February 1995 Vol.2 Number 5 $4.50 Canada, $4.00 US

| Suporting Tandy Color Computer Disk BASIC, CoCo OS -, and 0S-9/68000

CONTENTS
The Editor Speaks 2
YO“ may soon be Letters to the Editor 2
able to use one of AL Seven Line Demo 3
. 14.4K BAUD (article) John Kowalski
these with your = 57,600 Bits Per Second 4
. (article) Earl Casper
CoCo... through the bit-banger! BASIC in Color 8
(column) Fred Remin
Industrial 0S-9 User... 9
(G-Windows series) Ed Gresick
The Hardware Hacker 11
(column) Dr. Marty Goodman
- - Operating System-Nine 13
AUto bOOt OS 9 {column) Rick Ulland
i i 0S-9/0SK Answers! 15
WlthOUt IOSlng (column) Joel Hegberg
DECB! Programming in "C" 17
(column) PJ. Ponzo
Basic09 In Easy Steps 20
(series) C.hris Dekker
Auto-Boot O0S-9 22
(article) Steve Hilton
[Infocom Games on MM/1 22
{article) Boisy Pitre
v Micro News 23
T Advertiser's Index 27
NOTICE: AS OF 01 JANUARY 1995,
o SUBSCRIPTION RATES WILL BE:
Puppo Keyboard Adapters US: $25/year, S13/ 6 mibs
. . , , , Overseas: $45/year, $23/ 6 mths (air)
$37/ year, $18/ 6 mths (surface)
" . 7] o (1st class US mail)
(See "micro notes'' for details) Canada/Mexico: $32/year, $17/ 6 mihs
(no change for microdisk)
POSTMASTER: !

If undeliverable return to:
FARNA Systems PB
Box 321
Warner Robins, GA 31099 ”

Address Correction Requested

\

P

I the world of 68' micros l
Published by:
FARNA Systems
P.O. Box 321
Warner Robins, GA 310990321

Editor: F. G. Swygert

Subscriptions:

$25/year (8 issues) US; $32/year for
Canada/Mexico ($13 US, $17 C/M for
six months- four issues). Overseas $45/
year ($23 for four issues) AIR; $37/
year, $18 six months for surface mail.
microdisk: $40 peryear, $21 six months, or
$6 per issue. Overseas add $10/year, $5/six
months, $1/single issue for airmail delivery.
microdisk contains programs and source
listings from each magazine; not stand-alone.

Advertising Rates:

$15 1/6 page, $20 1/4 page, $35 1/2 page,
$60 full page, copy ready. Add $10 for
special placement, $10 for typesetting ($5 1/
4 or less). Dot matrix will be typeset if
deemed unacceptable and submitter billed.
10% discount for four or more appearances.

All trademarks/names property of their
respective owners.

The publisher welcomes any and all contri-
butions. Submission constitutes warranty
on part of the author that the work is original
and not copywritten by another party. All
opinions expressed herein are those of the
individual writers, not necessarily the pub-
lisher or editor. FARNA Systems reserves
the right to edit or reject any submitted
material without explanation. Renumeration
discussed on an individual basis.

Back issues are $4 per copy. Overseas add
$1 each for surface, $2.50 airmail delivery.

Newsstand/bulk orders available. Deal-
ers should contact the publisher for details.

Problems with delivery, change of address,
subscriptions, or advertisers should be sent
to the publisher with a short description.

The publisher is available for comment via
e-mail at dsrtfox@Delphi.com. The Delphi
CoCo and OS-9 SIGs on Delphi are also
frequented (The Delphi SIGs are still spon-
sored by Falsoft).

ENTIRE CONTENTS COPYRIGHT
1995, FARNA Systems

page 2 the world of 68° micros

The editor speaks...

F.G. Swygert

I recevied a lot of little notes
withrenewals.. I thank you all for
those... but no real letters of gen-
eralinterestexcept the one printed
to the right. Do let me know
what's going on cut there!i Ineed
yourinput so I'll know whattodo
inthe future, and if anything needs
correcting.

I've made a few changes. I de-
cided we needed a slightly differ-
ent look on the cover, so changed
the title. Whatdo you think? I also
changed the "end of story" marker
a bit. I may want to change the
coveragain nextyear. if you have
any ideas, sketch them out and
send them in! The only restric-
tions are thatIneed the infol have
on the front, including the table
ofcontents. If move the contents
inside, we lose 1/3 of a page. Of
course, that might not be so bad...
what do you think?

I do have some bad news about
the programming contest. I did
get some great entries, but not
enough. I'm not backing out of
thisentirely, but Ican't justify the
prizes I had announced either. I
only received between six and
eight entries... I had expected at
least a dozen! I am going to be
sending four general prizes to
those who entered... I haven't
decided exactly whatthey will be
yet.

Until next time, keep those
CoCosand OS-9 (68K)machines
running, and welccme to the first

issue of 19951!
\ .
MW

Letters to the Ediior

According to the last issue of
"UpTime" I should have two issues of
"68' micros" added to my current
subscription. [am renewing at this time
for another year anyway.

I have a question about the "Darts"
program in the May 1994 issue. I finally
got around to typing it in and got a
syntax error in line 20. After retyping
several times, I tried deleting the line
and got a function error and a program
lock-up. I am not a programmer so can
you tell me what I am doing wrong or
is there an error in the program?

Laura Boyce

Box 5699

Phoenix, AZ 85010

Laura, I'm not printing this to
embarass you, please don’t take it that
way! I remember how it was as a
beginner also.

There is no error in the program that
I amaware of. Please sendme aprintout
or hand written listing of at least the
offending line (line 20) and four lines
before and after this. The entire listing
as you typed it would be best. I have no
idea exactly how youtypedthe program,
and it could be an error in a line other
than 20.

I do see one thing I did that may be
confusing you. Since it is hard to see 38
actual asterics and 9 actual spaces, |
typedthe phrasesin parentheses. Could
you be typing those phrases instead of
what they say? Line 20 should be:

20 HSCREEN2: HCLS10:A$™****

iﬁ*'tﬁﬂi".ﬁ'ﬁﬁ‘.iiﬁ...iﬁti'ﬁﬁﬁ": B$=ﬁ
*: HPRINT(2,0),B$: NEXT: HPRINT
(2,23), A$: FOR X=1TO5: SOUND
RND (25,5),1: NEXT

The fault is at least as much mine as
yours... I had not found the best method
to print program listings at the time
"Darts" was printed. As you can see by
the above line, it is hard to determine
how many asterics and spaces are used
though. I do hope this solves the
problem!

The Seven-line demo: an amazing achievment with DECB!
Program by John Kowalski, comments by Art Flexser and Rick Adams

2 REM ** 2WAYSCRL.BAS

4 REM **by SockMaster

10 POKE65497,0 : HSCREEN2 : FOR
G=0 TO 15: READ A : PALETTE G, A
:NEXT

20 DATAO0,19,22,50,54,52,38,37,44,
45,41,13,11,25,27,26

30 FOR G=0 TO 319 STEP .5 : HSET
(G, RND(191), RND(15)) : NEXT

40 C=1:S=40: FOR G=15 TO 1
STEP -1 : HCOLORG

50 HCIRCLE (310-G*5,48), S : HPAINT

(310-G*5,48) : S= S-2.6 : HLINE (RND
(110)+210, RND(80)+104)-(RND (110)
+210,RND(80)+ 104), PSET, BF:NEXT
60 Q65439 : W0 : E=127

70 FORG=0TO127 : PALETTE W,W :
POKE Q, E-G :

NOTE: There should be eleven (11)
colons (:) and five (5) spaces after
"POKE Q,G" in line 70.

This little 7-line BASIC program
(ignoring the first two REM lines) does
aneat trick: it scrolls the top half of the
graphics screen leftward at the same
time as the lower half of the screen
scrolls rightward. The program was
recently uploaded to the CoCo interest
group on Internet. It is attributed to
John Kowalski of Montreal, alsoknown
as Sock Master, who has also recently
released a shareware terminal program
called Twilight Term.

The most surprising thing about this
program is that it is entirely in BASIC
(the data values in the second line are
palette color values, not machine-
language code). Most experienced
programmers would assume that this
sort of two-way scrolling, if it were
possible to do at all, would absolutely
require a machine-language routine.
But Sock Master manages it in BASIC,
using some very clever programming,

Here's a line-by-line breakdown of
what the program does:

10-20: set up the palette colors.

30-50: draw some things on the graphics
screen, (Not much point in scrolling a
blank screen, right?) Specifically, line
30 draws a background of randomly
colored and randomly positioned dots.
Then, lines 40 and 50 draw some filled

circles and boxes in various colors.
60: assigns values to some constants.
70: where the fun begins.

Line 70 LOOKS really strange. What
are all those colons and spaces for? And
why is there a palette statement that
assigns color O to palette 0overand over
again, when once should seemingly be
sufficient? And what are those pokes to
location 65439 doing?

This is what is going on: Location
65439 ($FFIF) is the GIME s horizontal
scroll register. As the value poked into
it increases from O to 127, the screen
scrolls more and more to the left, with
portions that disappear on the left side
reappearing on the right. That explains
what happens in the top half of the
screen. A rightward scroll would result
from decreasing the value in the
horizontal scroll register from 127 to 0.
But, how in the world can the bottom of
the screen be made to scroll rightward
at the same time the top half is scrolling
to the left? Here is where Sock Master
displays some real ingenuity.

What is necessary is to time the two
pokes in line 70 very carefully, so that
the first one, which scrolls the screen
one notch to the left of its previous
position, occurs at the beginning of
each 60th-of-a-second redrawing of the
screen, while the second one, which
scrolls the screen one notch to the right,
occurs just as the bottom half of the
screen startsto get drawn, approximately
1/120th of a second later. Here is where
the PALETTE W,W statement comes
in. Its purpose is not to assign a color
at all, but to take advantage of an
incidental feature of the PALETTE
statement,

In the ROM code for the PALETTE
command, there is a machine-language
SYNCinstruction that tells the processor
to wait for an interrupt that indicates a
new frame of the screen is about to be
drawn. This SYNC enables the pokes
in line 70 to be synchronized with the
redrawing of the screen each 60th of a
second.

Try removing the PALETTE
command from line 70. You will sce
that the screen now jiggles all over the

place due to the lack of sychronization
with the two pokes.

Itshould now be clear that the purpose
of all those odd-looking colons and
spaces in the middle of line 70 is to
adjust the delay so that the second poke
occurs just as the bottom half of the
screen starts to get drawn. If you add
more colons, the dividing point of the
screen will be lower than the halfway
point; deleting some of the colons will
move the dividing point upward. A
FOR/NEXT loop can be used instead of
the colons and spaces, but does not
allow the same degree of fine adjustment
of the dividing point as using colons
and spaces does. I tried substituting
FOR I=1to 2:NEXT and got a dividing
point that was about a quarter of an inch
too high, while changing the upper
limit to 3 made the dividing point about
the same amount too low.

A final point is that this technique of
changing the value of a graphicsregister
after part of the screen has been drawn
can also be used with the palette
registers, so as to allow different sets of
colorsto be usedin (say) the top half and
bottom halves of the screen.

There have been a few demonstration
programs that display all 64 colors that
the GIME can generate on a single
screen, even though the graphics mode
employed is supposed to allow only 16
colors; these work by switching palette
contents 4 times per frame in synchrony
with the display timing. Hmmm, I
wonder if you could do THAT with a
BASIC-only program?

The combination of colonsAHd d6&6es
to provide a small delay is very clever...
the space gives a smaller delay than the
colon. It takes a very small amount of
time to scan the space, whereas with the
colon, the ROM code in the BASIC
interpreter does the overhead involved
insetting up for scanning a new BASIC
command, which takes a bit longer. So
colonsare used for coarse adjustment of
the timing, and spaces are used for fine
adjustment.

Rick Adams

the world of 68' micros page 3

57,600 Bits Per Second... through the bit-banger!

The start of a new terminal program... we hope!

Earl W. Casper

I'm developing a 57.6K baud DECB
terminal package. When the editor
heard about it, he said maybe some of
you might want to help. I've got a
working version that only runs at 57.6K
baud. To send a control character you
press CTRL and then the character. To
send the password you press F2 and it
appears. If you press ENTER then the
password is sent. If you press anything
else then you just return to the terminal.
The primitive autodailer and password
program are written in BASIC so some-
one should be able to improve on it
pretty easily. Hopefully someone will
add the lower baud rates with parity and
such. Of couse what the system really
needs is x-modem, y-moden, and z-
modem.

There are two jobs that I plan to
tackle. At present, interrupts are dis-
abled while a byte is being sent. At
57.6K baud it only takes .0002 seconds
tosendabyte, butif abyte starts coming
inwhile abyte is going out you geta bad
character on the screen. I make so many
mistakes typing that I watch the screen
for my mistakes anyway. I can’t tell
which ones are mine and which ones
are from the program. Anyway, I plan
to fix that problem like Kottke did in his
bitbang program in an earlier article.

Right now I'm using Robert Gault’s
patches to disk EDTASM because 1
never got around to putting macros into
my Quick Assembler that assembles
and loads a typical 3000 line program
in 10 seconds, and macros are really
handy when you are writing repetitive
code. I'm going to use my Quick As-
sembler to add high resolution charac-
ters like V-Term uses, because of its
excellent graphics debugging capabili-
ties. I'm not sure, but I think I can get
the same good kind of results with atwo
color high res screen as I get now with
a hardware character screen. Sixteen
colors will be spectacular, and I hope it
will only be a little slower and a little
harder to read.

There are two tricks that use to make
this program work so well. Since the
CoCousesaclockratc of 2NTSC ticks,

page 4 the world of 68 micros

there are 3,579,545/57,600/2=31 CoCo
memory cycles between bits. Sending
characters is quite straightforward. The
problem in receiving is taking care of
the byte and getting ready for the next
one in time. I adjust the pointer and
store it in the address field of an STA
instruction while the byte is coming in.
Then all I have to do after the last bit
comes in is load the byte with an LDA
instruction, store it with that STA in-
struction we were talking about, ac-
knowledge the interrupt with an LDA
instruction, restore the A register with
another LDA instruction, and return
from the interrupt with an RTI instruc-
tion. I think I could squeeze another ten
memory cycles outof there, butit works
fine already, so why do it.

The other trick is in displaying the
characters. I map the high res buffer
into the 64K space, and then copy the
characters from the input buffer to the
high res buffer in a tight loop using the
B register to keep track of the horizon-
tal position on the screen. When I get
to anew line I move the high res buffer
down 80 spaces instead of scrolling the
screen up 80 spaces. When I'm storing
characters in the high res buffer I also
store itin the line just above the highres
buffer. That way I have a copy of the
whole screen above the high res buffer
after a while, so I can move the high res
buffer up one screen when the new line
comes and start all over. Hmm, maybe
that was more than one trick. Anyway,
the EDTASM source will be on the
micro-disk if you are interested.

Hopefully I'll be submitting more
articles as others and I complete more
of the program. The program works
fine as it is, but it will be getting better

5S76DIAL.BAS:

10 '57,600 BY EARL CASPER
20 ‘COPYRIGHT 1994 BY EARL
CASPER

30°

40 WIDTH 80

50 CLEAR 200,&H6000

60 LOADM"57,600"

70 PRINT™. DELPHI"

80 PRINT"2. COCONUT"

90 PRINT"3. TERMINAL"

100 AD$="AT\QO DT8925880"
110 PW$="password2"

120 K$=INKEY$

130 IF K$=""THEN 120

140 IF K$="3"THEN 190

150 IF K$="2"THEN 190

160 IF K$<>"1"THEN END

170 AD$="AT\QO DT2584528"
180 PW$="password1”

190 EXEC&H6000’Initialize

200 DEFUSR1=&H6003 'Send a
string to the modem

210 DEFUSR2=&H6009 'Send a
string to the terminal screen

220 IF K$="3"THEN 240

230 T$=USR1(AD$+CHR$(13))
240 EXEC&H6006 'Enter the
terminal program

250 EXEC&H600C 'Change to
BASIC screen

260 PRINT PWS;

270 K$=INKEY$

280 IF K$="THEN 270

290 IF K$="Q" OR K$="q" THEN
END

300 PRINT STRING$(LEN(PW$),
CHR$(8));

310 IF K$<>CHR$(13)THEN 240
320 T$=USR2(“Password sent.”)
330 T$=USR1(PW$+CHR$(13))
340 GOTO 240

; Sangafl the groundwork here for a high-speed DECB terminal
program. Now alittle help is needed from you! Do you think you might have some
ideas to improve this program? Maybe you have a terminal program started and
could use the high-speed portion as an addition? Please let Earl (and myself) know!

Write to:
Earl W. Casper
P.O. Box 60576
Phocnix, AZ 85082
(continued on next page)

Asscmbly listing for 57,600 bps driver:

00100

00110

00120°*

00130

00140

00150

00160 DEBOUN
00170

00180 BITIN
00190

00310

00320

00330

00340 IFRONT
00350 IREAR
00360

00370 STROUT
00380

00390

00400 STROLP
00410

00420

00430 STRWAI
00440

00450

00460

00470 STREX
00480

00490 STRIN
00500

00510

00520

00530

00540 STRILP
00550

00560

00570

00580

00590

00600

00610

00620 BASSCR
00630

00640

00650

00660 DSPMMU
00670 DSPTSK
00680

00690 FIRDSP
00700

00710

00720

00730

00740

00750

00760

00770

00780

TITLE 57,600 BY EARL CASPER

COPYRIGHT 1994 BY EARL CASPER

ORG $6000

EQU $86C

MACRO

BRN * 33
LBRN 0 38
ROR $FF22 715
ROR TEMPIN 722
ENDM

LBRA INIT

BRA STROUT

NOP

LBRA TERM

BRA STRIN

NOP

BRA BASSCR

NOP

RMB 1

RMB 2

RMB 2

LDB X

BEQ STREX

LDX 2X

LDA X+

JSR CHROUT

CLRA

DECA

BNE STRWAI

DECB

BNE STROLP

RTS

LDB X

BEQ STREX

LDX 2,X

LDU IREAR

LEAU 1,U

LDA X+

STA U+

DECB

BNE STRILP

LEAU -1,uU

STU IREAR

RTS

LDY #3$10/8°$6C00 #$6C000/8
STY $FFAD

RTS

RMB 1

RMB 1

LDA $FFA1

STA DSPMMU

LDA $FFA9

STA DSPTSK

LDA #$6600/$200 #$66000/$2000
STA $FFA1

STA $FFA9

LDU CURLOC

LOY SCRLOC

00790

00800

00810

00820 FASCNT
00830

00840

00850

00860

00870

00880

00890

00900 FASDSP
00910

00920

00330

00940 FASXOK
00950 XFIXED
00960

00970

00980

00990

01000

01010

01020

01030

01040

01050

01060

01070

01080 FASNBK
01090

01100
01110FASCLR
01120

01130

01140

01150

01160 FASCHR
01170

01180

01190

01200 FASLIN
01210

01220

01230

01240

01250

01260 FASUOK
01270 FASEX
01280

01290

01300
01310LASDSP
01320

01330

01340

01350

01360
01370LASCLR
01380

01390

01400

01410

01420

01430

01440
01450
01460
01470 KX
01480KB
01430 KCC

LDA
STA
TFR
SUBD
CMPD
BHS
ASRA
RORB
NEGB

CMPX

$FEO8
24°80°2+1,U
upb

#80"2
#32000
FASCNT

#BUFEND
FASXOK
#BUF
XFIXED
1,X

X

#3$7F
#320
FASCHR

#8
FASNBK
#80
FASEX
#320

—J
24°80°2,U

FASEX

FASCLR
FASLIN
24*80"2,V

U++

FASEX

#80

80°2/8,Y

#32000424°80°2

FASUOK

#$2000

#310/8"($6600+$5*2) ($66000+$50*2)/8
$FFOD

IREAR

FASDSP

CURLOC
SCRLOC
$FEO8

#3$CO
24*80°2+1,U
#3$20
24°80°2,U
U++

LASCLR
DSPMMU
$FFA1
DSPTSK
$FFA9

the world of 68’ micros page §

Announcing the Show Hours:
4th Annual "Last" [|| s s oo
Chicago CoCoFest |[|*rime soson

(2 day pass only, order before 16 April)
April 29 & 30, 1995

Address for advance tickets:

Tony Podraza, Fest Coordinator
119 Adobe Circle
Carpentersville, IL 60110-1101
Reservations:
1-708-695-5000
1-800-465-4329
Sponsored by:
Glenside CoCo Club
Vendor Information:
Booth Price: $35 ($30 for 2nd)
1 ILLIN
P 01590 94 LAKE Member Price: $30
MICHIGAN i
Rockford =30 (Membership can be purchased at
E__—-l | oliday Inn Chicago registration -- $15 per year)
2%0 N Reservations must be received no later
+ E than 3/25/95. Deposit of $20 per booth
NOTE: 90 & 294 W required with balance due due no later
|| e wll roads. 298) S than 4/26/95. Balance received after 4/
39 Bring 57 ba | S5 16/95 subject to a 20% late fee. Vendor
plenty change! 55 P = a 80 setup Sat, April 29 5:30AM-9:45AM
1‘ TRy 2 z‘ﬁ:;
01500 01810 LBSR FIRDSP
01510 CURLOC RMB 2 01820
01520 SCRLOC RMB 2 01830 LDA #320 CLEAR SCREEN
01530FASSP RMB 2 01840 LDB $FEO8
01540 01850 LDU #$2000
01550 INIT STS FASSP 01860INICLR STD 24*80"2,U
01560 LDS #STACK 01870 STD U+
01570 CLR $FFD9 SPEED UP 01880 CMPU
01580 #3$2000+24°80°2
01590 LDX #DEBOUN KEYBOARDDEBOUNCE 01890 BLO INICLR
01600 STX $11B 01900
01610 01910 LDB #80 POINT AT FIRST LAST LINE
01620 CLR CTRL CONTROL 01820 LDU #3$2000
01630 01930 LDY #3$10/8°($6600+$5°2)#($66000+$50°2)/8
01640 ORCC #$50 INSTALL FIRQ HOOK 01940
01650 LDA JMP 01950 LBSR LASDSP
01660 STA $FEF4 01960 LDS FASSP
01670 LDX #FIRQ 01970 RTS
01680 STX $FEFS 01980
01690 ANDCC #3AF 01990 TERM STS FASSP
01700 02000 LDS #STACK
01710 LDA #335 ENABLEFIRQONFALLINGCD 02010 LDX IFRONT
01720 STA $FF21 02020 LDY SCRLOC
01730 02030 STY $FFID
01740 LDX #BUF 02040 LOOP JSR [$A000] CHECKKEYBOARD
01750 STX IFRONT 02050 CMPA #4
01760 STX IREAR 02060 BEQ EXIT
01770 LDU #3$2000 02070 TSTA
01780 STU CURLOC 02080 BNE OUTPUT
01790 LDY #$10/8°($6600+$52)#($66000+$50°2)/8 02090
01800 STY SCRLOC 02100 FASLP CMPX IREAR CHECK FOR INPUT

page 6 the world of 68° micros

02120 LBSR FIRDSP 02820 OK BITIN

02130 LBSR FASDSP 02830 LEAX 1.X 55
02140 LBSR LASDSP 02840 NOP 27

02150 BRA FASLP 02850 NOP 29

02160 02860

02170EXIT STX IFRONT 02870FIXED BITIN

02180 LDS FASSP 02880 STX STA+1 66

02150 RTS 02850 BRN . 39

02200 02900

02210 OUTPUT CMPA #189 02910 BITIN

02220 BNE NCTRL 02920 STX IREAR 66

02230 STA CTRL 02930 BRN . 39

02240 BRA LOOP 02940

02250 02950 BITIN

02260NCTRL TST CTRL 02960 LDX TEMPX 66

02270 BEQ NCTRL2 02970 8RN . 39

02280 ANDA #1F 02980

02290NCTRL2 CLR CTRL 02990 BITIN

02300 JSR CHROUT 03000 STA TEMPA 55

02310 BRA LOOP 03010 NOP 27

02320 03020 NOP 29

02330 CHROUT PSHS BACC DISABLEINTERRUPTS 03030

02340 ORCC #350 03040 BITIN 77

02350 03050 LDA TEMPIN 512

02350 LDB #8 EIGHT BITS 03060 STA STA $8000 517

02370 DUMMY OPERAND
02380 CLR $FF20 START BIT 03070 LBRN 0 522

023% 03080 NOP 224

02400 ROLA 22 03090 NOP 226

02410 LBRN 0 57 03100 LDA $FF20 531

02420 NOP 29 ACKNOWLEDGE INTERRUPT
02430 NOP 211 03110

02440 03120 LDA TEMPA 55

02450 OUT LBRN 0 55 03130 RTI 611

02460 LBRN 0 510 03140

02470 LBRN 0 515 03150 JMP JMP . DUMMY JUMP
02480 STA $FF20 520 03160CTRL RMB 1

02490 03170TEMPA RMB 1

02500 RORA 22 03180TEMPX RMB 2

02510 NOP 24 03190 TEMPIN RMB 1

02520 NOP 26 03200 RMB $100

02530 DECB 28 03210STACK EQU .

02540 BNE ouTt 311 03220 BUF RMB $FFF

02550 03230 BUFEND RMB 1

02560 LDA #2 33 03240

02570 LBRN 0 58 03250 END TERM L < 268'm > J
02580 LBRN 0 513

0259 NOP 215

02600 STA $FF20 520

STOP BIT

02610 f B\
02620 PULS CC,A,B,PC ENABLE INTERRUPTS Th anks for

02630

02640 FIRQ STX TEMPX 66 t o .

02650 BRN . 39

92650 R pa ronizin g our

02670 d t |

02680 BITIN

02690 LDX IREAR 66 AdVvertsSers.

02700 BRN . 39

02710

cerio - Please let them

02730 CMPX #BUFEND 44 k h

02740 NOP 26

gerse N oK 28 now winen you S€€
02760 . . '

02770 BITIN 6 |
cermo AL y their ads in 268'm!
02790 BRN . 36 \ 4
02800 BRA FIXED 39

02810

the world of 68° micros page 7

BASIC in Color

BASIC Support for the CoCo!

Fred Remin

reprinted with permission from CoCo-Link

Last issue I started this column for all
beginners and maybe some not so begin-
ners as well. The main gist of the first
article was some suggestions for setting
up your system to ensure that you enjoy
more fully your computing time and a
quick way to determine what type of
system you own.

If you followed my step by step in-
structions and suggestions you should
now be sitting in a very conducive envi-
ronment and be fully aware as to what
you have connected to your system. If
not, then may I suggest that you once
again read the last article, in particular
the quick methods of determining how
much memory you have and the Basic
version.

Loading a Program

What I will cover next is loading a
program into your computer and getting
it running, The first thing to have a look
at is are you using a tape or disk based
system.

If you are using atape system then first
determine if the program is BASIC or
BINARY. To do this first have a look at
the instructions that came with the pro-
gram tape. The instructions should tell
you to either CLOAD (indicating a BA-
SIC program) or CLOADM (a binary
program) a file (many times this is writ-
ten on the cassette label); i.e.:

CLOAD"programname” or
CLOADM"programname”

After typing the "CLOAD" or
"CLOADM" command, your cursor will
change to a flashing "S”, indicating that
the computer is searching the tape for
your file. It would be a good ideatomake
sure the tape recorder is playing now!
When the file is found, the "S" will
change to "F" and the program should
load.

Once the program has loaded into
your computer one of two things will
happen. If the program has an
"autoexecute” capability, then it will
automatically start running. If, however,
you end up with your normal green screen
and flashing cursor, we need to give the
computer anadditional command o start
the program.

page 8 the world of 68’ micros

If you used CLOAD to load the pro-
gram, just type RUN and then press the
ENTER key. If you used CLOADM to
load, type EXEC and press the ENTER
key.

Disk drive users would follow basi-
cally the same instructions without the
"C"in CLOAD (LOAD) and CLOADM
(LOADM). Use the exact same com-
mands to start the program.

What does all this mean? Well, basi-
cally CLOAD means "cassette load”.
CLOADM means "cassette load machine
language” (a machine language file is a
binary file). RUN means to "run" a BA-
SIC program while EXEC means to ex-
ecute a binary program. The same rules
apply to disk based programs.

Errors in Loading

The most common error to occur when
loading programs from a tape based sys-
tem is the dreaded 1/O error. This means
an Input or Output error has occurred
and usually happens when you have tried
to load a program when the tape is posi-
tioned inside a program rather than at the
beginning of the tape or between pro-
grams. It will also occur when the tape
player is dirty or the sound level is incor-
rectly adjusted.

The following are some of the tried
and true fixes for I/O errors:

1. Rewind the tape to the beginning of
the program or just before it. This can be
done by using the tape counter (write the
numbers down for each program!). You
can also use the "SKIPF" command.
This will skip the current program and
stop at the beginning of the next. You
can also type MOTOR ON <ENTER>
and unplug the earphone jack from the
recorder. The speaker will emit an awful
screech -- that's you program. Type
MOTOR OFF <ENTER> 1o stop the
tape.

2. Clean the tape recorder. A head
cleaning tape will work, but amore thor-
ough job can be done with a cotton swab
and some alcohol. Soak the swab in
alcohol then wipe down the head and all
rollers and guides the tape comes into
contact with. Rubbing alcohol will not

harm any of the rubber rollers... and they
need cleaning too! Alcohol evaporates
fast, so within a minute or two you're
ready to try again.

3. Adjust the volume on yourrecorder.
A good place to start is about half open.
The Tandy CTR recorders with level of
1-10 usually work best between 7 and 8.
Others will simply have to be trial and
error, Start in the middle and keep trying
a little louder until the tape loads suc-
cessfully.

4. As a last resort, turn the tape re-
corder over. What happens is that the
tape physically shifts a little in the re-
corder, thus moving where the head is on
the tape. Sometimes this slight move-
ment is enough, sometimes not.

For a disk system the I/O error usually
means a garbled program, dirty drive
heads, or dirty contacts on the disk con-
troller and/or cables. There isn't much
you can do about a garbled disk except
get out your backup disk and make an-
other copy. I cannot strees enough the
importance of backups! The VERY
FIRST thing you should do when you get
anew disk or tape program is to make a
backup! Note that some (but not all)
stereo cassette decks will reproduce tapes
justfine inthe high-speed dubbing mode
(my Sears bookshelf system won't, but
my Kenwood rack system will).

You can't get to the disk drive heads
with a cotton swab. You must use a
special cleaning disk. Allcomputer stores
and many office supply stores carry clean-
ing disks for5-1/4" and 3-1/2" disks. Get
the one you need and follow the instruc-
tions.

Very often the problem lies with dirty
contacts on the disk controller or cable.
Turn your computer off and remove the
disk controller. Clean the contacts on
each end with a pencil eraser. You may
want to take the plastic case apart for
better access to the top contacts. There is
a screw under the label in the center.
Remove this then snap the case apart.
There is usually no problem on the disk
drive end of the cable, but it wouldn't

(continued on page 10)

The Industrial OS-9 User... by Ed Gresick

“WINDOWS

Ore question often asked is where is
G-WINDOWS used. Certainly it can be
used as a simple userinterface or GUI as
T use it. The other end of the spectrum is
the industrial user who will use the G-
WINDOWS environment as a means of
controlling industrial processes. Many
are using ControlCalc from RTWare.
Others are writting their own applica-
tions.

ControlCalc is available in two ver-
sions; a full development package which
includes G-VIEW and a Run-Time pack-
age. Simply, ControlCalc is a spread-
sheet with a graphics interface and some
added capabilities. In addition to allow-
ing manual input of data, data may be
input to cells directly from ports which
interface with the outside world. Other
cells may have their outputs directed to
other ports which interface to equip-
ment outside of the computer.
Recalculation of the cells may be trig-
gered by events, etc.

Under G-WINDOWS, it is easy to
monitor and control a process. A sche-
matic or pictorial view of the process,
machinery, etc. can be displayed. This
can show the information necessary for
the operator monitoring and/or control-
ling the process. Further, the operator
may enter changes to the process to
control it. These may be as simple as
GO/STOP or ACCEPT/REJECT to
continuosly variable rotary or linear con-
trols - in effect, an analog inputs. Inputs
may be via the keyboard or a mouse or
some other pointing device such as a
touch screen. In fact, the latter is popu-
lar in ‘dirty’environments and where
minimum operator training is necessary.

Many users are using multiple dis-
plays, each displaying and controlling
adifferent process or different portion of
asingle process. To my knowledge,most
hardware supporting G-WINDOWS will
also support multiple graphics cardsand
monitors. The most popular combina-
tion to date use touch screens aspointing
devices., I'll oudine two applications

I'm familiar with. DELMAR
isproviding the hardware and writing
additional I/Odrivers. Thecustomersare
writing their own software and design-
ing, building and/or providing additional
hardware/machinery as required. Both
projects are in the development stage.

The first, and intended to be sold to
other Companies, I'll call an ‘industrial
laundry’ product. This customer will be
offering a computer, the software and
necessary sensors and controllers to in-
terface with existingequipment being
used in ‘industrial laundries’. Depend-
ing on the product being ‘laundered’,
the process may require two or three
stages. The first stage does a prelimi-
nary, brute force laundering. The efflu-
entis analyzed and the information used
to control the mix being used for laun-
dering. The data is also sent to the next
stage. This stage does the final
laundering.As in the first stage, the ef-
fluent is monitored and used to control
the cleaning mix. After the final laun-
dering, the product is washed and the
washeffluent is analyzed. This deter-
mines whether the product is clean and
what adjustments must be made to the
preceeding stages. Each stage will have
it’sown display and use touch screens
for manual inputs. ControlCalc is being
used to write the application software.
Custom gadgets (the do-hickies on the
screen to represent various things) are
prepared with G-VIEW.

While interrupt handling isn’t criti-
cal, OS-9 was selected because of
itsmulti-tasking capability and re-entrent
code. The customer stated that the com-
bination of OS-9, G-WINDOWS, G-
VIEW and ControlCalc provides him
withtools and performance unavailable
with other operating systems - that
theyhave investigated other OSs thor-
oughly.

This product is being tested at a
customer’s site. The advantages to
theircustomers will be lower cleaning
matcrial costs and the potential
climinationof re-laundering products.

The second application isn't as far
along. It is a cutting application not
unlike cutting cloth in the garmet indus-
try for clothing. Interrupt speed and
handling is important. The ‘material’ is
man-made and manufactured by this
Company. It is cut and assembled into
the final products which they sell. The
pattern is irregular and varies according
to the specific end product. The prod-
ucts are expensive, the field very com-
petitive and they dominate it - and they
wish to continue to so. The material is
cut on an X-Y machine with a working
area4'x4'. Cutting is by means of a laser
knife and they are achieving cutting
speeds up to 1400 inches per minute.

The X-Y machines are currently con-
trolled by AutoCad programs running
on 486 machines. The final size of the
cut material is critical. Tolerances must
be held to a few thousandths of an inch
over45inches. Because the materialisn’t
perfectly homogenous, the final size is
affected by assembly. They currently
have a reject rate of about 25%. The
variations in the material are known and
each sheet has the characteristics of that
batch in bar code form which is entered
into the computer prior to processing
that sheet. Also there are stresses intro-
duced in the material while it is being
cut. They can measure the stresses and
they know the effects, but the program
runningon the 486 can’t handle them
unless they slow cutting rate substan-
tially.

For comments or questions, Ed can be
reached via this magazine or:

E-mail:
EDELMAR@delphi.com
76576,3312@CompuServe.com

U.S. Mall:
PO Box 78
Middletown, DE 19709

Telephone:
302-378-2555 Voice
302-378-2556 FAX

the world of 68" micros page 9

Hardware:

MM/1 Serial Cards $35
MM/1 Midi Cards $45
68340 acelerators $325
SCSI Tape drives call
SCSI Hard drives ' call
BGFX in stock! $45
RAM prices call
Floppy Drives call

Coming Soon - Modems, CD-ROM

Software:
PixUtils $25
DeskTop for MM/1 $79
Fontasee $35
Paint for MM/1 $79
New Software on the way!

Now available - COMPEETE

MM/1 Systems!

(call for pricing)

BlackHawk

Enterprises, Inc.

P.O. Box 10552
Enid, OK 73706-0552
Phone 405-234-2347
Internet:
nimitz@delphi.com

page 10 the world of 68° micros

0S-9 and G-WINDOWS have been
tested for several months. They have
written a simple test control routine with
mostly text output and are displaying
only asimpledeviation curve with graph-
ics. Recently, they addedasecond VGA
card and monitor to control a second
machine. Preliminary results show sat-
isfactory performance from one SYS-
TEM V controlling two X-Y cutting
machines and it appears the SYSTEM
V, running at 25 MHz, is loafing with
the X-Y cutting machines running at
maximum capacity. The reject rate of
material cut on these two machines has
dropped to under 1% (from around 25%).
The next step will be to integrate the
measurements of the material into the
program. This will eliminate the cutting
process (into squares or rectangles) per-
mitting them to feed the X-Y cutting
machines from continuous strip mate-
rial.

Discussions with their engineers show
a complete satisfaction with this ap-
proach. They have some more testing
and expansion they wish to try. When
they finally determine the limits, they
plan on purchasing ControlCalc to write
their final software. Their target is one
computer controlling up to four X-Y
machines. Currently, 18 X-Y cutting
machines are in use. The benefits they
expect are - reduced reject rate, fewer
operators (one for eachcomputer con-
trolling 3 or 4 X-Y machines) and in-
creased capacity with the existing hard-
ware. I don’t know exactly what each
window will display, but from their ques-
tions, Iexpect the data being logged will
also be shownina graphics format (bars,
curves, elc.) to assist detecting trends
and permit input and/or control via a
touch screen.

As you may’ve suspected, the Com-
pany is very conservative. If the letters
IBM aren’t associated with the com-
puter, it isn’t supposed to be used. 1
believe (hope?) that when their engi-
neers have finished this prototype work
station, they will have the evidence (dol-
lar savings) to convince management to
look away from IBM / MS-DOS and in
some new directions.

(continued from page 8)

hurt to clean those contacts as well. You
can spray some tuner cleaner or electri-
cal contact cleaner in the female connec-
tors on the cable and the CoCo port.

The next most common error for both
tape and disk users is the FM (File Mode)
error. What the computer is telling you is
that you have tried to load a BASIC
program as a machine language file or
vice-versa. This comes about by trying
to CLOAD a program when you should
CLOADM.

Saving a File

The same general procedures used for
loading a file are used to save one. Of
course, instead of using CLOAD or
CLOADM you use CSAVE or
CSAVEM, dropping the "C" for disk
systems. If using tape, don't forget to let
the tape run 34 counter numbers be-
tween saves. This makes for fewer I/O
errors later! Do the same at the begin-
ning of a tape, even a new one. Disk
systems keep up with where the files are
on the disk for you, so no problems
there!

Saving amachine languagefile to tape
is a little more complicated than simply
typing CSAVEM. You need to know the
START, END, and EXEC addresses of
the program also. To find these, type the
following while the program is loaded in
memory but not executing:

To find the START address:
PRINT PEEK(487)*256+PEEK(488)
<ENTER> write down the number.
To find the END address:
PRINT PEEK(126)*256+PEEK(127)-
1
<ENTER> write down the number.
To find the EXEC address:
PRINT PEEK(157)*256+PEEK(158)
<ENTER> write down the number.

Now the machine language program
can be saved by typing:
CSAVEM"programname”, START,
END, EXEC <ENTER>
Simplyinsert the number you wrote down
in place of START, END, and EXEC.

You should now be able to success-
fully load and save both BASIC and
machine language (binary) programs
from tape or disk. If you are still having
problems please do not hesitate to drop
me anote or give a call. I will be happy
to help out if I can. Next issue we'll start

some programming! L < 268'm > 4

The Hardware Hacker

PALs and GALs explained

Dr. Marty Goodman

Several of my articles here have involved
referring toPALs and GALsin Color Computer
applications, such as the upgrade for the old
Multipak Interface and the upgrade to the DS69A
digitizer. Several folks have asked me to ex-
plain to them just what “PALs"” and “GALs"
are, and how they are similar to the familiar
related programmable chips, the PROM, the
UV-EPROM, the EEPROM, and the “flash
EPROM.”

PALs vs GALs:

PALs (Programmable Array Logic) and
GALs (Generic Array Logic) represent two
successive generations of technology that make
" wiring up logic circuits more of a matter of
programing a chiprather than a matter of wiring
together numerous separate chips that each
have specific logic gates on them.

PALsare the earliertechnology (late 1970°s).
These came in dozens of varieties with fixed
numbers and varieties of outputs and inputs.
Programing them consisted of physically blow-
ing fuses inside the PAL, so they could be
programing only ONCE. In this respect, aPAL
rescmbles the old PROMs, which are memory
chips thatare programed by physically blowing
fuses inside the chip.

GALs are a more recent technology, which
represents a number of major improvements.
GALsare electrically erasable, so can be repro-
grammed. In this respect they resemble
EEPROMs. They cost less than PALs. They

tend to be faster (have shorterlogic gate delays)

than the old PALs. GALs are more flexible. One
16V8 GAL chip can (depending on how it is
programmed) be directly substituted for any
oncof twodozen different PAL chips. Thus, all
but the two most flexible PAL chips (the 16R8
and 16L8) are today totally obsolete, and the
16R8 and 16L.8 will soon disappear, for all of
their functions can be done by a 16 V8 GAL chip
faster and more cheaply.

GALs sometimes go by different names de-
pending on the manufacturer. AMD calls their
GALS “PALCE” devices. ICT calls their
GALs “PEELs".

GALs vs EPROMs:

The important thing that differentiates PALs
and GALs from PROMs and EPROM s of vari-
ous sorts is that what onc is programing in a
PAL oraGAListhe WIRING ofan ARRAY of
LOGIC GATES inside the PAL or GAL. Pro-
graming a GAL is literally comparable to physi-
cally soldering up a bunch of small scale logic
gates for a specific function. Witha PROM or
EPROM, one is typically dealing just with
computer memory. Toconfuse theissue, I must
admit that PROMs have been cleverly used to
substitute for logic in certain design situations.
But mainly, one is putting binary 1 and O
informationinto a PROM or EPROM that later

is read by a computer.

PALs and GALs, in contrast, are employed
to replace bunches of small scale logic chips
(such as 74-series or 4000 series) in order to
greatlyreduce chip count, decrease design costs,
provide greater flexibility for later design
changes, increase the speed of logic, or all four
of these consideration together. Depending on
the program, one GAL can replace as many as
a half dozen or more small scale logic chips.

Programing PALs and GALs:

Programing GALs is a rather sophisticated
operation. First one chooses a particular GAL
based on the capabilities it offers, typically
number of available input and output pins.
Thenone usesaprograming LANGUAGE (such
as “CUPL" or “PALASM") to define which
pins of the GAL are inputs and which are
outputs. One then uses the language to specify,
among the outputs, which outputs are simple
combinatorial logic outputs (such as the output
of a 74L.S00 AND gate), which are tri-state
outputs (such as the output of a gate in a
741.5125 chip), and which outputs behave like
the outputs of one of a variety of flip-flop
modules (such as “D-flip flops” or “R-flip
flops” or “JK-flip flops™). If one has specified
some of the outputs as flip-flops, one pin of the
GAL becomes a clock input pin.

If one has specified one or more outputs as
tri-state, one pin of the GAL becomes the
output-enableinput. Afterspecifying pin func-
tions, oneliterally writes Boolean Algebraequa-
tions thatdefine exactly what all the outputpins
do based on information that appears at the
inputpins. Whenoneisdone,one ASSEMBLES
these specifications using the PAL-assembler,
and an output in the form of a “.JED fusemap”
is produced. Itis this fusemap that is then used
by the GAL programerto burn thatlogicinto the
chip.

GAL programmers (the physical device that
burns the fuse map into the chip) are electroni-
cally more complicated than EPROM program-
ers, for they have to accommodate a much wider
variety of chips AND a more complicated set of
procedures for programing each chip. These
and other factors have resulted in GAL pro-
grammers being considerably more expensive
than EPROM programers. Prices tend to start
at $700 for CHEAP GAL programers. Such
programers tend to be “device programers”
that will program EPROMs and controller chips,
too. Around this time I suspect that some hob-
byist-type inexpensive GAL programmers for
PC compatibles that just handle three or fourof
the more common (such as 16V8, 20V10,
22V10) of the hundreds of different GAL chips
may be appearing, costing considerably less.
But I off hand don’t know of any specific
offerings like this.

Let’slook ata simple application fora GAL
chip: The upgrade PAL (GAL) chip for the
Multipak Interface. Below is my object code
writtenin CUPL assemblylanguage specifying
the 16V8 I supply for upgrading the Multipak
Interface:

Partno None;

Name MPAKCC3;

Revision 01;

Date 6/12/91;

Designer Marty Goodman;

Company Cheshire Cat;
Assembly None;
Location None;
ke /

/* This is the Jogic for the CoCo 3 */
/* UPgrade PAL for the Multipak */
/* Interface , Tandy Cat # 26-3024 */
/ /
/* Taget Devices: P16V8 */
Vo * */
/* * Inputs: define inputs */
Pin1 = FF;

Pin2
Pin3
Pin4
Pin 5
Pin 6
Pin7
Pin 8
Pin9 = A

Pin 11 = RW;
Pin12= E;
Pin13= Q;

Pin 18 = SLENB;
Pin 19 = CTS;

>
whhaa

L I | N R ¢ A 1 B /|
> 2> > > >
SEPLELE

—

/* * Outputs: define outputs */
Pin 14 = ENBUS;

Pin 15 =ENREAD;

Pin 16 = LOADREG;

Pin 17 = unused;

** Logic: */

'ENBUS =!CTS#!SLENB#('FF & 'A7 &
A6),

'LOADREG = IRW& IQ&E& 'FF& A7 &
A6& AS& A4& A3 & A2 & A1 & AC;
IENREAD =RW&E&IFF&!AT& A6 &
AS& Ad& A3 & A2 & A1 & AQ;

The 16V8 GAL chip that I specified is a 20
pin chip. 16 of those pins can be specified as
inputs, and up to 8 of those pins could be
specified as outputs (hence the designation
16V8). Inthisapplication, I specified that three
of the pins (14, 15, and 16) would be outputs,
14 pins would be inputs, and one (pin 17) would
be left unused. Pin 10 is ground on this chip,
and pin 20 is Vcc. Idefined the logic for the

the world of 68' micros page 11

output pins based on what I knew of how the
Multipak Interface functions, on the schematic
for the Multipak Interface, AND on the helpful
logic equations provided in Tandy’s service
manuals for the new and the old Multipak
Interface devices. In CUPL’s language, “!”
means “inverted” (equivalent to a line over a
logic function, oranasterisk in front of the logic
function, in other logic notations), “&" means
a logical “AND", and “#” means a logical
“OR". Tho not used in this design, “$” in
CUPL notation means “Exclusive Or”. When
I feed the above design specs into a CUPL
assemnbler,] getout the following JED fusemap:

CUPL 2.15b Serial# 6-00005-083
Device gl6v8s Library DLIB-h-24-9
Created Wed Jun 12 09:13:55 1991
Name MPAKCC3

Partno None

Revision 01

Date 6/1291

Designer Marty Goodman

Company Cheshire Cat

Assembly None

Location None

*QP20

*QF2194

*GO

*F0

*L0768 10100111011101110111011001
010110

*1.1024 10100111011101110111011101
010101

*[1280 11111110111111111111111111
111111

*L1312 111111111110111111111111111
11111

*L1344 101001111111111111111111111
11111

*1.2048 000000000111001011110110011
10110

*L2080 101001100000000000000000000
00000

*L2112 000000001110001111111111111
11111

*L2144 111111111111111111111111111
11111

*[2176 111111111111111110

*C1BB8

* 9E90

If you feed this fusemap into to a GAL
programer, and programa 16 V8 GAL with the
data, you will have the GAL (or “PAL" if you
prefer to call it that) which will successfully
upgrade a Tandy Multipak Interface. The
fusemap specifies to the GAL programer where
to “burm” and where to leave connected links
in the internal logic array of the GAL chip.

This particular application is a relatively
simple one, because it is “purcly combinato-
rial”: It does not use “registers” (flip-flops).
It's also simple in that all of the outputs are
“simple outputs”. None arc *“tri-statcable”.
The PAL in the Multipak interface is used to

page 12 the world of 68° micros

create three signals (ENBUS, ENREAD, and
LOADREG), which in tumn are used to disable
the data bus when “forbidden™ parts of the
data bus are being read (GIME registers) or
when the SLENB line is active, and to decode
for the internal Multipak Interface register at
$FFTF, wallow one to pointto given slots using
software commands.

Let’s look at just one of those signals, the
LOADREG signal, which is used to decode
address SFFTF for the internal Multipak slot
selectregister. The LOADREG signal isactive
LOW in the Multipak Interface circuit. Thus,
we need to specify a signal that will go LOW
only when address SFF7F is on the Color
Computer systembus. Additionally, weneedto
specify that the signal is active only when a
WRITE commandis being specified, and thisin
turn means that the R*W line (represented here
as RW) mustbelow). There's one other thing
we need to do: Make sure that LOADREG is
active ONLY when the Q clock is low and the
E clock is high.

Tofully understand the line that specifies the
LOADREG output, you also need to know that
in the Multipak Interface circuit, the 8 high
order address lines (A8 thru A15) of the CoCo
system bus are fed into a 74LS30 8 input
NAND gate, and the resulting output signal
from that 741.S30 (the signal I call “FF” in the
GAL designinformation)is fed intothe Multipak
PAL on pin 1. This “FF” signal is active low
only when the two high order digits of the four
digit hex address on the CoCo system bus is
“FF".

Now, look at the line in which I specify the
logic of the LOADREG signal:

'LOADREG =!RW & Q& E& !FF & |A7
& A6 &AS& Ad& A3 & A2 & A1 & AD;

Look at the leftside of the equal sign. I've put
a “!” in front of the name of the signal, to
specify that this is a signal that will be active
when low. Now look to the right side of the
equal sign. Here I specify thatthe signal willbe
active whenRW, FF, and Q are low (for youcan
see “!” in front of those inputs in the logic
description), and when E is high. This sets the
signal to be active low when the R/W line is
specifying a WRITE command, when the 8
high order bits of the address bus are high
(FFxx), and when the E clock is high and the Q
clock is low. Let’s now look at the rest of the
decodinglogic specified in thisline. Youcansee
that LOADREG sactivelowwhen A0, A1,A2,
and A3 are all HIGH (because none of those
havea*!”in front of themin the specification).
This means that the fourlow orderaddress lines
must be HIGH for LOADREG to be valid. This
in turn further decodes LOADREG to address
FFxF. Now look at A4, AS, A6,and A7. Note
thatonly A7 hasa “!"in front of it This means
that LOADREG will be active when A4, AS,
and A6 are all high, and A7 islow. This in turn
specifies a “7” for that particular digit of the
HEX address. Putting it all togcther, we see that
LLOADREG s specified to be active low when
address SFF7F is on the CoCo address bus, and

when a valid “WRITE" is being requested. It’s
further narrowed down to the proper part of the
CoCo timing cycle (using the E and Q clock
information) to allow us to write valid datainto
the register in the Multipak that specifies what
slots are selected. The LOADREG signal is
used to clock datainto a 74L.S374 chip, which
in turn determines what slots the *CTS, *SCS,
and *CART data lines are hooked up to.

Note two things here: (1) It’seasy to change
the address being specified by justchanging the
programing of the GAL chip. This allows for
easy upgrading and alteration of the design
logic. While the logic for LOADREG is not
changed when one goes from the original
Multipak PAL to the version upgraded for the
CoCo3, thelogic for the other signalsis changed,
to lock out the address range $FF80 - SFFBF
used by the GIME chip of the CoCo 3. (2) To
specify the logic that this GAL accomplishes,
one would have had to use three or more small
scale logic chips, instead of this one PAL or
GAL chip.

NOTE, also, that the original Tandy Multipak
Interface used a 1414 PAL chip for address
decoding, for which I substituteda 16V8 GAL
chip. 14L4 chips just ceased to be available
around the time I first laid out the logic equa-
tons for my Multipak Interface upgrade PAL
chip. I actually did compile a fuse map for an
upgraded 14L4, and burned a few 14L4’s for
some dealers. But 141.4’s turned out to be more
expensive than 16V8's, and soon were unat-
tainable. SoIswitched over to using the more
modem (faster, cheaper, and re-programmable)
16V8 chips. Tandy apparently actually was
unabletoget hold of 14L.4°s when it came time
for it to supply “official” multipak upgrade
chips, or may simply have gotten a better deal
on another (equally obsolete, slow, one-time-
programmable, but adequate) chip, the Phillips
Signetics PLS153. Thus, upgrades that Tandy
provided will be Phillips Signetics PLS153
PAL chips, while almost all of the upgrade
chips I provided to dealers and individuals are
in the form of 16V8 GAL chips. My upgrade
should work as well (or better than, because the
faster logic in the 16V8 may make for more
reliable operation) the official Tandy upgrade.

L < 268'm > J

Comments and questions may be sent
in care of 68'Micros or directly to :

Dr. Marty Goodman
1633 Bayo Vista Avenue
San Pablo, CA 94806

E-mail: manygoodman@dclphi.comj

Operating System -Nine

More on memory management

Russell Hoffman

My apologies to those who were waiting
for the final half of the memory management
tutorial I'd planned for last month- it van-
ished into the great hard drive crash of 94.
Sinceit’s certain to be a while before that text
is readable again, this month is a quick sum-
mary of what's freshest on my mind- hard
drive installation and backup.

Cobbler:

MODULES is a collection of files with
names like ddd0_40ds.dd (default
device=d0=40trk dblside.device descriptor)
which have to be collected into a single,
simple file the ‘bootstrap’ loader can handle,
the job we call ‘making a boot’.

Cobbler appears to provide a way out of
the hassle of maintaining bootlists and deci-
phering cryptic filenames. It’s both handy
and a fair pun (as geeks go) but cobbler was
only intended as a fast snapshot of existing
boots or trivial mods of them. After five or
six cobblers you have a boot that will be
difficult to recreate if it’s ever lost. Backing
up a step means digging around for a 2 year
old ex-boot.... you get my drift.

Of course, you probably thought of all this
and carefully save a copy of each modified
module.....in /dd/SYS/MODULES where
you can't get if the hard drive explodes:-) In
my case, the need to restore the drive was a
result of yet ANOTHER blown 6309 halt
line (and the corresponding blown fuse).
Nice to find the old wind_lst6809.i0 file
tucked away with the descriptors and stuff.

in the beginning, there were

Disk Drives:

OS-9names disk drives and disk drive like
devices as floppies /d#, hard drives /h#, or
ramdisks /r#. These logical names connect to
drive descriptors using the same name,
merged into ‘os9boot’. These descriptor
modules then call the driver assigned to each
device type with the fine info, and all of the
above consult the manager RBF to actually
make a decision.

Floppy drives

Each floppy drive has a descriptor, which
calls (for Tandy type controllers) the cc3disk
driver. Almost everyone uses a modified
cc3disk which can adapt to disk basic and
MS-DOS formatted disks. Tandy supplicd
most obvious descriptors in SYS/

BOOTMAKER/MODULES and
mostmodifieddriversuse these Tandy
style descriptors. At least two will be
merged in boot, (plus default drive)
these may need to be replaced or
modified. For configurations not in-
cluded (like 80urk /d0) an existing
descriptor may be modified ‘on the
fly’ using dmode, and then saved to
MODULES. Remember a/dd copy if
floppy based.

Hard Drives

Are very similar to floppies in ba-
sic structure, since they share
RBF.mn. Thebasic division between
CoCo hard drives probably lies in
how the drive configuration is stored.
SASI (Disto original) or MFM/RRL
(Burke& Burke) store drive info inan
internal table. The original OS-9 for-
mat can follow this, so after making a
descriptor, initializing the drive is
exactly like-initializing a floppy.

SCSldrivesrecord vital info on the
drive itself during format- (KenTon
or Disto option) which makes
preformatted drives real easy to in-
stall. Mounting an old hard drive is
reducedtopluggingitinvs.having to
premodify descriptorstomatchalong
lost data table. Roll yer own usually
means a disk basic utility program to
add the scsi data sectors after a for-
matting the device, which means you
do need that table!

Hard drive driver flavors-- Tandy
and Disto-- share the name cchdisk,
while Burke&Burke supplied a real
collection, allnamed bbSOMETING.
(how well it spells ‘BBFHDISK’ in-
dicatesit’s capability (thus size- from
level one tiny to who wants to format
afloppy anyway?)). Each drive has a
descriptor, similar to the floppy mod-
ule, and how they are created varies
by vendor.

Tandy included descriptors for all
of their hard drive systems in the
‘Development System’ MODULES
dir, along with their cc3hdisk
(crc=$FCC2DB). Other systems re-
quire knowledge of at least the num-
ber of ‘cylinders’ and ‘heads’- addi-
tional info is desirable. Unless this is

a reprint, find a floppy with DOCS/
HARDWARE/TABLES which includes
most typical drives (all Seagate, some
ancient, **********)

Disto provides a generic Smeg de-
scriptor, and a custom ‘dmode’ (some-
times filenamed ‘hmode’) command.
This boot can be cobblered, but it’s still
a good idea to save the new descriptor(s)
to MODULES (see floppy text above)
for later use. One feature of the Disto
driver not available from dmode- the
multipak slot to be used- is byte $15 (set
with ded to $80+slot#-1).

Burke & Burke supplied a ‘ddmaker’
utility tocreate custom descriptors, which
are ezgenned (ezgen typically comes on
any B&B disk) into a boot. While the
B&B only supported two drives, a com-
pletely separate controller can be added
to add two more. The process also adds
anindependent copy of the bb*disk driver
for the second controller (except Nitros9),
with suitable descriptors.

The final wrinkle

To this structure, add the ‘default de-
vice’. This is simply one of the above
descriptors (any kind of drive), with the
logical name changed to/dd, whichmeans
one piece of hardware ends up with two
descriptors so two logical names. Any
program that has to store an internal file
(say, a high score) or access a SYS file
knows where you keep this sort of stuff
automatically, by asking for the default
device.

In the bootlist, it’s usually placed right
under the corresponding driver- which
takes a little extra time using utilities like
Ezgen (which have to open and close
space instead of just replace), but a later
ident -s will then show what sort of boot
it is.

The default device is one of those neat
ideas that didn’t require a major opsys
change to implement, but it is a recent
invention. Older software was often coded
to look for a specific drive, which means
programs written for floppies wouldn’t
transport to hard drives. Use DEd to
search these programs for the strings DO
and D1 (they will usually be rcadable
ASCII, even in the exccutable), and
change these to DD. One example,

the world of 68' micros page 13

ComputerWare’s old basic compiler-
many expensive apps like a payroll pack-
age where written and sold. In all cases,
editing eight characters moved the entire
package to a CoCo3/hard drive.

CoCo OS-9itself ‘features’ this sort of
hardcoding-both in cc3go and init. There
is one minor difference to look out for.
0S-9 kind of thows a curve here, in that
the last character in a string has the high
bit set. To change, use hex mode and
check your work in the ascii window (ie-
entering 44 c4 shows “DD”),

What you should do about it.

We’ve discussed crash boots before.
Excellent plan. (ed: Rick mentioned this
when his hard drive crashed recently...
he wasn't exactly prepared!) From the
top, remove the hard drive /dd, then add
afloppy /dd in it’s spot under cc3disk.
Check that cc3go (root dir) and init (in
os9boot) have been changed to dd and
not hO, since only the dd name will
follow your changes automatically.

To this boot, you'll need at least a
minimal cmds dir with shell and grfdrv.
I'd suggest adding the disk utilities,
including your hard drive restore pro-
gram- and a Gen util along with SYS/
MODULES. This will use so much
room, this 360K isuseless for normal
purposes but it’s perfect when the drive
fades away.

From this base, a ‘real’ hd boot is easy.
Cobbler a new disk and copy cc3go to it.
The edit os9boot, rip out the floppy /dd,
move down below *hdisk, insert hard /
dd. These two files are the entire boot
disk!

The next time the operating systems
needs to be modified, boot with a copy of
the ‘crash’ boot, and modify/test that
first. If it does blow up and garbage a
directory, it will probably hit /dd...just
another floppy. ‘Provisional’ modules
under test can be left in floppy SYS/
MODULES until they’ve been proven
useful... or left on the (abandoned) floppy
as arecord of why you gave up last time,
With an added benifit the main modulcs
directory never has any untested pieces
in it to be used accidentally at some later
date.

Simple changes may not require this
particular dance-- for example inserting
/h1 is such a trivial task (after practice)
there's little need to test. At lcast save a
copy of the new descriptor to the ‘crash’

page 14 the world of 68’ micros

MODULES dir for future repairs.

The disk.

First a digression. As this column has
matured, the number of utilities and other
programs discussed has expanded. Long
time readers may remember my original
intent to stick pretty close to what was
commonly available. Limiting ourselves
to only Tandy release didn’t work out to
well, so ‘disk of the month’ was started
as an alternate source for the fantasic
programs coco users have contributed to
the community.

Now the scene is changing, as new
subscribers (and even new users) start
looking for the same programs. Add re-
prints and folks who want multiple sets
and DOM s getting cumbersome. So the
old ones have been grouped into logical
sets- we've even added a few app disks
(which arrive ready to run, not dearc).
Write or email CoNect for the full list.
With more to offer, we need a multiset
deal- I'll try $5.00 the first set plus $3.00
per additional, per order.

Back to the task at hand- Pulling this
CoCo back together required several pd
and shareware utilities, now collected on
the ‘SysAd’ package.

What they are,

and why | needed them:

dEd is probably the most popular disk
editor for Lvl2, allowing ascii and hexa-
decimal input. Anything modpatch can
do in ram (with the ensuing cobblers,
saves, etc) can be done directly to 0s9boot,
the disk file- saving a few steps. This is
also an excellent way to scan old pro-
grams (it has a search function) for those
pesky hardcoded /DO and /D1 references.

Dmode allows you to change floppy
descriptors on the fly- you can tempo-
rarily ‘borrow’ another systems boot and
at least reach your floppys quickly, even
when the borrowed boot is one of Tandy’s
35 specials. (Disto sasi users pull the
same trick on the hard drive).

ipatch & makpatch are the standard
way to distribute mods for copyrighted
code. Makpatch is used to compare two
files, and the differences (stored as an
.ipc file) can be fed to ipatch later. Obvi-
ous when installing others patches, it’s
uscful athome....Ihave 2 or 3 versions of
some programs, but usually only use
onc. Rather than keep all three online,
makpatch created patch files 1o modify

the (already modified) version I usually
use into the others. This sounds a little
goofy, but it’s faster to recreate the pro-
gram than dig around the back room for
the archive when I need an old version.

label is one of those simple utils you
can’t imagine being left out. It changes
the disk name recorded at format (you
used blank, didn’t you?) into something
meaningful.

megaread isn’t for the weak of heart.
There’s nothing wrong with the utiltiy
itself- it reports how long your hard drive
takes to transfer one megabyte, and does
it well. Improving the figure usually re-
quires reformatting with a different inter-
leave and other tricks, which is where the
condolences come in.

Save is an obvious choice.

Stream..... first, it’s not free, it's
shareware. (Bruce Isted, $25). Second,
it’s definately worth $25. Give it a look.
Besides speed, anice feature is the ability
to extract single files from an archive (or
maybe your MODULES dir:-). Some
online releases had a doc problem- if you
tried before and couldn’t get it working
try files -e ! stream -bv /d1.

vfy is a little difficult 1o describe- just
think of it as a header editor. You can
modify everything from ram requests to
the edition number given, withoutresort-
ing to manually tweaking bytes. And, it
verifies:-)

In the interest of completeness, a few
other ‘system administration’ utilities
from other sets- iconedit, pc/rsdos,
undelete, and possibly others are on the
CoNect disk.

vrn was to be on the last DOM, now
it's here. This driver supports the sort of
RAM swaps and ‘virtual irq" used by
programs like Flight Simulatorand King's
Quest3. It’s most pedestrian application
is running these two programs under a
more or less normal boot (for those with

a meg or better).
< 268'm > 4

Comments and questions may be
sent in care of 68'micros or
directly to the author at:

Rick Ulland
449 South 90th
West Allis, WI 53214
E-mail is rickuland@delphi.com

——

0OS-9/0SK Answers!
Tackling TERMCAP... PART II

Joel Mathew Hegberg

In the lastissue, I gave the source code for
an entire program which uses the TERMCAP
(TERMinal CAPabilities) library to control
the cursor movement and decode input from
the user. The program simply clears the
screen and allows the user to type anywhere
on the screen, using the arrow keys to move
the cursor. Now, it’s time to explain how the
program works! I will assume you have the
previous issue on hand to refer back to while
I explain, and I have to assume that those
reading this understand the concept of point-
ers to (i.e. addresses of) data.

I like to break the TERMCAP learning
process down into four categories —required
variables and functions, initialization,
outputting data, and inputting data. Not
every program will have both input and
output via termcap, but all termcap programs
must have an initialization sequence and the
required variables and functions. For
instance, your program may just display
fancy character patterns on the user’s screen
for entertainment (a screen-saver, perhaps).
This would not require and termcap-
supported input functions, so those could be
omitted.

Required Variables and Functions

The first thing you need in your termcap
programis ‘#include <termcap.h>' so all the
library functions will work! Next, we need
a couple variables to remember how many
lines and columns are available on the user’s
terminal, and we alsoneedtodefine avariable
called “ospeed”, which I'll explain a little
later. These three variables can be defined as
type ‘short’ (2 byte integers) like this:

short lines,columns,ospeed;

At this point, we need to decide what
terminal capabilities our program needs in
order todo what we wantitto do. (Remember,
a list of terminal capabilities is found on
pages 8-31 through 8-37 in the “Using
Professional OS-9” manual.) For each
capability, our program will need to have a
character pointer assigned to use it. For
example, our program will nced to have “cl”
(CLear screen), “‘cm” (Cursor Move), “ku”
(Keypad Up), “kd” (Keypad Down), “kI”
(Keypad Left), “kr” (Keypad Right), and
“kb” (Keypad Backspace). The naming
convention usedunder TERMCAP is simply
using the two-character capability name and
capitalizing them. So, we define our
capability string pointers like this:

char *CL,

*CM,
*KU,
*KD,

*KL,
tKR'
tKB;

In addition, the termcap library routines
(tgoto in particular) require three more
variables be defined — PC_ (for Pad
Character... note this is not a pointer), *UP
(move cursor UP a line), and *BC (for
Backspace Character string). You will note
they are in the program (see previous issue).

So now we've just set up some pointer
variables... the question you should be asking
is, “What do they point t0?" I'm glad you
asked! They point to character strings stored
inatermcap buffer, thatis yet anotherrequired
variable definition. Our initializationroutine
will fill this buffer with all the character
strings our program needs to control the
user’s terminal and point our pointer variables
to those strings. So, how big should our
buffer be? The examplesI'veseenhave it set
to 400 bytes, but you may wantto change this
if you have problems so it’s best to make it a
#define:

#define TCAPSLEN 400

char tcapbuf[TCAPSLEN};

Alright, that's all for required variables.
Now, we just need to write one function
which is required by the termcap library
called user_tputc(). The exact name isn't
important, so feel free torename it. It outputs
asinglecharacter (passed to it as a parameter)
to the user’s terminal. Here’s what you'll
find in the program we're working on:

/* writes one character to terminal. */
[*needed by tputs() library function*/
int user_tputc(c)
char c;
(

return (write(STDOUT, &c, 1));
}

Initialization

The initialization of our termcap program
is a pretty straight-forward process. We
need to find out what type of terminal the
user is on, read the information about the
terminal from the /dd/SYS/termcap file (or
from the environment variable TERMCAP,
if defined), extract only the capabilities we
want and store them in our termcap buffer
(tcapbuf) while pointing our string pointers
lo them, and find out how many lines and
columns are on the user’s terminal. We also
have to do quite a bit of error checking as
well. We need to handle conditions where
the user’s TERM cnvironment variable may
notbedefined, the terminaltype isunknown,
not allof our needed terminal capabilities are
defined in the termcap file, and our termeap

buffer (tcapbuf) is too small. We now begin
learning about the termcap library functions.
There are four functions used forinitialization
— tgetent(), tgetnum(), tgetflag(), and
tgetstr(). The first function, tgetent(), grabs
the raw termcap entry and stores it in a
temporary buffer. It is important to realize
that this is a raw form of the termcap entry
that is unusable for input/output. We want to
extract the termcap strings our program needs
andstore them in a usable form inour termcap
buffer (tcapbuf). (My manuals recommend
having the temporary buffer at least 1024
bytes or longer to accomodate large termcap
entries.) So for our initialization routine,
let’s define a temporary buffer (icbuf), a
pointer for the user’s terminal type
(*term_type), and a couple generic pointers
(*temp and *ptr):
chartcbuf[1024],*term_type,*temp, *ptr;

Looking back at the previous issue, we
can see how term_type= getenv (*TERM")
is used to find out the user’s terminal type (or
if oneisn’t defined, in which case an error is
printed). We use this term_type pointer in
our tgetent() call to grab the raw termcap
entry and detect if the terminal type is
unknown. The tgetent() function is smart
enoughto determine if the user has defined a
TERMCAP environment variable to hold
their termcap entry.
if (tgetent(tcbuf,term_type)<=0)

(

fprintf(stderr,”Unknown terminal type
‘%s’ \n" term_type);

exit(1);

)

Now we start filling up our termcap buffer
(tcapbuf) with the capability strings that we
need, and set up our pointers to them. While
filling tcapbuf, we have to keep track of
where the next string needs to go in tcapbuf,
so we'll use our generic pointer ‘ptr’ for this
task. tgetstr() automatically adjusts our
pointer for us and returns a pointer to the
location of the string stored in our buffer.
This makes extracting our needed capabilities
very easy:

/* read the termcap entry */
ptr=tcapbuf;
if (tlemp=tgetstr(“PC",&ptr))
PC_=*temp;
CL=tgetstr(**cl”,&ptr);
CM-=tgetstr(**cm™, &ptr);
KU=tgetstr(“ku”,&ptr);
KD=tgetstr(“kd”,&ptr);
KL=tgetstr("'kl",&ptr);
KR=tgetstr(“kr",&ptr);
KB=tgetstr(“kb”,&ptr);
UP=tgetstr(“up”,&ptr);

the world of 68' micros page 15

If any of our needed terminal capabilities
do not exist, their pointers are set to NULL.
We can then check to make sure we have
everything weneed by looking atour pointers
and making sure all of them are not NULL:

/* make sure we have everything */

if (((CL && CM && KU && KD &&
KL && KR && KB && UP))

fprintf(stderr,”Incomplete termcap
entry\n");
exit(1);

}

To discover the number of lines and
columns the user has on his terminal, we use
tgetnum(), since we're getting a number
rather than astring. tgetnum() does not touch
our tcapbuf. This is the same for tgetflag(,
which returns 1 for true or O for false for a
boolean termcap capability. Only tgetstr()
updates tcapbuf and our generic pointer:

lines=tgetnum(“'li"’);

columns=tgetnum(*‘co™);

ospeed=-1; /* no padding */

if (lines<1 [l columns<1)
{
fprintf(stderr,”No rows or
columns\n™);
exit(1);

)

What the heck is that ‘ospeed’ variable?
Let me try to explain. Some older terminals
required a delay after each special operation
(like moving the cursor, clearing the screen,
etc.) before more data could be sent. The
delays are in the form of “pad characters”
which are sent out for a certain duration of
time. How long are the pad characters sent to
the terminal? That’s what ospeed determines.
ospeed stands for Operating SPEED of the
terminal, andrepresents the baudrate. Under
0S-9, advanced program-mers will recall
that baudrates are given values 0 through 16
(5=300, 7=1200, 10=2400, 14=9600, etc.).
You can obtain the value for the user's
terminal by making a call to _gs_opt() and
looking at _sgs_baud. Or, you can do what
Idid, and make the assumption that the user
is using a relatively modern terminal that
doesn’trequire padding and set ospeed to -1.
With ospeed set to -1, no padding is sent to
the users terminal during special operations.

Finally, we just need to check to make
sure our generic pointer hasn’t gone past the
end of our terminal capabilities buffer
(tcapbuf)! This is an awkward error, since if
it has gone past the buffer, there's no telling
what itcould have overwritten in our program.
The best thing is just get out quickly.

if (pr>=&tcapbuf[TCAPSLEN])

fprintf(stderr, " Terminal description too
bighn™);

page 16 the world of 68’ micros

exit(1);

)

This takes care of initialization! Our
tcapbuf now contains all our needed terminal
capability strings and our pointers are
initialized. Inthe nextissue, I'll explain how
todo]/O using our termcap example program,
50 be sure to keep the all your 68'Micros
issues on hand!

Boisy Pitre recently sent me some source
code to help K-Windows programmers
determine if the user is, in fact, running on a
K-Windows terminal. He also included
another routine to return the edition number
of K-Windows on the system. The latter
routine will be of interest to non K-Windows
as well, since it can (with few changes) work
for any module in memory. My thanks to
Boisy for allowing me to reprint this code
here!

#include <stdio.h>
main()

if (isKWindowsDevice(l) = 1) {
printf(“stdout is a KWindows
device\n™);
) else {
printf(“stdout is NOT a KWindows
device\n™);
)
printf(“Windio #%d\n",
KWindowsEdition();
)
*

* this function returns 1 if the
* current path is open
* under a K-Windows device,
* else it returns 0
t d
* Boisy G. Pitre — 12/8/94
*/
#include <module.h> is KWindowsDevice
(path)
int path;
{
char device[32], driver[8];
mod_dev *descAddr;
mod_dev *modlink();
/*get the name of the path’s device*/
if (_gs_devn(path, device) == -1) {
/* failed to get device */
return(0);
}
/* attempt to link to path’s device
ONLY if it’s a descriptor */
if ((descAddr = modlink(device,
mktypelang(MT_DEVDESC,
ML_ANY))) ==-1) {
/*failed to link to path’s device*/
return(0);

}

munlink(descAddr);
/* unlink to be nice */
/* copy driver string and check
to see if it’s windio */
strncpy(driver, (int)descAddr + descAddr-
>_mpdev, 6);
driver[6] = ‘\0";
if (strucmp(driver, “WINDIO") !=0) {
return(0);
)
/*it’s most likely a K-W window*/
return(1);
}
int strucmp (strl, str2)
register char *strl, *str2;
{
register char *p;
char *index();
if ((p = index (str1,"\n")) != NULL)
*p ="\0;
if ((p = index (str2,\n")) != NULL)
*p="03
while (toupper (*strl) == toupper (*str2)
&& *sirl && *str2) |
++strl;
++str2;
)
if (*str] == *str2) return(0);
if (*strl > *str2) return(1);
return(-1);
)
™
* this function returns the edition number
* of windio or -1 if the windio driver cannot
* be found
*
* Boisy G. Pitre — 12/8/94
*/
int KWindowsEdition()
{
struct modhcom *windioDrv;
struct modhcom *modlink();
/* attempt to link to windio driver */
if ((windioDrv = modlink(*“windio”,
mktypelang(MT_DEVDRVR, ML_ANY)))
=-1) (
/* failed to link to windio driver */
return(-1);
)
munlink(*‘windio™);
/* unlink to be nice */
return((int)windioDrv->_medit);

)
L < 268'm > J
Any comments, questions, or source
code to be included In Joel's column may
besent in care of 68’Micros or directly to
Joel at:
Joel Mathew Hegberg
936 N. 12th Strect

Dckalb, IL 60115
E-mail: Joclhegberg @dclphl.com

Programming in "'C"
Time for a little STRUCTURE!

P.J. Ponzo

If we wish to keep arecord of, say, friends
... including name, address, birthdate, etc.
we might declare:

char name[20}, address[40], birthdate[15];

where name, for example, is an array of 20
characters which is meant to hold the name
of one such friend, and address holds 40
chars, etc.

If we want 100 such records, we could use:
char name[100}[20], address{100][40],
birthdate{100][15];

where name[0], name[1],name[2}, etc. are
each arrays of 20 characters, etc.

We would print our list via a statement
like:
for (i=0; i<100; i++) printf(‘\n%s %s
9s” ,name[i},address[i],birthdate[i]);

Since the birthdate has the form “Nov 6,
1934” (for example) we would need to ex-
tract the last number (1934), and perform a
subtraction, in order to determine his (her?)
age ... and would need all such numbers in
orderto deduce the average age of our friends.
So we might declare birthdate to be a trio of
objects: an array of characters (to hold the
birth-month, like “Nov"™), an integer (to hold
the birth-day) and & second integer (to hold
the birth-year) ... that way we could perform
some arithmetic on the integer parts of the
birthdate.
char name[100][20], address[100]{40];
char birth_month{100][4];
int birth_day{100], birth_year[100];

The above would do it. Sufficiently many
arrays (of characters and integers) for 100
friends, each with names of 19 characters
(or less) and addresses of 39 characters (or
less) and 3 characters for the birth_month
(we'll need the terminating *\0’ in each char
array!)...and 100 birth_days andbirth_years
(remember that birth_day[0] to
birth_day[99] is 100 birth-days!). It would
be nice to have a DATA TYPE which held
one such record, with name, address, etc.
and mixed chars and ints !!

Let's welcome the STRUCTURE ...

We invent a structure called date which
includes a 3 character month (hence
month[4]) and two ints (day and ycar). We
are accustomed to saying int x; and chary;,
meaning that x is of DATA TYPE intand y
1sof DATA TYPE char. SO, we will want to
say date birth; meaning that birthisof DATA
TYPE date meaning a collection of objects:

a char month[4], an int day and an int year.

But, if date is a structure (with the ele-
ments mentioned above) then we will refer
to it as struct date, to inform the compiler
that date is no ordinary guy but is, in fact, a
struct ... with all the rights and privileges
thereto appertaining!

SO, we declare birth to be such a structure
(called date) via: struct date birth;
see? struct date go together!

So why wouldn’t we just define a structure
called birth, which has the 3 members:
month[4] andintday and int year 77 Because
we will want to use this struc for other dates,
like: struct date death;

Too morbid? Then how about:
struct date WhenWeMet;

Now, WhenWeMet is of DATA TYPE
date too, containing the same three elements
of char month{4] and int day and int year !!
(Note: some compilers may not recognize
names like WhenWeMet but may restrict
names to, say, 8 characters or less).

Inside a STRUCTure

Before we see how to define such a struc-
ture as date, we use it! It will have 3 mem-
bers: month, day, year. We declare:
struct date birth[100], WhenWeMet[100];
so each of birth[0], birth[1], etc. and
WhenWeMet[0], WhenWeMet[1], etc.
are structs of TYPE date. We refer to
birth[i].month, birth[i].day and birth [i}.year
and to WhenWeMet [i].month,
WhenWeMet[i].day and WhenWeMet
[i].year for i=0, 1, 2, ... up to the number of
friends we have (and each reflects the 3
members month, day and year of the
date structure ... OK?)

To input all this information we might use:
printf(*“\n How many friends do you have *);
scanf(*“%s",&number);
for (i=0; i<number; i++) {

printf(‘“\n For friend %d”,i);

printf("\n Enter Month of Birth “);
scanf(*%s",&Dbirth[i].month);

printf(*\n Enter Day
scanf(*%s",&birth[i].day);

printf(*\n Enter Year of Birth “);
scanf("*%s",&birth{i].year);
)
printf(*\n How many friends do you have **);
scanf(*%s",&number);

of Birth “);

Here we ask for the number of friends, and
store it in number (note the &number!):
printf(*\n How many friends do you have **);
scanf(“%s”,&number);

for (i=0; i<number; i++) {
Then, we go through each of number of
friends, asking questions:
for (i=0; i<number; i++) {
printf(‘“\n For friend %d:",i+1);

We remind the user which friend we're
working on by printfing ...
For friend 1: then For friend 2: etc.
(We don’t refer to “friend 0:” ... that
would be insulting ...so we print the num-
bers i+1 rather than i).
printf(‘*“\n For friend %d",i);
printf(*\n Enter Month of Birth “);
scanf(“%s"”,&birth[i].month);

We ask Enter Month of Birth and put the
answer into &birth{i].month (for the ith
friend) and, as required by scanf(),we use
the &ddress !
printf(“\n Enter Month of Birth *);
scanf(*%s",&birth[i].month);

printf(*\n Enter Day
scanf(**%s",&birth{i].day);

printf("\n Enter Year of Birth *);
scanf(*%s",&birth([i].year);

... and so on, for the birth.day and
birth.year. Unfortunately, this won 't (quite)
work ... did you see why?

We’ll repeat the program excerpt:
printf(*\n How many friends do you have *');
scanf(*%s",&number);
for (i=0; i<number; i++) {

printf(*“\n For friend %d",i);

printf(‘*\n Enter Month of Birth *);
scanf(*%s",&birth[i].month);

printf(*\n Enter Day
scanf(“%s”,&birth[i].day);

printf(‘"\n Enter Year of Birth “);
scanf(“*%s”,&birth{i].year);
}

of Birth *);

of Birth *“);

number should have a %d (for an
integer)

birth[{i].day should have a %d (for an
integer)

birth[i].year should have a %d (for an
integer)

... but there's something else ...
printf('\n Enter Month of Birth *);
scanf(“%s”,&birth[i}.month);
scanf() will put the 3 characters typed at
the keyboard, say *“Nov”,
into the memory reserved for
birth[i].month, but won’t put in a \0'!| WE
must put it in (... while we’re praying that
the user doesn’t type november, which is
much 100 long to fit into the 4 bytes we've
reserved for the month!),
We could initialize all the bytes in the

the world of 68 micros ~ page 17

birth.month to \0' via:
for (i=0; i<100; i++)
friends*/
for ()=0; j<4; j++) (/* for each of 4
bytes*/
birth[i].month+j="0"; /*set byte to

{ /* for all 100

N\D*/

} /* end of inner “for” */
} /* end of outer “for” */
... then (provided the user doesn’t type more
than a 3 character month!) we’ve got all the
"D’ string terminators we'll need.

This little ritual is necessary because
scanf() is meant as a general-purpose input
... ints and floats and chars etc. A special-
purpose input ... just for strings of chars ...
would be smart enough to append the 0.

The stdio.h library of C-functions will
contain such a function. gets(&sam) will get
astring and putitinto the address &sam. Just
like scanf() requires a pointer to the memory
location where the input is to be stored, so
does gets(). We write:

1 printf(“\n How many friends do you have
*Y; scanf(**%d",&number);

2 for (i=0; i<number; i++) {

3 printf(*\n For friend %d",i);

4 printf(‘“\n Enter Month of Birth “);
gets(&birth[i].month);

5 printf(*\n Enter Day
scanf(*%d",&birth(i].day);
6 printf(“\n Enter Year of Birth *);
scanf(“%d"”,&birth[i].year);

7)

and the gets() in line 4 will collect each
chararacter typed, and when a \newline is
typed (the Return or Enter key) it will ex-
change it for a \0' ... and put everything into
the memory location indicated.

of Birth “);

Defining a STRUCTure
It's about time we defined our struct date:
struct date {
char month[4];
int day;
int year;
b
Note the structure of a structure:
struct name {
— all the —
— members —
— go here —
B
We give it a name (like date) so we can
declare other objects to be of this DATA
TYPE (remember birth and WhenWeMet ?
)... and an opening and closing { and }
.. and the various members (like char
month([4], etc.)... and a final;
struct date {
char month{4];
int day;
int year;
B

page 18 the world of 68’ micros

This final is meaningful!

Because a struct date is to be used just like
int or char, and because we usually say int x;
or char x; (with a final ;), then we terminate
a structure definition with a ; and expect to
be able to say struct date {

— et —
) x;
(note the similarity with int x; etc.)

SO, for our earlier example, we could say:

struct date {

char month[4];
int day;
int year;

} birth[100], WhenWeMet{100];

... and we've defined our struct date AND
declared birth{] and WhenWeMet[] to be
such structures ... all at once!

Now let’s return to the record of our
*friends”, which includes nameand address
as well as some dates. For each “record” we
will define another structure ... let’s call it
“record” (what else?)

struct record {

char name{20];

char address[40];

struc date birth;

struc date WhenWeMet;

} friend[100];

Note that we've not only defined the struct
called record but we've also declared 100
such structures, using the *‘final” friend[100];
friend[0] and friend[1] and friend{2] etc. are
ALL of type record hence contain members
name, address, birth and WhenWeMet.

The first two (name and address) are char-
acter arrays BUT the last two (birth and
WhenWeMet) are ... SURPRISE (!) struc-
tures of TYPE date !!!

We now have two structures defined:

struct date | struct record {
char month{4]; char name[20];
int day; char address(40];
int year; struc date birth;
| struc date WhenWeMet;

} friend[100];

Earlier we declared 200 structures of
TYPE date (namely birth[100}and
WhenWeMet [100]). We alsoreferred to the
3 members of birth[47] (for example) as
birth{47).month, birth[47].day and
birth[47].year.

Now we won't need to define these 200
structures (sorry about that!) since struct
date birth and struct date WhenWeMet are
embedded in the record structure ... struc-
tures within structures!! STRUCTures within
STRUCTures 7?2 NOBODY SAID THIS
WAS EASY!

struct date | struct record {
char month[4]; char name[20];
int day; char address[40];
int year; struc date birth;
) struc date WhenWeMet;

} friend[100];
To input (for example) the name of the
friend{47], we’d say:
printf(*\n Name
gets(&friend[47).name);
... and ... to input the birth.month we'd say:
printf(*\n Month of Birth : *);
gets(&friend[47].birth.month);
Note the use of gets() (to automatically
append the \0'). Note, too, the very logical
way we refer to the member of a structure
within a structure... friend [47] .birth.month:
main() { /* not-too-useful-program*/
int number, i;
struct date {
char month[4];
int day;
int year;

|5

struct record {
char name[20];
char address[40];
struct date birth;

} friend{100];

printf("\nHow many friends : *);
scanf(“%d",&number);

for (i=0; i<number; i++) {

printf(*\n For friend %d”,i+1);
printf(*\nName ? *);
gets(&friend[i].name);
printf(*\nAddress ? *);
gets(&friend[i].address);
printf(*\nMonth of birth ? *);
gets(&friend[i].birth.month);
printf(‘*\nDay of birth ? “);
scanf(*%d",&friend[i].birth.day);
printf(*\nYear of birth ? “);
scanf(*%d”,&friend[i].birth.year);
)

printf(‘*\nSUMMARY of your %d
friends” ,number);
for (i=0; i<number; i++) {
printf(*\nName:%s" friend[i}.name);
printf(*\nAddress:%s” friend[i].address);
printf(*\nBorn on %s %d,%d",
friend[i].birth.month, friend[i].birth.day,
friend[i].birth.year);
}
)
giving a (typical) printout:
Name:Peter Ponzo
Address:49 Margaret S., Waterloo, Ont.
Bom on Nov 6,1934

please : “);

POINTERS to STRUCTURES!

One sometimes feels frustrated in writing
an claborate function which does the most
wonderful things, only to get from such a
function a single int or float or char (you
can’treturn(a,b,c.d,e) at the end of the func-
tion, but only return(a) ({@#3$%). BUT, the
function can create an claborate structure
which houses all the wonderful things, then

. Emulates ROMS (2716-27010) or
RAMs
ein 8- and 16- bit systems.
® Window/menu driven interface.
Provides 8 hardware breakpoints for 8
e bit systems.
$195 (2716-27256) or
©27010), 90 day warranty.
®15 day money-back guarantee.
Optional assembler, disassembler, and

$245 (2716

oSu'nulaLes 78, 780, 64180 8048, 8051
8085, 6800, 6801, 6805, 6809,
68HCI11,

® 6303, 6502 & 65C02.

Assembler, Disassembler, &
Windowed

® Symbolic Simulator. Supports on-

boar

debug §1909 §1E§2l§2 Board
to outmde wor]d.
® No jumpers for 2732, 2764, and
®6116.
o Two interrupt signals on CPU bus.
e Size is 2.75"x5". $60 each board.

For an integrated development
system with assembler,

Development System
® Eight channel 8-bit A/D converter.
32K ROM and 32K RAM.
¢$120 each SBC, to complete with
assembler, disassembler, BASIC
inter-preter and on-board debugger

ad 7/
* j) &M Microtek, Inc.

83 Saman Road, W Orange, NJ 07052
Tel: 201-325-1892 Fax: 201-736-

return(a) where a is a pointer to the struc-
ture!

In fact we've used such a function ... one
which returns a pointer. Before 1 tell you
which function it is (from the stdio.h li-
brary), let's see how such a function should
be declared.

Consider: char f(); which declares f() to be
a function which retumns a char. Then, to
declare a function which returns a pointer to
achar it would be sensible to use the format:
char *f(); ... right?

SO ... if the function f() were to return a
pointer to a structure called sam, we'd de-

clare it with:
sam *f(); ...right?

And what if sam was typedefined to be a
structure, as in:

typedef SomeStructure SAM; (where we
have agreed to use capitals)

Then the function f() would be declared:
SAM *(); ... right?

NOW ... remember when we used:

FILE *fopen(); 1?77

In fact, when we fopen() a file on a disk,
the operating system returns a pointer to a
structure (called FILE) and this structure
contains all the wonderful things we need to
know about the file ... and that's why we also
declare this pointer fp: FILE *fp, *fopen();
and say (subsequent to the above declara-
tion): fp=fopen(); soweassigntofpthe
pointer returned by fopeny().

Then, when we want to get a character
from this file, we need only pass to getc()
this pointer (as in getc(fp)) and now the
getc() function will be able to extract all the
wonderful things it needs.. from the struc-
ture!

NOW, if sam *f(); is the way we declare
f() to be a function whichreturns a pointer to
an object of TYPE sam (which could
be an int or a float or a struct etc.), then how
should we declare f to be a pointer 10 a
function which returns an object of TYPE
sam 7777 sam (*1)();
says that f is now the pointer ... because we
used (*f) ...and the thing it points to is *f (
remember that int *x; declares x to be a
pointer to an int, and the int is *x) SO, since
(*f) is to be a function, we say (*f)()... and

we've seen this curious notation before too!

Suppose that ptr is a pointer to a structure
(declared using *ptr so that (*ptr) IS the
structure itself). Suppose the structure had
a member called name.
Then we’'d refer to this member as:
(*ptr).name

(‘as in (*ptr).name="George";)

Another (simpler) notation for the same
thing is:
pur ->name (use this only if ptr is a pointer)

.. and if the structure had a member birth
which was itself a structure containing a
member called month, then we can use the
notation:
ptr->birth.month
(*ptr).birth.month)
as in ptr->birth.month="May";

(which means

AND, if birth happened to be a pointer
too, we'd use:
ptr->birth->month

MORAL???
Use sam.birth if sam is a structure.
Use sam->birth if samis a pointertoa

structure.

P.J.Ponzo
Dept. of Applied Math
Univ. of Waterloo
Ontario N2L 3G1
CANADA

-

Hitachi 63C09E CPU and Socket

SMALL GRAFX ETC.

"Y" & "TRI" cables. Special 40 pin male/female end
connectors, priced EACH CONNECTOR ------eemnemennaes
Rainbow 40 wire ribbon cable, per foot---------z-ezememmeeu-

512K Upgrades, with RAM chips
MPI Upgrades

and external power supply

For all large MPIs (PAL chip) ----------ceeeeveeeev
For small #26-3124 MPI (satellite board) -------- $10.00
Serial to Parallel Convertor with 64K buffer, cables,

2400 baud Hayes compatible external modems
ADD $2.00 S&H TO EACH ORDER

SERVICE, PARTS, & HARD TO FIND SOFTWARE WITH COMPLETE
DOCUMENTATION AVAILABLE. INKS & REFILL KITS FOR CGP-220,
CANON, & HP INK-JET PRINTERS, RIBBONS & Ver. 6 EPROM FOR
CGP-220 PRINTER (BOLD MODE), CUSTOM COLOR PRINTING.

TERRY LARAWAY, 41 N.W. DONCEE DRIVE
\ BREMERTON, WA 98310 206-692-5374

J

page 19

the world of 68° micros

Basic09 In Easy Steps

Optimizing you programs.

Chris Dekker

As every programmer knows there are
many ways (o reach a certain goal and
although all of them get the job done (we
hope!!), not all methods are equal in el-
egance and processing speed. Elegance in
this respect means that a program should
have a straight forward and logical design,
without lots of twists and turns. This not
only looks better; it usually means that you
have an easier time debugging your code
and, justas important,itmakes ita loteasier
to maintain the code later on.

Now, I know writing elegant code is not
that easy; especially for beginners. I, too,
sometimes have to suppress the desire to
rewrite functional code because it looks
nowhere near as good as it did some time
ago. So,, if things don't go smoothly at
first: don’t despair; practise still makes
(almost?) perfect.

Having said all that, the best way to
avoid problems is not to get into bad habits
in the first place. Unfortunately DECB is
not a good environment for getting into the
right habits. Most notably because you can
not build up a program as a collection of
separate modules as you can with Basic09.

This doesn't seem a big deal up front, but
the larger your programs get; the more
likely it is you loose track of a variable,
which ends up holding the wrong number,
leading to unreliable results, etc. The worst
part is that if you discover this after a year
or so, youmay spend a week trying to track
down GOTOs, GOSUBs, etc. and gener-
ally trying to find out what happens where.

If you consider this the thrill of a life-
time: go ahead, make your day. As long as
you can keep your programs running there
is nothing really wrong with it. Personally,
though, I consider it a waste of my time if
I have to spend that much time trying to
track down an error. I think I should be able
to track down a faulty module within a
minute, at least 90% of the time.

My perspective on these matters may be
slightly different than that from most of
you. Forinstance, the source code for Level
II graphics and CoCoTop combined runs
over 600K. The amount of source code I
have written for the various packages and
personal use is around 2 Mcgabytes (not
counting old versions) and still cxpanding.

All together this is a lot of software to
maintain. My main point, though, is that as
little as a few ycars ago I didn’t have the
faintest idca it would balloon like this. The
same thing might happen to (some of) you,

page 20 the world of 68' micros

50 you better get it right from the start.

SofarIhavetalked only aboutthe “why’s.
I guess it is eminently more useful for you
to talk about the “how"s and “what”s. So
here goes. The first thing you should do is
patently low-tech: sit down with a piece of
paper and write down what you want the
program to do and how you expect 1o ac-
complish this. This is called flow charting.

Your flow chart doesn’t have to be such
abeautiful design that youneed a computer
to draw one: chances are no one will ever
lay a hand (or eye) on it anyway. It is,
however, an important tool to visualize
how the various portions of your program
will interact. Generally speaking this pro-
cess helps most by identifying which chunks
of code will be used over and over again.

This allows you to start by writing a
separate module for each of these chunks.
The two main advantages of this approach
are: A) you have to debug this code only
once and B) if you have to make a change
in that code you will have to do this only
once, too, to implement the change through-
out the program.

I know that you can achieve the same
effect by using subroutines, but with mod-
ules you have the added advantage of deal-
ing with local variables. A local variable is
avariable that is only visible to the module
it belongs to. This way you don’t have to
worry about running out of variable names;
using a name twice, so you get your signals
crossed, etc. Some examples of this type of
modules are: modules for file access, for
handling screen functions, keyboard input,
menus, etc.

Now that you have these special mod-
ules in place (or at least laid out) you start
thinking about the next layer. These are
usually modules that call the aforemen-
tioned modules. In a record keeping pro-
gram you could write a module to add
records, one to edit them, a module to sort
records, ctc.

Atthe top of our little pyramid would be
your main module. Sometimes this module
is referred to as the primary module al-
though, technically speaking, under Ba-
sic09 this is incorrect. This main module
usually carries the name of your program.
It can best be uscd for things like handling
the main menu (if there is one), opening
paths to various devices and most of the
error handling. Of course it also contains
thecode to call the other modules that make
up your program.

I find that this way of structuring pro-
grams works very well for larger efforts: it
is easy to maintain and expand. Of course if
you want to write a small utility, setting up
aprogram in this way is a waste of time and
effort. Just where to draw the line is a
matter of personal taste and tends to be-
come a lot clearer after some practise (and
mistakes).

Coming back to our flow charts: there
are two mistakes you can easily (but
shouldn’t) make. A) don't draw your chart
five minutes before you start typing in the
code. PersonallyIliketodo such ajoba few
days or a week in advance. This gives you
some time to let the design sink in and it is
also easier 1o make changes to the overall
designif youhaven't written abyte of code
yet. Remember a big mistake at this level
WILL come back to haunt you. B) Don't
think that you are gifted enough to do
without a decent design. Sooner or later we
allreach alevel where, if youdon'tdo your
“homework™, you can only screw up. With
a lot of extra code (and effort) the program
may be semi-reliable, but that is still noth-
ing to brag about.

Is starting out right all you can do to
optimize a program? No, there are lots of
things to keep in mind when writing the
actual code. For instance Y=X”2 gives the
same result as Y=X*X but it takes your
CoCoabout40times as longto figureitout.
Not all operations can be sped up that
dramatically, but it does drive the point
home.

There are actually quite a lot of little
improvements tobe made along thoselines.
I could spell them out for you here, but they
are all neatly grouped together in chapter
12 of your Basic09 manual so you might as
well read that. There you will find about 3
pages worth of tips plus a table ranking the
execution speed of the various operations.
After thatitis up to you to implement them.

That leaves for this article just a few tips
you won’t find in the manual. For one thing
the manual correctly states that quickest
way to transfer data between data struc-
tures, arrays, elc. is to use the LET assign-
ment operator. Or, in case you want to
transfer data to or from a disk, to use the
PUT and GET statements.

These methods work great mainly on
account of reduced processing overhead.
The only drawback is that LET, GET and
PUT transfer entire arrays inone block. But
what if your buffer is only half full? Well,
you could use aloop to transfer the contents

record for record. This works fine if your
records are 100 bytes or more long. But for
short records (not to mention byte trans-
fers) processing overhead is big enough to
substantially slow down your program.

Fortunately there are a few escape
hatches. The above mentioned restrictions
are built into Basic09, not OS-9 itself. As a
substitute for the LET command you can
use the FSmove system call or, and this
may be easier, the ML subroutines pre-
sented in part 8 of this series.

To get around the GET/PUT restrictions
we use another system call. This call (I$read
or I$write (whichever one is appropriate)
allows us to transfer bytes to and from a
device without checking what we are actu-
ally transferring. This last feature is very
importantto avoid system crashes. Although
setting up these system calls is a little extra
work they allow you to control the size of
the transfer down to the last byte.

First you must set up a data structure for
the 6809's registers (as I have shown you
before); then open a path to a file and
replace a GET statement by the following
code:

regs.a=path

regs.x=ADDR (buffer)

regs.y="1? (number of bytes you want to
read)

RUN syscall($89,regs) (I$read call)

IF LAND(regs.cc,1)=1 THEN

ERROR regs.b \ ENDIF

The only other consideration is that your
software has to calculate a valid value for
regs.y. This depends on what your program
needs to do and shouldn’t be too hard to
figure out. If an error occurs, this routine
will report it to Basic09 in the same way as
the GET statement so no special precau-
tions are necessary there.

To replace the PUT statement: use the
sameroutine but change $89 to $8A, this is
the code for I$write. OS-9 has two other
system calls for data transfer ($8B and
$8C) but they correspond to Basic(09's
READ (INPUT) and WRITE statements
(performing checks on the data) so they are
not all that useful in raw data transfers.

Another area where you can get some
more speed, for certain programs as much
as 5%, is to avoid calling gfx2. This utility
matches the commands you give it with the
appropriate codes and performs error check-
ing on the variables you want to pass.
However if you don’t mind doing some
extra work up front, your program will do
fine without it.

The extra work usually amounts to sct-
ling up a data structure or a simple BYTE
array to hold the codes and valucs you want

to send to the device driver. This device
driver is the part of 0S-9 that actually
executes your commands and it doesn't
care whether it gets those commands from
£{x2 or from your program, as long as gets
the right values.

All of this sounds very difficult, but is
surprisingly easy to implement. For in-
stance you want to close an overlay win-
dow. You can do so with the command
RUN gfx2(*owend™) or you can use the
following code:

DIM owend:INTEGER
owend=$1B23 \ PUT #1,owend

In both cases the result will be the same:
your overlay window closes or %@#!!
#195; meaning there was no overlay win-
dow to begin with. The reason is simple
enough: if gfx2 gets a“owend” command it
will send two bytes ($1B and $23) via
stdout (path #1) to the device driver (ex-
actly what we did).

By the same reasoning RUN
gfx2(path,”owend™) translates into PUT
#path, owend. As an added bonus you will
actually conserve memory if you use more
than two “owend” statements in your pro-
gram, because you have to initialize owend
only once.

There are a number of other codes that
you can set up in the same way. For in-
stance cursor ON/OFF, reverse video ON/
OFF, etc. The actual codes for this can be
found in the windows section (in the back)
of your OS9 manual.

All the way at the other end of the scale
for this way of accessing the screen is the
following example. I use it frequently be-
cause I find it the most reliable way to
convert the type of a window. Basically it
replaces the following commands:

RUN gfx2(“dwend™)
RUN gfx2(“dwset”,2,0,0,80,24,1,0,0)
RUN gfx2(“select™)

Theoretically you should be looking at
an 80 column screen after executing these
commands, but that doesn't always hap-
pen. For some reason there are times that
the computer's hardware and software no
longer agree with each other after these
commands. OS9 insists that you are look-
ing at a 80 column text window, while the
CoCo’s hardware happily displays a 40
column text window. I am not sure why this
happens but I do know it is very annoying
because, generally speaking, your program
crashes in a hurry. The mostreliable way to
avoid this mess seems to be to send your
escape codes (as these commands are usu-
ally called) dircctly to your screen driver.
The same way as I described above. Your
code looks something like this:

DIM switch(14):BYTE; i:INTEGER
FOR i=1 TO 14

READ switch(i)

NEXTi

PUT #1 switch

DATA 27,36,27,32,2,0,0,80,24,1,0,0,
27,33

As you can see this code does the same
thing as the above commands. 27,36 =
$1B24 = dwend; 27,32 = $1B20 = dwset;
27,33 =$1B21 =select. The other codes, to
set up the new window, are the same as in
the “dwset” command for gfx2.

Note that the length of “switch™ is criti-
cal here: it MUST be 14 bytes. A device
driverreactsto everything it gets (or doesn’t
get) and you could easily lock up your
computer by sending the wrong number of
bytes.

As a byline: there is a chance that this
approach is not 100% reliable either. Gen-
erally this occurs when your program tries
to access the new window right after the
PUT statement. This seems to be caused by
the hardware falling behind the processor.
Your screen gets updated 60 times per
second. This is very fast by our standards
but to your CoCo that is once per 30000
clock cycles in whichitcando alot of work.

So far] have been successful solving this
problem by inserting one line of code right
after the PUT statement. This code puts
your program to sleep until the screen has
been updated:

regs.x=2 \RUN syscall($0A ,regs)

Well,, that’s about it in this neck of the
woods. You can find the codes to replace
other gfx2 commands in the windows sec-
tion of your OS9 manual. You will find
equivalents there for all basic graphics and
windowing functions, along with the num-
ber of bytes you have to send to the device
driver and their meaning. Till next time,
enjoy your CoCo.

Chris can be reached for
comment in care of this
magazine or directly at:

Chris Dekker
RR #4
Centreville, NB E05 1H0
CANADA

Don't forget to see his
software ad in the
advertiser's section!

the world of 68 micros page 21

AUTO BOOT 0OS-9 FROM POWER-ON

Steve Hilton

Burn a 27C256 EPROM to replace your CoCo 3 ROM with changes to autoload OS-9 from power-on

1 wanted to auto-boot without taking away anything from
the original RS DECB system. So, with that inmind, I came up
with the idea to replace the area of CoCo 3 ROM used by the
graphic data of the 3 Microware programmers (Sorry, boys!).

Track 34 of your OS-9 system disk holds the modules REL,
BOOT, and OS9P1. This codeisloaded by the “DOS” command
into location $2600. The code is entered and after a bit of
housekeeping is RELocated to its rightful position, $ED00.
OS9P1 then takes over and loads the rest of the boot from your
system disk using the BOOT module.

As you may know, the CoCo 3 ROM code uses the CTRL
and ALT key depression when powering up to display the
Microware boys. I took over the code for this test and directed
the system to jump to BASIC when it saw the CTRL and ALT
keys depressed. Without the keys being pressed, the system
jumps to our ROM based OS-9 bootloader.

The actual code changes to ROM are small, as listed below,
but you must arrange to get your $1200 bytes of track 34 into
position starting at $4405 (This is where the data for the 3
amigos started). The code changes for making anew ROM are:

Relative Addr Original New
4038 C3 D6
4039 6C 05
40B9 27 10
40BA 07 27
40BB 31 01
40BC 3F 33
40BD 26 31
40BE F2 3F
40BF 16 26
40C0 01 FO
40C1 2E 12
41F0 4F 30
41F1 B7 8C
41F2 FE BS
41F3 ED CcC
41F4 97 43
41F5 71 C8
41F6 B7 ED
41F7 FF 00
41F8 DE 16
41F9 C6 FE
41FA 09 C7
4405 Here begins the Track 34 data. 4F
53
20
SB
12
CONTINUES -

Replacing the ROM in your Color Computer 3 might be a
litle much for some people. You must use a desoldering tool
to take out the old ROM. (This can be simplified by cutting the
unit out first and then using a desoldering tool to clean up).
How cver you do it, be carcful not to damage the foil traces.

page 22 the world of 68° micros

Install a 28 pin socket to hold the EPROM. Put your boot
disk in /D0 and close the door. Turn on the power and watch
asthe screen will flash green for just a split second and then the
blue screen with “OS9 BOOT” will appear.

What about track 34?7 No longer needed. I used the disk
editor, DED, to replace the sectors back into the GAT table.
I'm working ona patchto OS9GEN to skip the part where track
34 gets loaded.

If youdon’t own or have access to an eprom bumer, I would
be happy to make one for anyone wishing. You pay for the
EPROM and the return shipping. 27C256 EPROMs cost about
$5.00 and shipping would run under a dollar, (USMAIL). So,
send $6.00 to:

Steve Hilton
612 Chateau Circle
Burmnsville, MN 55337

You'll receive a standard version of the OS-9 bootloader. If
you want a doctored up version, send me a message saying
what changes you want. If it’s just a couple of bytes, I can
handle that, but I don’t have the time to make major changes,
and I can’t be held responsible if your changes don’t work as
anticipated. Good luck!

Infocom Games on the MM/1! Boisy Pitre

Tused to be a big Infocom game fan whenI had my CoCo and used
DECB (long ago). When I moved to OS-9, I didn’t play them
anymore since doing so meant going back to DECB.

While fiddling around on chestnut, I ran across an Infocom game
interpreter that Brian White had ported to run under OSK. After
downloading it, I found that Infocom sells *“Lost Treasures of
Infocom™ Vols. I and II, a compendium of their original games.
After calling around a few local software shops, I located a place
which was selling both volumes. Although I just picked up Vol II,
there are a ton of games on both:

Vol I: Deadline, Suspect, MoonMist, Spellbreaker, Ballyhoo,
Infidel, Hitchhiker’s guide to the Galaxy, Starcross, the Witness,
Planetfall, Suspended, Stationfall, Enchanter, The Lurking Horror,
Zork 1, Zork 1I, Zork III, Beyond Zork, Zork Zero, Sorcerer,
Suspended

Vol II: A Mind Forever Voyaging, Bureaucracy, Cutthroats,
Hollywood Hijinx, Plundered Hearts, Nord and Burt, Sherlock
Holmes, Titan, Trinity, Wishbringer, Boarderzone, Seastalker

The store that carried them said that they are no longer a hot item.
Vol was reduced from $69.96 to $39.95. Vol II was reduced from
$39.95 to $19.95.

All that was necessary was to insert the 3.5" MS-DOS disk inmy
MM/1, use pef to copy the .DAT files from each of the four disks,
and voila! I now have 12 games sitting in my GAMES/INFOCOM
directory which can be played at my whim. The interpreter works
flawlessly! I now have Infocom games on my MM/1, and it looks
really cool.

(editor: I'm not sure as to the availability of the Infocom game
packs listed above. This message was posted to Delphi in April of
1994. You may have to scarch a bit for the disks!) T ED

Many of you have wondered about
monitorsthat will work with the CoCo
3, MM/1, and an IBM clone. Well, I
ran across an ad for some refurbished,
guaranteed .26 dot pitch Sony
Multiscans that sync from 15.7KHz
(CoCo, MM/1, CGA) to 36KHz
(standard 480x640 VGA). Price is$175
plus shipping. These guysare alsotrying
to get rid of some refurb CGA monitors.
These will work with a CoCo if all you
need is an 80 column display, but the
colors are all wrong and you only get
eight of them (plus black and white).
Won't do for games at all!! Call 314-
937-0335 or write Rich, Pikul &
Associates, 101 Glenfield Drive, Festus,
MO 63028. Shipping should be around
$15 each.

Another bargain find: Citizen 120D
serial printers for only $40 ($15 for
parallel port model)! These are decent
nine pin printers with a 120 cps print
speed, about the same as a DMP-130.
The best thing is that they have an RS-
232 serial port built in! You will need to
make a cable, but that's pretty easy. No
serial/parallel convertor needed!! The

micro notes

The new law will close many
loopholes in the old. It will also be
illegal to digitally reproduce documents.
Abigproblem is that the working groups
advising lawmakers on changes do not
truly understand the technology
involved. Do any of us??

CompuServe has lowered it's fees!
For those who frequent CIS this is good
news. If you are currently on one of the
other services, such asmy much favored
"Delphi" (second choice being GEnie),
you won't be flocking over the CIS -- it
is STILL the most expensive! The new
rates are $9.95 per month (actually up
$1) and $4.80 per hour for all connect
speeds (down from $9.60).

Do you need to transfer files easily
between a PC and your CoCo? I
recently received a flyer from Elite
Software for their Elite*Xfer software.
This is a PC program that allows for
easy transfer of files between a PC and
CoCo (DECB only). I should know... 1
have (and regularly use) a copy!!
Elite*Xfer will even work with a high

Many of you have asked about the
availability of Puppo keyboard
adapters and/or circuit boards. Well, I
have some good news! I have been in
contact with the person who built these
things for Bob Puppo, and he has
received permission to make more!
But I need at least six confirmed orders
to get them into production! The cost
will be $70 each plus $3 S&H. For
$100 total, you will get the adapter
AND an 84 key XT keyboard (so you
don't have to worry about finding one)!
The keyboard has 10 function keys to
the left of the main keys and the arrow
keys are not separate but are within the
numeric keypad.

ANY XT compatible keyboard will
work. The keyboard of choice is the
101 key models with a physical switch
between XT and AT modes on the
bottom, but MOST (I can't guarantee
all!) "auto-switching" keyboards will
work as well. If you are seriously
interested, send at least a $20 deposit by
the end of February. You will receive
your adapter (and keyboard) no later
than the end of April 1995.

"micro notes"' is for news on anything that may be of interest to readers, personal classified ads, and new product releases.
If you see anything that may be of interest to other readers, have something for sale, or need an item, please write in and
let us know! Vendors: be sure and let us know when you have a new product even if you don't already advertise!!

same company has great deals on
Citizen 180D ($20 and up) and 200GX
(890, only parallel available) models
also.

I haven't checked, but I believe the
serial board for the 120D also fits the
180D, so a 180D serial should be $40-
$50. Call Prescott Electronics, 1-800-
298-6484 (714-492-6304 in CA).
Reference their ad in "Compu-Mart”.

The new Congress has a sticky
problem...revising the 1976 copyright
law to protect digitally recorded
material. This will affect transmission
and reproduction of digital material,
andcould haveanaffecton BBS systems.

The old law is hindered by the
unwieldy "legalese” language it is
written in. Also, itcould not be foreseen
in 1976 that the means for electronic
transmission would be so widespread
and easy to usc for the general public.

density 5-1/4" floppy drive! And it
formats CoCo disk also. The regular
price for this software is $69.95, but
Elite hasreduced the price t0 $29.95 for
a limited time! This offer should be
good at least through February, so act
now! Elite also continues to offer:
Elite*Calc (829.95), Elite*Word
($29.95), Elite*Word/80 ($29.95),
Elite*Spel and Elite*Spel/80 ($14.95),
and Elite*File ($29.95). All except the
"/80" programs will run on any CoCo
model. Elite*Calc uses a software screen
to display over 32 columns, Word and
Filc use the standard 32 column screens.
All will runon aCoCo 3. You can order
any four titles (including Elite*Xfer)
for $89.95. To order call 1-800-745-
8491 or write to: Elite Software, Box
11224, Piutsburg, PA 15238-0224.
VISA and MasterCard are accepted.

WANTED
1. OS-9 version of Checkbook
Plus with docs.

2. May thru November 1989
issues of Nine-Times disk
magazine.

3. 2400 baud modem with docs
and cable.

4. July 89 and newer Rainbow on
Disk

L.T. Day
Box 32332
Columbus, OH 43232

the world of 68" micros page 23

NEW PRODUCTS

from

FARNA Systems!

CoCo Family Recorder/OS-9 1.0
If you are into genealogy, then the CoCo
Family Recorder is the absolute best
program for the CoCo 3. The OS-9
version is nearly identical to the
DECB version in appearance, but
takes advantage of many OS-9
features such as pop-up windows
for entering data. DECB users can
send their original CCFR disk (it will
be returned) to get the OS-9 version
for only $20.00. Others must pay
the regular price of $28.50. Requires
at least one 40 track double sided
drive (FD-502) or larger. Can be
shipped on 3.5" 720K disk if

CUIYARNA Systems
Box 321
Warner Robins, GA 31099

$2.50 shipping and handling per order.
Canada S&H $4.00; Overseas $7.00

NOTICE: WE CAN NOW ACCEPT
CREDIT CARDS!!! Visa and

MasterCard (only!) can now be
accepted for payment. There is a

6% service charge and a minimum
charge of $25. Cards are accepted
through a third party and will be
billed through “FS Printing".

08-9 Point Of Sale 1.0

Designed specifically for the small
business that needs more than one
check-out station but can't afford
the $7,500.00 or more for an MS-
DOS based system. Easy to use,
menu driven software uses OS-9's
multi-user/tasking featurcs,
climinating the high cost of networks.
Has all necessary features to replace
your cash register and keep track of
your sales and inventory
automatically. Supports multiple
serial ASCII terminals.Current price
is only $62.50.

page 24 the world of 68’ micros

N

FARNAVSystems

Box 321
Warmer Robins, GA 31099
Phone 912-328-7859
Internet: dstfox@ delphi.com

Software, Books, and Hardware for all OS-9/0SK Systems!

CoCo DECB Software:

CoCo Family Recorder - $17.50

Genealogy program for CoCo 3. Requires 2
drives, 80 col. monitor.

NEW! QS-9 Version - $32.50

DigiTech Pro - $12.50
Sound recorder for CoCo3. Record any sound
for easy play-back in your BASIC or M/L

programs.

ADOS: Support for double sided drives, 40/80
tracks, faster formatting, much more!
Original (CoCo 1/2) - $15.00

ADOS 3 (CoCo 3) - $25.00

Extended ADOS 3 - $30.00 (ADOS 3 req.,
RAM drives, support for 512K-2MB)

ADOS 3/Ext. Combo - $50.00

Mind Games - $7.50
Collection of 9 classic games. Run from in-
cluded RAM disk w/512K.

Cross Road II - $7.50
Simple Tic-Tac-Toe, but with amazing sound
and graphics! Sound recorded with Digi-Tech.

Space Intruders - $14.50

Looksjustlike Atari'sclassic "Sapce Invaders™!
CoCo 1/2 and 3.

Donut Dilemma - $14.50

Climb, jump, and ride elevators to topof Donut
factory to shut it down! 10 levels. CC 1,2,3.
Rupert Rythym - $14.50

Collect Rupert's stolen notes, then work our
correct sequence. Great action adventure!Get
Space Intruders, Donut Dilemma, and Rupert
Rythym for only $33.50! Save $10!

CoCo 0S-9 Software:

Patch OS-9 - $7.50

Automated program installs most popular/
needed patches for OS-9 Level IL 512K and
two 40T/DS (or larger) drives required. (/28K
/35T users can install manually- state 35T.)

0OS-9 Point of Sale - $62.50
Maintain inventory, print invoices, customer
catalog, etc. Multi-user capable under Level II.
Supports ASCII terminals. Basic09 required.
Simple menu driveninterface.

Books:

Tandy's Little Wonder - $22.50

140 page softbound book with history and
technical info forall CoCo models. Schematics,
peripherals, upgrades, modifications, repairs,
much more- all described in detail! Vendors,
clubs, BBSs also listed.

0OS-9 Quick Reference Guides Level II (Re-
vision 2) - $7.50

68K (based on 2.3) - $10.50

Get that bulky manual offyour desk! These
handy QRGs have all the most needed informa-
tion in a 5.5"x 8.5" desk-top size. Includes
command syntax, error codes, special keys
functions, etc.

CoCo Hardware:
DigiScan Video Digitizer - $150

Capture images from VCR, camcorder, or TV
camera. No MPI required- uses joystick ports.
CoCoMax3, Max 10, Color Max 3 compatible.
Special order- allow 90 days for delivery. Send
$75 deposit.

[—]

Ken-Ton SCSI Hard Drive System and Components

Complete, ready to run, "plug and play™ 85MB
system. Top quality drive, case, and ps. Send
how much space for DECB, OS-9 --- $550.00
No-Drive Kit: controller, OS-9 drivers, RGB-
DOSinROM, 2 pos. "Y" cable, and drive cable
(specify type). Scagate N series drive with
ROM rev. 104 or greater nceded. ---- $250.00
(state how much of drive to be used for 0S-9)

Controlleronly —----—--seeeeeeeeeen - $135.00
0S-9 Drivers $25.00
RGB-DOS (for DECB access)-—-—-——~ $35.00

** $50 for RGB-DOS and OS-9 drivers when
purchased together with a controller **

"Y" cable, $25 for two position, $35 for three.
Drive cables - specify direct to drive or SCSI
case type COnNector ---—-=----—---—---- $25.00

Add $2.50 S&H per order. Canada/Mexico add $4.00; Overscas $7.00

FARNA Systems Publishing Services

Type Setting and Printing: We can prepare
professional typeset manuals, books, booklets,
catalogs, and sales flycrs for you - we can print
or you reproduce as needed from a master set!
Very rcasonable prices - inquire!

Malling Service: If you send catalogs or letter
correspondence to 200 or more persons atonce,
we can do all work for you for about the same
cost of your materials alone! How muchis your
time worth???

Contact Frank Swygert at above address/phone for quotes

for all your CoCo hardware needs, connect with

CONe Ct 449 South 90th Street

Milwaukee, WI 53214

E-mail: rickuland @
delphi.com

NEW PRODUCT: The Cube

This tower enclosure was designed specifi-

cally for the CoCo and peripherals, even an

MPI if desired! Four drive bays, two will

hold a pair of 3.5" drives sideways. Easy

access, carry handle mounted on top!

Mini RS-232 Port: Don't let the name fool you! This is a
full featured serial port, supporting the signals needed for flow
control as well as the basic 4. Jumper blocks allow readdressing
or swapping DSR/DCD. No custom cables or hardware widgets
needed here! Y cable users will need to add $9.95 for a power

e hifittion: CoNect will install a Hitachi 63B0SE
CPU and a socket into your CoCo. Machine MUST be in working
condition! The 68BO9E will be returned unharmed. 90 day

limited warranty. Chip and installation only $29.95

REPAIRS: We can repair most damaged CoCos, even
those with bad traces where a 68B09 was removed. Costs
vary with damage. Bad 68B09 sockets repaired for only

$40! Inquire BEFORE sending your computer.

i %

(NEW FOR 1995 FROMDISTO!)

1.”Inside 2-Meg”: A techinical booklet
that fully describes how the DISTO 2-Meg
Upgrade kit works. Includes schematic, PAL
listing, theory and chip by chip circuit
explanations. $20 + $2.50 S/H.

2. “Blank Board Kit”: Includes blank
virgin boards (no components) of the SCII,

| 7

SCI, 4IN1, MEBII, MPROM and Mini
Controller. Collect all the components and
make your own! $29.90 + $4.50 S/H.

3. Call for other DISTO products in stock
(limited quantities available)

DISTO
1710 DePatie
St. Laurent, QC H4L 4A8
CANADA
L Phone 517-747-4851 J/

By amrangement with StrongWare, Sub-Etha
Software is proud to bring you...

Soviet Bloc - Called the best Tetris(im)-like
game by many, this is a bigger version of the
now-classic falling shapes puzzle game.

RS-DOS Req: CoCo 3, Joystick/Orchestra-
90 Pak optional $19.95

GEMS - “Columns” of colors fall as you
change the order of the colors. Match three in
a row, column, or diagonal at the bottom and
those colors disappear. Sounds simple,
doesn’t it? RS-DOS Req: CoCo 3, Joystick/
Orchestra-90 Pak optional 324.95

Copy Cat - Simon says “match the sequence
of tones as the colored diamonds flash”.

Sub-Etha Originals:

MultiBoot V1.03 by Terry Todd & Allen Huffman
- Type “DOS” and bring up a list of up to
sixteen OS9BOOT files! No more floppy
swapping. A serious must-have for intense
0S-9 users. OS9 Req: CoCo 3, OS-9 Level 2
$19.95

1992 CoCoFest SIMULATOR V1.02 by Allen
Huffman - NEW VERSION now uses
compressed graphics and has scoring. Take
a walking tour of the 92 Atlanta CoCoFest with
this graphics adventure. 16-level digitized
photos of the event and a text parser (ic, “get
the box of disks") to let you interact. Runs on
a 640x192 graphics screen. OS9 Req: 512K
CoCo 3, 0S-9 Level 2, 500K+ of Disk Space

Great for building memory skills. RS-DOS $ 9.95

Reg: CoCo3 5995 | Towel! V1.01 by Allen Huffman - NEW VERSION! | OSK Req: MM/1 or 100% K-Windows System
OSK Req: MM/l or 100% K-Windows A program no intergalactic hitchhiker should be without! $14.95

Systems $14.95 | Use mouse or keyboard hot-keys to perform common

HFE (Hprint Font Editor) - A fantastic editor
for those HPRINT fonts with lots of options.
Create your own character set which you can
LOADM and us in your own programs. Also
creates and cdits fonts compatible with
MiniBanners! RS-DOS Req: CoCo 3, Joystick
optional $19.95

Font Collection - A collection of 18 uscable
HPRINT or MiniBanners fonts. (Importable to
0S-9 for use with MiniBanners09 as welll)
RS-DOS Req: $ 9.95

disk and file commands from pull-down menus. Tag
multiple files for Copy, Delete, Rename, eic., and even
point ‘n click a Backup, Cobbler, Dcheck, or whatever.
User definable menu for custom options. Runs under
the EthaWin interface (included) on a high-speed text
screen. All commands/colors configurable. OS9 Req:
CoCo 3, 0S-9 Level 2 $19.95

Sub-Etha Software Add $2.50 S&H. Texas
P.O. Box 152442 residents add 8.25% tax.

Lufkin, TX 75915 Write us for more info!

Write-Right by Joel Mathew Hegberg -
Featureful word processor for the MM/1 with
what you would expect from a “real” word

processor. What you see is what you getl
$54.95

Etha-GUT by Jocl Mathew Hegberg - A ncat
program launcher for the MM/1 which includes
handy desktop utilities like a phone dialer and
nifty scrcen savers..even a trash can. Point

and click icons to run programs.
$34.95
the world of 68" micros ~ page 25

Quality OS-9 Software from
ColorSystems

NEW! K-Windows Chess for MM/1

Play chess on your MM/1.......................... $24.95
NEW! X-10 Master Control for MM/1
Use MM/l to control you homel................. $29.95

Variations of Solitaire

Pyramid, Klondike Spider Poker and Canfield
MMII............... $29.95 CoCo3....uueeene. $19.95
0S-9 Game Pack

Othello, Yahtzee, KnightsBridge, Minefield,

and Battleship

MMII............... $29.95 CoCo3.............. $19.95

WPShell

An 0S-9 Word Processing Point and Click Interface
COCO3 ettt s 314.95

Using AWK with OS-9
Includes V2.1.14 of GNU AWK for 0S-9/68000

To order send check or money order to:

Color Systems
P.O. Box 540
Castle Hayne, NC 28429
(916) 675-1706

Call or write for a free catalog! Demo disks also available.
NC Residents please add 6% sales tax
Owned and operated by ZacK C. Sessions

[Summertime is "off " season for a lot of CoCoists. If you
are one of those, look forward to new releases and
upgrades this fall. If you use your CoCo all year 'round,
the following titles are currently available:

CoCoTop version 1.0 $24.95

CoCoTop version 1.1 $19.95

CoCoTop 1.1 + Tools 3 $34.95

OScopy/RScopy $10.00

TOOLS 3 version 1.1 $29.95

Quickletter version2.0 $19.95

Accountinglevel 2 $34.95
Investinglevel 2 $24.95
Level Il graphics 1.2 $34.95

upgrades only $5.00 (return original disk)
Shipping+handling: US/Canada $3.00 all others $5. Pricesin US
dollars Send cheque or money order NO COD'S. Call or write
for Canadian dollar prices. Mention the name of this magazine in
your order and you will receive a free bonus disk!

User-friendly Level I1
Programs!

C. Dekker eee
RR #4 Centreville, NB

EOJ 1HO, CANADA -
Phone 506-276-4841

page 26 the world of 68 micros

EDTASM6309 Version 2.02 $35.00
This is a major patch to Tandy's Disk EDT ASM to support Hitachi
6309 codes. Supports all CoCo models. CoCo 3 version uses 80
columnscreen,2MHz. YOUMUST ALREADY OWNTANDY'S
DISK EDTASM TOMAKE USE OF THIS PRODUCT. It WILL
NOT work with a disk patched cartridge EDTASM.

CC3FAX $35.00

Extensive modification to WEFAX (Rainbow, 1985) for 512K
CoCo 3. Uses hi-res graphics, holds full 15 min. weather fax
image in memory. Large selection of printer drivers. Requires
shortwave receiver and cassette cable (described in documentation)

HRSDOS $25.00
Move programs and databetween DECB and OS-9 disks. Supports
RGB-DOS for split DECB/OS-9 hard drives. No modifications to
system modules (CC3Disk or HDisk) required.

DECB SmartWatch Drivers $20.00
Access your SmartWatch from DECB! New function added to
access date/time from BASIC (DATES). Only $15.00 with any
other purchase!

RGBOOST $15.00
Make the most of your HD6309 under DECB! Uses new 6309
functions for a small gain in speed. Compatible with all programs
tested to date! Only $10.00 with any other purchase!

Robert Gault
832 N. Renaud .
Grosse Pointe Woods, MI 48236
313-881-0335
Add $4 shipping & handling per order

Peripheral Technology

Specials
486SLC/33MHz Motherboard w/CPU $139.00
486SLC/50MHz IBM, ISA,CPU, OK $199.00
486SLC/66MHz IBM, VESA, CPU, Math $299.00
IBM boards - Made in USA - 3YR warranty

IMB SIMM 70ns DRAM $47.00
356MB Samsung IDE Drive $229.00
420MB Connor IDE Drive $275.00
546MB Maxtor IDE Drive $379.00
IDE/Floppy/Serial/Parallel $24.95
1.44MB TEAC Floppy $49.95
Mini Tower, 200W, LED readout $79.00
Panasonic Dual Speed CD ROM $169.00
VGA Card ET4000-1MB, 1280x1024

$99.00

VYGA Monitor WEN .28mm 1024x768 $249.00

UPS Ground $7.00 on most items except Tower &
monitor ($12.00 UPS Ground).

1250 E. Piedmont Rd. 404/973-2156
Marietta, GA 30062 FAX: 404/973-2170

‘Quality Products from North

Th () S 9 Northern Xposure of the Border
e = 08-9 Level II Color Computer 3 Software

NitrOS-9 v1.20 Call or write for upgrade info or $29.95
9 new purchase procedure. Requires Hitachi 6309 CPU
US e r S G rO u p Shanghai:0S-9 Introductory price $25.00
’ Send manual or RomPak to prove ownership
Thexder:08-9 Send manual or RomPak to prove ownership $29.95

Inc Smash! Breakout-style arcade game $29.95
d Rusty Launch DECB/ECB programs from OS-9! $20.00
Matt Thompsons SCSI System v2.2 ‘It flies!” $25.00

256/512 byte sectors, multipak support

Working to support 0S-9 Users

Disk Basic Software
Membership includes the Users Group newsletter, | Color Schematic Designer v3.0 New lower price $30.00
Oblique Triad Software Write for catalogue

MOTD, withregular columns from the President,
News and Rumors, and “Straight from the Horse’s | cotor Computer 3 Hardware

Mouth”, about the use of OS-9 in Industrial, | Hitachi 6309 CPU (normally ‘C* model, may be ‘B’) ~ $15.00
Scientific and Educational institutions. SIMM Memory Upgrade Runs Cooler! 512k $44.95 0K $39.95

Sound Digitizing cable $15.00
Annual Membership Dues: 0S-9/68000 Software
United States and Canada Other Countries OSTerm 68K v2.2 External transfer protocol support $50.00
25.00 US 30.00 US TTY/ANSI/VT100/K-Windows/Binary Emulation

Upgrade from TasCOM (Send TasCOM manual please) $30.00

The OS-9 Users Group, Inc.

. 7 Greenboro Cres : ;
6158 W. 63d St. Suite 109 Ottawa, ON K1T twe 4/ Proes 11 05 flnds.
Chicago, IL 60638 CANADA Prices include S&H
USA (613)736-0329

Internet mail: cmckay@northx.isis.org

_ ADVERTISER'S INDEX:
Don't have a subscription to

“microdisk”? Don't want to pay the BlackHawk Enterprises 11

high price for back issues? You can C. Dekker 26
t th lete Vol 1 of Chicago CoCoFest 6
nqw ge_ ¢ complete volume 1 o Color Systems 26
microdisk for $30 (plus $2.50 S&H)! CoNect 25
That's an $18 savings overback issues Delmar Company BC
: DISTO 25
n 10 savin r the
and a $ 0 . £S c.)ve FARNA Systems 24,27
subscription price! Just write and tell J&M Microtek 19
us you want the entire volume 1. Northern Xposure 27
0S-9 User's Group 27
Peripheral Technology 26
Robert Gault 26
All files will be on as few disks as possible, not Small Grafx Etc. 19
separate disks for each issue. “microdisk” is not Sub-Etha Software 25
a stand-alone product, but a companion to this
magazine.
NOTE:

Volume 2 numbers 4 and 5 issues of microdisk will
be delivered on the same disk following this issue.

the world of 68° micros page 27

irements,.t

cé

2

Distributor of MICROWARE SYSTEMS CORPORATION Software

This ad was prepared and printed using QuickEd under OS-9.

adelmar co

PO Box 78 - 5238 Summiit Bridge Road - Middlctown, DE 19709
302-378-2555 FAX 302-378-2556

	68' micros
	Table of Contents
	The editor speaks...
	Letters to the Editor
	The Seven-Line Demo
	57,600 Bits Per Second
	BASIC in Color
	BASIC Con't

	The Industrial OS-9 User - G-Windows
	The Hardware Hacker
	Operating System-Nine
	OS-9/OSK Answers!
	Programming in "C"
	Basic09 In Easy Steps
	Auto-Boot OS-9
	Infocom Games on the MM/1
	Micro Notes
	Wanted
	Advertiser's Index

