover problems, which is
good, as | don't always know what I'm
looking at!! As a side note, ANYONE
can write in and let me know when
something goes awry or just doesn't
look right. | can’t improve without feed-
back from readers, both positive and
negaltive.

the world of 68° micros page 3

More CoCo RS-232 Info
Timing Loops and the CoCo RS-232 Port

As the quest for ever faster computers
continues, these machines have become
so fast that their operation leaves humans
in the dust. Even the Coco can be made
to list a directory or file faster than we
can read the screen.

Some operations, such as data frans-
fer, require precisely timed intervals for
synchronization between computers. in
short, some method is required to slow
down computers in a controlled manner.

There are two methods for timing used
on the Coco, interrupts and timing loops.
Interrupts are breaks in the flow of code
caused either by external events or a
hardware clock. Timing loops are sec-
tions of code which are repeated to waste
time. The number of repetitions controls
the time wasted. Below are some ex-
amples of timing loops and their implica-
tions on the Coco RS-232 code used to
send info to printers or modems.

Everyone who writes in Basic on the
Coco has at one time used something
like the foliowing:

100 FOR CT =3D 1 TO NN: NEXT CT

This do-nothing For/Next statement
wastes time. The amount of time de-
pends on the value of NN. Similarly, the
same thing can be done in assembly lan-

guage:
* timing subroutine
timer Idx #wn

load register X with a number
t1 leax -1x
decrease the value of reg.X by 1
bne t1
loop if not equal to zero
rts
retumn from the timing loop

What both these examples have in
commonis that the timer has three parts,
the initialization, the main timing loop, and
the conclusion. To accurately time some-
thing with a loop, the time required to
execute the initialization and the conclu-
sion can not be ignored. Using the as-
sembly timer as an example, initialization
takes 3 clock cycles, conclusion takes 1
clock cycle, and each pass through the
loop takes 5 clock cycles.

It is easy to see that when nnis 1, the
overhead is 80% of the loop time, 4 vs.
5. At the maximum value of 65535, the
overhead is about 1/1000 of 1% of the
loop time. This means that without care-
ful planning, the effect of timing loops will

page 4 the world of 68' micros

Robert Gault
Table 1

Calculated Baud Rate Decimal Value Ratio from Ratio difference
120 458 - 458 -
300 180 0.4 183.20 3.20
600 87 0.5 91.60 46
1200 41 0.5 22.90 4.9
4800 - 0.5 11.45 “5"
9600 - 0.5 573 “5”

not be linear with count. A perfect ex-
ample of this is the loop used for the Coco
bit-banger RS-232 port.

This topic came up during a discussion
on the Coco listserver. Allen Huffman
posted a complex equation for calculat-
ing the Coco baud rate constants:

POKE150,INT(.2175+5.7825*(5-
(LOG(BD/600)/LOG(2)))4.5)

The constants are the values the Coco
owner=92s manual says should be
POKEd into addresses $95 and $96.
Here they are as listed for the Coco3 at
1MHz:

Baud RateDecimal Value

120 458

300 . 180

600 87

1200 41
2400 18

4800 not given
9600 not given

-Ignoring the exact definition of baud,
these values relate to bits fransmitted per
second. Therefore one would expect that
when the baud rate changed by a factor
of two, the timing constant would change
by a factor of two; it doesn=92t. But, if
your refer to the timer example above,
this nonlinearity is not surprising. It is clear
that the system overhead for sending one
bit is not negligible at high baud rates.

With our new knowledge about timing
constants, can we create a simpler for-
mula for baud rates than the one given
above? In particular, can we show a lin-
ear relationship between the constant and
baud rate? Yes, we can.

Let’s start by assuming the constant for
120 baud is correct and that the over-
head for this value is insignificant.

Table 1 shows the ratio between the
baud rates and calculates new constants
by multiplying 458 successively by each
ratio. The old constants are then sub-
tracted from the new ones to get the last
column. Itis easy to see that the system

“overhead must be equivalent to five tim-

ing loops. We can then generate a new
table of theoretical constants as shown
in Table 2. :

In the above table, we start by adding
458+5 to get our first total bit delay. Each
subsequent delay value is calculated from
the baud rate ratios. Finally the new con-
stants are obtained by subfracting 5 from
each total delay.

The above can be summarized into a
formula which incorporates the effect of
running the Coco at either 1 or 2 MHz
speed:

timing constant =3D (clock * 9600 *
5.79 / baud) - 5; clock =3D 1 or 2

The above equation is both simple and
demonstrates the linear relationship be-
tween the baud and timing constant. The
system overhead is also clearly visible.
Nevertheless, buyer beware, the formula
assumes that the Tandy constant for 120
baud is correct. This may not be true par-
ticularly if the Coco is used with serial to

Table 2
Baud Rate Total delay New Constant

120 463 458

300 185.2 180

600 92.6 88

1200 46.3 41

2400 23.15 18

4800 11.58 7

9600 5.79 1

parallel converters.

From a practical point of view, each
reader should determine the high and low
limits for the lowest functional baud rate
by printing a line of text. The average
value should be used as a reference con-
stant to determine an optimal series as-
suming a system overhead of 5.

My internet address:
robert.gault@
worldnet.att.net

NEW PRODUCT ANNOUNCEMENT: Omni Basic
A compiler that converts BASIC to C executables!

Computer Design Lab (CDL) an-
nounces the availability of OmniBasic
for MicroSoft Windows 95 and Win-
dows NT (it is also available for OS-9/
68000 systems). Now you can easily
convert those old Microware basic pro-
grams to run on Win95/NT and many
other platforms. All OmniBasic pro-
grams are FULLY portable to/from
- ANY of the supported platforms.

OmniBasic is available for Win95/
NT, 0S/2, MSDOS, Linux (ELF), OS-
9/68000, OS-9/68020, and OS-9000
(v1.4). The OS/2 version requires EMX
v0.9c. The MSDOS version requires
DJGPP v2.1 and also runs under Win
3.xx.

The 68000 version should run on all
“core” machines such as the AT306. it
has been tested on the MM/1 with the
68070. It does not require a run time
package but does require the Micro-
ware K&R C compiler for the final step
of compilation.

The shareware (demo) version may
be downloaded from:

http://www.bmtmicro.com/catalog/
omnibasic.html

The GNU port required to run
OmniBasic on Win95/NT may be

downloaded from:
http://www.cygnus.com/misc/gnu-
win32/
ftp:/fftp.cygnus.com/pub/gnu-win32/
gnu-win32-b18/
http:/iwww._fu.is.saga-u.ac.jp/~colin/
gee.html

It is necessary to download the Cyg-
nus gnu-win32 package plus the
Minimalist package. A script file (in-
cluded with OmniBasic) is then run
which copies the required files from the
Cygnus package to the Minimalist
package. OmniBasic runs for Win95/
NT runs ONLY with the Minimalist
package, so after installation, the Cyg-
nus package may be deleted (freeing
45-60MB from your hard disk).
OmniBasic plus the Minamalist pack-
age consume approximately 10 MB
total.

The Cynus file to download is
cdk.exe which is a self-extracting ex-
ecutable file. The Minimalist file is a
tar-zip and can be unzipped/untarred
with WinZip.

OmniBasic is a C-output BASIC
compiler which has a similar syntax to
BASICO09 but also includes many ad-
vanced features such as pointers,

based variables, dynamic memory al-
location, macros, conditional compile,
and more. It takes a .b (basic) file as
input and outputs C code. It then auto-
matically calls the C compiler which in
tum calls the assembler which in tum
calls the linker. The result is a program
that is a binary executable that will run
with no support required execept the
operating system itself. You need the
C package plus the OmniBasic pack-
age to develop OmniBasic programs.

MAIL:

BMT Micro

P.O. Box 15016
Wilmington, NC 28408

PHONE:

800-414-4268 —
Orders only (USA and Canada)
810-791-7052 —

. AN
Orders & questions & X037 AN\
c%‘?',‘:&i
INTERNET: AL
bmt@bmtmicro.com ‘\w

— —
—

Chicago CoCoFest 98!

THE GLENSIDE COLOR COMPUTER CLUB OF ILLINOIS PRESENTS

THE SEVENTH ANNUAL “LAST” CHICAGO COCOFST
April 18th & 19th, 1998 (Sat. 10am-5pm; Sun. 10am-3:30pm)

Elgin Holiday Inn
(A Holidome Indoor Recreation Center)
345 W. River Road
Right off intersection of I-80 & IL-31, Same location as past years!
Ovemight room rate: $65.00 (plus 10% tax)

Call 1-847-695-5000 for reservations.

Be sure to ask for the “Glenside” or

*CoCoFEST!" rate. There is a limited number of rooms set aside for the
CoCoFest. These rooms will be released on March 31. They will not be avail-

able at the ‘Fest rate after that date, so

make your reservations early!

General Admission: $10.00, whole show (Children 10 and under are free)

For further information, general or exhibitor, contact:

Tony Podraza, VP, Spcl Evnts, GCCCI

847-428-3576, VOICE
847-428-0436, BBS
Tonypodraza@juno.com

Mike Knudsen, President, GCCCI
630-665-1394, VOICE
Mknudsen@lucent.com

Brian Schubring, Ast., Fest Coordinator, GCCCI

E-MAIil theschu2@juno.com OR

theschu3@aol.com

CoCoFEAST!

That's right a CoCo FAMILY DINNER at the
HoliDay Inn. Why? So You don't have todrive ‘here
or there’ or try to decide which group you want to
spend time with. We can be all together to enjoy
the food, and best of all, each others company.
There my be a Keynote speaker present. This is
planned for Saturday Night about 6:00pm. We
need is a MINIMUM of 50 people to reserve a din-
ing room. The tickets will only be available in ad-
vance, AT THIS TIME! Peopie to conntact are
listed below. The cost will be only $15 U.S. PER
Person. We will be able to take paid reservations
only up to March 28th, 1998. Please contact one
of us for further details.

NOTE: THE CLUB IS NOT MAKING ANY
MONEY FOR THE DINNER, NOR PLANS TO.
THIS FUNCTION IS ONLY TO PROMOTE A
COCO FAMILY GATHERING AT ONE GREAT
LOCATION. .. THE COCOFEST!

If by the specified date we are lacking the num-
ber of attendees required, the dinner will be
scrapped and a refund will be issued at the Fest.

Afterwards there may be a Musical Monk'O
Rama Jam-Session like we had last year with
Brother Jeramy, Allen Huffman, and anyone else
who wants to bring and instrument and join in!

See Ya'll there in '98!1!

the world of 68' micros page 5

FARNA Syszems

Your most complete source for Color Computer and 05-9 informationl

Post Office Box 321
Warner Robins, GA 31099
Phone: 912-3286-78659

E-malil: dsrtfox@delphi.com

ADD $3 S&H, $4 CANADA, $TO0 OVERSEAS

BOOKS:

Mastering OS-9 - $30.00

Compiletely steps one through learning all
aspects of OS-9 on the Color Computer.
Easy to follow instructions and tutorials.
With a disk full of added utilities and soft-
ware!

Tandy's Little Wonder - $25.00

History, tech info, hacks, schematics, re-
pairs,... almost EVERYTHING available for
the Color Computer! A MUST HAVE for
ALL CoCo aficionados, both new and old!!!
This is an invaluable resource for those
trying to keep the CoCo alive or get back
into using it

Quick Reference Guides

Handy litle books contain the most refer-
enced info in easy to find format. Size
makes them unobtrusive on your desk.
Command syntax, error codes, system
calls, etc.

CoCo 0S-9 Level Il : $5.00

0S$-9/68000 : $7.00

Complete Disto Schematic set: $15
Complete set of all Disto product schemat-
ics. Great to have... needed for repairs!

SOFTWARE:

CoCo Family Recorder: Best genealogy
record keeper EVER for the CoCo! Re-
quires CoCo3, two drives (40 track for OS-
9) and 80 cols.
DECB: $15.00 0S-9: $20.00
DigiTech Pro: $10.00

Add sounds to your BASIC and M/L pro-
grams! Very easy to use. User must make
simple cable for sound input through joy-
stick port. Requires CoCo3, DECB, 512K.

ADOS: Best ever enhancement for DECBI
Double sided drives, 40/80 tracks, fast
formats, extra and enhanced commands!
Original (CoCo 1/2/3) : $10.00

ADOS 3 (CoCo 3 only) : $20.00
Extended ADOS 3 (CoCo 3 only, requires
ADOS 3, support for 512K-2MB, RAM
drives, 40/80 track drives mixed) : $30.00
ADOS 3/EADOS 3 Combo: $40.00

Pixel Blaster - $12.00

High speed graphics tools for CoCo 3 OS-
9 Level Il. Easily speed up performance of
your graphics programs! Designed espe-
cially for game programmers!

Patch 0S-9 - $7.00
Latest versions of all popular utils and new
commands with complete documentation.
Auto-installer requires 2 40T DS drives
(one may be larger).

TuneUp : $20.00

Don't have a 63097 You can still take ad-
vantage of Nitro software technology!
Many OS-9 Level Il modules rewritten for
improved speed with the stock 6809!

Thexder OS-9

Shanghai 0S-9 : $25.00 each

Transfer your ROM Pack game code to
an OS-9 disk! Please send manual or ROM
Pack to verify ownership of original.

Rusty : $20.00
Launch DECB programs from OS-9! Load
DECB programs from OS-9 hard drive!

NitroOs-9:

Nitro speeds up OS-9 from 20-50% de-

pending on the system calls used. This is

accomplished by completely rewriting OS-

9 to use all the added features of the Hita-

chi 6309 processor. Many routines were

streamlined on top of the added functions!

The fastest thing for the CoCo3! Easy in-

stall script! 6309 required.

Level 3 adds even more versatility to Ni-

tro! RBF and SCF file managers are given

separate blocks of memory then switched

in and out as needed. Adds 16K to sys-

tem RAM... great for adding many devices!
NitrOS-9 V.2.0: $35.00

NitrOS-9 Level 3: $20.00

SAVE $10! V.2.0 & Level 3: $45.00

The ATS506 05-9 Single Board Computer

AT306 Motherboard Specs:

16 bit PC/AT /O Bus (three slots)
MC68306 CPU at 16.67MHz

Four 30 Pin SIMM Sockets

IDE Hard Drive Interface

Floppy Drive Interface (180K-2.88M)
Two 16 byte Fast Serial Ports (up to 115K baud)
Two “Terminal® Serial Ports (no modem)
Bidirectional Parallel Port

Real-time clock

PC/AT Keyboard Controller (five pin DIN)

included Software Package:
“Personal® 0S-9/68000 Vr 3.0
(Industrial with RBF)
MGR Graphical Windowing Environment
with full documentation
Drivers for Tseng W32i
and Trident 8900 VGA cards
Drivers for Future Domain 1680
and Adaptec AAH15xx SCSI cards
Many PD and customized utilities and tools

page 6 the world of 68° micros

The AT306 is a fully integrated single board computer. It is de-
signed to use standard PC/AT type components. Sized the same as
a “Baby AT” board (approximately 8” square). Compact and inex-
pensive enough to be used as an embedded controlleri Use with a
terminal (or terminal emulation software on another computer) or
with a video card as a console system. Basic OS-9 drivers are in
ROM, making the system easy to get started with.

HACKERS MINI KIT (FARNA-11100): Includes AT306 board, OS-9 and drivers,
util software, assembly instructions/tips, T8900 1MB video card. Add your own

case, keyboard, drives, and monitor!

ONLY $500!

Call for a quote on turn-key systems and quantity pricing.
Warranty Is 80 days for labor & setup, components limited to manufacturers warranty.

Microware Programmers Package -
Licensed copies of Microware C compiler, Assembler, Debugger,
and many other tools!

With system purchase: $65.00 Without system: $85.00

operating system nine
More on Nitro V.2.00 and Nitro Level lll.

Alan Dekok

NitrOS-9 V.2.00

1. What is NitrOS-9 (Nitro)?

NitrOS-9 is a 99% OS-9 compatible
operating system for the Hitachi 6309E. it
can be simply ‘dropped in’ to replace the
0S-9 you currently use. The current ver-
sion of Nitro is v2.00 and it is available
exclusively from FARNA Systems.

2. Why is it 99% compatible, and not
100% compatible?

- Because Nitro runs in HD6309E native
- mode, the CPU itself behaves in a slightly
different manner than the MC6809E. The

" two differences are:

* The CPU runs faster. Software timing
loops must be adjusted (such as serial port
and printer drivers).

* Programs that use interrupts have to
be patched to use 6309 native mode in-
stead of 6809 mode (like Home Publisher).

Nitro includes patches for all known pro-
grams to ensure they work correctly on the
6309. If you have a program that Nitro
does not patch, send it to the distributor
and a patched program will be returned to
you at no cost.

All other programs may be used as they
are, and their behaviour will not change
after installing Nitro.

3. Why should | use Nitro instead of OS-
9?

The main reason to use Nitro is speed.
Any OS-9 application running under
NitrOS9 will run a minimum of 10-15%
faster than the identical application run-
ning under stock OS-9. This speed in-
crease is due to the 6309 native mode.

The kernel of Nitro has been written us-
ing the new capabilities of the 6309. As
the 6309 is much more powerful than the
6809, Nitro is much more efficient and
powerful than OS-9.

Many of the internal algorithms used by
0S-9 have been changed in Nitro. The new
algorithms execute much faster than the
previous ones, but are otherwise identical
in behaviour.

The graphics drivers (Windint, Grfdrv)
were also optimized for the 6309. Speed
tests show that text screen updates are
performed more than four times as fast
under Nitro as under stock OS-9. Even the
‘Xmas grfdrv’ patches lag far behind
NitrOS9 in terms of raw graphics speed.

The latest version of Nitro speeds up the
entire system by 2 to 10 times over stock
0S-9. Text writes, graphics fonts, line
drawing, flood filling, system call overhead,
serial I/O, and pipes are much faster than
all previous versions of OS-9 or Nitro. The
difference is so large now that as a devel-

oper, | refuse to use anything less than
Nitro v2.00. Even v1.16 of Nitro is so slow
as to be more comparable to a stock sys-
tem than to v2.00.

These are not the only reasons to move
to Nitro. Another advantage is that all of
the bugs that existed in stock OS-9 have
been found and fixed. This includes bugs
that had not been discovered previously.
All publicly available kemel ‘fixes’ and ‘en-
hancements’ are included in Nitro.

4. Does Nitro implement any of the ru-
mored ‘OS-9 Upgrade'?

Yes and no. Many of the same features
rumored to be in the upgrade have been
included in Nitro, but were developed in-
dependently of the upgrade. Other features
in the upgrade may be added in the fu-
ture.

There are many optimisations in Nitro,
however, that never made it into the OS-9
Upgrade. These features cause Nitro to be
much faster than the OS-9 Upgrade ever
was.

For people who do want these
optimisations without the potential
HD6309E conflicts, FARNA also carries a
product called TuneUp. TuneUp is a col-
lection of new modules for your stock 6809
0S-9 system that drastically improves the
speed of the system.

5. What level of support is there for
NitrOS-9?

Both the authors and the distributors are
fully committed to supporting Nitro. Any
questions may be relayed to:

Software support Alan DeKok

adekok@gandalf.ca

Distributor support: Frank Swygert

dsitfox@delphi.com
912-328-7859
Write in care of 68’ micros

With NitrOS-9, you find a level of sup-
port that was never possible with 0S-9.
Any software problems should be relayed
to Software Support. You will be contacted
about the problem, and a fix will be shipped
as soon as possible.

6. Are there hardware problems with in-
stalling Nitro?

You must replace the MC68BOSE chip
inside the Color Computer with a
HD63BO09E. Directions for doing this are
given in the Nitro manual. If you do not
feel comfortable performing this modifica-
tion yourself, any electronics shop can de-
solder and replaces chips for a charge.

Nitro pushes the hardware of the Color
Computer much closer to its limit that did
0S-9 or DECB. It is very important that
the installation procedure is followed care-

fully and exactly in order to have a com-
plete and therefore stable system.

No other hardware modifications are
required. An HD63CO9E may also be used.

7. How hard is it to install Nitro?

Nitro is much easier than to install stock
0S-9. You must be able to build a boot
disk, and as version 1.20 ships with the
needed modules on the disk, minimal
patching is required. You simply replace
the OS-9 modules with the equivalent Ni-
tro modules. The executable modules
should NOT be mixed between OS-9 and
Nitro, as they are incompatible. Device
descriptors can be copied over unchanged.

If you have an OS-9 module and there
is no Nitro equivalent, contact the distribu-
tor, and one will be shipped to you as soon
as possible. After more than two years of
shipping, however, we believe there are
few, if any modules that do not have Nitro
equivalents.

Once NitrOS-9 is instalied, you may
want to reformat your disks with a smaller
interleave factor. Nitro can handle much
higher data rates than OS-9.

8. What other enhancements are avail-
able for 0S-9?

Users of Nitro can increase the amount
of system RAM available by installing the
Level Hll. Level lll is compatible with ail
programs that will run under Nitro. The
best 6809 enhancement package is
TuneUp (see item 5).

9. Is other HD6309 specific software
available?

There is a 6309 version of rma, and two
6309 versions of asm. There is not, how-
ever a 6309 C compiler.

Most authors appear to be continuing
to be writing mainly 6809 software. This
ensures that their software will run on ALL
08S-9 LIl platforms, although their software
will run much faster under Nitro.

Nitro, therefore, benefits you the most.
No one eise has to be aware that you are
running it, and you can buy any OS-9 soft-
ware in the confidence that it will work on
your Nitro system.

Nitro Level lll

1. What is Level iiI?

Level lll is one step beyond OS-9 Level
Il. Using Microware’s definitions, we have:

Level |

System and User programs in system
memory. The Coco 1 & 2 ran OS-9 with
both the system and user programs ex-
ecuting out of the same 64K memory map.

Level Il

User programs outside of system
memory. The Coco 3 with its MMU has

the world of 68’ micros page 7

one 64K memory map for the system, and
each process gets it's own 64K memory
map.

Level Il

System modules running outside of the
system map. Parts of the 10 subsystem
are task switched in and out of the system
memory map, increasing the memory
available to the entire system.

In short, Level lll increases the amount
of memory available in the OS-9 system
map by 16K.

2. How exactly does Level lll work?

Level lll puts SCF and RBF each into
their own 16K mini task. If the system is
doing I/O to an SCF device, the SCF file
manager and drivers are mapped into
memory, and the RBF modules are
mapped out. When RBF /O is required,
SCF gets mapped out.

The idea for Level Il was born of the
realization that it is possibie to boot an OS-
9 system with only SCF drivers, and like-
wise with only RBF drivers. Since the two
file managers are completely independent
in this way, there is no need for both of
them to be in the system memory map at
the same time.

In effect, the system is turned into a Ker-
nel only process with 48K of RAM and 2
10 processes (RBF and SCF), each with
16K of RAM. The kernel process contains

From: Dennis Bathory-Kitsz

Hi folks! I’ve been hiding out
in Vermont, but since it’s the
10th anniversary of my com-
pany Green Mountain Micro’s
demise, I thought it might be
time to put in an appearance
here.

About 150 copies of ‘Learn-
ing the 6809’ (book only) re-
main, which I'd be happy to
offer at $10 postpaid to any-
one interested. If at least 10
people also want the original
tapes, I'd be pleased to make
up a set of those as well.

One of these days I'll tell my
own tale ... amusing indeed...

Dennis Bathory-Kitsz

RD 2 Box 2770

Cox Brook Road
Northfield, Vermont 05663

<bathory@maltedmedia.com>
Malted/Media:
http://www.maltedmedia.com/

page 8 the worid of 68’ micros

the minimum modules to run an OS-9 sys-
tem and the descriptors. The RBF/SCF
processes contain the |0 modules and
buffers.

Modifications to OS9p1, Clock, and
IOMan were required in order to direct sys-
tem calls, I/0O requests, memory alloca-
tion requests, and IRQ's to the appropri-
ate map. All other system modules remain
unchanged.

3. How difficult is it to install Level lil?
If you can create a new boot disk, you
will find that installing Level lll is no more
difficult than that. Simply replace the speci-
fied modules in your OS9Boot file, re-or-
der your OS9Boot file as described in the
manual, and reboot your system.

As with all system upgrades, it is a good
idea to install the upgrade onto a boot
floppy, instead of over-writing your exist-
ing system configuration.

Nitro Level |l is incompatible with the
system modules in stock 6809 OS-9 and
with pre v1.22 NitrOS-9. The latest ver-
sion (v.2.00) is highly recommended.

4. What compatibility issues are there
with Level lIl?

Level 1l will run all programs that will
run under Nitro.

Distribution information for

Nitro V.2.00 and Nitro Level il

For further information, contact the dis-
tributor (Frank Swygert) at

FARNA Systems

Box 321

Warner Robins, GA 31099-0321

Phone: 912-328-7859

Internet. dsrtfox@delphi.com

Look for the ad in this issue for current
prices. Do note that Nitro V.2.00 and Nitro
Level lll are SEPARATE products. There
is a savings, however, if both are pur-
chased together.

NEW PRODUCT ANNOUNCEMENT:

Nickolas Marentes is proud to release

** rae-

m a4 m **

“A tribute to the great game”
For the Tandy Color Computer 3 with 512K RAM and Disk Drive

Finally! A version of the 1980 classic that is so similar to the original that you will think
you ARE playing the original. Many of the original's features and characteristics have
been included to make this game as faithful to the original Namco classic as possible.
Fun, clean, violence free, 80’s style entertainment for the whole family.

Features include:
* Most of the original sound effects
* Accurate replica of the original maze

* Accurate display of graphics and animations

* Many of the originals game play elements

* Coded in 100 percent 6809 assembly language

* Runs at 60 fps with 2 channel digital sound

* Keyboard and Joystick controls

* Reduced function DEMO version available as Freeware.

* Low price for full registered version ($20)

Get the best version of this historic game for your CoCo3 today!

Available from:
- USA -

Rick's Computer Enterprises, P.O. Box 278, Liberty, KY 42539
Internet Page: www.voicenet.com/~swyss/cfdm.htmi

E-mail: rcooper@kih.net

- AUSTRALIA -

Nickolas Marentes, P.O. Box 2003, Runcom, 4113, QLD.
Intemet Page: www.launch.net.au/~stauros/nickpage/ (FREE DEMO!!)
E-mail: N.Marentes@mailbox.uq.edu.au

Pac-man is the registered trademark and property of Namco/Midway.
Money collected is payment for the work invoived in the development of the 6809 code.
The author has not seen or copied any of the original's Z-80 code.

MM/1 Survey! Boisy Pitre

Dear MM/1 Owner, 1. Which MM/1 do you own (68070 MM/1 or 68340 MM/1a)?
I'm doing a survey to see how many

MM/1 owners are out there, what kind 2. Do you have an |/O board with your MM/1?

of system they have, etc. This infor-

mation is to be used to make a deter- 3. How much RAM do you have? 1MB, 3MB or 9MB?

mination on what type of market there

would be for certain products that | 4. What size hard drive do you have?

would like to release. Please take a

few moments to fill out the following 5. Do you program in C or C++?

questions and send your responses via

surface or e-mail. : 6. Do you own an Intel based PC? If so, what CPU type?
Thank you! ' . .
-) 7. Please fill out the following fields.
Boisy G. Pitre
Your Name:
E-mail: boisy@microware.com Address:
' City:
State:
ZIP:
Phone:
Preferred E-mail address:
Hacking Orchestra 90 Pak Part 2 Robert Gault

Editor: The following schematic was inadvertently left out of the “Hacking Orchestra 90 Pak® article by Robert Gault in
the July/August issue (Volume 5 Number 1). What happened is that the schematic was embedded in a Word 6.0
document. The import filter that comes with PageMaker 5 doesn't recognize embedded graphics, so | didn't realize it
was even there until Robert alerted me that it was missing. It took me a little time to figure out how to extract the file from
the document so it didn't appear in the last issue. I'm sorry for the any inconvenience this may have caused! Robert
informed me that the schematic would be needed by anyone interestd in the modification.

+hv
EPad6— ~
CART Pad8——
R/W= Pad18— S DO
C l
D7
INTR ADC0802
ECG2053
etc.
+5v Vs

‘[10K 10K
100 ohm existing output
1o 0-5v AC signal input
4uF

the worid of 68’ micros page 9

0S-9 Level ll on a PC!

Setting up OS-9 to run from Jeff Vavasour's CoCo3 Emulator

Walter Grossman

What follows is an account of how I set
up OS-9 on my CoCo III Emulator v1.6.
The Emulator is an excellent product and
should be used by everyone who likes the
Color Computer and has a PC. The first
thing that must be done is to make a com-
plete print-out of the the file that comes
with the emulator called COCO3.DOC. It
is a very well written and complete manual
for using the Emulator and should be read
in its entirety before and while starting the
Emulator.

I set up my Emulator in two directo-
ries: one I called COCO3X and the other
0S-9. In this way I can access either
DECB or OS-9 from the C:\ prompt eas-
ily via a simple BAT file which I will list
later.

In the COCO3X directory I copied all
the files on the Emulator distribution disk.
Then following the instructions detailed
in the manual (COCO3.DOC) I set up the
ROM files to run my Extended ADOS 3
(or regular DECB) and any DECB appli-
cations. It is in this directory I set up all
my “virtual disks,” including all my OS-
9 virtuals. (More about the OS-9 virtuals
later.)

Once all the CoCo (or ADOS) ROM
images are set up (again well covered in
the manual) all CoCo functions including
0S-9 can be run from this directory. OS-
9 can be run by typing the customary
“DOS” command from basic. To run the
CoCo from the DOS c:\ prompt I wrote
the following simple BAT file I named
COCO.BAT and placed it in the C: direc-

tory:

@echo off
cd\coco3x
coco3x
cd\

This will return you to the c:\ prompt
after quitting the Emulator. If you would
rather stay in the COCO3X directory the
last line can be eliminated. Staying in the
COCO3X directory will allow you to
" backup virtual disks onto floppies via the
dskini command in the COCO3X direc-
tory. However, it is often more convenient
to write, copy, or backup to floppies right
from disk basic because you can work with
individual files on a floppy disk while still
in the Emulator. However, after quitting

page 10 the world of 68' micros

the Emulator you are left only with the
option of doing a complete backup of a
floppy to virtual disk or from virtual to
floppy. Individual files on either type of
disk cannot be accessed from DOS.

After setting up the OS-9 directory I also
copied all the files on the Emulator distri-
bution disk to that directory, just as I did
for the COCO3X directory. However, I
neither set up nor copied any virtual disks
to this directory for reasons I will explain
later.

In the Emulator is a file named
OS9BOOT.MOR. By renaming this file
as described in the manual, you can start
the Emulator booting immediately into
0OS-9 without needing the ROM images
that DECB requires. Again, for this pur-
pose I use a file named OS9.BAT which
is placed in the C: directory as follows:

@echo off
cd\os9
coco3x
cd\coco3x

I also keep a copy of this BAT file in the
COCO3X directory in case I want to start
OS9 from there. This time, after quitting
the Emulator you are placed in the
COCO3X directory so that virtual disks
can be backed up. Unlike the Emulator
running DECB, the Emulator running OS-
9 will not read from or write to a floppy
disk. It will read from and write to vir-
tual disks perfectly. Even though there
may be no virtual disks in the OS-9 direc-
tory, the Emulator will automatically seek
the virtual disks in the COCO3X direc-
tory. This way, all the virtual disks can be
stored in one directory and be accessed by
both the OS-9 and COCO3X directories.

Another consideration in setting up OS-
9 on the Emulator is the fact that the Emu-
lator will only read single sided floppies.
So any OS-9 disk that is copied over to a
virtual disk must be single sided. On the
other hand, virtual disks can be formatted
40 or 80 track so that more data can be
stored on one virtual disk. An 80 track
virtual disk, however, must run in a vir-
tual drive that has an OS-9 80 track de-
scriptor in memory for that drive. More
about this later.

OS-9 Level 2 can run at least three

‘drives, so I set up my boot file to initialize

/d0 as a 40 track double sided drive, /d1
as an 80 track single sided, and /d2 as a
40 track single. This way my boot-up and
executables are in /d0, I can use either 40
or 80 track single sided disks in my data
drives /d1 and /d2. These disks are read-
able both by the Emulator and the real
CoCo.

Setting the system up can be a bit con-
fusing. Most OS-9 systems on a real CoCo
run double sided disks. To set up the same
system on the Emulator requires these
disks to be changed to single sided so the
Emulator can read them. Then they can
be changed back to double sided once in
the virtual disk system.

The original disks to boot the Emulator
into OS-9 must be prepared on a real
CoCo. First a copy of ‘os9boot’ has to
placed on a newly formatted single sided
0S-9 disk with ‘cobbler’ or ‘os9gen’.
Then a startup file transferred to it, then a
CMDS directory. In the commands di-
rectory must be ‘format’, ‘shell’, “grfdrv’,
‘cobbler’ and ‘dsave’ or ‘wcopy’ if you
have it (Actually anyone serious about OS-
9 really shouid have Level II Tools and
Tools II by Keith Alphonso and at least
the ‘copy’ utility from the Goldberg Utili-
ties). In addition to this any additional
commands or files that you can add to fill
the single sided disk is fine. This disk can
then be transferred to the COCO3X di-
rectory via the ‘retrieve’ command. Now
you have a bootable virtual disk which if
designated as DO when the Emulator
comes up will get you into OS-9. Bear in
mind that the same descriptors will be
placed in memory in the Emulator as
would be placed in memory on a real
CoCo.

At this point I formatted another vir-
tual disk on the Emulator, from within OS-
9, as a double sided 40 track disk. Next I
made that disk into a boot disk using ‘cob-
bler’ and copying all the files and direc-
tories from the original single sided vir-
tual boot disk (Once you verify that OS-9
will boot with the new double sided disk
the single sided boot disk can be deleted
from MS DOS.) After that, I brought over
the rest of the files from my original CoCo
double sided disk and copied them on to
my new double sided virtual boot disk.

continued on page 19

28456 S.R. 2, New Carlisle, IN 46552
219-654-7080 eves & ends MO, Check, COD;, US Funds

HaWkSOﬁ Shipping included for US, Canada, & Mexico

MM/1 Products (0S-9/68000)
CDF $50.00 - CD-ROM File Manager! Unlock a wealth of files on CD with the MM/1{ Read most text and
some graphics from MS-DOS type CDs.

VCDP $50.00 - New Virtual CD Player allows you to play audio CDs on your MM/1! Graphical interface
emulates a physical CD player. Requires SCSI interface and NEC CD-ROM drive.

KLOCK $20.00 - Optional Cuckoo on the hour and half hour!! Continuously displays the digital time and
date on the /term screen or on all open screens. Requires /O board, 1/O cable, audio cable, and speakers.

WAVES vr 1.5 $30.00 - Now supports 8S VX and WAV files. Allows you to save and play all or any part of
a sound file. Merge files or split into pieces. Record, edit, and save files, change playback/record speed.
Convert mono to stereo and vice-versa! Record and play requires I/O board, cable, and audio equipment.

MM/1 SOUND CABLE $10.00 - Connects MM/1 sound port to sterco equipment for recording and play-
back. .

GNOP $5.00 - Award winning version of PONG(tm) exclusivély for the MM/1. You’ll go crazytrying to
beat the clock and keep that @#$%& ball in line! Professional pongists everywhere swear by (at) it! Requires
MM/1, mouse, and lots of patience.

CoCo Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug 0’ Power controller back on the
job with your CoCo3! Control up to 256 modules, 99 events! Compatible with X-10 modules.

HI & LO RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or no adapter at the flick of a

switch! No more plug and unplugging of the joystick!

KEYBOARD CABLE $25.00 - Five foot extender cable for CoCo 2 and 3. Custom lengths available.

| MYDOS $15.00 - Customizable, EPROMable DECB enhancement. The commands and options Tandy left
out! Supports double sided and 40 track drives, 6ms disk access, set CMP or RGB palettes on power-up,

come up in any screen size, Speech and Sound Cartridge support, point and click mouse directory, and MORE
OPTIONS than you can shake a stick at! Requires CoCo3 and DECB 2.1.

DOMINATION $18.00 - Multi-Player strategy game. Battle other players armies to take control of the
planet. Play on a hi-res map. Become a Planet-Lord today! Requires CoCo3, disk drive, and joystick or

4 SMALL GRAFX ETC.)

“Y” and “TRI” cables. Special 40 pin male/female end connectors,

priced EACH CONNECTOR - $6.50
Rainbow 40 wire ribbon cable, per foot - $1.00
Hitachi 63B09E CPU and socket - $13.00
MPI Upgrades for all small MPIs (satellite board) - $10.00
Serial to Parallel Convertor with 64K buffer

and external power supply - NOW ONLY $28.00!!!
Serial to Parallel Convertor (no buffer)

and external power supply - ONLY $18.00!!!
2400 baud Hayes compatible external modems - $15.00
Serial to Parallel Convertor or

Modem cable (4 pin to 25 pin) - $5.00

ADD $3.00 S&H FOR FIRST ITEM, $1.00 EACH ADDITIONAL ITEM

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK JET PRINTERS, RIBBONS & vr. 6 EPROM FOR CGP-
220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

Terry Laraway
41 N.W. Doncee Drive
Bremerton, WA 98311

360-692-5374

-

e The BlackHawk MM/1b &
[] []
EBased on the AT306 board froms
o Kreider Electronics. Features built e

ointo the motherboard include: ¢
o []

< 16 bit PC/AT 1/O bus with five slots §
$ MC68306 CPU at 16.67TMHz

. 512K to 16MB of RAM with

¢ 30 pin SIMMs (4 sockets)

« IDE Hard Drive Interface (2 drives)
$ 360K-1.44MB Floppy Drive

¢ Interface (2 drives)

* Two 16 byte fast serial ports

e (up to 115K baud)

< Bi-directional parallel printer port
+ Real-time clock

$ PC/AT keyboard interface

0 Standard PC/AT power connector :
o Baby AT size - fits standard PC case o
e BASIC (resembles Microsoft

e+ BASIO)

+MGR Graphical Windowing Envi-
¢ ronment with full documentation -

e “Personal” OS-9/68000 Vr 3.0

« (Industrial with RBF)

< Drivers for Tseng W32i and

+ Trident 8900 VGA cards

¢ Drivers for Future Domain 1680 and $
o Adaptec AAH15xx SCSI cards o

. 0S-9/68000 Vr 2.4 with Microware o :

o C 3.2, Assembler, MW Basic (like o
< Basic09), MW Debug, MW Pro-
¢ grammers Toolkit

:UUCP from Bon Billson

o Ghostscript (software PostScript

o interpreter)

o Many other utilities and tools

Prices start at $400!
(motherboard,
Personal OSK, & MGR only)

Shdell, LA 70458
E-mail: nimitz@stolY.com

the world of 68' micros page 11

The Embedded Programmer
Exploring the 68K’s Advanced Interrupt Structure

Paul K. McKneely

This is one of the best features of the
68K which makes it more like high pow-
ered mini-computers (such the VAX) than
simpler microprocessors (such as the
Z80). An advanced interrupt structure is
necessary if the system is to adequately
handle a large number of devices effi-
ciently. Indeed, the high-end 68K members
such as the 68030, 68040 and 68060 do
this rather well in comparison with much
more expensive mini-computers from DEC
and IBM.

Most computer systems have only a
single main processor. Yet many of them
seem to be able to keep a large number of
complex programs running at once. It re-
quires some sophisticated programming
~ techniques to do this well and the 68K ex-
ception model does a lot to make this pos-
sible.

In this article we will be referring to some
things that were discussed in the last ar-
ticle such as the Status Register (SR) and
the Interrupt Stack Pointer (ISP). For quick
reference, the Status Register is repro-
duced in figure 1.

Exception Vector Model

In most computers, software is usually
divided into System Software and Appli-
cation Software. System software gener-
ally runs in Supervisor Mode and applica-
tion software generally runs in User Mode.
Application software is written with the as-
sumption that it has access to a set of
abstract services that are provided by the
system software. It is the system software
that has to translate these requests into
control of actual devices. in the perfor-
mance of all of its duties, system software
must be able to pre-empt application soft-
ware to gain control of the processor. In
many cases, higher priority system soft-
ware can pre-empt lower priority system
software to accomplish the same purpose.
Any action that causes a program to be
suspended to allow system software to
gain control of the processor is called an
Exception. There are two broad catego-
ries of exceptions:

1. Synchronous: This kind of excep-
tion happens when a program executes
an instruction that causes it to be sus-
pended. The most important kind of syn-
chronous exception is called a System
Call and is implemented in the 68K with
the TRARP instruction. Other synchro-
nous exceptions are caused by bus er-
rors, page faults, divide-by-zero, etc.

2. Asynchronous: This kind of excep-
tion is called an Interrupt This happens
when a device needs prompt service.

page 12 the world of 68’ micros

The servicing of the interrupting device
is usually unrelated to the program that
is suspended by the exception.

Each time an exception occurs, the pro-
cessor goes through a sequence called
Exception Processing that causes it to
begin execution of the system software
routine that has been designated to ser-
vice the exception. The address of this rou-
tine is called an Exception Vector. The 68K
supports up to 256 exception vectors and
they reside in a location in memory called
the Exception Vector Table (EVT). Each of
these 4-byte values is identified by a 1-
byte Vector Number which is its index into
the table. Every time an exception occurs,
a vector number is either generated inter-
nally by the processor or is obtained from
an external device. During exception pro-
cessing this vector number is muiltiplied
by 4 (or shifted ieft by 2) before being
added to the address of the base of the
EVT. In the 68000, the EVT begins at lo-
cation 0. In the 68010 and above, it can
occupy any place in supervisor data space
with the aid of the Vector Base Register
(VBR).

A complete EVT occupies a contiguous
block of 1024 bytes. The first 1/4 of these
are either defined or reserved by Motorola.
These first 64 locations generally contain
vectors whose vector numbers are gener-
ated internally by the processor. The re-
maining 192 locations contain interrupt
vectors. It is a good practice to place the
vector of a default ex-

production, figure 1). If it is an interrupt,
the IPM is updated with the IPL of the re-
questing device. It then pushes a block of
data onto the Interrupt Stack (IStack)
called a Stack Frame. This operation is
done in hardware and it greatly simplifies
programming of system software. There
are a number of different formats but the
last 6 bytes left on the top of the stack are
always the same. The PC (Program
Counter) and the saved copy of the SR
are shown in figure 2.

A shortcoming of the original 68000 (and
the 68008) is that this is the only informa-
tion that is saved on the top of the IStack
for many exceptions. For these processors,
the exception handler is unable to deter-
mine the vector from which it was invoked.
This makes it difficult to write exception
handlers that can service more than one
device. In all later 68K processors, two
more bytes of information are always
present in stack frames (figure 3, next
page).

The Format code lets the processor
know how much information needs to be
restored and the Vector Offset allows the
exception handler to determine the Excep-
tion Vector that it was invoked from. As it
turns out, the 68000’s shortcoming is not
too serious and is only a nuisance when
wiriting a default exception handler. Besides
this problem, our kernel will not even need
the Vector Offset. The Format code is use-
ful for task switching because it implies
the amount of extra data that was pushed

ception handier at all
unused locations so
that the processor will
not crash when an
unhandied exception
occurs. if left blank, the
processor will most
likely begin execution at
a location that contains
arbitrary data and the
programmer will not be
able to recognize what
happened. | use a little
console routine that
prints out a message
and lets me know that

Status

|T s

ISP+00 |

an unhandled exception | ISP+02 |
has occured. +-

ISP+04 |
Stack Frames

When an exception |
happens, the processor
saves an intemal copy
of the SR then sets the
Supervisor Bit (see re-

Register
A+t ———+—+

| 1PM | |X N 2 v C|

+———+—t— -+
~~ System Byte -"# User Byte ¥"

figure 1

Stack Growth

e

Status Register

I S S A S S

Program Counter -+

ottt —t Attt —t—F—t—+—+
Additional Information |

figure 2

Stack Growth

dt bbbttt bt —+—+
ISP+00 | Status Register
Ft—tt—t—t Attt —+—+
ISP+02 | |
+- Program Counter —+
ISP+04
e S S S
ISP+06 | Format| Vector Offset |
Fetett—t—t Attt bt ——+—+—+
| Additional Information |

figure 3

Interrupt Vector Sourcing

An important difference between interrupts and synchronous excep-
tions is that interrupt vectors are not generated intemally from the con-
text of the instruction stream. In large minicomputers and mainframes,
exception vectors are provided by the device that is requesting service.
This is called Vectored Interrupts and is used a lot in larger 68K-based
systems such as VMEbus based systems. Busses that are sophisti-
cated enough to pass interrupt vectors to the processor during an in-
terrupt acknowledge cycle are expensive. This mechanism is not trivial
and it does not even exist in the ISAbus used in the IBM-type PC.

To reduce the complexity and cost in small and embedded systems,
Motorola has provided a simpler method called Autovectored Inter-
rupts. In the 88000, the IPL of the requesting device with the highest

onto the stack when the exception happened. When an

“exception handler finishes its job it can return to the sus-
pended process by executing an RTE (ReTum from Ex-
ception) instruction.

System Calls

Application programs typically depend on system ser-
vices for communication with each other and the outside
world. This is done in the 68K by using the TRAP instruc-
tion. There are actually 16 TRAP instructions and each
one has its own exception vector in the EVT. The syntax for
a TRAP call is of the form:

TRAP #n

The number n is an integer from 0 to 15. Corresponding
vector numbers for the TRAP instructions are 32 to 47 ($20
to $2F). As with other kinds of synchronous exceptions,
vector numbers are generated internally by the processor.

Interrupts

By their very nature, only one synchronous exception
can be pending at a time since they are caused by the
execution (or attempted execution) of the instructions of
the currently running program. They can only happen as
often as the instructions are executed and only one at a
time. Interrupts differ from synchronous exceptions in that
there may be many pending interrupt requests (IRQs) at
one time. Servicing of interrupts is the key to efficient pro-
cessing of a complex interactive software system. Because
various interrupts typically have differing levels of urgency,
the 68K uses an 8-evel priority scheme which makes use
of the Interrupt Priority Mask (IPM) of the Status Register
(SR).

When a program runs, it has a pre-determined interrupt
Priority Level (IPL). That is, when it begins execution, it is
provided with a pre-assigned 3-bit IPM value. Devices can
only interrupt processes with an IPM that is less than their
requested IPLs. Only programs running in supervisor mode
can change the IPM. The 68K allows programs running in
either supervisor or user modes to run at any of the 8 IPL
levels (0 thru 7). Even though the hardware allows you to
do this, our system will define some restrictions. In our
system, when a user mode application runs, it will always
have an IPL of 0. This is the lowest priority of any software
in the system and is called Task Level. The IPL of system
software will always be 1 or above (with the exception of
the first few instructions of TRAP handlers when called
from user mode). Level 1 is special and is called Kernel
Level. This level can only pre-empt software that is run-
ning at Task Level. IPLs 2 thru 7 are called Interrupt Levels
and they have the highest priorities.

priority is passed into the processor at pins IPLO-IPL2. At every pro-
cessor clock, these pins are sampled. Whern the same value appears
on the pins for two clocks in a raw, the requested level is recognized to
be a valid request for service. At the end of each instruction’s execu-
tion, this value is compared to the current IPM in the SR. ff it is greater,
then the interrupt is taken. When Vectored Interrupts are used, the
device passes the processor an 8-bit number on the data lines during
the interrupt acknowledge cycle. When Autovectored Interrupts are used,
there is no interrupt acknowledge cycle and the processor uses the
value on the IPL lines to look up one of seven vectors in the EVT. Value
0 is not interpreted as an interrupt request so the location that would
otherwise be used for level 0 autovectored interrupt is instead, Spuri-
ous Interrupt.

Many embedded systems have greatly reduced needs for interrupt-
ing devices and some even do all of their I/O through polling. For those
that do not need to implement Vectored Interrupts, the EVT can be
reduced to only support the 64 reserved vectors (or fewer). This still
leaves 7 Autovectored Interrupt vectors for the designer to use. This
results in a savings of 768 (or more) bytes that would otherwise be
wasted. Many of the 683XX embedded microcontrollers have pins that
accept IRQ inputs directly from interrupting devices. Their IPLs are
prioritized and encoded internally for comparison with the IPM of the
SR.

Nested Interrupts

Many devices may be interfaced to a single 68K machine. Most de-
vices represent physical processes going on in the real world that hap-
pen in paraliel with program execution. When a device needs service,
the currently running task is suspended (or interrupted) so that the
device can be serviced. What the device is doing may be totally unre-
lated to the program that was interrupted. But most interrupt process-
ing is very brief and provides that small amount of servicing that the
device needs to get going again. Some devices require prompt servic-
ing while others require servicing that is not so urgent. The 8-level IPL
system allows the system designer and even the system owner to de-
cide what the priorities are.

The 8-evel IPL system allows mid-priority software to interrupt low-
priority software and execute while still having high-priority interrupts
remain enabled. This allows software to execute at its priority without
blocking more urgent processing. In the example (figure 4), time
procedes from left to right.

continued on page 19
IPL 7
IPL 5 +====+FEE¥t====
IPL 4 fm=====4
IPL 3 | |
IPL 2 | | +=+ERFEE AR R=======+
IPL O HEEEE- R HEER R R R R ————>
a b c d ef g h i j

figure 4

the world of 68' micros page 13

CoCo3 Extended Memory Secrets Part 4

Bit Plane Graphics Mode

Herbert Enzman

The last installment covered the $FF8x
registers and TEXT mode; now in this in-
stalliment we will cover information that |
have found about BIT PLANE GRAPHICS.
| got into this because | wanted to do a
graphics TITLE PAGE, and couldn’t seem
to find information on this subject either.
So just like the previous information that |
wanted, | was on my own again.

Included in this tutorial, is a MOD for
standard DISK EDTASM to set it up for
TR swapping, and a ‘quick and dirty’ GFX
program, to demonstrate the various GFX
modes. It is NOT a fancy mouse driven
‘point and click’ type program. You just
have to use the arrow keys to move the
cursor and enter the data VIA the key-
board; but it gets the job done. | used it to
do the titlte page, and it worked OK. You
can expand on it if you like, and maybe
even add a mouse or joystick routine (I
haven't the time).

Standard DISK EDTASM users will have
to detour to the end of the tutorial to set
up the EDTASM disk so it will TR swap;
then return here to pick-up where you left
off. EDT/ASM 6309 users can just con-
tinue.

To set the MMU for bit plane graphics
mode, you just simply have to set $FF98
to $80. I'li cover a few more values for
$FF98 during the GFX demo. The MMU
will now interpret any data that it sees as
GFX. TABLE 12 shows the various values
to ‘plug’ into $FF99 to get the different color
and resolution combinations. The ‘line ad-
just’ and the ‘$FFSE adjust’ are just like
that for the TEXT mode (as in the last in-
stallment), so keep them in mind when
laying out a program. All this will fall into
place as we walk thru the program. TABLE
13 is a list of the program commands and
key usage. TABLE 14 demonstrates how
to set up the data for the various color sets,
which will also be explained later.

By changing the value in $FF9F, you can
scroll the screen left and right, just like in
PART 3; but there doesn’t seem to be too
much use for it in GFX mode, that | can
see. The reason being that the entire pic-
ture will start to wrap-around (similar to a
text screen); then a certain value will cause
a double screen to appear. You will see
what | mean during the “TRY" routine dur-
- ing the DEMO. The only way to see how
any of this works, is to get your feet wet;
so we will start with the the demo now.

If you are using DISK EDTASM and
haven't made a modified disk, go to the
end of this tutorial NOW and set it up! You
will need it, as the standard DISK EDTASM

page 14 the world of 68’ micros

GFX Demo Explanation

Type in LISTING 14 and save it to disk.
Then just assemble it into memory, enter
Z-BUG and execute it with “GDRAW".
Leave all of the colors as they are for the
moment so we will stay ‘in sync’. Then,
after the explanation, you can change the
colors to what you like. Now that you have
an error free assembly, enter Z-BUG, ex-
ecute the program and follow along with
the explanation. ’

The program has now set up the bit
plane GFX mode and the screen is filled
with *what ever”. Press the <CLEAR> key
to erase the screen. The cursor is the small
orange dot in the upper left comer. Using
the arrow keys, (E/A 6309 users can take
advantage of the auto-repeat feature)
move the cursor towards the center of the
screen. The text inbetween the < > are
KEYS to press (don't type them in). Now
type the following: ‘C0’ <ENTER> <DOWN
ARROW> ‘30’ <ENTER> <DOWN AR-
ROW:>'0C' <ENTER> <DOWN ARROW>
‘03’ <ENTER> <DOWN ARROW=> and fi-
nally: ‘FF’ <ENTER> <DOWN ARROW>.

Keep in mind that the program is set up
for a low resolution 4-color mode. The
screen should look like example 1 (o = pixel
x = background):

EXAMPLE 1

o = $C0 =11 00 00 00
xoxx = $30 = 00 11 00 00
xxox = $0C = 00 00 11 00
ooxo = $03 = 00 00 00 11
0000=$FF=111111 11

EXAMPLE 2

oxx = $80 = 10 00 00 00
xoxx = $20 = 00 10 00 00
xxox = $08 = 00 00 10 00
oo = $02 =00 00 00 10
0000 = $AA =10 10 10 10

The orange dots should match the lo-
cation where the “O"s are in the text pic-
ture above. Now look at the BIN code that
was placed there, and you will see a
pattern. Everywhere there is a “11", there
is an orange dot. The “11° equates to pal-
ette register $FFB3. What color is present
in that register is what is going to be dis-
played at that particular location, of the 2
bit code (orange for this DEMO). The “00”
equates to $FFBO, which is ‘black’, the
background color. Now at the current cur-
sor location, type the same sequence, but
change the data to: 80 20 08 02 AA. You
will see the same pattern, except that the
dots are ‘pink’, which means that you have

used palette register $FFB2 (example 2).
Look at the “order/pixel” section in TABLE
14's 4 color mode, to see how the data
byte for a screen location should be coded.
In the 4 color mode, each ‘byte’ controls 4
pixels; each having a 2 bit code within the
‘byte’. Move the cursor and type in the ex-
amples that are listed in the 4 color mode
section of TABLE 14 and you shouid start
to see the pattern emerge, of how to code
the pixels. :

Now for another example, we will try the -
‘psudo-zoom’ feature. | call it the psudo-
zoom because it is NOT a true zoom. As
the picture enlarges, it gets squeezed in
from the sides and just enlarges vertically.
To use the psudo-zoom, press <SHIFT
@>. If the display disappears, use the
<SHIFT UP ARROW?> key to scroll the
screen up. By using the <SHIFT @> key,
we are changing the value of $FF98 from
$80 thru $83. The value $81 doesn’t do
anything, so the program skips it, but $82
and $83 causes the psudo-zoom.

Now that you have zoomed the picture,
you can better see how the pixeis are set.
When you are finished with this ‘mode’,
just press <SHIFT CLEAR> and you will
be back to the normal screen. The use of
the <SHIFT LEFT> and <SHIFT RIGHT>
arrows will move the picture left / right. If
you keep going in the same direction, the
screen will start to scroll. This is done by
adding / subtracting a value of 1 to the
registers $FF9D / $FF9E. There isn't much
use for it because the picture will ‘wrap
around’ just like on a text screen, but it
does show you something about these
registers.

The real use of these registers is that by
adding the “FF9E adjust® value to $FF9D
/ $FFYE; you can scroll the screen up or
down (as seen during the psudo-zoom
demo). As a matter of fact, you could scrolif
thru every memory block, just like the
TEXT demo in the last installment. To see
this, just use the <SHIFT UP> arrow key
to start scrolling (E/A 6309’s repeat key
feature is great for this). As you scroll thru
the blocks, the MMU will interpret all the
data as just colorful pixels. If you get to an
area that has a checkerboard pattern, that
is caused by the data “FF / 00" that fills
most unused memory blocks. So in real-
ity, you could have pictures in ANY block
{not just blocks $30 - $33) and display
them at will, just by changing the value in
$FFOD/FFSE. TABLE 8 showed this in the
$FF9x text mode demo. | found out that
the same thing is true for the GFX mode.
By adding $04 to the value in $FF9D, you
can have the start of a block in the upper

left comer of the screen. This next demo will demonstrate this,
so follow along with these instructions:

If you are running the program now, press <BREAK> to get
back into text mode. Now, from Z-BUG's byte mode, type
*START/" and change this value to 00. At the same time,
change the 4 "MEMTAB" entries to 0, 1, 2, and 3. Now restart
“‘DRAW’, clear the screen and draw anything on the screen;
anything at all. When complete, exit to text mode and change
*START” to $10 and “MEMTAB" to 4,5,6, and 7. Restart
‘DRAW", clear the screen and draw another picture in a differ-
ent location than the last one; anything at all, just so it is dif-
ferent. Exit back to Z-BUG again, change “START" to $20,
*MEMTAB® to 8, 9, A, and B. Restart “DRAW" once again,
clear the screen, and draw a third picture, again in a different
location than the other two. The pictures can just be simple
squares, rectangles or just lines. Now exit to text mode one
last-time, and type *“GMOVIE®. This routine will display all 3
pictures, one at a time so that they look like one. Yes, unfortu-
nately there is a flicker, | was disappointed too! BUT it demon-
strates that you can have pictures in other blocks of memory,
other than the 4 that are reserved for GFX, just by changing
the value of $FF9D. By setting the above data, we set up blocks
00,01,02 and 03 for GFX blocks, and told the MMU to start
with block 00 in the upper left comner of the screen. The $20
told it to start with block 04, and the $30 told it to start with
biock 08 (examine TABLE 8).

| always wondered why $FFOD/SE contained $D800 for text
and $C000 for GFX; but after making this table, | can now
see why! Too bad Tandy didn't let us in on the secret in the
service manual. It would have saved me a lot of time by not
having me to experiment with the different values to make up
the table. Oh well, such is life and the “powers that be” at
Tandy.

You don't always have to reserve 4 blocks of memory for all
GFX screens. That will depend on the resolution that you
choose. The low resolution pictures will need less memory
reserved, so you can use TABLE 12's screen end column to
figure out how much memory to reserve for a particular size
picture. For example: If you chose $11 as the resolution, the
screen end is $SAFFF. Since this table is based upon the screen
start of $8000, then $AFFF-$8000=%2FFF (12K), only 1 and
172 blocks will be needed. Since you can't reserve 1 and 172
blocks, you must use 2; but this is still better than 4, if you
need to save memory.

The TWO color mode will give you the BEST resolution be-
cause 1 byte controls 8 pixels (see TABLE 14 for pixel setup).
To try it out, exit to Z-BUG and change “RESOL" to a 2 color
code for $FF99; then restart “DRAW” (you DON'T have to re-
assembile the program, just do it from Z-BUG). Now try some
of the examples in the 2 color section of TABLE 14, and use
the ‘psudo-zoom’ to examine the pixels to see how it works.

The 16 color mode gives you the lowest resolution; one byte
controls only 2 pixels, but is very colorful. | kept the palette
table short in TABLE 14’s 16 color mode section, to save room.
You can finish $FFB6 thru $FFBE, it is just simple 4 bit binary.
To try it out, see the 2 color mode as above.

In TABLE 12, there are 2 resolution modes that have end
addresses marked with “**". These two modes will need more
than 4 blocks to display. The actual screen end address is
$10C9F, which will extend $0C9F into the fifth biock. DO NOT
go past $FDFF in the demo when drawing, or you will crash
the I/0 area! You can't miss this area on the screen, it is where
the *junk” is at the bottom of the screen. The “CLEAR SCREEN"
routine for the ‘DEMO’ stops erasing at $FDFF, to leave the
area marked and not crash the I/O area! However, if you map
the blocks where the 5th block won'’t crash anything, then feel

free to use it

Once you have a picture that you would like to save, or work on
later; you can do so by exiting to Z-BUG and save/oad it with Z-
BUG's disk commands (Pfilename.ext SSSS EEEE XXXX) and
(Lfilename.ext). For the “P* command, use $8000 for the start (SSSS)
and EXEC (XXXX) addresses. For the END filespec, use the "screen

TABLE 12 - GFX table information for $FF89
$FF99 LINE LAST # SFFOE screen
VALUE ADJUST SCREEN COLORS ADJ size
(HEX) (HEX) (HEX) (HEX) (DEC) comments
14 - 50 BBFF 2 0A 640 x 191
10 40 AFFF 2 08 512x191
08 20 97FF 2 08 256x 191
iD A0 F7FF 4 14 640x 191
19 80 DFFF 4 10 512x191
15 50 BBFF 4 0A 320x 191
11 40 AFFF 4 08 256 x 191
1E A0 F7FF 16 14 320 x 191
1A 80 DFFF 16 10 256x 191
16 50 BBFF 16 0OA 160 x 191
34 50 BE2F 2 0A 640x 198
30 40 B1BF 2 08 512x198
28 20 98DF 2 08 256 x 198
3aD A0 FCS5F 4 14 640 x 198
39 80 E37F 4 10 512x198
35 50 BE2F 4 0OA 320x198
31 40 B1BF 4 08 256 x 198
3e A0 FCS5F 16 14 320x 198
3A 80 E37F 16 10 256 x 198
36 50 BE2F 16 OA 160x 198
74 50 C64F 2 0A 640x224
70 40 B83F 2 08 512x224
68 20 9C1F 2 08 256x 224
7D A0 - 4 14 640x224
79 80 FO7F 4 10 512x224
75 50 C64F 4 0A 320x224
71 40 B83F 4 08 256x 224
7E A0 - 16 14 320x224
7A 80 FO7F. 16 10 256x224
76 50 C64F 16 0A 160x 224
** end = $10COF
NOTES:
1) LAST SCREEN = iast screen address
2) ** = ADDRESS BEYOND $FDFF (don't mess with
it passed here) I/O area passed this address!
3) SCREEN START = $8000 for this DEMO. Will be
different depending upon where the GFX blocks
($30 - $33) are mapped.
4) SCREEN END = Wil also differ depending upon
where GFX blocks are mapped. Addresses shown
in table are for this DEMO.
5) $FF99 VALUE for 80 column text screen = $1D.

the world of 68 micros page 15

TABLE 13 __GFX DEMO information

‘DRAW" = draw a picture
<BREAK> exits DRAW
<arrow keys> move cursor about screen
<ENTER> sets pixels at that location
“TRY" = to view GFX screen while playing with
the $FF9x registers.
‘GCLEAR' will clear the screen in this mode
‘GTEXT will exit this mode back to the
text screen
KEYS
<arrow keys> move cursor about screen
<SHIFT @> toggles ‘psudo-zoony
<SHIFT CLEAR> resets all registers to the
default '
<SHIFT up/down arrows> scrolls picture up
and down
<SHIFT left/right> scrolls picture left and
right (see text)

end” address for the resolution that you are using (from
TABLE 12). FOR EXAMPLE: resolution $75 use:

Pgfx.pic 8000 C64F 8000

If using the 2 resolutions marked with “**", remem-
ber to use the address $FDFF for the end! When you
want to load the picture, just use Z-BUG’s “L” com-
mand. | would recommend to use the .PIC extension
to remind you that it is a picture file (keeps down
confusion).

The “TRY" routine is included so that you can change
the $FF9x registers while viewing the GFX screen to
see what happens when you change one. You will be
“typing blind" in this mode, so TYPE carefully. Also, it
will help a lot if you have something drawn on the
screen to see what happens to the display. | used this
mode quite a bit to collect the information in this in-
stallment. To use the “TRY” routine, run it from Z-BUG
with “GTRY". To exit the *“TRY" mode, just type the
command "“GTEXT" and you will be back into text mode
(Z-BUG is in full charge when using the “TRY" mode,
only the display is in GFX). To clear the screen in this
mode, just type “GCLEAR”. In this mode, you can
change $FFIF to see what | meant earlier about how
this register reacts. This routine should keep you busy
for awhile. When changing $FF99 to see the different
resolutions, | would recommend that you change the
‘BORDER’ register (3FF9A) to a color that is different
from the background. This will aid you in seeing the
drawing area of the screen, and how it changes with
different resolutions.

HINT: When using the GFX routine to draw letters,
buy some small square GRAPH paper and lay out the
letter on it first. | used this method when doing the title
page that | wanted and it worked out great Just treat
each square as a ‘pixel'. Then, depending on the color
mode that you choose, just group them into 2,4 or 8
sets across. This will aid you in getting the HEX code
needed to put it on the screen. A litle time consum-
ing, but worth the extra time. | also found it useful to
use\multiples of the 5x7 display. for example: to double
the letter size use 10x14; triple size, 15x21; and so on.

Standard Disk EDTASM Setup

The first thing to do is make a back up copy of
EDTASM just for this tutorial. Keep files on this disk to

page 16 the world of 68’ micros

a minimum, so that you have plenty of room. Now start up EDTASM and
enter LISTING 13. Save it to disk as “EDFIX ASC" and when you have an
error free listing; assembile it to disk as “EDFIX.BIN". Now you are ready to
modify it. EXIT to BASIC and type in LISTING 12. Run LISTING 12 and
when it is complete, restart EDTASM. You should now have an 80 column
screen, with yellow text, on a black background. EDTASM will now be run-
ning in TR-1 instead of TR-0, so rembember this if you want to write pro-
grams using this copy. LISTING 3 from PART 1 will be needed to access the
ROMs. | didn't bother to add a RESET routine or fix it to EXIT to DOS, so
avoid doing this. | just wanted to set this up for you to use during this DEMO.
Feel free to finish it if you like. You can EXIT to BASIC, with NO problems (it
will cold start).

This MOD will not take up any space in the edit buffer, even though it is
assembied there. Once EDTASM runs it (on start up); it is finished with it
and it will be erased as soon as you start to write a program. The block
swapping routines are moved down into $0500 (the 32 column screen area)
which will not be' needed any more, since you now have an 80 column
screen. Keep this in mind if you decide to make this a permanent copy and
add the reset routine.

You can change the screen colors to what ever you like by changing the
listing and re-assembling (The listing is commented, so you easily find the
section that sets the screen colors); But leave the colors the way they are

TABLE 14 Color mode information

2 COLOR MODE
PALETTE EXAMPLES
HEX COLOR
$01 BBBB BBBB
$01 BBBB BBBP
$02 BBBB BBPB
$03 BBBB BBPP

$FA PPPP PBPB

BIN

0000 0000
0000 0001
0000 0010
0000 0011
1111 1010

0 = FFBO = $00 = Black (B)
1=FFB1 = $2C = Pink (P)

pixelorder 12345678
palette code X XX XXX XX

4 COLOR MODE
PALETTE EXAMPLES
HEX COLOR
$88 PBPB
$41 YBBY
$CC OBOB
$55 YYYY
$96 PYYP

$D8 OYPB

BIN

1000 1000
0100 0001
1100 1100
0101 0101
1001 0110
1101 1000

00 = FFBO = $00 = Black (B)
01 = FFB1 = $36 = Yellow (Y)
10 = FFB2 = $2C = Pink (P)
11 = FFB3 = $34 = Orange (O)

pixel order 1st 2nd 3rd 4th
palette code XX XX XX XX

16 COLOR MODE

EXAMPLES
BIN HEX
0000 0001 $01
0000 0010 $02
0011 0001 $31
0010 0011 $23
0100 0000 $40
0000 1111 $OF
—> FFB6 - FFBE <— (same format)

(set the colors that you want)

PALETTE
COLOR
BY
BP
oy
PO
GB
BM

0000 = FFBO = $00 = Black (B)
0001 = FFB1 = $36 = Yeliow(Y)
0010 = FFB2 = $2C = Pink (P)
0011 = FFB4 = $34 = Orange(O)
0100 = FFB5 = $12 = Green (G)

1111 = FFBF = $2D = Magenta (M)

pixel order 1st 2nd
palette code XXXX XXXX

for the DEMO so we will stay *in sync”® for
the program explanation.

Well, this just about wraps up this in-
stallment. There is plenty of information
for you to absorb, play with, and discover.
| discovered a few new things myself while
writing this, and had to edit the new mate-
rial in, so I'm sure you will discover more.
| hope you will share anything new that
you find.

The next installment will cover TEXT and
MENU windows that | have been using to
dress up my routines. It will use almost all
of the things covered by this tutorial se-
'ries so far.

Herbert Enzman
memiser@delphi.com

LISTING 12 - BASIC program fo modify DISK EDTASM
(LISTING 13) on the disk.

10 PCLEAR1

20 LOADM “EDTASM BIN'

30 LOADM "EDFIX BIN®

40 SAVEM ‘EDTASM BIN" &H1600, &H4B857,8H1600

LISTING 13 - DISK EDTASM MOD program
“** use filename "EDFIX.BIN" when assembling to disk.

**** Changes to EDTASM
ORG $1600
LBRA $4A6D jump to setup routine
FDB LAST-GO+1 = new program ‘LOAD’ length
ORG $1D78
JSR $052A addr. for ‘clear screen’ routine MOD
ORG $1D3F
JSR $0522 address for keyboard routine MOD
NOP
ORG $1D98
NOP
JSR $050C address for CHROUT routine MOD
ORG $1DA4
NOP
JSR $0504 address for keyboard routine MOD
ORG $2BFC
FDB S$EF54 new offset for ‘Q' command
ORG $2CDA
FCB $18 #oflines to display now = 24

*+** Startup routine here
ORG $4A6D
ORCC #3550
JSR $F679
LDD #$3600
STA $FFB8
STA $FFB1
STB $FFBO set background
STB $FF9A set border
LDD #$2C34 $2C=pink $34= orange
STD $FFB2
LDX #$0500 = where to move routines
LEAY SUBS,PCR point to routines fo move
LDB #37F = byte count
LBSR MOVEIT move data now
LDX #$EOE9 = SECB register table
LEAY MEMTAB,PCR table to move
LDB # =byte count
PSHS YB
LBSR MOVEIT move data now

Setup 80 column screen
$36= (yellow) 00= (black)
set foreground

PULS YB

LDX #$FFA8 = hardware register table

LBSR MOVEIT move data now
** modify 'DOS' here

LDD #STEBE ='JMP ‘LDX opcodes

STA $001D

STB $0D2t

STB $0E80

STB $0CF4

LDD #0532 = new disk routine addr. for TR swap

STD $0E9C

STD $ODIE

LDD #1280 $12=NOP $BD=JSR

STD $OESA

LDD #$00EA = DSKCON buffer

STD $0D2F

STD $0E81

STD $OCF5

LDD #$053A =NEW IRQ routine address

STD $0F56 setit for DOS

(DA ¥ 4

STA $FF91 ##setto TR=1

ANDCC #$AF

JMP $1605 back to standard EDTASM setup
SUBS FDB $A1B1 keyboard routine address

FDB $8C46 80 column ‘clear screen’ routine
KEY PSHS BXYU

LDY #$A000 get ready for keyboard routine

BRA DOIT godoit .
DISPLA PSHS BXYU save these registers for retum

LDY #$A002 get ready for CHROUT' routine
DOIT CLR $FF31 swap TRio'0’

JSR [Y] doroutine

PSHS CC

LDB # ##

STB $FF91 ##set TR=1
PULS CC

PULS BXYUPC back to EDTASM
KEY2 PSHS BXYU
LDY #0500 get ready for keyboard routine
BRA DOIT godoit
CLEAR PSHS BXYU
LDY #$0502 get ready to clear screen
BRA DOIT godoit
DISK PSHS BX\YU
LDY #$C004 get ready for DSKCON
BRA DOIT godoit
**** moved IRQ service routine here
IRQ LDA $FF02
LDA $0985
BEQ NO
DECA
STA $0985
BNE NO
LDA $0986
ANDA #380
STA $0986
STA $FF40
NO RTI
**~* EXIT to BASIC routine here
EXIT CLRB #
TFR BDP ##set DP for BASIC
CLR $0071 clear warm start flag
CLR $FF91 set TR=0
LDS #30307 set stack for BASIC
JMP $8C1B to COLD start routine
“** move data routine
MOVEIT LDA Y+ =source
STA X+ = destination
DECB count bytes moved
BNE MOVEIT loop until all moved
RTS
**** TR 1 memory table
MEMTAB FDB $3839
FDB $3A3B

FDB $3031

FDB $3233
LAST EQU *
GO EQU $1600

END :

LISTING 14 - GFX DEMO program

GO NoP
SAVE RMB 1 storage TEMP

BUFF RMB 4 dalaentry buffer
FLAG RMB 1 flag for ‘new data’ entry
COUNT RMB 1

TMP98 FCB $80 $FF98 RAM image
TMPID FCB $CO $FFID RAM image
TMPOE FCB-00 $FF9E RAM image

RESOL FCB $11 picture resolution (we'll use this fo
start) .

ADJ RMB 2 line adjust value (set by resolution
chosen)

RANGE RMB 2 $FFOE adjust value (set by
resolution)

CURSOR FCB $CO0 Cursor value
START FCB $CO screen start offset (see text)
MEMTAB FCB $30 1st GFXblock for ‘movie’ (see
fext)
FCB $31 2nd GFX block for “movie” {see text)
FCB $32 3rd GFXblock for “movie” (see text)
FCB $33 4th GFXblock for "movie” (see text)
**** keyboard routine for TR swap
KEY ORCC #3850 disable interupts
PSHS BXDP save these
CLR $FF91 setTR=0
LOOK JSR $A1B1 check for key
BEQ LOOK loop until one down
LDB #1 *“setTR={
STB $FF91 =
ANDCC #$AF enable interupts
PULS BXDPPC and retum
** set GFX mode, registers, then clear picture area
CLRPIC LDA #380 =GFXvalue
STA $FF98 set GFX mode
LDA RESOL get desired resolution
STA $FF99 setit
LDA #3CO setscreen display for GFX blocks
STA $FFID setit
LDX #$8000 point to start of screen
LDB #$0 = backgound color
AGAIN STB X+ erase screen
CMPX #3FDFF end of block 47
BNE AGAIN no, loop until all erased

LDD #30036 $00=biack $36=yellow
STD $FFBO :

DD #32C34 $X=pink $34= orange
STD $FFB2

RTS

*** reset to text screen

RESET LDA #%03 =text

STA $FF98 set text screen

LDA #3815 textscreen value

STA $FF99 set for text screen

LDA #$D8 #iti# set text screen

STA S$FF9D ### display

CLR $FFO9E ### address

RTS i
“* set GFX screen, figure line adjust and $FFIE adjust
GFX DA RESOL get chosen resolution

ANDA #30F drop st 4 hits

LEAX ADJTAB,PCR point to lookup table
NEXT CMPA X++ match?

BNE NEXT no, loop until a match found

LDB -1X get next table offset value

LEAX FIXTAB,PCR point to ‘adjust’ table

the world of 68' micros page 17

ABX add offset
DD X get adjust values
CLR ADJ He
STA ADJ+1 i
CLRA i ‘
STD RANGE ### set adjust values for resolution
LDA #8800 *
STA S$FF98 ** set GFX mode
LDA RESOL get resolution
STA $FF99 setit now
#$C0 = GFX screen start
$FFOD setit
retum
** CLEAR SCREEN from ‘CLEAR' key during ‘TRY"
CLEAR BSR CLRPIC
SWI
= reset fo TEXT screen during “TRY"
TEXT BSR RESET
SWI
“*"TRY" routine (see table 13)
TRY BSR GFX
SWI
*** DRAW picture routine entry point
DRAW [LBSR GFX set GFX mode
. LDX #$8000 = screen start
SHOW LDA CURSOR get cursor
CLR FLAG
LDB X getchar. from screen
STB SAVE save it for later
STA X put cursor on screen
LEAU BUFFPCR point fo input buffer
POLL LBSR KEY go scan keyboard
CLR COUNT clear table count
LEAY TABPCR point fo 'key table

P2 TST Y endoftable?
BMI P4 jumpif table end
CMPA Y+ match?

BEQ P3 jumpif match

INC COUNT bump counter
BRA P2 loop for more
P3 LEAY TAB2,PCR point to ‘routine’ table
LSL COUNT divide by 2
PSHS B save B’
LDB COUNT get table count
LEAY BY adjust pointer
LDD Y getroutine offset
LEAY GO,PCR point to constant
LEAY DY add offset for routine address
PULS B get'B
JMP Y godo the routine
P4 CMPA #330 ignore keys below ‘1’
BLO POLL
CMPA #339 if higher than ‘9, check forA-F
BHI LETTER
STA U+ store info input buffer
BRA POLL back to keyboard
LETTER CMPA #$41
BLO POLL exitif lower than ‘A
CMPA #3846
BHI POLL exitif higher that ‘F
STA U+ sfore into input buffer
BRA POLL back to keyboard
BREAK CLR X erase cursor
LBSR RESET goreset to TEXT screen
Swi back to Z-BUG
UP TST FLAG was data put to screen?
BNE UP1 yes, then just move cursor
LDB SAVE getwhat was there previous
STB X putit back on screen
UP1 PSHS D save registers
TFR XD cument cursor location
SUBD ADJ adiustup 1line
TFR DX set screen pointer
PULS D getprevious data
BRA SHOW go display cursor in new location

page 18 the world of 68’ micros

DOWN TST FLAG (see UP)
BNE DWN
LDB SAVE

DWN PSHS D
TFR XD
ADDD ADJ
TFR DX
PULS D
LBRA SHOW

LEFT TST FLAG
BNE LEFT1
LDB SAVE
STB X

LEFT1 LEAX -1X move cursor left
LBRA SHOW

RIGHT TST FLAG

(see “UP")

move cursor nght

**** erase screen then go back to DRAW"
ERASE LBSR CLRPIC erase screen
LBRA DRAW back to draw
**** psudo-zoom routine
PZOOM PSHS D
LDA TMP98 get $FF98 RAM image
INCA bump zoom
CMPA #$81 since this one doesn't do anything,
BEQ TF2 bump one more time
CMPA #$83 highest value?
BLS TF1 no, then ignore next
LDA #380 reset to NO zoom
TF1 STA S$FF98 set register
STA TMP98 save RAM Image
PULS D
LBRA POLL back to keyboard
“*** move picture nght
MVLEFT PSHS D
LDD TMPID get RAM image of $FFOD/FFIE
SUBD #1 move picture left
STA S$FF9D ** set register
STB $FF%E ™
STD TMPSD save RAM image
PULS D
LBRA POLL back fo keyboard
**** scroll picture down
DSCROL PSHS D
LDD TMPSD get RAM image
SUBD RANGE scroll picture down
STA $FF9D
STB $FFSE
STD TMPID save RAM image
PULS D
LBRA POLL
*** reset all registers from ‘scroll’, ‘zoom’ etc.
NEW PSHS D
LDA #380 #ii#
STA $FF98 #iti
STA TMPY8 #### reset to GFX mode
LDD #$C000 *
STA $FFOD
STA TMPSD
STB $FF9E *
STB TMPYE ™ reset GFX screen start
CLR $FF9F reset horizon. resol. register
PULS D
LBRA POLL back to keyboard
**** move picture night
MVRGHT PSHS D
LDD TMPSD
ADDD #1
STA $FF9D
STB $FF9E

TF2

= change data from keyboard into hex, dispiay on screen

SEND LEAU BUFFPCR point fo entry buffer
PSHS B
LDD U getASClidata
CMPA #339 higher than 97
BHI FIX1+1 mustbe letter
SUBA #3830 make single digit
CMPX #$8037 (SUBA #37)
CMPB #§39 higher than 97
BHI FIX2+1 mustbe letter
SUBB #3830 make single digit

FIX1

FIX2 CMPX #$C037 (SUBB#7)
LSLA -
LSLA -
LSLA -
LSLA ** move digit left
ANDB #S0F drop left 4 bits
PSHS B get ready for add
ADDA S+ addthe two
STA X store it to screen

INC FLAG flag that data was stored fo screen
PULS B
LBRA POLL back for more keys

TAB FDB $0308

FDB $090A

FDB $0COD

FDB $1213

FDB $1558

FDB $5C5D

FDB $5E5F

FCB $FF
**** ROUTINE TABLE =
TAB2 FDB BREAK-GO ‘break’key

FDB LEFT-GO ‘left arrow’ key

FDB RIGHT-GO ‘right arrow’ key

FDB DOWN-GO ‘down arrow’ key

FDB ERASE-GO ‘clear key
SEND-GO ‘enter’ key
POLL-GO ‘shift O key
PZOOM-GO ‘shift @ key
MVRGHT-GO ‘shift right arrow’ key
DSCROL-GO ‘shift down arrow’ key
NEW-GO ‘shift clear’ key
MVLEFT-GO ‘shift left arrow’ key
UP-GO ‘up amow’ key
UPSCRL-GO ‘shift up armow’ key
ADJTAB FDB $0800

FDB $0002

FDB $0102

FDB $0404

FDB $0504

FDB $0604

FDB $0306

FDB $0A06

FDB $0D08

FDB $0E08
FIXTAB FDB $2008

FDB $4008

FDB $500A

FDB $8010

FDB $A014

**** ‘movie” routine demo - See text BEFORE
trying to run this.

*** |t will display 3 GFX pictures to look ke 1.
1t will just run for a short time and then exit
fo text mode.

MOVIE LBSR GFX set GFX mode
ORCC #350 disable interupts
CLRB clear offset to block 0"

LDX #0 clear counter

ANAM STB $FF9D set GFX blocks
LEAX 1X decrement counter
CMPX #$FFFF done?

BEQ QUIT yes, then quit
ADDB #310 point fo block “4"
CMPB #3820 done with display?
BLS ANAM no, loop until ail have been diptayed
CLRB recycle back to block '0°
BRA ANAM loop until timer runs out
" QUIT LBSR RESET set back lo text mode

Swi
END

0S-9 Level Il on a PC!
continued from page 10

(Again, this is accomplished by mak-
ing a single sided disk on the CoCo, trans-
ferring it over to a single sided virtual disk
with ‘retrieve’, then copying the files to
the permanent double sided virtual disk
from within OS-9 and deleting the single
sided virtual disk from MS DOS)

This ultimately gave me a virtual boot
disk identical to the CoCo boot disk I
started with. But remember that the char-
acteristics of all the drives on the Emula-
tor will be determined by the descriptors
in memory. So you cannot format a drive
on the Emulator that you do not have a
descriptor for in memory. I always format
data disks (/d1 and /d2) that I want to be
compatible both with the Emulator and the
CoCo as single sided so they are easily
transferred back and forth between the
two.

At this point you may ask what is the
advantage of setting up two Emulator di-
rectories in the first place. Well, one ma-
jor advantage is the ability to leave a boot-
program virtual disk in DO with most or
all of your program files, utilities, proce-
dure files, dictionaries, etc. and just about
never have to change it. A large virtual
disk such as a double sided 80 track can
be formatted and used as the boot disk and
can hold an enormous amount of OS-9
files. Better yet now with the Emulator
~ v1.6, Mr. Vavasour gives us a virtual hard
drive along with the utilities (driver and
descriptor) to set it up. Now a “hard drive

illhat are
you waiting
far?

Get your friends
to subseribe
to the only
magazine that
sHill supporis the
Tandy Color

Computer...

“she world of
68 micros’

The more
people who
want support,
the longer #
will be here!

boot disk” can be made, placed in virtual
drive DO and left there just about perma-
nently. From this the virtual hard drive
drive can be accessed and once done be-
comes the default drive after bootup.

This may seem to be a bit of commo-
tion to get the Emulator set up to do OS-
9, but it is well, well worth the effort once
it is set up. I have been using my Emula-
tor this way for quite a while and have
found it to be very efficient and enjoyable
as well. If there are any questions please
feel free to contact me. X

Wally Grossman
17810 Allien
Cleveland, OH 44111

Embedded Programmer
continued from page 13

Say a program is running at Task Level
(IPL 0). The double-line represents the
currently executing process while the
single-line represents a suspended pro-
cess. At the completion of the an instruc-
tion boundary (a), the processor sees that
an interrupt of level 4 is being requested
which is higher than the current IPM. An
interrupt occurs and the level 4 ISR runs.
Mid-way through its execution, an IRQ of
level 1 shows up (b). Because it is lower
priority, the level 4 ISR is allowed to run to
completion (c) and the level 1 ISR is not
acted on until a return from interrupt is
executed retuming the processor back to
Task Level. At this time the level 1 inter-
rupt occurs and runs to completion (d).

At (e) a level 2 interrupt is requested and
is acted on at the next instruction bound-
ary. Then at (f) a level 5 interrupt is re-
quested and this exception is taken sus-
pending the level 2 ISR. At (g) a ievel 6
interrupt occurs and the level 5 ISR is sus-
pended. At this point (*) there are three
processes stacked on the ISP and one is
running (figure 5).

After this, the IPL6 ISR completes (h)
allowing the IPL5 ISR to continue. After
IPLS ISR completes (i) then the IPL2 ISR
resumes. Finally, the IPL2 ISR finishes (j)
and the task (IPL 0) is running once again.
These events typically happen very fast
and a user is not able to sense any sus-
pension of his program's execution. By
adjusting the priorities of your various
ISR's, you can tune your system to its high-
est performance.

Stack Growth

a {itiiigeiiiiiimy
| IPL 6:Running

+ FEEREEEERERREER +
| IPL 5:Suspended |
+ ENENERERNRERERE +
| IPL 2: ded |
+ ENEERRERERNERERE v
| IPL 0:Suspended |
+ FNERERERNENEREE +

figure 5

Next time...

In the next article we'll iook at the life
and death of the boot process. If you have
any comments or requests, please feel free
to write me at either <gecko@onramp.net>
or at the address given below:

Paul K. McKneely
technoVenture, Inc.
P. O. Box 5641
Pasadena, Texas 77508-5641

the worid of 68’ micros page 19

RGBoost-$15.00
If you want to speed up DECB easily, install an Hitachi
6309 and get RGBoost. This patch for DECB uses the ex-
tra 6309 functions for up to a 15% gain in overall speed. It
is compatible with all programs tested to date! Save an
additional $5 by purchasing RGBoost along with one of
my other products listed below!

EDTASMG309 v2.02 - $35.00

Patches Tandy's Disk EDTASM to support Hitachi 6309 codes! Sup-~
ports all CoCo models, including stock 6809 models. CoCo 3 ver-
sion uses 80 column screen, runs at 2MHz. YOU MUST HAVE A
COPY OF DISK EDTASM. This is a PATCH ONLYI1 it will not work
with “disk patched” cartridge EDTASM

Receive and print weather fascimile maps from shortwavel The US
wedather service sends them all the time! Requires 512K CoCo3
and shortwave receiver. Instructions for simple cable included.

HRSDOS - $25.00

Move programs and data between DECB and OS-9 disksi Sup-
ports RGB-DOS - move files easily between DECB and OS-9 par-
titionsl No modifications to OS-9 modules required.

DECB SmartWatch Drivers - $§20.00

Access your SmartWatch from DECBI Adds function to BASIC
(DATES) for accessing date and time. Only $15.00 with any other
purchasel

Robert Gault
632 N. Renaud
Grosse Pointe Woods, Ml 45236
313-681-0335
Please add $4 S&H per order

STtrRoNnceWARE

Box 361 Matthews, IN 46957 Phone 317-998-7558

CoCo 3 Software; .

Soviet Bloc $15
GEMS $20
CopyCat $5
HFE- HPrint Font Editor --------—- $15

MM/ 1 Software:;

Graphics Tools $25
Starter Pak , $15
BShow $5

CopyCat $10
Painter $35

People, I have run across some tough times
lately! Those who have outstanding orders
please be patient.. I'm working on them! I've
recently moved (again!) and hope to get every-
thing back on track by the beginning of the year.
Thanks for all your support in the past. I know
I've been unresponsive lately, but hope 1 can
make up for it! I still have a lot of Tandy original
software and some hardware, so let me know
what you need! I may be working an arrange-
ment soon with FARNA for distributing some
of my hard and soft wares. I'm sure Frank will
keep you posted! 1 still have the fastest serial
port ever available for the CoCo ..

Fast 232 - $79.95

Daughter Board - $45.00
(for 2nd serial port)

Check with me for complete disk drive systems,
misc. hardware items, hardware repairs, and hard
to find new and used CoCo software!

1629 South 61st Street

West Allis, WI 53214

(pulland@omnifest.uwm.edu)
414-328-4043

ADVERTISER’S INDEX

BlackHawk Enterprises 11
Chicago CoCoFest 5

CoNect BC
FARNA Systems 6, 19, BC
Robert Gault BC
Hawksoft 11
Dennis Kitsz ‘ 8

Small Grafx 11
StrongWare BC

What are you waiting for?

Get your friends to subscribe to
the only magazine that still supports
the Tandy Color Computer...
“the world of 68’ micros™!

The more people who want the support,
the longer it will be here!

page 20 the world of 68' micros

	68' micros
	Table of Contents
	The Editor's Page
	Reader's Write...
	More CoCo RS-232 Info
	Operating System-Nine
	MM/1 Survey!
	Hacking Orchestra 90 Pak Part 2
	OS-9 Level II on a PC
	OS-9 Level II Con't

	The Embedded Programmer
	Embedded Con't

	CoCo Extended Memory Secrets Part 4
	New Product Announcements
	Omni Basic
	Pac-Man

	Advertiser's Index

