2
==

New utilities to transfer
CoCo3 Emulator .

DSK files to a
real CoCo disk.

Learn some secrets
to quick programos
on the 68K series!

CoCoorMM/ |
RGB Monitor
Dead? Look to
SOURCES

for anotherl

CONTENTS

Editor's Page 2

Readers Write 3

A missed CoCoFest? 4
David Baker & Ted Willi

Operating System Nine 6
Rick Ulland

Zen of Color Computer Programming 8
Chet Simpson

Transfer .DSK Files! 10
Bob Devries

G-Windows Error 12
Steve Adams

Sources!: CoCo 3 & MM/1 Monitors 12
Frank Swygert

680x0 Series Performance Guide 13
Andrei Moutchkine

CoCo 3 Extended Memory : 3 14
Herbert Enzman

Advertisers Index BC

POSTMASTER:
If undeliverable return to:
FARNA Systems PB
Box 321
WR, GA 31099

If your address is incorrect, send me a postcard! the world of 68’ micros page 1

The Editor’s Page

| hope | got your attention with
the slight cover changes and the
“CoCo 2000” headline. Basi-
cally, | am committing to produc-
ing this magazine through the
year 2000. That is about three
more years. Where we go be-
yond that is up to you, the read-
ers and subscribers. As long as
I have interesting things to print
and enough subscribers to
make the work worthwhile, we’ll
continue printing even after
2000.

What is worthwhile? We start
our fifth year of publication with
this issue. In this time, | have
posted profits twice, the best
year (nothing broke and had to
be replaced!) was the last one
at about $1,000. Previously I've
posted maybe $250 in profits.

| said “profit”, but | mean that
very loosely! That is basically
what | got out of printing the
magazine. | have upgraded my
computer equipment several
times in order to make publish-
ing easier, and have had to re-
place a few items that just quit.
Of course | use my equipment

for other things, so | get a little
pay-back by having a little extra
money to buy better equipment
than | may otherwise have. But
| pay myself nothing.

That profit mentioned is basi-
cally the magazine's surplus,
which is held just in case some-
thing does break or | feel that
something needs to be up-
graded. Very rarely | will make
a personal purchase from my
business account that | can'’t
write off as a business expense.
That is all I get for producing the
magazine. And this is mostly off-
set for the expenses | have at
home (like the extra power,
some telephone time, etc.).

The first two years had eight
issues, the last two six. So that
is 28 issues altogether. It takes
an average of 30 hours work to
produce, assemble, and mail
each issue. That comes to a to-
tal of 840 hours of labor. Divide
$1250 by 840 and you get $1.50
per hour.

While this is hardly enough to
think about making the maga-
zine, there are peripheral re-

wards. One already mentioned
is that my computer equipment
is a total business write-off. So |
get my computer stuff basically
for free. Then there are the trips
to Chicago and other fests. 90%
of the expenses come from my
business account. And there are
the contacts with subscribers,
and the joy of providing some-
thing useful for others.

| have to admit, | don't print this
magazine for the money! It does
a little better than break even.
That is enough for what is basi-
cally a hobby business. | just
hope you appreciate the fact that
| am willing to go to so much
trouble for so little by continu-
ing to subscribe and support
others who work for as little or
even less (such as Glenside
CoCo Club and Ron Bull, who
put on ‘fests this year) to sup-
port the CoCo and OS-9 hobby-
ist communities.

the world of 68’ micros

Publisher:

FARNA Systems PB

P.O. Box 321

Wamer Robins, GA 31099-0321

Editor:
Francis (Frank) G. Swygert

Subscriptions:

US/Mexico: $24 per year

Canada: $30 per year

Overseas: $50 per year (airmail)

Back and single issues are cover price.
Overseas add $3.00 one issue, $5.00 two
or more for airmail delivery.

The publisher is available via e-mail
dsrtfox@delphi.com

Advertising Rates:

Contact publisher. We have scales to suit
every type of business. Special rates for
entrepreneurs and “cottage” businesses.

Contributions:

All contributions welcome. Submission
constitutes warranty on part of the author
that the work is original unless otherwise
specified. Publisher reserves the right to
edit or reject material without explanation.
Editing will be limited to corrections and
fitting available space. Authors retain copy-
right. Submission gives publisher first pub-
lication rights and right to reprint in any
form with credit given author.

General Information:

Current publication frequency is bimonthly.
Frequency and prices subject to change
without notice. All opinions expressed
herein are those of the individual authors,
not necessarily of the publisher. No war-
ranty as to the suitability or operation of
any software or hardware modifications is
given nor implied under any circum-
stances. Use of any information in this
publication is entirely at the discretion and
responsibility of the reader.

All trademarks/names property
of their respective owners

ENTIRE CONTENTS COPYRIGHT
1997, FARNA Systems

page 2 the worlkd of 68' micros

Reader’s Write...

From a longtime supporter...

Enclosed is an American Money Order
to continue my subscription to “the worid
of 68' micros” magazine. | hope | am not
to late.

| have had quite an unusual year (since
last Sept. at least!). My husband'’s health
is not to good: angina from heart attacks
and other “interior problems®. For myself
at 81, | have had my share of problems.
So we decided to move to a retirement
home. It's a wonderful pampered life, but
very quiet and satisfying in an indepen-
dent apartment.

| have to say that we had to exchange
my beloved CoCo 2 and 3 plus my won-
derful gem of a PC2 for a Compaq with
Windows 95. | am not quite used to it (from
Disk BASIC and 0S-9 to MS-DOS). | find
it boring to “click” on all those dialog boxes
and lines. CoCo 3 was so fast and | could
“program” what | wanted! My husband kept
his laptop (Tandy HD1100), he uses it for
Deskmate (fast and easy to operate).

So here we are. | have given ALL my
Tandy programs, literature, Rainbow, etc.,
to a specialist in computers who loves the
CoCo. He looks after the Compaq and will
connect it to the Internet sometime later,
after | am more instalied in our new apart-
ment.

| shall miss the CoCo to the end of my
life, just like | missed the Rainbow when it
disappeared.

Frank, all my best wishes go to all of
you who have kept faith with the CoCo.
As you say, though, space on the desk may
push it out...

Thanks for the wonderful work you do,
and | hope to be around to enjoy it many,
many years to come!

Mrs. Lyone Boult

420 Mackay Street, Apt 405
Ottawa, Ontario K1M 2C4
CANADA

Mrs. Boult, | thank you very much for all
the compliments. You have been a patron
of the CoCo community for a long time... |
know you have every issue I've ever put
out and bought nearly every program in
my catalog! It is great to leam so much
more about you in this letter! My paternal
grandmother, whom | love dearly (I'm her
favorite also!), tumed 82 this year. Your
handwriting reminds me very much of hers!

Don'tfret about your CoCo though... you
can STILL enjoy it on your Compagq! You
should have received a copy of the CoCo
3 emuilator that | sent you. | discovered
that | owed you from the defunct
*microdisk™ subscription. | hope you find

the emulator to be of value! When you are
having trouble “teaching” your Compaq to
work as you want it to, and not the other
way around, fire up the CoCo 3 emulator
and let it do all the work! Depending on
the speed of your Compagq, you should find
the emulator to be faster than the original
CoCo 3. This will let you enjoy your CoCo
for many more years to come!

1 encourage all to send there best wishes
to you in your new home, and prayers for
both of you for continued good health and
speedy recovery from the surgeries you
have had.

Year 2000 Revisited

| was glad to see the article by Rabert
Gaultin the latest issue, on the “year 2000°
problem. I've been wondering why there’s
been nothing on that ‘tii now in the OS-9
community, when it's such a big deal else-
where.

On that subject, | would like some bet-
ter programmers to teil me why the fol-
lowing idea wouldn't work:

OK., so there's only one byte available
for storing the year in disk identification
sectors, file descriptor sectors, and OS-
9's direct page. But one byte can count
up to 255, which is a lot more years than
my CoCo is going to last. instead of stor-
ing in that byte

VAL (RIGHT$ (YEARSTRINGS,2))

why not store the value

(VAL(YEARSTRINGS))-1900

it's backwardly compatible, it will last
until the year 2155, it preserves the integ-
rity of date comparisons between differ-
ent files. Main question: Will OS-9 choke
on a byte greater than 997 Obviously the
setime and date modules, and other utili-
ties that print out dates like dir and free
will have to be altered, but format and the
file creation/modification modules might
just work without change, since they prob-
ably just copy the year byte from direct
page. There's a good chance that a lot of
application software won't notice; after all,
if a programmer thought the year 2000
would never come, why would he error
check for values greater than 99?

Sincerely,

Richard S. Bair

335 Jefferson Ave.

Glencoe, IL 60022-1823

Well Richard, you have me stumped!
Looks like it should work, at least until 2155,
as you stated! Anything from you OS-9
programmers? Please let us know and it
will be printed here!

Need some drives

First of all, | hope everything is fine over
there. Although | don't use my CoCo3 as
much as | used to, | still use it to do all of
my data communications chores, to play
some games, and to try to learn OS-9,
which | think is the best of the multi-task-
ing operating systems. Hope no one in
Microsoft reads this, because | am going
to a job interview installing Internet serv-
ers running NT 4.0 at the local offices of
Microsoft.

| hope that you continue to publish ar-
ticles regarding hardware projects for the
CoCo, and articles about the AT306 sys-
tems. | would like to buy one of these when
my budget let's me. | find these kinds of
articles really interesting.

| am looking for two good 5 1/4 drives,
and one 3 1/2 720K drive. | need them to
repiace the one in my FD-502 nit which
has a damaged head, and the 720K 3 1/2
unit to use as a second drive for OS-9.
The other 5 1/4 is for an old Leading Edge
XT computer that | want to repair. | hope
you or any of your readers can help me.
Thanks for your help and continue the good
job.

Your friend,

Luis E. Tanon

Los Arcos de Suchville, Apt 217

Torre Sur, Peurto Rico 00966

Luis, one source for good used, guar-
anteed 360K 5.25" and 720K 3.5 dnives is
Alltronics, 2300 Zanker Road, San Jose,
CA 95131-1114, 408-943-9773 (www.
alltronics.com). Also try Altech Electron-
ics, 619-724-2404 (CA, www.allelec.com).
Prices range from $5-$25. Make sure you
get a 720K 3.5" drive and NOT a 1.4M!
The 1.4M may work correctly as a 720K in
a PC, but NOT in the CoCol!!

— ' 200
— —
= |
-

the world of 68’ micros page 3

A Missed CoCoFest?
The “First Annual ‘Last’ CoCoFest of the Clarke County CoCo Club”

David Baker & Ted Willi

Athens, GA (June 23, 1997) — It
took a good part of the longest day
of this year to hold the First Annual
“Last” CoCoFest of the Clarke
County Color Computer Club
(CCCCC) in Athens on June 21,
1997. When it was all over both
club members unanimously de-
clared it had been productive, prof-
itable, and probably worth doing
again someday.

Member Ted Willi showed up
promptly at 6 PM at the residence
of member David Baker, who was
already there. Ted brought three
CoCo2’s, four monochrome moni-
tors, including a Magnavox of ex-
ceptionally fine quality, and as-
sorted software, hardware and
reading material for consideration.
Member Baker tried unsuccessfully
to unload a disabled Panasonic 24-
pin DMP printer on member Willi.
However, it was determined later

From: Dennis Bathory-Kitsz

Hi folks! I’ve been hiding out
in Vermont, but since it’s the
10th anniversary of my com-
pany Green Mountain Micro’s
demise, I thought it might be
time to put in an appearance
here.

About 150 copies of ‘Learn-
ing the 6809’ (book only) re-
main, which I’d be happy to
offer at $10 postpaid to any-
one interested. If at least 10
people also want the original
tapes, I’d be pleased to make
up a set of those as well.

One of these days I'll tell my
own tale ... amusing indeed...

Dennis Bathory-Kitsz

RD 2 Box 2770

Cox Brook Road
Northfield, Vermont 05663

<bathory@maltedmedia.com>
Malted/Media:
http://www.maltedmedia.com/

page 4 the world of 68’ micros

that Ted had a probabile future use
for a VGA adapter card that Dave
no longer needed, as one is re-
quired to get a CoCo3 emulator
running on a VGA monitor some-
where pretty soon. Also, David
gave Ted a compact color TV,
which doubles as a CoCo3 moni-
tor, with the caveat that any attempt
to watch any TV show other than
Braves games and other culturally
uplifting programs will cause any
CoCo in the vicinity to crash
promptly and permanently.

The highlight of the CCCCC'’s
First Annual “Last” CoCoFest was
the swift and sure manner in which
one of the club’'s members (Ted
Willi) installed a Baker's CoCo3
emulator on a PC— so competently
that it worked correctly right away.
Unfortunately, member David, who
had been cutting grass and doing
other yard work for much of the
day, was taking a shower at the
time and missed the whole instal-
lation. Later, though, both club-
members agreed that Jeff
Vavasour has done not only a great
service for the entire Color Com-
puter community but is also one
heckuva smart guy.

Around 9:30 PM the members
took a break for refreshments,
which consisted of some sloppy
hotdogs with Vidalia onions and
chips and some fat-free but not
calorie-free ice cream, and viewed
the last few innings of a somewhat
sloppily played Braves-Phillies
game.

After the lunch break the entire
membership retumed to the Com-
puter Room, scene of the hottest
activity at the CoCoFest, where
David beamed aboard the Intemet
and showed Ted the mother of all
CoCo web sites from Saskatoon,
Saskatchewan and pointed out the
link to Al Dages’s web page. A side

excursion was made to member
Baker’s Usenet subscriptions,
where he and willi read several
hundred postings from comp.os.
0s9, comp.sys.m6809, bit.listserv.
coco, and comp.sys.tandy. After-
wards Ted logged onto his Delphi
account by using the Telnet facility
on Dave’s PC.

Finally after midnight the club
members gathered up their CoCo
gear to head home (except for any-
one who was already there) and
heartily agreed that this had been
the very best First Annual “Last”
CCCCC CoCoFest ever held in
Athens! And so, at last the Fest
wound down with that unique
CoCo technolust assuaged for the
moment. But each club member
knew in his heart that, like a stuck
disk drive, the compulsion to meet
and swap CoCo stuff is one that
never truly times out!

Note: The Clarke County Color
Computer Club holds its meetings
whenever its members can get
around toit. One of its most active
members will be moving to Atlanta
soon, which proves that you don’t
have to live in Athens to be a mem-
ber. In fact, if you already belong
to any CoCo ciub anywhere, you
are automatically eligible for mem-
bership in the CCCCC, which has
already grown to two members in
only the last few years, probably
because there are no annual dues.
This article has been presented in
lieu of the long-planned club news-
letter to be published someday
maybe. (editor: Both members are
subscribers, by the way!)

FARNA Systzerms

Your most complete source for Color Computer and 05-9 information!

Post Office Box 321
Warner Robins, GA 31099
Phone: 912-328-78659

E-mail: dsrtfox@delphi.com

ADD $3 S&FH, $4 CANADA, $TO OVERSEAS

BOOKS:

Mastering 05-9 - $30.00

Completely steps one through leaming all as-
pects of 05-9 on the Color Computer. Easy
to follow instructions and tutorials. With a
diek full of added utllities and softwarel

Tandy's Little Wonder - $25.00

History, tech Info, hacks, schematics, re-
pairs.... almost EVERYTHING available for the
Color Computerl A MUST HAVE for ALL CoCo
aficionados, both new and oldlll

Quick Reference Guides

Handy little books contain the most refer-
enced info in easy to find format. Skze makes
them unobtrusive on your desk. Command syn-
tax, ervor codes, system calls, ete.

CoCo 05-9 Level Il : $5.00
05-9/68000 : $7.00

Complete Disto Schematic set: $15
Complete set of all Dieto product schemat-
Ice. Great to have... needed for repairs!

“A Full Tum of the Scr

Lote of CoCo Info, pr: M tutor!ale by
Tony DiStefano

“Inside @ Meg Kit™ : $10

Sch nd explanation of how the 2 meg

upgrade works.

SOFTWARE:

CoCo Family Recorder: Best genealogy record
keeper EVER for the CoCol Requires CoCo3,
two drives (40 track for 05-9) and 80 cols.
DECB: $15.00 05-9: $20.00

DigiTech Pro: $10.00

Add sounds to your BASIC and M/L programel
Very easy to use. Requires uger to make a
simple cable for sound input through a joy-
stick port. Requires CoCo3, DECB, 512K.

ADOS: Most respected enhancement for
DECB! Double sided drives, 40/80 tracks, fast
formats, many extra and enhanced commandsl|
Original (CoCo 1/2/3) : $10.00

ADOS 3 (CoCo 3 only) : $20.00

Extended ADOS 3 (CoCo 3 only, requires
ADOS 3, support for H512K-2MB, RAM drives,
40180 track drives mixed) : $30.00

ADOS 3/EADOS 3 Combo: $40.00

Pixel Blaster - $12.00

High epeed graphice tooks for CoCo 3 05-9
Level Il. Easily speed up performance of your
graphics programsl Designed especially for
game programmers|

Patch 05-9 - $7.00

Latest versions of all popular utlle and new
commands with complete documentation.
Auto-installer requiree 2 40T DS drives (one
may be larger).

NEW ITEMSIH
FARNA Systems is pleased to
announce that we are now dis-
tributors of the following. for-
merly from Northern Exposurel
Note: If you never received your or-
der from NX, send a copy of your
cancelled check along with $5 to
cover S&H and I'll fill the order|

Nitr0S-9 : $35.00

A complete rewrite of 05-9 Level |l that takes
advantage of all features of Hitachis 6309
processor. Easy install script! 6309 required.

Tunelp : $20.00

If you don't have a 6309, you can still take
advantage of some of the Nitro software tech-
nologyl Many 05-9 Level 1l modules rewritten
for improved opeed with the stock 6809!

Thexder 05-9

Shanghai 05-9 : $25.00 each

Transfers your ROM Pack game code to an
05-9 diekl Please send manual or ROM Pack
to verify ownership of original.

Rusty : $20.00
Launch DECB programe from 05-91 Allows
loading of some programes from hard drivel

FARNA Systems ATSO0OS BPased Computers

Complete computer systems based on the AT506 board from Kreider Electronics. Systems are
completely setup and ready to go, Just add a VGA monitor (or we can supply that too)l

Both systems include:
16 bit PC/AT /O bus with five slots
MC68306 CPU at 16.67MHz
4 30 pin SIMM sockets
IDE Hard Drive interface
1.4MB Floppy Drive
Two 16 byte fast serial ports (up to 115K baud)
Bidirectional paralle! printer port
RealHtime clock
PC/AT keyboard
Desktop Case and Power Supply
(mini-tower case optional, no cost!)
MGR Graphical Windowing Environment
with full documentation
“Personal” 0S-9/68000 Vr 3.0
* (Industrial with RBF)
Drivers for Tseng W32i
and Trident 8900 VGA cards
Drivers for Future Domain 1680
and Adaptec AAH15xx SCS| cards

Many other utilities and tools

FARNA-11123 Includes:

2MB RAM

300MB Hard Drive (was 200!)*
Trident 8900 1MB Video Card
$960.75

FARNA-11225 Includes:

2MB RAM

500MB Hard Drive*

Tseng W32i 1MB Video Card
$1114.47

*This is the SMALLEST amount of formatted space available.
Prices fluctuate - we get you the largest drive possible for the money allotted!

HACKERS MINI KIT (FARNA-11100): Includes AT306 board, OS-9 and drivers,
util software, assembly instructions/tips, T8900 1MB video card. Add your own
case, keyboan, drives, and manior! ONLY $500!

Call for a quote on different configurations and components.
Warranty is 90 days for labor & setup, components limited to manufacturers warranty.

Microware Programmers Package -
Licensed copies of Microware C compiler, Assembler, Debugger,
and many other tools!

With system purchase: $65.00 Without system: $85.00

the world of 68’ micros page 5

operating system nine

A paper on the CoCo4 -

RFC

Rick Ulland

Note: This was originally intended for
the Pennsylvania CoCoFest hosted by
Ron Bull. Unfortunately, | never got
there! Reprinted as originally typed.

Why?

| guess we need a purpose state-
ment. The theory is, modern comput-
ers contain CPU's that far surpass their
users needs. But limited to One True
Serial Processor, these machines of-
ten leave their user staring at a hour-
glass or piling work to the side until
the ‘right program’ is loaded. Even with
it in que, the amount of work that can
be paralleled is small.

This situation isn't likely to change
as long as the only people capable of
experimenting with the technology are
those needing to protect next quarters
net, but a modem CPU is just too fast
and compact to play with. With the
CoCo, we have hardware that’s old
enough, slow enough, and 9/10ths of
the needed opsys available at close to
free.

At the time of the last Chicago
CoCoFest, we had quite a talk on the
CoCo4 project. Lots of good ideas
where tossed around, but response on
the mail list has been.... less than as-
tounding. | think we needed a 2nd hour
just to organize the project!

The report from Milwaukee-

Project B (I think it was B) was a
GIME emulator running on a larger
CPU. Some specs tossed about at the
fest- we'd probably need a CPU-32
core to avoid the nastiness of even
word boundaries, and speed/sync
would be a problem- nothing too earth
shattering there. Carl has done some
additional work since the fest, but he’s
got the IDE project to sweat over. Not
being familiar with 68K code or the
chips true grit, I'm eagerly awaiting
news from PennFest. Feel free to step
up.

Project A was a co-CPU /O board,
designed to unload the motherboard
itself from the cycles needed to emu-
late a keyboard with PIA, mouse inter-
face with software timer, and the like.
Another worthwhile project but again,
no feedback. | think we've got the logi-

page 6 the world of 68’ micros

cal conclusion of that idea below... and
one that can make good use of exist-
ing designs. I'm hoping if anyone builds
a true ‘PA’ they'l let us steal the de-
tails! But before that, something I've
got data on, Project C.

IRQ Controller

My first hardware project has been
the IRQ controller. To recap, the idea
is to have each IRQ driven device pro-
vide two datum- the normal CART IRQ
as an alert (also acting to compatible
existing IRQ-poll software) and an ad-
ditional discrete byte that describes
the source of the interrupt. It should
be relatively simpie to cobble OS-9 to
read the hardware provided ident byte
rather than go through it's polling rou-
tine- a substantial speed increase.

The fine points- first, everything ex-
cept the clock would leave a telitale
byte in the IRQ register. In other words,
if a CART is received and the register
is 0, you've just gotten a clock IRQ.
Second, the register is cleared on read-
ing, so we could probably cheat a little
bit- instead of ignoring IRQ during an
IRQ service, check for nonzero IRQ
buffer before returming to normal pro-
cessing. This would catch one extra of
anything but clock, and cost 0 cycles
in mid-routine. We could possibly FIFO
the IRQ register, and adopt a better
late than never IRQ scheme. In any
case, this device should be installable
and useful on a CoCo3. It will be an
absolute requirement on the CoCo4,
due to the raw number of IRQ that will
be generated.

Moving 4 ward.

My next idea is to just start some-
thing and see who joins in. The follow-
ing is a general theme for a true
‘CoCo4’ that could amount to more that
stirring through the ashes for another
spark. Consider this a request for com-
ments. What I'd like to do is solicit
everyone’s ideas, publish another
RFC, etc., until we end up with a real
specification. Not a wish list- we know
VGA graphics and 3 Gig IDE drives
are nice. What we need is a service
manual. Soft and hard ware problems
can be studied in reference to a known

spec, which will be changed to solve
the problems... once everybody's
happy (famous last words) we'll build
it. I've got way too many potential
specs to list here, so expect a quick
gloss over the top and a big follow-up
article.

MultiCoCo

Once we have a usable CPU/CPU
buss the rest will come. | propose a
box that accepts single CPU 6x09
cards. The builder writes the code to
make said 6x09 do anything, either as
OS8-9 code or stand-alone assembiler,
adds the needed hardware and plugs
it into the box, which helpfully provides
0OS-9 system services (scheduling, file
handling, etc.). This would combine the
ease of programming and attaching
devices to a CoCo2 with the manage-
ment skills of OS-9.

Design for the main board (sysCPU)
has been purposely left for last. In the
early stages, we can perhaps get away
with a hacked CoCo as master CPU,
but of course this will change as we
determine what's needed. Anticipate a
16 bit (RAM buss sized) CPU to CPU
buss.

A generic primary expansion unit
(appCPU) might be a single 6x09, PIA,
and 2 64 K banks of dram. Within the
CPU’s 128K, the ram is remappable
(‘remotely’ by syscall to sysCPU)
though of course each complete 128K
segment appears immobile to OS-9.
The ‘bank switch’ bit is read/writable
by both CPUs and appCPU has 4 ba-
sic states-

1) running map A code

2) running map B code

3) HALTed pending system access

(Both task halted, read DAT for
pending request)

4) both maps busy
The interCPU buss will be tristated for
any bank the appCPU is using. OS-9
could override this by halting the re-
mote CPU and forcing state 3 (danger
to app).

Such a card has two uses- it can
drive a bit of hardware via PIA, or it
can take some code load off of the
main CPU. The OS-9 code loaded into
this board could be:

mapA:
1) shelldrv
2) shell or sh09
3) application modules.
4) Data (Could also use mapB-
see sh09)

mapB:
1) grfdrv/vgadrv
2) screen

1) more OS-9/PIAdrv
2) OS-9 data

1) 6x09 assy (non OS-9)
2) data swap to OS-9

The idea is you have one 64K pro-
cess space, and one 64K map to do
with as you will- free of the normal
scheduling constraints imposed by OS-
9 (This scheme begs for a 512K ver-
sion). An OS-9 task module controls
the timing and signals for the ‘alien’
task map.

0S-9 on the daughterboard

Shelldrv’s main task is to pretend to
be OS-9 to the application process. It
needs to intercept anything a normal
shell would send the system and halit
the app CPU after pushing the CPU
state- once restarted, it has to poke the
app CPU into whatever state OS-9 re-
tumed (ram changes already done via
dual port) and continue. Under this, one
could use shell to run normal OS-9
code, using the main opsys i/o and
scheduling.

To implement non-OS-9 pages, we'd
need a shell replacement capable of
loading a code block into the altemate
task map (or picking up the ROM) and
riding head on it from the OS-9 side.
In this document, it's called sh09. Sh09
would also need to manage (OS-8ify)
the immobile data blocks used in the
alternate map.

Basically, any system access to
mapB would be under sh09's control
leaving it outside the normal flow of
08-9. Sh09 would have to define the
percentage of time it's particular
appCPU spent running the foreign
code, catch local IRQ before they get
to shelldrv and OS-9- and pretend it’s
sleeping part of the time.

The foreign code has a couple of
ways to interface. First, it can simply
write to the data area and let sh09 find

it (and the reverse). It could also use
the local IRQ system to run the (OS-9/
sh09) IRQ handler for time critical stuff.
We'll need some heavy systems pro-
gramming dudes to ponder on the OS-
9/sh09/assembly details.

0S-9 on the motherboard

The task switching routine has to be
changed. Until it runs out of appCPU’s,
0OS-9 won't be spending any CPU time
running mainline process code, instead
there is going to be a wash of syscall
requests. The scheduler will have to
go by time in syscall rather than ticks
per timeslice. Just doing it will be a
task- when a syscall or other IRQ
comes in, the system has to save it-
self and the entire sysCPU state, load
the whole appCPU state, page in the
remote RAM, finally run the code and
get back. This needs to be a terribly
efficient bit of code, much of the
system'’s time will be spent here. Alan
(Dekok... of Nitro fame)?

The ram DAT has to understand it's
pool and the remote, semi-fixed ad-
dress blocks of the app CPUs. Sh09
can handle the non-OS-9 code, but the
0S-9 side is itself sort of immobile.
How to tell OS-9 a process sometimes
has to load in the range aaa0000-
aaaFFFF? (Also, it's data is always at
a static location). There also has to be
a way to page local and remote RAM
around quickly so process can be
swapped among the various CPU's
RAM areas. Even disk data would be
coming in this way! Pipes need to be
beefed up to use the fast swapper for
interCPU pipes.

And if that's not enough, redirection
has to be expanded to include CPUs
as well as devices- and we need the
companion Xprocs to identify which
CPU ataskis on.

Possible Initial Card Designs:
Smart DMA type hard/floppy
disk controller
Same thing in a SCSI controlier
Smart VGA card (also emulate
GIME/grfdrv res)
Muttiport card for ‘other i/o’- stack the
keyboard controllers and printer
ports on one CPU
‘Mega ports’ like a 16550 with built
in PPP/slip
Rack o’ CPU (perhaps a half dozen
6x09’s with RAM, no I/Q)

Multiple Math co-proc (perhaps in the
rack o' with the MRola math ROM)

Main System CPU-

There is a major choice here- per-
haps 2 competing systems. The first
option is to capture ‘current’ (as in, not
forgotten yet) Lvi2 knowiedge in a 6x09
system controller. If the video is moved
to an app, one of the traditional 6x09
problems (small, slow gfx) might be
solved... with a 6x09!

The second option is to use a 68K.
Lots more ommph at the base and we
could use a VGA card. The problem
being OS-9 88K is harder to come by
and hasn't been hacked as much.

So the two sysCPU sections are:

6809: There's no reason why a CoCo
couldn't serve as the development en-
gine- in fact, there are reasons to do
so. During testing, a few known work-
ing 1/0 systems can be handy, and bits
of the motherboard can be written out
of the opsys as they become obsolete.
As a product, the add to CoCo con-
cept means a system can be bought
one card at a time. The user could
stack 12 CPUs on the CoCos built in I/
O, orletit’s single CPU run free thanks
to the smart drive controller and i/o
board. Or anyplace between. Eventu-
ally, a 6x09 motherboard of CPU, ram,
monster DAT, and not much else could
be developed.

68xxx: OSK emulating 0S-9? Or
6x09s passing OSK style calls? If shell
and shldrv are rewritten to ‘look’ OSK,
we might as well go right to the multi-
PPC engine and look for investors;-)
If they appear OS9/6809, CoCo pro-
grams would be compatible....

More later!

Rick Ulland

CoNect and ‘operating system 9
1629 South 61st Street

West Allis Wi 53214
pulland@omnifest.usm.edu

CoCo4x hardware

the world of 68' micros page 7

Zen of Color Computer Programming

Interrupts and sound

Chet Simpson

A Little Recap.

if you thought something was missing
from the last issue, you just might be right
Yes, | missed the deadline. During the time
I needed to get the article to Frank, | was
busy relocating from Des Moines, lowa
(where | worked for Microware in the MPEG
group) all the way back to the West coast to
sunny California! I'm now totally moved and
have settied down into my job (which is still
in the Interactive TV arena). I'm finding my-
self more and more attracted to this state
(even though | seem to have an allergic re-
action to earth quakes, but doesn't every-
body?), especially since | haven't seen a
SINGLE drop of rain since | have been here.

Remember, in the first article | mentioned
a challenge that was issued by a friend of
mine. That challenge was to create [for the
CoCo Ill} a duplicate of the MM/1 game
*Gold Runner 2000." Well, unfortunately, |
lost the challenge, but by technicality only.
Seems that my move coincided with the
deadline of having the game “complete.”
But never mind that, you can see the results
ofthe gamein it's final release as Digger II:
Retumn of the Saint (that's a product piug by

the way!).

What about the good stuff.

In the last article, | mention playing real-
time digital music like those used by nifty
music programs running under MS-DOS.
By real time music, | mean that digitized
samples of musical instruments are played
back with the various notes and sound ef-
fects computed while the samples are be-
ing played back.. Aimost everyone that |
have talked to about this said that it was
impossible to do. Until John Kowalski re-
leased his CoCo lll .MOD player. Unfortu-
nately, doing all of those calculations to get
the correct musical notes is very taxing on
the CPU and leaves little time to do anything
else. Because of this, | started looking at al-
ternative ways to accompilish the same ef-
fect but without using a tremendous amount
of CPU time. The following starts off a 3 part
series on how to get up to 4 voices real time
digital music and still have at least HALF of
the CPU left over.

A little background.

MODuie files originated on the Commo-
dore Amiga. It allowed the Amiga to play
back digital music in 4 distinct voices with-
out any special sound hardware other than
a Digital to Analog Converter (DAC).

The original MOD files were made up of
several parts; a simple header, instrument
sampies (up to 16), “pattern” data and a list

of what order to play the “pattems” at (al-

lowing patterns to be reused). The most
important part of a MOD file is the pattern

page 8 the world of 68’ micros

data as it described which sound sample
and note to play it at for each voice. A de-
coded MOD file might look something like
this:

Sample 1: Snare drum
Sample 2: Bass Drum
Sample 3: Fiute
Sample 4: Symbol

Pattern Data:
(Displayed as sample:note/octave for all
voices)

Voice 1 | Voice2 <

+. >
111:C3|3:D1<
2]...... |>
312:C3|3:AM <
4 |>
5]11:C3|3:D4 <
6] |....>
714 :C3 | 3:E3 <
8 [|

For now, lets look at voice 1. The first note
in the pattern plays sample number 1 (the
snare drum) as note C in octave 3. If you
look at the notes in most MOD piayers, you
will find that this is a very common occur-
rence, especially with rhythm (drum) tracks.
This is because most samples are recorded
as a C note (no not a $100 bill) in octave 3,
also known as Middle-C. This allows the
samples to be “transposed” or changed
into other notes and octaves in a known
manner to the composer. Keep in mind that
itis not a requirement that the samples be
recorded in Middle-C. You music buffs out
there may have already noticed that there is
no specification for the duration of the note.
Line 2 signifies that the note does not
change and therefore continues to play un-
tit the end of the sample. If the end of the
sample is reached, nothing is played until a
new sample is specified.

But what about the CoCo you ask.
During the final development stages of
Digger I, | wanted to add something really
special to it using the lithe but of memory
that | had left over. | started to look at MOD
type files (mainly because | have several
megabytes of samples), but wondered if it
would be done in a fast efficient way. So |
wrote a small program that really ripped into
the MOD file, retrieved the size of each
sample used along with how many notes
and octaves it was played at | was quite
amazed at how litie some of the small to
medium sized MODS utilized the capabili-
ties of the MOD players. While some of the
smaller ones only used 100k, quite a few of
the medium sized ones only needed 250k

to 300k of total memory. This of course does
not take into account many of the special
effects (such as volume changes and Vi-
brato) that a MOD can do. Needless to say,
this got me very excited! My (then original)
goal was to push out 2 voice real-time digi-
tal music but ended up being 4 (but 6 is
possible).

Using the Timer FIRQ to play sound at8
kilohertz.

The best part about playing back sound
on the CoCo Il is that we can use the timer
interrupt of the GIME chip to give us a con-
sistent playback rate. You see, the GIME
chip allows you to specify that an interrupt
will occur within a specific amount of time.
This can be done on either the IRQ or the
FIRQ (Fast IRQ). Since we don’'t want to
use a whole lot of CPU time, we will use the
FIRQ, because unlike the normal IRQ, the
FIRQ does not save the state of all registers
which makes it FAST. What makes the
GIME even nicer is that it automatically re-
starts the timer after the interrupt has been
acknowledged.

In order to make the GIME chip send us
an interrupt, all we need to do the following
(See Listing 1):

1. First we want to make sure that the
FIRQ vector points to our FIRQ handler
routine. If an FIRQ happens and the vector
points to nowhere, the machine might crash.

2. Normally, both the IRQ and FIRQ are
generated the same way they are in the
CoCo |l in order to keep compatibility with
older software. So the first thing we need to
do is tell the GIME we want to use its FIRQ
mode. We do this by setting the FIRQ en-
able bit whichis bit 4 ($10) of the GIME INIT
0 register ($ff90).

3. Next, tell the GIME which event to trig-
ger an FIRQ on [The GIME supports trig-
gering an FIRQ for the keyboard, serial port
and others hardware). Since we want a
timer interrupt, this is done by setting bit 5
($10) at of the GIME FIRQ Enable register
($ff93).

4. Before we do anything else, we need
to make sure that we receive an FIRQ at
the correct time. So we first select the tim-
ing method (70ns) by setting bit 5 ($20) of
the GIMEs INIT1 register ($ff91) and then
by setting the time interval to trigger an FIRQ.
Remember that the timer automatically re-
starts when the MSB (Most significant byte)
of the timer value is set.

5. The final part of the initialization that
needs to be done is to trigger the GIME to
start sending us interrupts. To do this, we
simply read the value of the GIMEs FIRQ
enable register ($ff93). Of course, we can
also do any number of things between those
steps, which our demo code does in order

to turn the sound on.

All that is leftis to actually PLAY the sound.
Since our interrupt routine gets called
around 8000 times per second, we want it
to be as fast as possible. This is done with a
litle optimization and the use of self modify-
ing code. Don't worry, it only changes a
couple of address and data bytes, none of
the code actually changes. Since this is a
very short routine, we'll step through it (it is
also include at the end of the article as List-
ing 2).

How the sound is played.

The sound routine is very simple. It starts
playing at address $8000. Every time it plays
256 bytes (1 page), it decrements a counter
to help it keep track of where in the buffer it
is. Once it has played 32 pages (8k), it starts
playing at location $8000 again.

Since the FIRQ hardware of the 6809
does not save the states of the registers (with
the exception of CC and PC) we need to
save the registers that we do use. Thank-
fully we only use register A. This is stored
into the routine itself so that we can do an
immediate load of the value back into A
This is much faster than doing a PSHS/

PULS of the register.
sirgrt
sta smc+1 *save ACCA

The next thing we do is get a byte from
our sample buffer and send it out the sound
port.

soffst

Ida $8000 * get sound byte
sta PIA1 *send sound out

Now we get back to the self modifying
code which is a little bit tricky. When we get
the byte from the sound buffer, we don’t use
any indirect addressing. If we did, we'd be
wasting some CPU cycles. To get around
this, we use extended addressing. But since
we have to increment that address. Firstwe
increment the LSB of the address. When
the LSB reaches 255, the next time it is
incremented it goes back to zero. This is
handy in that both a flag has been setin CC
register and we have just played .

inc soffst+2

* increment LSB of offset

bne endit

* no overflow. Reset FIRQ
and return

Since we have just played exactly 1 page,
we now do 2 things, the first is increment
the MSB of the address. This keeps us from
playing the same 256 bytes all of the time.
The next thing we do is decrement our page
counter. if this reaches 0, we know we are
at the end of the sample buffer and we need
to reset both the page counter (back to 32)
and the address (back to $8000). When we
reset the sample address back to $8000,
you'll notice that only the MSB of the ad-
dress is set ($80), this is because the L&B
is already at $0 (convenient huh).

inc soffst+1

* increment MSB of offset

bne endit *No
dec count

* Are we done playing 8k block?
bne endit *No
Ida #$20 * Get new count value
sta count “*setit
Ida #$80

* Get MSB of sample address
sta soffst+1 *setit

Next we need to reset the interrupt flag
and do other cleanup. To reset the inter-
rupt, all we need to do it read the value of
the GIMEs FIRQ enable register. We could
use TST but it is 1 cycle longer than LDA.
Next we restore register A back to its origi-
nal value. Remember the first line of the
FIRQ handler stored it here. The we do an
RTI (Return from Interrupt). Do NOT use
RTS!

endit

ida FIRQENR *reset FIRQ status

smc

Ida #$f * Restore ACCA
i * return
Caveats.

Keep in mind that this is not a complete
set of routines for playing back sound. It only
plays a sound sample from 1 area of
memory. When using these routines make
sure that you have the IRQ disabled (keep
the FIRQ enabled or it won't work). This will
keep the IRQ routine in DECB from crash-
ing the machine.

Contact information.

Yes, | have moved! Fan mail, chocolates
(packed in dry ice please), mail bombs, etc.
can now be sent to:

Chet Simpson

5525 Canoga Ave. #320

Woodiand Hills, Ca 91367

Or if you prefer SPAM:

medialink@delphi.com

Next time.

In the next issue we will combine both
the IRQ and the FIRQ for playing back more
than one sound and we'll get started on what
we need in order to play real-ime digital mu-
sic on our “slow” 2mhz CoCo.

Listing 1 (Initialize GIME and Sound):

PIAO equ $ff0O0

DAPORT equ $f120

PIA1 equ $ff20

INITO equ $f90 * Initialization register 0
INIT1 equ $ff91 * Initialization register 1
IRQEN equ $ff92 * Interrupt request
enable register (IRQ)

FIRQEN equ $ff53 * FIRQ enable register
TIMSB equ $f94 * Timer MSB

TILSB equ $95 * Timer LSB

FEN equ $10 * GIME FIRQ enabie
TINSequ $20 * Timer input

TMR equ $20

pshs cc.x,d
orcc #$50

* Timer FIRQ enable

* save cc registers
* Disable interrupts

* Set up hardware FIRQ vector

da #$7e

* use JMP operande

kix #firgrt * point to FIRQ routine

sta FRQVEC

* set the FIRQ vector

stx FRQVEC+1 * Set FIRQ handler

* Set up GIME to use the FIRQ

kda #$4c+FEN * Enable GIME FIRQ

sta INITO
ida #TINS

sta INIT1

ida ¥TMR

sta FIRQ
kdd #470

“setit
* select 70ns
* set init register
* select timer irq
* use FIRQ
* Get timer (8k) count down

EN

* value

stb TILSB

sta TIMS

* set timer isb ‘
B " set timer msb and start

* counter

* Reset values for FIRQ routine

da #$20
sta count

ldd #$8000

* Play 32 256 byte pages
“setit
* Start playing at $8000

std soffst+1 * setit

* Tum on 6 bit sound

ida PIAO+1

anda #$f7

sta PIAO+1
ida PIAO+3

anda #$f7

sta PIAO+3
lda PIA1+3

ora #$08

sta PIA1+3

cir $ffad

lda FIRQEN

* select sound out
* reset MUX bit
“setit
* select sound out
* reset MUX bit
*setit
* Get PIA
* select 6bit sound
“ setit
* Reset MMU to play from
* reset FIRQ

puis d,x,cc,pc * retum

Listing 2 (Handle FIRQ):

count

fcb $00

firgrt sta smc+1 * save ACCA
soffst Ida $8000 * get sound byte

sta PIA1

* send sound out

inc soffst+2 *increment LSB of offset

bne endit

* No overflow

inc soffst+1 * increment MSB of offset

dec count

bne endit
inc $ffad
ida #$20
sta count

* Are we done playing block?
*No
* Increment
* Get new count value;
* set it

endit ida FIRQENR * reset FIRQ status

smc Ida #3ff

rti

* Restore ACCA
* retum

the world of 68' micros page 9

Transfer .DSK Files!

Use CoCo emulator .DSK files on your CoCo or the emulator!

Bob Devries

RSDSK and OS9DSK are two pro-
grams | wrote recently in response to
messages on the COCO list on
PRINCETON (coco-list@
princeton.edu). There had been talk
of the disk image files (.DSK) that
are created for Jeff Vavasour's COCO
emulator. These files are an exact im-
age of a Color Computer disk, track-
by-track, sector-by-sector. For the Disk
Extended Basic image files, they are
161280 bytes long, for 35 track, 18
sectors pertrack disk images. The disk
images used under OS-9 with the emu-
lator may, of course, be any size.

These files are now being uploaded
to COCO FTP sites like
OS9ARCHIVE.RTSI.COM. Problem
is, they are only useful to people who
have an IBM PC or clone. People who
only have a COCO and/or one of the
0S-9/68000 based computers such as
the MM/1, could not get at the infor-
mation stored in those files. Imagine
having a computer disk, but not hav-
ing the OS that it was created on!

So, being the sort of personiam,
| decided to see if | could write a pro-
gram to ‘read’ the image files under
0S-9. | started off programming it on
my MM/1, and when | had it working
to my satisfaction there, | did the nec-
essary modifications to make it com-
pile under BOTH OS-9/6809 and OS-
9/68000.

| started with the DECB image files,
which | thought would be the easiest,
since there’s only a single directory,
with a2 maximum length of 16 sectors
(yes, | know it should be 9, but | wanted
to allow for disks larger than the stan-
dard 35 tracks), 128 entries maximum.
Also, | had many times written BASIC
programs to read the directory from a
DECB disk.

It tumed out to be easier to rewrite
from scratch, than to ‘copy’ the BASIC
program. Of course, it was to be writ-
ten in C, which is what | write in most.

About aday and a haif later, | had a
program which would do a directory of
the disk, and another day later | had
the program completed, with capabil-
ity to do a directory, copy a single file
FROM the image file, and make a pro-

page 10 the world of 68’ micros

cedure (script) to get all the files from
the image file. | didn't then, and still
have no intention to write one to copy
TO the image file.

Usage of the RSDSK program:
RSDSK -dir filename.DSK
or
RSDSK -get filename.DSK
DECB.filename OS9.filename
or
RSDSK -proc filename.DSK

The first example will produce a
directory of the emulator image file
‘filename.DSK'. Note the full filename
is necessary, including the ‘.DSK’. The
second example will copy the file
called DECB . filename from the emu-
lator image file ‘filename.DSK’ to the
0S-9 pathname ‘0S9.filename'. The
third example is something | thought
should have been done by the author
of the program ‘RSDOS’, which reads
COCO DECB disks under OS-9. it
produces a procedure file which will
copy all the files from the emulator
image file ‘filename.DSK’, much like
the ‘dsave’ program does under OS-
9. This procedure can then be edited,
or executed as a script file, or piped to
shell from the same command line.

Having done all that for DECB emu-
lator image files, | was left with noth-
ing to read OS-9 emulator files. So that
was the next challenge.

it was both much easier, and much
harder. Easier because the directory
structures and other code is already in
place to use in the C compiler. Harder
because OS-9 has a tree-like directory
structure. To transverse down the di-
rectory tree required ‘recursion’, which
was entirely new to me.

Anyway, a few days later, | had a
working program, and promptly up-
loaded it to the FTP site, only to be
tripped up by Jeff Vavasour himself,
with an example disk image file that
was bundled with the new version of
the CoCo3 emulator. It had a set of
conditions that | had not allowed for,
and my program promptly went hay-
wire. It took me long hours to find the
problem.

The syntax of the OS9DSK program

is much the same as the RSDSK one,
with the addition of a ‘directory’ argu-
ment.

OS9DSK -dir filename.DSK
dirpathname

or
OS9DSK -get filename.DSK

imagepathname os9pathname
or
OS9DSK -proc filename.DSK
dirpathname

In the examples, ‘dirpathname’ is the
optional pathname to the directory re-
quired (like CMDS or USR/VED/
CMDS). In example one, the output is
much like the dir e (or dir -e) command.
In example two, the ‘imagepathname’
is the pathname (as shown by the ‘-
dir’ command) of the wanted file in the
emulator disk image file, and
os9pathname is the place where you
want the file copied to. In example
three, a procedure file is created (again
like the ‘dsave’ command). A starting
directory can optionally be used. All
subdirectories encountered are de-
scended into. This output can be ed-
ited, run as a shell script, or piped to
shell.

Where do you get it?

Currently the files are on the
OS9ARCHIVE.RTSI.COM FTP site in
the directory “/OS9/incoming/coco”
and “/OS9/incoming/osk®. They are
called ‘rsdsk.izh’ and ‘0s9dsk.1zh’. The
programs are freely distributable, and
source code is provided for you to leam
from. It is NOT well commented, but
if you need help understanding
them, or have any bug reports, I'm
available on the Intemnet at:

bdevries@gil.com.au

(Australia)

NOTE: Copies of
these programs are
available on disk by
sending $5 for a
shipping/handling/
copy fee to FARNA
Systems.

28456 S.R. 2, New Carlisle, IN 46552
219-654-7080 eves & ends MO, Check, COD; US Funds

HaWk&& Shipping included for US, Canada, & Mexico

MM/1 Products (0S-9/68000)
CDF $50.00 - CD-ROM File Manager! Unlock a wealth of files on CD with the MM/1! Read most text and
some graphics from MS-DOS type CDs.

VCDP $50.00 - New Virtual CD Player aliows you to play audio CDs on your MM/1! Graphical interface
emulates a physical CD player. Requires SCSI interface and NEC CD-ROM drive.

KLOCK $20.00 - Optional Cuckoo on the hour and half hour!! Continuously displays the digital time and
date on the /term screen or on all open screens. Requires /O board, 1/O cable, audio cable, and speakers.

WAVES vr 1.5 $30.00 - Now supports 8SVX and WAV files. Allows you to save and play all or any part of
a sound file. Merge files or split into pieces. Record, edit, and save files; change playback/record speed.
Convert mono to stereo and vice-versa! Record and play requires I/O board, cable, and audio equipment.

MM/1 SOUND CABLE $10.00 - Connects MM/1 sound port to stereo equipment for recording and play-
back.

GNOP $5.00 - Award winning version of PONG(tm) exclusively for the MM/1. You’ll go crazytrying to
beat the clock and keep that @#$%é& ball in line! Professional pongists everywhere swear by (at) it! Requires
MM/1, mouse, and lots of patience.

CoCo Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug n’ Power controller back on the
job with your CoCo3! Control up to 256 modules, 99 events! Compatible with X-10 modules.

HI & LO RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or no adapter at the flick of a
switch! No more plug and unplugging of the joystick!

KEYBOARD CABLE $§25.00 - Five foot extender cable for CoCo 2 and 3. Custom lengths available.

MYDOS $15.00 - Customizable, EPROMable DECB enhancement. The commands and options Tandy left
out! Supports double sided and 40 track drives, 6ms disk access, set CMP or RGB palettes on power-up,
come up in any screen size, Speech and Sound Cartridge support, point and click mouse directory, and MORE
OPTIONS than you can shake a stick at! Requires CoCo3 and DECB 2.1.

DOMINATION $18.00 - Multi-Player strategy game. Battle other players armies to take cortrol of the
planet. Play on a hi-res map. Become a Planet-Lord today! Requires CoCo3, disk drive, and joystick or

! ~

SMALL GRAFX ETC.

“Y” and “TRI” cables. Special 40 pin male/female end connectors,

priced EACH CONNECTOR - $6.50
Rainbow 40 wire ribbon cable, per foot - $1.00
Hitachi 63BO9E CPU and socket - $13.00
MPI Upgrades for all small MPIs (satellite board) - $10.00
Serial to Parallel Convertor with 64K buffer

and external power supply - NOW ONLY $28.00!!!
Serial to Parallel Convertor (no buffer)

and external power supply - ONLY $18.00!!!
2400 baud Hayes compatible external modems - $15.00
Serial to Parallel Convertor or

Modem cable (4 pin to 25 pin) - $5.00

ADD $3.00 S&H FOR FIRST ITEM, $1.00 EACH ADDITIONAL ITEM

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK JET PRINTERS, RIBBONS & vr. 6 EPROM FOR CGP-
220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

Terry Laraway
41 N.W. Doncee Drive
Bremerton, WA 98311

360-692-5374

\

[]

e The BlackHawk MM/1b &

[) []

[)

:Based on the AT306 board from:
o

e Kreider Electronics. Features built e

« into the motherboard include:
[)
[]

< 16 bit PC/AT I/O bus with five slots
¢ MC68306 CPU at 16.67MHz

. 512K to 16MB of RAM with

¢ 30 pin SIMMSs (4 sockets)

« IDE Hard Drive Interface (2 drives) o
< 360K-1.44MB Floppy Drive

s Interface (2 drives)

. Two 16 byte fast serial ports

e (up to 115K baud)

« Bi-directional parallel printer port
+ Real-time clock

$ PC/AT keyboard interface

: Standard PC/AT power connector .
o Baby AT size - fits standard PC case o
« BASIC (resembles Microsoft

s+ BASIC)

*MGR Graphical Windowing Envi-
$ ronment with full documentation

e “Personal” OS-9/68000 Vr 3.0

e (Industrial with RBF)

o Drivers for Tseng W32i and

o Trident 8900 VGA cards

¢ Drivers for Future Domain 1680 and
o Adaptec AAH15xx SCSI cards e
¢ 0S-9/68000 Vr 2.4 with Microware e
o C 3.2, Assembler, MW Basic (like o
< Basic09), MW Debug, MW Pro-§
¢ grammers Toolkit

: UUCP from Bon Billson

o Ghostscript (software PostScript
o interpreter)

+ Many other utilities and tools
[]

Prices start at $400!
(motherboard,
Personal OSK, & MGR only)

BlackHawk

Enterprises, Inc.
756 Gause Blvd. #29

~ Slidell, LA 70458
E-mail: nimitz@stolY.com

the world of 68' micros page 11

What are
you waiting
for?

Get your
friends to
subseribe to
the only
magazine that
still supporis
the
Tandy QColor
Computer...

~she world of
68’ mieros’!

The more
people who
want
the support,
the longer it
will be here!

G-Windows Error

Steve Adams

Mixing different versions of G-Windows and G-View

Question: “We’re developing a G-
Windows app using G-View on a
MVME162 box. The target is a
68360-based system running OS-9
v3.0. On the target we’re running the
newest version of G-Windows (ed. 62
if I recall correctly), but on the
VME162 box we’re compiling under
G-Windows ed. 54 (once again
lIRC.)”

There is one discontinuity in the de-
velopment of G-Windows. Except for
this one problem that | had to work
around, every change to G-Windows
has been fully backward compatible.

You cannot mix versions of G-Win-
dows and G-View if they lie on oppo-
site sides of the edition #6562 bound-
ary.

Now an explanation of the cause
of the discontinuity: WithV 1.2 of the
0S9/68000 Ultra C compiler, Micro-
ware changed the variable definitions
in the cstart.r file. Variables like
‘errno’ are defined in cstart.r, and pre-
viously were always in the same po-
sition in a program’s data space. This
was important when using sub-rou-
tine modules, because it gave them
a way to access the ‘ermo’ variable.
When | originally designed gadget
subroutine modules, | followed ex-
ample source code from Microware

that relied on the variable definitions
in cstart.r.

The cstart.r file with OSK Ultra C
(V1.2 and later) has the ‘errno’ and
other variables declared in a differ-
ent order, so the ermo variable ended
up in a different location in the vari-
able space. When gadgets thought
they were writing to the ‘erro’ vari-
able, they were really writing to a
stack checking variable. This made
programs quit randomly with a stack
overflow error. There were probably
other related problems as well.

| couldn’t very well ask Microware
to take back all copies of their Ultra
C compiler and change back to the
old format, so | had to change the
gadget structure so gadgets would
not reference these variables. | did
putin a check so when incompatible
programs and gadgets are used to-
gether, they abortimmediately rather
than wait for a strange error later on.
| apologize for not using a more de-
scriptive error code, but there isn't
one.

SOURCES!

| would really like to run this as a regular column. What | am looking for is sources for hard to find and bargain items for CoCo, 68K, and general computer
use. If you find a treasure trove of good, inexpensive parts, let me know!

CoCo and MM/1 RGB Monitors!

i think | have found a source for the great Magnavox 8CM515 monitors! These were badged as “Magnavox Professional RGB
Monitor 80". They are 14" monitors with Analog RGB (for the CoCo 3, MM/1, and Amiga), digital RGB (for IBM/Clone CGA output)
and combined and separate composite (combined for CoCo or VCR, separate for some Commodore modeis). I've used one of
these for years, and they were highly recommended by Marty Goodman and other CoCo gurus. It is possible these are the larger dot
pitch Magnavox 8CM505, but at this price ($45!!) even it would be a great deal! All are used with a 90 day warranty. Shipping should

run around $15.

Computer Recyclers
972-245-3008
crecycle@airmail.net

If you still have a CoCo and an IBM compatible machine on your desk, here is a good solution.. one monitor for
both! These are refurbished NEC multisyncs that sync from 15.75-36KHz... low enough for the CoCo3 yet high
enough for 1024x768 VGA graphics! $175 each.

page 12 the world of 68' micros

Pikul & Associates

101 Glenfield Drive

Festus, MO 63028
314-937-0335

680x0 Series Performance Guide
Tips and tricks for writing fast 68K code.

Andrei Moutchkine

Once upon a time, | needed to develop
a graphics library for an embedded project
in 68K assembly. | remember how |
couldn’t find much hints on how to write
fast 68000 code anywhere back then, so |
decided to write down some tricks | learned
from my mistakes to spare someone eise
from making them. Most of these are
faster/smaller alternatives to ‘trivial’ imple-
mentations of common tasks discovered
in “Wait a minute. There is a better way to
do this!” fashion.

This guide applies to original 68000-
based and CPU32 cores most common
to embedded 68K systems. Everything in
here could or could not be true for bigger
68K processors and ColdFires. If you find
something to add to this guide or any bugs
or comments drop me a note at

muchandr@csua.berkeley.edu

The latest version of this file is avail-
able at

http://Iwww.csua.berkeley.edu/
~muchandr/m68k

The target audience is people already
inimately familiar with 68000 instruction
set. It is not meant as an introduction.

I. FUNCTION CALLS AND CONTROL

1. If you are writing a function that has
no local variables, don’t create an empty
stack frame. | mean skip that ‘'link An#0'.
Note that your stack will be one word
shorter then.

2. bsr is better than jsr. bsr.b/bcec.b is
better than bsr.w/bcc.w, which is in turn
better than bsr.Ubcc.l. Always try the short-
est possible displacement first. This is
because an 8-bit offset fits into branch in-
struction, 16-bit uses an extension word
and 32-bit uses two. Any instruction with
unqualified size could be silently as-
sembled into .w by default, which sucks
for branches. Check your assembler's
manual. | don’'t recommend leaving the
size unqualified for any instruction that has
more than one possible size.

3. A combination of individual move’s
(not necessarily all of the same size) can
be faster than a movem. Count the clocks.
The breaking point is usually around 4-5
on 68331.

4. Nothing prevents you from having
several entry points into the same proce-
dure or having several s’ except for scorn
of structural programming minions.

5. Ignore the procedure calling conven-
tions inside your own code. Consider sav-
ing registers you wish to preserve across
a procedure call in unused address regis-
ters. If you are working with words on a
CPU32, alternating moves to memory with

swaps is very fast too because swaps have
a large head. Effectively, you will be sav-
ing every odd register in memory and ev-
ery even one in upper word of itself:
move.x Dn,memory
swap Dm

. ADDRESSING

1. ‘addq.x #offset, An' is better than ‘lea
offset(An),An’. In all other cases try to use
lea for address calculations over adds.
Depending on which processor you have,
lea will be at least the same speed as com-
bination of adds and shifts for any address
with nonzero offset. Note that lea can be
abused to perform a lot of math other than
address calculation at once.

2. Any operation on an address register
affects the entire register regardless of the
size of this operation. If you are finding
yourself using something like ‘adda.l
#constant, An' you are probably wrong and
adda.w will do as good of a job. (only
faster)

. INSTRUCTION SET USE

1. 68000 is not a load/store instruction
set Leave the values used only once or
twice in memory and access them directly
by instruction doing arithmetic on it. (i.e.
there is no need to move them into regis-
ters first) | imagine this is a common pit-
fall for people with high-performance mod-
ern RISC CPU background. | repeatedly
caught myself going through unnecessary
trouble to avoid going to memory at any
cost. People who mostly did 8-bit stack
based assembly before are probable to
make the opposite mistake and
underutilize 68K'’s (mostly) orthogonal reg-
ister set.

2. tst.x is better than ‘cmpi.x #0' or, god
forbid, ‘btst.| #31'/btstw #1577 btstb #7°".

3. Use moveq instead of move where
you can. It is easy to forget that moveq
accepts a much larger range of numbers
than addg/subq.

4. On a CPU32, try to order your instruc-
tions so that you follow instructions with
an operand fetch to memory/railing write
immediately by dbcc's (head 6) or shifts/
rotates (head 4+) or swaps (head 4) or bit
ops (head 2-4 on a register) or any instruc-
tion with non-register source (head 3+) or
short branches/exchanges (head 2) to
maximize instruction overlap and utilize
CPU32's mini-pipeline well. Consult the
tables in section 8 of CPU32 reference
manual for exact timings.

5. You don't get to show off the xor trick.
There is an exchange instruction.

6. Don't forget that moves set the con-

dition codes too, not only arthmetics. (i.e.
no need to test something you just loaded).
Any operations on address registers do not
touch CC's however.

7. On a CPU32, use the ‘68010 loop
mode’ for bulk transfers. To do so, set up
a dbcc loop that branches back to the pre-
vious instruction. Any single-word instruc-
tion will do, but you probably want ‘move.x
memory, memory’ or ‘move.x Rn,memory’
type thing. Complicated addressing modes
will disable the loop mode, because they
require extension word(s). Note that this
includes the immediate mode an anything
but ‘quick’ instructions. The loop mode is
essentially an instruction cache 3 words
(2 instructions) large.

8. There is no reason why dbcc should
always loop backward. Consider this piece
of pseudocode:

while(counter - -)

if (counter even)
do foo

else # odd
do bar

(This kind of logic would be very com-
mon on a device that uses a graphics sub-
system with 4-bit color depth)

Here you can eliminate constantly
checking for a condition inside the loop by
having code segments for foo and bar ter-
minate with dbf's branching to the alter-
nate segment like this:

foo:

dbf Dcounter,bar
bar:

dbf Dcounter,foo

9. Use add.x Dn,Dn to do a multiply by
2Neft shift by one. Use add twice for x4/
left shift by 2. It is still faster than shifting
this way uniess you are on an original
68000-based core and the data is long (.I).

10. Often extend instructions can be
used to clear upper bits of a register more
efficiently than something like ‘andi.x
#mask,Dn’. Just make sure that bit 7,15
or 31 (the sign bit) is always zero in the
largest possible value you can have.

11. Think of scc as of conditional move
of -1. Foliowed by add/sub you can nicely
add/subract 1 conditionally without any
branching.

continued on page 17

the world of 68' micros page 13

CoCo3 Extended Memory Secrets Part 3

The FF9x Registers

Herbert Enzman

Now that you have some experience
under your bett, it is time to play with some
of the $FF9x registers. We can use Z-BUG
to change values in these registers and
see the results on the screen. | will WARN
you now that when changing some of these
registers, you will change WHERE and
HOW the screen is displayed, and it will
APPEAR that Z-BUG has crashed, but it
is still in control! You will just be TYPING
BLIND, and will have type carefully when
the screen goes bonkers.

it took some time to compile this infor-
mation because most of the $FF9x regis-
ters are WRITE ONLY, and when reading
them with Z-BUG, only $1B is returned.
This made it difficult to find out WHAT
value is NORMAL for that particular regis-
ter. The tables in this tutorial will save you
a lot of tedious work.

The information presented here is NOT
the last word on the subject, only a start.
TABLE 10 for example, only lists SOME
information for $FF99 in text mode. Some
values for $FF99 will just repeat what is
already in the table, and some will display
1 line into 2, because SECB is setup for
the 80 column display at this time. There
are times when several $FF9x registers
have to be changed for certain display
modes, as can be seen in TABLE 11.

Why there are two tables for GFX is un-
certain. $FF99 graphics modes will not be
covered at this time, but will be in a future
installment. | won't waste space or time to
cover information that has already been
presented on the $FF9x registers; The
scope of this tutorial is to cover WHAT
VALUES to PLUG into them to get some
USEFUL work.

I'll start with $FF99 - text mode and then
end with $FF9D /$FF9E, since these do
the most work. TABLE 9 describes the
other $FF9x registers; some of which will

be covered in more detail in the GFX tuto-
rial; plus some TEMPS used by SECB.

The previous installment covered the 80
column-attribute mode of the MMU. Now |
will explain the NON-attribute text mode,
something the service manual did not
cover. By setting bit 1 (CRESQ) of $FF99
to a '0’, the MMU goes into the NON-at-
tribute mode. This means that there is NO
attribute byte sent to the screen, that ev-
ery screen location is for characters, and
you are limited to 2 colors. The palette reg-
isters involved are $FFBO for background
and $FFB1 for foreground.

Another interesting feature of $FF99 is
it's ability to add extra screen lines either
with or without attributes. TABLE 10 shows
this information. For example: a value of
$74 plugged into $FF99 will give you an
80x28 screen with NO attributes. $7D will
give you the same WITH attributes.

One interesting thing about the 80x28
screen, is that lines 25-28 will not scroll
with the SECB screen routine. SECB
knows (in it's code), how many lines to
scroll, so it ignores 25-28. To get them to
scroll, you would have to change the # of
screen lines that it scrolls in SECB's code,
or use your own screen routine and scroil
it. But even if you don't, this non-scrolling
can have some interesting uses! You could
take advantage of this feature, and use it
for IMPORTANT messages that you want
to STAY on the screen. The same is true
for the 80x25 screen, line 25 stays put.

LISTING 10 will demonstrate how to set
up SECB to use, display, and scroll an
80x28 screen. Type it in, assemble it into
memory and run it from Z-BUG. Now, fill
the screen with text and count the number
of lines on the screen; and they should add
up to 28 lines. See, there is nothing to it
when you know how! Why didn’t TANDY
tell us how to do it???

TABLE - 8 Block number VS.

BLOCK FF9D 9E BLOCK FFSD 9E
00 00 00 10 40 00
o1 04 00 1 44 00
02 08 00 12 48 00
03 oc 00 13 4c 00
04 10 00 14 50 00
05 14 00 15 54 00
06 18 00 16 58 00
07 acC 00 17 5C 00
08 20 00 18 60 00
09 24 00 19 64 00
0A 28 00 1A 68 00
0B 2C 00 1B 6C 00
oc 30 00 1C 70 00
0D 34 00 1D 74 00
OE 38 00 1E 78 00
OF 3C 00 1F 7C 00

screen display offset (see text)

BLOCK FF9D 9 BLOCK FF9D SE
20 8 00 30 Co0O 00
21 84 00 31 C4 00
2 8 00 32 c8 00
23 8 00 33 CcC 00
24 9 00 34 DO 00
25 94 00 35 D4 00
26 98 00 36 D8 00
27 9 o0 37 DC 00
28 A0 00 38 EO 00
20 A4 00 39 E4 00
2A A8 00 3A E8 00
28 AC 00 3B EC 00
2C BO 00 3C FO . 00
20 B4 00 3D F4 00
26 B8 00 3E F8 00
2F BC 00 3F FC 00

page 14 the world of 68’ micros

TABLE 9 - other FF9x registers

$FFO90 MMU disabled = $CC

MMU enabled = $4C
$FF91 00 for Task register - 0
01 for Task register - 1

$FF92 - $FF95
Haven't gotten to these yet!

$FF96 / 97 RESERVED - not used
$FF98 USE - $03 for TEXT

USE - $80 for GFX (bit plane)
More on this register during
the GFX tutorial.

$FF99 SEE Tutorial text

$FF9A BORDER register (color)

$FF9B RESERVED - not used

$FFOC SEE Tutorial text
$FFSD/SFFIE
$D800 = for 80 column text
*** SEE Tutorial text
$C000 = GFX screen (bit plane)
GFX portion will be covered in
GFX tutorial.

$FFOF $00 = NORMAL
$80 = 128 column text screen
(see text)
not very usefull during graphics
(see GFX text)

Want to try out a 128 column screen???
Nothing to it!! Just type in LISTING 11,
assemble it to memory, and run it from Z-
BUG with ‘GGO’'. It is just a simple pro-
gram to demonstrate how to set SECB for
a 128 column screen. Just start typing any-
thing to the screen, anything at all; a novel,
a letter to the editor, anything. When the
cursor gets to the far right side of the
screen, you will notice that the screen will
start to scroll horizontally. If you send a
carriage return, or you get to the end of
the 128 character line, the screen will jump
back to the left margin. You can also move
the screen horizontally using the <shift left
arrow> or <shift right arrow> keys.

To set this mode, all we did was set BIT
7 of $FF9F to 1 ($80), which is called the
*horizontal Virtual Enable” bit. Then by
incrementing $FF9F from $80 up (81, 82,
83, etc.) we can move the screen left by
one character space. Of course, we also
had to change some of the code in SECB

to help it along with displaying this mode.

Notice in the listing that we keep a RAM
image of $FF9F. This is because $FF9F is
a WRITE ONLY register. If you try reading
it, all you will get retumed is ‘$1B’. One
extra routine was added for SECB to use.
It will cause the screen to reset to the left
margin when SECB sends a C.R. to the
screen. | located it into SECB's copyright
area, which is a nice large, unused area
of memory for patches. The 128 screen
demo just setup an intercept to use this
extra code at the start of the routine. The
DEMO is fully commented, so you can
modify it for other uses.

$117E = $717E), etc..

The best way to see what is happening,
is to experiment with some values plugged
into $FF99. DISK EDTASM users should
set up the 80 column screen by using LIST-
ING 2; and E/A 6309 users will use LIST-
ING 3 to set block $36 into memory for Z-
bug to access, just like |ast time.

Now that you have the screen block in
memory, go into Z-BUG and byte mode.
Change $FF99 to ‘08’ and you will see that
you now have a 32x24 screen with NO
attributes. Look carefully at the screen, and
you will see that the TEXT is in every other
screen location, with strange characters

TABLE 10 - TEXT table information for
FF99 line end screen with
value adjust offset size
$08 %20 $02FF 3224 NO
$04 $28 $03BF 40x24 NO
$10 $40 $05FF 6424 NO
$14 350 $077F 80x24 NO
$1D0 $A0 $0EFE 80x24 YES
$28 $20 $031F 3225 NO
$24 $28 $03E7 40x25 NO
$30 $40 $063F 64x25 NO
$34 $50 $07CF 80x25 NO
$3D S$SA0 $O0F9E 80x25 YES
$68 $20 $037F 3228 NO
$64 328 $045F 40x28 NO
$70 840 $06FF 64x28 NO
$74 350 $08BF 80x28 NO
$7D $A0 $117E 80x28 YES

NOTES:

(1) Normal 80 column screen
(2) Line 25 does not scroll
(3) Lines 25 - 28 do not scroll

(4) screen START = $x000 x = depends upon
$FFAX register range that block $36 is mapped

into (see TEXT).

(5) screen END = add ‘END OFFSET to screen
start for actual end, (lower right corner of screen)
(6) screen without attribute is 2 color only.
$FFBO = background $FFB1 = foreground

attribute adjust

in between. Remem-
$FF99 ber that before you
changed $FF89, you
were in the attribute
mode, so text was
written to the screen

$FFOE note

:gi for that mode.
$08 By changing the
$0A value of $FF99, you
$14 1) set the non attribute
mode, and the at-
$08 tribute byte is now be-
$0A ing displayed as a
$08 character! Press the
$O0A ‘clear’ key, and start
$14 @) sending ASCIl codes
to the screen, starting
$08 at $6000 with 2-
$OA BUG’s “slash® com-
$08 mand. it will take
$OA awhile for thg screen
$14 3) to start scrolling, be-

cause EDTASM uses
SECB'’s screen rou-
tine, which is still set
up for 80x24. But you
can see that when
wiriting directly to the
screen, every memory
location is used for
characters, while
EDTASM is still send-
ing them to every
other location (as

The ‘line adjust column in TABLE 10 is
used to add to the cursor location so that
the cursor can be moved up or down (it is
the line length). The ‘FFOE adjust’ column
is used to change where the MMU starts
displaying the screen by 1 line (more on
this later), so don’t confuse the 2 columns.
The ‘end offset column is used to calcu-
late the end of the screen, depending on
which block the screen is mapped into (re-
member this from last time?).

For examiple: if the screen block ($36)
is mapped into $FFA3 ($6000-$7FFF) and
you chose $3D as the $FF99 value, then
the screen would end at $6FSE, ($6000 +
$0F9E = $6F9E). If you chose $7D, the
screen would end at $717E ($6000 +

seen once the scroll
catches up). So if you would like to use
the NON attribute screen, | would recom-
mend writing your own screen routine.
Now play around with the other ‘$FF99

values' to see the difference between them;
it is quite interesting. Just a reminder, you
will be typing BLIND, so type CAREFULLY.

In the 80x25 or 80x28 attribute mode,
you can access lines 25 - 28 just like any
other line (but not with SECB); write to
them directly. Line 25 starts at $6F00, line
26 at $6FA0, 27 at $7040 and 28 at $71E0,
with the screen ending at $717E. To re-
turn to the REGULAR text screen, just
change $FF99 to $1D.

$FFIC seems to be some kind of verti-
cal fine scroll register. Values between 00
and 07 will cause ‘1/8th’ of a screen line to
appear, per increment, at the bottom of
the screen. A value of ‘07’ will cause line
24 to stay at the bottom of the screen at
all times. It will not scroll. it is similar to
the 80x25 column screen; but you only
have 24 total lines. It too can be useful for
important messages that stay on the
screen. it's NORMAL value is ‘00"

$FFID / $FFIE is the screen start off-
set. $FF9D is like a ‘coarse’ adjustment
and $FFIE is like a fine’ adjustment. Dur-
ing TEXT mode, $FF9D is normally $D8,
$FFIE s $00. | have discovered that by
adding 04 to the value in $FF9D, you can
change what is being displayed by 1
‘BLOCK'. For example: if $FFID/SE is set
to $0000, then BLOCK 0 is being dis-
played. With a value of $0400, block 1 is
displayed, and so on (well only the first
24-28 lines worth, depending on $FF99 as
above). If you want to use this idea, | would
recommend keeping a RAM image of
$FF9D/OE, because they are not readable,
(similar to $FF91 in part 1). LISTING 9
will demonstrate this shortly.

By adding the value in TABLE 10's
“FFOE adjust® column to the value in
$FFIOD/QE, you can move the display in
the ‘block’ by one LINE. | don't know why
the “FF9E adjust” value is so small com-
pared to the normal “line adjust” value, or
why some of them are the same; | just
found this out by accident. But, it is quite
interesting and could possibly have some
useful applications. To see what | mean,
type in LISTING 9, save it to disk and as-
sembile it to memory. **** WARNING: This
routine will WRITE to memory areas used
by EDTASM and it's DOS. DO NOT
WRITE ANYTHING TO DISK AFTER

TABLE 11 - SECB setup tables (all addresses and data are HEX)

hard 32 COLUMN 40 COLUMN 80 COLUMN GFX GFX
$FFO0 EO032 CC EO3B 4C E044 4C EO70 4C EO079 4C
$FF98 E033 00 EO3C 03 E045 03 EO71 80 EQ7A 80
$FF99 EO034 00 EO3D 05 E046 15 EO72 00 EO07B 00
$FFOA EO035 00 EO3E 12 E047 12 EO073 00 EO07C 00
$FF9B EO036 00 EO3F 00 E048 00 EO74 00 EO7D 00
$FF9C EO037 OF E040 00 E048 00 EO75 00 EO7E 00
$FFOD EO038 EO "E041 D8 EO4A D8 EO76 CO EO7F CO
$FFOE EO039 00 E042 00 E04B 00 EO77 00 EO080 00
$FFOF EO3A 00 E043 00 E04C 00 EO78 00 EO081 00

the world of 68° micros page 15

RUNNING THIS PROGRAM, or a CRASH
IS CERTAIN i **** Tum off the computer
and reboot before using the disk.

The routine will set up an 80x24 non-
attribute screen (for easier reading of text),
mark blocks 0 - 59, and start displaying
‘BLOCK 00'. It doesn't mark blocks 60 -
63 due to the ROMSs being there, and need-
ing the ROM routines (don’t want to write
over it's code). To '‘PAGE’ through each
BLOCK, use the ‘shift up or down arrows.
To page through a particular block LINE
by LINE, use the up or down arrows.

When paging line by line into another
block, you will notice that the display is
‘out of sync’ (the start of the next block is
not in the far left side). To correct this,
pressing the ‘CLEAR' key will reset the
routine to the start of the LAST block that
was set.

When you get to blocks 60 - 63, you
can tell that they are the ROMSs by looking
at the text (you will see the copyright no-
tices). Then the routine will recycle to block
00 again, if you keep going in the same
direction.

With some imagination, this DEMO
could be put to some useful purpose, it's
up to you. If you don't like the screen col-
ors, just change $FFBO = background
$FFB1 = foreground, to the colors of your
choice. It's strange how the non-attribute
screen uses a background register for a
foreground color.

TABLE 8 shows what value to put into
$FFOD/OE to start the display with a par-
ticular block. Now, if by adding 04 to the
value in $FF9D, you change the display
by one block; then it goes that by adding
02 to $FFAD, you will change the display
start by a half block; 01 by a quarter biock,
etc. The use of adding 02 to $FFID was
used in PART 2 to set the 2nd half of the
screen block (just thought you would like
to know).

You now have plenty to experiment with
until the next installment. Along with
PARTS 1 and 2, let your imagination go to
work! Next time, | will cover what | have
found with graphics and more on the
$FF9x registers.

LISTING 9 $FF9x Demo program

GO NOP
LDD #$3030 ###

STD NUM ### set block # to ‘00’
LDA #$14 = 80x24 NON-attribute mode
STA $FF99 setit
LBSR SETUP now go mark the blocks
LDD #$0000 ### start with block ‘00’
STORE STD TEMP
save block number offset

NEXT LDD TEMP get current block # offset

STA $FFSD **set
STB $FFSE ™ offset now
JSR $A1C1 scan keyboard

CMPA #$0A down arrow ?

page 16 the world of 68° micros

BEQ DOWN
CMPA #3SE
BEQ UP

CMPA #$5F

yes, scroll screen down 1 line

up ammow ?

yes, scroll screen up 1 line

‘shift’ up arrow ?

BEQ MUP yes, ‘page’ to next block

CMPA #8$5B ‘'shift’ down arrow ?

BEQ MDOWN vyes, ‘page’ to previous
block

CMPA #$0C ‘clear’ key ?
BEQ RESET yes, re-sync display
CMPA #3 ‘break key?
BNE NEXT no, ignore ali other keys
LDD #$D800 address of standard screen
STA $FF9D reset MMU for standard
STB $FFOE text screen
LDA #3$1D standard value for $FF99
STA $FF99 set it now
SWI EXIT toZ-BUG

DOWN LDD TEMP get current offset
SUBD #$0A bump to previous line
BRA STORE nowgodo it

UP LDD TEMP get current offset
ADDD #$0A bump to next line
BRA STORE nowgodoit

MDOWN LDD TEMP get current offset
SUBA #4 bump to previous page
STD BLKSET save for reset routine
BRA STORE godoit

MUP LDD TEMP get current offset
ADDA #4 bump to next page
STD BLKSET save for reset routine
BRA STORE godoit

STRING LDA X+ getnext character
PSHS A save for stop test
ANDA #$7F drop MSB

STA Y+ send it to screen

TST , S+ was last character a ‘stop’ ?
BPL STRING no, then loop for more
RTS retum

SETUP LDA #$FF ** get ready
STA BLOCK ** for block '00°
SETNXT LDA BLOCK get last block set
INCA bumpit by 1
STA BLOCK save current block number
CMPA #$3B last block to mark ?
BHI STOP yes, then stop
STA $FFA3 set block
** $FFAB for E/A 6309 users
#$6000 = screen start
TXT2,PCR get text to mark block
STRING go write it into block
NUM,PCR get block number
LBSR STRING go write it into block
LDD NUM get current block number
ADDB #1 bumpitby1
CMPB #$39 s ‘units’ higherthana 9 ?
BHI BUMP then fix to keep DECIMAL
STD NUM save cumrent block number
BRA SETNXT go set next block
BUMP LDB #$30 reset 'units'to'0’
ADDA #1 bump ‘tens’'by 1
STD NUM save current block number
BRA SETNXT go mark next block
STOP LDA #$3B = original block that
needs to be put back
STA $FFA3 put it back
** $FFAB for E/A 6309 users
RTS done - RETURN
TXT2 FCC/ START OF BLOCK#/
(note spaces))
FCB $A0 = space + stop code
NUM FDB $3030 biock number (decimal)
storage
FDB $2020 =
FDB $2020

Loy

LEAX
LBSR
LEAX

spaces

FCB $A0 = space + stop code
BLOCK RMB1 = block number (hex) storage
BLKSET RMB2 =‘reset’ routine storage
TEMP RMB2 =‘offset’ storage
END

LISTING 10 - 80x28 column demo
SECB = Super Extended Color Basic
GO ORCC #$50 disable interupts
CLR $FF91 set TR=0
LDD #$3180= last screen line
STD $F688 set last screen line in SECB
LDD #$30EO= line 27
STD $F875 set it for SECB scroll routine
LDD #$1C1B $1C =27 $1B=28
STA $F683 set SECB
STB $F87F set SECB
JSR $F679 do SECB's 80 column setup
and clear screen
LDB #1 bl
STB $FF91 *** set TR=1
LDA #$7D = 80x28 column with
attribute code
STA $FF99 setit
ANDCC #$AF enable interupts
SWI EXIT backtoZ-BUG
END

LISTING 11 - 128 column demo
*** This portion sets up SECB for this routine ***

GO ORCC #$50 disable interupts
CLR $FF91 set TR=0
LDD #$7EF7
STD $F824 ***
LDA #2
STA $F826 *** setintercept here
LDD #$3800 = screen end address
STD $F688 set it for SECB
LDD #$3700 = last screen line start
STD $F875 setit for SECB
LDD #$0140= 128 character count
(128+128 for attributes)
STD $F870 setit for SECB
LDA #$80 = max. characters per line
STA $F681 setit for SECB
JSR $F679 set SECB 80 column screen,
clear screen
LBSR MOVE move <C.R.> intercept here
for SECB to use
LDB #1 ##
STB $FF91 ## set TR=1
LDA #$80 ***
STA $FFOF *** set $FFIF for 128 column
STA TMPYF set RAM image of $SFFSF
ANDCC #$AF disabie interupts

*** now data is entered thru the keyboard and
displayed to the screen

POLL CLR $FF91 set TR=0 for ROM use
JSR $A1B1 poll keyboard
LDB #1 #H
STB $FF91 ## set TR=1 for this routine
BEQ POLL loop if no key pressed
CMPA #$15 <shift right arrow> key?
BEQ BACK yes, do scroll left routine
CMPA #3$5D <shift left arrow> key?
BEQ FORWRD yes, do scroll right routine
CMPA #3 <break> key?
BEQ BREAKYyes, exit this routine

CMPA #$0D
BEQ ENTER
BSR DISPLA
BSR TEST

<enter> key?

yes, do ‘C.R.’ routine
display any other key pressed
check to see if cursor at far
right of screen

BRA POLL go for more entries
DISPLACLR $FF91 set TR=0

JSR [$A002] display character

LDB #1 #

STB $FF91 ## set TR=1

RTS return

** see if 79 characters have been displayed.
If so, start scrolling the screen left until 128
have been displayed.

TEST LDB $FEQ2get SECB's character count

CMPB #$4F displayed 79 characters yet?
BLS D1 no, then exit
LDA TMPSYF get image of SFFOF
INCA bump it for scroli left
STA TMPOF save new value
STA $FFIF cause scroll left by one
character
D1 RTS retum

** The <shift left arow> key will cause screen to
scroll left no matter how many characters are
displayed.

BACK LDB TMPSF get RAM image of $FFOF
CMPB #$B3 ##

BHI B1 ## don't allow a scroli further
than this
INCB bump it for scroll left

STB TMPYF save new value
STB $FFSF cause a scroll left
B1 BRAPOLL back to keyboard

** The <shift right arrow> key will cause screen
to scroll right

FORWRD LDB TMPSF get RAM image
of $FFSF
CMPB #3$80 ##
BLS Fi ## scroll no further that this
DECB drop count by one
STB TMP9YF save new value
STB $FF9F cause scroll right by
one character
F1 BRAPOLL backto keyboard

** The <enter> key will cause the screen to reset
to the start (on the left margin)

ENTER LDB #$80 start value for SFFSF
STB TMPIF save new value
STB $FF9F reset screen to left margin
BSR DISPLA dispiay last character
BRA POLL back to keyboard

** Reset SECB to the normal 80 column screen
and exit to Z-BUG.
BREAK CLR $FF9F set $FF9F back to
80 columns
ORCC #3$50 disable interupts

CLR $FF91 set TR=0 to access ROMs

LDD #$2E60 = last screen line start

STD $F875 setitinto SECB

LDD #$2F00= screen end address

STD $F688 setit for SECB

LDD #$00A0= max. characters per line
for scroll

STD $F870 setitfor SECB

LDA #3850 =max characters per line
STA $F681 set it for SECB

JSR $F679 do 80 column setup

LDA #1 1t

STA $FF91 ##set TR=1 for this routine
ANDCC #$AF disable interupts

Swi retumn to Z-BUG

** This routine just moves ‘DATA’, so SECB can
use it.

MOVE LDX #$F702= destination of routine
LEAYDATA,PCR = source of routine
LDB #8$10

NXT LDA Y+ **
STA X+ *** move routine to new location
DECB oo
BNE NXT **
RTS done, retumn

** This routine will reset the screen to the left
margin when SECB sends a C.R. at the end
of a line. The intercept was set at the start of
this program.

DATA PSHS B save ‘B’
LDB #3$80 = value to reset $SFFOF
STB TMPYF save new value in RAM image
STB $FFOF set $FFIF to new value
CLRA set up for original routine
PULS B get this register
JMP $F802 back to original routine
TMP 9FRMB 1 = RAM image of $FFOF register
END

68K Performance Guide
continued from page 13

12. On original 68000-based cores it
makes sense to exchange any shift larger
than 16 bits with a swap, a smaller shift
and maybe a clear. For example:

Isr.| #18,Dn
becomes
cirw Dn ; leave out if you don’t mind
a mess in the upper word
swap Dn
Isrl #2,Dn

V. PROBLEMATIC

These are some hints that reduce code
readability, portability or have harmful side
effects:

1. and’s and or's (even immediate ver-
sions) are very often faster than bit sets/
clears.

2. Using Booth's algorithm for multipli-
cation by a constant will often be much
faster than mul* instruction, but what do
you do if this constant changes? You might
be able to write a macro that generates

Booth sequence for a given constant if your
assembler has a powerful enough macro
processor. BTW, mul* instructions always
affect the entire destination register re-
gardless of the operation size. Use the
slower long version only if you really have
to. Try to express a division by a constant
as a multiplication by a constant and divi-
sion by a constant power of two (shift right,
see also [11.12). For example, a division
by 12 can be expressed as a multiplica-
tion by 85 and division by 1024 (shift by
10):

move.l Dn,Dm

Isl.l #2,Dm ; make this 2 adds on
anything better than original 68000-based
core. (see lIl.9)

add! Dm,Dn ;Dn=Dn*5

move.l Dn,Dm

Isl.l #4,Dm

add! DmDn ;Dn=Dn*(5+5* 16)
=Dn*85

Isrl #10,Dn ;Dn=Dn * 85/ 1024

3. On original 68000 and derivative
cores, ‘moveq #0,Rn' is faster than cir. How
ugly.

4. Don't use any ‘non-quick’ immediate
instructions in a loop, try to pre-load ev-
erything into a register.

5. Fast CPU32 polling:

moveq #1,Dn
moveq #READYBIT,Dm ; static btst
can't be loop-moded, see I11.7

poll:

btst Dm,some_memory-
mapped_device_register
dbne Dn,poll

of course, using !Il.2 we can speed it up
even more if the signalling bit happens to
be bit 7,15 or 31:

moveq #1,Dn
poil:
tst.x some_memory-
mapped_device_register
dbmi Dn,poll

This is very fast because the loop mode
is utiized and dbcc is perfect for overlap-
ping access to the device register which is
probably even slower than regular
memory. The problem is that it will fail if
Dn ever wraps around (after 65K itera-
tions).

V. NEEDED

So, which CPU32 instructions have
tails? | understand any access to memory,
but not the source in move, but | am not
sure. if you have any additions, e-mail me
or write this magazine.

the world of 68' micros page 17

RGBoost-$15.00
If you want to speed up DECB easily, install an Hitachi

6309 and get RGBoost. This patch for DECB uses the ex-
tra 6309 functions for up to a 15% gain in overall speed. It STB"NG‘VARE
is compatible with all programs tested to date! Save an Box 361 Matthews. IN 46957 Phone 317-998-7558

additional $5 by purchasing RGBoost along with one of
my other products listed below!

2-$35. CoCo 3 Software:

Patches Tandy’s Disk EDTASM to support Hitachi 6309 codes! Sup- .

ports all CoCo models, including stock 6809 models. CoCo 3 ver- SOVIG’I BIOC $] 5
sion uses 80 column screen, runs at 2MHz. YOU MUST HAVE A
COPY OF DISK EDTASM. This is a PATCH ONLY! It will not work GEMS $20
with “disk patched” cartridge EDTASM

) B CopyCat $5
ey am all he ova) Raquires 312K CoCod HFE- HPrint Font Editor --------- $15

and shortwave receiver. Instructions for simple cable included.
HRSDOS - $25.00

Move programs and data between DECB and OS-9 disksl Sup- .
ports RGB-DOS - move files easily between DECB and OS-9 par- MM/] SOfIware-

titions! No modifications to OS-9 modules required. Graphics TOOIS $25

DECE SmertWatch Drivers - $20.00
Access your SmartWatch from DECB! Adds function to BASIC
(DATES) for accessing date and time. Only $15.00 with any other Stader Pck $] 5

purchasel BShow $5

Robert Gault

_ 832 N. Renaud CopyCat $10
Grosse Pointe Woods, Ml 462356 .
313-881-0335 Painter $35

Please add 34 S&H per order

for all your CoCo hardware needs, connect with

) | \ 1629 South 61st Street ADVERTISER’S INDEX
SANYEY West Allis, Wl 53214 .
l \ 4 - BlackHawk Enterprises 11
7/ ‘)]J(J l. (pulweahnﬂw-M-MU) CoNect BC
That thing that Tandy calls a serial port on the CoCo ;’AfeNnAGSy slttems ;;,éZ,B C

has always been a problem. It was designed with Ho . au
minimal cost in mind, and never upgraded. Even awksoft u
Tandy fried fo fix it with their RS-232 Pak, but even it Dennis Kitsz 4
was only half done! Our Fast 232 port uses a 16 byte Small Grafx 11
buffer at alleviate missed characters at any speed and StrongWare BC

also has ALL RS-232 lines implemented. It is easy to
set up with jumpers for different addresses. A
daughterboard can be purchased to easily add a
second fast serial port! And all this in a cartridge the
size of a ROM Pak! 6809 and 6309 OS-9 drivers in-

cluded. Completely supports up to 57,600 bps, lim- .
ited support for 115,000 bps. What are you waiting for?

Get your friends to subscribe to

b F:s’t 2382 - s‘:”;:s 00 the only magazine that still supports

aughter Boar : the Tandy Color Computer...
Check with us for complete disk drive systems, “the worll d 0{1 68’ micros™

misc. hardware items, hardware repairs, and hard The more people who want the support,

to find new and used CoCo software! the longer it will be here!

page 18 the world of 68’ micros

	68' micros
	Table of Contents
	The Editor's Page
	Reader's Write...
	 A Missed CoCoFest?
	Operating System-Nine
	Zen of Color Computer Programming
	Transfer .DSK Files!
	G-Windows Error
	Souces!:CoCo 3 & MM/1 Monitors
	680X0 Series Performance Guide
	68K Performance Con't

	CoCo Extended Memory Secrets Part 3
	Advertiser's Index

