>2.00

CCESSING THE NEW YEAR!
& i ¢

.login

Directory of /dd/§750P/0SKer/14 11:13:57
owner Last wodified Attributes Sector Bytecount Name
Levinsn 98/18/12 9765 ----r-wr 1 8156 Basic#9_Intro
Ste . 91/04/23 1184 ----1-wr ¢ 8856 dlink.c
Rditor 91/84/21 2337 ----r-wr 8 13196 Editor_Rambles On
Fleagle 91/12/87 1324 ----1-wr 11 1278@ 0_Say Can_You C
Poilock 91/10/13 6218 ----r-wr 14 18648 Systes Calls
Editor 91/84/23 2313 ----1-%1 16 787 7_End

CONSIDERATIONS FOR SUBMLTTORS

There are a few things ya’ll can do to make my life easier. When
sending in submissions of any type (text, program}, please nake sure of
2 few things first:

1} The file(s} are in ASCII text, preferably without linefeeds.

2) Do not justify the text, our processing will align it for you.

3} Do NOT indent paragraphs, but do leave a blank line between thea.

4) Please don’'t leave any left margins or hyphenate any words.

5} Be sure to include your name and how to contact you.

6) Best way to send it is via a network: SysopéRoot on StG-Net,
or 72427,335 on CIS.

7} 1f sending by mail, use 059 CoCo Pormat, 5.25" or 3.5" {728k},
or ST format 3.5" (728k}, or MM1 format 3.5" (1.44K)

8) If you want to archive 1t, please use the 059 .AR format.

the 0SKer

"the 0SKer’ is printed monthly by StG Computers inc, P.G. Box 24285,
Speedway, Indiana, 46224. The president and editor is Scott
Griepentrog, V.. Jim Hutchins, Secretary Chris Swinefurth, and
Treasurer Dave Henk.

Subscriptions to the 0SKer are $12 within the U.S., $15 for Canada, and
$28 overseas.

Bditing and Layout for the OSKer is done completely under 05K, using a
prototype MK1. uMacs is used for pre-editing of text, and a custon
routine {5 used for formatting and layout. An ALPS Allegro 588 (flat
paper path, 24 pin) printer is used to produce the initial copy for
duplication by offset, as well as printing the mailing addresses on the

back cover. The subscription list is also kept in a database under OSK.

To prevent a conflict of interest, StG Computer inc., as both publisher
of the 0SKer and having ownership of software, will not directly
advertise In this magazine, nor will the editor in any way promote said
software.

The Cover artwork is done by Alan Sheltra

the OSKer

Official Standard Sub-Standard
Subscription Program

PRINT “YOUR NAME"
PRINT “YOUR ADDRESS"
PRINT “YOUR CITY, STATE, ZIP“
IF (N
IF (IN CANADA) INCLUDE $15
ELSE INCLUDE $20
MAIL TO:

USA) INCLUDE 812

the OSKer
P.O. Box 24285

Spesdway IN 46224

Sector ¢

Basic@#9_ Intro

Introduction to BASICAY
by Bric Levinson 9/9/98

Many people that have used the standard BASIC from the Disk Bxtended
Color Basic believe that it is the best BASIC they have seen, or the
best in its time. This is true, the Disk Bxtended Color Basic (DECB) is
a very poverful. programming language allowing certain features like
user-defined functions, direct buffer aanipulation for graphics and fast
execution. In addition many companies have written compilers to further
compress the BASIC source code into an intermediate pre-interpreted
executable code.

A fev things that DBCB lacks, direct communication with the operating
systen, higher structure (more on this), and parameter passing. In
addition 059 offers the user the ability to run more than one program at
a tine.

Vhy BASICAS?

BASIC@Y was developed and structured after PASCAL. BASICE9 is a highly
structured programming language that affords speed, versatility, direct
access to the D0S, modularity, parameter passing and encapsulation.

BASICA9 recognizes four data types. INTRGER, RBAL, STRING and BOOLEAN.
In addition complex data types can be defined with the TYPR comaand {any
of the above can be mixed into one type). Up until now, the DBCB users
have only used the REAL and STRING type. Computers cannot directly
aanipulate real nusbers because an element of indescreteness occurs
between two real nuabers. If I asked you, "How many numbers are between
the real nuaber #. and 1.2* you would have to say that there are an
infinite numbers between those numbers. You could have 8.5, .25, 6.2,
or even @.990900000000980901 for that matter. A REAL type variable is
considered "indiscrete® because there is no logical step between
numbers. In DBCB, a RBAL nuaber consists of a 5 byte coded string. See
NKN and CVN commands in your DECB manual for more. when DBCB does
aritheetic, it has to manipulate all 5 bytes. This can take alot of
tine to do many multiplies, or exponentiation, especially if they are in
a GOTO loop and are repeated over and over again, This is what the
INTEGER type is for in BASICEY. If you are doing simple arithmetic, the
INTBGER type consists of 2 bytes, but these bytes are not coded. They
are the rav data in binary representation. The INTEGER variable type
can go from -32768 to # to +32767, modulo, which means that +32767 + 1 =
-32768. When you assign a variable to be type INTEGER in BASICE9 it
gets acted on alnost 8 times faster than a RRAL type number in DBCB. So
you can see, for its purpose, INTBGER can be a real time saver. The
INTBGER type is a *discrete® data type because each number in the
gequence has one nuaber before it, and one after it. There are no
nunbers hetween @ and 1 in the INTBGER data type. The STRING data type
is used 50 you can set up strings to hold data. 1f a 8 is used after a
variable name, it automatically gets 35 bytes of string space. Last but
not least is an "enumerated” data type called BOOLEMN. It is discrete,
and has only two values, True and False. It ls called "enumerated®
because the values are not string results, not are they numerical
results. Any time two variables of the same type are compared with =,
<, >, ©, ¢ or >=, the result is said to be BOOLRAN. The result is
either True, or False, There will be example programs to follow.

Structured Lanquages
For alnost a decade Computer Scientists arqued that the GOTO statement

was not required, and not needed, if the correct statements to replace
then were available. These looping statements are as follows:
REPEAT/UNTIL, WHILB/BNDWHILE, LOOP/BNDLOOP and FOR/TO/NEXT. All of
these structured statements allows the program not to consist of
*spaghetti® code as found foreally in old versions of BASIC, like DECB.
In addition, programs can be written WITHOUT the use of line numbers.
This also reduced the clutter that occured, if GOSUB was required, then
a line number can be entered on the line to be the subroutine.

Type in the following BASICAY program. To start BASICAY, place your 083
disk in your drive 8. Type D0S, and wait for the 059: prompt. Once in
059, insert your BASIC@Y disk and type: BASICE9.

AMter a few seconds of disk churning, the following message will appear:

BASICES
RS VERSION #1.69.6X
COPYRIGHT 1988 BY MOTOROLA INC.
AND MICROWARE SYSTEMS CORP.
RRPRODUCED UNDER LICENSE
TO TANDY CORP.
ALL RIGHTS REBSBRVED.

Basic@9
Ready
B:

You are now ready to learn the three modes of BASICHS.

The first node is the comnand mode {which is where you are right now.}
You may type LOAD, SAVE, RENAME, LIST, E,

KILL, DIR, MEN and a few other commands here. To start typing a prograa
in, choose a name like TBST and type B TEST at the B: prompt. The B
connand tells BASICA9 to go from the comaand state to the editor.

Now it will show:

PROCBDURE test
¥

B:

The * means that the editor pointer is at the top of the file. Type the
following lines, making sure you enter a space before the line. The
space tells the editor you wish to insert a line. The BASICAY editor
vorks exactly like the standard BDIT command works in 059. Some basic
comnands while in the editor:

D Deletes the current line

S/text/ Searches for the first occurrence of text

§t/text/ Searches for all occurrences of text

-t Places the pointer back to the beginning of the BASICE9
buffer

Goes to the end of the buffer

Type the following as it appears here:
DIN x,y:INTEGER

DIM a:STRING(88]
DIM r:RRAL

Sector 1

Basic@9_Intro

DIN b:BOOLBAN

1.0oP
INPUT ®Bnter a number ";x

. INPUT *Bnter another number *;y
PRINT "X t Y = ";xty
INPUT "Bnter a decinal nuaber ";r
PRINT "X # R = ";5%r
INPUT ®Enter a string ";a
PRINT "Tou have entered: *;a
bi=(x=y
PRINT "Does X = 1?2 ;b
INPUT "Do you want to try again? ";a
BYITIF a="NO* or a="N" or a="no" or a="n" THEN ENDEXIT
BNDLOOP
BND

After you have entered this code in, type Q on the line by itself.

¥hile at the B: proapt, you may type LIST to see your program. If any
errors were reported, you will see the message ERR before each suspected
line.

BASICAS will now attempt to write it into memory so it may be executed.

If you get any errors, BASICEY will show the hexidecimal memory location
errors where the error occurred and you may go back into the editor and

fix it.

Notice, no line numbers? That is because we put the LOOP in the program.
¥ithout the LOOP command, we would need to use at least one line number
at the beginning and have it go back to the beginning to start over.

Bverything is pretty much self explanatory, except the b := {x = y}. Ve
are asking the BASICA9 interpreter to compare X and Y. If they are
equal, store a True in B. 1If they are not, store & False in B, Hotice
after you entered that line if you went up a line, the parentheses would
be gone, like you never entered then. That is because BASICEY knows
where they are required, and removes them when they are not.

Since BASICAY remembers the name of the procedure, if you need to go
back, sinply type B. If you want to save the procedure simply type SAVE
at the B: prompt. To run the procedure, type RUN.

The third node of BASICH9 is the DEBUG mode. You can enter this mode
two ways. One way is by placing the PAUSE command in your BASICHY
program. The other way is by pressing CNTRL C while your program is
executing. While in DEBUG you will see a D: prompt. TYou can issue
BASICA9 commands like: PRINT a or CONT to continue. Press { to get out
of the DEBUG mode. W¥hile in the B: and D: modes, you may type § to run
a shell. Type ex in the shell to return to where you were in BASICI.
If you just want to get a directory of a disk and don’t want to leave
BASICES, simply type $dir at the B: or D: prompts.

¥hen done, sinply type BYE. This will take you out of BASICE9 and back
to the 0S9: prompt. NARE SURR YOU SAVE TOUR FILE FIRST! when you type
BYR, there is no second chance.

Ny next article will be a series of features of BASICAS.

If you have questions, feel free to write me directly. My address is:

Color Galaxy Inc.

Eric Levinson

24415 Marquis Ct.
Laguna Hills, CA 92653

'SPACE FOR
RENT

Your ad here!

Reasonable
Rates!

Call (317
241-6401

Sector 2

StG Net Software/Login Pakg V3.0
Complete software to run your own EBS!

For 086 Level Il /Coco 8 (OSK Version soonl)
Extremely flexible!! ... Includes:

* Run a powerful, multi-line BBS without losing the
usc of your computer! Run up to 8 lines.

* Hook up with an international Network, the 8tG Net.

* Net Acoount included for your system so you can
“net" with other 8tG Systems imediately.

Other Network interfaces coming soon.

* Complete E-Mail and Net-Mail Message System.
Binary or Text files can be sent as private malil.

* Flexible Menu system allows you to create your own
menus in ANSI or OS9 Graphics. Almost ANY OS89
program can be run from a menu (8td I/0). Sample
Menus included, so you can go right on-line.

* DES (Data Encryption Standard) Password Protection

* System utilities include: Mail, News, Chat, TSmon,
Login, Help, Netxfr, Option, Status... and many more...

* Help Utility included, gives you an On-line manual.
Also includes printed insallation manual.

* Xmodem/YModem/Kermit Protocols for file transfer
* Includes FREE upgrades to Version 4.0 (Coming soon)
All valid systems will receive upgrades via the net!

* Includes AniMajik's Games and Utilities Pak, made
specially for the 8tG Net System.

AS0011 (StG Net Login Pkg + CDI + IR@Q Fix esses $49.95
(Please include $3.00 S&H)

TSHELL - by Paul Pollock
(For your Coco 3, 089 Level 2 System)

A Revolutionary New Program..."TShell" does most of
what Multi-Vue does at many times the speed!

TShell will run most programs with one keypress...and
will use standard MV AIF files. Delete, Copy. Rename
files all with one or two keypresses!

Many Utllities Included *** WINDINT and MV NOT Req!

AS0012 (Includes Disks and Printed Manual and accessories)
(Please Include $3.00 B&H) £39.86

ASO012M (Save §13.00!) Download program Direct by terminal
(From any 8tG Node, call for more info) Includes everything
as above. Manual is in pre-formatted docfile ready for your
printer. (No S&H Needed!) $29.05

STARDUMP

A Full Color VEF Format Picture Dump Utility for the NX1000
Rainbow Printer. Sample VEFs Pictures included.

AS0014 (Includes Disks and Printed Manual)ccoveneanee 6 19.95
(Please Include §3.00 S&H)

AS0014M (Save $5.00) Download program and doc vis modem

supplied as an ARed File (NO S&H Required!)ceeveeeeene 6 14.05

Coming Soon!

* DB9 -The Best Database for OS9!
(Call or write for detalls and availablility)

* RECLAIM - The Disk Doctor
“Reclaims" deleted files, fixes bitmap and sector
problems on your floppy or hard drives.
(Call or write for details and availability)

* MemMatch! - Coco Concentration...
(512k and 0S89 Level 11 Req.)

Coco Tycoon - by AniMajik Productions

Create a "Monopoly” on your Coco3 {0S9 L2 Req)
1 to 4 Players Even play against the Coco...
Plays just like the Board Game...

(Available mid=April)

(Reg. Price 610.95)

Send Checks or M.O.'s

P.O. Box 38713 .
Hollywood, Ca. 90038

(818) 761-4135 (Voice)
(213) 460-2968 (FAX)

AT MORE THAN HUMAN PRICES!!!

(Prices SBubject to Change without Notice)
(Ca. Residents please add 6% sales tax)

HARDWARE

3 Button Serial Mouse - Perfect for your New MM/1 or TCO!
(works with IBM compatibles too!)

* 8 Button Opto-Mechanical Serial Mouse

* Smooth, aestetically appealing, ergonomic design
* High Precision 260-1000 DPI

*Precision "Click-8tyle" Buttons

* Includes user guide.

SPECIAL PRICE!

AHOO23 (Include §3.00 S8&H) 65 20.95
Mouse Pad (Blue or Grey)
AHO024 (Flease include §1.50 8&H) 6 5.5
"Mouse House" - Mouse Holder
Holds your mouse - attaches to CPU or Monitor
AHO025 (Include 61.50 S&H) 6 3.99
Mouse Kit - Includes:

* 3 Button Mouse

* Mouse Pad

* "Mouse House"
AHO00286 (Include §3.00 S&H) 6 34.95

Hard Drives (SCSI)

gQuantum SCSI Hard Drives (3 1/2" half ht- will fit inside your MM /1)
FAST! 18ms Drives
64K Memory Cache (Call for more info)
NEW Low Prices
#AHO028 - 80 Meg Quaatum SCSI HD § 999.95
(Please include 67.00 S&H with each HD order)

MONSTEROUSLY GREAT DEALS... (@

; ‘\’Y\sk(

Call and Browse our Catalog at any of these BBSes
(At the LOGIN prompt, type "animajik")

Y"“f' E (818) 761-4721 (MODEM)

(818) 772-8890 (MODEM)
5 \ (403) 329-6438 (MODEM)
R (904) 595-2184 (MODEM)

/!

t diink/wove - utilities for 059 and OSK

'
* PD 1991 by StG
'

1 to compile: cc dlink.c
t then :-chd /dd/cads
' dlink dlink move

t

Dlink.c

t Instructions: Basically, DLINK <frow> <to> -or- NOVE <frow> <to>,

W O M e e M M M e S N W M S S M M K M S e S e W W M %

vhere <frow> is a directory {read warning) or file
that already exists, and <to> is a file that you want
to exist. Both commands will create the <to> file
and link it to be the same as <frow.
then deletes the <from> file so that the original is
basically moved.

The NOVE command

How it works: 059 aiready supports linked files, to a degree. There
is a link count {n the FD (file descriptor) sector for
each file. 1f more than one directory entry are
pointing to the same FD, both will be able to access it.
In this case, the link count would be two, indicating to
the 059 delete comnand that it should not actually
renove the file when only one of the links has been
deleted. Instead, it subtracts one from the link count.

Problens: The 059 dcheck command does not understand links, and
therefore consideres them to be an error, The OSK dcheck
conmand {5 ok.

¥arning: Linking to a directory will likely cause it's ’..’ pointer to
be incorrect. This will cause programs that use ’..’ in
aaking a scan of the directory structures to auss up. One
good example of this is the pwd (0SK: pd) command. It will
report the wrong directory (if it doesn’t error out} when a
',." pointer is bad.

t Short Form: Link to directories only at your own risk!

t ROTR: you can renane this to LINK iff you don’'t use 059's link command

t
t

#define BRR (-1)
tinclude <stdio.h>

extern int errno;

int ff,fd,tf,td;
int af;

long dir=g;

long fre=g;

char buf{256];
char foo[256];

struct
char nan{28};

long lsn;
} dur;

/% 089 error code */

[t fron/to file/dir ¥/

[deviced file ¥/

[t directory flag & Isn storage ¢/

/t free space in td ¢/
[* shared buffer ¢/

ft if arqv[2] has to be foo’d with #/

/¢ directory structure t/

[t file nane ¥/
[t pointer ¢/

long 1seek{};

/* Teturns path to file ¢/
char ¢

path(s)

char ts;

{

}

char th=buf;
char tp=s;

/¢ insure there is at least ome '/’ ¢/
while (#5) if {tst+=='/'} break;

if (!5}

{
/¢ return .’ for current directory ¢/
thesz! !,
Qb:B;

return{buf};

J

/* skip to end and back up to last '/’ ¥/
vhile (t5) s++;
while {t5!='/") §--;

/t copy into buf & return */
vile (p(s} tb++=!p++;

lb:a;

return{buf};

/t returns just nawe of file ¥/
char ¢

file{s)

char ts;

char tb=buf;
char tpss;

/¢ insure there is at least one '/’ ¥/
while (ts) if (ts++=='/'} break;
if ('ts)

/¢ return whole name t/
while (tp) the+=tpH;
th=¢;

return(buf);

J

/t skip to end and back up to last '/’ ¥/
vhile {t5) s++;
vhile {*s!="/'} §--;

/t copy lnto buf & return ¢/
§tt;

vhile {tg) the+=tget;

tb:g;

return(buf);

Sector 4

/¢ make sure we knov it is long */

Dlink.c

/t quick case insensitive string compare */
same(s1,82)
char *51,%52;

{

}

vhile (*s! &k *s2) if (tolower{tsi}!=tolower(*s2}} return(@|;
else

{

514+,
5lHt;

}

if (*s1 ! *s2) return(e);
return(1);

[set bit 7 on name string for dir entry ¥/
set1{s)
char *s;

}

vhile {t5) §+¢;
t--51=128;

nainfarqe,argy)
int argc;
char *targv;

}f (argc!=3}

printf{"use: %s (from) {to)\n",targv};
printf(" tss 'from’ dir or file to 'to’ dir or file’\n",targv);
exit(e);

/* open from file t/
ff=open(arqv(],3);
if (ff==ERR)

{ !

/* try to open as dir? t/
ff=open{arqv[1],128+3);
if (ff==RRR)

{

printf{*3s: can’t open ts\n",*argv,*++argv);
exit{errno);

}
dire+; /* set flag - we are moving a directory! t/

}

/* check to path to see if a directory t/
if (access(argv[2],128+1)1=ERR]
{

/t we need to fudge argv(2]

/% user has supplied directory to link/move to but not file
/t take file from argv[1] and tack on argv{2]

4

/

strepy(foo,arqv2]);
streat(foo,"/"};
strcat({foo, file(argv[1]}};
argv{2]=foo;

/* open from and to directories #/
fd=open(path(arqv{1}},128+3};
if {fd==ERR)
{
printf{"ts: can't open %s\n",*arqv,buf};
exit{errnoj;

)

td=open(path(argv(2]),128+3);

if (td==ERR)

{
printf("$s: can’'t open %s\n",%argv,buf);
exit(errnoj;

}

/t both paths must be on saae device! ¥/

_gs_devn{fd, buf); /* get entry, ¥/
strhepy(buf,buf); /¢ fix 7bit high on last char ¢/
_gs_devn(td,buf+32); /t sneak room in buf */
strhcpy{buf+32,buf+32);

if (strcap{buf,buf+32})

[
printf{®%s: can’'t operate between different devices\n®,*arqv);
exit{l};

}

[t open path direct to device ¢t/
thuf="/*;

strepy(buf+1,buf+32);
strcat(buf,"e*);

af=open(huf,3};

if {af==RRR}

printf{"ts: can't open to device 3s\n*,tarqv,buf);
exit{1);
}

/¥ search to directory in case file is already there
/t and for a free spot to put it in
*/

file{argvi2]}; /* put name of file in buf ¥/

again:

fre=g;
Iseek{td,6L,6);

/t if we are link/noving a dir, qrab the '.’ reference froa
[t where it’s going ... ¥/
it (dir)

read(td, kdur,32);

read{td, &dur, 32);
dir=dur.1sn;

}
while (read{td,&dur,32)==32}

strhepy(dur.nan,dur.nan};

Sector 5

Dlink.c

if (same(dur.nam,buf})

printf(*%s: file %5 already exists in ", *argv,buf};
printf{*ts\n",path{argv{2]}};
exit(1);

|

if (!*dur.nam &k !fre) fre=lseek(td,#l,1)-32; /¢ free spot ¢/
)
if (fre} /¢ seek back to empty entry */
{

Iseek(td, fre,8);
read(td,&dur,32); /* lock it ¢/
if {tdur.nam) goto again; /* oops, somebody else qot there first ¢

Iseek{td,fre,8);
}

/* path td is now ready to receive new entry
/* next go through fd to find Isn to link to

i

filefargv(i]); /* put <frow> filename in buf ¥/
while {read(fd,&dur,32)==32)
{

strhepy(dur.nam,dur.nan);
if {same(dur.nam,buf}) break;

/¢ check once more in case loop at end! */
if (!same{dur.nam,buf}}

printf{*$s: oops, can't find file %5 in *,targv,buf);
printf{"ts\n", path(argv{1l});
exit(1);

)

/* LSN we want is in dur.lsn, we can put new name in and
/% write to td. But, first set FD for extra link count
/t in case progran gets blown away. Better an extra link
/¢ than one short! Exception: ruaning as move

8/

if (tolower|*targv)=="n’} goto nolink; /* program is named move #/

/t re-use fre var as a LSN pointer ¢t/
fre=dur.lsn;

ifdef 05K
/% 00PS! OSE V2.3 now allows VARIABLE SBCTOR SIZB, which means
/% that we might need to modify fre to get to the right sector!

Y

/% tead 1sn @ into buf ¢/
if (1seek(af,BL,#)==BRR} exit{errno};
{f (read{af,buf,256)==ERR) exit(errno);

/* the two bytes at offset x53 are the sector size #/

if (#(buf+@x54)) exit(-1); /* should always be zero t/

if {1#(buf+@x53)) goto skip; /¢ whew, this disk doesn’t do that t/
/¢ wultiply by number of multiple of 256 of sector size ¢/
fres=t(buf +8%53) ;

skip:

fret=256;

tendif

/t seek to FD and read t/
if (1seek{af,fre,8)==BRR) exit(errno};
if (read|af,buf,256}==BRR) exit{errno};

/¢ increment link count ¢/
if (*(buf+8)<d)

printf(*%s: too many links to is\n",tarqv,t++arqv};
exit{1};

}
*(buf+8}) +;

/¢ before writing FD we nust close our path to file

/t we are done with it anyways, were only keeping it

/* open to prevent delete while in use

/% during close 059 re-writes FD {would wipe out change)
t/

close(ff};

/t write FD back ¢/

if (1seek{af,fre,@)==ERR} exit{errno);
if (write(af,buf,256)==ERR} exit{errno};

nolink:

/* now we can write out the new directory entry ¢t/
strepy(dur.nam,file(argv{2}}};

set7{dur.nan};

if (write(td,&dur,32)==ERR) exit{errno);

/* link has now been accomplished
/¢ tine to check out .. entry {if dir) and handie move

t/
if {dir) /¢ original file to move was a dir? ¢/

/t open new file and check .. pointer */
tf=open(arqv{2],128+3};
if (tf==ERR)

printf(*%s: Uhoh! can’t open %s\n",tarqv,argv(2]);
exit{errno};

read(tf,&dur,32);
if {dur.lsn!=dir) /* dot dot is wrong t/
{

if (tolower{ttargv)=="n'} /* ve are move! t/

printf(*Updating %s/..\n",argv(2});
|seek(tf,0L,8);

dur. Isn=dir;

write(tf,&dur,32);

elge printf("¥arning: %s/.. is wrong!\n",argv(2]};

Sector 6

Dlink.c

close(tf);

/¢ if we are move, unlink (delete} the original file */
if (tolower(ttarqv)=="n')

/t note: fd still has original entry locked, back up & wipe out ¢/
Iseek(fd,-32L,1};
tdur.nan=pg;
dur.lsn=g;
} write(fd,&dur, 32);

[t close our myriad of files t/
close(af);
close(td);
close(fd);

tifndef 0SK
/* this section included for 09 which doesn't have _gs_devn call ¥/

ginclude <os9.h>

_gs_devn(pn, buf |

int pn;
char thuf;

{

}

struct registers I; R
r.1q_a%pn;

1.1q_b=55 DBVN;
r.rq_x=buf;
return| os9(I GBTSTT,&r));

fendif

Sector 7

OLUTIONARY.

M/1. A revolutionary computer system

designed by you.

M Two years ago, te first MM/1 dasign was
_y laid out Shaped by the latest advances in
ONE computers — and by your needs —

MM~ is the most afiordable, powerful system you can
buy. « The MM/ uses your existing RGB-A monitor. t
uses your joystick, your floppy drives, your printer, your
modem. Designed around industy standards, your
future peripherals will fit nicely in your MW/1 system.

. And the MM/ already runs Amiga™
MM graphics utilities, PC eanimation,
ONE } acintbeh™ sounds, and follows important
elements of the Compact Disk-Interactive™ standard.
IMS offers word-processing, databases, and
appiications brought over from the DOS and UNIX
workis. » Smooth sterso DMA sound lets the MM/1's
68070 processor work undisturbed. DMA 1.4 Megabyte
floppy disk. Expandabie to five floppies, seven hard
disk or ape drives. Five serial ports, two parallel ports.
Real time clock. Joystick port. You can network 128
MM/1s together.

Call 800/866-9084 for brochure or video.

Interactive
Media Systems

Editor_Rambles_On

And on, and on, and on...

In the previous issue, {supposedly) dated Septeaber of last year, I
started this reqular column with the complaint 'How did I ever convince
-nyself this would be an easy job'. 1 was thinking about how it seemed
to take two months to put together each magazine. At the tize I was in
the niddle of several rush projects, and I had only with that issue
settled on a slwple process for editing, formating, printing,
addressing, and mailing the magazine. I have learned a lot about the
trials of publishing from this, and I must be a glutton for punishment
because I am hot about to quit.

I have received many calls fron concerened subscribers during the period
ve have been 'off the air’. I apologize sincerely to all of those who
had faith in this project and whom I have disasppointed. But now that
§tG inc. has completed it's move and is once again making enough spare
aoney to handle the nearly thousand dollars it takes to put out an issue
{that's taftert subscriptions, advertisements, and start-up costs!), let
pe assure you all that we will continue to put out. When I started this
1agazine, I nade the subscription rates low on purpose - I hate to pay a
lot for nagazines myself. If I had wanted the 0SKer actually make
aoney, the rates would have to be at least double. I have considered
raising the rates even though, but I will put that off indefinately. If
ve can bring in some additional reqular advertising, it shouldn’t be
necessary to charge any more per issue. Of course, I've shot a hole in
that plan already - advertisers want to have a reliable publication as
vell as the readers do. As my Mom & Dad love to remind me, it takes a
lot of hard work to make it on your own. TYes, Mother, I have my work
cut out for me.

0f course 1'n not the only one working on this {not that anyonme else is
to blare though]. My thanks go to Alan Sheltra for his wonderful
support {and wonderful artwork - just wait till you see next month’s
cover!!) and ny friends (Hi Bug!} for getting out of my hair now and
then to let me get it done. And special thanks go to those who have
written articles, suggested improvements, and offered help!!!

Okay, nov it's time to get down and dirty. I don’t have any letters to
the editor for today, but I do have a few personal opinions to vent.

WARNING: the following is highly flammable - read only in a well
ventilated area!

It would seem that the whole 059 community is having problems. We’ve
got magazines failing {or at least slow) right and left, software houses
folding, and certain computer companies that keep promising the new
nachines but {it would seen) never deliver on time. I ask you, WHAT THE
Hrer IS GOING ON HERE? Why does it seen as though the 053 community
{except the industrial people) seem to be abandoning the long held
comnitaent to the best in Kulti-User Operating Systems? Is this a real
problen, the beginning of the end, or just a phase? Just what is going
on, anyways?

Well, I have a few answers. But time will only tell all for certain.
In the neantine let me tell you a story or two.
In the Indianapolis area there is a group of 059 enthusaists that grew

out of the local Color Computer Club. We get together now and then and
help each other with equipaent or software probleas, discuss new things

we have discovered, and talk about where things going. Up unti}
tecently, we all had 059 or OSK machines and never even considered much
else. But in the last few months, a number of our already few have
's0ld out’ and bought 386 machines.

Now some would say that they should be lynched for giving up the fight
for the Better Operating System. Some others would excusunicate them
fron the group for giving into the 'PC’ world's single tasking
environment, But I still accept ther. I even help them with their
paachines, Because I agree with their decision.

Nov before ya'll start getting any ideas about tp’ing my house, stop for
a second and hear me out. These fellows, who shall remain nameless {as
the innocent should), were waiting for the ’fabled’ CoCo4 machine.

That right, the do-all ¢8¢x8 machine that would solve all our probleas
and limitations 059 on the CoCo. They waited faithfully for years for
it to come out. They were encouraged by the announcements of two such
pachines, put off upgrade plans, and saved up their money. They enjoyed
thenselves for a while arquing over which one was better. They warmed
up their checkbooks as they anziously counted the days until they could
actually have one of their very own. Some of thea even sent in their
aoney in advance.

But that day came and went. No machine. And another day came and went,
again with no hardware to put on their desk. Ho fast machine in a neat
case with a mouse next to the keyboard and windows to peek through. No
new manuals to go through, no new software to play with.

So they came to the conclusion that it just wasn't going to be. That
these new machines would never come out, or never have enough software
to run on them. Or never be any better than the PC worid with it's
super fast machines and hi-res windows. There were tired of being left
out in the cold with their poor little 8-bit (bus} machines. That money
in their pocket kept itching every time they drove past a new store
selling PC’s. So finally they couldn't stand it any longer. They
bought BC’s.

Kow they are busy playing with thier new toys, new software, new mice,
new vindows, and having a grand time. Do they regret their decision?
¥ell, not much. Do they still think that 089 is the best operating
systen? Well, it still is best at multiple tasks, but it doesn’'t have as
pany programs for it. Do they miss being able to run multiple prograas?
¥ell, not really. They have Microsoft Windows version 3 that allows
then to at least flip between nultiple programs if not let them process
at the same time very well.

You see, this is going on througout the 059 community. People are
leaving 059 for NSDOS just because it’s there. And also because MSDOS
is finally catching up Windows-wise. And most of all, because people
have proniged various Machines, Software, and Magazines and not
delivered on time, I am not trying to blame any particular individual.
As I have pointed out, I an also to blame for not being on the ball.

Oh sure, you think, these guys {and others) that we are loosing to PC’s
will come back once we get going right? Fat chance, considering what
they paid for their 396 machines and the software to run thew. These
quys put more money into their new machines than what they would have
for a TC76 or MX1 {or similar machine) fully decked out. They did so
because the PC’'s were available right then. I think these people making

Sector 8

Editor_Rambles_On

the 'CoCo4’ machines {you know who you are) made a big mistake by not
getting them out by Christmas, But then, I made a big mistake by not
getting an issue out by Chrismas. .

Ve need the machines and the software oW, not in a month or two. Mot
in a year or two. If we are going to keep the dwindling numbers of 059
enthusiasts from near extiction we all need to get moving and start
cranking out top notch equipment and machines right away. We need the
same kind of ingenuity that has blown the MSDOS world away before to
cone up with new ideas that wlll grab people’s attention. Show thea
what can be done if you do it right.

¥e need people to get the job done, not promise something and apologize
when they can’t make due. 1I've learned my lesson - the 0SKer will be
coning out reqularly from now on. The question is, have the rest of us?

Tine for another story.

A friend of mine was showing 059 on a CoCo to a PC programmer the other
day. He was imsediately inpressed, and remarked how that was the kind
of systen he wanted to have. But could he get it for his PC? I told hin
about 05-9@68, and how it requires a 386 (at least} and isn’'t as fast
and effiecient as plain 059 on a Motorola Processor. He said “0h® in a
vay that meant, "Well, If It doesn't work as well on a PC than it must
not be so hot after all*. 1 explained to hin some of the differences
between Motorola 686@@ processors and the Intel 89x36 ones. In the end
I discovered that he didn’t really know much about Motorola processors,
and had never heard of 059. This actually didn’t suprise me, as less
than one person in ten that I talk to has.

There is a bias in the overall community of computer people out there -
but one not due to anything IBM or Intel has done, but rather due to
what Motorola and Nicrosoft _haven't_. There has been little effort on
the part of Motorola (who's processors are used more than Intel’s in
Japanese products) and Microware (who has a large industrial market in
Japan too} to educate us here in the States about their products. The
Japanese love to find the sinplist, easiest to use tools to make their
products. They should know what their doing, considering the amount of
robotics they use. And they are certainly making enough money at it -
they keep buying pieces of us at prices higher than they might have to.

If we are to survive at all, we must grow. We must attract people to
our ‘camp’ faster than we loose then. I don’t believe it is any secret
that this ls not the case right now. But we are on the edge right now;
either we fall off that edge into oblivion or we pull back in the nick
of time, We have been given a second chance with these new machines.
One nore chance to get it right.

The 059 coamunity has been brusied over and over by well-intentioned
people who really meant to make good on their promised but for one
reason or other were not able too. Of course, there have been those few
who were just outright crooks, too. But for the most part we have had
decent people cone up with new products and bring them out to the
narket, if a little late than planned on, and end up benefiting the
whole 059 community. And if we keep it up, there should be 059
enthusiasts still hacking on into the next century.

But how does this differ from the so called ‘real’ market - those
conpanies who develop and market PC products? They have their share of
problens too. Big name companies that take forever to get a new machine

or software version out. Code that has enough hales in it to be
ristaken for swiss cheese. The peopla who deal with PC machines on a
regular basis (especially when it cowes to newly developed stuff} have
becowe accustomed to having problems. How long ago was it that 0S/2 was
announced? I1t's only been just recently that version 1.3 has been
released - all the previous versions have been full of bugs, take gobs
of newory, and are slow. Guess what! This new version takes over 29
disks to install (that's 1.2 meg disks!) and runs halfway decent on a
486 with at least four meg of ram. We're talking an investament of over
six thousand dollars for a halfway decent multi-tasking operating syster
and the hardware to run it on. And 0S/2 is not multi-user. Bven IBM
themselves aduit that.

It's obvious that we can do better. We CAN one up the PC world. We CAN
bring products out on time, we CAN come up with new software without it
crashing the customer's machine, and yes, we CAN bring the news and
views to you on a reqular basis. If we get our act together, we can
beat the PC world to the punch. We have the people with the brains -
they don’t {or at least didn't). We just have to get our collective
rear ends into gear and get the job done.

And I'n not just saying all of this to motivate you. I believe it.
I've seen it with ny own eyes. The difference that good software design
can nake will beat fancy hardvare most every time.

The botton line is sinple. We've got the hetter operating systes, and
the better processor. We know it, and they’d know it too if we told
then. But we have a choice. To get together and fight for a better
future in computing, or do nothing and let the PC's take over.
Basically, it's a fight between effeciency or wastefulness.

But more than that, for us it is a fight between existance {to the rest
of the world) and extinction. I don’t for one minute fool myself into
thinking we can take over the world. There are too many PC's out there
right now. But we can certainly assure ourselves a place in it's
future, by doing the best job we can today.

ARD, just to show you that in fact there are people getting the job done
out there, I have the following news to report to all of you.

1) The 0SKer is back for good.

2) The INS MM1 machine is going into a production tun. Machines are
expected to be available at or after the Rainbow Fest.

3} The FHL TC78 is in production and have been shipping since January.

4) The FHL TC9 is undergoing test production runs, some test units sold.
Ken-Ton is to have a version of RGB DOS for it.

5) FHL is working on a portable version of the TC78.

6) FHL will be selling inexpensive 68k co-processor boards for TC9.

7) The next 0SKer will feature a complete review of the MMi.

8) The issue after will feature a complete review of the TC74.

9) Submissions (programs, articles, hate mail, suggestions) welcome!

See ya next month!

Sector 9

HUWN-SAT

Kyum-Gai: to be Ninja (OS-9 Version) is the culmination of a project started almost a year
ago. The talents of Glen R. Dahlgren (RS-DOS game writer for Sundog Systems), Kevin
Darling (a legend for his work in OS-9), and Eddie Kuns (author of KBCom) have been
pooled to create a masterpiece of game software under the OS-9 operating system. Fast
martial arts action with outstanding graphics, great digitized sound effects, and incredible
animation are featured in this arcade game, all in the OS-9 environment.

Always wanted to play the great CoCo 3 games but didn't want to sacrifice your OS-9
features? Multitask while playing Kyum-Gai. Have multiple Kyum-Gai's running in
memory. Don't worry about switching windows, because Kyum-Gai: OS-9 auto-pauses,
to wait for your return.

Put simply, this is an unprecedented piece of software for the CoCo; a landmark game sure to be '

a major part of the Color Computer history. Don't miss out on this game! 29
Req. 512K CoCo il with OS-9 Level 2 and joystick. .95

VISA, Mastercard, Money Order, and
COD (USA only, please) accepted. All
foreign orders must be sent in US cur-
rency Money Orders. Include $2.50 for
shipping in USA and Canada, $5.00
Foreign. $3.00 extra for COD orders.
VA residents please add 6% sales tax.
Dealer inquiries welcome. Authors: we're P.O. Box 766

looking for new software! Manassas, VA 22111

(703) 330-8989

O_Say_Can_You_C

Installnent §2
by Al Pleagle

Well, its time for the next installment of 0 Say Can You C. I hope
everyone got their C compilers up and running with the first
installnent. So lets get busy.

Lets start where a C program should start, with ‘main{}’. This is where
a C progran begins execution. 1f there’s no 'main()’ the compiler won't
know where to start. So If you want an error meltdown, try compiling a
C program without it. And more than one 'main()' will confuse things
too, although I haven’t tried it. So let’s write a very short C
progran. From the 059 prompt type the following:

build main.c

You will see a 7' at the start of each line. Type each response as
indicated. Press the enter key whenever you see <enter>.

Prompt Response

(Do not

type this) (Type this)

? nain{)<enter
! {<enter>

? }<enter>

! <enter>

Type:

list main.c
You should see:

nain{)
{
}

¥e know 'main{}‘ is where the progran starts, but what about those '{’
and '}’ brackets? Those brackets mark the beginning and end of ’main()’.
The function ’main{}’ contains whatever is between the '{' and the '}’.

Compile the program by typing:
cel nain.c

After the coapiler has finished you should be able to call up a
directory of /dd/cMDS and find a program called 'main’. At the 089

proapt, type

ain

and press enter. The next thing you will see, surprise, surprise, is
the 0S9 proapt. The program loaded and executed. Only, it did
absolutely nothing, just as it was designed to do. (No, I haven't lost
all wy aarbles, yet.)

Now lets do a little exploration. At the 089 prompt type the following:

Ident /dd/cads/main

You shoutd see the following:

Header for: nain
Nodule size: $21R2 418

Module CRC: $2B7DC4 {Good)
Hdr parity: 498

Bxec. off: $0018 427
Data Size: 443Dl 4977

Bdition: $81 $l
Ty/La At/Rv: $11 §81
Prog mod, 6869 obj, re-en, R/0

Take a close look at what this teils you. Main, which dces absolutely
nothing and is the simplest possible program in C, is 418 bytes long and
requires 977 bytes of data storage. That’s over 1X of memory just to
get the C compiler to generate a program, any prograa. $o C is
obviously not as efficient as asseably lanquage. And its not as easy to
understand as Basic#9. So why bother with it? Because C is the most
portable language for personal computers today. An example is a .
recently released nessage editor written in C on a Radio Shack Model III
and ported to the Color Computer. Now, no offense intended, but there
aren't many conputers as dead as the Nodel III. Maybe the TI-99/4A, its
deader 'n hell, but even on a "dead” computer C still gives you the
ability to be on the cutting edge of software development.

I'n no longer going to explain step-by-step how to use the 'build’
comnand to enter your source code. If you have a word processor that
you like (mine is Dynastar), use it. Type in the listings exactly as
printed, save thee to disk (be sure to name them with a '.c' at the end)
and compile them exactly as we've done earlier.

Let's start something useful. Since almost everyone is familiar with
BS-Dos, we’ll write a program to clear the screen just like 'CLS’ under
RS-Dos. We'll call it ’cls’ because the convention in 059 is to
capitalize only the names of directories. Type the following source
code into a file named 'cls.c’:

tinclude <stdio.b>

nain{}

putchar('\814');

Next, compile the source code by typing:
ccl cls.c
Now type 'ident /dd/cads/cls’ and this is what you should see:

Header for: cls

Nodule size: $8797 #1943

Nodule CRC: $D97896 {Good)
Hdr parity: $B8

Bxec. off: $901A 426
Data Size: $04A3 H1187

Rdition: 01 i
Ty/La At/Rv: $11 $81

Sector 11

0_Say_cCan_You_C

Prog mod, 6889 obj, re-en, R/O

That's 1943 bytes for the program and 1187 bytes for data storage.
Pretty hefty for a program that only clears the screen. Just for

~co:parison, look at an assembly language version written by Rddie
Gilnore.

Header for: CLS
Module size: $6629 41

Nodule CRC: $F57D96 (Good)
Hdr parity: $61

Brec. off: $0012 48
Data Size: $0d0 4208

dition: $12 $H3
Ty/La At/Rv: $11 $81
Prog mod, €889 obj, re-en, R/0

Only 41 bytes for the program, that’s over 19¢ less than the C version.
Data storage only takes 208 bytes, alnost 188 less than the C version.
The total for the assembly language version is less than one-tenth the
size of the C version. Why do I point this out? To help explain
sonething in our C source code. Lets look at the source code again.

tinclude <stdio.b
1ain(}

putchar(’\g14'});

That first line, ‘#include <stdio.h>', I haven't explained that yet,
have 1? Well, that is known as a preprocessor directive. It tells the
conpiler to go find a file named ‘stdio.h’ and put whatever is in that
file into the source code. Inside 'stdio.h’ is information the compiler
needs for Input and output. If you want to take a look, type the
following:

list /dd/defs/stdio.h

The name ’stdio.h’ is shorthand for 'standard input output headers’ and
contains inforsation to handle all types of input and output routines.
Since the compiler doesn’t know which of those routines it'll need, it
includes them all. And that is where a lot of the overhead or extra
bytes come fron. However, once inciuded, the routines can be calied as
aany times ag necessary without any further increase in program size.
So while the overhead is excessive on a small program like ‘cls’, on a
larger progran like Dynastar, the overhead becomes insignificant. Rase
of programning and speed of development become much more important than
a couple of thousand bytes. If you're not going to do any input or
output, you'll never need ’‘stdio.h’. But that pretty much linits us to
the 'main.c’ progran we’'ve already written. And I don’t think we need
any more programs that do absolutely nothing.

lets look at the other line of code that wasn’t included In 'main.c’.
putchar(\814'};
This 1s where the program does the real work. This line calls a

function 'putchar()’. (Note that 'putchar{)’ is not the same as
'putchar{}’. C is case sensitive, unlike 089.) 'putchar()’ is a

function, just like ’'main{}’. You can tell they are both functions as
their names are followed by two parentheses, ‘(and ’)'. But you will
fotice that there is something hetween these parentheses in the
'putchar{}’ function in our source code. This is known as the arqueent.
The arquaent is the vaiue that the function 'putchar(}’ is to use. In
our case the arqument is '\@14'. ‘putchar()’ takes that arquaent '\@i4’
and PUTs the CHARacter out to the terminal. We will discuss the meaning
of '\814’ shortly.

'putchar{}' is contained in the C library as are many other functions
which we will discuss in the future. Right now it is important only
that you know that C is a language of functions, the more functions in
your library, the easier it will be to perform complex tasks in C.

Now let’s look at that arguaent '\@14’. C interprets this to be an
octal number. Octal simply means base eight. If you were counting in
base eight, it would go, "Zero, one, two, three, four, five, six, seven,
one-zero.* Even though that one-zero would be printed as ‘18', it is not
ten. It i5 one-zero, base eight, which equals eight in the decimal
gysten with which we are all familiar. {I’'n talkin’ fingers and toes
numbers to the rest of you people from Arkansas.)

S0, what does this '\@14‘ mean? To figure that out, count from the right
end of the arquuent toward the backslash (\) starting with zero. Zero,
one, two digits are shown. Take the first nuaber on the right and
witiply it times eight to the zero power. (Zero was its number in the
count from right to left.} So we have four times eight to the zero
pover. Any number to the zero power is one, so we have four times one,
or four. Next take the second number from the right and muitiply it
times eight to the one power. (One was its number in the count from
right to left.) Bight to the one power is eight, so one times eight to
the one power is one times eight, or eight. Finally, take the third
nunber from the right and multiply it times eight to the power of two.
{Two was its number in the count from right to left starting with zero.)
Ve have zero time eight to the power of two, or zero times sixty-four.
Zero tines anything is zero, 50 we have zero. How, add the values
together. Zero plus eight plus four. That equals twelve. So the
arquuent passed to the ‘putchar()’ function is equal to twelve.

2 1§ <-Count
g8 8 1 <--Powers of 8
\ # 1 d <--Base 8 number (indicated by '\'}

64%0 8X1 1X4 <--Multiply number by powers of §

g 8 4 <--Results of multiplication

g+ 8¢+ 4= 12 <-Decinal equivalent of '\gi4’

Tvelve is the ASCII code to clear the screen on the Color Computer, so
when 'putchar()’ writes the value twelve to the terminal, the screen is
cleared. Don’t ask me why twelve does the trick and not thirteen,
sonebody somewhere just liked twelve, I quess.

There are other ways to set the argument for 'putchar{)' equal to
tvelve. If you have the C Compiler manual handy, look at page 1-4.

Sector 12

0_Say_Can_You_C

Under the heading *Control Character Bscape Sequences® you will find the
following information:

bit patterns: \NMN {octal constant)
\dNNN (decinal constant)
\ RN (hexidecinal constant)

So the line with twelve expressed as an octal nuaber,

putchar{’\g14'};
can also be written with twelve expressed as a decimal nuaber:

putchar(’\de12'};
or vith twelve expressed as a hexidecinal number:

putchar('\xdc’);
Try substituting these lines and re-compiling the cls.c source code.
One last thing to notice about the line,

putchar{'\@14'};
There is a semicolon at the end of the line. This tells the C compiler
that here is the end of a statement. Those of us who are used to
programming in Basic#d or other basic languages generally end the line
¥ith just a carriage return (pressing ENTER). That doesn’t work for C.
You must have the semicolon to tell where one statement ends and the
next begins. I'a sure we'll forget a bunch of 'em before we become
proficient at C.
Now, lets add some comments to our source code,

/t Tells the compiler to include ¢/
/* standard input output headers t/

tinclude <stdio.h>

/t Tells the compiler here is t/
/¢ the start of the program t/

nain()

{ /t Here is the start of ¢/
/t the function main{) t/

putchar{'\@14'); /¢ Put the value 12 ¢/

/t out to the terminal t/

} /t Here is the end of t/
/* the function main{} t/

As you can see, comments can be added throughout the source code. They
aust begin with /¢’ and end with 't/’. The compiler knows to ignore
anything between those symbols. Although I am the worst about
comnenting ny source code, do as I say, not as I do. Comments can save
you untold headaches. Take a break and go try to read some unconnented
Basic#9 code you've written nonths ago or, even worse, unconnented code
soneone else has written. Remember, Basic#9 code is much more readable
than C. So if you have trouble with that, think how much trouble you'll
have with unconmented C code. Do yourself a favor, comment your code.

This is all the further we will go this tise. I know sany of the
advanced C programsers find little value in this article. However, I
will ask for their help. There are many different libraries, compilers,
header files, configurations and ways to hold your tonque. (Sometimes
it won't work unless you hold your tonque just right.) I would ask those
of you who progran in € on the Color Computer to drop me a line and tell
ae what you use, which library, whose C compiler, do you compile using a
randisk, etc. Here is the chance to voice your opinion. If you think
you have the best systen for compiling C programs on the Color Ccaputer,
let me hear about it. And I need as much detail as you care to give pe.
I will be attempting to determine the 'de facto’ standard for C
programming on the Color Computer, and I intend to work to that
standard. So here’s your chance to vote that you do C vight.

Until next time, keep smilin’. It makes people wonder what you’ve been
up to.

Al Pleagle

11 Alpine Court

Little Rock, AR 72285
501/661-1063 {voice)
591/661-8527 (sysopéWorkShop)

CIS 72527,135%4

SELLING FAST.

he MMW1.The revolutionary computer system

that everybody wants.
MM Interactive Media Systems designed the
ONE MM for the future - and for a wide range

of users. « Industry and higher education
are buying the MM/1. IBM-PC owners are buying the
MMA. Software engineers and multimedia developers
are buying the MW/1.

Now you can, t00.

The computer industry, dominated by IBM
and Apple, is growing at only 8 - 10% per
yeer. Personal Computingmagazinereports
that multimedia computing will more than
triple by 1992. The muitimedia MM/1 is designed for
the future, changing the way you think about computing.

ONE

Join us and the restof the Color Computer community.
Multimedia computing. Windows. Multitasking. Familiar
operation. High resoiution graphics. Stereo sound.
16.7 million color palette. Networking. The MM/1.

Welcome to your next computer.
Cafi 800/866-9084 for brochure or video.

Interactive
Media Systems

Sector 13

System_Calls

Using System Calls
by Paul Pollock

In all things worthwhile, we often find ourselves with a problem that

- cannot ‘be solved in a conventional fashion. Programming in Basicd9 is
no exception! Anyhow, this article hopes to help you beginning Basicg9
programmers, ledrn a method to find extra tools from within 059 itself,
to solve difficulties.

To make things easier, we’ll examine a couple of common real-life
problems (as examples), and solve them with practical solutions; only
golvable with a 'System Call'. These solutions will be demonstrated by
Basic@9 programs which actually use 059 to cure itself.

Bxample #1 - Performance Iaprovement

We've ail complained about it. When we execute more than one program in
wltitask, quite often a Basic@9 program slows down the systew for
another progran. While this happens with other types of programs,
Basic@9 prograns {using conventional tools within the language) tend to
reduce a systeas’ thruput much more severely.

¥hile ASSRMBLY (and other forms) solves this problem in clever ways; the
question is, how do we apply such solutions to our Basic#9 programs? For
a clue, let’s examine Basichd itself.

Firstly, let’s recognize a siaple fact;
The computer waits for input, most of the tine.

Because of this fact, Basic@9 has been written to take this into
account. 1In all the keyboard entry points; System ode, Rdit Mode and
Debug mode; Basic#9 is written to operate only long enough to scan the
keyboard, and then return to the 059 polling table as soon as it can.
fou can test this yourself, by operating another program after starting
Basic89. You'll find Basic#d has little effect on the rest of the
systen.

Bxcept when it is doing something other than keyboard entry; like
'pack’ing a progran. This is because Basic#9 was written to generate
'pack’ed nodules in an efficient manner; and it is necesary to do this
{and some other tasks|, as fast as it can. To get maxinum performance,
it now uses it’s entire polling clock period, instead of delaying its
operation. All of a sudden the coaputer runs quite slugishly, while
packing a large progras.

Nov to make use of one method to get this technique into our own
prograns. Let’s take a look at the following listing;

PROCEDURE Timer

fo6e (* Tiner progran to use the fysleep System Call
837 (* Programmed by

8647 (* Paul B.Pollock

#858 (* 87¢¢ Parthenia Place #5

et [t Sepulveda, CA 91343

g7 PARAM TIMBOUT:BYTR

0688 TIPR RRGISTBRS=CC,A,B,DP:BYTE; X,Y,U:INTEGER
@83 DIN REGS:REGISTERS

f@BC DIM PATH,CALLCODB:BYTR

gact RBGS . X=TINBOUT

03 CALLCODB=$fA
#4908 RUN SYSCALL(CALLCODR, REGS)
BAEA ERD

Firstly, look at how the program is written. The program generates a
TIPE statement (DIN'd as RBGS) to tell Basic@9 what the 6883 CPU looks
like. Then it sets up the registers of the CPU for a Systea Call.

Note the CALLCODE. This is a mandatory parameter (in this case $dA,
used to indicate the F$Sleep call, page 8-35 of the Technical
Reference}, which must be used to call the SYSCALL command froa Basicf9.

SYSCALL {included in your CMDS directory), uses the CALLCODE to
interface to the System Call table. The rest of the data is sent via a
packet defined by the BEGS data packet. The only register we are
nodifying, is the 'YX’ reqgister, which the Technical References section
of the manual tells us is used to tell the System Call how long to
TIMROUT the calling process. All the registers must be sent, via the
TYPR packet, but any that are undefined, are assumed to be "don’t care’
or 'leave as is’ info.

Here’s the rules for use of the P$Sleep Systea Call, as used by TINER.
Call the program via the following line;

RUN Timer{TIMROUT)

The parameter TINEOUT is an integer number, which determines the number
of system 'ticks’ you wish the F$Sleep period to be. F$Sleep is NOT
repetitive, so you have to repeat this call, everytime you do an input
check.

The TIMBOUT can be any number between ‘@‘ and '255’.

If '@ is used, then the P$Sleep call will be forever. It has the
effect of using LOOP without an BRITIF. The only way to exit is to
setup a software interrupt, through a system intercept. This is very
conplex, and not within the scope of this article.

If '1" is used, the effect of this call is to release any unused time
left in the Basic#9 progran’s (which calls Timer} polling interrupt;
back to the system, for use by another program.

Any other number used {within range), will cause the F§Sleep to operate
for increasingly longer periods. On a standard Coco Level-2 systea,
these ticks are actually 18@/second {even though the manual states
¢@/second). This means you would normally use 188 ticks for a 1 second
TINBOUT.

The above program assumes that your program has a place in the prograe
where input is expected from the user. FPor instance, you could make use
of this program, right after an INKEY entry point. While the effect of
this routine will be noticable with a TIMBOUT of 1, a keyboard scan
could get away with a TIMBOUT as large as 2-3 without noticable effect
in the progran. And would provide an even more dramatic sacothing of
system performance. This works well 'because’ we are using a Systea
call. This has no effect on the input drivers and buffers, used to hold
data inputted. Characters will be grahbed and stored until called for
by the program. If this kind of stoppage were tried with conventional
pethods, the program would miss characters, during TIMROUT periods.

Sector 14

System_Calls

0r it could be used by a BBS program, to suspend the module, used to
check for a ’carrier detect’, which would indicate a user is present.
¥ith no user present, the computer does not need to scan for this
condition on a continuous basis, because the carrier from a caller is a
'steady-state’ condition, and will be there when you eventually get
around to it <grin>, This means that you could put the process to sleep
for a relatively long period, without affecting the main programs’
abillty to start the BBS. TYou could use a period up to one(1} second or
pore, without the caller being avare of a probles. It could also be
used at points {n a Menu Control routine, while a user is online. This
would prevent long periods of user imactivity from having an adverse
effect on your use of the computer. And can be handled as you would any
other input scan.

Bxample #2 - Creating Sound

Those of us who've operated our Coco2’s and Coco3's under Extended Color
Basic, remenber the powerful and elegant methods created by the people
at Microsoft; to make not only noises, but sound and music. Commands
like SOUND and PLAY, are not only not part of Basic#d; but are sorely
nissed by many programmers.

To alleviate this much loved feature, at least to some extent; let's
look at the following progras;

PROCEDURR Tone

foes {* Tone Generator Progran

819 {* by Paul Pollock

f828 {* DELPH] <PAULBELL>

[[X]3 {* phone# {818)895-1966

p856 (*

#1859 {* This prograa is intended as a general purpose Tone
source.

#1896 {* Makes use of, and demonstrates the use of I$setstt
Systea Call.

#eDs {t In this examplie, Syscall is used to call F$SetSta
{callcode $88}.

f11A (* The actual SS.Tone is option $98.
#138 {* ‘fhe fine details are in your manual.
#165 {*

f168 {* Usage:

[)YH] {* RUN Tone{Volume,Tick,Frequency)

p194 {t

9197 {* Params: (all are mandatory)

#1B6 {t Volune= #-63 63 {5 loud

#1D5 {* Tick= #-255 255 is long (1@ ticks/sec}

#2604 (* Prequency=#-4895 4495 is highest pitch
f228 (*
#231 TYPR registers=CC,A,B,DP:BYTE; X,Y,U:INTEGER

256 DIN regs:registers

#25¢ DIN path,callcode:BYTR
B26A PARAM Vol,Tick,Freq: INTEGER
#2719 DIN xdata:INTEGER

284 path=g
#2817 rdata=vol*256+Tick
297 callcode=388

g29¥ regs.A=path
228 regs.B=$98

281 regs.X-xdata
203 regs.Y=Freq

p2CF RUN syscall{callcode,regs)
208 END
p28d

Like the previous example, this program models the 6389 CPU, and sets
this up though the RBGS data packet. And, like the previous example,
this program recieves several parameters from standard input. These
paraneters are used to modify the CPU registers as listed. The CALLCODE
{488), is the key for the F$Setsta call. This call is the doorway for a
'sub-table’ of additional system tocls. These tools become available
via the 'B’ register of the CPU. This register contains the tag {438}
for 'sS.Tone!. The 'X' register contains a 2-byte code, which contains
the volume and duration data. The 'Y’ register contains the Frequency
information.

All that’s left is to send this data to SYSCALL, and let it rip! The
linits are stated in the program, and decimal integers are used for all
parameters. This progran can be used to generate tones up to 2.5
geconds long <grin>. This program ls deceptively safe, as screwing up
the parmeters will have little effect on the system. You might not get
a tone, but the computer will continue to operate normally.

One other important feature of this program is; unlike some programeer’s
other nethods for sound production, this routine will NOT send random
data to the printer. FPor this reason, it is ideal for cases where you
vish to nake sounds and still use your printer.

The only bad part of this prograe, isn’t really part of this progras,
but a part of 059. Since 059 is a multitasking operating system, the
systen vants to run its prograns while the program wants to make a tone.
This program does not halt the system to run. So the effect of the
system on this program is that it makes the sound seea 'graimy’ or
'huzzy’. This effect is mildly unpleasant, but is otherwise quite
effective.

Wrapping Up The Loose Bnds

I hope this article has been informative, and fun for you. The programs
included in this article are yours to use as you wish, as I've reieased
then into the public domain.

The Basic@9 programs, 'Timer’ and 'Tone’, work on 089 Level-1 and 0S9
Level-2 systems without modification {0SK systeas, confirm the systea
callcodes used, and any other parameters required}. They pack into very
snall procedures, and require very little data, so they lend themselves
to larger projects where you might like to include them into merged
Basic#9 procedures. The only external module required under Basicd§ is
STSCALL. Packed procedures will also require RUNB, for proper
operation.

Good Luck, and keep programming!

Sector 15

Z_End

That's all for today’'s issue folks!

Look forvard to our following issues reviewing the various aachines
either now or soon to be available. We start off with a complete

- top down review of the ¥M! from the inside out. That's right, everything
you didn’t want to know about the MM1!

And remeaber, Please nention the OSKer when you contact our advertisers.
It never hurts to let them know which magazine you found thea in!

Does it sound like I'm stalling to you? (I needed just one more page..
not two or three or four...).

Also in next months issue: the next instaliment of Playing Chess in C,
and also Bug's Windows, Bugs, and Patches article. That’s right, we
call the guy Bug.

See ya next aonth!

by Alan Sheltra

Sector 16

SYSTEM IV COMPUTER

PERFORMANCE - FLEXIBILITY - VERSATILITY

MC68000 Microprocessor - 16 MHz VGA Video Card - 800 x 600 x 16
1 MBytes of DRAM (0 wait state) to 320 x 200 x 256
4 MBytes optional or - Hercules Monochrome Card

Seven IBM/XT Compatible slots

Floppy Disk Controller (37C65)
supports two 360K, 720K, 1.2M
or 1.4M Drives

One 1.4 MByte, 3 1/2" Floppy Drive

WD XTGEN Hard Disk Controller (MFM)

Four RS-232 Serial Ports

Parallel Printer Port

40 MB Hard Drive, 28 msec, optional

Clock with Battery

4 layer board

Memory Expansion slot - adds
up to 8 MB of DRAM.

AT style keyboard

200 wWatt Switching Power Supply

Professional 0S9/68000

Drivers and descriptors for the
devices and ports provided.

Baby AT Case - holds three 5 1/4"
1/2 ht drives and one 3 1/2"
drive accessable from the
front and one 3 1/2" internal
drive.

One year parts and labor warranty

Mfg by Peripheral Technology

Model K402-m with Hercules Monochrome Video Card 45 . $1,399.00
Model K402-v with VGA Video Card . . . e e e e e o o %, $1,499.00
Model K401-m with 4 MB on-board DRAM, 40 MB Hard Drive <

(28 msec) and Hercules Monochrome Card Qp‘,899.00
Model K401l-v with 4 MB on-board DRAM, 40 MB Hard Drive A

(28 msec) and VGA Card e e e . . . 8.¢9.00
14" VGA Monitor, 0.31 mm, Gold Star 1450 Plus <

with K401-v or K402-v (Regular $549.00) $ 4% 0
14" Monochrome TTL Monitor, Amber, Gold Star 1401A %

with K401-m or K402-m (Regular $199.95) $ 149. v%
VGA Monochrome Monitor, white, Tandy VGM-100

with K401-v or K402-v (Regular $199.95) $ 165.00

0S9/680x0 SOFTWARE
SCULPTOR - Development System (68000) from $2,500.00

Quick EAd - Editor and Text Formatter $§ 275.00
FlexilLint - A must for C programmers $ 495.00
Caching - High speed disk caching (demo available) $ 300.00
IMP - Intelligent Make Program $ 250.00
Disassembler - 3 pass « « ¢« « « « « - . - 8 250.00
Windows - C source code & library $§ 250.00
Profile -~ Tune User State Programs 8 270.00
PAN Utilities - C source and library 8§ 250.00

P.0.BOX 78+MIDDLETOWN SHOPPING CENTER MIDDLETOWN, DE 19789 3#2/378-2555

	OSK'er
	.login
	Table of Contents
	Considerations for Submitors
	the OSKer
	Subscription

	Basic09 Intro
	Dlink.c (dlink/move by StG)
	Editor Rambles On
	O Say Can You C (Installment 2)
	System Calls
	Z End
	The Wizard of OSK

