
AUCUST 1990 VER 01.02 S2~DD ,
ER® E

News and Views in the World of OS~/68000 and 6809

•WHAT IS MULTI-MEDIA ANYWAY?
eHOW TO BUILD A CDI

•SPECS ON THE 2 NEW MACHINES
•NATION-WIDE 059 BBS LISTING

Contents

Directory of /dd/OSKer/Aug90 14:16:04
ONner Last modified Attributes Sector Bytecount Name
------- ------------- ----------
OSKer 90/08/13 2355 ----r-wr
OSKer 90/08/13 2243 ----r-wr
Editor 90/08/08 1431 ----r-wr
Editor 90/08/07 2023 ----r-wr
StG 90/08/07 2023 ----r-wr
Editor 90/08/13 235fll ----r-wr
Mi 11er 90/08/16 2023 ----r-wr
Editor 90/08/03 1853 ----r-wr
Editor 90/fl!8/11 0335 ----r-wr
Editor 90/08/12 1712 ----r-wr

"the. OSK.eJL" i-6 pub HMte.d monthty by:

StG Compute.~-6 inc.
P.O. Box 24285
Spe.e.dway, IN 46224

P~e.~ide.nt: Scott G~ie.pe.nt~og (Edito~J
Vice.-P~e.~: Jim Hutchin~
Se.c~e.ta~y: Ooug Oatton
T~ea~~e~: Oave Henk

Cove~ A~t: Atan She.tt~

Sub~c~i.pti.on~ to the. OSK.e.~ a~e. $12
pe.~ ye.a~ in the. u.s., $15 in Canada,
and $28 ov~e.a~.

Adve.~ti~ing Rate.~:
4/4 Page. 7.5"w X 18.6"h $ 186
3/4 Page. 7.5"w X 7.5"h $ 86
1!2 Page. 7.5"w X 5.6"h $ 68
112 Page. 3.5"w X 18.6"h $ 66
1/4 Page. 3.5"w X 5.6"h $ 48
1!8 Page. 3.5"w X 2.5"h $ 28

P~e-pay 6o~ two i~~ue.~, ge.t one. 6~e.e..
Ad copy mu~t be 4e.ce.ive.d be.6o~e. ta~t
day o6 month p~e.viou~ to i~~ue. 6o~

inctu.6ion.

1
2
2
4
7
8

11
13
16
17

Sector ~*0

--------- ----
3855 BBS_List
2095 Doc_OSKer
7596 Editor_Rambles
4757 Flame_<l\1
6038 How_to_Build_a_CDI

12537 New_Machine_Specs
9626 OS9_in_Industry

14983 Playing_Chess_in_c
1498 Syscall_for_C
4296 What_is_Multi_Media_Anyway

Editing 6o~ the. OSKe.~ wa~ done. on an
At~i Mega 2 ST ~unning OSK, u~ing
uMac~. The. text wa-6 6it toge.the.~ and
p~e.-6o~matte.d with a c~tom p~og~am
and taye.d out u.6ing Vent~ on a T~bo
PC. Add4e.~~ tabe.t~ a4e. p4inte.d with
089 unde~ OSK.

Att .6ubmi~~ion.6 mu.6t be. in the Pubti.c
Domain to be. con~ide4ed 6o~
publication. Autho~~ o6 p~inte.d
a~ticte.-6 witt ~ece.ive. the. 6ottowing 6
month~ o6 the. OSKe.4 without cha4ge..

StG Compute.~-6 inc., a-6 pubti~he.JL o6
the. OSKeJL and having owne.JL4hip o6
4o6twa4e. witt not di~e.ctty adve~ti4e.
in the. OSKe.~ to p4eve.nt a con6tict o6
inte.~e.4t. Additionatty, the. e.dito~
witt not u.6e hi-6 po4ition to p4omote.
.6aid pMductl.l.

The. hacke.4 conte.4t ha~ be.e.n extended
to the. 6ottowi.ng i..6.6Ue. to attow time.
6o~ ~e.ce.ipt o6 att ent~ie.-6. The.
.6o6twa4e. ti~t ha-6 not ~e.ce.ive.d any
e.nt~i.e.l.l, and witt be pol.ltponed unti.t
it doe.~.

BBS_List
Okay, everybody wants to know where the local boards are. So, here's a list in order by phone that has been
compiled from several sources. However, there's a LOT of information missing! Yo Sysop's! Get your system listed
(correctly!·here so that people know where to find you. I know there are lots of RCIS and Fido nodes out there,
so speak up and make yourself known! I don't have the time to go around calling all these, so if anybody finds
anything wrong (or left out), either call (317 ·24 1-6401 (leave message on machine). e·mail to me, or s·mail to address
given inside front cover.

Phone

201·494·3649
201 . 967 ·1 061
203.399.7394
203-444 ·1597
204. 582. 3593
206·285·8335
206·425·5804
213-461·7948
215·375·8814
215·376·1819
216·221·6809
301·863·5312
303-343-6707
303·757·6197
306·373·511329
312·745-1387
313·268·0028
313.879.2318
317-244·3159
319·362·6577
403. 320.6481
403·329·6438
404·446·6336
404·951-1540
405·752·8955
419·829·4825
501 . 661 . 0527
504·649-5761
508·792·0381
515-432.7853
516·795·5874
518-372·2694
519·753-7420
602 844-7840
608.655.3806
612·780·8936
614·965·1527
615·265·2629
615·383·0727
616·684·1283
617 ·661·0776
619·571·6366
703·323·7654
708-352·0948
714-781·5825
804-744·9260
818-772·8890
904·245·6585
904. 595.2184

Name MaxBd

MlcroFone TBBS 9600
R.C.I.S. Hq. 2400
coco Kingdom 1200
One· Byte 2400
Alpha SOftware 2400
Farpolnt Statton 2400
Columbia Ht8 2400
Zog's Cavern BBS (ZOG) 2400
Garf's BBS 2400
Glass Menagerie 2400
OS9 Connection 2400
coco County Airport II 2400
Ribbs Hq. 2400
uss liberty 2400
Computer Link 1200
coco Rame 2400
Mega coco 2400
Arthur BBS 2400
Indy OS9 (ROOT) 2400
Color Connection 2400
Anarchy Inti' BBS (AlB) 2400
So. Alberta BBS (SAB) 2400
Online With Hayes 9600
INDEX System 2400
Micro-Link 2400
Colorama PBBS 2400
Workshop (WORKSHOP) 2400
Alpha Software 2400
Gravyard BBS 2400
The Tomb 2400
Long Island coco Club 9600
Fishllne BBS 2400
Multi·Net BBS 2400
The Pub 2400
Tandy Users Group 2400
TCOS9UG BBS 2400
Lastoutpost BBS 2400
Old Folks Home 9600
Nashville Exchange 2400
Zone BBS 2400
Firehouse 2400
8-blt Tandy 2400
PBBS 2400
S and V BBS (SANDV) 2400
Pegagus 2400
Tree House BBS 2400
Plain Rap 2400
Nobody's Home (HOME) 2409
Snoopy's DogHouse (GIJOE) 2400

Net

RCIS

StG

Ado

stG

stG
stG

StG

StG

StG
StG

Sector u 1

Sysop

Alan Sheltra

Scott Griepentrog

Corey (CHIN·Lee
Dieter Rossman

AI Reagle

Paul Jerkatls

Scott Proctor
John Swinson

DOC_OSker
The Doctor is IN - but his waiting room is empty?

FROM: Frank@Zog (Frank Delaratta)
TO: 8y80p@ROOT
SUBJ: I Gotta Que.Uon Doc?
DATE: 9S/f2181t1!11 23:47:55
RCVD: root 9e/f218/f21-4 01:29:26

I just downloaded Bruce lsted's patch files to use a
serial mouse with a coco3 and an rs232 pak or other
serial port. I need to know the pin to pin connections
from the 9 pin connector on the digitech p5 mouse to
the 25 pin connector on the rs232 pak.. I also
uploaded the file to this bbs.

Frank.

The DB9 connector has become an alternative standard
to the DB25 connector for RS232 communications.
Mostly because it's a lot smaller. But of course 'they'
moved the pins around · more so than was necessary
anyways. Only pins 2·8 and 20 of the DB25 are most
commonly used, so this fits fairly nicely into the DB9
connector.

These days serial mice all come with DB9 connectors,
but often include a DB25 adapter as well The adapter
works the same for CoCo as it would for PC's, except
that the DB25 on the adapter is female. It will plug
into the backwards RS232 connector on a PC, but
you'd need to use a Male·Male gender changer to use
it on the RS232 Pak. Actually, our RS232 Pak adheres
to the older standard where all DB25's mounted on
machines are Female, and all cables have Males at both
ends. Because people often got the cables backwards,
as well as a few other reasons like having to use
gender changers every time you wanted to add another
cable as an extension, IBM decided to put Males on the
Computer side, and use Male-Female cables. Interestingly
enough, this has become the 'new' standard. One has
to admit that they actually did something that makes
sense. Just this once though.

Anyways, on to your question. By analyzing a
DB9-DB25 adapter with a meter, the following
connections are found:

DB9 DB25 SIGNAL

1
2
3
4
5
8
1
8
9

8
3
2
28
1
8
4
5
22

Carrier Detect (CD)
ReceiVe Data (RD)
Trantmlt Data (TD)
Data Terminal Ready (DTR)
Signal Ground (GND)
Data Sat Ready (DSR)
Ready to Send (RTS)
Claar to Sand (CTS)
Ring Indicator (RI)

Editor _Ralllbles
'On and On it Goes and Where it Stops, Nobody
Knows .. .'

Well, here I am again hading away into the middle of
the night trying to get another OSKer issue (version?)
done. As with the first one, it appears I'm running
right on 7 days behind · that is, behind where I
would like to be. The idea is to have the end of a
month the deadline for submissions (which usually turn
up late if at all), spend a few days splicing the layout
together and take it to the printer, and start mailing it
out about the 7th or 8th of the month. Well, as I
write this it's the 7th, and two pieces are missing.
But then, it'll be tomorrow before I'm done stuffing the
pages together, providing I don't run out of crazy glue.
But it'll be there, and it'll be worth the effort. To
those of you who received the last issue just this
month, I had so many requests piling up it took me a
while to get them all put in the database and run
through another mailing. As it is I've already got
about 50 more I'll be mailing while waiting for this one
to come back from the printer. Ya know, I started last
month with lO projects to work on finished 2, and
started this month with 13. It just aint fair!

I've gotten my mailboxes (snail mail, internet, stg·net,
even cis) stuffed with people responding to the premiere.
Although not all pertaining to the OSKer, I've had
about 30 messages a day total! A few people have
critiqued parts of layout or content, but as a whole
everybody seemed to enjoy the magazine. One guy
went so far as to say that the one issue had more
interesting info in it about OS9 than the Rainbow had
all year! It's very refreshing having so many people
appreciate something you do, and I hope that all of you
reading this can get the chance to feel the same by
creating something for OS9 and spreading it around.
There is a lot of software to write, but there's a lot of
brains out there. Okay, off my soap box, and onto
some of the remarks.

It seems everybody liked the cover art (Smile Zog!), and
thought giving the pages sector numbers and the OS9
directory format were 'cute' (to paraphrase). But the
general consensus is that the Allocation Map and
Attriburtes on every single article was pushing it. Hey,
I couldn't agree more. I thought it was a good idea at
the time. I also got a nudge about the font that was
used, and the lack of full justification. Yup, I agree
there too. I used that font because I was trying to get
the stfuff that would line up on a normal text display
to look right. And I didn't have the time to go through
and mark just those sections using PageMaker. It was
a pain to get it to look. even half-way decent as the
only font that would work was that 8 point super-bold.
I'm working on a routine to take of the printing
(beginnings of a DTP) in a much nicer format, not to
mention under OSK, but it won't be ready for another
issue or two. I think I'll go back to Ventura (ick) for
the meantime.

Sector 112

Another highly complimented area was the interview
with Kevin Darling, although I had a couple of people
comment about it's length. I had thought about
splitting it into two pieces · in hindsight I realize this
would have been a good tactic, as well as saving the
eyesight of more than a few readers. Oh well And
yes, Kevin, I need a spelling checker, as well as a
brain transplant so I can spell your name right
(SORRY!). I can't believe I did that. Well, maybe
can.

I'm eager to hear all of your comments about format,
content, etc. Quite frankly, I'm suprised nobody said
anything about the doc's inane mumblings, which was
not only a very poor attempt at bad humor on my
part, but also the first draft. I had completely
re-written that section (on paper) to actually be slightly
humorous, and forgot to key it into the file. Oops.
That's what 1 get for not having a portable. Seriously
folks, flame at me all you want about the mag · I
need to know if I'm doing something even slightly
unworthy of my readers. And hey, I've a fire proof
suit laying around here somewhere.

And now for a few messages from our sponsers:

FROM: SPENT@GIJOE (Darrell Spencer)
AREA: StG
SUBJ: OSKer
DATE: 90/08/01 19:38:11
RCVD: root 90/08/01 20:34:50

Scott, thanx for the complimentary copy of the premier
issue of OSKer! It was a very informative collection of
goodies. I particularly enjoyed the interview with Kevin
Darling ... very interesting material. I have been using
Microsoft Windows V 3.0 at work on an IBM Model
80 lately and have been considering moving to an AT
machine based on the many features available with 3.0.
(Movable windows and icons and a few other niceties)

The first issue of OSKer has made me stand back and
say, "Wait a minute! First, the switching between tasks
(as Microsoft calls them) is SLOW and very jerky with
weird flashes of graphics trash in between. Secondly,
unless an application is completely recoded (written for
Windows), multi tasking is not occuring, just task
switching! I believe you and Kevin discussed this
having to re·invent the wheel every couple of years.
Thirdly, this graphical interface hogs around 4 Meg of
disk space and 1 Meg of system ram! What an
efficient jewel OS9 LII is.

The bottom line is this: I am holding onto my CoCo
a bit longer, listen to the pros and cons of TC70's and
MM/l's and stick with the Motorola/Microware
combination. We've been on the right track all along.
The rest of the world will catch up sooner or later!

Darrell Spencer

P.S. My subscription request is on the way!

FROM: Erlc@Zog (Eric Levinson)

AREA: os9
SUBJ: The OSKer
DATE: 90/08103 22:35:41
RCVD: root 90108104 01:29:35

I recieved the OSKer magazine today. It looks like a
great magazine.

I have one quirk though. In sector 6, a question was
asked about power on the COCO bus of the TC9.
The Doctor OSKer answered: The TC9 can handle more
power than the COC03 could, because it feeds on a
200W power supply.

This statement is not true. I am an electronics
technician and have worked many years in the field.

The term "power" is not handled. "Power" is drawn
from a component, not handled. Even though a 200
Watt power supply can supply up to 200W, all 200
watts are not sent into the coJQponents, rather a
component has a specific power consumption, and it
only draws what it needs to use. The rest can be
used for other components.

Both the TC9 and the COC03 have the same power
consumption, but since the TC9 has a more sophisticated
architecture, it does tend to draw a little more than the
COC03. I would recommend that you mention this in
your next issue of the OSKer, so it doesnt confuse
users that aren't familiar with power as a whole.

Eric Levinson

FROM: aysop@WorkShop (Syflem Operator)
TO: aysop@root
SUBJ: OSKer
DATE: 90/08193 19:01:13
RCVD: root 90/98103 23:58:05

Scott, ignore any messages you might have received
about my not having a copy of OSKer. It came
yesterday. One heck of a magazine! That must have
taken forever to transcribe the conversation with Kevin
Darling. I'll put my check in the mail to you
tomorrow. That's not the same as saying "The check is
in the mail."

I was interested to note that Alan Sheltra made the
suggestion to drop the apostrophe from OSKer. I settt
you the same suggestion on June 2nd.

Keep up the great work!

AI · sysop@W orkShop

Sorry AI, you're the one that suggested dropping the
apostrophe. I got you confused with Alan on that one.
Nothing like hundreds of people reading what you write
to bring out the idiot in you eh?

StG

Sector 113

Fliiiie_ON
by Scott Griepentrog

Well, nobody else seems up to building a fire, so I'll
start one ...

There are a lot of ways of formatting your C program
code to make it look readable, but there's only one that
should be used. Mine! Let me explain myself.

In the very beginnings of C, code was often formatted
like this:

main()
{

If (foo) {
bar;
bar;

}
}
But this is ugly. Note that the {}'s line up only on
the function, but not in the section of code after the if.
The idea I guess was to put the { in place of a single
expression to indicate the start of a section of code to
be executed conditionally. I've also seen people recently
doing this:

main()
{

}

If (foo)
{
bar;
bar;
}

This is ugly too. I don't have a logical reason, it just
is. Actually, I do have a reason against it · the
uMacs editor automatically indents for you, you can't
write code that way using it. Now the proper way to
format the same piece of code is:

main()
{

}

If (foo)
{

}

Doesn't this just look so much better? The {}'s line
up, stick out, you can find them easy, you can see
what they're enclosing, it's just beautiful. Well, almost.
I've even seen people follow this form, and STILL
manage to make an ugly looking program! Here's an
example in the form of a code segment from my
PostMan module:

maln(argc, argv)
char **argv;
{

chkarg(argv);
If (lutr) _ wxl(_ 11_ tcf(2),1, 'E' :not logged In", e);
_ etrua(&u,utr,tiZeof(u));
chuld(S);

SPACE FOR
RENT

Your ad here!

Reasonable
Rates!

Call (317)
241 6401

}

to= area= *rply =*file= *tub)= 8;
hdrcnt = hdrlop = S;
duh(argv)
{

}

case 't': *(*argv + 1) = S; strcpy(to,_ to); strcat(to, *argv + 2); break;
case 'a': *(*argv + 1) = S; strcpy(area, area); strcat(area, *argv + 2); break;
case 'f': *(*argv + 1) = 8; strcpy(flle,_flle); strcat(flle, *argv + 2); break;
case 's': *(*argv+ 1) = 8; strcpy(sub),_subj); strcal(tubJ,*argv+ 2); break;
case 'd': dflag+ +; break;
case 'z': debug + + ; break;
default: _ wxl(_ Is _tcf(2),1,S, •tnvalld option •. *argv);

If (*argv)
{

clote(S);
If (open(*argv,3)) _wxl(_ls _scf(2),1,'E',"cant open •,•argv);

}
close(1);
clote(2);
setpr(getpld(), 16);
strcpy(b,cla- > newa);
strcat(b, •/news. read•);
If ((nfn = open(b,3)) = = EOF && (nfn = creat(b,3)) = = EOF)

_wxi(S,1,'E':cant creat •,b);
If (chrser(u.o,NETOPT)) net(rcvd + +); else uter();
clote(nfn);
If (debug) _wxi(S,S,S, •ooNE",S);
clote(S);
if (*argv && dflag) If (unllnk(*argv) = = EOF)

_ wxl(8,1, 'E'. •cant del •. *argv);

Now here's the exact same code, but well commented
and with blank lines between sections of code to
separate them. A heck of a lot easier to read, isn't it?
I wrote this nearly a year ago now, but I can read
through the code and it makes perfect sense. I can't
say the same for some of the things I didn't take the
time to format carefully.

maln(argc, argv)
char **argv;
{

I* check for , -1 and get uar Info */
chkarg(argv);
if (!uu) _ wxl(_it _ scf(2),1 ,'E'. •not logged In• ,8);

I* copy the d*mn uar rae to u to keep from loosing H due to logout */
_strata(&u. usr, sizeof(u));

I* 99/94/39 StG - chuld to s lnttead of openstcreats *I
chuld(S);

I* clear option buffer• */
*to =*area= *rply' =*file= *sub)= S;
hdrcnt = hdrlop = 9;

dash(argv)
{

case
case
cate
case

't': *(*argv + 1) = 9; strcpy(to ,_to); atrcat(to ,*argv+ 2); break;
'a': *(*argv+ 1) = 9; strcpy(area,_area); atrcat(area,*argv+ 2); break;
'f': *(*argv + 1) = s; strcpy(flle._flle); ttrcat(flle. *argv + 2); break;
's': *(*argv+ 1) = S; etrcpy(sub),_tubJ); strcat(subJ,*argv+ 2); break;

Sector '*5

}

cate 'd': dflag + +; break;
case 'Z': debug + + ; break;
default: _wxl(_la_tcf(2),1,&:1mralld option •,*argv);

I* open Input file */
If (*argv)
{

clote(8);
If (open(*argv,3)) _wxl(_la_acf(2),1,'E':cant open •,*argv);)

}

I* clote all 1/o other than Input ao we dont get killed */
clote(1);
clote(2);

I* aet priority down */
setpr(getpld(),18);

I* open global newt.read file */
atrcpy(b,cla- > newa);
strcat(b, •mewa.read•);
If ((nfn = open(b,3)) = = EOF && (nfn = creat(b,3)) = = EOf)

_wxl(8,1. 'E','cant creal •,b);

I* procett either a net tranlfer or user trantfer */
If (chraer(u.o,NETOPT)) net(rcvd + +); alae user();

I* clote news.read */
clote(nfn);

If (debug) _wxi(8,8,8 .. DONE•,&);

I* then delete Input file If needed *I
close(&);
If (*argv && dflag) If (unllnk(*argv) = = EOf)

_ wxl(8,1 ,'E' ,'cant del •. *argv);
}
Note that I didn't bother to comment the section of
code starting with the dash(). It's pretty obvious what
that does. The code looks twice as long, but it's more
than twice as readable. I always write things as if
somebody else is going to be reading them · and when
I go bad to read them several years later, I might as
well be somebody else, cause I'm surely not going to
remember how I wrote the program the first time!

• zags cavern BBS

Sector '*6

(213) 461·7948
2400/1200/300 8/N/1

Now24hrs.
SysOp: Alan Sheltra

(ZOG the Monster)

Features NetMail, On-Line Games
OS9 & Coco SIGs & Flle Transfer

Discussion Boards ...
Your Late Night Meeting Place!

How _to_Build_a_cm

by Scott

No, I'm not about Compact Disk. Interactive
(CD·!) that's in an upcoming issue. The following is
the technical info on how to build a Carrier Detect
Interface. What do you need a CDI for? Read on.

Techni;:,;t;;:i Speelficat1on11 for the Carrier Detect Interface

R~hlil~i:a$tld Into the Public Domain

The CD! was developed as an answer to answer a
problem with the 15551 ACJA chip used in the Tandy
RS232 Pak and most replacements when used in a BBS
or other diaHn (tsmon) situation. The 6551 chip will
ignore data from the modem if no carrier
detect signal is present. Hayes modems output the
CONNECT XXXX message BEFORE turning on the CD
signal, thus a ACIA device will never recieve the
CONNECT message unless the CD signal is forced to.
an ON stale. Of course, if CD is always on regardless
of the actual carrier detection state, it is difficult to
deled when a user disonneds. The modem output the
message "NO CARRIER" but writing every single
program In look for that message is a bit too much.
The idea hH this unit actually came from the
MUL TITECH 224E modem that I had purchased for it's
internal baud rate adjust feature. That is, the modem
talks to the computer at a fixed baud rate regardless of
what rate the user is connected at. This modem has
three op\lons for carrier detect: forced on, normal, and
drop for 2 sees. The third mode allows detection of
the connect messages and loss of CD because it leaves
CD high ~:mcepl when a user first disconnects from the
modem. About 2 seconds after CD was initially lost, it
brings the CD signal bad. to the ON state so that the
next CONNECT message can be heard.

The CD! applies this same feature to modems that do
not have it built in. The unit is actually a very
simple R·C (resistor-capacitor) circuit, borrowing voltage
from the DTR signal to feed the CD signal. The parts
required and instructions for assembly follow. As it is
fairly difficult to damage RS232 connections even if the
unit where to be assembled incorrectly, this project can
be pul together even by somewhat inexperienced persons
without fear of destroying anything. The only skills
required are identifying the parts listed and limited
soldering capability.

Assembly is best done by attaching the parts to a small
piece of perfboard, the kind with .1" holes and tin
plating on the bottom for soldering to. Attach the
larger to one side of the board so that it will
fit in !he space between the two DB25's. The easiest
way lo mount the resistor and diode going to DB25
connections is to stick only one end in the board and
leave the other floating in the air. Then connect the
wires between pins 1·8 & 20 before wiring in the rest
of the circuit.

Before closing H up with some hot·melt glue to hold all
the pieces in place, iest to insure that your new CDI

works. To do this install it on the back. of a modmn
(Male on the modem, cable to modem on Female
connector), and start up a termbal program.
As summing your modem supports the A T&C commrmd
to turn CD on and off, first issue the A T&CO to fi:lrca
CD on. You should get a "OK" back. from the
modem. Then enter the A T&C l to turn CD bid 11l:f
(normal~ You should not see the "OK" m<:ssag;e this
time. Then enter AT and you should get an "OK"
again. When the CD signal goes off, the ACIA mls$1!!®

the following OK while the CDI force CD down for
about a second. But following commands 'No~k. If it
passes the test, you have a functional CDI!

QTV PART DESCRIPTION

1 DB · 25 Connector, Male, Solder Ll.lg$
1 DB 25 connector, Female, Solder Ll.lg®
1 DB 25 Hood, Double-ended (Null Mod®m
8 Wire, about 2" long
1 Diode (any generic diode will do)
1 Resistor, 1 K OHM (Br Bk Rd)
1 Resistor, 1 SK OHM (Br Bk Or)
1 Electrolytic Capacitor, 1 BOuF, 50v
1 Small piece of perf board

SCHEMATIC DIAGR.Aii

DB25 Female Connector · to Cabl~

12345678

12345878

100UF
50v

1k
Br
Bk
Rd

DB25 Male Connector · to Modem

Sector **7

New _Machine_Specs
Here they are, the technical information about all three
of the new machines, straight from the source. This is
mostly to benefit those readers who are overseas or
otherwise disconnected from the flow of information
about the new machines.

Most of you are already familiar with these files, but
check the latest changes the MM 1 · a pallete con troller
and two additional serial ports.

As Frank got to go first last time, Paul gets to this
time. The following is Paul's latest writeup about the
MM I (with some minor editing) and pricing info attached.

THE MM1

The MM/1 comes in a slim ·line PC style case with 200
watt power supply, and room to expand to two 5.25"
half heights devices and three 3.5" drives.

There's room in case for a total of six boards with
optional bus. Attaches to a 16·bit implementation of a
32·bit bus ...

MM/1 FEATURES AT A GLANCE

Main CPU board (usable alone): Signetics 68070 running
at 15 MHz, One meg of. RAM for video/cpu included,
OS·9/68000 in EPROM (boot from EPROM/disk/HD),
Graphics chip (Phillips VSC) with palette controller, RGB
Analog port with sync jumpers, DMA
normal/high ·density floppy controller, Two serial ports,
IBM PC keyboard DIN port.

Second I/0 board: DMA SCSI high·speed interface, Up
to eight megabytes additional cpu hi·speed SIMM RAM,
One DB·9 serial port powered for PC serial mouse, Two
DB·9 serial ports for modem/printerletc expansion, CoCo
8·bit analog joystick port, Two Centronics parallel ports
(bidirectional), Realtime battery·backed clock wlnonvolatile
RAM, Dual channel DMA ·able 8·bit analog line·level
D/A and AID ports, for stereo sound output _AND_
input digitization of voice, music, data

MM/1 FEATURE DETAILS

CPU

The MM/1 uses the CMOS multifunction Phi!ips·Signetics
SCC68070 processor, running at its full rated speed of
15 MHz.

The 68070 is built around an internal bus consisting of
a 16132·bit Motorola 68000·compatible CPU which has
been enhanced to recover gracefully from bus faults, a
built·in MMU, two DMA channels, a UART serial
interface, two counter registers, and an interprocessor
hi·speed serial bus interface.

Graphics and math benchmarks place the MM/1 at
approximately 60% faster than a !OMhz QT+, and about
the speed of a VAX 111780.

DMA

Direct memory access is used by the floppy disk., hard
disk., and sound subsystems. DMA aids in moving data

around a computer system, allowing the system to
continue multitasking without problematic interruption. For
example, when accessing a floppy disk drive, you won't
lose any keystrokes in your type·ahead keyboard buffer.

GRAPHICS

The CMOS Philips 66470B Video and System Controller
(VSC) integrates a high resolution color display controller
and a 680xx family system controller on one chip,
providing the best solution at the lowest cost to you,
the customer.

The graphics modes which will be used in the
American (NTSC video) version include the following:

320 x 21 0 256 colors/pixel
320 x 420 256 colors/pixel (Interlaced)
360 x 480 256 colors/pixel (overscan)
640 x 21 0 16 colors/pixel
640 x 420 16 colors/pixel (Interlaced)
720 x 480 16 colors/pixel (overscan)

A VGA·derived palette controller allows each of the 16
or 256 displayable colors to be chosen from over 16.7
million shades. Or in other words, 8·bits (256 levels)
each of Red, Green, and Blue information.

The output is analog RGB, with onboard jumpers to
adapt to most any analog monitor's sync requirements.
The standard connector was designed for plugin
compatability with the Tandy CM ·8 used by most
CoCo·3 owners.

The VSC also has onboard Pixel Accelerator (PIXAC)
manipulation logic, which the software uses to greatly
speed up teKt output and pixel combining on the screen.

Pictures stored on disk· in the RLE format (an efficient
storage format for pictures such as business graphics,
animation eels, and so on), can be decoded on the fly
by the VSC, making animation extremely easy to
implement.

The VSC also includes ROM, RAM and ItO decoding,
memory access control, and a watchdog timer to prevent
system lockup in case a programmer should accidentally
access a non ·used area of memory.

Sound

The MMII implements sound on the CPU board and its
110 add ·on board.

IBM PC ·style sound is possible from the CPU board,
adding utility to programs that need to prompt the user,
and to video games. Music, special effects, and simple
beeps are possible from the timer· based sound generator,
which normally would go through your monitor.

A more complete sound implementation is on the 110
add·on board. Dual (stereo) 8·bit AID/A converters run
to a standard 5·pin din, allowing a simple interface both
for recording and playing back sound. Sample rates can
be set to far exceed CD sample rates, making excellent
sound easy to reproduce. A DIVIA channel may be used
to do either input or output (to both 8·bit converters)
without cpu intervention.

Sector 118

Utilities for converting hundreds of existing sound files
will be available before the end of 1990.

These ports can also be used for data acquisition, of
course.

Parallel and Serial Ports

The Parallel ports on the MM/1 are configured to be
compatible with most popular printers. One can be used
for the OS/Gateway (due in 1991), a high speed
interface to the Color Computer 3.

The MMII can have up to five serial ports, three of
them with hardware handshaking, making remote
communication easier. This helps with uucp and other
telecommunications facilities such as BBSs and proprietary
messaging systems.

One of the ports can be configured for MIDI. The
MIDI board will be ready before the end of 1990.

PC Keyboard port

Any XT detachable keyboard can be used with the
MM/1. IMS can also supply you with one. This adds to
the professionalism and customization of the MM/1.

1.4 Megabyte floppy

The DMA floppy controller can handle up to 4 drives
of any popular type (5" or 3.5" normal or high -density~

The base MM/1 includes a 3.5" floppy drive capable of
either 720K or 1.44Meg operations. That means a disk
can hold up to four times the storage of double sided
CoCo drives. Quick access and data transfer times make
OS-9/68000 much easier to use on a floppy disk-based
system. IMS will be providing extra floppy disk drives.

SCSI Interface

The DMA hi-speed SCSI host controller allows use of
up to seven devices. (Examples are hard disk drives,
tape drives, CDROM/WORM drives)

Memory Expansion

MMfl includes 1 megabyte of 256K x 4 dynamic RAM
on the main CPU board. Memory is easily expandable
on the second board using SIMM technology, a
cost-effective means of el!:panding your system to 3 or 9
megabytes.

The I or 4 meg SIMMs may be either Mac or PC
style; and will be available at low cost from IMS to
our customers.

SoftWare

The MM/1 operating system is OS-9/68000, with portions
in ROM to save memory. Also included is the compiler,
networking software, PC-DOS file manager for reading
and writing MS-DOS diskettes, print spooling, tape
backup support, Microware Basic, graphics editor, text
editor.

Mouse/Joystick Ports

One of the serial ports may be used to connect an
inexpensive and accurate PC-style serial mouse.

For games, there is a CoCo-style analog joystick port,
with support for two fire buttons, and up to 8-bit
resolution on two axis.

Internal Clock

Realtime clod, battery-backed with 56 bytes of
non -volatile memory.

Networking

The MM/1 has an inter-cpu networking interface that
will later be used with appropriate cables (available
separately, requires installation). This interface can be in
either master or slave mode. A master can have up to
127 slaves.

Data is transferred over the network at up to 100
KBaud, or the equivalent of five printed pages of text
per second. When a computer on the network is not
being addressed, there is no overhead on the computer
system.

This networking is ideal for low-cost educational and
business applications, and can be used in the home to
connect several MM/ls.

PRICING INFO

MM1 first board, case, power, floppy: $779
MM1 as above With keyboard: $859
MM1 as above With keyboard, monitor: $1149
MM1 With 2nd board, case, power floppy: $1125
MM1 2nd board upgrade: $399

Financing Is available, and the machine Is due to be
released Sept 15.

Interactive Media Systems Inc.
1 840 Biltmore st
Washington DC 20009
(800) 866·9084 (9-5 EST)

And now. for Frank Hogg•a TC78 machine. a
cloae competitor to the MM/1.

Frank Hogg Laboratory is pleased to announce the TC70,
the 68K computer of choice for Tomcat/Color
Computer/68K users.

The TC70 is the latest in our line of K-Bus compatible
products, providing the greatest flexibility and expansion
for the OS9/0SK community.

The TC70 is a stand -alone system that can also be used
with the TC9 Tomcat for complete OS-9 Level 2
compatibility. It is fully expandable via the K-Bus to
over 14+ megabytes of RAM and 60+ ports and is the
lowest cost of any system available. These TC70 in
conjunction with the TC9 provides both CoCo
compatibility as well as OS9168K. The Tomcat is the
most flexible and expandable of any computer system
available today.

The TC70 has 50% more built in RAM, a better AT
keyboard interface, is more cost effective, and is more

Sector 119

n:.:ard with K·Bus compatibility than other 68070
~d. single board computers announced or on the market.

The Technical Speca

Signetics 68070 CPU (Motorola 68000 compatible) at 15
MHz, 1.5 MB RAM (1,536K), Memory upgradeable to
14+ MB via K·Bus, Graphics resolution from 320x200 to
720x540 (interlaced), From 16 to 256 colors on·screen,
depending on resolution mode, Three serial ports
expandable to 60 via K·Bus, PC keyboard port for
10l·k,ey AT·style keyboard, RGB·Analog output for CM·8
Style monitor and ROB TTL for PC monitors, OS9168K
Professional Version with. C and Basic included, Direct
Memory Access (DMA) floppy disk controller, DMA
SCSI host adapter built in for hard drives and tape,
K·Bus compatible, TC9 compatible (CoCo 3), 8·bit D to
A port, 8·bit port A to D (CoCo joystick), 1 parallel
port for parallel printer expandable to 60 via K·Bus,
Serial mouse port, Real·time battery·backed clock.

CPU

The Signetics 68070 is a Motorola compatible CPU
running at 15 MHz

vo support

The PC keyboard port is designed for standard AT ·style
keyboards. The AT ·style keyboards are available in a
better quality than XT keyboards and also provide
bi·directional control of the keyboard LEDs from the
computer. This way CAPS lock etc can be tied into
each window.

Floppy disk controller is included at no extra charge.
Supports both 3.5 and 5.25 drives and ALL OS9·0SK
disk formats including CoCo, Mizar, Atari, Motorola etc
etc. Also supports our PC Utility for using PC DOS
disks.

The TC70 floppy controller uses separate DMA from
the SCSI port allowing very fast transfer from hard
disk to floppy, great for backups. Our SCSI drivers,
proven by over 6 years of use supports all SCSI hard
drives, tape drives and most SASIISCSI controllers
including XEBEC. OMTI. Adaptec. Western Digital etc.

SoftWare support

Microware's OS9/68000 Professional version with C and
BASIC is included. Our port of OS9168K is a mature
port with over 6 years of proven reliability. Additional
utilities only available for the Tomcat system extend
OS9168K to the utmost.

Expansion

The TC70 can be expanded with K·Bus cards.

Physical apecs

The TC70 is 5.25 X 8 (The same size as a 5.25 disk
drive) and has mounting holes that allow mounting to a
5.25 drive. This allows very flexible mounting. The
TC70 will fit in and is an upgrade to the QT, QT
Plus and QT OOx. The TC70 also mounts in the K·Bus

and will work with the TC9 board and other K·Bus
cards.

Pricing

The preliminary price is $999.99 for the TC70 board
and software. Complete system prices and final
specifications will be uploaded later. Consult the Tomcat
brochure for TC9 pricing.

Availability

The TC70 will be available early September.

For more information or to be placed on the waiting list
for any of our Tomcat computers contact:

Frank Hogg laboratory, Inc.
204 Wlndemere Rd.
Syracuse NV 13205
3151469· 7364
FAX 315/469·8537

Unfortunately, Frank'• price 1111 It rather large
and won't fit In the space I have, and he hu
a lot of options With hit bus scheme. Pleate
contact him directly for price Information.

the OSKer
Official standard Sub-Standard

Subscription Program

!0 PRINT "YOUR NAME"

20 PRINT "YOUR ADDRESS"

30 PRINT "YOUR CITY, STATE, ZIP"

40 IF (IN USA) INCLUDE $12

50 IF (IN CANADA) INCLUDE $15

60 ELSE INCLUDE $20

70 MAIL TO:

the OSKer

P.O. Box 24285

SpeedWay IN 46224

Sector 1110

OS9_in_lndustry
by Robert Miller

As most home users of 0$9 know, Radio Shad (aka
Tandy) no longer supports our beloved Color Computer.
They claim to, but the truth is evident. The CoCo is
obsolete, and there are no plans for an upgrade
apparent on the horizon. For us OS9ers, this means
that, until the MM/1 and the TC9 are released, there is
no easily available, ineMpensive avenue for putting 0$9
in the home. It is available for the Mac, Amiga, Atari
ST, and even the PClone (by means of an AT card
with an on ·board 68000 processor) running DOS
concurrently! But all of these implementations are not
widely supported, very eMpensive, and, as is obvious,
not very popular.

This brings up some interesting questions. Consider
these facts: OS9 has not been a highly succesful
operating system (along the lines of DOS and Mac's
Finder) in the home. It's high point in sales was
probably at least three years ago. It is not used
extensively in offices, nor in schools. But Microware,
an international company with offices throughout the
world, is still in business. Where is OS9 being sold?

Having eliminated most other options, and realizing that
it must be getting used in an area that is not readily
visible to the casual computer user, it becomes obvious
that OS9's major sales must be made in the industrial
world. This is indeed the case. As surprising as it
seems, our trusty little disk file organizer is being used
by scientists and engineers the world over in laboratories
and R&D rooms to control machines, acquire data from
the outside world and process it, operate as the user
interface to complex networks of incredibly fast,
expensive machines, and even to prepare presentations
that mix stereo sound, graphics, animation, and even
true filmed sequences of reality!

Before I go any further, let me introduce myself and
give myself some credibility. My name is Robert James
Miller, I attend University of California, Riverside as a
Computer Science major working towards a B.S., and I
have been using OS9 at home for about 3 1/2 years.
But I am also a sales engineer for a representative
company here in Riverside, that deals in the selling of
primarily board level products (as opposed to chips or
systems) and some peripherals all throughout Southern
California. I personally sell in the Los Angeles County
territory. Two of the companies that we represent,
Radslone Technology and GreenSpring Computers, develop
boards for the VME bus structure. (More on VME
later.) These companies both have 0$9/68000, hereafter
to be referred to as OSK, ported to their processor
products. What this means is that not only do I have
a great deal of interest in OS9 as a personal operating
system, but I have exposure to it in the real computer
industry. And thus, here I am, humbly providing you
the reader with information in an attempt to bridge the
gap between OS9 use at home and in the industrial
world.

The gap that I am referring to is significant. To make
my point, I would like you to ask yourself right now
if you think that this is the only OS9 specific magazine
currently in publication. I would bet that many of you
do. But there is another OS9 specific magazine that
has been in print since before 1980! Of course it
didn't start as an OS9 specific magazine. It began as a
magazine dedicated to the state of the art line of
processors developed by Motorola: the 6800 and the
6809. It is called "68 Micro Journal," and it has
followed the Motorola line of CPU's throughout the last
ten years. II is known as an industry mag, read
mostly by engineers during coffee breaks. The major
contributors are hardware developers, writing about
technologies that they have designed. And it has
recently, due to the overwhelming use of OS9 as the
operating system for Motorola based industrial machines,
dedicated itself to our operating system. It refer's to
itself as an "OS9 Systems Integration" publication. Not
casual reading material, unless you ~happen to be one
bright enough to consider techniques of shell
development and designs of integrated circuits casual

So now you know. OS9 is being used in industrial
applications by major institutions. Wait, did I say major
institutions? I guess I haven't mentioned some of
Microware's best customers yet. NASA's in there.
They like OS9's real time capabilities. (Real time?
Again... I'll explain later.) Sony and Phillips IMS like
0$9 a lot, too. They enjoy its portability, and ease of
interface to new, innovative devices. Other companies
use OS9 scattered among the thousands of projects that
they are involved with. These include the likes of
Hughes Aircraft Company, TRW, McDonnell Douglas,
and Jet Propulsion Laboratories, as well as other
aerospace companies. In all of these organizations I kave
either seen or heard of the use of OS9. And I only
work in Southern California.

Now comes probably the most important question of all
that I have presented. What does this mean to us, the
home users of OS9 who hope to be able to afford our
next hard disk when we run out of space. It means
that there is a lot more support for us out there than
we think. But it also means that we are not central to
Microware's universe, as they are to ours. Right now,
we are small fish to the big boys in Des Moines.
They are more than happy to let us do our own
development and build our own machines. They are
ecstatic to see a new interest arising in their operating
system. But until we start to turn into some actual,
significant revenue for them, they will do little more
than encourage us and watch from the sidelines. Not
that they don't want to help, but they are a
corporation, and they do have to watch the bottom line.
However, as those of us who have had a chance to
talk to them know, they are supportive and would
definitely like to see our recent efforts come to fruition
as much as we would.

I realize that all of this talk is very vague. have
been referring to what are (to some of you) unknown,

Sector #Jl

- :,~_.:_:-.~: ...s ~:-.::::s:s such as real time operations, and
~ ·r. ~ b-.s muctures. And I have been setting the
;·~a ::: ;:. :e~estmg examples of actual projects that
_ • -·' = :::;s9 Hopefully, I have alerted the curiosity of
::.: :: ;,.,.·a people out there enough to warrant the time
: ::.a•: spent writing this. What I plan to do is write
a ::::lumn for "The OSKer" every month, pertaining in
s:rr.e way to the use of OS9 or (primarily) OSK in
:.:dustrial applications. I will start next month by
writing a tutorial about bus structures and real time
operating systems, explaining the terms that will be used
quite often throughout my discussions. (I Jfte to call
them discussions. They're actually ramblings, but I lfte
to dream.) After that, I will start with a few examples
of actual applications that are currently using OS9.
And from there ... that's a ways off. We'll decide when
we get there.

I truly mean "we" when I say that. as well I would
like to get some feedback from people who ate reading
this magazine. Comments, criticisms, and kudos
(especially kudos :·)) are more than welcome. In fact, I
will only continue to write these articles if I really feel
that there is an interest. I would hate to be taking up
space in Senti's wonderful. if young, magazine when
there isn't anyone who wants to heat what I say. So
if you like it, or don't, feel free to write. l'd even
appreciate grammatical corrections. At least I'd know
you're reading. Don't be too hard on me, however.
have an easily damaged ego. :·) (<·· For those of you
that are unfamiliar with this little symbol, it is a
sideways happy face. In computer lingo, it means that
a humorous or sarcastic remark was just made, one not
to be taken seriously, or at least without a grain of salt.)

I realize that this column is geared towards people who
are unfamiliar with the industrial world of OS9.
However, both myself and Scott would Jfte to see
engineers and others reading "The OSKer" as well. So
if you aren't a beginner, but had an interest in
something I referred to, or would like to see some more
advanced topics being discussed in a different forum,
please let me know. We don't want anybody to be
excluded from having a magazine to call their own.

I can be reached by U.S. Mail at:

Robert James Miller
500 Hibiscus Dr #E201
Redlands, CA 92373

If you have access to a facility that allows internet,
(internet is another topic I might discuss in the future)
I can be £-mailo;~d at tmillcr@ucrmath.ucr.cdu. I do not
as of yet have a CIS or Delphi account, but hopefully
I will in the fairly near future. I'll let you know. I
won't release my phone number for now, because it's
likely to change within the next three months (as will
my address), and I'm rarely at home anyways. That
wraps this up, now to wait for those comments.

DISCLAIMER: While I mention a lot of public and
private organizations in this column and will continue to
in future columns, most of them I am not affiliated
with. The ones that I am affiliated wilh I am not

representing in writing this article. All opinions are my
own, not those of my employer or any other
organizations mentioned. And, finally, while I get my
information from reliable sources, and I do my best to
write only factual information, I cannot accept
responsibility for any incorrect information or for anyone
else's use of incorrect information that has been obtained
from this column. I will, however, publicly apologize
and correct my error if someone knows information to
be incorrect. I would like to know as much as my
readers. Whew! Thank you.

N"llle .
CantY'~ 1 LAs Outlet for

l.l. ~ OS9/0SK !!!

SPECIAL CLOSE-OUT ON THE
StG Login Package V3.0 !!!
Included in the StG Login Package VJ.O:

• Run a powerful multi-user BBS without losing use
of your computer.

• Exchange messages and files through a nation-wide
network automaUcally.

• Package contains modules: TSMON, LOGIN, MAIL
NEWS, POSTMAN, MENU, HELP, CHAT,
NEWUSER, OPTION, PASSWORD, and many more.

• Run up to 8 lines. at once • Any OS9 program c:an be
run remotely (except for mouse or direct graphics).

• Binary files can be sent as either Mail or News to
other Machines.

• FREE updates/Improvements are distributed through
the network.

• Upgrade to V4.0 when released • FREE!
• Assorted utlUties also included.
• Anlmajlk's Games PAK for the StG Login Pakg.

inc:luded FREE (Exclusively from Nine Central).
• Includes printed manual.

Special Close-out Price $40.00
Supply is limited, so ORDER NOW!

Make Payable to:

Wayne Campbell
P.O. Box 85043
L.A., Ca. 90072

Call (818) 753-9864 (Volce)

lOam. to 4pm. (PST)
or (213) 461·3872 (BBS)

7pm. to 7am. (PST)

Please allow 1·4 Weeks for delivery
Include $3.00 S&H (Check, M.O.)
$7.00 for COD. • U.S. Currency Only

Sector #!2

Playing_Chess_in_C
by Scott Griepentrog

Hey, I'm not normally into games, but writing one can
be a learning experience. And one of the most
commonly done, as well as most difficult, is chess.
Although the idea of pieces on a board can be easily
translated into a computer language, devloping the rest is
quite a challenge. Each of the pieces has different
rules governing it's movement, and then there's the
problem of making the computer understand the game
well enough to be a good opponent. It all begins to
sound very difficult · but it is exactly that kind of
challenge that I live for, or rather, program for. As
soon as somebody tells me something can't be done, you
can bet I'm hard at work. thinking up a way to do it.

I also want to use this program as a way to introduce
some of you to the C language that before now have
not taken the time to learn it. We're going to start
out real slow, by first doing some planning on how to
make this thing work. Each month a section of the
program will be developed, adding together until we
have something useful. Before we're done, we'll have
added termcap support for doing full-screen display on
different terminals, the capability to play against the
computer as well as another user, and maybe even get
into some hi·rez 3d graphics. But one step at a time,
so you have a whole month to digest the new code
before we move on. And, you can give me feedbacl
on alternatives to my own methods · maybe we can
make this a group effort?

Some tools you will find handy during this are l) a C
compiler, either 0$9, OSK, or even PC or Unix (until
we really get into it). 2) The manual that came with
the C compiler so you can look. up what certain
functions do, how to compile a program, etc. Very
necessary. 3) The book "The C Programming
Language", by Brian w. Kernighan and Dennis M.
Ritchie, the guys who wrote C. This isn't a must
have, that is, if you already know what's in it. My
copy is only about 4 years old, but is already falling
apart. You can still buy the book in stores, though
you may have to order it, and the newer edition covers
ANSI C. For what we're doing, ignore the ANSI
stuff, we either don't have it, won't use it, or can
write around it. And finally, the most important: 4)
your brain online, and Jots of time. Many a project
has been started without one of the two, but never
finished. Now that you're ready, on to the program ...

The first thing that needs doing would be a routine
that displays the board layout. The output routine is
usually the first thing that is written, because it shows
you what's going on in the program. Input can be
pre·set, and the output routine can be completely
debugged before going on to the next step. Splitting
up the task into smaller pieces not only makes the job
seem easier, but keeps you from going through the
whole program to find a bug. If each piece was tested
as it was developed, the bug is usually in the section
you just wrote. But writing a program in this fashion

also means you have to plan how the pieces interact
via common variables and so forth · so that they will
work with each other as they are assembled into a
finished product.

Before just sitting down and w .iting out some code, it's
important to sit back and consider for a moment what
would be the best way to store the board layout in
memory. In C, there are several 'types' of variables for
storing things. The type char is essentially a byte
except tha.t it has a sign. That is, instead of storing
the number zero through 255, it stores ·128 through
127. How and why is not important right now, to
explain that I have to get into two's complement.
There are a number of different pieces, let's see, the
whole bottom row of pieces totals eight, plus the pawn
would be 9 pieces for each side.

No, wait a sec. .. , there's less t]lan that. There are two
Rook.s, two Bishops, and two of those Horseys. So
there's really only 6 distinct pieces: the King, Queen,
Bishops, Knights, Rooks, and Pawns. But then times 2
for the two sides makes 12 different pieces. But then
computers have this nasty habit of calling 0 a number.
Even if there's nothing there, that nothing counts as
something · because it has to be something if the
computer is going to think about it. Confusing isn't it?
A square that has no piece on it has to be considered.
If a particular square on the board can be occupied by
any one of 12 pieces, or no piece at all, that makes a
total of 13 possibilities, or 'slates'. And each stale can
be represented by a number; numbers are the only
language a computer really understands anyways.

So it's pretty obvious that a type char will work for
storing which piece is sitting on a particular square of
the board. Now for the question of how to numbtJ
them. What are the options here? We could start at · J,
counting upwards for each piece. That would make 1·6
for one side, and 7 ·12 for the 'other. Or what about
using 1·6 for one side, then maybe 9·14 for the other.
But why skip 7 and 8 you're asking? Thinking
forwards to a time when we'll be writing a routine to
test for a valid move, for instance, it would be nice if
the routine worked the same for both sides of the
board. Each type of piece moves in a certain way,. so
it's important to know which one of the types of pieces
occupies a certain square, regardless of which side it
belongs to.

A sneaky way to do this (otherwise known as a neat
hack) is to use the bit·wise AND operator of C. The
binary for a 6 would be 110, and the corresponding
piece for the other side would be number 14, or 1110
in binary. Note that the last three bits are the same,
and that two sets of numbers, 1·6 and 9·14, are offset
by 8, which happens to be a sigificant position in
binary. Given a particular number representing a piece,
say foo, the equation (foo & 8) would tell what side
the piece is on, and (foo & 7) would tell which kind
of piece it is. By placing different information in
separate bits (known as bit ·mapping), the needed
numbers can be easily separated using the AND, which

Sector 1*13

is a lot faster than doing a compare and subtracting.
Just a little planning ahead like this can save a heck of
a lot of coding. Of course, it also helps to know how
binary works.

Oh, and don't mistake the operator & with the &&
operator in C. The single ampersand Is bit·wise, and
the double && is logical I.E. to pull out certain bits,
you use (number & number). but in an if this and the
other situation you use (true && false). If this doesn't
make sense just yet, look at some code where both are
used for examples.

Okay, back to our choosing number to represent the
pieces. Are there any other ideas? Hmm... What if
you used ASCII characters (which are assigned numbers)
to represent the pieces? Lessee... 'K' for King, 'Q'ueen,
'B'ishop, 'K'night, 'R'ook, 'P'awn. Oops, that's two K's.
Hmm. Maybe 'N' for Knight? Hey, it's better than 'H'
for Horsey. Not very elegant, but it might work. But
then what about the other side? I know· use lower
case. That way the toupper() function of C can be
used to look at both sides the same, and a simple
comparison (foo•'a') will yield which side the piece is on.

Because we want to keep this as easy to understand as
possible, maybe going with the ascii form would be the
best way. It will make the program easier to read, not
to mention write. And for display purposes, we can
always convert the letters to something better looking ·
like eventually a neat 3d graphics display. But right
now it will make life easier to just print out those
letters, instead of having to convert from arbitrary codes.
Okay, everybody agreed? What else do we need to
figure out. I know · what are we going to use to
represent a square that does not have a piece on it?
Going with the Ascii convention, it would be logical to
use a space. But is there maybe a better choice?
What about using zero? That would allow us to say "if
(piece)" instead of "if (piece==' ')" all the time.

C allows just a variable in an if statement that will be
tested for zero or non zero. In fact, it also allows us
to use the NOT operator (exclamation point, often called
'bang') which then lets you write "if Cpiece)" which is
read as 'if not piece'. Or, if you're really into C
programming , you say 'if bang piece'. The bang
changes a zero to non ·zero, and non ·zero in to zero.
Sorta handy eh? Oh, by the way, C uses the 'equals
equals' for testing something, instead of just one equals
sign like in basic. If you were to say "if (piece=' ')"
then C would make piece equals to a space, and then
test it for being non ·zero. It's easy to forget to put in
the extra equals when doing comparisons, and every
now and then I find a bug where i've done just that.

Ugh, where were we? Oh yah, so the question is,
space or zero. If we use space, we can just print it,
but it puts all that extra mud in our program. But if
we use zero, we can put just one extra line in the
display routine to convert it to a space, and leave a lot
of extra tests for space out of the code. And believe
it or not, C programs run faster if you omit the extra
test too · which means that when we get down to the

time critical routines to figure out the best move for the
computer... well, you get the idea It's amazing how
just sitting ba~k for a few minutes and thinking over
some of the minor details can make a big difference
later on.

Okay, now we need some storage. We decided to use
a char for each board position to remember what piece
is on it, but we need an 8 by 8 arrangement of these
chars. So we declare an array. But we also need to
name this array variable. Let's see, it's a n image of
the board, so board would probably be a good name.
The code to declare it then is:

char board(8][8];

Which makes 64 chars. But it's very important to
realize that this array is declared exclusively, but
referenced inclusively. know, what the %$#@ did
just say, right? Okay, exclusively means to exclude, or
not count, the zero. There are 8 colums and rows on
the board, 1 through 8. Inclusively means to include
the zero when counting. So our 8 becomes 0 through
7 instead. Referenced is a big word that just means
'look at'. So when you look at an element (one char
out of the array) in C, you have to use 0·7. Basic of
course does things exclusively, 1·8, which tends to create
an odd syndrome where new C programmers who
started programming in Basic have been discovered to
have a substantial decrease in hair. Aint this just so
much fun?

Okay, looks like we're all ready to start writing code.
First thing that we need to do is write a function
(small section of code wi.th a name) to put the pieces
in the right places on the board. We'll make use of a
while loop to put some of the pieces in easier. First
things first, though, let's name the function. What does
it do? It puts the pieces on the board. Hmm.
Normally I like to name functions with a combination of
two words · a verb that describes what we're doing,
and a noun that names what we're doing it to. As an
example, taking a 10 pound sledge hammer to your
computer because it won't compile your program would
be called "hammer_computer(lO)". But that gets a bit
much to type every time you want to do it, which is
quite often. So naming functions becomes an art.
Naming it "hamcom()" would be a little easier on the
fingers, as long as you don't forget what it means years
later and start thinking that you're having a conversation
with a ham. How about "setbrd()"?

aetbrd()
{

lnt x,y;

I* flnt row *I
board[B][B] = 'R';
board[8)[1] = 'N';
board[8)[2] = 'B';
board[8)[3] = 'Q';
board[8][4] = 'K';
board(8][5] = 'B';
board[B][6] = 'N';

Sector '* 14

}

board[8][7] = 'R';

I* row of pawns */
X=S;
while (x<8)
{

board[1][x] = 'P';
X++;

}

I* 6 empty rowa */
y=2;
While (Y<6)
{

}

X=S;
while (X<8)
{

board[y](x] = 8;
X++;

}
Y+ +;

I* another row of pawns */
X=B;
While (X<8)
{

board[S][x] = 'P';
X++;

}

I* and the last row *I
board[7][S] = 'r';
board[7][1 1 = 'n';
board[7][2] = 'b';
board[7][3] = •q•;
board[7][4] = 'k';
board[7][5] = 'b';
board[7][8] = •n•;
board[7][7] = 'r';

Oh, that x++ is the same thing as saying x=x+ 1, only

}
}

If (board[Y][x)) pulchar(board[Y][x));
else pulchar(' ');

putchar(" ');
X++;

}
pulchar("\n');
Y+ +;

This function is pretty similar to setbrdO. I bet you're
wondering what \n is, right? It's the the carriage return,
or next line char. Each board position is checked to
see if there's a piece on it. It so, that character is
put on the output path for display. If not, a space is.
Another space is displayed between each piece, and
after every line it puts the carriage return out to go
the next line. That was actually pretty easy right?
Ok.ay, now put the two functions together, and write a
mainQ.

#Include < stdlo. h >

char board[8][8];

I* put tetbrd() here *I

I* put dtpbrd() here */

main()
{

}

setbrd();
dtpbrd();

The line '*'include •stdio.h•' is always put at the top of
every C program (well, almost always~ It loads some
stuff into your program that the putcharO function
needs, as well as some other handy stuff we'll discuss
later. For now, just put it in and ignore it. Then we

shorter (and faster). The type int is either 2 bytes, or

declare the board. Because this is done outside all the
functions, all of them can use the board array without
having to pass it to them. The x and y int in each
of the first two functions can only be used within the
function, and each pair are separate. And lastly, the
main() function is put in. C automatically calls this •
function when the program runs, and it calls the other

4 bytes, depending on which machine you're on (6809
vs. 68k), and is also signed. For our purposes, either
will do, as we're only going as high as 7. In fact, a
char would do, but is more conventional to use int for
indexing (selecting one of the elements~ SetbrdO goes
through the whole array in order, and sets the piece
types into board[][], and sets the empty elements to 0.
Now to display the board on the screen:

dapbrd()
{

lnt x,y;

I* y,x nested loop *I
y=B;
while (y<8)
{

X= 8;
while (x<8)
{

two in order. Piece of cake, right? Not bad for a
day's programming, eh?

Oh, and in case you don't know how to compile this,
just type it all into a file called 'chess.c', and then
compile it with the command 'cc chess.c'. If you're
using OS9, you may have to use eel instead of cc.
Run it by entering 'chess', and it should display the
board. All that work and you're not all that impressed
huh? Well, just wait, next month we're going to add
routines to let you move pieces around!

And if you get bored in the meantime, see if you can
figure out a way to condense (simplify) the setbrd()
function. I can see a number of things that would
bring the size of the function down to about 10 Jines
or less even.

Sector # 15

Syscall_for _C

by Scott Griepentrog

Mike Haaland called me up and wanted the equivalent to the SYSCALL function in Basic for OSK C. So I wrote
one. End of story.

#tnclude < typet.h >
#tnclude < machlnelreg.h >

I*
* _oak(code, reg) - call an OSK tyttem call directly

*
* code = OSK tyttem call code number
* reg = pointer to register struct a Ia < machlnelreg.h >
*
* NOTE: putel/returnt regl.tera D8-D7, AB-A4 ONLY!
* alao returns SR (atatut regltter, condition codes)

* * PO by StG 98/8811S

*
*I

_oak(code, reg)
lnt code;
REGISTERS *reg;
{
#atm
* puah a5 on alack (can1 modify H)

move.l aS, -(ap)

* put puted van In reglatert for ute later
movea.l 4(tp),a8 a8 =code;
movea.l 8(tp),aS a5 =reg;

backWards * thove program on etack (ap)
move.w #$4e7S, -(tp)
move.w aS, -(tp)

*-- tp = lnatrucUon(•rts•);
*··lp=a8;

move.w #$4848, -(tp) *- -1p = lnttructlon("trap #8•);

* grab reglatera from ®, execute llacked program, put raga and alack back
movem.l (aS),d8-d7/a8-a4 with (d8-d7 && a8-a4) do that_regltter =*aS+ +;
)tr (tp) (*ap)();
movem.l d8-d7/a8-a4,(aS) with (d8-d7 && a8-a4) do *aS++ =that _register;
move tr,84(aS) *(aS+ 84) = statut_reglster;

* restore alack, and check for
lea.l 8(tp), tp
bcc.b no_err
move.l d1, errno(a8)
moveq.l #-1,d8

no_err:

* rettore original as
move.l (tp) +,as

#endatm
}

errora
tp + =8;

If (error)
ermo=d1;

dB= -1;

Sector 1116

Wliat_is_Multi_Media_Anyway
Who wants to know?

Now that's a loaded question. There has always been
a trend in computing to have more memory, faster
speed, better resolution graphics, and interface to
anything and everything. This is the eternal truth of
computers and their programming · capabilities will
expand.

So, what you're sayln' then Is, some dude just come up
with this crazy name, right?

Well, that's the question before us, yes. Is there really
more this industry buzz·word than the mere concept of
a computer being able to do more than it was before?
The definition is actually very simple. Multi Media
means that more than one 'Media', that being text,
graphics, animation, or sound, are used together in a
program.

Hey, walt a sec, does 'dat mean my Tetrls game that's got
all them funny blocks and bleeps at me Is one of these
MultiMedia thlngies?

Well, yes, in a way all video games these days could
be considered MultiMedia, because they combine both
graphics and sound.

So what's the big deal then, eh?

The idea behind MultiMedia is that these combinations
can be used together in ways that were not possible
before. For example, your average, ordinary, everyday
business computer is suited more towards crunching
numbers, keeping track of data, and doing word
processing than producing an animated demonstration of
a roller coaster · with a view from the front seat
including the clackity clack sound and screaming. And it
would have controls allowing you to stop it at any
time, run it backwards, slow it down, speed it up, and
even modify the construc1ion of the track. A machine
that can happily keep the corporate office functioning
correctly does not need the speed, high resolution
graphics, and sound output capabilities required by such
an application.

Wow! That would be really rad, man! Hey, I could make It
take a tum too fast and blow off the track · that'd be cool,
watch ltfly through the air ...

Yes, well, you could do that I suppose. depending on
how flexible the program was. Actually, a better
demonstration of this would be to add a history of
roller coasters to our example. Have a database of all
existing roller coasters, linked to a map of their locations.
Include stories about them, and pictures. Pick. out a
city you're going to be in soon, and it'll show you a
picture of ihe roller coaster there. Select more
information, and it'll give you a complete text
description, including the builder. Select the builder and
get a list of coasters build by them, and a description
of their work. Select another coaster by the same
people and go take a ride on it. Even though different

types of information are stored, they are interlinked so
that you can jump from one to another easily.
Actually, this gets more into another buzzword,
HyperMedia

What, you got all yur medias all hyper and running around
buzzen or something?

No, HyperMedia means that you have different
information 'linked' together, as in our example. The
information came from different people, in different
media forms, but is all tied together in this HyperMedia
form to make it easy to explore at will. Actually, the
term comes from HyperText.

Geez, man, you loat me ...

HyperText is the same principle of different information
linked together, only just with text. For example, say
you are reading about Shakespeare, come across mention
of his story Romeo and Juliet, and decide to read the
story. You select Romeo and Juliet, ask. fot the text to
the story, and begin reading. But you keep running
across words you don't know. So you select the word,
ask for a definition. After. a few minutes of this,
finding yourself spending more time in the dictionary
than reading the story, you happen across a word that
is so obscure that the definilion doesn't make sense.
So, you select that word again and ask for any other
files that have the same word, and so on. You can
explore the text files you have stored by jumping
around at will · this capability is called HyperText.
But add graphics, sound, and animation to the same,
and you've got HyperMedia But to be able to do
HyperMedia, you have to have a machine that can
handle MultiMedia So, does it all make sense now?

Naw, man, It's all Greek to me!

Sector UlJ

	The OSK'er
	Table of Contents
	BBS List
	Doc OSKer
	Editor Rambles
	Flame ON
	How to Build a CDI
	New Machine Specs
	The MM1
	MM/1 Features at a Glance
	MM/1 Feature Details
	CPU
	DMA
	Graphics
	Sound
	Parallel and Serial Ports
	PC Keyboard port
	1.4 Megabyte floppy
	SCSI Interface
	Memory Expansion
	Software
	Mouse/Joysticks Ports
	Internal Clock
	Networking

	Pricing Info

	FHL TC70
	The Technical Specs
	CPU
	I/O Support
	Software support
	Expansion
	Physical Specs
	Pricing
	Availability

	OS9 in Industry
	Playing Chess in C
	Syscall for C
	What is Multi Media Anyway

