July/August 1995

Vol. 3 Number 1

$4.50 Canada, $4.00 US

Supporting Tandy Color Computer Disk BASIC, CoCo OS-9, and 0S-9/68000

L

The end of our se

The beginning of our third!

cond year!

CONTENTS
The Editor Speaks 2
Letters to the Editor 3
Basic09 Subroutines 4
(article) Michael Graffam
Hilights from the Past 5
(article) Robert Gault
Industrial 0S-9 User... 10
(column) F.G. Swygeri
The Hardware Hacker 10
(column) Dr. Marty Goodman
Operating System-Nine 11
(column) Rick Ulland

Programming the System1V 13

(article) David Wordel!
CoCo Laser Show 14
tarticle) Steve Noskowicz
Basic09 in Easy Steps 20
(column) Chris Dekker
micronotes 22
Advertiser's Index: 25

NOTE: “micredisk” willnow be
aquarterly publication. Thelast
disk will be sent out soon (last
one for volume 2).

POSTMASTER:
Fundeliverabie rcturnto:
FARNA Systems PB
Box 321
Wa.mer Robins, GA 31099

i;_

Address Correction Requested

rthe world of 68' micros I
Published by:
FARNA Systems
P.O. Box 321
Warner Robins, G4 31099-0321

Editor: F. G. Swygert

Subscriptions:

$25/year (8 issues) US; $32/year for
Canada/Mexico($13 US, $17 C/Mfor six
months-four issues). Overseas $45/year
(823 forfourissues) AIR; $37/year, $18
six months for surface mail.

microdisk: $40 per year , $21 six months, or
$6 per issue. Overseas add $10/year, $5/six
months, $1/single issue for air mail delivery.
Contains programs and source listings from
magazine; not stand-alone.

Advertising Rates:

$15 1/6 page, $20 1/4 page, $35 1/2 page, $60
full page, copy ready. Add $10 for special
placement, $10 for typesetting (85 1/4 or
less). Dot matrix will be typeset if deemed
unacceptable and submitter billed. 10% dis-
count for four or more appearances.

All trademarks/names property of their
respective owners.

Any and all contributions welcomed. Sub-
mission constitutes warranty on part of the
author that the work is original and not
copywritten by another party. All opinions
expressed herein are those of the individual
writers, not necessarily the publisher or
editor. FARNA Systems reserves the right
to edit or reject any submitted material with-
out explanation. Renumeration discussed on
an individual basis.

Back issues are $4 per copy. Overseas add

Newsstand/bulk orders available. Dealers
should contact the publisher for details.

Problems with delivery, change of address,
subscriptions, or advertisers should be sent
to the publisher with a short description.

mail at dsrtfox@Delphi.com. The Delphi
CoCo and OS-9 SIGs on Delphi are also
frequented (The Delphi SIGs are still spon-
sored by Falsoft).

ENTIRE CONTENTS COPYRIGHT
1995, FARNA Systems

$1 each for surface, $2.50 airmail delivery.

The publisher is available for comment via e-

page 2 the world of 68' micros

The editor sgeaks...

EG. Swygert

I must start out by apologizing for
the many spelling errors in the last
issues editorial. I was rushed getting
the magazine out (always am after a
fest!), and forgot to run the spell
checkeronitand several other articles.
I’m not usually that bad with spelling
anyway, but the rush writing job
makes for a few missed keys.

Thereis afollow-up onthe Rambler.
About 2500 miles after the wreck in
Chicago, the upper front suspension
joint failed. Apparently, it had been
cracked during the wreck. This was
impossible to determine by visual
inspection. I had noticed a “popping”
sound when I applied brakes hard, but
suspected a tie-rod end (which I was
preparing to replace). One afternoon
as [was turning the car around in the
driveway to go somewhere, the joint
gave way and the left front wheel
collapsed.

Now, if you know anything about
front suspensions, you will realize
that a car can’t be steered with one
collapsed front wheel! If this had

-happened ‘while I was driving,

especially on a curve, | may not be
here writing this for you today. And I
drove the car pretty hard on a couple
of occasions after the wreck.

Since the collapse occurred in the
front yard, the repair was relatively
easy. I rebuilt the front suspension

 five or six years ago, so knew exactly

what to do. On the road it would have
been next to impossible, even if the
car and I did survive.

I don’t believe anything really
happens without reason, especially
something as “lucky” as this. This
was a small miracle (I really do drive
the car a little hard a times!). If you’re

‘a believer, thank God for me again!

Well, here we are! Still going after
two years. I admit that at times it is
difficult to put a good magazine
together. But I have tried. And many
of you have made very good

contributions. I was going through
my files just a few days ago. I will be
using some more of that material
soon! So if you sent something in and
think I forgot about you, well, you’re
probably right. Some articles were
filed and forgotten in the rush to put
each issue together. I’ll attempt to
correct that over the next few issues.

If there are still things you dislike
about this magazine, please let me
know. I need the criticism in order to
make improvements. And if you have
something that may be of interest to
others, please send that in also, no
matter how trivial it may appear to be.
There are some beginners out there
still, and people who are new to the
CoCo and 0S-9 or OSK. Just because
it was mentioned in one of the old
magazines doesn’t mean it shouldn’t
be repeated!

Oneimportant item for future issues:
I go bi-monthly beginning with this
issue. The reason is just the time and
effort to mail each issue. I won’t
reduce content any. So you should
receive the same amount of
information as you receive now, just
bi-monthly instead of roughly every
six weeks. Maybe I can do better on
getting them out in time this way!
Please let me know what you think
about this... will I loose any
subscribers over it? I’ll try to make
future issues a few pages more also.

And 1 apologize that this issue is
late, and that | have indeed missed an
issue! There are indeed only seven
issues for volume two instead of
eight. I’m sorry, but the last fest, the
car trouble, a divorce, and move
(because of!) just prevented the eighth
issue this time around.

Well, that about covers everything

for another issue. Please enjoy your
summer and have safe vacations!

Letters to the Editor

Almost forgot to renew my
subscription! I can't afford to miss
anissue.

In a past issue you chided a few
drop-outs for not expressing their
needs, desires, or wants as far as
articles were concerned, sohere are
mine:

1. A series on OS-9 assembly
language programming.

2. One or two articles on using/
interfacing Multi-Vue.

3. An article or two on setting up
andusing KBCom.

Ifyou can find interested writers,
it would be most rewarding for at
least this one subscriber.

JimKirby
32658 Meadowbrrok
Livonia, MT 48154

Well readers, are there any
takers on these articles? Maybe
Rick will cover MV better in some
of his later articles. The OS-9
assembly language idea is really
good, hope one of you will take
the bait and write something on it!

This is a good time to mention
that you don't have to be an
accomplished writer to submit a
goodarticle. I'llassistwith editing,
you just write down your ideas
and thoughts on a subject so I'll
have something to work with!!

Help! I've been unable to get the
CoCo 3 emulator to work on my
486DX2/66 with8MB orRAM. The
green screen comes up scrambled!
According to the VGA compatibility
testit should work fine. Works great
onmywife’s486DLC/40. Rightnow
I'm building a 486DX/50 as a
dedicated CoCo 2/3 if it runs the

emulators. Also, is there a way to
connect the Commodore 1084 or
1802 monitor tothe CoCo 3’sRGB
port? I have both and would like to
try.

Enclosedisacheck formyrenewal.
Youputoutafirstrate magazine and
make up a big part of the CoCo
community.

Ron Shively
820 Garden Street
Beatrice, NE68341

Ron, several people have had
problems with the CC3 emulator.
The problem is in the video card.
Jeff Vavasour has apparently
corrected the problem. Please
write him and ask for a ‘fixed’
disk! _

The 1084 Commodore monitor
can be used directly with the CoCo
3 by using the RGBA port. Wire it
wire to wire to the CoCo port. You
Justneed the pin-outs for the RGBA
port, which is in the owners
manual. I'm unfamiliar with the
1802, but should be the same.

I hate to admit it, but I went out
and bought a new computer, a
Packard Bell Pentium model. Idon’t
have room to keep two computers
set up, so was excited to see the
cover article about the emulator.
However, Idohave some questions:

1. My new computer only has a
3.5" drive. DoIneed a 5.25" also?

2. Isee thatI can run DECB and
0S-9. Does the emulator keep track
of the different file formats for the
two systems?

3.1guessIneed more information
on the CoCo 2 emulator. Is this a
prerequisite to the CoCo3 emulator?

Jay Duke

11642 Pines Trail
Roscommon, MI148653-9703

Jay, you will need to geta 5.25"
drive for your computer. This
shouldn't be hard to do if you
have a 5.25" bay free. The
emulator creates virtual disks on
the hard drive for DECB and OS-

. 9, and keeps the two separate

easily. And yes, you should get the
CoCo 2 emulator and play with it
first, but you can write Jeff and
get the CoCo 3 emulator first.

Hi, Frank. I was just reading the
Mayissue, and noticed your reply to
the first letter to the editor, in which
you assert that, under Extended
ADOS-3, an 80-track drive will be
limited to 78 file entries. Y ou should
beabletohave 128 file entries, since
sectors 3 through 18 on Track 17(16
sectors) are available to
accommodate 8 file entries each.

ArtFlexser

(artflexser@delphi.com)

Thanks for the correction Art! I
was actually thinking that the 80
track disks followed the same
format as the 35/40 track schemes.
But since Tandy never had a
standard for an 80 track drive, I
guess thatwouldn 't be a limitation!

the world of 68’ micros page 3

Basic09 Subroutines
Writing subroutines for Basic09.

This article is meant to be a general
overview of writing external subroutines
for Basic09. I will cover a few different
routines. The routines I will cover are
string handling routines. I have uploaded
many subroutines to Delphi’s OS-9 Sig
(Programmers Den, search for Basic09,
Subroutines), and have written a few
especially for this article.

I have chosen to do string handling
for 2 reasons, first off, compared toother
languages Basic09 (and just about every
other Basic variant) has, in my opinion
pathetic string handling ability, and
second, they are easier to illustrate to
noviceprogrammers, and therefore make
forbettertutorials. With all that said, lets
get to the fun part!

The following examples (Lstr, Rstr,
Midstr) will replace a portion of a string
(muchthe sameway that LEFT$, RIGHT$
and MIDS$ isolate portions of strings).
Thesyntax forLstrand Rstr are the same,
you run the routine with the original
string and the new string as parameters
tothe program. RUN LStr(“Hello”,”J”)
would make “Hello” become“Jello”. RStr
would replace at the right side of the
string. The code for LStr and RStr is as
follows:

PROCEDURE LStr

0000 PARAM orgstr:STRING[200]
000C PARAM newstr:STRING[200]
0018 DIM bufl:STRING{200]

0024

0025 bufl=RIGHTS$(orgstr,LEN (orgstr)-
LEN(newstr))

0037 orgstr=newstr+bufl

0043 END

PROCEDURE RStr

0000 PARAM orgstr:STRING[200]
000C PARAM newstr:STRING{200]
0018

0019 DIM bufl:STRING[200]

0025 bufl=LEFTS$(orgstr,LEN (orgstr)-
LEN(ncwstr))

0037 orgstr=bufl+ncwstr

0043 END

Ok, all we have left to do is make up a
Midstr. The syntax for Midstr will of
course have to be changed, and we will

page 4 the world of 68’ micros

havetoinclude whereinstringto replace.
I have made two versions of Midstr and
Mstr. Midstr’s syntax s like this; “RUN
Midstr(old$,start_pos,
end_pos,newstr$)”. This allows you to
specify the starting and ending positions
of the string to replace. RUN Midstr
(“My name is mike”,3,8,” “) will create
the string “My is mike”, RUN MStr(*My
nameis mike”, 3,”aaaa”) will create the
string “Myaaaaame is mike”. MStr is
different in that it uses the length of
newstr$ todetermine the ending position.
MStr is used as follows: “RUN
MStr(old$,start_pos,newstr$)”.

PROCEDURE MidStr

0000 PARAM orgstr:STRING{200]

000C PARAM strpos:INTEGER

0013 PARAM endpos INTEGER

001A PARAM newstr:STRING[200]

0026 DIM bufl,buf2:STRING[200]

0036

0037 buf1=MID$(orgstr,1,strpos-1)
0048 buf2=MID$(orgstr,endpos+1,

LEN(orgstr))

005B orgstr=bufl+newstr+buf2

PROCEDURE Mstr

0000 PARAM orgstr:STRING[200]

000C PARAM strpos:INTEGER

0013 DIM endpos:INTEGER

001A PARAM newstr:STRING[200]

0026 DIM bufl,buf2:STRING[200]

0036 endpos=LEN(newstr)

003F

0040 bufl=MIDS$(orgstr,],strpos-1)
0051 buf2=MIDS$(orgstr.endpos+1,

LEN(orgstr))

0064 orgstr=bufl+newstr+buf2

The next set of routines is string
removal functions. These include Lrem
Rrem and Mrem. These routines will
remove portions of strings defined by
positionand length. The syntax for Lrem
and Rrem is as follows: RUN
LRem(“Michael”,1) would make the
string “ichael”. Using Rrem would make
“Michac”.

PROCEDURE LRem

Michael Graffam
0000 PARAM instr:STRING[200]
000C PARAM num:INTEGER
0013
0014 DIM iINTEGER
001B DIM temp:STRING[200]
0027
0028 temp=MIDS$(instr,num+1,LEN
(instr))
003B instr=temp
PROCEDURE RRem
0000 PARAM instr:STRING({200]
000C PARAM num:INTEGER
0013
0014 DIM iINTEGER
001B DIM temp:STRING{200]
0027
0028 temp=LEFT$(instr, LEN(instr)-
num)
0039 instr=temp
0041 END

MRemwill remove from the middle of
a string its syntax is: RUN MRem
(org$,start,end). org$istheoriginal string
to be processed, start is the starting
position in the string, and end is the
ending position.

PROCEDURE MRem

0000 PARAM instr:STRING([200]
000C PARAM startpos,endpos:
INTEGER

0017 DIM temp:STRING[200]

0023 DIM templ:STRING([200]

002F temp=LEFT$(instr,startpos-1)
003E templ=RIGHTS$(instr,LEN (instr)-
endpos)

004F instr=temp+temp1

Another routine is a run-length
encoding system, this encoder can be
used on any string that does not include
numbers. It will take a string say,
“AAAAAAA REEBRRBRBOOCCDDDDER’
and make it “JA9B4C4DEF”. It is
importantto notethat Eand F are stored
as-is because including a number would
make the stringbigger, runs of 2 or more
are stored (runs of 2 won’tbe compressed
any, but it makes the routine simpler, so
Idid it that way). TCom is a program to
callencode anddecode afile. It will work
well on any string with long “runs” of
characters, astringlike “Hello my name

is Mike” wouldn’t get crunched at all,

thisencoder is meant primarily for “bit-
mapped” image data, where there will
likely belong runs of the same character.

PROCEDURE TCom
0000 (* This program uses a subroutine
to compress text files *)

003B DIM switch:STRING[1]
0047 DIM infile,outfile:STRING[80]
0057 DIM in,out:BYTE

0062 DIM line:STRING[200]

006E DIM a,b,c,i.INTEGER

0081 PRINT “C- Compress File”
0095 PRINT “E- Expand File”

00A7 INPUT “?>"switch

00B1

00B2 INPUT “Input File Name? “ infile
00CB INPUT “Output File Name?
« outfile

00ES

00E6 OPEN #in,infile:READ

00F2 CREATE #out,outfile: WRITE
00FE

00FF WHILE EOF(#in)=FALSE DO
010B READ #in,line

0115 RUN encode(switch line)
0124 WRITE #out,line

012E ENDWHILE

0132

0133 CLOSE #in

0139 CLOSE #out

PROCEDURE encode

0000 (* This program is a run-length
encoder *)

003A PARAM switch:STRING([1}]
0046 PARAM line:STRING[200]
0052 DIM comline:STRING{200]
005E comline=""

0065 DIM strpos:INTEGER

006C strpos=1

0073 DIM a,b,c,i:INTEGER

0086 DIM table:STRING[10]

0092 table=0123456789"

00A3 DIM char:STRING(1]

O00AF

00BO IF switch="C” OR switch="c¢”
THEN

00CS c=1

00CC FOR strpos=1 TO LEN(line)
00DE char=MIDS$(line,strpos,1)

00EC [F SUBSTR(char,table)>0 THEN
O00FC PRINT #3,” Run-Length Encoding
Error -»

0120 PRINT #3,” Numerals not allowed
in input file.”

014C PRINT #3,” Unconditional Abort.”
0169 PRINT #3,”Error #001"

017B END

017D ENDIF

017F IF char=MIDS$(line,strpos+1,1)

THEN

0195 c=c+l

01A0 ELSE

01A4 IF c=1 THEN

01B0O comline=comline+char
01BC c=1

01C3 ELSE

01C7 comline=comline+STRS$(c)+char

01D8 c=1

01DF ENDIF

01E1 ENDIF

01E3 NEXT strpos

01EE line=comline

01F6 END

01F8 ENDIF

01FA

01FB IF switch="E” OR switch="¢”
THEN

0210 num$="0"

0218 table=0123456789"

0229 FOR strpos=1 TO LEN(line)
023B char=MID$(line,strpos,1)
0249 IF SUBSTR(char,table)>0 THEN
0259 num$=num$+char

0265 ELSE

0269 IF num$<>"0" THEN
0276 FOR i=1 TO VAL{num$)
0289 comline=comline+char
0295 NEXT i

02A0 num$="0"

02A8 ELSE

02AC comline=comline+char
02B8 ENDIF

02BA ENDIF

02BC NEXT strpos

02C7 line=comline

02CF END

02D1 ENDIF

02D3

02D4 PRINT #3,”Run-Length Encoding
Error-

02F7 PRINT #3,”
encode({option},string)”
0321 PRINT #3,” Where {option} is either
c (condense) e (expand)”

035A PRINT #3,” and string is the string
to process.”

0387 PRINT #3,” Unconditional Abort.”
03A4 PRINT #3,”Error #001"

03B6 END

run

The following text can expanded by
Tcom/encode to produce image data
that could be plotted to the screen to
formbitmapped graphics. A fricndand I
did this over a modem, running encode
on the strings compressed them down
and made it alot quicker than sending
each character over one at a time.

51

28.14%9,
26.18*7.
23.24%4,
22.26*3.
20.30*,
19.7%18.7*
19.5%22.5*
19.3*26.3*
19.3%26.3*
19.3*26.3*
19.3*26.3*
20.4*23.3*
22.3%20.3*3.
S50*
50*
S50*
.50*
50*
2%46.2*
51
(Theaboveisa“q” sitting sideways)
The final set of routines are Rev,
Toupper, Tolower, and Caps. Rev will
reverse a string, its syntax is RUN
Rev(string$) (“Hello” will become
“olleH”, and “bob” becomes “bob”, 1
havent found out what causes that bug
yet).
Toupper and Tolower will convert a
stringto allupper orall lowercase. Caps
will capitalize every word in a string.

PROCEDURE Rev

0000 PARAM str:STRING{100]
000C DIM temp$:STRING([100]
0018 DIM iINTEGER

001F

0020 temp$=""

0027 FOR i=LEN(str) TO 1 STEP -1

003F tempS$=temp$+MIDS$(str,i,1)
0051 NEXT i

005C

005D str=temp$

PROCEDURE Toupper

0000 PARAM instr:STRING{200]
000C DIM strpos:INTEGER
0013 DIM temp$:STRING[200]
001F
0020 (*converttcrm variable to uppercase
%
)
0048 temp$=""
004F strpos=1
0056
0057 REPEAT
0059 IF ASC(MIDS$(instr,strpos,1))>96

AND ASC(MIDS(instr,strpos,1))<123
THEN

the world of 68' micros page S

007A temp$=temp$+ CHRS(ASC(MID$
(instr,strpos,1))-32)

0091 ELSE

0095 tempS=temp$+MIDS(instr, strpos,1)
00A7 ENDIF

00A9 strpos=strpos+1

00B4 UNTIL strpos>LEN(instr)

00C1

00C2 instr=temp$

00CA END

0ocC

PROCEDURE Tolower

0000 PARAM instr:STRING{[200]
000C DIM strpos:INTEGER
0013 DIM temp$:STRING[200]
001F
0020 (* convert term variable to uppercase
*
)
0048 temp$="""
004F strpos=1
0056
0057 REPEAT
0059 IF ASC(MIDS$(instr,strpos,1))<91
AND ASC(MIDS$(instr,strpos,1))>64
THEN
007A temp$=temp$+CHRS(ASC(MID$
(instr,strpos,1))+32)
0091 ELSE
0095 temp$=temp$+MIDS (instr,strpos,1)
00A7 ENDIF
00A9 strpos=strpos+1
00B4 UNTIL strpos>LEN(instr)
00Cl1
00C2 instr—temp$
00CA END
0oCC

PROCEDURE Caps

0000 PARAM instr:STRING{200]
000C DIM strpos:INTEGER

0013 DIM temp:STRING[200]

001F

0020 strpos=0

0027 temp=""

002E REPEAT

0030 strpos=strpos+1

003B IF MIDS$(instr,strpos,1)<>" “ THEN
004E r$=MIDS$(instr,strpos,1)
005C RUN toupper(r$)

0066 temp=temp+r$§

0072 REPEAT

0074 strpos=strpos+1

007F temp=temp+MIDS$(instr,strpos,1)
0091 UNTIL MIDS$(instr,strpos,1)="
“ OR strpos>LEN(instr)

00AC ENDIF

00AE UNTIL strpos>LEN(instr)
00BB instr=tcmp

00C3 END

At thispointIwill mentionthat while

page 6 the world of 68' micros

allthese routinescanberan like they are
now, it is usually a good idea to modify
them and retro-fit them to work in a
“GOSUB/RETURN” situation. This
eliminates cluttering up the module
directory, and if doneright, inmy opinion
makesfor “cleaner” code overall. I prefer
havingall my subroutines internal to the
program, except of course when the
program is getting big and the source
won’tfitinto my favorite editor’s buffer.
At that point splitting up the source isa
good idea just to keep it managable.

T havewritten many other subroutines,
the ones listed here are all very simple.
Some of my other ones, like Strpro (a
string processor, it will take astring, and
up to a 100 subscript array of data and
process the string according to “rules”
outlinedin the data array, it ismuch like
a small batch language) and Fuzzy (a
fuzzylogic routine for Basic09 (which s
still in the processes of being written))
are much more complicated. All my
subroutines are available on disk for
free. All T want is the money for the disk
and shipping charges ($4). If you send
me money for the disk with the
subroutines on it, please include a note
stating what the money is for, and the
disk format you would like it on (180k/
360k 5.25’sor720k 3.5).Icanalso email
themto you if youare on Delphi (orif you
supply an Internet address).

USMail:

Michael Graffam
25Pine EchoDrive
PoughkeepsieNY 12601

EAmail:

Hlusionist@Delphi.com

Or Michael Graffamover FIDO
(OS-9Echo).

My home phone number is
(914)-471-7438

Programming the System IV
(continued from page 13)

Thls iS kcy.c EE 22 2222233222233

#include <stdio.h>
#include <keybd.h>

main()

int keybd[2], /* array to be passed
back from key() function */
while(1) {
key(keybd), /* Go and get the key */

switch(keybd[1]) {
case ‘A’: printf{*You hit Up Arrow\n”);
break;
case ‘B’: pnntf{*“You hit Dn Arrow\n™);
break;
case ‘C’: printf{*“You hit Rt Arrowin™);
break;
case ‘D’ printf{*You hit Lt Arrow\n™);
break;
default : printf{*You hit an invalid
key\n”);
exit(0),
}
}
}

This is keybd.h #**#**xxx»

key(keybd)

int keybd[]; /* Tell function it’s
getting array */

{

char *str] = “tmode noecho™,
char *str2 = “tmode echo™,

char inchar;
system(strl); /* shut off echo */
keybd[1]1 =0; /* clear keybd[] so

prior keys not passed
back again */
/* initialize - read
can’t see escape */
/* read from
keyboard and store */
if (inchar == “x1B’) { /* read failed
to change inchar */
read(0,&inchar,1); /* escape found
- read second char */
if (inchar == “wSB’) {
read(0,&inchar,1);, /* second
char was [- parse key */
keybd[1] = inchar; /* array being
passed back */

inchar = “x1B’;

read(0,&inchar, 1),

}
}
system(str2),

}

/* turn echo back on */

Hi-lights from the Past, Part 1
Support programs MLFINDER.BIN and MLCODE.BAS

Robert Gault

There have been many excellent Coco or
Coco related magazines which have
disappeared into the mists of the past. They
have leftalegacy of marvelous programs and
informative articles for the Coco.
Unfortunately these magazines are long out
of print and the authors have long left the
Coco scene.

While many of us fondly remember these
articles, there are new members in the Coco
community who (having received their
computers as gifts, inheritances, or purchases
at computer swaps) don’t have the benefit
of these magazine gems.

Starting with this article, I will attempt to
present the essence from some of the better
of these articles. This will be done only if it
is possible to present significantly original
code and text. I do respect copyright laws.

You will need to use both Basic and
machine language for this series so I
recommend that you acquire an Editor/
Assembler. For those who can’t find one, I’1l
start with a diversion. What follows is a
program MLCODE.BAS which scans
memory from the start of an ml routine to the
end and converts the code into a Basic loader/
driver. The output is in ASCII so it can be
easily merged into other Basic programs as
you will see. Notice that the data is in
hexadecimal format (takes less space than
decimal), is limited to ten items per Basic
code line (for ease of reading and typing), and
includeserrorchecking simple minded though
it 1s.

To use MLCODE.BAS you need the
starting, ending, and execution address of
the routine to be converted. MLFINDER
will give you that information and more. This
program also indicates the location on disk of
the code segments which is great for hackers.

I will, as needed, present both asscmbly
source code and Basic drivers produced by
MLCODE.BAS for future parts to this scries.

MLCODE.BAS

10 PMODEO:PCLEAR1

20 CLS:PRINT”SELECT OPTION:”

30 PRINT”1) ROUTINE IS IN MEMORY"

40 PRINT”2) PROGRAM IS ON
DISK”:PRINT
50 INPUT” 1 OR 2";8:IFS<I OR §>2

THENRUN

60 PRINT:IFS=1THEN110

70 CLS:INPUT’SOURCE DRIVE NUMBER
=",DO:DRIVE DO
80 PRINT:PRINT”
BIN"":PRINT

90 PRINT"DO NOT USE [/EXT:
DR™:INPUT”WHAT IS THE FILE NAME

FILE <MUST> BE */

*,FILES

100 LOADM FILES

110 INPUT"WHAT IS THE START
ADDRESS IN HEXS$S *; STARTS:

START=VAL(“&H”+STARTS)

120 INPUT"WHAT IS THE END ADDRESS
IN HEXS “;, EN$: EN=VAL (“&H”+ENS)
130 INPUT"WHAT IS THE EXECUTION
ADDRESS IN HEXS “EX$

140 INPUT"PRINT TO SCREEN OR DISK
<0 OR 1> *;BUF

150 IFBU=1 THEN PRINT: INPUT”
DESTINATION DRIVE =";DI:DRIVE D1
160 LI=10

170 IF BU=0 THEN190

180 OPEN"O”,#BU,FILE$+"/MLC”

190 PRINT#BU,LI;"REM “,FILES:
LI=LI+10

200 PRINT#BU,LI;”"LI=80":LI=LI+10
210 PRINT#BU,LI;"FOR M=&H";
STARTS;” TO &H"ENS;” STEPI10:
SUM=0"LI-LI+10

220 PRINT#BU,LL"FOR 1=0TO9: READAS:
VA=VAL(*;CHR$(34); "&H",
CHRS$(34);"+AS$):SUM=SUM+VA: POKE
M+LVA: NEXT: READ CHK: IF SUM<>CHK
THEN PRINT™; CHRS$(34); "ERROR IN
LINE™, CHR$(34);"LI: END”

230 LI=L1+10: PRINT#BU,LL; "LI=LI+10:
NEXT"

240 LI=L1+10

250 PRINT#BU,LL,"SAVEM “ CHRS (34);
FILES; CHRS$(34);",&H"; STARTS; “&H";
EN$" &H", EXS: LI=LI+10

260 PRINT#BU,LI;"END"™:LI=LI+10

270 FOR M=START TO EN STEP 10

280 PRINT#BU, LI;"DATA “:LI=LI+10
290 SUM=0:FORI=0TO9

300 V=PEEK(M+I):SUM=SUM+V:PRINT
#BU,USING"%%", HEXS(V);: IF M+] =EN
THEN GOTO330 ELSE IF 1<>9 THEN
PRINT#BU,”, “;:NEXT ELSE NEXT

310 PRINT#BU,”,"SUM:NEXT

320 CLOSE #BU:END

330 FORJ=I+1 TO9:PRINT#BU,”,
00";:NEXTJ:PRINT#BU,”,”SUM:CLOSE
#BU

00100 TITLE MLF - MLFINDER

00110 * MLFinder by Robert Gault

00120 * Usage: Find Load and Execution
addresses of ml programs stored on

00130 * disk. Report the track and sector
locations where code is

00140 * stored. Report to printer or screen.
00150 * For syntax see HELP message below.
00160

00170 * GENERAL METHOD:

00180 * GET FILE NAME, OPEN FILE
SEQUENTIAL FOR INPUT THEN

00190 * READ LENGTH OF SECTION, GET
START ADDRESS, ADD LENGTH TO
START

00200 * READ CHARACTERS FOR
LENGTH, CHECK FOR END OR NEXT
SECTION.

00210

00220CR EQU $0D CARRIAGE RETURN
00230 SPACE EQU $20

00240

00250 DEVNUM EQU $6F 0=SCREEN,
1-N=DISK, -1=CASS., -2=PRINTER

00260 BUFLG EQU $70 BUFFERINFLAG
0=DATA -1=EMPTY

00270 ZERO EQU $8A ALWAYS = $0000
00280 GETNCH EQU $9F GET NEXT
CHARACTER

00290 GETCCH EQU $AS GET CURRENT
CHARACTER

00300 TRACK EQU SEC
VARIABLES

00310 SECTOR EQU S$ED “ou
00320 DFLTYP EQU $957 DISK FILE
TYPE 0=BAS, 1=DATA, 2=ML, 3=TXT
00330 CLOSEF EQU $A42D CLOSEFILE
00340 ERROR EQU $AC46 BASICERROR
ROUTINE

00350 BASIC EQU $ACT73
OK

00360 COMMA EQU $B26D TEST FOR
COMMA

00370 GETNM EQU $B73D EVALUATE
POS NUMBER RETURN IN REG.X
00380 PRINTS EQU $B99C
STRING TO SCREEN

00390 SEEEERE AR REREREEXRERKERRRE
[E R RN R RS R S R E R R R R R R R R S R R

DSKCON

PRINT CR,

PRINT

EEERASHEEI SR RN
00400 * MACROS - DEFINED FOR CLARITY
IN SUBSEQUENT CODE

00410 EXRXXRREERARXASRXEXRRAES
SEERREKFXRBESSEA A XEEEAR TR X RSN RRX
EEEXEEEESEEES

00420 PUTCHR MACRO

00430 JSR [$A002] OUTPUT
CHARACTER VIA $6F DEVICE

00440 ENDM

00450

00460 SETDEV MACRO

00470 LDA MODE POINT DEVICE TO
PRINTER OR SCREEN

00480 STA DEVNUM

00490 ENDM

00500

00510 RSETDV MACRO

00520 LDA DIMAGE RESET DEVICE
TO DISK FILE

00530 STA DEVNUM

00540 ENDM

00550

00560 TSTPTR MACRO

00570 LDA $FF22 TEST FOR PRINTER
READY

00580 BITA #1 RS232 INPUT LINE
00590 BEQ \A

00600 LEAX <OFFLIN-1,PCR

00610 JMP PRINTS

00620 OFFLIN FCC /Printer is off line!/
00630 FCB 0

00640 \A EQU *

00650 ENDM

00660

the world of 68' micros page 7

SEEXRERERRREEEEARERRERRS RN KX

00670
EXESRSRRROERREERRAEERRRRREES AR RRRRR RN
00680
00690 ORG $CB EXTENDED BASIC
SCRATCH PAD
00700 LOFFST RMB 2 LOAD OFFSET
00710 LENGTH RMB 2 LENGTH OF
LOAD BLOCK
00720 LDADDR RMB 2 LOAD ADDRESS
00730 MODE RMB 1 OUTPUT PATH:
0=SCREEN, FE=PRINTER
00740 LOCAT RMB 2!

POINTER TO DISK SECTOR
00750 TRSEC RMB 2 TRACK, SECTOR
00760 DOS RMB 1 DOS INDICATOR:
0=1.0 1=1.1
00770 DIMAGE RMB 1
00780
00790

I R R AR R R R R R RS R RS R RS R R R R E]

IMAGE OF $6F

BAERKERAREERNNRRAENNKR SRS RS

I ERZEZR 222]

00800
00810 ORG $E00

00820 START CLR MODE RESET LINE
PRINTER FLAG

00830 CLR DOS

00840 A@ JSR GETNCH

00850 LBEQ HELP
00860 CMPA #'H
00870 LBEQ HELP
00880 CMPA #'P
00890 BNE B@
00900 TSTPTR
00910 LDA #-2
00920 STA MODE
PRINTER

00930 BRA

00940 B@ LDX $C004

00950 CMPX #SD66C
00960

BEQ C@
00970 INC DOS
00980 CMPX . #SD75F
00990 BEQ C@
01000 LDB #20
TO UNKNOWN DOS
01010 JMP ERROR
01020 C@ EQU *
01030
01040 TST DOS
01050 BNE A@

HELP

FOR LINE PRINTER

INDICATE LINE

DOS1.0

DOS1.1

/O ERROR; CLOSEST

01060 JSR S$CEDF DEFAULT .BIN &
GET FILE NAME
01070 JSR $C959
FILE FOR INPUT
01080 BRA B@
01090 A@ JSR SCFBB
01100 ISR $CA07
01110 B@ EQU *
01120

01130 LDA DEVNUM
01140 STA DIMAGE
01150 LDD DFLTYP

OPEN SEQUENTIAL

GET PATH #
SAVE IT
DISK FILE TYPE

CODE

01160 SUBD #8200 ML+BIN

01170 LBNE $A616 BAD FILE MODE
ERROR CALL

01180 STD LOFFST REG.D=0;CLEAR
LOAD OFFSET

01190 STD LOCAT CLEAR DISK

SECTOR LOCATION

01200 * NOW LOOK FOR AN OFFSET
LOAD AS IN “LOADM FILE,&H2000”
01210 JSR GETCCH MOREPARAMETER?

01220 BEQ A@
01230 JSR COMMA TEST FOR COMMA
01240 JSR GETNM GET NUMBER,;

MAKE INTEGER IN REG.X

01250 STX LOFFST UPDATE OFFSET
LOAD VALUE

01260 A@ JSR $ASC7 GETCCH WITH
ERROR CHECK; NO MORE ENTRIES
01270

01280 MAINLP LBSR GETIBF GET
CHARACTER FROM BUFFER; BLOCK
CODE

01290 PSHS A SAVE IT; 0=NEXT
SEGMENT, FF=END
01300 LBSR GET2BF GET 2

CHARACTERS FROM BUFFER
01310 STD LENGTH BLOCKLENGTH

FOR LOADING

01320 LDX TRACK READ DISCON
01330 STX TRSEC SAVE DATA FOR
REPORT

01340 TFR D,X SAVE BLOCK LENGTH
01350 LBSR GET2BF 2 MORE

CHARACTERS; LOAD POINTER

01360 ADDD LOFFST ADD START
OFFSET TO POINTER
01370 STD LDADDR LOAD ADDRESS

01380 LDA ,S+ RETRIEVEBLOCK CODE
AND SET Z FLAG
01390 BNE CLOSE
01400

01410 A@ TST DOS
ONE CODE BLOCK
01420 BNE

01430 JSR $C597 GETBYTE FROMFILE
01440 LDB BUFLG
01450 LBNE $C334
OF FILE

01460 BRA C@
01470 B@ JSR $C5C4
01480 LDB BUFLG
01490 LBNE $C352
01500 C@ LEAX -1X
01510 BNE A@ ENDOFSECTION YET
?

CLOSE FILE

SKIP THROUGH

INPUT PAST END

EOF

01520

01530 LEAX LOAD,PCR POINT TO
MESSAGE

01540 SETDEV POINT OUTPUT TO
CORRECT DEVICE

01550 LDD LDADDR GET VALUE
01560 BSR PRINT

01570 LEAX END,PCR POINT TO
MESSAGE

01580 LDD LDADDR LOAD ADDRESS

01590 ADDD LENGTH
01600 SUBD #1

01610 BSR PRINT

01620 LEAX TRKMSG,PCR POINT TO
MESSAGE

01630 CLRA

01640 LDB TRSEC GET TRACK VALUE
01650 BSR PRINT

01660 LEAX SECTRPCR POINT TO
MESSAGE

01670 CLRA

01680 LDB TRSEC+l GET SECTOR
VALUE

01690 BSR PRINT

01700 LEAX LOC,PCR POINT TO
MESSAGE

01710 LDD LOCAT GET POINTER TO
SECTOR

01720 ADDD #5 ACCOUNT FOR
SUBHEADER

01730 PSHS D SAVE TRUE LOCATION
IN SECTOR

NOWAVAILABLE!
The long awaited update of Paul Ward's “Start OS-9”...

“Mastering OS-9”

Edited and revised by Francis G. Swygert
Thisnew edition contains revised, easier to follow tutuorials, anindex,
revised information articles, several NEW informative articles
(including Rick Ulland on making an OS-9 boot disk), and several
extrautilitieson disk! 262 softbound pages (5.5"x8.5").

Price for book and disk is only $35 post paid (US)

(Canada add $2 for s&h, overseas add $10 for airmail)

page 8 the world of 68' micros

w

Mastering 0S-9
on the
Tandy Color Computer 3

]m

FARNA Systems
Box 321
Warner Robins, GA 31099-0321
912-328-7859 |

01740 BSR PRINT
01750 RSETDV
CORRECT DISK PATH
01760 PULS D RECOVER LOCATION

RESET DEVICE TO

01770 ADDD LENGTH ADD BLOCK
LENGTH

01780 STD LOCAT SAVE NEW VALUE
01790 BRA MAINLP

01800

01810 CLOSE JSR CLOSEF

01820 SETDEV

01830 LEAX <XFERPCR

01840 LDD LDADDR

01850 BSR PRINT

01860 LDA #CR FLUSH PRINTER
01870 BRA FINI

01880

01890 PRINT PSHS D PRINT TO SCREEN
AS INDEXED BY REG. X
01900 A@ LDA X+
01910 BEQ C@
01920 PUTCHR
CORRECT PATH

01930 BRA A@
01940 C@ PULS A GET MSB
01950 BSR D@

01960 PULS A GETLSB
01970 D@ ‘TFR AB
01980 LSRA MSN
01950 LSRA

02000 LSRA

02010 LSRA

02020 BSR E@
02030 TFR BA
02040 ANDA #SOF
02050 E@ CMPA #9
02060 BLS F@
02070 ADDA #7
02080 F@ ADDA #0
02090 FINI PUTCHR
02100 RTS

02110

02120 GET2BF BSR A@
CHARACTERS FROM BUFFER
02130 A@ BSR GETIBF STORE RESULT
IN D REG.

02140 EXG AB

02150 RTS

02160

02170 GETIBF TST DOS

02180 BNE A@
02190 JMP $CCE2
BUFFER

02200 A@ JMP $CDBC
02210

02220 LOAD FCB CR
02230 FCC /LOADY
02240 FCB 0
02250 END FCC
02260 FCB 0
02270 XFER FCC
02280 FCB 0
02290 TRKMSG FCC
02300 FCB 0
02310 SECTR FCC
02320 FCB 0
02330 LOC FCC
02340 FCB 0
02350

02360 HELP LEAX <MESAGEPCR
02370 A@ LDA X+

READ MESSAGE

SEND REG.A TO

LSN

GET TWO

GET CHAR FROM

/ END:/

/ XFER:/

/ TRACK:/

/ SECTOR:/

! LOCATION/

02380 BEQ B@
02390 PUTCHR
02400 BRA A@

02410 B@ JMP BASIC
02420 MESAGE FCB CR

02430 FCC *“USAGE: []=OPTIONAL”
02440 FCB CR

02450 FCC / EXEC:"NAME”[,offset})/
02460 FCC /prints info to screen/

02470 FCB CR

02480 FCC / EXEC:P"NAME”[offset)/
02490 FCC /sends info to printer/

02500 FCB CR,0

02510 END START

Output of MLCODE.BAS to create
MLFINDER.BIN

10 REM MLFINDER

20 LI=80

30 FOR M=&HE00 TO &HI100D

STEP10:SUM=0

40 FOR I=0TO9:READAS$:VA=VAL
(“&H”+A$):SUM=SUM+VA:POKE
M+LVA:NEXT:READ CHK: IFSUM<> CHK
THEN PRINT”ERROR IN LINE”LI: END
S0 LI=LI+10:NEXT

60 SAVEM “MLFINDER”, &HE00, &H100D,
&HEO00

70 END
80 DATA F, D1, F, D6, 9D, 9F, 10,27, 1,
72, 939
90 DATA 81, 48, 10, 27, 1, 6C, 81, 50, 26,
28, 652

100 DATA B6, FF, 22, 85, 1, 27, 1B, 30, 8C,

2, 861

110 DATA 7E, B9, 9C, 50, 72, 69, 6E, 74, 65,

72, 1207

120 DATA 20, 69, 73, 20, 6F, 66, 66, 20, 6C,

69, 844

130 DATA 6E, 65, 21, 0, 86, FE, 97, DI, 20,

C8, 1224)

140 DATA BE, C0, 4 , 8C, D6, 6C,!
27,C, C, D6, 1125

150 DATA 8C, D7, 5F, 27, 5, C6, 14, 7E, AC,

46, 1080

160 DATA D, D6, 26, 8, BD, CE, DF, BD, C9,

59, 1370

170 DATA 20, 6 , BD, CF, BB, BD, CA, 7, 96,

6F, 1280

180 DATA 97, D7, FC, 9, 57, 83,2, 0, 10,

26, 901

190 DATA 97, A6, DD, CB, DD, D2, 9D, AS,

27, 8, 1541

200 DATA BD, B2, 6D, BD, B7, 3D, 9F, CB,

BD, AS, 1625

210 DATA C7, 17,0, BC, 34,2, 17,0, BO,

DD, 884

220 DATA CD, 9E, EC, 9F, D4, 1IF, 1, 17,0

, AS, 1190

230 DATA D3, CB, DD, CF, A6, E0, 26, 60,

D, D6, 1593

240 DATA 26, B, BD, CS, 97, D6, 70, 10, 26,

B4, 1146

250 DATA 89, 20, 9, BD, CS, C4, D6, 70, 10,

26, 1140

260 DATA B4, 9C, 30, IF, 26, E4, 30, 8D, 0

, 8E, 1012

270 DATA 96, D1, 97, 6F, DC, CF, 8D, 4A,

30, 8D, 1452

280 DATA 0, 89, DC, CF, D3, CD, 83,0, 1

, 8D, 1253

290 DATA 3D, 30, 8D, 0, 89, 4F, D6, D4, 8D,
34, 1085

300 DATA 30, 8D, 0, 88, 4F, D6, D5, 8D, 2B,
30, 1063

310 DATA 8D, 0, 88, DC, D2, C3,0, 5, 34,
6, 965

320 DATA 8D, 1E, 96, D7, 97, 6F, 35, 6, D3,
CD, 1273

330 DATA DD, D2, 20, 85, BD, A!

4, 2D, 96, DI, 97, 1504

340 DATA 6F, 30, 8C, 51, DC, CF, 8D, 4, 86,
D, 1099

350 DATA 20, 26, 34, 6 , A6, 80, 27, 6 , AD,
9F, 799

360 DATA A0, 2, 20, F6, 35,2, 8D, 2, 35,
2,693

370 DATA IF, 89, 44, 44, 44, 44, 8D, 4 , 1F,
98, 768
380 DATA 84, F, 81,9,23,2, 8B, 7, 8B, 30,
655
390 DATA AD, 9F, A0, 2, 39, 8D, 0, 8D, 3
, 1E, 866
400 DATA 89, 39, D, D6, 26, 3, TE, CC, E2,
7E, 1144 ,

410 DATA CD, BC, D, 4C, 4F, 41, 44, 3A, 0
, 20, 784
420 DATA 45, 4E, 44, 3A, 0, 20, 58, 46, 45,
52, 614
430 DATA 3A, 0, 20, 54, 52, 41, 43, 4B, 3A,
0, 521
440 DATA 20, 53, 45, 43, 54, 4F, 52, 3A, 0
, 20, 586

450 DATA 4C, 4F, 43, 41, 54, 49, 4F, 4E, 3A,
0, 659

460 DATA 30, 8C, D, A6, 80, 27, 6 , AD, SF,
A0, 1032
470 DATA 2, 20, F6, TE, AC, 73, D , 55, 53,
41, 939
480 DATA 47, 45, 3A, 20, 20, 20, 20, 5B, 20,
5D, 542
490 DATA 3D, 4F, 50, 54, 49, 4F, 4E, 41, 4C,
D, 688

500 DATA 20, 20, 20, 20, 20, 20, 45, 58, 45,
43, 485

510 DATA 3A, 22, 4E, 41, 4D, 45, 22, 5B, 2C,
6F, 661

520 DATA 66, 66, 73, 65, 74, 5D, 20, 20, 20,
20, 757

530 DATA 70, 72, 69, 6E, 74, 73, 20, 69, 6E,
66, 1021

540 DATA 6F, 20, 74, 6F, 20, 73, 63, 72, 65,
65, 932

550 DATA 6E, D, 20, 20, 20, 20, 20, 20, 45,
58, 472

560 DATA 45, 43, 34, 50, 22, 4E, 41, 4D, 45,
22, 631

570 DATA 5B, 2C, 6F, 66, 66, 73, 65, 74, 5D,
20, 907

580 DATA 20, 20, 73, 65, 6E, 64, 73, 20, 20,
69, 774

590 DATA 6E, 66, 6F, 20, 74, 6F, 20, 70, 72,
69, 945

600 DATA 6E, 74, 65, 72, D, 0, 00, 00, 00,

00, 454 -

Robert Gault
832N.Renaud
Grosse Pointe Woods, M1 48236
313-881-0335
<ab282(@detroit.freenct.org>

the world of 68’ micros page 9

The Industrial OS-9 User

Specifications of 680x0 series microprocessors

FE G. Swygert

Several people have recently asked about the differences between various Motorola processors. The
information below was picked up offthe Internet describing the features of the current generation of 680x0 chips.

MC68000 MC68020 MC68030 MC68040
>>Introduced 1979 1984 1987 1989
>>Internal Data Bus 32 bit 32bit 2x32bit 1x32,1x64
>>External Data Bus 16 bit 32bit 32bit 32bit
>>Internal Address Bus 32bit 32bit 32bit 32bit
>> Addressable Memory 16 MB 4GB 4GB 4GB
>>Virtual Memory No Yes 4GB 4GB
>> Clock Speed (MHz) 8-16 16-33 16-50 25-40
>>Instruction Cache No 256 byte 256 byte 4KB
>> Data Cache No No 256 byte 4 KB
>>Math coprocessor No Optional Optional Yes
>> Support dual processors No No No Yes
>> Memory Management No No Yes Yes
>>Pipelining No Moderate Moderate Yes

The Hardware Hacker

Putting the ‘smartwatch’ under the CoCo 3 DECB ROM

Dr. Marty Goodman

Many people have used real-time
clocks on their CoCos. A popular
one is the Dallas Semiconductor
“smartwatch”. Thisisusually used
underthe Disk BASICROM inthe
disk controller. The smartwatch will
not (forreason’sevenIamnot clear
on)work properlyifyoujust socket
the CoCo 3’s BASIC ROM and
try to put the smartwatchbetween
the CoCo 3 Basic ROM and the

page 10 the world of 68' micros

socket.

There is, however, a minor cheat
you can do to make it work that
way. Itinvolves bending OUT the
chip enable pin (pin 20) of the
smartwatch, and hooking THAT to
the *CTSline. Atsmartwatchinto
the (nonexistant) disk controller
ROM socket.

You can avoid actually bending a
pin on the actual physical

smartwatch by doing that with an
added socket you insert into this
mess. Of course, you need to make
sure that pin 20 of the CoCo 3
BASIC ROM does connect to the
pin20 spot onthe original socket.

Operating System Nine

Telecommunications 2: Serial ports for CoCo.

Rick Ulland

Well folks, I ve spent the last few months
living, sleeping, and eating seral ports. So I
figured to do an article on serial ports....truth
1s, it’s this or another few months of Russell
Hoffman!

The Hardware:

Under OS9, you can fechnically use any
hardware you have a driver for with any
software. You can set up a multiuser system
using the bitbanger printer port.... or hook a
serial printer to a Fast232. Both would be
wrong. The application software doesn’t
even know what’s out there, but different
jobs require different capabilities.

The biggest confusion about serial ports
concerns their speed(s). There are actually
three speeds to consider. “Thruput® (sic) is
how fast bytes can actually be transferred to
the application. A stock CoCo with a Tandy
serial port hovers around 600cps, and this
figure goes up with patching, to about 1200
by full-bore Nitros9. Confusion comes when
folks ignore this figure, and instead talk about
the ‘connect speed’, which is how fast a
character is sent. If both sides were always
ready to go and noone ever waited for any-
thing, thruput would be 1/10th connect speed
(start bit, 8 bits, 1 stop, so 9600bps is
960cps).

With data compression, we get one last
befuddlement- there is less to send after it’s
compressed, so the compressor must be fed
faster than the modem connect speed. With
two levels of handshake to slow it down, this
‘port speed’ is never attained, but manufac-
turers like to brag about it.

The other side of the problem is how much
this process loads the cpu itself. As an
example, the backpanel ‘bitbanger” port. All
this port does is connect the signals to a pia.
The cpu has to watch carefully, and time each
signal change itself, building up bits until
there is a whole character. It’s a stone slow
process, and at 1200 bps the coco is com-
pletely tied up. If anything else happens, at
all, characters are dropped and the machine
might go down. Still, it is possible to grab a
$20 modem and try out the online world
cheaply. Calling a frec bbs, you do have the
other windows around for &ete, just make
surc nobodies sending at the time! Users of
commercial services will want touse a DECB
program, which can operate this software
port at higher speeds by really taking over the
cpu. The bitbanger has onc advanage- it’s
free.

The next step is some sort of 6551 senal
port. The cpu no longer has to time the bit
stream- it can pick up a whole byte after acia
builds it. With one of these, you can get about
700cps (1200 under nitros9). Which will
connect up to 19200bps- only the fastest,
compression modems can’t be served. You
are limited while using the port- it’s not hard
to hiccup a one byte buffer. For multitasking
via remote terminals, it has a painful flaw.
Initially moderate cpu load goes way up as
baud rate increases above 2400 and by the
time the serial link is running fast enough to
be uscful the apps it’s linking have slowed
beyond reason. Available cheaply ($10-$20
used to $45 new).

Last stage is (currently) a 16550 serial
port. These store up to 16 bytes in internal
registers. Part of this is used to increase the
time before the cpu is called, and the remain-
der handles some overflow in case of slow irq
service or packet delays. CPU load is way
down, to the point BBS or local host systems
can think of one as a cpu upgrade. A fast 115k
top connect, and faster 5000cps thruput.
There is also a fancy $80 price tag, and it’s
a bit of an i/o space hog. Just like a V8.

Software:

With some sort of hardware going, it’s off
to work! Let’s start with the weird stuff. OS9
was written to operate over a terminal- forget
graphics, a text console (imagine, a keyboard
and screen connected directly to the com-
puter!) was a bit odd. As a result, no special
software is needed to use a terminal- except
a copy of tsmon and login, which Tandy hid
in the DevPak. There are free (and better)
ones PD. (Note the console needs gri/windint
and a pile of custom descriptors).

Now, lots of folks have tried this before,
and it does work -with problems. Serial port
overhead is compounded, since the CoC isn’t
just transferring files around, but actually
running applications. Old multiuser boxes
like the GIMIX used ‘smart’ ports to unload
the cpu. As a result, a half-dozen users were
able to use the same 6809. The 16550 isn’t
as good as the 256 byte smart cards I’ ve seen,
but it heads that way. A standard rs232 pak
is perhaps ok for a single remote user, but
once the cpu is asked to do very much the
port overhead really begins to show.

Or not. Comparing remote users against a
normal CoCo, the CoCo just looks slow.
Tums out the console is a heavy load. The
screen doesn’t update that rapidly and there
is lots of cpu load. We have pia’s to read and

mice to compare. With a faster-than-Tandy
serial port, the console user slows overall
speed more than another terminal user. It’s
scarey.

Beware especially the software mouse.
On my system, the console runs MultiVue,
so the main desk has a pretty interface. This
is usually OK, since a single user won’t be
showing the gshell screen while doing some-
thing else. I"d log in from the shop, and there
was a big difference in speed that couldn’t be
accounted for. Tumned out to be the mouse!
Mouse at left top, or console pointed away
from MVue, system speed doubles. Try
mousing around during a gfx printer dump.

Which brings us to another use for serial
ports- the backpanel mouse has the same
troubles as the backpanel serial port. And it’s
fixed the same way- using the ‘smouse’ serial
mouse drivers and a hardware serial port.
Which leaves the keyboard/screen.. But I
digress.

Software Setup:

Setting up OS9 programs for use over a
terminal really depends on the program. At
best, you’ll be changing emulations on the
terminal pretty often, since CoCo is a bit
short on standards. The first set of programs
are those that simply ‘do what they do’.All
the stock os9 utilities were written for simple
terminals in the first place, and ASCII emu-
lation is fine. Some (like proc) even display
better under simple ASCII. There are plenty
of old non- CoCo apps which work fine over
ASCIL...they are the ones that were always
stone slow on a text screen.

Then there is stuff written for/on a CoCo,
using Tandy’s window codes. A distressing
number of CoCo apps demand a Tandy
screen. If your terminal is another OS-9
CoCo this isn’t much of a problem, other-
wise you’ll need a DECB (SubEtha) or MS-
DOS (Northern Xposure) terminal program
with OS-9 emulation. The apps that need

‘0S-9 screens range from the utilitarian DEd

on up. If you missed out on the build level
two from rogue thing, you can at least call
home and play a game or two. Try merging
a CoCo Artist graphic to /t2.... (Interesting
‘emulation’ note- SuperComm just passes
the codes on- emulate by default. Which
makes the version shipped with Fast232
slower in ‘0s9 emulation’ (legally dumped to
scf) than the direct write ASCII and ANSI
emulator screens.)

The last app group is the nicest- over the
years there have been various standards for

the world of 68’ micros page 11

defining a data file describing the display codes
to be used over any i/o device. If you've been
reading the whole mag, Joel’s covered termcap
well...but the CoCo predates termcap. It’s not
completely hopeless, some old apps (DynaStar)
support it’s precursor, termset. Others have
their own custom display data file format, which
can be corrupted in various ways to suit a non-
0OS-9 terminal. No two 6809 apps seem to follow
the same ‘standard’,so you might find yourself
setting the same thing up 24 different ways- and
most of the entries in these old term files prob-
ably refer to terminals long since extinct, although
vt100 terminals display ANSI perfectly well.

If you are the prudent (paranoid?) sort, note
the standard CoCo practice of loading lots of
merged together utiltities at boot bypasses much
of 0S-9’s security- stuff like format and attr have
to be separated from the common herd. The best
approach is to log in as a public user and try to
kill you system. Make it a hobby!

On to ‘normal’ telecom....from 0s9’s view,
this isn’t normal at all, in fact the system very
much wants to be the server. Getting OS-9 to
dummy up enough to make a good terminal is
difficult, but the work has been done and there are
quite a few good public domain telecom programs
for OS-9. In fact, they are good enough there are
very few commercial ones! Of course those neat
programs are available free.... from electronic
sources.

This is perhaps the biggest hurdle- I well
remember attempting to download a ‘real’ pro-
gram with DeskMate2 (ASCII buffer capture
only). CoNect will of course offer the traditional
disk of stuff (§5) for those who are quite stuck.

Another problem is the general style of OS-9
telecom. There isn’t a single all inclusive pro-
gram... instead, a collection of utilities is needed.
First up, download protocols. Most terminal
programs have a quite afew builtin, buteven here,
0S-9’s modular style shows- with ‘external’
download utilities. Sometimes the user has to
physically clear out and run them manually,
while some terminals (Supercomm) call rz and sz
automatically (Really. Anytime azmodem header
or ready to receive appears in the data stream, the
up/download window pops up). Pretty cool- but
beware, zmodem is very slow on a CoCo, and
probably works best at 2400. Note that Omen’s
sz/rz is shareware. '

Even after the file has been downloaded, there
is possibly more to do. Many files are archived,
and a separate dcarchiver is needed to ‘burst’
them. Older files generally fall into three main
groups, arc, pak, and ar. Recently, the OS-9
CoCo has joined the rest of the world with |ha
(which bursts Izh files). There is also a much
improved ar for OS-9-only files, and an unzipper.

But we aren’t done yet- Even if you never
stray beyond the confines of the friendly local
bbs, internct access is so universial you’ll even-
tually have to send or receive a binary file through
a ASCll-only mailer. UUencode and Uudecode

page 12 the world of 68' micros

will morph anything to/from legal, print-
able ASCII.

The easiest way into telecommunica-
tions is fo subscribe to one of the big,
flashy online services. Some even offer
custom interface software, unfortunately
none of this is available for the CoCo.
With a few exceptions, you don’t have
to use the flashy interface, and the tradi-
tional ‘terminal emulator’ (we have
plenty of those) works fine. Not because
the basic terminal software is that good-
these services invest alot of time and
money in accomodating as many types
of machines as possible. By the same
token, almost any download protocall is
supported, and ‘binary’ (non-text) files
usually arrive is usable form. Obviously,
some methods are better (or more popu-
lar) than others but many things will
work.

A small BBS can be thought of as a
limited version of a big BBS....you will be
ushered to an ez/friendly menu which
leaves little doubt what you can do.

An alternative to the traditional BBS
is connecting directly to a machine that
is ‘on’ the internet. This is just like
logging into your CoCo- there isn’t any
structure, instead you are dumped
uncerimoniously at a command line
prompt. A bit of a pain, but with many
schools and other institutions offering
access this is becoming more popular
everyday, and you can’t beat the price.
Check around... uwm has started a com-
munity machine (omnifest) with a low
low $25 a year fee (Look for my new E-

- mail address soon).

There is one major differance- you
must adapt to the machine, not the other
way around. Probably the host will be
vaxen, Sun flavored unix, or something
similar, so you’ll have to brush up on
simple unix a bit (see below). Simple
ASCII terminals will probably give you
access to the command line, expect many
applications to require VT100 or better.
With many CoCo terminals ending in the
ANSI range, this could be a problem.
KBCom (Eddie Kuns) not only does a
good enough vt100 to display properly,
it trips the ‘screen type detectors’ on
autosenscrs. Kinda fun to be compliant.
With vt100, the full screen applications
will work.

Some systemsdo have a menu driven
front end, but it might not pop upon it’s
own. Try some obvious choices like
menu or ¢z, and you may get lucky. No
menus? The unix manual system is left.
Type ‘man command’ to see the manual

pages for ‘command’.

Learn emacs ‘key bindings’. Not intuitive
at all, but close to universal- everybody has
emacs. Other programs (newsgroup readers
and the like) often use emacs style controls
as well.

There are at least two CoCo versions of
micro emacs that use them, so practice is
cheap. Some very typical programs:

man * - manual page(s) for *
Is - short data directory

dir - extended data directory
emacs - full screen editor
more - file lister

pine - email reader

elm

nn - usenet news reader

tin

logout - opposite of login

Many files will be uucoded anyway, and
so can be downloaded with a simple buffer
capture. One quirk, anytime more gets to
send it’s prompt, it doesn’t add a line feed.
When you are going thru the buffer cleaning
up the dump, make sure to check before line
deleting any more? prompts.

If you’ve ftp’ed a file to “your” unix box,
there is always sz (which usually does x and
y modem also). More work for the man
command- or look over the docs for the CoCo
version. Only difference is all the switches
work from a unix box.

Want to move your CoCo keyboard? Get a

PuppoPC/XT Adapter
Allows use of any PC/XT compatible keyboard
with your CoCo. Easy access to OS-9, DECB,
and other options. Hold space bar on power-
up to skip menu. Switchable and most auto-
sensing keyboards supported.

Only $72.50 post paid!
$100.00 post paid with keyboard!
FARNA Systems
Box 321

Warner Robins, GA 31099-0321
NOTE: Keyboards will be 101 key. FARNA reserves
the right to substitute 84 key models if necessary without
notice.

Programming the System IV (PT68K4)

David Wordell

How to read the Function Row Keys and the Cursor Key Pad Keys

For those of you who do not know, I
have a PT68K4 machine, running OS-9/
68000 Version 2.4. Thisisessentially the
System IV in a kit form. This article
describes some of the things I have been
learning to do with this fantastic machine.

After I got home from one of our club
meetings, [was fired up. Several club
members had helped me to find the
solution to a problem I had been working
onforsometime. The problem was “How
to read the Function Row Keys and the
Cursor Key Pad Keys on my PT68K 4 and
use them 1n a C program”. Those are the
“F” keys, F1 through F12, the four arrow
keys, and the delete, end, home, insert,
rage down and page up keys. The
problem stems from the fact that these
“special” keys send a three character
code instead of a single character code
likethe a, b, ¢, d, etc. All the special keys
send Escape (1B), Square Bracket, [,
(5B), plus some capital letter such as A,
(41). The numbers in parenthesis are the
hexidecimal values. The up arrow will
send Escape, Square Bracket, A. The
down arrow will send Escape, Square
Bracket, B, or * [B. I'm using the ~ caret
to signify the Escape character, hex value
1B. Thenght arrow will send~[C, and the
left arrow will send ~ [D. The rest of the
special keys are just like the arrow keys,
with the last character being the
determining factor. We made use of this
unique sequence as you will soon see.

Letslook at the page with the program
on it. First you will see that we include
the stdio.h file as usual. Then we include
keybd.h, aheader file I created from what
I had learned at the club meeting. We’ll
get to that in a minute. Next the main()
function where the program begins. In
the first line of the program we declare an
integer array with room for two integers.
One for the integer we want to store and
one for the NULL that C will put at the
end of the array. This array will be passed
to the key() function which is actually in
the header file keybd.h. In this example
we create an endless loop, to search for
the key, with the statement while(1).
Since we did not usc a variable in the
parentheses, it can ncver become zero,
or false, to stop the loop.

Now we call the key() function,
sending the array “keybd” by putting it
inside the parentheses. Let’s look at the
function. It’s name iskey and we indicate
that it will receive an argument called
keybd. The next line indicates that keybd
will be an integer array. Then we enter
the body of the function. First we declare
two pointers to character strings and
create the strings “tmode noecho” and
“tmode echo”. Next we declare a
character variable named inchar.

This is the part I think you will love. It
should open many doors for you C
programmers. There is a built in function
called system() that in essence, allows
you to open a shell, issue an OS-9
command, and return to your program. I
was having a problem with the reading of
keys. What ever key I hit, it was printed
to the screen. There are many instances
that I don’t want this to happen. I used
the system() function to send the string
“tmode noecho” to 0S-9, just as if | had
typed it on the keyboard to a shell. No
more keys being printed to the screen.
Bye the way, on the CoCo you would use
“tmode -echo” but “tmode noecho” is
the OS-9/68000 version of this.

Next we clear the integer array to zero,
always a good practice, to be sure it does
not contain a previous character. Then
we initialize the character variable to the
escape character, We discovered, with
previous experiments, that the read()
function that we are about to use did not
seem to be able to read the escape
character. If the variable inchar had
contained some other value and an
escape character was sent, inchar would
retain the previous value. Now put your
reverse hat on. If the above is true, and
we make the value of inchar 1B, the
escape character value, and we receive
an escape character, inchar will still have
the 1B value after the read. Not because
it read the escape character, but because
itdid not read it and retained the previous
value. On the other hand, if any other
character is read, it will change the value
of inchar and it will contain the new value
afler theread. Sort of like turning a “bug”
into a “feature” isn’t it.

Anyway, we now check for the value

of inchar to be 1B with the if statement.
If the statement is true, we read another
character. If not, this was not one of the
special keys and we are “out of here”,
back to the main program. For now,
assume that inchar was 1B. Ifthe key was
one of the special keys, the next character
should be the “[* or 5B. We use another
if statement to check for this. Again, if
no, we are “out of here”. If yes, we read
the last character. This will determine
which one of the special keys we saw.
Wethenmaketheinteger array, keybd[1],
value the same as the last character read.
This will be passed back to the main
body of the program. One last task before
leaving. We use the system() function to
send the string “tmode echo”, turning
the echo back on, before returning to the
main program.

Now we are back at the main program
and we have a value representing the
key pressed in the array, keybd[1]. Using
the switch() function to compare the
value, we make four “cases” for the four
arrow keys. Any other value we will call
an “invalid key” for this program. With
this example, we now have a workable
function, which will allow reading any of
the special keys from the keyboard of a
PT68K4 or System 1V, and using them in
any program that we wish.

In order to compile this example
program you must create the header file
called keybd.h and place it in your DEFS
directory with all your other header files.
The “#include <keybd.h>" statement in
the program will then take care of the
rest.

Once again [must thank Ed Gresick for
giving me a copy of the keyboard codes
for a System IV, at the last Atlanta Fest.
Without Ed’s generous help I would not
have a clue as to what the keyboard
codeswere. Thanks Ed. Ireally appreciate
the doors you have opened for me.

David Wordell

833 Woodhaven Ln
GrandPrairie, TX 75052

(program listings on page 6)

the world of 68’ micros page 13

CoCo Laser Show!

Controlling a laser light show using a CoCo...

Steve Noskowicz

Editor: Many of the regular Atlanta
CoCoFest vendors have seen the laser
light show at Stone Mountain Park in
Atlanta. The laser light show is actually
controlled by several Zilog Z-80 based
microcontrollers. Why can't the CoCo
do this? Well, it can... Steve explains a
lot of theory in this and upcoming ar-
ticles. Even if you aren't interested in
building your own laser show equip-
ment, he’ll explain a lot of graphics
theory also...

I have been working on a low cost but
very sophisticated laser graphics sys-
tem for some time, which is based on the
CoCo. I spent about 34 years on my
software to get a very versatile capabil-
ity, anything the big boys do, just not as
much or as fast...even some things some
big boys can’t do...and I'm an RF engi-
neer turned digital.

I got hooked 1n about 1985 after seeing
what one of my co-workers (software
type) had developed with a U. of Illinois
professor over a period of years. He now
has his own business doing large laser
light shows. In fact, the first company he
founded got the government contract to
do laser light shows on Grand Coulee
Dam! He seemed to know what he was
doing on the software end but I thought
I could help with hardware.

I had some ideas I wanted to try to
speed things up so I started to play
around. I got some stuff and after a year
realized I had developed the basis for a
small and inexpensive but “full func-
tion” laser graphics system. Now, I
found that the “big boys” are all trying
to do more, bigger, faster, etc. Mine
couldn’t compete with these but I fig-
ured there must be people wanting to
spend $$ on this stuff but not the $50K+
needed for the “professional” systems.

Obviously there are many ways to
configure something like this but I de-
cided to design a smail (1/2 cu. ft.) self
contained, laser graphics system. Plug
it in, tum it on, watch the show! The
images displayed are vector images,
basically dot-to-dot drawings. The vast
majority of functions are carried out in
software. The only hardware other than
the computer is three 8 bit D/A’s, three
scanners and the associated driver amps.

I'll focus first on the muscles of laser

page 14 the world of 68' micros

graphics, the scanners. The connecting
lines between dots are drawn in hard-
ware, that is, real, moving mechanical
pieces, chunks of iron-like hardware.
This key component is the galvanom-
eter, or galvo, also called a scanner. A
galvo looks like a small motor, about one
to three inches on a side. The galvo
shaft, however, does not go around and
around, but has a limited travel from the
central resting point. It is just like the old
D’Arsenvol (sp) meter movements. A
spring holds the shaft in the central
resting position and current through the
coil causes the shaft to rotate away from
center to a new position. More current
causes it to go further from center. What
we have is a current-to-angle converter.
One of the parameters for a galvo is its
“degrees per ampere”, how many de-
grees the shaft moves for a given cur-
rent. The ones I use are about 35 degrees
per amp., however, they are not moved
that much when in use and probably
couldn’t take it. I move them only about
seven degrees and that takes 200 milli-
amps. The mirror goes on the shaft,
parallel to it, forming a little tennis racket
shape.

There is one thing here which helps us
and probably the only thing in nature
where you get something for nothing.
Because the angle of reflection is equal
to the incident angle when reflecting off
a mirror, the angle the light beam is
deflected is twice that of the mirror move-
ment. Move the mirror five degrees and
the beam goes ten. If you don’t care for
further explanation, skip the next para-
graph.

Start by thinking of a ray of light
coming in perpendicular (also called
normal) to the mirror. It will be reflected
back on itself, also normal to the mirror.
Now rotate the mirror, lets say, five de-
grees. The incoming ray is now five
degrees off the normal, because the
normal moved that much. The reflected
ray will be five degrees off, but on the
other side of normal, so it moved ten
degrees. Double your money for free; all
thanks to Snell, or somebody.

There are two other types of scanners
you may sec advertised. These are not
used in laser graphics except for some
special effect. The first is the resonant
scanner. It looks just like the galvo, and

works much the same, except that it is
made to operate at one single frequency
of vibration or oscillation and one ampli-
tude or excursion. It just swing back and
forth at one rate.

The second is the rotating polygon
scanner. This IS a motor which rotates
at one constant speed, on one direction.
The mirror, however, has many faces.
The faces all point outward. Like putting
mirrors on the outside of a cylinder. As
it rotates, each face takes a turn at sweep-
ing the beam through the same line, in
saw-tooth fashion.

Now, how do we get pictures out of
this, you ask. Well, one galvo and one
mirror allows the movement of the beam
anywhere along a line. That is, the dot
of light from the laser can be moved, or
swept, along one axis. By using two
galvos, with shafts at right angles, and
the mirrors turned correctly, you get an
X-Y space on the screen. One galvo
positions the dot horizontally, the other
vertically.

The astute reader may notice that the
current-to-angle-to-screen concept in-
troduces an error from the fact that the
distance moved on the screen is the
tangent of the angle, not the angle itself.
Also, that the tangent is a non-linear
function. I think everyone ignores this
for the small angles we use. One galvo
is manufactured to give tangent correc-
tion, but I'm sure no one uses it for
graphics.

The drive electronics for these things
is basically a power op-amp., voltage-
to-current driver. It is deceptively simple,
however. The basic mechanical galvo
will overshoot and ring, or oscillate about
the new position and slowly dye out. To
prevent this, some form of feedback must
be employed to get maximum speed with-
out overshoot. When you draw some-
thing like, say a square, the dot, and
hence the galvos must move to the new
point and stop, not passing it up. This
is called critical damping and without
going into all the control / feedback
theory, this is prevented by using the
fecdback signal. There are two kinds of
feedback in use. The most common is
position feedback. The galvo generates
a signal voltage proportional to its posi-
tion. The other, velocity feedback and
the one I use, generates, as you would

244 S. Randall Road « Suite #172 Elgin, 1. 60123
ft (708)742-3084 eves & ends * MO, Check, COD;, US funds
Shipping included for US, Canada, & Mexico

MM!/1 Products (0S9-68000)
COMING SOON!! CDF - CD-Rom file Manager! Unlock a wealth of files on CD with the MM/11!

awkso

..

VCDP $50.00 - New Virtual CD Player allows you to play audio CDs on your MM/1!! Graphical interface
emulates a physical CD player. Requires SCSI interface and NEC CD-Rom reader.

KLOCK $20.00 - Optional CUCKOO on the hour and half hour!! Continuously displays the digital time and
date on the /term screen or on all open screens. Requires /O board, audio cable, and speakers.

WAVES vr 1.5 $30.00 - Now supports 8SVX and .WAYV files !! Allows you to save and play all or any part
of a sound file. Merge files together or split into pieces. Record, edit and save files with ease. Change playback/
record speed. Convert Mono to Stereo and vice-versa!! Record and Play requires /O board, cable, and audio
cquipment.

SOUND CABLE $10.00 - Connects MM/1 sound port to sterco equipment for recording and playback.

GNOP $5.00 - GNOP is the AWARD-WINNING version of PONG(tm) exclusively for the MM/1 !t You'll
go crazy trying to beat the clock and keep that @#$%& little ball in line! Professional Pong-ists everywhere
swear by (at) it I!! Requires MM/1, mouse, and lots of patience.

Coco Products (DECB)
HOME CONTROL $20.00 - Put your old TRS-80 Color Computer Plug ‘n' Power controller back on the
Job with your Coco 3!! Control up to 256 modules, 99 events!!

HI & LO-RES JOYSTICK ADAPTER $27.00 - Tandy Hi-Res adapter or NO adapter at the flip of
8 switch!!

KEYBOARD CABLE $25.00 - Five foot extender cable for Coco 2 and 3. Custom lengths available.

MYDOS $15.00 - CUSTOMIZABLE! EPROM-ABLE! The commands Tandy left out. Optional 6 ms. disk
dnive speed Supports double-sided and forty track drives. Set CMP or RGB palettes on power-up. Power-up
in any screen. Speech and Sound Cartridge supported. Point and click mouse directory and MORE. For all
Coco 3 with Disk Basic 2.1. More options than you can shake a joystick at!l

DOMINATION $18.00 - MULTI-PLAYER STRATEGY GAME! Battle other players armics to take
control of the planet. Play on a hi-res map. Become a Planet-Lord todayl Requires CoCo 3, one disk, and
joystick or mouse

N

SMALL GRAFX ETC.

"Y" & "TRI" cables. Special 40 pin male/female end

connectors, priced EACH CONNECTOR —-—mmmeee $6.50
Rainbow 40 wire ribbon cable, per foot ----ev--wmceeecceeee—= $1.00
Hitachi 63CO9E CPU and Socket $13.00
512K Upgrades, with RAM chips $72.00
MPI Upgrades
For all large MPIs (PAL chip) ———————— $10.00
For small #26-3124 MPI (satellite board) $10.00
Serial to Paralle] Convertor with 64K buffer, cables,
and external power supply $50.00
2400 baud Hayes compatible external modems $40.00
ADD $2.00S&H TOEACH ORDER

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK-JET PRINTERS, RIBBONS & Ver. 6 EPROM FOR
CGP-220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

TERRY LARAWAY, 41 N.W. DONCEE DRIVE
\ BREMERTON, WA 98310 206-692-5374)

INTRODUCINGTHEMM/IB!

A newmachine based on aboard produced
by Kreider Electronics featuring :

o 16 bit PC AT I/O Bus with 5 slots
o MC68306 CPUat 16.67 MHz
-code compatible with 68000
-2.4MIPS
o 0.5MB to 16MB DRAM (4 SIMM
sockets)
o IDE Hard Disk Interface (2 drives max)
o 1.44MB Floppy Interface (2 drives max)
0 2 16 byte FIFO serial ports

(up to 115K baud)
o Bi-directional parallel port
0 Onboard RS232 buffers
o Battery Backed Real Time Clock
o AT Keyboard Interface & Standard

AT power connector
o Baby AT Size Footprint
0 BASIC (resembles Microsoft Basic)
oMGR - graphical windowingenvironment,
full documentation!
0 “Personal” OSK V3.0

(Industrial with RBF)

- Display drivers: Tseng 4K, generic
inexpensive VGA
- SCSI card support: Future Domain 1680
& Adaptec AAH 15XX
0 OSK version 2.4 including network file
manager, PCF, SCF, SBF, RBF, Pipeman,
RamDisk, MW C Compiler version 3.2 with
r68/168, MW Basic, MW Debug, MW
Programmers Toolkit (Mail, print spooler,
UMacs)
0 UUCP package from Bob Billson
o Ghostscript (PostScript interpreter)
o Many other utilities and tools

Pricing as low as $400!
(motherboard, Personal OSK, & MGR, no
RAM)

Blacawk

Enterprises,Inc.
P.O. Box 10552
Enid, OK 73706-0552
Phone 405-234-2347
Internet: nimitz@delphi.com

the world of 68’ micros page 15

gucss, a signal voltage proportional to
the (angular) velocity of the galve Suf-
fice it to say that this signal can be put
into the driver circuitry in such a way to
keep the ringing out, but let the galvo get
quickly to where it is going. My galvos
take 4 mulli-seconds to move from point
to point.

Yes, there are not-so-mechanical ways
to move a laser beam like acusto-optic,
Kerr cells, but you’re getting into the
bucks and I don’t know much about
them anyway, but I believe there are
some use of them.

So this all describes a voltage-to-po-
sition output device for two axes. Input
an X and Y voltage and you get a spot at
that point (and a line from the previous
point).

This brings us to one more aspect of
the projector, the “blanker”. It would be
nice, at times, to be able to move between
points and NOT draw with light, so we
need a means of blocking, or blanking
the beam. The first inclination might be
to put another galvo in there with a black
vane to move in and out of the beam - and
this is the predominant method of inten-
sity control - now we have voltage-to-
intensity. Being cheap, I went back to
what is practically a folk art requirement
of the beginning laser graphics student,
the speaker. Yes that thing inside the
speaker box which makes the music come
out - to the audiophile, the driver - you
know, the thing with the big magnet and
the voice coil of fine wire and the dark
blue paper cone that seems to invite the
pressure of your finger....

Since these things move fast, every-
one who gets interested in drawing with
laser light thinks of them and attempts to
use them to do the deflecting - and
usually with measured results - it’s a
tough battle I only thought about. Hav-
ing majored in control theory, I knew the
galvo route was far easier; particularly
after finding the lower cost velocity feed-
back galvos adequate.

A small 1.5 inch dia. speaker, with an
added vane, works nicely, not only to
turn the beam on and off, but to vary the
intensity. Add another voltage-to-cur-
rent amp and you have the projector part
of the battle done. The rest...ch yca,
except for the three D/As, is all in sofi-
ware.

You know, I have this theory that
hardware and software arc interchange-
able just like matter and energy. You can
do it one way or the other..but that's

page 16 the world of 68' micros

another article. I'll move to the software,
afler I digress a bit here to cover related
hardware.

You say you'd like to play with this
yourself? It helps to have a laser and
there are many places to get them;, I'm
not covering that here.

First, the cheapest, yet lotsa bang-for-
the-buck, is a three motor (or more) cy-
cloid system (two isn’t bad to start), but
all you get is patterns, more motors, more
neaterest patterns!! Each motor has a
mirror on the end of the shaft that is
almost perpendicular, about 2 or 3 de-
grees off is good (remember the beam
moves twice as far as the mirror - angle
of incidence equals angle of reflection).
The mirror 1s sitting sorta like a wheel on
the motor shaft but it has a little wobble
and one of them makes a circle on the
screen. For the first one I tried, I used
child’s modeling clay to attach the mirror
to the shaft and I think its still attached.

-The incoming laser beam is placed
slightly off axis so the reflected beam
goes back past it and to the screen. With
addition of the second motor/mirror, the
beam is directed back away from the
laser and the third, back toward the laser
again. You will be restricted by the motor
size when it comes to positioning the
laser and motors since the beam has to
clear the motor bodies. Also, the first
mirror can be the smallest, but each suc-
cessive mirror must be big enough to
intercept the entire pattern from the
one(s) before it. So the idea here is to get
the mirrors as close as possible, yet get
the beam past the motor housings. You
change the motor speeds and directions
— have fun. Just remember, motors
have a finite lifetime, cheap ones wear
out fast when run continuously. I also
know of a product which is a real laser
and a wobbly mirror with two coils which
you hook up to your stereo and it draws
neat designs directly from the music.

Now, you say, fergit-it, I want to do
cheap VECTOR graphics, like the big
boys...not just loopity-de-loops...we’re
talkin® words and things...dad-blast-it
there MUST be a way to do it for justa
couple-o bucks!

Well, EVERYBODY (even me) who
wanted to do it said something like “HEY,
Speakers move fast, I'll start there and
improve on that idea.” This is the folk art
part, though maybe it should be called
folklore. Well, it can sorta be done. The
speakers can’t get very close together
and if you start making linkages it gets to

be a Rube Goldberg nightmare. A com-
pany called BEI makes fast piezo moved
mirrors, but they have deflection WAY
under a degree. All the really serious
fellas get tired of fooling with speakers
and quickly move to galvos, without
exception.

The workhorse of the laser entertain-
ment industry is the General Scanning
G120 galvo These are probably the
fastest, position feedback galvos, but
are in the kilo-buck range. There are
more affordable ones that DO give us-
able graphics. They start at about $130.
A word from the experienced here. Once
you decide to get out of cycloids and
into vector graphics were talking dedi-
cating your life to writing SOFTWARE.
Unless, of course, you want to buy (eek!
there’s that word) software from some-
one like me. With the big boys, like
MKW, were back to talking BUCKS!

I recently found out about a guy in
Fla. who claims to have a full, open loop
X-Y galvo set for about $130. (made in
Japan...its about time) He claims that
they are “almost™ critically damped - an
absolute necessity for vector graphics,
though he is doing the pattern thing and
isn’t too worried about it. You can make
up for a little (maybe 5-10%) overshoot
in software, but this will mean that you
are not getting the full speed out of the
thing. Course, if

that’s all you got, maybe you’ll take it.
I’ve only talked to him and, like I

say, he wasn’t to sure about some
things. He also has some GS Galvos for
around $100, but they have no feedback
so they can’t be damped. Back EMF
feedback alone won’t do enough, I tried.

Rob Elkins

RK Manufacturing

4018 North 30th Ave.
Hollywood, F1. 33020
(305) 963-2948 (machine)

What DO I use? Well, that’s sorta my
secret, but they are General Scanning
Galvos. They are slower units for strip
chart recorders and they are velocity
feedback only. They’re rated at 100 Hz
but I'm getting 150Hz 3dB BW (sine
wave). I get a 4ms. critically damped step
response which is good enough to get a
five letter word, block letters, with mini-
mal flicker. I use current drive with
velocity and voltage (back EMF) feed-
back. They were about $130 each new 2-
3 years ago. The fella who got me

interested in laser graphics gave me two
and said, “here, I found these in some
surplus house, you can’t really do any-
thing with them, but you’re welcome to
goof around”

Now I get to the things more closely
related to the software and the CoCo.
Individual images are drawn (entered)
on the CoCo’s X-Pad. A single push of
the pen stores the X and Y coordinates
of a single dot or vector. Thought I don’t
use 3D images, those who do, will also
have the Z coordinate in there;, “draw-
ing” the third dimension gets a bit tricky
and I’'m not going into it here. Drawing
a 2D image is not a particularly complex
function, so I wrote my own software for
it and Basic is fast enough. [have two
ml routines for speed. One puts a draw-
ing grid on the screen and the other
tracks the end of the image as points are
edited in / out.

Though it generally works quite well,
the X-Pad will hunt between adjacent
pixels occasionally, so a little sluggish-
ness in the software is a bit of an advan-
tage. To make the drawing of written
words and other smooth images easier,
I added a switch on a cord to duplicate
the pen’s tip switch. It is held in the other
hand and allows the image to be drawn
without requiring pressure on the pen
tip, which is awkward to maintain. When
holding the switch down, vectors are
captured at about two per second as you
“write” with the pen. I also replaced the
ball point pen cartridge with a steel rod,
smoothed on the end. The tip is a tittle
larger than the pen tip and easier to slide
around. You are usually looking at the
screen when drawing, so there’s no ad-
vantage in having the pen write. In fact,
it is a disadvantage since at times it is
helpful to draw the image on a piece of
paper, first, to allow seeing it and making
adjustments before committing it to
RAM. Then you can trace over the
paper on the X-Pad.

This gets you two bytes for each
vector, an X and a Y, but there’s one
more thing to consider. At times we will
need to have disconnected lines in our
image, so we need to turn off the beam
and move the scanners. It is also usual
to turn off the beam at the end of every
image so there is no line to the next image
when multiple images are displayed. A
third byte per vector holds the intensity.
When drawing images, the intensity is
usually just either on or off and this is
toggled with the B key.

For a blanked line, I use one of those
obscure POKEs, into some graphics
variable, to get a dotted line on the
screen.

When you need to turn off the beam
within an image, you may need to put
some extra vectors at one point to make
sure the beam gets there before blank-
ing, then you shoot a couple of blank
vectors to make sure it is off before it
moves away. Sometimes you have to
experiment to find out how many of
these extra vectors are needed. The
delay between vectors can be different
for each image and depends on what the
image is, so the number of blanks re-
quired varies. The time required is the
time for the scanners to stop and for the
blanker to move in / out.

One bit of the intensity byte is an end-
of-image flag so the display processor
knows when the image is done. This
makes it also a status byte, but I use the
terms interchangeably.

So now we have an image (a vector
list) in RAM and on the screen (I draw
lines on the screen between points as I
captured vectors).

The display size is 256 x 256. Since the
PMODE 4 screen is only 192 high this
could be a problem, but there aren’t
many images which need to go below
that. Many of the computer generated
patterns do, but its better to see them on
the projector anyway; it’s usually nec-
essary to adjust the inter vector delay to
get the desired result.

I have a routine I call the circle genera-
tor which uses the sine and cosine func-
tions to generate what are technically
lissajous patterns, but get quite complex
due to variable k-factors which are manu-
ally entered. This produces some inter-
esting patterns including multi point stars
and some very interesting quasi-ani-
mated thingys. The X-coord. is the sine
and the Y-coord is the cosine of the
angle. However, to get more than just
circles out of it, the angle has a multiplier
which is different for the sine and cosine.
The three things entered at the start are:

Degrees per step of the angle which
normally starts at zero and stops at 360.

The sine (horiz) factor placed like so:
Sin(hk*angle).

The cisine (vert) factor placed like so:
Cos(vk*angle).

Specifying these (as well as the de-
grees per step) gets to be a real science
and very large values of hk and vk, in the
thousands, can produce the best re-

sults. I must point out that the effect of
some of these is completely different on
the laser projector than on the more
static screen. This is also done in Basic
since floating point is required and the
image is created only once so there is no
real time requirement.

As I said above, the time between
vectors is a variable for each image. If
you are drawing a square, you want the
beam to get to each vertex before pro-
ceeding to the next, for nice square cor-
ners. In this case, you want a delay equal
to the step response of the scanners. If
you draw a circle, you don’t want the
scanners stopping or even slowing sig-
nificantly (except for a special effect), so
the delay is made small. This way, the
scanners are constantly “chasing” the
vectors coming from the D/As and a
smooth curve is drawn.

If you need both in an image, you can
set the delay short. In the places where
you need full stops, you can put several
vectors in the same place to wait for the
scanners to catch up.

Since I elected to have this “inter-
vector delay” determined by the soft-
ware calculation loop timing, delays are
typically over 255 requiring this to be
one of the few word variables.

Frequently, images need adjustment
to get what you want, so typical select
then move, delete, insert functions are
available. Here is where another ml rou-
tine speeds things up by scanning
through the image’s vector list to find
the nearest one for editing. The algo-
rithm I use here is to scan through the X
coords until one is found within 4, then
see if the Y-coord. is within 4. This finds
the first point within a 4X4 box and works
fine.

The last aspect of images is saving
them for later use. Of course, that’s on
disk, and I simply use SAVEM and the
transfer address is irrelevant. To make
them re locatable, I go back and change
the load address in the file to $0000
allowing me to use the LOADM offset as
the load address. In thinking about this
now, I realize I could save a disk write if
I left the load address as is and simply
read it before re-loading the image and
calculating the offset to put it where 1
want.

The display processor is the code
which is running when an image is being
displayed by the laser projector. It dis-
plays the images, applies all the motion
parameters, and has the ability to inter-

the world of 68’ micros page 17

pret a list of commands to make these
images come and go, move and jump and
spin...all in about 2K of code.

Several images can be displayed at a
time and each is controlled independent
of the others. The 6809 is really well
suited to the complexity I have chosen;
just enough registers and capability. I
needed four pointer registers and some
twos complement math.

There is one thing to be noted here
before going on to motions. The coor-
dinates in an image’s vector list are never
changed once it is drawn and editing is
complete. Starting with an X or Y coor-
dinate from the vector list, the appropri-
ate parameters are applied in a temporary
variable then the final value is sent to the
scanner and discarded. The scanner is
the bit bucket. If they were changed with
every calculation, the accumulated error
from the limited precision would distort
the tmage after a few passes. Images
exist in what is called “Image Space” or
the “Image Universe”. That is to say
that images are stored full size, centered
on the screen and un-rotated. The origin
(0,0) is usually in the center of the image
in image space. This is important be-
cause this is the spot on the image which
gets moved to the desired location, and
it is the center of the size changes and of
rotations.

When we go over...er translate...or is
it transform to the display space (or
universe), we want to simulate real world
actions so we will want to select which
images to display, move them around,
change their size, and rotate them.

These operations can not be per-
formed simultaneously, so the order of
operations must be given some thought
or strange things may result. I elected to
do the rotations first so that perspective
and depth cue were always seen in full
force. This is actually not natural since
small things have little perspective. 1do
this to enhance these very interesting
effects and nobody has objected yet.
Also, the calculations are done real time,
one vector (point) at a time, as they are
sent to the scanners.

To see what can happen by selecting
the wrong order, lets look at moving an
image before scaling it. Remember bytes
and 256. The way I did it, the center of
image space is 128,128. Image coordi-
nates can go from (0,0) for the lower lcft
to (255,255) for the upper right. If an
image is large (and remember they usu-
ally all are) and we add a move offset

page 18 the world of 68' micros

such that the resulting coordinate either
goes over 255 or under zero, the result
will do what we refer to as “wrap”. The
resultant byte will still be between zero
and 255, but it will enter the other end, so
to speak. Now, there will, of course, be
a carry, but I would have to be using
double precision to account for it. That
takes time, and that we ain’t got when
using the 6809 at under IMHz and doing
all this stuff. So, by scaling before mov-
ing I stay inside the universe. Basically
this means “DON’T WRAP”. When
you do wrap, that which exits the uni-
verse on one side enters on the opposite
side. Since everything is done point by
point, this tears an image apart. I have a
mathematically closed number system
of 0-255.

Motion calculations are done on the
fly, one vector (point) at a time, as they
are sent to the scanners. Moving an
image around the screen is simply a
matter of adding an X and Y offset to the
X and Y coordinate, of each vector in the
image, respectively. There is an X offset
for moving horizontally and a Y offset for
moving vertically. The move offset is
the last to be applied which greatly helps
avoiding wrap.

Changing the size, or scaling an im-
age, is accomplished by multiplying each
coordinate by the scale factor which
goes from 0 to 1 (0 to 255 at the processor
level). Since the image in image-space is
at the origin, scaling the coordinate val-
ues changes its size. There are indepen-
dent X and Y scale factors allowing
special effects.

Now comes the neat stuff. Ionly to 2D
images, but they do rotate into the third
dimension and there are some tricks to
get a full 3D thingy on the screen.

I’'m not going to go into full detail on
the rotation calculations here. I will
provide technical information in another
document. There are some things which
work in concert to make a very nice
package. To calculate the rotated X &
Y coordinates, sine and cosine func-
tions are required. By restricting the
rotations to a fixed number of steps
things can be greatly simplified. A fixed
number of angles suggests a look-up
table and 256 entries is a nice number.

Something very nice happens when
this is done. An eight bit pointer register
makes an ideal trig table pointer in this
case. This register contains the angle
and the entry it points to is the cosine in
my case. Since the sine and cosine

functions both repeat after one cycle
and the pointer register will also “auto-
repeat” the table, the pointer register
makes the ideal trig table pointer. There
is absolutely no overhead required to
baby sit the pointer to keep it within
bounds. Increment or decrement it with-
out consideration for any overflow; you
always get the proper value. This gives
a step size of 1.4 degrees which gives
very smooth rotations.

Also, only one table is needed since
the sine and cosine are identical except
for being shifted by 90 degrees from
each other. In this case 90 degrees is 64,
so subtracting 64 from the pointer, points
it to the sine. Again, over/under flow is
ignored.

To rotate an image, each vector is
taken one at a time. The image space X
coordinate is multiplied by the appropri-
ate value from the trig table. If needed for
the particular rotation, it is added to a
similar product of the Y coordinate and
proper trig value, then sent to the scan-
ner. The exact steps are different for
rotations about the three axes and are
spelled out in the technical section fol-
lowing this paper. The convention I
selected for the axes puts the X axis
horizontally, pointing right on the screen,
the Y axis vertically, pointing up on the
screen, and the Z axis coming out of the
screen.

This was the biggest chalenge of the
display processor. The 6809 has an un-
signed multiply, so I had to build a signed
multiply - the first attempt resulted in
images being torn apart when rotated.
The routine simply looks at the sign of
the operands, forces them to be positive,
multiplies and makes the answer the
proper sign. I also made it a macro.

When rotated, the images have per-
spective otherwise there would be virtu-
ally no illusion of rotation. That is, parts
of the object which have been rotated
further away from the observer should
look smaller; and closer parts should
look larger. This tends to be one of the
more esoteric concepts in graphics, but
it can be simplified, as I will show.

The first thing which is needed is the
Z distance of the newly rotated point,
provided it has been rotated out of the X-
Y plane into the Z dimension. This is
calculated using the same trig table. Now,
true perspective is calculated by divid-
ing the X and Y coordinate value by the
7 distance (with appropriate sclection
of the screen and viewer locations).

Division is a lengthy process for the
6809, so I developed an effective and
quick approximation which I call “25%
Linear Perspective”.

Taking a simplistic view of perspec-
tive, I reasoned this way. If I make the Z
value go positive and negative, it can be
used to increase and decrease the size of
the image as it moves toward or away
from the viewer. This is just like the
overall scale function described above
(apphied to single vectors) and is done
by changing the distance from the point
to the center of the object. Because the
center of the object is at the origin (0,0)
this simply means increasing and de-
creasing the coordinates. The simplest
and fastest way to do this is by addition.
I take the Z coordinate, divide it by four
(this is just two shifts right) so it only
effects the size a small amount, and add
it to the both the X and Y coordinates for
that point.

I also included what is called “depth
cueing”. This is a somewhat un-natural
but effective technique used to further
enhance the the depth illusion where the
parts farther away get dimmer. For this,
the Z coordinate is added to the inten-
sity byte before sending it to the blanker.
The polarity is such that moving away
dims the intensity.

Although not a motion in the classical
sense, one final parameter which is part
of the motion parameters is intensity. By
allowing modification of the entire
image’s intensity, [can fade images in
and out.

The 6809 has four pointer registers
and that is just what I need. One is used
to point to the image X, Y and status
bytes when stepping through the image
and applying the motions. The second
points to the image’s parameters.

The third points to the trig table. The
fourth point to the commands to be
described later.

Keep in mind that all the motion opera-
tions are always applied which means

that an image which is displayed cen-
tered on the screen full size, and un-
rotated,:

P

1- Has zero added to all the coordi-
nates.

2- Has all coordinates scaled by one.

3- Has been rotated zero degrees with

zero perspective added.

With everything I've described so far,
there are cight motion parameters for an
image 2-Move, 2-Scale, 3-Rotate, 1-In-

tensity. Because it is always better,
when possible, to have the computer do
the work for you rather than the other
way around, I added two more concepts
to make the simpler motions easy.

The ability to re-define the center of
the image on the fly allows flexibility.
The image can be rotated around any
point, not just the center that was de-
fined when it was drawn. This makes ten
motion parameters.

The last group of parameters yields
considerable capability for a small addi-
tional amount of calculation. These are
the auto increments.

With this scheme, it is easy to see that
if I wanted to slowly move an image
across the screen, I would have to up-
date the move offsets frequently and in
small steps, so the image is drawn over
and over, each time in a new position. All
these move offsets would have to be
stored somewhere and could amount to
a considerable amount of data. IfI have
the display processor move things for
me, I only have to specify how. The
easiest kind of motion to describe is
constant motion, where the change in
position per time is constant.

This requires that only a speed be
specified. So, I have increment param-
eters for the eight motion parameters.
Each time an image is displayed, the
increments are added to the respective
motion parameters to move them to the
next position. If the X move increment is
equal to one, the image is drawn one step
to the right of the previous position,
resulting in a constant speed of one, to
the right. This means only one command
is needed to start a motion. The image
can move across the screen, grow/shrink,
spin or fade infout. With the eight bit
pointer into the trig table wraping itself,
rotations do the same thing - one com-
mand - go until the speed is set to zero.
This is nifty. This brings the number of
motion parameters for one image to 18.

Now, producing images is quite a trivial
matter, at least that’s the way it seems to
me. Also, once the display processor is
functional all the motion capability is
there. However, the choreography (con-
verting desired motions into computer
commands) is the killer. Anyone familiar
with GRASS?.

Eightcen parameters to keep track of
for cach image does not seem like a big
number. After all we have a computer
here and that’s a drop in the bucket.

Well, for the computer that’s correct.

It can keep track of thousands of numbers
and find and use then when instructed. The
problem hereisthe Brain-Computerlink. By
defining commandsto change motion param-
eters and coding a parser to grab them and
implement them, we have created a software
processor. Hence the name display proces-
sor. Thereareeighteen things wecandowith
animage atany given time and the first thing
one may be inclined to dois make some kind
of command line interpreter or assembler.
However, this is cumbersome at best. The
control of several images traveling in complex
movementsrelated tosimulate a simplereal
world situation tumsout to be very complex
attimes. Anassembler onlyrelieves a small
amount of the burden. A better way would
be with a graphical interface and that’s still
inthe future. One issueI've struggled with
here is howto specify the motion speeds in
a non textual way. As they say, that’s a
whole ‘nuther subject.

So, there you have it. I have two types of
systems. The full system is disk based for
image and showdevelopment and torunmy
“big” shows. Ithas the graphics tablet and
canmanually display any image or any com-
plete show off disks or automatically run
anything on disk, just keep puttin’ disks in.
Theotheristhe 1/2 cu. footbox. Everything’s
inside - the laser, scanners, CoCo board and
power supply. Show is on EEPROM. A
couple of these can be put ona busand cued
from the masterto display many internal
sequences. [haven’t finished that software
yet.

I must be honest and admit that I’m still
impressed at what I get out of the CoCo (so
was my “professional” buddy who got me
started in this about ten years ago) ; butI'm
told that I’'m easily impressed.

What do Ido with them? Well, school
dances and parties in the area. My son has
aD.Jbusiness and he usesone sometimes. I
also occasionally give a demo lecture to a
school or Boy Scout group.

I haven’t talked with any other small
system developers, so I can’t make any
comparisons with whatanyone else is doing.

I am always looking for someone inter-
ested in getting involved. I'm hoping that
there may be someoneinthearea. I’'mdoing
allthe hardware, software, and mechanical
design and could use some help.

the world of 68' micros page 19

Basic09 In Easy Steps

Advanced Programming: Memory Management

Chris Dekker

bus0912.txt

As promised earlier, this time around we
will take a look at memory management.
Managing your computer’s memory is an
important part of medium sized and big
programs written for the CoCo. The main
reason hereisthat the CoCo’s processor can
addressonly 64K atany given moment. This
is due to the fact that the 6809 (and 6309)
processor haveonly 16 pinsavailable to form
anaddresswith Thisgivesus2”16=65536
possible combinations or addresses. A short-
hand notation for thisis 64K. Since thisisa
hardware limitation, there is no way we can
work our way around this. Even ifyouinstall
2 Megabytes of memory, your CoCo’s pro-
cessor will access only 64K of it.

To get access to every byte in those 2
Megabytes we must do two things. First we
must add an extra 5 address lines at the
hardware level. The circuits that do this are
usually referred to as Dynamic Address
Translation hardware or DAT for short.

Secondly we must have a piece of software
that divides the computer’s memory into
blocksand thendrivesthe DAT hardware so
that it will switch the correct blocks into the
64K address space available to the proces-
sor. Although it may need some patches to
expand it’s horizons, this piece of software
1salready part of the OS-9 operating system.

I'won’t explain in detail how this works,
but basically what OS-9 does is the follow-
ing: Itdividesthe available memory into 8K
blocks and then sets up and maintains inter-
nal tables which show which blocks are free,
whichonesareused and to what process they
belong. When you want toruna process, OS-
9 loads certain values into registers in the
DAT hardware that cause the microproces-
sor to access the correct blocks. When you
want toaccess adifferent block all OS-9 has
todo is copy that block’s number to a DAT
registerand you’re all set to access the bytes
inside that block.

The main thrust of memory management
for Basic09 programs is switching the correct
block(s) intoand out of the microprocessor’s
address space. For small programs this isno
big deal since they will easily fit into the 64K
space. For somewhat bigger programs there
may be probiems reflected by an error 43
message. The reason for this grey area (may
or may not work) is that Basic09 will auto-
matically (try to) switch the code that it
needstocompleteatask into the processor’s
64K address space. If it succeeds you will
never know it happened, or you will be

page 20 the world of 68' micros

looking at error 43.

In order to understand this better you
should know the following: on the CoCo
memory is cut into 8K blocks. This means
that the processor can access 8 of those
blocks simultaneously. But no more than
that. If it needs to access a 9th block one of
the 8 hasto go tomakeroom for the new one.
Those 8K blocks cannotbedivided. Evenif
you load a small utility like Makdir (34
bytes) into a block; using that utility will
cause the entire block to be switched into the
processor’s address space.

Of coursethisisa wasteof (8192-34)8158
bytes. Reducing this wasteis theidea behind
merging a dozen or so of such small utilities
intoasingle file. Thisallows youtoaccessall
of them “for the price of one”.

Sohowdoes Basic09 fit into thisscheme
of things? For starters we have to keep in
mind that in order to run Basic09 programs,
either Basic09 itself (3 blocks long)orRunb
(2 blocks) must be in your 64K address
space. Unless you start them up using theex
modifier, a copy of Shell will also be in your
address space. This means that you may
have used up half of your address space
before typing in one byte of code. Add tothat
the workspace for Basic09 and a copy of gfx2
and syscall and your 64K could be filled up
withoutdoing anything useful.

As you can see it is important to try to
merge as many programs and utilities as
possible to optimize the use of our 8K
blocks. This can be thought of as a first step
inmemory management. Note that whenyou
are merging modules, youcannotgo 1 or 2
bytes over the 8K (8192/$2000 bytes) limit
or you will waste another 8K block.

Before we dig any deeper into the matter
1 want to point out a difference between
Basic09and Runb. With Basic09 all program
code and dataspaceis located inside Basic09’s
workspace. Once a program is packed and
runs with Runb it behaveslike any other OS-
9 process: with it’s program code and data
space separated into individual blocks. This
means thatyou can effectively manage your
memory by manipulating your programcode,
it’s data space (buffers, etc.) or both.

Let’s first take alook at managing program
code. Let’s assurmne that you know up front
that you are working on a large project.
Sometimes a program starts small, but after
continually adding codeit gets so big that it
has to be split up. This isn’t easy and it is
almost impossible to give hints on how to

that in an article like this. If you think there
is a chance that will happen: assume the
worst and split up the code before you start
writingit.

Insome instances there is an easy way out
for managing you programcode. For instance
for accounting programs you can split the
code into totally separate programs: one for
dataentry/editing, one for making printouts,
one for compiling cashflow statements, etc.
You can then run these programs one after
another or simultaneously indifferent shells.

Unfortunately, this easy way out is not
always available. Programs like CoCoTop
and the canvas program fromlevel I graphics
aremuch toobigto fit intoa 64K workspace,
but still must appear as a single program to
the user.

Such code isn’tall that hard to write, but
it takes some ingenuity todebug. Usuallyone
endsupdebugging the subroutinemodulesas
stand alone programs. Youcanthenlink them
to the main program when they are up and
running (by replacing some DIM statements
by PARAM, etc.).

Before I tell you how such programs are
structured, let’s seehowmuch space wehave
to work with. You must write these pro-
grams from the point of view that they are
running under Runb. Assembling and run-
ning the source code with BasicO9isonly a
temporary measure. Tomake the bestuse of
our64K space wecanmerge Shell, Runb, gfx2
and syscallinto one file. This leaves us with
room for a few small utilities (like link and
load which makes booting up easier)and still
stay within two 8K blocks. Of course your
program takes at least 1 block, which ac-
counts for three of the eight available blocks.

How the other five are used depends
partly on how you start your program from
the OS9: prompt. Let’s say we have a pro-
gram called cashflow that is 8000 byteslong,
There are several waysto start this program.
Forinstance:

cashflow <ENTER>
ex runb cashflow <ENTER>
runb #24k cashflow <ENTER>

All three possibilities will start the pro-
gram, but memory requirements are differ-
ent. All three cases use the three blocks I
mentioned above. Ontop ofthat the first case
requires three more blocks: onc orthe shell
that launches the program and two (16K) s
the default data space for Runb.

The second case requires two additional
blocks because the “ex” kills the shell that

starts the program. Note that in this case
the program cashflow must exit by start-
ing a new shell or you may end up
looking at a blank screen with nowhere
to go but the reset button. After winding
down everything else you can end your
program with th: following code:

SHELL “shell”

BYE

The 3rd case requires four extra blocks,
for a total of seven, because it also
reserves extra data space. Of course
modifying the allotted data space is only
useful if your program can use it or get
by without it.

Now that we have exhausted all pos-
sibilities outside modifying the actual
program code we will take a look at that
too. To make full use of the CoCo’s
address space we must (or at least try to)
split the program into 8K chunks (of
packed code). We can do this by writing
modules that are (almost) 8K long or by
merging modules into various 8K blocks.

The easiest way to achieve this is to
merge the packed modules into files that
are as close to 8K in length as possible.
Your main program should then include
some code to load these files. Since OS9
loads each file into a separate block we
are all set to take advantage of the extra
memory.

As I mentioned earlier Basic09 will try
to switch whatever module it needs into
our address space. So the only extra
code we have to write is the code to get
rid of unwanted blocks. This has been
made easy for us through the KILL com-
mand. If you KILL a module Basic09 not
only unlinks it, it will also switch the
block which holds the module out of
your address space.

To run and unlink a module called
“edit” your code can look like this:
RUN edit(parameters)

KILL “edit” .
REM check for errors that edit may re-
turn

Although this code will work, there is
a chance that it will get you into trouble.
If your main program calls “edit” in this
fashion a number of times, you may end
up staring at an error 43 message. For no
obvious reason I might add. I mostly use
a shightly modified version of this code
that doesn’t report the problem.

DIM module:string[10]
module="cdit”

RUN module(parameters)
KILL module

Your “main program” becomes a very
simple affair in these setups. It basically
holds the code to set up and initialize
common variables and to run the various
subroutines. It can also do error han-
dling and file handling, so you won’t
have to duplicate that code in every
subroutine. This module usually also
holds the code for a main menu. All these
functions make it the central hub of your
code: each subroutine module that exits
comes back to this module.

Since this module usually comes no-
where near filling the 8K block you can
merge a number of small, often used,
subroutines with it in the same block.
These can be routines for keyboard in-
put, menu handling, or ML subroutines
that perform a specific task. An added
advantage to doing so, is that your sub-
routines don’t have to KILL these mod-
ules every time they call them.

Along the same lines: if a subroutine
module happens to RUN another sub-
routine that does not reside in the same
block as the “main program” it must
issue a KILL command for that module
too. If it doesn’t, your address space will
gradually fill up and you will be looking
at an error 43.

There is one other sticking point that
may throw off your grand scheme. OS9
loads every module only once. If you
have two programs that use the same
module, that module will be loaded along
with the first program. If you load the
second program later on and run it, this
program will have to switch a block of
program 1 into it’s address space before
it will run. If your address space is al-
ready filled, you get to see error 43 once
more. In this case you must UNLINK
both programs and, once unlink reports
an error #221, reload program 2 and run
it again.

And then there is managing your data
space. Sometimes even a small program
needs a lot of dataspace. A prime ex-
ample would be dupdisk, which backs
up floppy disks in one pass. For a DS 40-
track disk this amounts to 360K, which is
of course much bigger than our address-
ing space.

So once again we must switch blocks
of memory. But this time it isn’t as easy
as using RUN and KILL statements.
This time we must content with system
calls (and a bug or two).

Before we dig into the code I will give
you some examples of what you can do.

I already mentioned dupdisk. This pro-
gram uses two different types of memory
management. First it finds out how large
the disk is that it has to copy. Then it tries
to reserve that much space for itself. If
succesful, it copies the disk into that
dataspace block for 8K block. To copy
the contents of the data space to another
disk the whole process gets reversed.

Another process 1is used by
homepac’s mailer. This program reads
it’s datafile into graphics buffers, 60
records per buffer. Although this may
look strange, it allows the program to let
OS89 do all the dirty work such as
(de)allocating buffers, keeping track of
them, etc. All the program has to do is
convert record numbers into buffer num-
bers.

A third way of managing your data is
one that I used for Homepac’s check
program. This involves no system calls
or block switching, but requires some
extra Basic09 code. In effect this pro-
gram extends its buffer into the datafile
on the diskdrive. I suppose one could
call it a virtual buffer. Using this tech-
nique I could size the buffer so it will fit
within Runb’s default data space, yet
the program can access very large quan-
tities of data.

Of course there are a few more ways of
dealing with data: Quickletter for in-
stance, has an 18000 byte main buffer
and that’s all you get to work with.
However, since few of us regularly write
documents larger than that, this is not
really a big problem.

At the other end of the scale you could
tell your program to use a diskfile as its
buffer and process that one record at a
time. This gives you vast amounts of
space, but questionable performance
because of disk access times (especially
for floppy drives).

I wanted to show you some program-
ming examples here too, but the article
has become too large. So that will have
to wait until next time.

Chris can be reached in care of
this magazine or directly at:
Chris Dekker
RR#4
Centreville, NBE0S 1HO
CANADA

the world of 68' micros page 21

(Almost) FREE GEnie signup!

To sign up. just follow these simple steps:

1. Set your communications software for half
duplex (local echo), at 300, 1200, 2400 baud.
2. Dial toll free: 1-800-638-8369, or in Canada,
1-800-387-8330. Upon connection, enter
HHH

3. At the U# prompt, enter JOINGENIE then
press <RETURN>

4. When asked to enter a code enter MSC524.
This will give you a $50 credit toward your first
month’s usage.

5. Have a major credit card ready. In the U.S.
you may also use your checking account number.
For additional information call 1-800-638-
9636 or E-mail TANDYS on GEnie or
hogan@genie.geis.com on Internet.

FOR SALE: 512K CoCo 3, CM-8 RGB
Monitor, FD-501 double sided drives (two!),
DMP-10S printer with stand, 300 baud modem,
two joysticks, hi-re interface, and mouse - all
inexcellent condition with dust covers. Rainbow
Magazine from 2/87 through 1/90 with some
Rainbow on Disk. Many ROM Paks and
approximately 50 disks full of programs. All
for $275! Please call 9-5 EST 1-800-283-
5412, after 6pm EST 508-833-0765. Ask for
Ed. or write: Ed Eszlari
28 Cromwell Road
Sandwich, MA 02563

micro notes

EFFO
(EUROPEAN FORUM FOR 0S-9)

EFFO stands for European Forum For OS-9 and
was founded in 1988. Its main goal is to support
Microware's OS-/68K. Support primarily
consists of providing communication between
users and those who do not yet but would profit
by doing so.

EFFOisindependent from and not commercially
related to any company. Members are
companiesoffering OS-9 compatible hardware,
system programmers, computer clubs and end
users such as private computer owners, research
institutes and university departments.

EFFO provides a collection of public domain
software that is of general interest and that
helps to make OS-9 more attractive to
programmers and users. It also coordinates
ports of (mainly UNIX) software (¢.g. to avoid
redundant work) and makes all the nuts and
bolts of managing an operating system available
to everybody so that “the wheel isn't re-
invented” all the time.

The EFFO software pool disks contain ready-
to-use software that has been thoroughly tested.
The software is maintained and updated
continuously. All disks come with printed

installation and use documentation. 23 disks
(up to 1992) also have 0S-9/6809 software.
EFFOalso hasa printed forum: the journal *OS-
9 International’, devoted to OS-9 related
topics. Every issue includes the most recent
version of EFFOs public domain software list.
This list will also be made available on the
EFFO bulletin board and through regular
postings to international network boards.

For more info, contact EFFO at:
EFFO
P.O. Box
CH-8606 Greifensee
Switzerland
FAX +41 1 940 38 90
e-mail: effo@effo.ch

This is also the address where the editorial staff’
of ‘OS-9 International’ and all active EFFO
members can be reached in case of questions
concerning particular articles or software
packages.

Last but not least we invite you to join EFFO.
As a regular member you get some price
reduction on our PD disks and a one-year
subscription to ‘OS-9 International’. Contact
us for US pricing.

A
FARNAVSystems

Software, Books, and Hardware for
all 0S-9/0SK Systems!
ADD $2.50S&H
(34.00 Canada, $10.00 Overseas)

Box 321
Wamer Robins, GA 31099
Phone 912-328-7859
Internet: dsrtfox@ delphi.com

CoCo DECB Software:

CoCo Family Recorder - $17.50
Genealogy program for CoCo 3. Requires 2
drives, 80 col. monitor.

NEW! 08-9 Version - $32.50

DigiTech Pro - $12.50
Record any sound for easy play-back in your
BASIC or M/L programs. CoCo 3 512K.

ADOS: Support for double sided drives, 40/80
tracks, faster formatting, much more!
Original (CoCo 1/2) - $15.00

ADOS 3 (CoCo 3) - $25.00

Extended ADOS 3 - $30.00 (ADOS 3 req,,
RAM drives, support for 512K-2MB)
ADOS 3/Ext. Combo - $50.00

CoCo OS-9 Software:

Patch 0S-9 - $7.50

Automated program installs most popular/
needed patches for OS-9 Level 1. 512K and
two 40T/DS (or larger) drives required. (/28K
/35T users can install manually- state 35T.)

Pixel Blaster - $12.50

High speed graphics tools for OS-9 Level 1.
Easily speed up your game programming with
this tool kit and subroutines!

0S-9 Point of Sale - $62.50

Maintain inventory, print invoices, customer
catalog, etc. Multi-user capable . Supports
ASCII terminals. Menu driven. CoCo3.

Books:

NEW!! Mastering 0S-9 - $30.00

This is the long awaited update of Paul Ward’s
“Start 0S-9". New format is easier to read, has
easier to follow tutorials,and updated informa-
tion files. Comes complete with disk, which has
a few added utilities.

Tandy's Little Wonder - $22.50

History,technical info, schematics, peripher-
als, upgrades, modifications, repairs, much
more- all described in detail for all CoCo

CoCo Hardware:

DigiScan Video Digitizer - $150: Capture
images from VCR, camcorder, or TV camera.
No MPI required- uses joystick ports. CoCo
Max3, Max 10, Color Max 3 compatible.
Special order- allow 90 days for delivery. Send
$75 deposit, remainder due before delivery.

Puppo Keyboard Adapters - $70: Use IBM
PC/XT keyboards with your CoCo! Mounts in
your CoCo case with no soldering. 101 key
keyboards available for $30 with order.

FARNA Systems

Publishing Services

Type Setting and Printing: We
can prepare professional typeset
manuals, books, booklets, catalogs,
and sales flyers for you - we can
print or you reproduce as needed
from amaster set! Very reasonable
prices - inquire!

Mailing Service: If you send
catalogs or letter correspondence
to 200 or more persons at once, we
candoall work foryou for about the
same cost of your materials alone!
How muchis yourtime worth???

Contact Frank Swygert at
FARNA Systems for quotes

page 22 the world of 68’ micros

Jor all your CoCo hardware needs, connect with

C Nect 449 South 90th Street

Milwaukee, WI 53214

E-mail: rickuland @delphi.com
The main problem with OS9 undera CoCoistheserial port.
With a one character buffer, it’s hard to do much before the
senial port needs service. Windows and OS2 have the same
problem. Or did, until National released the 16550 uart- 16
bytes of internal fifo buffering gives multitasking systems
time to do some.

Announcing Fast232

Tandywith Sacia Fast232

bps load _ thruput load ____ thruput
2400 28.3sec 237cps 253sec 235cps
9600 73.6sec 938 cps 31.4sec 950 cps
57600 notavailable 32.6sec 5373cps
Local machines withfaster modems can now be connected
to properly (or improperly at 115K!). More down to earth,
Fast232 is a ROMPak sized case, which will accept a
daughterboard (once I get the case to close) to give two ports

7 \
NEWFOR 1995 FROM DISTO!

1.“Inside 2-Meg”: A techinical booklet that
fully describes how the DISTO 2-Meg
Upgrade kit works. Includes schematic, PAL
listing, theory and chip by chip circuit
explanations. $20 + $2.50 S/H.

2.“Blank Board Kit”: Includes blank virgin
boards (no components) of the SCII, SCI,
4IN1, MEBII, MPROM and Mini Controller.
Collect all the components and make your
own! $29.90 + $4.50 S/H.

3. Call for other DISTO products in stock
(limited quantities available)

inavery ‘concise’ package. OS9 drivers by Randy Wilson. DISTO
Freebonus software! The pd release of ‘SuperComm’ (Dave .
Phillipsenand Randy Wilson). All software includes 6809 and 1710 DePatie
6309 versions. St. Laurent, QC H4L 4A8
Fast232 $79.95 CANADA
Second port $45.00 L Phone 418-747-4851 y)
The 6th Annual

Atlanta CoCoFest

September 30 & October 1, 1995
Northlake Holiday Inn, Atlanta, Georgia

Show Hours:
Sat., Sept 30: 9:00AM - 5:00PM
Sun., Oct 1: 9:00AM - #:00PM

Admission:
$10.00 for both days (no one day passes)

Reservations:
NorthlakeHoliday Inn
1-800-465-4329 or 404-938-1026

Sponsored by:

Atlanta Computer Society
POBox 80694
Atlanta, GA 30366
BBS: 404-636-2991

the world of 68' micros page 23

Wittman Computer Products
873 Johnson Road
Churchville, NY 14428
Phone 716-494-1506 : Fax 716-293-1207
Internet: ww2150@acspri.acs.brockport.edu
K-Windows Chess for MM/1

Play chess on your MM/1..............covee... $24.95
X-10 Master Control for MM/1
Use MM/1 to control you homeil................. $29.95

Variations of Solitalre
Pyramid, Klondike,Spider,Poker and Canfield

0S-9 Game Pack
Othello, Yahtzee, KnightsBridge, Minefield,
and Battleship

MM/ $29.95 CoCo3.............. $19.95
WPShell

An OS-9 Word Processing Point and Click Interface
COCO3...cicetcteee st $14.95

Using AWK with 0S-9
Includes V2.1.14 of GNU AWK for OS-9/68000

NEW! WCP306 Computer!

MC68306 16.67MHz CPU, code compatible with MC68000.
Four SIMM sockets, 512K-16MB memory. IDE hard disk interface,
foppy interface, two seral ports, parallel port, real-time clock,
all buit into motherboard! Designed to use 16 bit AT expansion
cards (six slots) and standard AT keyboard, power supply, and
case. Comes with “Personal 0S-9/68000" and MGR, a graphical
user interface with complete documentation. Only $400 for bare
board as described above!

Call or write for a free catalog! Demo disks also available.
Owned and operated by William L. Wittman, Jr.

EDTASM6309 Version 2.02
$35.00

This is a major patch to Tandy's Disk EDTASM to support Hitachi
6309 codes. Supports all CoCo models. CoCo 3 version uses 80 column
screen, 2MHz. YOU MUST ALREADY OWN TANDY'S DISK
EDTASM TO MAKE USE OF THIS PRODUCT. It WILL NOT work
with a disk patched cartridge EDTASM.

CC3FAX
$35.00
Extensive modification to WEFAX (Rainbow, 1985) for S12K CoCo
3. Uses hi-res graphics, holds full 15 min. weather fax image in
memory. Large selection of printer drivers. Requires shortwave
receiver and cassette cable (described in documentation)

HRSDOS
$25.00
Move programs and data between DECB and OS-9 disks. Supports
RGB-DOS for split DECB/OS-9 hard drives. No modifications to
system modules (CC3Disk or HDisk) required.

DECB SmartWatch Drivers
$20.00

Access your SmartWatch from DECB! New function added to access
date/time from BASIC (DATES). Only $15.00 with any other

purchase!

RobertGault
. 832'N. Renaud
¥ Grosse Pointe Woods, M| 48236

313-881-0335
Add $4 shipping & handling per order

CoCoTop version 1.0 $24.95
CoCoTop version 1.1~ $19.95
CoCoTop 1.1 + Tools 3 $34.95
OScopy/RScopy $10.00
TOOLS 3 version 1.1 $29.95
Quickletter version 2.0 $19.95

Accounting level 2 $34.95
Investing level 2 $24.95
Level II graphics 1.2 $34.95

upgrades only $5.00 (return original disk)
Shipping+handling: US/Canada $3.00 all others $5. Prices in US
dollars Send cheque or money order NO COD’S. Call or write for
Canadian dollar prices. Mention the name of this magazine in your
order and you will receive a free bonus disk!

C. Dekker eee User-friendly Level 11
RR #4 Centreville, NB Programs!
EO0J 1HO, CANADA =

Phone 506-276-4841 \

Mid Jowa and Country CoCo Club

(non-prafit)

If you want support, we're here for you! MI&CCC publishes
the UPGRADE disk magazine, nowin itstenth year, fiveasa
national publication. We've grown to be one of the largest
CoCo outreaches in the world! We have subscribers in over
40 statesand five provinces of Canada, as well asin Australia
and England.

YourMI&CCC membership brings you:

1. A year's subscription to the UPGRADE disk magazine
(requires CoCo 3 and one disk drive), 8-10 issues peryear. This
is a news magazine, not a software disk. .

2. Access toour shareware/public domain/orphanware library-
- we keep only the best!

3. Optional Christian sub-chapter that gathers Christian
oriented software for those interested. '

4. ROM burning and other support.

Say you saw this ad in "68 micros" and receive
a bonus disk along with your new membership!

Mid Iowa & Country CoCo Club
Terry Simons, Treas./Editor
1328 48th, DesMoines, 1A 50311

Please include you phone number and system information

page 24 the world of 68' micros

The OS-9 Northern Xposure 5.0 il
C - 0S-9 Level I Color Computer 3 Software

NitrOS-9 v1.20 Call or write for upgrade info or $29.95
new purchase procedure. Requires Hitachi 6309 CPU

U S e r ? s G rO u p , Shanghai:OS-9 Introductory price $25.00

Send manual or RomPak to prove ownership

Thexder:0S-9 Send manual or RomPak to prove ownership $29.95
In CO Smash! Breakout-style arcade game $29.95
Rusty Launch DECB/ECB programs from OS-9! $20.00
Matt Thompsons SCSI System v2.2 “It flies!” $25.00

256/512 byte sectors, multipak support

Working to support 0S-9 Users

L : Disk Basic Software
Membership includesthe Users Group newsletter, | Color Schematic Designer v3.0 New lower price $30.00

MOTD, with regular columns fromthe President, | Oblique Triad Software Write for catalogue
Newsand Rumors, and “Straight fromthe Horse’s | color Computer 3 Hardware
Mouth”, about theuse of OS-9inIndustrial, Scientific | Hitachi 6309 CPU (normally ‘C* model, may be ‘B°) $15.00

and Educational institutions. SIMM Mcf'qo.ry Upgrade Runs Cooler! 512k $44.95 0K $39.95
: Sound Digitizing cable $15.00

. Annual Membership Dues: ‘ 0S5-9/68000 Software
United States and Canada Other Countries OSTerm 68K v2.2 External transfer protocol support $50.00

25.00US 30.00 US TTY/ANSYVT100/K-Windows/Binary Emulation
Upgrade from TasCOM (Send TasCOM manual please) $30.00

The OS-9 Users Group, Inc. T Greenboro Cres A orices in U.S. fund
. .o. Tunags.
6158 W. 63d St. Suite 109 Ottawa, ON KITAWE e 1 iy
Chicago, IL 60638 CANADA Prices include S&H
USA (613)736-0329.

Internet mail: cmckay@northx.isis.org

o ADVERTISER'S INDEX:
Don't have a subscription to

“microdisk™? Don't want to pay the Atlanta CoCoFest 23
high price for back issues? You can BlackHawk Enterprises 15
now get th lete Vol 1 of C Dekher 24
w get the complete Volume 1 o CoNect 23
microdisk for $3O (plus $250 S&H)' Delmar Company BC
That's an $18 savings over back DISTO 23
issues and a $10 savings over the Z% f‘fys’e”“ ?’522’25
subscription price! Just write and tell Mid Iowa CoCo Club 24
us you'want the entire volume 1. Northern Xposure 25
08-9 User's Group 25
Robert Gault 24
. Small Grafx Etc. 15
All files will be on as few disks as possible, not Wittman Compputer Products 24

separate disks for each issue. “microdisk” is not a
stand-alone product, but a companion to this
magazine. Subscriptions are $40 per year. Single
issues are $6 eachin US, $45/$6.50 in Canada.
Overseasadd $10 peryear, $1 each for airmail.

* Don'thaveasubscriptionyet?
WHAT ARE YOUWAITING FOR?! <= -,
" Subscribetodayl - - "

e (Detalls inside front cov\eb‘ S

the world of 68' micros page 25

» L ;&
"‘*Fgﬁlgss dem”?ﬁ*ﬁgifng?geg&u%ments the
Wﬁ “ s & 3 .“3‘ ‘

omputer serving customers
00 k-station, develop-

able inexpensively.

Distributor of MICROWARE SYSTEMS CORPORATION Software

This ad was prepared and printed using QuickEd under OS-9.

delmar co

PO Box 78 - 5238 Summit Bridge Road - Middlctown, DE 19709
302-378-2555 FAX 302-378-2556

	68' micros
	Table of Contents
	The editor speaks...
	Letters to the Editor
	Basic09 Subroutines
	Hi-lights from the Past - Part 1
	The Industrial OS-9 User
	The Hardware Hacker
	Operating System-Nine
	Programming the System IV (PT68K4)
	System IV Con't

	CoCo Laser Show!
	Basic09 In Easy Steps
	Micro Notes
	Advertiser's Index

