in the year 20002 There should
STILL be a magazine to support
you (and OS-9 68K) if you arel!

did anyone notice..

THIS IS THE FIRST ISSUE OF YOLUME FIVE

CONTENTS

From the editor
From our readers
Sundog Game Crack

POSTMASTER:
If undeliverable return to:
FARNA Systems PB
Box 321
WR, GA 31099

If your address is incorrect, send me a postcard!

3

the world of 68° micros page 1

The Editor’s Page

| hope | got your attention with
*ha slight cover changes and the

.0Co 2000" headiine. Basi-
cally, | am committing to produc-
ing this magazine through the
year 2000. That is about three
more years. Where we go be-
yond that is up to you, the read-
ers and subscribers. As long as
| have interesting things to print
and enough subscribers to
make the work worthwhile, we'll
continue printing even after
2000.

What is worthwhile? We start
our fifth year of publication with
this issue. In this time, | have
posted profits twice, the best
year (nothing broke and had to
be replaced!) was the last one
at about $1,000. Previously I've
posted maybe $250 in profits.

| said “profit®, but | mean that

sy loosely! That is basically
what | got out of printing the
magazine. | have upgraded my
computer equipment several
times in order to make publish-
ing easier, and have had to re-
place a few items that just quit.
Of course | use my equipment

for other things, so | get a little
pay-back by having a little extra
money to buy better equipment
than | may otherwise have. But
| pay myself nothing.

That profit mentioned is basi-
cally the magazine's surplus,
which is held just in case some-
thing does break or | feel that
something needs to be up-
graded. Very rarely | will make
a personal purchase from my
business account that | can’t
write off as a business expense.
That is all | get for producing the
magazine. And this is mostly off-
set for the expenses | have at
home (like the extra power,
some telephone time, etc.).

The first two years had eight
issues, the last two six.-So that
is 28 issues altogether. It takes
an average of 30 hours work to
produce, assemble, and mail
each issue. That comes to a to-
tal of 840 hours of labor. Divide
$1250 by 840 and you get $1.50
per hour.

While this is hardly enough to
think about making the maga-
zine, there are peripheral re-

wards. One already mentioned
is that my computer equipment
is a total business write-off. So |
get my computer stuff basically
for free. Then there are the trips
to Chicago and other fests. 90%
of the expenses come from my
business account. And there are
the contacts with subscribers,
and the joy of providing some-
thing useful for others.

| have to admit, | don't print this
magazine for the money! It does
a little better than break even.
That is enough for what is basi-
cally a hobby business. | just
hope you appreciate the fact that
| am willing to go to so much
trouble for so little by continu-
ing to subscribe and support
others who work for as little or
even less (such as Glenside
CoCo Club and Ron Bull, who
put on ‘fests this year) to sup-
port the CoCo and OS-9 hobby-

the world of 68’ micros

Publisher:

FARNA Systems PB

PO. Box 321

Wamer Robins, GA 31099-0321

Editor:
Francis (Frank) G. Swygert

Subscriptions:
US/Mexico: $24 per year
Canada: $30 per year
Overseas: $50 per year (airmail)
ack and single issues are cover price.
verseas add $3.00 one issue, $5.00 two
or more for airmai deiivery.

The publisher is available via e-mail
dsrtfox@delphi.com

Advertising Rates:

Contact publisher. We have scales to suit
every type of business. Special rates for
entrepreneurs and “cottage® businesses.

Contributions:

All contributions welcome. Submission
constitutes warranty on part of the author
that the work is original uniess otherwise
specified. Publisher reserves the right to
edit or reject material without explanation.
Editing will be imited to corrections and
fitting available space. Authors retain copy-
right. Submission gives pubiisher first pub-
lication rights and right to reprint in any
form with credit given author.

General Information:

Current publication frequency is Dbi-
monthly. Frequency and prices subject to
change without notice. All opinions ex-
pressed herein are those of the individual
authors, not necessarily of the publisher.
No warranty as to the suitabiity or opera-
tion of any software or hardware modifi-
cations is given nor implied under any cir-
cumstances. Use of any information in this
publication is entirely at the discretion and
responsibility of the reader.

All trademarks/names property
of their respective owners

ENTIRE CONTENTS COPYRIGHT
1997, FARNA Systems

page 2 the world of 68° micros

reader’s write...

At306 Trials, Tribulations, and
CORRECTIONS!!!

Good news that it wasn't the ectual
“last” cocofest. .

That was a helpfull discussion of
partitions. Now | know what those hOa,

hOb descriptors are for: { thirik that was -

never explained and | never knew
enough to ask. But don't they rieéd to
be included in the bootfile?? 7o make
several partitions do you have to run
foimat several times? What do you use
in place of the MOfmt which sets the
system to bypass the write lock so you
CAN format? | think | know a way
around but thought you ought to tell it.

In your discussion preceeding parti-
tioning | think there is a trouble. The
sector size is 512 (bytes), not 512 ki-
lobytes. So with map capability of
64000 bytes | think capacity would be
34M. By using cluster size 16 | think
the map would address 64000 x 8192
= 524M . In other words a 256k file
would need 32 clusters and really
wouldn't waste a lot of space— at worst
8192 bytes.

That's interesting about running the
vga adapter card on a pc to initialize
it. That ought to save a gang of
at208boot time in the pc mode. But |
suppose yet another ROM than | have
is required to take advantage of it.

The spread sheet program | was us-
ing on mm1 doesn't run on at306, and
VED only sort of runs. I've had to use
pc and | sure miss the multiple win-
dows which are available on 0s9.

Fran Walters .

72130.3067@CompuServe.COM

1) Yes, that there will be another
Chicago fest is good news indeed! And
don't forget about the PA fest!

2) The drivers for each partition you
wish to use (hOa, hOb, etc.) must be
loaded in your bootfile, as you correctly
observed. hofmt is ONLY used to for-
mat a drive with a no partitions... the
entire drive is used as a single parti-
tion. When the partition drivers are
used, each partition is formatted indi-
vidually with the format command,
there is no locking done.

3) You are absolutely correct! | in-

tended to write 512 BYTES, not KILO-
BYTES!! Somry about all the confusion
this caused. You weren't the only one
to point this error out! The 64K bit map
uses one bit per sector. 64K bytes * 8
bits/byte * 512 bytes/sector = 256MB
per partition. This should clear up your
math!!

4) The VGA card seems to remem-
ber some settings from the PC. We're
not sure exactly what transpires here,
Carl is looking into it. We only know
that some PC VGA cards won't work
in an AT306 until they have been in-
stalled in a PC first. Has no effect on
booting or the AT306 ROMSs, or vice-
versa.

5) What spreadsheet are you using
on the MM/1? If it uses termcap, it
shouid work on the AT308. If it is some-
how MM/1 hardware specific or re-
quires K-windows, it won't work. You
may want to contact Bob VanDerPoel
about VED. :

1024 or 1000 = 1 Megabyte?

| believe your explanation of format-
ted versus unformatted capacity to be
in error. An IDE hard drive with 1048
cylinders, 16 heads, and 83 sectors per
track has 1048*16*63*512 bytes of
storage, or 540,868,608 bytes. Hard
drive manufacturers define a mega-
byte as one million bytes and not
1,048,576 (1024*1024) as memory
manufacturers do. 540,868,608 di-
vided by 1,048,576 gives 515.8125
megabytes of storage, which is 516
megabytes as you wrote (p8 coi3 top).

| do not see that as a devious mar-
keting ploy. Originally, the term “kilo-
byte” emerged because someone no-
ticed that 2210 is approximately 103
(1024 vs 1000). It is a good approxi-
mation for small amounts of bytes, but
gets less accurate as the number of
bytes increases.

Memory makers are tied to the ap-
proximation because the number of
bits in their memory chips is a power
of two. Hard drive makers are not tied
to the approximation because they can
make the hard drive any size and not
just powers of two. If | made a hard
drive that held 540 million bytes then
1, too, would call it a 540MB drive and
not a 516MB hard drive.

| am looking forward to the next is-
sue and more news about the AT308.

Paul R. Santa-Maria
Ann Arbor, Michigan, USA
paui@orchard.washtenaw.cc.mi.us

You are indeed correct. Hard drive
manufacturers use the estimated 1000
bytes while memory and most other
peripheral manufactures use the true
measurement of 1024. Some hard
drive manufacturers will state the for-
matted size of a drive, while some give
the unformatted capacity. So my ex-
planation of why that particular drive
formatted to 516MB instead of the ad-
vertised 540MB was incorrect, as your
excellert math shows.

The reason hard drive manufactur-
ers use the larger numbers, however,
is marketing. The manufacturers know
that the numbers will be less than ad-
vertised once the equipment is put in
use. There have been many times that
a novice will ask computer magazines
why they bought a 540MB or 600MB
drive and only get 516MB of storage
space. The 540 number is more im
pressive, yet not totally untrue, so the
marketing arm decided to use those
numbers. Some go the step further and
advertise something like a 6OOMB ca-
pacity for the same drive
(unformatted... and | estimated the
unformeatted capacity, I'm not sure how
much room sector marking actually
takes, but & is a good amount on a mid-
size drive). They get by with this be-
cause all three numbers (516, 540, and
600) are accurste, true numbers. But
they are misleading to the pubiic.
When you put the drive in use, it is still
a 516MB drive. The consumer
shouldn't have to be a math whiz and
familiar with all the numbers just to buy
a drive! Now if it was common to actu-
ally use one of these drives
unformatted or the computer reported
capacity as an approximation, | could
see using those “alternate” numbers.
But when | buy something, | like to
know what the capacily is without hav-
ing to do a ot of mental <SFCFN
math or take along a cal- 0:‘{0“;2
culator. That shouldn’t \Y@Z%/
be much to expect! =

s
>

Sundog Game Crack
Crack your Sundog games so they can be backed up for safety!

’ NOTICE: Sundog games are still soid

, Rick's Computer Enterprise, Box
276, Liberty, KY 42539. This program
was written so that legitimate owners
will be able to backup their software for
safekeeping. It is ILLEGAL to copy and
sell or give away copywritten software.
if you want a copy of one of the men-
tioned games, drop Rick's a note and
ask for a price list!

John Riddle

Several people | know requested info
on backing up sundog games, so |
whipped up a utility to automatically crack
some of them so they can be backed up
and stored in a safe place. Supported
so far : Sinistar, Contras, Photon, Quest/
Thelda, and Paladin's Legecy. Support
for Kyum Gai: To Be Ninja will be added
soon, and support for al Sundog games
will be added eventually.

To use the crack, first make a backup
of disk 1 of whichever Sundog games you
want to remove the copy protection from.
You'l need a backup utility which won't
abort when it has read errors on track 0,
because track 0 is the non-standard-for-

~atted track on the Sundog disks. Once

From: Dennis Bathory-Kitsz

Hi folks! I’ve been hiding out

in Vermont, but since it’s the
10th anniversary of my com-
pany Green Mountain Micro’s
demise, I thought it might be
time to put in an appearance
here.
About 150 copies of ‘Learn-
ing the 6809’ (book only) re-
main, which I'd be happy to
offer at $10 postpaid to any-
one interested. If at least 10
people also want the original
tapes, I'd be pleased to make
up a set of those as well.

One of these days I'll tell my
own tale ... amusing indeed...

Dennis Bathory-Kitsz

RD 2 Box 2770

Cox Brook Road
Northfield, Vermont 05663

<bathory@maltedmedia.com>
Malted/Media:
http://www.maltedmedia.com/

page 4 the world of 68° micros

you have that, run suncrack.bas on the
backup and it will automatically patch the
appropriate bytes to remove the copy
protection.

The crack works by using DSKCON
(rom hook at location 55135 dec.) to read
in a certain track and sector on the disk.
For example, option 3 is Photon, so the
program will goto fine 300, and set up the
track, sector and offset varibles. The off-
set is the position in the sector whera the
bytes that need to be patched reside.

After that, the subroutine at line 1000
first finds where in memory DSKCON is
currently storing its data variables. Line
1010 will then do a read operation on
drive 0, track 34, sector 6 into memory
location 1024 (which is the text screen).
| picked the text screen because it is a
‘safe’ memory location for this applica-
tion, and you get a nice view of the sec-
tor that was patched.

Then in ine 1020, the offset variable
is used to get to the exact location in the
sector of what needs to be patched,
which is a subroutine call using JSR. That
3 byte instruction is replaced with 3 NOPs.
The NOP byte code is 12 hex. The first
4 games are cracked by puting NOPs
over the JSR call which reads in track 0
and checks some codes on it.

The last game is cracked by changing
the execution address in the auto-start
loader. This is because the copy protec-
tion is slightly different on that game in
which it does the copy protection check
right away. This allows for the crack to
be a simple change to an execution ad-
dress. The first 4 games do other things
(displaying graphical sundog logo, etc)
before doing the copy protection check.

Line 1030 writes the modified sector
back to disk. Notice that the first poke
command controis the operation (2=read
and 3=write). After the patch is applied,
the game wil load normally since the sub-
routine to check the copy protected track
has been blanked out.

This is not the final version of the
patcher, though it will be a few months
before | have a chance to perfect it (edi-
tor: this article was originally written in
May, so check!). If anyone needs some-
thing clarified let me know. My address
is:

312 E. Maple Road
Linthicum MD 21090
E-mail: jriddle@clark.net

1 ‘SUNCRACK V1.0 - UTILITY TO
“CRACK" (NOT COPY) SOME SUNDOG
GAMES

2 ‘BY JOHN RIDDLE MAY 22, 1997

3 ‘FIRST BAGCKUP SUNDOG DISK
EXCLUDING TRACK 0

4 ‘THEN RUN THIS PATCH ON THE
BACKUP

5 'METHODS: #1,2,3 & 4 - JSRKILL, #5 -
EXEC ADDRESS CHANGE

10 F=0:CLS:WIDTH32

20 PRINT@8,"SUNCRACK V1.0"

30 PRINT:PRINTINSERT APPROPRIATE
GAME DISK AND SELECT WHICH
GAME TO CRACK" - ..

40 PRINT:PRINT 1) SINISTAR","2) THE
CONTRAS’ .

50 PRINT:PRINT"3) PHOTON","4)
QUEST/THELDA"

60 PRINT:PRINT"S) PALADIN'S LEGACY®
70 AS=INKEYS:IF A$=" THEN 70 ELSC
IF A$= "1" THEN 100 ELSE IF A$="2"
THEN 200 ELSE IF A$="3" THEN 300
ELSE IF A$="4" THEN 400 &:LSE IF A$-=
*5" THEN 500 ELSE 70

100 T=30:S=12:0=&H76:GOSUB1000:
GOTO 2000

200 T=3:5=11:0=&H4B:GOSUB1000:
GOTO 2000

300 T=34:5=6:0=8H84.GOSUB1000:
GOTO 2000

400 T=2:S=15.0=&H7E.GOSUB1000:
GOTO 2000 -

500 T=1:5=5:0=&HC8:F=1.GOSUB10C0:
GOTO 2000

1000 A=PEEK(&HC006)*2568+PEEK
(&HC007)

1010 POKE A 2:POKEA+1,0:POKEA+2T.
POKEA*+3,S:POKEA+4,4:POKEA+5,0:EXEC
55135

1020 IF F=0 THEN POKE 1024+0,&H12:
POKE 1024+0+1,&H12:POKE1024+0+2,
&H12

1025 IF F=1 THEN POKE 1024+0,&32:
POKE 1024+0+1,&H51)

1030 POKE A 3:POKEA+1,0:POKEA+2,T:
POKEA+3 ,S:POKEA+4,4.POKEA+5,0:
EXEC 55135

1040 RETURN

2000 PRINT"THE GAME IS NOW
CRACKED.”

2010 PRINT'THE DISK CAN NOW BE
COPIED USING STANDARD"

2020 PRINT'DISK BACKUP PROCE-
DURES.*

Hacking the Orchestra 90 Pak
The CoCo as a Digital Sound Recorder

Robert Gault

Background

There are many good articles in past
issues of Coco magazines describing code
that permits digital recording of sound via
the joystick inputs. There were also some
commercial programs that turned the Coco
into a mini recording studio and offered
sophisticated editing action. The real ques-
tion is were these programs capable of
good sound quality? Let’s look at the theo-
retical software limitations of a computer
with a 2MHz clock and at a hardware
project with the aim of improving on these
limitations.

The Coco incorporates a six bit ADC/
DAC (analog to digital / digital to analog
converter.) This means that there are 26
or 64 discrete signal levels that the DAC
can represent. Can 64 discrete signal lev-
els produce HiFi, mediumFi, or no fidel-
ity? Sound leveis are generally reported
in units of decibeis (dB). The best HiFi
systems, whether analog or digital, have
about a 90dB dynamic range. A 16-bit
compact disc player is theoretically ca-
pable of a 96dB dynamic range. The deci-
bel is a logarithmic number, and if related
to voitages as in the Coco DAC, the for-
mula is dB = 20 log (E1/E2). Specifically,
dB = 20 log (64/1) = 36. This is pretty aw-
ful by any standard and represents fairly
extreme compression and a high noise
floor. Given the Coco’s maximum dynamic
range, it is truely amazing how good the
Coco can sound when playing digitized
music.

You have just read the bad news on dy-
namic range. Unfortunately frequency re-
sponse 8 similarly bad. To determine the
DAC frequency response limitations, we
must evaluate the best code that can be
written to read the DAC. The code must
be symetrical in the sense that it takes
exactly the same amount of time to read
each of the 64 possibie DAC values. if this
were not true, then distortion would be
added to the sound and we have more than
enough aiready. Below is a source code
fragment for reading the DAC.

00100 * D/A A/D CONVERTER FOR COCO3;
6BIT DAC

00240 DAC EQU $FF20
DAC located in top 6 bits 2-7

00250 KYJS EQU $FFOO
keyboard and joystick output

00450

00460 * READ DAC

00470 TEST MACRO

00480 STA DAC

set DAC level 4CYC

00460 LDB KYJS

check comparator 4CYC

00500 BMI a@ 3CyC
00510 SUBA #0

reset vaiue based on comparison 2 CYC
00520 BRA b@ 3CYC

00530 a@ADDA #0
reset vaiue based on comparison 2CYC

00540 BRN b@
Ineeded to maintain symetryl 3 CYC

00550 b@ EQU °

00560 * 16 CYCLES THROUGH EITHER PATH
00570 ENDM

00580

00560

00740 RECLUP sampie the DAC

00750 LDA #32°4

preload regA with the maximum DAC value
2CYC

00760 TEST 164 16CYC
00770 TEST 8°4 186 CYC
00780 TEST 4°4 16 CYC
00790 TEST 2°4 16CYC
00800 TEST 1°4 16 CYC
00810 TEST 2 °0'4 16CYC
00820 * 98 CYCLES :

00830 RECX STA X+
store in memory 8CYC

00840 * 104 CYCLES

The only reasonable way to shorten this
code would be to use a 6309 in native
mode 80 that there are fewer clock cycles
per instruction.

Keep in mind that this minimum of 104
clock cycies does not include the overhead
required to check for memory overflow, or
test for a keyboard stop signal.

The maximum sampling rate at 104
clock cycles per sample is thus: freq =
1.79MHz / 104 = 17212 Hz. That is not
quite as good as it seems because signal
theoty requires a sampliing rate double the
highest usable frequency to prevent
aliasing distortion.

The best clean frequency response poe-
sible for the Coco running in fast mode is
about 8600 Hz. This is most definately low
fidelity and worse than AM radio. Again, it
is truely amazing just how good a well
written Coco digitizer program can sound.
Can we do better?!

CocoBlaster

With apologies to a commercial prod-
uct of similar name, | decided to make a
sound card for the Coco that would im-
prove on the imitations of the built-in ADC.
The perfect platform for this project was
the Tandy Orchestra-80 Pak. This unit al-
ready has an 8-bit DAC and input/output
(/O) addressing. Al that was needed was

the addition of an 8-bit ADC for input.

| chose the ADC080(x) x=1,2,3,4 whici
used to be soild by Tandy (276-1792) and
was described in the Tandy “Semiconduc-
tor Reference Guide®, 1883. This unit may
not be currently avaiable but faster equiva-
lent devices certainly are and wouid be
better for the job. The unit has several
desirable qualities: single S5v power sup-
ply, tri-state 8-bit data bus which can con-
nected directly to the Coco, and a conver-
sion rate capable of just barely using the
Coco 2MHz clock.

The ADC080x does a conversion evefy
64 clock cycles. At 1.79MHz this gives a
conversion rate (frequency response) of
28KHz. Thus signal theory says this chip
could record a clean 14KHz signal. In fact,
the program listed below can actually save
data at a maximum rate of 21KHz so the
clean signal is reduced to 10.5KHz. By
contrast the Coco ADC, as we have just
seen, is only capable of a clean 8500Hz
signal. Unfortunately, the ADC080x is rated
for a maxdimum clock of 1.46MHz and the
faster Coco clock results in a conversion
error 5% in ampiitude. This, however, can
be compensated for with a voltage offset.

So far, so good. The ADC080x can cover
the 20-20000Hz human hearing range witt
some distortion above 11KHz. How does
the dynamic range compare to the Coco
DAC? Using our equation from above, dB
= 20 log (28/1) = 48. That is much better
but not up to HiFi standards. | would rate
my project, based on listening tests, with
sound quality somewhere between that of
AM and FM radio.

Before leaving theory, you should un-
derstand the impact of high quality sound
on storage capacity. Everything comes
with 8 price. Sound recorded at 21KHz on
a 512K RAM Coco wil last about 20 sec-
onds. Software programs running at
14KHz can store about 30 seconds of
sound. About 2 1/2 double sided 40 track
disks are needed to save all of this data.

Connection Requirements

The ADC080x needs both read and write
signais. The ORC-80 pak has write ad-
dressing but needs read addressing in-
stalled. | did this by piggybacking a sec-
ond 74L.S138 chip onto the existing unit in
the ORC-90 pak. A low profile IC socket
was soldered onto the ORC-80 74LS138
connecting all ines except pins 5, 14, and
15.

Pin 5 is an “enable’ line which will be
set permanently on by tying it to ground.
This will make the select ines active for
both read and write periods. Pins 14 and

the world of 68’ micros pege 5

FARNA Syszerms

Your most complete source for Color Computer and 05-9 information

Post OFffice Box 321
Warner Robing, GA 3109%
Phone: 912-328-78659

E-mail: dsrtfox@delphi.com

ADD $3 S&H, $4 CANADA, $70 OVERSEAS

BOOKS:

Mastering 05-9 - $30.00

Completely steps one through leaming all as-
pecte of 0S5-9 on the Color Computer. Easy
to follow instructions and tutoriale. With a
diek full of added utilities and softwarel

Tandys Littls Wonder - $25.00

Hietory, tech info, hacks, schematice, re-
pawe.... aimost EVERYTHING avallable for the
Color Computert A MUST HAYE for ALL CoCo
afficiandos, both new and oldill

Quick Reference Guides

Handy little books contain the most refer-
enced info in easy to find format. Size makee
them unobtiusive on your desk. Command syn-
tax, ervor codes, syetem calle, etc.

CoCo 05-9 Level Il : $6.00

05-9/686000 : $7.00

Complets Dieto Schematic set: $15
Complste eet of all Dieto product echemat-
ice. Great to have... noeded for repairsl -

“A Full Tum of the Screw™ $20
%6 of CoCo info, projects, and tutoriale. by
sy DigStefano

“inslde Disto's 2 Meg Kit™ : $10
Schematice and explanation of how the 2 meg
CoCo 3 upgrade works.

SOFTWARE:

CoCo Family Recorder: Best genealogy record
keeper EVER for the CoCol Requires CoCo3,
two drivee (40 track for 05-9) and 80 cole.
DECB: $15.00 05-9: $20.00

DigiTech Pro: $10.00

Add sounds to your BASIC and M/L programel
Yery sasy to use. Requiree user to make a
simple cable for sound Input through a joy-
etick port. Requires CoCo3, DECB, 512K

ADOS: Most respected enhancement for
DECBI Double sided drives, 40/80 tracks, fast
formate, many extra and enhanced commands|
Original (CoCo 1/2/3) : $10.00

ADOS 3 (CoCo 3 only) : $20.00

Extended ADOS 3 (CoCo 3 only, requires
ADOS 3, support for 512K-2MB., RAM drives,
40/80 track drivee mixed) : $30.00

ADOS 3/EADOS 35 Combo: $40.00

Pixel Blaster - $12.00

High epeed graphice toole for CaCo 3 05-9
Level Il Easlly speed up performance of your
graphice programel Deslgned oepecially for
game programmmersi

Patch 05-9 - $7.00

Latest versions of all popular utls and new
commands with complete documentation.
Auto-installer requires 2 40T DS drives (one

may be larger).

NEW [TEMSIH
FARNA Syetsme ie pleased to
announce that we are now dio-
tributore of the following. for-
merly from Northern Expoeurel
Note: If you never recelved your or-
der from NX, eend a copy of
yourcancelled check along with $5
to cover S&H and I'li fill the orderi

Nitros-9 : $35.00

A complete rowrite of 05-9 Level Il that takee
advantage of all featuree of Hitachfe 6309
proceseor. Eaey install ecript! 6309 required.

TuneUp : $20.00

if you dont have a 6309, you can stlll take
advantage of some of the Nitro software tech-
nologyl Many 05-9 Level Il modulee remritten
for improved speed with the etock 6809I

Thexder 05-9

Shanghal 05-9 : $25.00 each

Tranefers your ROM Pack game code to an
05-9 diekl Please send manual or ROM Pack

to verify owmership of original.

Rusty : $20.00
Launch DECB programe from 0S-9! Allows
loading of some programe from hard drivel

FARNA Systems ATSOS BPBased Computers

Complete computer systems based on the AT306 board from Kreider Electronice. Systems are
completely setup and ready to go, Just add a YGA monitor (or we can supply that too)l

Both systems include:

16 bit PC/AT VO bus with five siots
MCE8306 CPU at 16.67MHz

4,30 pin SIMM sockets

IDE Hard Drive interface

1.4MB Floppy Drive

Two 16 byte fast serial ports (up to 115K baud)
Bi-directional paraliel printer port

(mini-tower case optional, no costl)
BASIC (resembies Microsoft BASIC)
MGR Graphical Windowing Environment
with full documentation
‘Personal” OS-a/88000 Vr 3.0
(Industrial with RBF)
rivers for Tseng W32
and Trident 8900 VGA cards
Drivers for Future Domain 1680
and Adaptec AAH15xx SCSI cards

Many other utilities and tools

page 6 the worid of 68’ micros

FARNA-11123 Includes:

2MB RAM

300MB Hard Drive (was 2001)*
Trident 8900 1MB Video Card
$960.75

FARNA-11225 includes:
2MB RAM

S500MBE Hard Drive*

Tseng W32i 1MB Video Card
$1114.47

*This is the SMALLEST amount of formstted space avallable.
Prices fluctuate - we get you the largest drive possible for the money allotted]

HACKERS MINI KIT (FARNA-11100): Includes AT306 board, 0S-8 and drivers,
util software, assembly instructions/tips, T8900 1MB video card. Add your own
case, keyboard, drives, and monitorl ONLY $5600/

Call for a quote on different configurations and components.
Warranty is 90 days for labor & setup, components imited to manufacturers warranty.

Microware Programmers Package -
Licensed copies of Microware C compiler, Assembler, Debugger,
Basic, and many other tools!

With system purchase: $65.00 Without system: $35.00

15 are outputs which must not interfer with
the original ORC-90 lines. Pin 14 will be
left unconnected. Pin 15 with go to the
ADC080x chip select fine, pin 1.

One more support IC will be needed to
supply the read / write signais. The Coco
uses a single read/write (R/W*) line with
selection based on logic. The ADC080x
requires its separate read and write (R pin
2, W pin 3) lines to have the same logic
value. We need to decode the cartridge
ine 18 into separate read / write ines us-
ing and inverter for the R line. | used a
74L.S02 NOR device with one input
grounded as an inverter.

The data lines DO-D7 of the ADC080x
must be connected to the Coco bus. |
found the easiest way was to use ribbon
cable to connect the ADC080x pins 18-11
(DO-D7) tothe ORC-901C1 pins 11-19 (DO-
D7.) There are several other connections
which you can get from the schematic dia-
gram below.

To accees the new circuit, | chose the
simple option of co-opting one of the ORC-
90 RCA jacks. This made the pak a mono
unit but the ADC080x i8 only a single chan-
nel anyway. The input to the IN+ line of
the ADC080x needs to be biased at 172
the power supply for maximum input dy-
namic range. This was done with a simple
resistor voltage divider and solated from
DC offset by a capacitor.

In the event that you wish to keep ste-
reo output from the ORC-90, just put a
double pole single throw switch at the RCA
jack to select the original output or ADC
input.

With the hardware installed, the Coco
is now ready for new software.

The Software

A combination of Basic and machine
code makes the new hardware function.
When the program ie started, the main
screen is seen.

COCO3 512K AUDIO DIGITIZER

BY R.GAULT

SELECT YOUR FUNCTION

(R)IECORD

(P)LAYBACK

(S)ET LEVELS

(LYOOP PLAY

(MJONITOR (D)ISK VO

(H)ARDWARE ADJUST
BITS, FREQUENCY
MMU BLOCKS

(@QuIT

SPACEBAR TO KILL FUNCTION

The Set Levels and Hardware Adjust
screens are interesting. You can select the
number of bits used per word, the sam-
pling rate, and the length of sample cap-

tured. The level screen presents a VU
meter calibrated in dB with both fast and
average response. Sound quality is not
altered even though the computer is busy
drawing graphic paterns.

8-8IT VU METER
by R.Gault
1 Trim volumel!

CURRENT VALUES :
20833 HZ SAMPLING RATE
8 BITS PER SAMPLE
0/53 FIRSTAAST MMU BLOCK
21.00 SEC. SOUND SAMPLE

SELECT (F)REQ.
(B)TS
(M)MU BLOCKS

Source Code

A Coco3 with 512K RAM and 40 track
drives is required to run the Basic and m/
| routines. Change the DISKIO code for
35 track drives. On systems with Muiti-
Paks, the ORC-90 must be in siot #1. The
following machine language source code
is in EDTASMB309 format, but can easily
be adapted to straight EDTASM or other
editor assembilers as no 6309 specific code
was used. The text and graphic outputs
use the PMODE3 graphic and Lowres text
screens to preserve more memory for
sound. Notice how the Highres graphic
screen ROM routines are used to print to
the PMODE3 screen.

00100 * DACTMR3

00110

00120 * D/A A/D CONVERTER FOR COCOg;
8BIT DAC; 512K REQUIRED

00130 * REQUIRES ORC-90 PAK WITH 88IT
ADC MOD

00140

00150 * USES HPRINT ROUTINE TO PRINT
TEXT ON PMODE3 SCREEN

00160 INCLUDEDISKIO

00170

00180 BFFRO EQU 0

FIRST MMU BLOCK OF MAIN BUFFER
00190 BFFRL EQU $36

WOULD BE $31 TO EXCLUDE H.GRAPHICS
AREA

00200BUFFR1 SET $8000

00210 EBUFR1 SET $A000

0020 BUFFR2 EQU $2800

00230 MP EQU SFFTF

00240 PIAO EQU $FF22

00250 PIA1 EQU $FF23

00260 DAC8 EQU $FF7B ORC-
90 pak address fine

00270 KYJS EQU S$FFOO joy-
stick

00280 MMSLOT ~ SET $FFA4
$8000-$9FFF

00290ADCTRG EQU $FF7TA ADC
TRIGGER PORT

00300ADCRED EQU ADCTRGADC
READ PORT

00310GFIRQ EQU $FF83 GIME

FIRQ PORT

00320 MAXLN EQU
15+128°32+BUFFR2+50*32

00330 DELAY EQu 20 v u
METER DECREASE DELAY

00340

00350 SETDP $FF

00360

00370 ORG $7000

00380

00300 ZRECRD JMP RECORD
00400 ZPLAY JMP PLAY

00410 ZLEVEL JMP LEVEL

00420 ZMNITR JMP MONITR

00430 ZCLOCK JMP CLOCK

00440

00450 FREQU FD8 179 DE-
FAULT = 20KHz

00460 BITS FCB 255 DE-
FAULT =8 BITS

00470

00480 BUFFRO FCB BFFRO DE -

FAULTS ARE ABOVE; SET FROM BASIC
DRIVER

00400 BUFFRL FC8 BFFRL

00500

00510 ORIVES FCB -1,-1,-1

DRIVE NUMBERS ARE SET FROM BASIC
00520

00630 RECORD BSR SETUP

00540 (DA BUFFRO

00850 STA MMSLOT

00560 RECLUP SYNC WAIT
UNTIL TIMED OUT

00670 LDB ADCRED READ ADC
00580 LDA GFIRQ CLEAR FiRQ
00580 STD ADCTRG TRIGGER ADC,
SEND VALUE TO DAC

00600 RECX STB X+ SAV!
ADC VALUE

00810 CMPX #EBUFR1END OF
BUFFER VO BLOCK?

00620 BNE RECX2

00830 LDX #BUFFRIR E S E T
POINTER TO START OF BLOCK

00840 LDA MMSLOT UPDATE MMU
VALUE

00850 ANDA #$3F §12K COCO;
DIFFERENT VALUE NEEDED IF 1MEG COCO
00660 INCA

00670 STA MMSLOT

00680 CMPA BUFFRL REACHED
LAST MMU BLOCK?

00860 BNE RECLUP

00700 BRA RECXIT

00710 RECX2 LDA KYJS TEST
KEYBOARD FOR SPACEBAR

00720 BITA #3

00730 BEQ RECXIT

00740 BRA RECLUP

00750 RECXIT LDD #33C35

00760 STA MMSLOT RESTORE MMU
00770 STB $FFO3 RESTART IRQ
00780 DECB

00780 STB $FF23 SOUND OFF
00800 DECB

00810 STB MPI RESET MPI TO
$33

00820 LDD #3CC

00830 STB $FFB0 RESET GIM’
REGISTERS

00840 STA GFIRQ CLEAR GIME
FIRQ

00850 STA $FF91 SET FOR
SLOW TIMER

the world of 68’ micros page 7

00880 STA $FF94 CLEAR TIMER
00870 STA $FFE5 ° °
00880 LDB FRQIMG RESET FIRQ
ROUTINE TO ROMS
00880 LDX FRQIMG+1
0 STB $10F
0 STX $110 RESET FIRQ
00820 TFR A DP
00830 ANDCC #$AF
00840 RTS
00850
00960 SETUP ORCC #$50
00970 LDD #SFF7F
00880 TFR ADP
00880 STB $FF02 AL -
LOW TEST FOR SPACEBAR
01000 (DA #%11011100
COCO1,MMU FIRQ,C-RAM,DOS
01010 STA $FF80 ACTI-
VATE MMU
01020 LDD #$43C SELECT CAR-
TRIDGE AS SOUND SOURCE
01030 STA $FFO1 MUXA=0
01040 STB $FFO3 MUXB=1;CART
SOUND ON, VERT IRQ OFF
01050 LDA #$3C
01080 STA $FF23 SOUNDON
01070 LDA $10F SAVE FIRQ
PATH
01080 LDX $110
01080 STA FRQIMG
01100 STX FRQIMG+1
01110 LEAX FIRQ,PCR I N -
STALL AN FIRQ ROUTINE EVEN IF
ot120 STX $110 T
WON'T BE USED; IT IS USED BY LEVEL
N30 LDA #37E ROU-
E.
140 STA $10F
01150 LDA #3$20
01160 STA GFIRQ FIRQTIMERON
01170 STA $FF91 FAST CLOCK
01180 LDD FREQU SET BY BASIC
DRIVER
01180 STD $FF94 SET TIMER
VALUE
01200 LDX #BUFFR1USED BY

RECORD AND PLAY, NOT LEVEL OR MONI-
TOR

01210 RTS
01220 FRQIMG RMB 3
01230
01240
01250 PLAY BSR SETUP
01260 LDA BUFFRO
01270 STA MMSLOT
01280
01280 PLYLUP SYNC THIS
WILL MAKE PLAY RUN AT THE SAME RATE
AS
01300 LDA GFIRQ THE RECORD
ROUTINE.
1310
01320 LDA X+
01330 ANDA BITS SET B8Y BASIC
DRIVER
01340 STA DAC8 SEND SOUND
TO 8-BIT DAC

30 CMPX #EBUFR1

360 BNE PLYX2
01370 LDX #BUFFR1
01380 LDA MMSLOT
01380 ANDA #S3F
01400 INCA
01410 STA MMSLOT

page 8 the world of 88 micros

01420 CMPA BUFFRL

01430 BNE PLYLUP

01440 PLYXIT LBRA RECXIT
01450 PLYX2 LDB8 KYJs
01460 BITB #8

01470 BEQ PLYXIT

01480 BRA PLYLUP

01480

01500 SETDP 0

01510

01520 * CLOCK SPEED TEST, As$C3 AT 2MHZ
A=$E1 AT 1MHZ

01530 * CLOCK FLAG SET MEANS SLOW
1MHZ CLOCK RATE

01540

01550 CLKFLG SET $73FF
01560

01570 CLOCK CLRA

01580 STA CLKFLG,PCR
01580 PSHS CC

01600 ORCC #$50

01610 SYNC

01620 TST $FFO2

01630 TLOOP INCA

01640 TST $FFO3

01650 BPL TLOOP

01660 CMPA #300

01670 BHI LT

01680 COM CLKFLG,PCR
01690 CLKXIT PULS CC,PC
01700

01710 SETDP $FF

01720

0170 -

01740 * THIS ROUTINE IS TOO SLOW TO AL-
LOW THE USE OF SYNC; INSTEAD AN FIRQ
01750 * ROUTINE IS USED TO SAMPLE THE
ADC; THAT MAINTAINS HIGH QUALITY
SOUND.

01760 * THERE 1S NO NEED FOR PERFECT
SYNC OF THE VU METER WITH INCOMING

SOUND.

01770

01780 LEVEL LBSR SETUP

01780 CLR GFIRQ DON'T USE
TIMER

01800 CLR MP| POINT TO ORC-
90 PAKIN SLOT #1

01810 LDA #3530

01820 STA PIA1

01830 STA ADCTRG INITIATE ADC
HARDWARE

01840 LBSR LABEL

01850 LDD #MAXLN

01860 STD MAXV

0otg70 LDB SDELAY

01880 STB WAIT

01890 LEVEL2 LDX

#BUFFR2+15+50°32

01800 ANDCC #%101111114 EN-
GAGE FIRQ

01910 LEVLUP LD8 KYJS

01920 LEVX 8iT8 ;]

01930 LBEQ RECXIT

01840 LDA ADCIMG

01850 SUBA #8 USED TO COR-
RECT HIGH SPEED ADC ERROR

01880 TSTA COMPENSATE
FOR CONSTANT 2.5V OFFSET

01970 BPL NORM

019860 NEGA

01990 NORM LoB 32 3 2
BYTES PER GRAPHIC SCREEN LINE

02000 MUL

02010° ANDB #256-(BYTES:PER:LINE)

ONLY NEEDED IF REG.B NOT = BYTES

02020 LEAY DX POINT TO COR-
RECT BYTE

02030 PSHS Y SAVE REG.Y
FOR COMPARISONS

02040 CMPY MAXY PREVIOUS
HIGH VALUE

02050 BHS LOWER GRAPH IN-
VERTS DIRECTION

02060 STY MAXV SAVE NEW
HIGH VALUE

02070 LOWER Loy MAXV

02080 CMPY #MAXLN

02090 BEQ SET

02100 LDA #%10101010
BACKGROUND COLOR

02110 DEC WAIT USED TO GIVE

FAST RISE, SLOW FALL TO PEAK IND.
02120 BNE CLRLP2

02130 LDB #DELAY RESET SLOW-
DOWN COUNTER

02140 STB WAIT

02150 CLR Y ERASE THE
MAX PEAK INDICATOR

02160 LEAY 32Y UPDATE
POINTER BY ONE LINE

02170 STY MAXV SAVE NEW
MAX VALUE POINTER

02180 CMPY #MAXLN DIDWE REACH
THE BASE LINE?

02190 BEQ SET

02200 CLRLP2 STA Y SET
PEAK INDICATOR TO FOREGROUND COLOR
02210 LEAY 32Y NEXT LINE
020 CMPY S REACHED THE
CURRENT VALUE YET?

02230 BHI CYCLE GONE PASTIT
02240 BEQ SET IF PEAK NOW
SAME AS CURRENT VALUE

02250 * CLEAR A GAP BETWEEN THE OLD
MAXIMUM INDICATOR AND CURRENT VALUE

02260 CLRLUP CLR Y SET
TO BACKGROUND COLOR

02270 LEAY Y NEXT LINE
02280 CMPY S REACHED THE
CURRENT VALUE YET?

02280 BLO CLRLUP

02300 * FILL AN INDICATOR COLUMN
THROUGH MAXLINE VALUE

02310 SET LDA #$FF

02320 SETLUP STA Y SET
TO FOREGROUND COLOR

02330 LEAY 32Y NEXT LINE
02340 CMPY #MAXLN REACHED THE
BASE LINE?

02350 BLS SETLUP IF NO OR THE
SAME

02360 CYCLE LEAS 2§ RE-
SET SYSTEM STACK "PULS REG.Y"

02370 BRA LEVLUP

02380

02300 ADCIMG RMB 1 A TO
D CONVERTOR IMAGE; FILLED BY FIRQ
02400 MAXYV RMB 2 AD-
DRESS OF MAX VOLTAGE LEVEL

02410 WAIT RMB 1 DE-

LAY VALUE FOR MAXV DECREASE RATE
02420

02430 * FIRQ: THIS ROUTINE READS ADC,
SENDS VALUE TO DAC, STORES VALUE
02440 * IN ADC-IMAGE, CLEARS GIME
FIRQ, TRIGGERS ADC.

02450 * REGISTERS CHANGED: NONE
02460
02470 FIRQ

STD REGIMG

02480 LDB ADCRED READ THEADC
02400 LDA PIAO CLEAR CART
FiRQ

02500 STD ADCTRG TRIGGER THE
ADC; SEND SOUND TO DAC

02510 STB ADCIMG UPDATE
IMAGE

02520 LDD REGIMG

02530 RTI

02540 REGIMG RMB 2

02550

02560 LABEL PSHS XYU

02570 LDU #$F090

HSCREEN ASCIl SET

02580 LDX #BUFFR2+4+4632
02580 LEAY MES1,PCR

02000 BSR PRINT

02610 LDX #BUFFR244+71°32
02620 LEAY MES2,PCR

02630 BSR PRINT

02640 LDX #BUFFR2+4+97°32
02850 LEAY <MES3PCR

02660 BSR PRINT

02670 LDX #BUFFR2+4+12332
02680 LEAY <MES4,PCR

02680 BSR PRINT

02700 LDX #BUFFR2+4+148°32
02710 LEAY <MESS5,PCR

02720 BSR PRINT

02730 DX #BUFFR2+4+174°32
02740 LEAY <MESBPCR

02750 BSR PRINT

02760 LDX #BUFFR2

02770 LEAY <MES7,PCR

02780 8SR PRINT

02780 LDX #BUFFR2+9"32

02800 LEAY MESS8,PCR

02810 BSR PRINT

02820 LDX #BUFFR2+26°32

02830 LEAY MESS,PCR

02840 BSR PRINT

02850 PULS XYUPC

02860

02870 * THIS ROUTINE USES THE GRAPH-
ICS PRINT ROUTINE FROM ROM.

02880

02890

02900 PRINT CLRA

02910 TFR ADP

02020 LDA Y+ GETA
CHARACTER FROM MESSAGE

02830 BEQ PRTS

02940 PSHS XY

02950 SUBA #$S20 INDEX REG.A
TO ASCII SET, SUB. SPACE

02960 DB #8 8 LINES PER
CHARACTER

02970 MUL

029860 LEAY DU POINT TO
CHARACTER IN GRAPHICS SET

02980 LD8 #%01010101

03000 STB $85

03010 LDB #8 8 BYTES PER
CHARACTER

03020 LPLOOP LDA Y+ GET
PIXELS

03030 PSHS B

03040 JSR $FO1A USE COCO3

HIGH RES. GRAPHICS PRINT TEXT

03050 LEAX 30X MOVE
SCREEN POINTER TO NEXT LINE
03060 PULS B

03070 DECB UPDATE
COUNTER

03080 BNE LPLOOP

03080 PULS XY

03100 LEAX 2X MOVE RIGHT
ONE SPACE

03110 BRA PRINT

03120 PRTS LDA #3FF

03130 TFR A.DP

03140 RTS

03150

03160 * LABELS FOR THE VU METER
GRAHICS SCREEN

03170

03180 MES1 FCC 1+ 208/
03190 FCB 0

03200 MES2 FCC 1+ o/

03210 FCB 0

03220 MES3 FCC -2

03230 FCB 0

03240 MES4 FCC -4

03250 FCB 0

03260 MESS FCC -1

03270 FCB 0

MES6E FCC 1-46D8/
03290 FCB 0

03300 MES7 FCC /8-8IT VU
METER/

03310 FCB 0

03320 MES8 FCC / by R.Gaul/
03330 FCB 0

03340 MES9 FCC MTrim volumet!/
0330 FCB 0

03360

03370

03380 MONITR LBSR SETUP
03380 MMLUP SYNC -

03400 LDB ADCRED READ THE
ADC

03410 LDA GFIRQ CLEAR THE
FIRQ

03420 ANDB BITS BITS SET BY
BASIC DRIVER

03430 STD ADCTRG TRIGGER ADC,
SEND VALUE TO DAC

03440 ANDB #%11111100

03450 STB $FF20

03460 LDB KYJS TESTKEY-
BOARD FOR SPACEBAR

03470 BITB #8

03480 LBEQ RECXIT

03400 B8 #%01000000

SHIFT KEYS

03500 BNE MMLUP

03510 KLOOP LoB KYJS
DEBOUNCE THE SHIFT KEYS

03520 BITB #%01000000

03530 BEQ KLOOP

03540 COM $530

03550 LDA $FFO3

03560 EORA #8 TOGGLE
BETWEEN COCO DAC AND ORC-80 PAK
03570 STA $FFO3

03580 BRA MMLUP

03560

03600 END

00100 * DISKIO: INCLUDE FILE FOR DIGIT, 8
BIT DAC

00110

00120 BUFFRO SET $7012
00130 BUFFRL SET $7013
00140 BUFFR1 SET $4000
00150 EBUFR1 SET $6000
00160 MMSLOT SET $FFA2
00170 DSKCON SET $C004
00180 CLKFLG SET $TIFF

00190

00200 ORG $7400

00210 SAVE PSHS CC SAVE
INTERRUPT SETTINGS

00220 ORCC #$50 KILLINTER-
RUPTS

00230 TST CLKFLGPCR TEST
COCO CLOCK SPEED AT START OF PRGM
00240 BEQ AQ@ DON'T SPEED
UP CLOCK IF SYSTEM CAN'T HACK IT
00250 STA $FFD9

00260 AQ DA

WRITE COMMAND

00270 LDB $7014 GET DRIVE
NUMBER

00280 STD SEA TELL DSKCON
00200 CLRB

00300 STB $EC STARTAT
TRACKO

00310 INCB

00320 STB $ED STARTAT
SECTOR 1

00330 LDA BUFFRO GET START-
ING MMU BLOCK #

00340 STA MMSLOT

00350 BQ DX #32
TRANSFER 32 SECTORS

00360 LDY #BUFFR1

00370 STY S$EE TELL DSKCON
WHERE TO READ DATA

00380 C@ JSR [DSKCON]
00360 TST $FO ANY ERRORS?
00400 BNE SAVXIT YES?, THEN
QuIT

00410 BSR TSUDAT UPDATE
POINTERS

00420 INC SEE

00430 LEAX -1X

00440 BNE C@

00450 LDA MMSLOT RESET THE
DATA MMU BLOCK

00460 ANDA #$3F

00470 INCA

00480 STA MMSLOT

00460 CMPA BUFFRL

00500 BNE BQ@

00510SAVXIT LDD #33A00

00520 STA MMSLOT RESET TO
SYSTEM MMU BLOCK

00530 TST CLKFLGPCR

00540 BNE D@

00550 STA S$FFD8

00560 D@ STB $FF40 STOP
DISK DRIVE

00570 PULS CC,PC

00680

00500 TSUDAT INC SED UP-
DATE DISK SECTOR

00800 LDA S$ED

00810 CMPA #19 INTO THE
NEXT TRACK?

00620 BNE AQ@

00830 LDA # YES?, THEN
RESET SECTOR NUMBER

00840 STA $ED

00650 INC $EC INCREASE
TRACK #

00860 LDA $EC

00670 CMPA #40 END OF 40
TRACK DISK?

00880 BNE AQ

00880 CLR $EC RESET TRACK#
00700 LDA $EB AT ENDOF
DRIVE SEQUENCE?

00710 BMI D@

the worid of 68’ micros page 9

00720 BNE B@
00730 LDA $7015 GET SECOND
DRIVE NUMBER
00740 BRA C@
00750 B@ LDA $7016 GET
“RD DRIVE NUMBER
.60CQ@ STA $EB
00770 A@ RTS RE-
TURN FROM UPDATES
00780 D@ LEAS 25 FIN-
ISHED SO RETURN TO MAIN PROGRAM
00790 BRA SAVXIT
00800
00810 ORG $§74B0
00820
00830 READ PSHS CC
00840 ORCC #8350
00850 TST CLKFLG,PCR
00860 BEQ A@
00870 STA SFFD®
00880 AQ LDA #2
00890 LDB $7014
00900 STD S$EA
00910 CLRB
00920 STB $EC
00830 INCB
00040 STB $ED
00850 LDA BUFFRO
00060 STA MMSLOT
00670 B@ LDY #BUFFR1
00980 LDX #32
00990 STY SEE
01000 C@ JSR [DSKCON]
01010 TST $FO
01020 LBNE SAVXIT
01030 LBSR TSUDAT
~040 INC SEE
¥0 LEAX -1X
vi060 BNE C@
01070 LDA MMSLOT
01080 ANDA #83F
01080 INCA
01100 STA MMSLOT
01110 CMPA BUFFRL
01120 BNE B@
01130 LBRA SAVXIT

10 FORI=0TO2READDR:POKE &H7014+,

DR: NEXT:GOTO70

20DATA 0,2,255

30 WIDTH32PRINTYOU MUST EDIT LINE 1

TO INDICATEYOUR DRIVE SYSTEM. IF YOU

HAVE DOUBLE SIDED DRIVES, THE FIRST

TWO NUMBERS MUST BE THOSE FOR

THE FRONT AND BACK SIDES OF THE

PRIMARY DRIVE."

40 PRINT"IF YOU HAVE SINGLE SIDED

DRIVES, INDICATE WHICH DRIVES SHOULD

BE USED””

50 PRINT"EX.1 SINGLE DRIVE, SINGLE

SIDED":PRINT"DATA 1,-1,-1"

60 PRINT"EX.2 TWO DRIVES, DOUBLE

SIDED":PRINT"DATA 0,2,1:END

70 PCLEARS:LOADM DACTMRJ™: POKE

&HFF40,0

80 CLOCK=&H700C:RECORD=&H7000:

PLAYBACK=&H7003:LEVEL=&H7008: DSAVE

28 H7400:DREAD=&H74B0: MONITOR=
H7009: P=1:EXEC CLOCK

L BB=8:FREQUENCY=&H700F :BITS=

&H7011: POKE FREQUENCY,0:POKE

FREQUENCY+1,171:POKE BITS, 255"

DEFAULTS ARE 20KHZ AND 8 BITS

100 TMR=2.571428571:DEF FNF1(X()= 20833°

page 10 the workd of 68’ micros

(PEEK(&H7013)-PEEK(&H7012)VTMR/RATE
110 DEF FNF2(X)=INT(20833*(53-PEEK
(&H7012)YTMR/RATE+.5)

120 GOSUB410

130 POKEG5467,0:WIDTH32:ONBRK
GOTO500

140 PALETTE12,63:PALETTE13,0: PAL-
ETTE4, 63:PALETTES,00:PALETTES,11:
PALETTE7,38

150 CLS:PRINTTAB(3)"COCO3 512K AUDIO
DIGITIZER":PRINTTAB(10)"BY R.GAULT"
160 PRINTTAB(6)"SELECT YOUR FUNC-
TION®

170 PRINT:PRINTTAB(10)"(R)ECORD":
PRINTTAB(10)"(P)LAYBACK™:PRINTTAB(10)
"(S)ET LEVELS

180 PRINTTAB(10)*(L)OOP PLAY"

190 PRINTTAB(S)"(M)ONITOR®; TAB(18) *(D)
ISK vO”

200 PRINTTAB(10)"(H)ARDWARE ADJUST™:
PRINTTAB(13)"BITS, FREQUENCY"

210 PRINTTAB(13)"MMU BLOCKS"®

220 PRINTTAB(10)"(QUIT”

230 PRINT:PRINTTAB(3)"SPACEBAR TO KILL
FUNCTION®

240 GOSUBBOO:A=INSTR(1,"RPSLQDMH",
A$):ONA+1 GOTO 240,250,260,270,420, 500,
700,460,300

250 CLS:GOSUB410:PRINTTAB(S) "RE-
CORDING IN PROGRESS....": PRINT. PRINT
TAB (5)" USING";BB; "BITS AT",RATE;"HZ.".
EXEC RECORD:GOTO130

260 GOSUB410:GOSUBS80:EXEC PLAY-
BACK: GOTO130 -

270CLS

280 PRINT:PRINT"LEVEL CHECK":
GOSUBS10: EXEC LEVEL.RGB

280 GOTO130

300 CLS:GOSUB410:PRINT"CURRENT
VALUES:":PRINTRATE;"HZ SAMPLING
RATE":PRINTBB;"BITS PER SAMPLE":
PRINTCB;"/,CL-1"FIRSTAAST MMU
BLOCKC:PRINTUSING 'HL.#F ,CR;:PRINT"
SEC. SOUND SAMPLE’

310 PRINT.:PRINT"SELECT (F)REQ.”PRINT
TAB(7)"(B)ITS":PRINTTAB(7)"(M)MU
BLOCKS®

320 GOSUBB0O:A=INSTR(1,"FBM “,AS). ONA
+1 GOTO 320,360,330,610,130

330 PRINT:PRINT"ENTER NEW VALUE OF
BITS PER*:PRINT"SAMPLE (1-8)°

340 GOSUBG00:BB=VAL(AS).IFBB<1 OR
BB>8 THEN340

350 POKE BITS,256-24(8-88):GOTO300

360 PRINT:PRINT"ENTER NEW SAMPLING
RATE™:INPUT"(5000-20,000 HZ)",RATE.:
IFRATE=0THENGOTO300

370 IFRATE <5000 THENRATE=5000

380 IFRATE>20833THENRATE=20833

300 RATE=INT(3579545/RATE +.5)

400 AF=INT(RATE/256):BF=RATE-

256°AF :POKE FREQUENCYAF:POKE
FREQUENCY+1,BF.GOTO300

410 RATE=INT(3579545/(256°PEEK
(FREQUENCY)+PEEK(FREQUENCY+1))
+.5):CR=FNF1(X):CB=PEEK(&H7012):CL=
PEEK(&H7013):RETURN

420 ONBRKGOTO130:GOSUBS80

430 PRINT:PRINTTAB(S)"SPACEBAR TO
RESTART"

440 PRINTTAB(5)"SPACEBAR+BREAK FOR
MENU”

450 EXEC PLYBACK:.GOTO450

460 CLS:PRINTTAB(10)"SOUND

MONITOR":PRINT
470 GOSUB410:PRINTTAB(0)"CURRENTLY
USING";BB,"BITS,",RATE;"HZ"

480 PRINT:PRINT.PRINT"SHIFT KEYS
TOGGLE BETWEEN THE COCO DAC AND
THE ORC-80 PAKC":PRINT"SET HARDWARE
TO 6 BITS FOR
TRUE":PRINT"COMPARISON®

460 EXEC MONITOR:GOTO130

500 RGB:WIDTHB0:END

510 PMODE3,5:PCLS1:SCREEN1,1
520 LINE(116,50)(118,50),PSET

530 LINE(116,50)«(118,76),PSET

540 COLOR2,0

550 LINE(116,76)<(116,178),PSET
560 FORY=75.6TO178STEP25.6

570 LINE(116,Y)<(118,Y),PSET:NEXT
580 RETURN

580 CLS:PRINTTAB(S)"PLAYBACK IN
PROGRESS..

\BBBITS
AT";RATE;"HZ"RETURN
600 A$=INKEYS$:IFA$="THENGOOELSE
RETURN
610 PRINT"<ENTER> RETAINS CURRENT
VALUE"
620 INPUT"ENTER STARTING BLOCK #;
MAX =53
*AS:IFAS="THENGSOELSEBL=VAL(AS)
630 IFBL>S3THENPRINT"INVALID MMU
NUMBER":GOTO300
640 POKE&H7012,8L
650 CR=FNF2(X):PRINT:PRINTENTER
LENGTH OF SOUND SEGMENT IN SEC-
ONDS (MAX.=":CR;:LINEINPUT")
>>"A$:IFA$="THEN300 ELSELG=VAL(AS)
660 IFLG< 6THENLG=.8 ELSEIFLG>CR
THENLG=CR
670 POKE
&HT7013,INT(2.571238571°L G+ 5)+BL.GOTO300
700 POKEG5496,0:CLS:PRINTTAB(10)"DISK
O":PRINT"SELECT (R)EAD (S)AVE"
710 GOSUBBOO:A=INSTR(1,"RS" A$):ONA+1
GOTO 130,720,730
720 EXEC DREAD:GOTO130
730 EXEC DSAVE:GOTO130

Caveats

The disk /O routines are primative. Data
is dumped directly to disk in a format where
there is no file name and the entire disk is
used for sound data. Make sure that the
disks have been formatted to 40 tracks
(you can use OS-8) and that there is no
valuable data on the disks!

if there are questions, | can be reached
via the magazine or through the internet
at robert gault@worldnet att.net

Happy hackingt!

RS-232 Communications with CoCo 0S-9

Exploring transmission speed problems and lock-ups

Jim Cross

There are numerous factors that
determine how fast a data commu-
nications rate a CoCo can handle.
These include the RS-232 hard-
ware; specific OS-9 modules: ker-
nel, IOMan, clock driver, device
driver; data buffer size; and the
terminal program used. All of these
factors combine to form the sys-
tem limitation on the receiving data
rate for any given CoCo. Since
there are numerous editions of the
modules and programs in circula-
tion, that rate is different for each
differently configured CoCo.

Last Christmas | added a
14.4Kbps modem to my CoCo. |
faced the problem of determining
how fast a receiving data rate my
Coco could keep up with under OS-
9. Trial and error is one approach,
but | found early on that approach
on outside lines is inconclusive.
During heavy net fraffic, my service
provider slowed transmissions so
that the higher data rates seem to
work fine. During lighter periods,
however, I'd lose data while set at
the same rate that had worked last
time.

| decided to try to measure how
long it took my CoCo to process a
received character. My DISTO 4-
N-1 uses a 6551 ACIA which can
only buffer 1 character, the CPU
must read character #n before the
8551 ACIA finishes receiving char-
acter #n+1 or an overflow occurs
and character #n is lost (overwrit-
ten by character #n+1). Note that
this method of measurement only
works if the ACIA is the only de-
vice using the CART/ interrupt sig-
nal during the measurement pe-
riod. Also, be sure no other pro-
gram tasks (except your terminal
program) are running or they might
affect your results.

| connected a 100 Mhz oscillo-
scope to the CART/ interrupt line
coming from the 4-N-1 at pin 8 of

CoCo cartridge interface connec-
tor. Triggering on the CART/ sig-
nal going low (signifying a charac-
ter has just been received), | ob-
served the worst case time delay
until the CART/ signal retumed
high (signifying that the CPU has
read the character from the ACIA).
It's true that events other within the
ACIA besides character_received
can cause an interrupt, but they are
not normally encountered during
data reception. Using my favorite
terminal program (Supercomm), |
logged onto my local provider us-
ing 8-1-None and dumped all of my
email to the CoCo’s screen while
observing the CART/ signal on the
oscilloscope. Saving the data to
disk may take more system time
and thus can increase the worst
case delay. On my system (6809)
running Supercomm under OS-9
(w/ Alan DeKok’s TuneUp): best
case time was approximately 80
usec. = 12,500 cps (125,000 bps)
but worst case time was about
148 msec. = 675cps(6750
bps)

This showed me that uniless |
changed something in my system
to reduce my CoCo’s worst case
response time under OS-9, | could
never reliably receive at rates of
960 cps (9600 bps) or above no
matter how large a receiving buffer
1 had (I currently use 2K buffers for
receive and transmit).

| tried RTS/DTR (CTS rewired)
handshaking using a new RTS cir-
cuit reputed to be from
Sockmaster. This circuit stops data
flow from the modem after every
received character and restarts
flow when the character is read by
the CPU. My PM144MT Il modem
signals the remote modem to stop
flow whenever RTS goes low; | pre-
sume other modems do also. While
the new RTS circuit prevented re-
ceiver overruns, the stop-to-restart

delay between my modem and the
remote modem was 10 msec :
any data rate, that limited my ef-
fective data rate to only 100 cps
(1000 bps) regardless of the ACIA
setting. One step forward, two
steps back.

The CoCo uses Asynchronos
data transmission, the data rate
standards for which define the bit
times within a character, but there
is no limit to the amount of time that
can occur between the end of one
character and the beginning of the
next uniess the software imposes
a timeout. This undefined
intercharacter delay is why the
CoCo can transmit at 19.2 Kbps
but can't receive that fast under
0s-9.

Also, one thing many OS-9 us-
ers may not realize is that if they
are communicating with 7-1-Even
and the parameters xon and xoff
are set to $11 and $13 respective!
in their communications device
descriptor (i.e.— /t2) with most se-
rial device drivers they are using
XON/XOFF flow control. Both pa-
rameters must be set to 00 to dis-
able XON/XOFF flow control. Un-
less one knows what to look for,
the XON/XOFF operation appears
transparent and can hide the limit-
ing effects of too small of a receive
buffer.

if a reader has comments or
speculation on this subject, | can
be reached via intemet at:

ac999@detroit.freenet.org

if you don’t have intemet access,
write the editor and your comments
will be passed along.

the world of 68’ micros psge 11

Embedded programmer
Exploring 68000 architecture

Paul K. McKneely

‘a this article we will explore the ar-

«ecture of the Motorola 68K family
and begin to lay the foundation for a
very powerful operating system. | will
give a short review of its programmer
model and then we’ll discuss the
processor’s powerup process.

Programmer's Model

All members of the 68K family are
modeled after the original 68000. it
came in one of those large 64-pin DIP
(Dual Inline Packages) that took up
a lot of board space. It was quite a
large part compared to the surface
mount 68EC000 made today.

Although the chip only has 18 data
lines and 24 address lines, from the
programmer's point of view, it is a 32-
bit architecture. This was very forward
looking on the part of Motorola be-
cause even at the time they started
to design the chip they did not have
the ability to put that much circuitry
onto one piece of silicon. | remem-

r literature back then said it had
-+,000 transistors. That number was
easy to remember because it was its
name.

There are 8 general-purpose Data
Registers (named DO thru D7) and 8
general-purpose Address Registers
(named AO thru A7). All are 32-bits
in width. Operations on data are per-
formed in the low-order portion of the
Data Registers and can be 8-bits, 16-
bits, or 32-bits in size. The upper por-
tions of the registers are generally not
altered in 8 and 16-bit operations.
When operations store their results
in a Data Register, the flags in the
Status Register (discussed below)
generally reflect the stored value.
This is even true of MOVE operations,
something that makes the 68K differ-
ent from other processors such as the
80X86 where MOVEs don't aiter the
flags. A generalized Data Register is
shown in table 1.

Address registers are generally

ed to contain and manipulate point-
ors. They are also very efficient at
handling signed integers, although
operations that store values into them
usually don't affect the flags. The in-

page 12 the world of 68° micros

figure 1
Data Register

<&

$otetotetatatatatatotattotototttetetatatatetotttotototbotod-t-t

otetobatbatobotatotetetetotetettbotototetetatatdtottetotatotbat
€ 8 bit —

< 32 bit >

16 bit >

figure 2
Address Register

Fototatatatatotatobododotetetatbtotatatototatatbttotototatatatt

Fotototbobetatetototetetatetatodbbatetetetatetattdatattotott-t

< 16 bit >
< 32 bit >
figure 3
Status Register
Fotetotetatatototetatottbobototot
IT S |IPM] |XNZVC|
tobetetatatatetatatetatetetet-t-+

<- System Byte -><- User Byte —>

structions that test and compare ad-
dresses are the exceptions to this
rule. Addresses are either 16-bits
(Short Addresses) or 32-bits (Long
Addresses) in size. 16-bit operations
always affect the whole register be-
cause the high order bit of the Short
Address (bit 15) is aiways propagated
through the upper half of the register.
This is called *“Sign Extension”.

Both kinds of addresses (Short and
Long) point into the same 32-bit ad-
dress space. When you use a Short
Address, you can only reach a total
of 84 KBytes of address space. But
because of the sign extension, it is
divided into two halves. The first 32K
occupies the very beginning of
memory ($00000000 thru
$00007FFF) and the last 32K occu-
pies the very end of memory
($FFFF8000 thru $FFFFFFFF). The
doltar sign indicates base 16 or hexa-
decimal in the Motorola world. Short
Addressing is very efficient and we
will be taking full advantage of it.

The A7 register doubles as the
Stack Pointer and is sometimes re-
ferred to as the SP. All instructions

that implicitly involve the Stack
Pointer make use of A7. There are
actually two A7 registers specifically
referred to as the SSP (Supervisor
Stack Pointer) and USP (User Stack
Pointer). Which one is active de-
pends on the state of the Supervisor
Bit in the Status Register. A general-
ized Address Register is shown in fig-
ure 2. In addition, there is a 16-bit Sta-
tus Register (SR). This is divided into
an 8-bit System Byte and an 8-bit
User Byte. This is diagramed in fig-
ure 3. _

The System Byte contains three el-
ements. Most important is the Su-
pervisor Bit (S bit 13 above). When
set (value is 1), the processor is said
to be in Supervisor Mode. When clear
(value is 0) it is said to be in User
Mode. Supervisor Mode is more pow-
erful because there are a set of Privi-
leged Instructions that can be ex-
ecuted when a program is running in
that mode. The processor will not al-
low these instructions to be executed
when in User Mode. This bit also con-
trols which of the two A7 registers are
active.

28456 SR 2, New Carlisle, IN 46552
219-654-7080 eves & ends MO, Check, COD;, US Funds

ka&ft Shipping included for US, Canada, & Mexico

MM/1 Products (0S-9/68000)
CDF $50.00 - CD-ROM File Manager! Unlock a wealth of files on CD with the MM/1! Read most text and
some graphics from MS-DOS type CDe.

VCDP $50.00 - New Virtual CD Player allows you to play audio CDs on your MM/1! Graphical interface
emulstes a physical CD player. Requires SCSI interface and NEC CD-ROM drive.

KLOCK $20.00 - Optional Cuckoo on the hour and haif hour!! Continuosly displays the digital time and
date on the /term screen or on all open screens. Requires 1/O board, /O cable, sudio cable, and speakers.

WAVES vr 1.5 $30.00 - Now supports 833VX and WAV files. Allows you to save and play all or any part of
a sound file. Merge files or split into pieces. Record, edit, and save files; change playback/record speed.
Convert mono to stareo and vice-versa! Record and play requires /O board, cable, and audio equipment.

MM/1 SOUND CABLE $10.00 - Connects MM/1 sound port to stereo equipment for recording and palyback.

GNOP $5.00 - Award winning version of PONG(tm) exclusively for the MM/1. You'll fo crazytrying to beat
the clock and keep that @#3$%& ball in line! Professional pongists everywhere swear by (at) it! Requires
MM/1, mouse, and lots of patience.

CoCo Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug o’ Power controller back oa the
job with your CoCo3! Control up to 256 modules, 99 events! Compatible with X-10 modules.

HI & LO RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or no adapter at the flick of a
switch! No more plug and unplugging of the joystick!

KEYBOARD CABLE $25.00 - Five foot extender cable for CoCo 2 and 3. Custom lengths available.
MYDOS $15.00 - Customizable, EPROMable DECB enhancement. The comunands and options Tandy left
out! Supports double sided and 40 track drives, 6ms disk access, sct CMP or RGB palettes on power-up,

come up in any screen size, Speech and Sound Cartridge support, point and click mouse directory, and MORE
OPTIONS than you can shake a stick st! Requires CoCo3 and DECB 2.1.

DOMINATION $18.00 - Multi-Player strategy game. Battle other players armies to take cootrol of the
planet. Play on a hi-res map. Become a Planet-Lord today! Requires CoCo3, disk drive, and joystick or

mouse.

4 SMALL GRAFX ETC.)
“Y” and “TRI” cables. Special 40 pin male/female end connectors,
priced EACH CONNECTOR - $6.50
Rainbow 40 wire ribbon cable, per foot - $1.00
Hitachi 63B0O9E CPU and socket - $13.00
MPI Upgrades for all small MPIs (satellite board) - $10.00

Serial to Parallel Convertor with 64K buffer

and external power supply - NOW ONLY §28.00!!!
Serial to Parallel Convertor (no buffer)

and external power supply - ONLY $18.00!!!
2400 baud Hayes compatible external modems - $15.00
Serial to Parallel Convertor or

Modem cable (4 pin to 25 pin) - $5.00

ADD $3.00 S&H FOR FIRST ITEM, $1.00 EACH ADDITIONAL ITEM

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK JET PRINTERS, RIBBONS & vr. 6 EPROM FOR CGP-
220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

Terry Laraway
41 N.W. Doncee Drive
Bremerton, WA 98311

360-692-5374

\

¢ The BlackHawk MM/1b o
° []
EBased on the AT306 board ﬁ'om;
:Kreider Electronics. Features buil’
o into the motherboard include:

[]

[

¢ 16 bit PC/AT I/O bus with five slots
* MC68306 CPU at 16.67TMHz

. 512K to 16MB of RAM with

e 30 pin SIMMs (4 sockets)

« IDE Hard Drive Interface (2 drives) o
< 360K-1.44MB Floppy Drive

$ Interface (2 drives)

¢ Two 16 byte fast serial ports

e (up to 115K baud)

o Bi-directional parallel printer port
 Real-time clock

$ PC/AT keyboard interface

00000 00OGOS

i
3
:
5
:
-
:

e Baby AT size - fits standard PC case o
o BASIC (resembles Microsoft

s BASIC)

*MGR Graphical Windowing Envi-
¢ ronment with full documentation
:“Personal” 0S-9/68000 Vr 3.0

¢ (Industrial with RBF)

< Drivers for Tseng W32i and

s Trident 8900 VGA cards

¢ Drivers for Future Domain 1680 and §
e Adaptec AAH15xx SCSI cards e
¢ 0S-9/68000 Vr 2.4 with Microware ¢
o C 3.2, Assembler, MW Basic (like
$ Basic09), MW Debug, MW Pro- ¢
¢ grammers Toolkit

e UUCP from Bon Billson

o Ghostscript (software PostScript
o interpreter)

$ Many other utilities and tools

Yo0o00000

Prices start at $400!
(motherboard,
Personal OSK, & MGR only)

iBlackHawk

Enterprises, Inc.
56 Gause Blvd. #29

" Slidell, LA 70458
E-mail: nimitz@stolY.com

0000000000000000000000
the world of 68’ micros pege 13

2000000000000 000000000

The next element of the System
Byte is the 3-bit Interrupt Priority Mask
(IPM). This is a very powerful feature
of the 68K that allows the processor

- control which interrupts can occur.

.is 3-bit field can have a value from
0 to 7. Level 7 is the highest priority
and 0 is the lowest. An IPM of a given
value inhibits interrupts of lower or
equal priority from occuring. One ex-
ception to this rule is that level 7 in-
terrupts can always occur because
they are edge-triggered. All other in-
terrupt levels are level-triggered.

The final element in the System
Byte is the Trace Bit (T bit 15 above).
This feature allows the processor to
single-step through a program with-
out having to modify the program’s
instruction stream. This feature is fre-
quently used by debuggers. The Sys-
tem Byte is not accessible from User
Mode.

The User Byte of the Status Regis-
ter contains five flags (X,N,Z,V,C).
These values are accessible from
both Supervisor and User Modes.
The flags are generally modified
when operations are performed on

ata Registers and their values are
used in conditional branches. These
flags are X (eXtend), N (Negative), Z
(Zero), V (oVerflow), and C (Carry).

One final register of great impor-
tance is the Program Counter or PC.
This is a 32-bit register that contains
the address of the next instruction to
be executed. Although this register
is not a general-purpose register, it
identifies the place where the cur-
rently executing instruction resides
and is often used to obtain related
read-only information that is bwilt in
to the program's image. One very
powerful class of addressing modes
in the 68K is Program Relative Ad-
dressing which is very important for
writing Position Independent Code.

Memory organization in the 88K is
what is called Big-Endian. This
means that the high-order byte of
multi-byte values is stored at the first

(lowest) address. Examples of other

Big-Endian processors are the IBM

fainframes and Midrange, Sun
Microsystems SPARC, Zilog 28000,
and the IBM/Motorola PowerPC. Pro-
cessors that order their bytes the
other way (low-order first) are called

page 14 the world of 68° micros

Little-Endian. Some examples of
these are the DEC PDP-11, VAX, and
Alpha, the MIPS R-X0OXX RISC pro-
cessors, and the Intel 80X86. Some
of the more recent RISC processors
can use either format but they all boot
up in their “native modes”.

Each system has its advantages
and disadvantages. The Little-Endian
byte ordering is more natural and logi-
cal but the Big-Endian method places
printed data in an order that those
reading from left to right like to see it
when using the Arabic system for
number representation. When look-
ing at a hex dump of memory data on
an |BM PC, for example, the bytes
appear backwards and you have to
mentally tum them around to under-
stand them. The same hex dump on
a 68K machine appears in the cor-
rect order. It was after my trip to Is-
rael and Egypt last year that | real-
ized that Arabs and Israelis probably
prefer Little-Endian byte ordering.
Even though we represent numbers
in the same way, we read them in the
opposite order because Arabic and
Hebrew is read from right to left!

The Powerup Process

.One of the most interesting sub-
jects to me is the sequence of events
that happens when the 68000 first
comes up after either power on or re-
set. The original 68000 requires the
Reset pin to be held low for a mini-
mum of 100 milliseconds after power
is applied to the chip. This ensures
that ail of the logic on the chip
stablizes before execution begins.

The 68000 has a 256-entry Excep-
tion Vector Table that begins at loca-
tion $00000000. Each entry is a 4-
byte Long Word. All entries, except
the zeroth one, are program address
pointers. The first two entries are dif-
ferent from the others and are used
just after powerup.

When the processor first comes
alive, the Supervisor Bit is set. The
first thing that it does is to fetch the
first long word from location 0 thru 3
and piace it into the SSP (also called
the ISP for Interrupt Stack Pointer).
In the 68000, this requires two bus
cycles because the Data Bus can
only fetch two bytes at a time.

Next, the processor fetches the

second long word from location 4 thru
7 and places it into the PC. This is
the Reset Vector. All of the other 254
Exception Vectors are used after the
processor is up and running.

But there's another important rea-
son why these two long words are dif-
ferent from the others. A typical com-
puter contains two kinds of memory:
ROM and RAM. ROM is Read Only
Memory and is generally non-volatile.
RAM is Random Access Memory and
is generally volatile.

When power is first applied to the
system, the very first memory that is
fetched must come from ROM be-
cause power has been off and RAM
is in an unknown and uninitialized
state. The first long word to be fetched
becomes the working Stack Pointer
value and should come from ROM.
The second is loaded into the PC and
it must point somewhere into ROM,
generally the same ROM it was stored
in. The rest of the Exception Table
can also point into ROM and often
does in embedded systems because
all program addresses are frequently
pre-determined and burned into a
ROM. But general purpose systems
need to have the rest of the Excep-
tion Vectors stored in RAM because
vector addresses are often not known
until run time, especially when using
loadable device drivers.

This gives us a choice to make: If
all Exception Handlers are known and
fixed when the system is designed
and built, the Boot ROM can be per-
manently mapped beginning at loca-
tion 0. This makes it simpie but in-
flexible. If even one Exception Han-
dler has to be determined after boot
time, then the table has to be stored
in RAM. This means that RAM should
be mapped beginning at location 0.
In this case we have a problem: The
first two long words must come from
ROM.

There are at least three ways to
solve this problem. Some system de-
signers simply force the first two Long
Words to map to the first eight bytes
of the boot ROM. If RAM normally
starts at zero this makes the first eight
bytes of RAM inaccessible. But this
is a small sacrifice.

Another approach takes advantage
of the fact that the first four accesses

after reset are known to be fetches
for the ISP and PC values. This can
also be done by simply Shadow Map-
ping the boot ROM to location 0 for
the first four bus cycles. A reset cir-
cuit temporarily disables the normal
address decoding logic during the
first four accesses.

Another common approach is to
use the three Function Code pins on
the chip. During each access, the
chip identifies the cycle as either Pro-
gram Space or Data Space. The
fetches of the first two long words at
reset are identified by the processor
as being program accesses. Fetches
for any of the other vectors in the
Exception Vector Table (during ex-
ception processing) are identified as
being in Data Space. After this reset

process, RAM should appear begin-
ning at location 0 while ROM is some-

where in high memory.

After the first two long words have
been loaded into the ISP and the PC,
normal processing begins and the
very first instruction is executed. Itis
a real thrill to write this very first in-
struction. After doing it you feel like
a real embedded programmer. Now
let's write some startup code:

;<<<<<<<<<<<<<<<<<<<<<<<<<

Boot ROM Image Code
DSODIIIDIIDIDDIDIDIDIDIDDISIDIDI>D>

SECTION boot
Reset_ISP: DC.L ROM_Size
Reset PC: DC.L Boot

Pin64

‘Boot Parameters
Param1: DC.W $4000 ;inter-
rupt Stack Location

;:Reset execution begins here

Boot: MOVE.W
(Param1,PC),A7
OR #80700,SR

In the above example, Reset_ISP
is a symbol that is linked to the very
first byte in the Boot ROM. Earlier |
said that the long word stored begin-
ning at this location is loaded into the
ISP at Reset. But what is stored there
is a value called ROM_Size.

Why am | doing this? Actuaily, |
can load a new ISP value later on any
time | want to. As long as | don't call
a subroutine or do anything else that
uses the stack pointer, it doesn't mat-
ter at all that the value was loaded
into the ISP before the processor
started to run.

| always use these first four bytes
to record the number of bytes used
in the Boot ROM. This is'so that | can
easily tell how long the Boot image is
that is stored in the Boot ROM. | will
explain why | do this later when | ex-
plain how the PREBOOT process
works.

Anyway, after these two values are
loaded, program execution begins at
the location labeled Boot. Here is my
very first instruction. This instruction
loads a new ISP value. But | am load-
ing it from an earlier place in the Boot
ROM using Program Relative Ad-
dressing. This makes this instruction
Position Independent. Also notice
that | am loading a 32-bit Address

Register with a 16-bit Short Address.
This instruction loads the 32-bit
Signed Extended value of $00004000
into the ISP.

The first instruction labeled Boot
can be located anywhere in 32-bi.
address space. | like to reserve the
first several byte locations in the Boot
ROM to store pre-determined Boot
Parameters. Since the program ex-
ecution sequence can take many in-
structions of indeterminate length, |
have the Reset Vector point past this
table of Boot Parameters. Now look-
ing at the ROM with either a software
or hardware tool, | can easily view and
even change them.

We'll find out later why the Boot Im-
age that is stored in the Boot ROM
can actually be a changable image
in RAM or on disk. It will become ap-
parent why we keep the Boot Param-
eters handy up at the front of the Boot
Image.

In the next article we'll take a
deeper look at the advanced 68K in-
terrupt structure. If you have any com-
ments or requests, please feel free
to write me at either
<gecko@onramp.net> or at the ad-
dress given below:

Paul K. McKneely
technoVenture, Inc.

P. O. Box 5641

Pasadena, Texas 77508-5641

Pin33

D8 DS D7 D8 DO D10 D11 D12 D13 D14 D18 GND A23 A22 A21 VCC A20 A19 A18 A17 A16 A18 Al4 A13 A12 A11 A0 A9 AB AT A8 AS

ooooooooooooonoonoooooonoooonoona

ORIGINAL MOTOROLA 68000
PROCESSOR, 64 PIN DIP
o
guogudguygodguguogduguogdguoooygQg
D4 O3 D2 D1 DO AS UDS LDS RW DTAK BG BGAKBR VCC CLKGND HALTRE VMA E VPA
Pin1

the world of 68° micros page 15

«89 Jo preom oy,

)
1 So40nU

~a1Indwo)) 10j0) Apus] 3q)

suoddns fus y8y) Juizedsw Ajuo Ay}
0) IQLIISQNS 0) SPUILL} INnoL Jo9)

Announcing Nitro Level II!

How many times have you been un-
able to load a driver due to not enough
system RAM? How would you like to
' e up to 32K of system RAM avail-
. .¢? How is this possible?

In effect, Nitro Level III tumns the sys-
tem into a Kernel only process, with
48K or RAM, and 2 IO processes (RBF
and SCF), each with 16K of RAM. This
is similar to Grfidrv having it’s own 64k
memory area.

The kernel process contains the mini-
mum modules to run an OS-9 system,
and also the descriptors. The RBF/SCF
processes contain the I0 modules, and
the 10 buffers.

There are 2 big benefits here:

1 - Both RBF and SCF are not in sys-
tem memory at the same time, so you
save RAM.

2 - You don’t have 16K of SCF or
RBF modules, so everything up to 16K
can be used as device data storage (sec-
tor buffers, etc.)

Level III works only with Nitro (all
versions). It can be purchased from
~*RNA Systems alone ($20) or with
. latest version of Nitro ($45 for Ni-
tro v2.00 and Level III). See the
FARNA ad in this issue for ordering
information.

page 16 the world of 68’ micros

What Happened to Burke & Burke?
Chris Burke

You may also send e-mai to:
tonypodraza@juno.com
for additional information.
Registrations fees shouid be sent to:
Serotonin Software
P.O. Box 1045
Woodinville, WA 98072-1045

Burke & Burke is no longer in business,
but Trisha and | are still together and liv-
ing in Washington state. | still develop
custom entertainment products (but not for
the Color Computer) through my new ven-
ture, Serotonin Software.

You can see some of my handiwork in
the Super Nintendo (SNES) version of
Sinistar, one of the five classic arcade
games hand transiated from the original
6808 code on the Wililams Arcade Great-
est Hits cartridge from Wiliams Entertain-
ment and Digital Eclipse Software.

Orders for shareware WILL NOT BE
PROCESSED at the Serotonin addrees!!

Burke & Burke shareware pricing:

| can't provide technical support for old Daggorpatch $5
Burke & Burke products, but | still have ZClock $5
some inventory and own the distribution Worid Class Chess $5
rights for all but a few. SCSI-512 $5

In honor of the 1987 Chicago CoCoFest,
I've re-released several familiar Burke &

(this is by B&B, NOT the
Matt Thompson Software!)

Burke products as shareware. Also, never EzGen $5
before available, you'll find the source code Pertascii $5
and schematics for the popular CoCoXT Wid & MV $5
and CoCoXT-RTC hard disk interfaces. XT-ROM $10

The shareware disks include text versions (code only, not burned in ROM)
of the manuais to make distribution easier. File Recovery System $10
If you value these products, even after so RSB $15
many years, you can send the shareware File System Repack $15
fee to me at Serotonin Software. Glenside PowerBoost $15
Color Computer Club will handle distribu- CoCoXT Source Code $20
tion. EzGen Source Code $20
Pertasci Source Code
Send requests for disks along with $3
shipping and handiing to:
B&B Software
c/o Glenside Color Computer Club
119 Adobe Circle
Carpentersvile, IL 60110-1101

SOURCES!

| would really like to run this as a regular column. What | am looking for is
sources for hard to find and bargain items for CoCo, 68K, and general com-
puter use. If you find a treasure trove of good, inexpensive parts, let me knowl

5.25" 360K and 3.5" 720K Double Density Disks

These are getting harder to find locally! Radio Shack has them, but at a hefty
price of $10 per box! These guys have 5.25" double sided, double density disks
(also used in single sided drives) at $8.00 per 100 relabeled (used but tested
good), or $8.50 for 50 new. 3.5" 720K disks are $12.50 for 50 or $24 for 100 (all
new). These are UNFORMATTED prices. They can be purchased for a few
dollars more preformatted for IBM compatibles. Call for prices on 1.4M disks.

Media Source Orders: 800-241-8857
2197 Canton Rd. FAX: 770-919-9228
Suite 210 Bus Phone: 770-918-0059

Marietta, GA 30068
Contributed by James H. Kirby <jkirby@mail.oeonline.com>

E-Mail sales@mediasource.com

Easy Disk Drive with Case
Convert an old IBM extemnal drive for CoCo use!

Roger Merchberger

This is a short article about modifying
an IBM extemnal 5.25" 360K floppy drive
to use it with your Tandy Color Computer
(any model). These drives are extremely
well built (read: tanks), are of very high
quality. Like everything else IBM, when
the drives debuted, I'm sure they were
extremely expensive as well, but now they
can be found for quite a reasonable price.

if you get a complete drive (cable and
afl) the first thing you might think is that
IBM went non-standard al the way, like
usual. That's only haif-true. IBM chose a
37-pin d-sub connector for the cable so
they could easily supply all the necessary
signals with an ample supply of ground
lines (haif the ines on a 44 pin connector
are grounds). Many laptops still use this
connector for external floppy drives.

The dimensions of this drive are 16"
deep by 9" wide by 2.5 inches deep, and
one would think they’'re made of armor
plate due to the weight. The weight
comes from the total RFI metal shielding
around the power supply and floppy drive,
and a rather high-capacity power supply,
as well. The 3.5" 720K model is similar,
but smaller. There may be some other
differences between the 5.25" and 3.5°
drives.

Here are the step-by-step instructions
to modify the drive:

Step 1: Disassemble the case. You will
find 8 screws in the bottom of the case,
6 of which are standard phillips, and the
other two appear to be Torx screws, but
with a post in the middie of the hole. Your
best bet (and what | did) is to bend the
post out of the way, jam a regular screw-
driver that you wouldn't mind to get
screwed up into two of the six points of
the star that fit the best around the bent
post, and don't bother to put them back
in. This was, of course, before | owned a
Dremel tool, and one could grind the post
out and use a Torx driver, but that sounds
too much like work to me. Once these
two goofy screws are out of the way, you
shouldn't find any more nonstandard
screws. Once the case is opened, you
need to remove the shielding from both
the power supply and the floppy drive, to
remove the nonstandard cable.

Step 2. Once the cable is removed, you
need to fit a standard CoCo floppy cable
in the drive. There are several ways to

do this, but I've only fried one. One way
would be to thread a standard CoCo
cable along the same route as the old
one. If this will be your only drive, that
may work. If you wish to have more than
one drive, this most probably will not work.
in this case, you may have to go by Ra-
dio Shack and get a length of 40 con-
ductor ribbon cable and three 40 pin
crimp-on edge card connectors. Crimp
one end on the cable and press it on the
floppy drive. Run it along the path of the
oid cable and out the case. Leave enough
cable to attach your other drive and then
extend to the controller. Crimp a connec-
tor on for the other drive and on the end
for the controfler. You can use two of the
IBM drives by running a double length of
cable in the second drive. | have seen
drives run with three to four feet of rib-
bon cable with no problems.

What | did was this: When looking at
the top front of the drive, measure 11"
back and 2" in from the left, and cut a
hole 2" wide and .75" back in the drive.
That's the size of the hole | made, butbe
sure to make allowances for a little extra
room if necessary to fit your cable. | cut
this hole drilling holes in the comers, and
using a saber saw to cut the holes. A
Dremel tool with a cutting biade would
be ideal for this job. The hole should be
very near the floppy cable connector and
directly behind the rear EF| shield for the
floppy.

Here comes the fun part: you need to
make a custom cable from standard IBM
parts. Remember, all standard floppy
cables have 34 pins. Go purchase an IBM

floppy cable that's designed to add an
extra floppy port for attaching a floppy-
based tape drive. This cable usually has
three connectors, but only two are nec-
essary: one is a MALE pin connector, and
a standard older card edge connector.
Also purchase one of those little 3.5"
floppy adapters that change from a pin
connector to the older card edge connec-
tor.

Fit the floppy cable card-edge connec-
tor through the hole, and in the shielding
onto the floppy connector. Then carefully
cable (be careful not to cut the ribbon
cable... the metal is not extremely sharp,
but it can cut the insulation if you're not

gentle...) then put the case back on. Puv
the 3.5" to 5.25" floppy connector in the
male pin connector, and fit this into one
of the connectors on your standard Tandy
cable.

What this does is give you a “base”
floppy, that a FD-500, FD-501 or FD-502
sits on top of quite nicely. If you have two
drives in your FD-50x, you'll need to crimp
on one more connector to the cable, to
make the extra spot for the IBM cable.
This also means you need to split the
outer casing on the cable if you have a
round floppy cable so you can attach an
extra connector. The round cable has a
fiat ribbon cable rolled up inside and some
extra shielding. You can easily spiit the
case far enough back to fit an extra con-
nector to fit the IBM cable up from the
1BM drive.

One last thing: It is best to leave the
terminating resistor on the IBM drive, as
itis the least accessible drive of the pack.
Make it the last drive on the floppy chain.
This also insures that you have a com-
patible 5.25 floppy available for trans-
ferring that old software, and now you car
modify your FD-50x for one or two 3.5
72K floppies for OS-9!

The floppy article in the July/August
1996 issue said that the FD-502 power
supply is a kitle weak. | have had the stan-
dard Drive 0 and a 1.4Meg 3.5" floppy
(jumpered for 720K only operation) run-
ning without the fan with no problems for
over 3 years now. The 3.5" drives take
much less power, and run just fine!

Atthe time of this writing, the IBM cases
(without floppy) were for sale at B.G. Mi-
cro for $10.00. Add $10.00 for a floppy,
and some hardware hacking, and voila!
A wonderful floppy drive for your CoCo.

If anyone has questions about this
modification, or anything eise that | might
be able to help you with, feel free to e-
mail me at my Internet address:
zmerch@ northemway.net.

the world of 68’ micros page 17

Year 2000...

Are you ready, and is your CoCo?

Robert Gault

Just in case you have been off on a

asert island, when the year 2000 rolls
around all hell will break loose in computer
land. Why is that? Most computer systems
and software store only the last two digits
of ayear in the date information. On Janu-
ary 1, 2000 your computer may represent
the date as Jan. 1, 1900. Some systems
wil not give the wrong date. They will lock
up and cease to function!

The Gartner Group, Inc., an information
technology research firm, has estimated
that it will cost between $300 bilion to $600
bilion to correct the Year 2000 problem
woridwide1. Every program that uses a six
digit ASCIi date field (mm/ddlyy) must be
searched for each occurrence of the field
and patched. Cost estimates vary, but to
correct source code, $1.10 per line is typi-
cal.

Many senior executives are unaware of
the problem. Many others don't understand
it or don't believe it to be serious. Worse
stil, many Information Support engineers
when asked say, “It's no problem for me, |
intend to retire in 1999.° If you think this is
sily, consider this. Your new car five year
warranty, which you just bought, may al-
-eady have expired; 1996+5=

,D1801=1801 on a typical system. Think
of your bank accounts, stock holdings,

social security— all managed by computer
systems.

Where do you stand with your Coco? if
you have never gone pest Disk Extended
Basic you may be in good shape. | say
may, because Disk Basic does not date
disk files. Are you using any programs
which incorporate dates? Better check
them.

if you have moved up to OS-9, you will
have problems. Just how bad they will be
depends whether you use your Coco for
fun or business. Let's see where OS-9
makes use of dates.

Each disk used in OS-9 has a crestion
date stored in logical sector zero (LSNO)
in five bytes; y:m:d:h:m. That means there
is only enough room for the last two digits
of the year. Each file descriptor contains
two dates, creation and last modification;
again using five bytes. s this cosmetic, or
will RBF (random block file manager)
choke on a file which has a modification
date of 00 with a creation date of 967

At the command level Date and Setime
will not work correctly as the system does
not leave enough room on the system di-
rect page. There is only one byte for the
year. A friend of mine has decided to patch
Date to replace the hard coded “19" with
*20.” He intends to switch to the new Date

after the year 2000 but is that enough?
The command “dir e" will let you access
your filee' creation dates but only displays
two digits for the year. Suppoee you need
to sort your files by date, what then?

Any software that makes use of dates
in OS-8 can be no better than the system.
Do you use any software that automati-
cally inserts the current date? Will your
SmartWatch(r) or other hardware clock
save you? No, it won't — it probably does
not yield four digit years (the SmartWatch
does not) and if it did, OS-9 can't use the
information. Something to think about, isn't
it?

For the experimenter, Date can be
patched by looking for the data string,
$31B89. This should be changed to $3280
and the CRC updated to make Date work
correctly after 1/1/2000. The stock version
of Date has 18" located at the front of the
module along with other ASCIl data.

For more information, check out this
internet web site:

http://www.gartner.com/aboutgg/
pressrel/pry2000.htmi

| can be reached in care
of this magazine or via
internet at

robert gaut@

worldnet.att.com

Disk EDTASM Modification
Modify Edtasm to display on 40 or 80 column screens

Here is a BASIC program that patches
the original EDTASM floppy to work on 40/
80 column screens. After patching, you'l
need to put the CoCo into the 40/80 col-
umn screen, BEFORE running the
*DOS.BAS" program on your EDTASM
disk. A tiny one-finer called ‘E.BAS" sets
the screen width and palettes to your own
personal preferences, then rune DOS.BAS.
The program E.BAS looks like this:

10 WIDTH80:PALETTEQ,0:PALETTE
8,63: ATTR 0,0:.CLS1:RUN'DOS.BAS®

This sets 80 column, white text on black
background, and runs DOS.BAS, listed
below:

10 A$=3DHEXS(PEEK(8HOFFFE))+
AEXS(PEEK(&HFFFF))

20 IF A$<>"8C1B" THEN
CLS:PRINT'PATCH ONLY FOR COCO
I*:END

page 18 the world of 68’ micros

30 POKE &H9692,17=7F

40 PCLEAR 18

50 POKE &H9692,9

60 PALETTE 12,63

70 PALETTE 13,0

80 WIDTH 32:CLS:VERIFY ON

90 IF FREE(PEEK(&H85A))<7 THEN
PRINT'DISK IS TOO FULL"END
100 PRINT"PATCHES FOR EDTASM TO
RUN®

110 PRINT

120 PRINT

130 PRINT'INSERT COPY OF
EDTASM®

140 PRINT"PRESS ENTER WHEN
READY"

150 A$=3DINKEYS:IF A$<>CHR$(13)
THEN 150

160 PRINT"LOADING EDTASM®
170 RENAME"EDTASM.BIN" TO
EDTASM.OLD

180 LOADM™EDTASM.OLD"

190 PRINT'PATCHING...

200 READ ADS$,DTS
210 IF AD$=3D"END" THEN 240

220 POKE
VAL("&H"+ADS),VAL("&H"+DT$)

230 GOTO 200

240 PRINT"SAVING...”

250 SAVEMEDTASM.BIN",&H1600,
&H4A7F, &H1600

260 PRINT'DONE."

270 PCLEAR 4.CLEAR
200,&8H7FFF:NEW

280 DATA 1617,84,1643,31,1D18,7F,
1D18,FF

290 DATA 1D1ADE,1D18B,6E,1D1C,9F,
1D1D,FF

300 DATA 1D1E,FE,1D1F,12,1D20,12,
1D21,12

310 DATA 1022,12,1D23,12,1D3F,BD,
1D40A1,1D41,81,1D42,12,107A,10,2388,31
320 DATA END,END

CoCo3 Extended Memory Secrets Part 2

Practical use of CoCo3 Video

Herbert Enzman

introduction

in PART 2 of this series, |'l cover the prac-
tical use of COCO 3 video. As in PART 1,
some of this information might be know by
you, but not to others, so some basics first.
We will cover mostly the 80 column screen,
with attributes. The NON-atiribute screen will
be covered in PART 3.

Screen Memory Useage

Super ECB (SECB) has reserved block
$36 for use of the screen memory, and maps
itinto $FFA1 ($2000 - $3FFF) when it needs
to display the screen. In the attribute mode,
each screen LINE uses 160 bytes (80 for
characters and 80 for attributes). Since there
are normally 24 lines per screen, then 160 X
24 = 3840 bytes used by the screen. Since
each BLOCK is 8K in size, you can see that
less than half of block $36 is used for the
screen.

The screen runs from $2000 - $2EFF, with
$2F00 - $3FFF unused by SECB (how to use
that area later). When writing DIRECTLY to
the 80 column screen, you must remember
to send characters to the EVEN address and
the attribute byte to the ODD address, or
some very strange results will occur. SECB
takes care of this for you when you use it's
*character out” routine, butnow itis up to you.
TABLE 5 is a quick reference for which HEX
digit is ODD and which is EVEN.

$FFBO - $FFBF are used for the palette
registers. SFFBO - SFFB7 are reserved for
BACKGROUND colors, and $FFB8 - $SFFBF
are reserved for the FOREGROUND colors.
You can set-up each register with any color
(from $00 thru $3F) that you like.

SECB keeps 3 tables in memory for the
palette registers, as shown by TABLE 7. The
SECB MAIN table is used to reset the palette
registers on a hardware RESET, so i you
don't want the colors to change upon RESET,
you should also set the colors of your choice
in that table also. The other two tables are
used for cold start or the commands ‘CMP’
or 'RGB', they are the ‘default’ tables.

DISK EDTASM uses $FFB8 for it's fore-
ground and $FFBO for it's background; E/A
6309 uses $FFB8S for foreground and $FFB4
for background. Go ahead and use Z-BUG
to change these registers for the colors of
your choice. Standard DISK EDTASM users
will want to set up an 80 column screen (list-
ing 2 from part 1) first.

Attributes...

Now it is time to cover the ATTRIBUTE
byte. TABLE 6 shows i's format. To help keep
down confusion when caiculating the value of
the attribute byte, | recommend thie format:
XX XK XOK. Start with bit 7 first and work
your way to the right, as in this example: Let's
say you want a yellow character on a black

background that flashes; and The color yel-
low is located in palette register $FFBD and
black in $FFB6. You would first set bit 7 to a
1 for flash (12X)00 XOXX). Since you don't want
underiining, bit 6 is a 0 (10 X0X XXX). Now
you look at TABLE 4 for the foreground color
(yellow is in $SFFBD), find it's BIN code and
insert it into the byte (10 101 XXX). Next
comes the background color (black in
$FFBB), and put it's BIN code into the byte
(10 101 110). Now all you have to do is to
convert it into HEX (1010 1110 = $AE) and
you have the attribute byte that needs to be
sent to the screen with each character.

You don't have to use the same attribute
for each character if you don't want to. You
could change the attribute byte for each char-
acter sent, but that would be quite confusing.
Generally you would want to use the same
byte, at least for the same line of text But
you CAN mix 8 foreground colors and 8 back-
ground colors on the SAME screen when you
WRITE DIRECTLY to the screen.

With SECB you are stuck with two colors.
$FEO8 is SECB's ‘current attribute temp’. You
can change it when using the CHROUT rou-
tine to change the attribute, but it would be
much easier just writing directly to the screen.
You can experiment with this temp with Z-
BUG's 'siash’ command, to see what hap-
pens. TABLE 7 shows what | have found so
far for SECB's screen routine temps.

The “screen grids” in the COCO 3 manual
are a litte small for quick use, so | would
recommend that you tape several pieces of
paper together and make yourself a larger
*grid”. Make each grid square 1/4 by 3/8
inches in size, so that you can write the ad-
dress into each. Make it similar to the grid on
page 284, 8024, then number each grid
square with an EVEN address (just for char-
acters) to keep down confusion. Number each
grid square with this format:
$0000,$0002,$0004, ending with SOEFE. The
reason for using a 0 in the first digit instead of
a 2 is because block $36 can be mapped
into ANY $FFAX register. it now is an offsetto
be added to the address range of that block.

For example: let's say that you have
mapped block $38 into $FFA3/SFFAB (36000
- $7FFF). The screen would then start at
$6000 instead of $2000, so adding Oxo to
$6000 would give the proper address. in other
words, all you have to change is the 1st digit,
when you map block $36 into a different
$FFAX register. | know that it will be a boring
job to make this grid (1 did t), but it will speed
up finding screen locations in the long run.

Practice makes perfect!

Now that you have some information on
screen use, itis time for some practice. DISK
EDTASM users will want to set up the 80 col-
umn screen, if you haven't done so yet. Now

enter Z-BUG in byte mode, and change the
$FFBx registers to the colors that you desire
Now, change SEOE4 to $36 (remember thi
from PART 17?) to map block $36 into the
range of $8000 - $7FFF. Next, clear the
screen with the “CLEAR" key and do "6EC0/
* and put $41 there. You shouid see an ‘A’
pop up in the lower part of the screen. Now
do "6EC1 /" and put $SAE there, and you
should see a flashing “A” with the colors that
you set up into $FFBD and $SFFB6. Set
$6EC1 to $SEE and you will see an underiined
flashing “A". $8E will give you just an under-
lined “A” and $2E will give you a steady “A”.

Now experiment with various other values
at$8EC1 to see how the attribute byte works.
Once the cursor gets down towards the “A°,
you may have to clear the screen again to
stop the “A” from scrofing out of it's position.

E/A 6309 users will have to use LISTING
3 from PART 1 to set block $36 into $FFAB /
$SEOEC for this experiment (remember from
part 1 as to why?). if E/A 6309 crashes when
using $FFAB, then you will have to switch to
using $FFAC. As stated before, | am using
the FIRST version of E/A 8309, and the pro-
gram ends at $54DF, and | understand that
subsequent versions are different. | don't
know if the program is longer and ends in the
$68000 address range or not, the reason for
this waming.

This experiment demostrates severa
things: 1) you can map block $36 where ever
you like and SECB will still display it. 2) what
the various values in the attribute byte will dis-
play. 3) more practice on block switching. 4)
the use of the $FFBx registers and 5) that
you can have a multi-colored screen when
writing directly to it

Listing expianations

LISTINGS 5,6,7 are short demo programs
that you can use to further practice writing to
the screen. 6 and 7 are the MAIN body pro-
grams, and 5 is the subroutine that does most
of the work.

| have set LISTING 5 up so that it has 3
entry points for 3 purposes. it will work with
both DISK EDTASM and E/A 8308 (the only
difference is the $FFAX register as noted in
the comment column). The two instructions
*FCB $X0C and ‘LDB #3$X0C are where you
put the attribute of your choice where the XX's
are. If you enter the subroutine at ‘STRING®,
the B register will be loaded with the attribute
that PRECEEDS the text string, as you can
see by the *LDB -1,X" instruction. If you want
to use the same text, but with a different at-
tibute, then PRELOAD the B register with the
attribute and enter the routine at“SCRIPT". ¥
you are just sending one character to th
screen, then PRELOAD the registers XY and
B and enter at “SCREEN". | use a negative
‘stop’ character in the text line (FCB 'E+$80

the workd of 68' micros page 19

in the listing) so if you add more text, do the same or the
routine will just WIZ thru memory until it finds a negative
character. You will notice that the routine swaps the block
at the SFFAX registers and not the SEOEx registers be-
cause we are writing directly to the screen and not going

SECB's routine. This is an important thing to remem-
« .. LISTING 6 will get the attribute byte that preceeds the
taxt string; and LISTING 7 will display the same string with
a different attribute by loading the ‘B’ register ahead of time.

To use the other half of the screen block, you will have to
change the pointers in SECB to direct it to the 2nd haif.
LISTING 8 is a program that will demonstrate the use of
the second half. DISK EDTASM users should NOT use
the code with “*", it is for E/A 6309 users only! Type it in,
assembie and run it. The cursor will disappear, and it wil
seem like the program has crashed, but it hasn't The cur-
sor is now located in the 2nd half of screen block, out of
your view. You will have to type BLIND, so do this next step
CAREFULLY. You are stil in Z-BUG, so type “B” for ‘byte
mode’; then type: “FF9D /* and change $FFSD to SDA.
You will now be in the 2nd half of the screen block, and
there is the cursor, blinking happily.

To get back to the 1st half of the screen block, change
$FF9D to $D8. | will get into more detadl on $FFSD in the
next instaliment. For now, to toggle between the two
screens, just set $FF9D between $DA for the 2nd haif and
$D8 for the 1st half. The 1st screen is: $2000 - $2EFF and
the 2nd = - $3EFF. With some imagination, you
can merge this information and have pienty to play with
until next time

Part 3 will be...

Next time | will discuss what | have found with the NON-
attribute screens and the other $FFSX registers. This in-

nation is pretly interesting and with some imagination,

TABLE 4 TABLE 5 TABLE 6
HEX
FORE BIN BACK ODD EVEN BIT USAGE
$FFB8 000 S$FFBO 00 ot 7 1= blink
SFFB9 001 S$FFB1 02 o3 8 1= underiine
$FFBA 010 $FFB2 04 05 5
$FFBB 011 S$FFB3 08 07 4 * foreground (B8 - BF)
$FFBC 100 $FFB4 08 09 3
$FFBD 101 $FFBS CA 0B 2 #
$FFBE 110 $FFB8 oC 0D 1 #background (BO - B7)
$FFBF 111 $FFB7 0E OF 0o #
TABLE 7 - Palette register tables
ALL addresses HEX SECB SCREEN TEMPS
HARD SECB CMP RGB $FE0Q0/01 Cursor location
WARE MAIN SETUP SETUP $SFEQ02 working char. count
$FEO3 working line count
FFBO EG78 EGS54 EO064 SFEO4 #cher. per ine
FFB1 EG79 EG55 E6OS SFEOS # ines per screen
FFB2 EG7A E656 EO608 $FEQGA7 scresn end location
FFB3 EG7B EO57 E667 SFEO8 cument attribute
FFB4 EG7C E6GS58 E668 $FE0@ unused
FFBS E67D E650 E680 $FEOA foreground color
FFB6 ESTE EGSA EOGBA $FEOB beciground color
FFB7 E67F E658B E668B
FFB8 EGB0 EGS5C E68C
FFB9 E681 EBSD EBG8D
FFBA E682 EGSE EGBE
FFBB E6B3 EGS5F EOBF
FFBC E£684 EBGB0 EG70
FFBD EGB5 E661 EG71
FFBE E6B8 E682 E6B72
FFBF E687 E6B3 EB73

ANDCC #SAF enable interupts

retum for more characters

.1 be very usefull.
USTING § - Write to screen routine

RTS
UPON ENTRY: X = Points to text that is to be
printed to screen. Y = location on screen to put SAVE RMB
text. B = SEE TUTORIAL TEXT

FCB XX

1 ** temp for current block #

PUT desired attribute here in piace of XX

STRING LDB -1,X TEXT1 FCC /YOUR MESSAGE HER/
get attribute that is before text string FCB 'E+$80
SCRIPT LDA X+ get text character this is for STOP printing code
PSHS A END
save for stop character test
BSR FIX gsend it to the screen
TST .S+ LISTING 6
was character a STOP char. (negative)?
BPL SCRIPT GO LEAX TEXT1,PCR
no, loop for more characters LDY #$2AF0
RTS DONE - retum BSR STRING
FIX ANDA #$7F drop MSB first Swi
SCREEN PSHS Dsave for after block swap
ORCC #350 disable interupts LISTING 7
LDA #8386
= BLOCK # that screen uses GO LEAX TEXT1,PCR
LDB $FFA3 *"* $FFAB for 6300 users LDY #$2AF0
STB SAVE LDB #8XX = attribute
save current block # for retum BSR SCRIPT
STA $FFA3 * SFFAB swi
PULS D
.character and it's attribute * LISTINGS 6 AND 7 call LISTING 5. —
STD ,Y++ store both to the screen SEE TEXT
LDB SAVE ¢
get original block # that was saved
STB $FFA3 ™ S$FFAB

page 20 the worid of 68’ micros

LISTING 8 “Second” screen demo

weset CODE with ** is for E/A 6309 users
only!itit

GO NOP

* CLR SFF91 9ot TR=0
LDA #83F

end address of second screen (msb)
STA $FEOB setit for SECB
STA $F688 setit for SECB
DECA ‘A now = $3E
STA $F875 et SECB
LDA #$30
STA 3F7BC

set start address of second screen (msb)
STA $F68D set SECB
STA $FBA3 set SECB
STA $FBD5 set SECB

JSR $F679
Now set up 80 column screen
* DA #H He

* STA SFF91 ### eet TR=1
LDD #$3600 set screen colors
STA $FFB8 set foreground to yellow
STB $FFBO

set background to black (disk edtasm)

* STB $FFB4

set background to black (e/a 6309)

STB $FFSA .*" O
set border to black ¥ ,"‘)

SWi FINISHED \/io2%

END '

RGBoost- $15.00
If you want to speed up DECB easily, install an Hitachi
6309 and get RGBoost. This patch for DECB uses the ex-
tra 6309 functions for up to a 15% gain in overall speed. It
is compatible with all programs tested to datel Save an
additional $5 by purchasing RGBoost along with one of
my other products listed below!

IRTASMG309 v2.02 - $38.00

Patches Tandy’s Disk EDTASM to support Hitachi 6309 codesl Sup-
ports all CoCo models, including stock 6809 models. CoCo 3 ver-
sion uses 80 column screen, runs at 2MHz. YOU MUST HAVE A
COPY OF DISK EDTASM. This is a AMTCH ONLY! # wiil not work
with “disk patched” cartridge EDTASM

CCIPAX - $33.00

Receive and print weather fascimile maps from shortwavel The US

weather service sends them all the fimel Requires 512K CoCo3
and shortwave receiver. Instructions for simple cable included.

HRSDOS - $28.00

Move progroms and data between DECB and OS-9 disksl Sup-
ports RGB-DOS - move files easily between DECB and OS-9 par-
titions! No modifications to OS-9 modules required.

DECE SmariWaleh Drivers - $20.00

Access your SmartWatch from DECBI Adds function to BASIC
(DATES) for accessing date and time. Only $15.00 with any other
purchasel

Robert Gauit
832 N. Renaud
Grosse Pointe Woods, Ml 45236
313-8661-0335
Please add $4 S&H per order

STtroNcWARE

Box 361 Matthews, IN 46957 Phone 317-998-7558
CoCo 3 Software:

Soviet Bloc $15
GEMS $20
CopyCat $5
HFE- HPrint Font Editor -—--—---- $15
MM/ 1 Software:

Graphics Tools $25
Starter Pak $15
BShow $5
CopyCat $10
‘Painter $35

for all your CoCo hardware needs, connect with
1629 South 81st Street

YONECT regemse

That thing that Tandy calls a serial port on the CoCo
has always been a problem. it was designed with
minimal cost in mind, and never upgraded. Even
Tandy tried to fix it with their R5-232 Pak, but even it
was only half done! Our Fast 232 port uses a 16 byte
buffer at alleviate missed characters at any speed and
also has ALL RS-232 lines implemented. It is easy to
set up with jumpers for different addresses. A
daughterboard can be purchased to easily add a
second fast serial port! And all this in a cartridge the
size of a ROM Pak! 6809 and 6309 OS-9 drivers in-
cluded. Completely supports up to 57,600 bps, lim-
ited support for 115,000 bps.

Fast 232 - $79.95
Daughter Board - $45.00

Check with us for complete dlisk drive systems,
misc. hardware items, hardware repairs, and hard
fo find new and used CoCo software!

ADVERTISER’S INDEX

BlackHawk Enterprises 13
Co:Nect 21
FARNA Systems 6,16
Robert Gault 21
Hawksoft 13
Dennis Kitsz 4

PA CoCoFest BC
Small Grafx 13
Strong Ware 21
What are you waiting for?

Get your friends to subscribe to
the only magazine that still supports
the Tandy Color Computer...
“the world of 68’ micros™!
The more people who want the support,
the longer it will be here!

the world of 68' micros page 21

August 2 & 3, 1997
(Sat. 10am-5pm; Sun. 10am-3:30pm)

at the

'EMBERS INN

1700 Harrisburg Pike
Carlisle, PA

Ovemight room rate: $60
Be sure to ask for the “FEST ’rate!

Exit 16 off of the PA Turnpike I-76
Turn to Harrisburg, go 1.3 miles, it's on the right.
OR 1-81 Exit 17, turn left, go 1/10th mile, on the right.

There is even more information
on Ron Bull’s Web site!
www.geocities.comv/SiliconValley
/Vista/1412/BullsBarn. html

Call 1-717-243-1717 OR
1-800-692-7315 OR Fax
(717) 243-6648 for
reservations! Limited
supply of rooms reserved
for the show. Rooms will
be released on July 1
and will NOT be available
at the show rate!
ADMISSION: $5.00 per
person per day
or $7.00 for both days
(paid in advance).
Children under 10
accompanied by a
responsible adult are free!

Vendors who plan to attend:

Elite Software SubEtha Software

PA Online R.C.Smith

Carl Boll FARNA Systems
StrongWare Rick Cooper-CFDM

SBug Adventure Survivors
Bargeman Research Labs Unlimited Electronics Repair
MonkWare Paul W. Zibaila Il

CoNect Black Hawk Enterprises
Alan Dages Glenside CoCo Club

For further information, general or cx-
hibitor, contact:

Ron Bull
115 Ann Street
Duncannon, PA 17020-1204
(717) 834-4314
OR Email me: ronbull@aol.com

FEATURED GUESTS:

Steve Bjork - Bring your ZAXXON and
Gwana Bwana manuals - he said he
would autograph them for you! Will be
giving a seminar on game programming
in general,

Kevin Dariing - Will enlighten us with
“0S-9 and Multimedia”

Marty Goodman - may do a seminar!
One of the most infamous CoCo person-
alities still with us... or is that zke most
infamous of us all???

For a FREE PA State map and Visitor's Guide call 1-800-VISIT-PA - It's FREE!

page 22 the world of 68’ micros

	68' micros
	Table of Contents
	The Editor's page
	reader's write...
	Sundog Game Crack
	Hacking the Orchestra 90 Pak
	RS-232 Communications & OS-9
	Embedded Programmer
	What Happened to Burke & Burke?
	Sources: DISKS
	Easy Disk Drive with Case
	Year 2000: Problem for You?
	Disk EDTASM Modification
	CoCo Extended Memory Secrets Part 2
	Advertiser's Index

